
NoWait–RPC: Extending ONC RPC to a fully compatible Message Passing
System�

Thomas Hopfner Franz Fischer Georg Färber
Laboratory for Process Control and Real–Time Systems

Prof. Dr.–Ing. Georg Färber
Technische Universität München, GermanyfThomas.Hopfner,Franz.Fischer,Georg.Faerberg@lpr.e-technik.tu-muenchen.de

Abstract

Locally and functionally distributed applications real-
ized on different system architectures demand a universal,
portable and intuitive software utility for interprocess com-
munication. Remote Procedure Calling (RPC) fulfills these
requirements but suffers unnecessarily strict synchroniza-
tion and the danger of deadlocks with complex client/server
relations. Using message passing to avoid the inherent
problems of RPC, however, requires additional knowledge
and sometimes a complete structural redesign. This paper
presentsNoWait–RPC, an extended but fully compatible
version of SUN’s Open Network Computing Group’sONC
RPC, which addsmessage passing capabilitiesto form an
easy to use programming environment for robust system in-
tegration. NoWait–RPC was developed to resolve poten-
tially arising deadlocks in an already RPC–based complex
application. It is designed to be aplug-and-play substitute
for ONC RPC and consists of the library and the extended
protocol compilernwrpcgen. Additionally, applications us-
ing the asynchronous (non–blocking) features of NoWait–
RPC may experience a major speedup compared to ONC
RPC through pipelining calls to different servers. It has
successfully been employed in a research programme deal-
ing with the development of autonomous mobile robots.

1 Introduction

Sharing resources using electronic networks is becoming
a new paradigm in technological development. New con-
cepts such as distributed user facilities and team–based de-
velopment are rapidly evolving, since present systems tend
to consist of a large number of modules. Especially in
robotics applications these modules include sensor or mo-�The work presented in this paper is partially supported by theDeutsche
Forschungsgemeinschaftas part of an interdisciplinary research project on
“Information Processing in Autonomous Mobile Robots” (SFB331).

tor control, knowledge management and model bases, sen-
sor data preprocessing, but also more complex tasks like
navigation, manipulation or exploration of unknown envi-
ronments. They tend to have small interfaces and thus lend
themselves very well to distributed development. The key
problem, though, lies in the need for a robust and easy to use
system integration utility which allows the distributed de-
velopment of system modules and their integration even in
case of a heterogeneous computing environment. Another
demand is the support of some degree of parallelization to
allow for different timing constraints of sensors and actors
without a large communication overhead or the danger of
deadlocks.

Most of these problems do not arise withmessage pass-
ing systems likeParallel Virtual Machine (PVM)[2], a free
available software package for parallel processing in het-
erogeneous computer networks. But PVM is mainly aimed
at parallelization by dividing programs into small tasks and
not at building client/server–structures which are necessary
for distributed robotics applications.

Another library offering message passing support isMPI
(Message Passing Interface) [5]. The free–ware version
MPICH depends on PVM or a similar product as commu-
nication layer and acts just as an interface. Since the MPI–
standard is the result of trying to combine existing message
passing libraries, the functionality offered is very high; on
the other hand MPI became quite large, complex and there-
fore difficult to understand.

Remote Procedure Calling (RPC)hides many details of
interprocess communication like connection establishment,
synchronization or data representation from the application
programmer and hence is very convenient to use: The client
simply calls a (usually automatically generated) local stub
procedure, which encodes the arguments, sends the request
to the appropriate server process, waits for the server to ex-
ecute the procedure and returns the result to the client after
decoding the server’s response. This enables even unexperi-

1



enced programmers to rapidly familiarize themselves with
RPC and implement distributed client/server applications.
However the fundamental drawback of RPC is that — as
is true with local procedure calls — the calling process is
blocked until the reception of the result. Furthermore, com-
plex scenarios where a server also acts as a client (in the fol-
lowing termed a “clientserver”) are not easily realized due
to the potentially arising deadlocks with complex and cyclic
client/server relations. These limitations are especially true
for ONC or Sun RPC [7], which was originally designed
for client–server communication in the Sun NFS network
file system and for this reason is available on a wide range
of architectures and operating systems.

To overcome some of the problems caused by ONC
RPC’s strict synchronization, there are other RPC–
packages. Beside commercial ones1, which were not ac-
ceptable because one demand was to have open sources to
be able to integrate RCP over a serial line, free available
packages are either not very helpful (likeTI–RPC[6] which
uses threads and therefore the application has to be thread-
safe too) or incompatible with ONC RPC (e.g.DFN–RPC
[8]).

To avoid the redesign of already existing ONC RPC
based applications,NoWait–RPChas been developed. As
it is fully compatible to ONC RPC — i.e. NoWait–RPC–
programs can interact with clients and servers linked with
the standard ONC RPC library, — it preserves all its ad-
vantages, but additionally supports non–blocking remote
procedure calls. That enables the development of com-
plex client/server–structures without deadlocks and the par-
allelization of communication and computation to speed up
the application. Existing knowledge about RPC and system
structures based on RPC can be reused without problems.

The following section describes the main mechanisms
and the programming interface of NoWait–RPC compared
to ONC RPC. Section 3 illustrates the power of this pack-
age including performance comparisons, by describing ex-
emplary robotics applications, which could not have been
realized with ONC RPC, before the paper closes with con-
clusions.

2 NoWait–RPC extensions to ONC RPC

For a better understanding of the advantages of NoWait–
RPC, at first the principles and limitations of ONC RPC are
outlined (Section 2.1), followed by a description of the con-
cepts and implementation of NoWait–RPC (Section 2.2).

2.1 ONC RPC

Using a RPC package simplifies the development of
client/server applications significantly, because RPC resem-

1e.g. Netwise RPCTOOL, DCE–RPC[3] or NCS RPC[4]

bles a local procedure call and hides interprocess communi-
cation details from the application programmer.

In the case of ONC RPC this is accomplished by theRPC
library, and the automatic code generatorrpcgen. The li-
brary provides the basic functions for establishing the con-
nection to the server — ONC RPC uses the Internet pro-
tocols UDP/IP or TCP/IP for data transfer, — sending and
receiving data and converting basic data types from the ar-
chitecture dependent local representation into the machine
independent XDR (External Data Representation) format
and vice versa. This format takes into account e.g. endian-
ness, floating point formats and alignment restrictions.

To implement a client/server application, the program-
mer first has to specify the server’s interface, i.e. declare
the exported procedures and data structures for their argu-
ments and return values, usingRPCL (RPC Language), a
C–like language. Using this interface definition as input,
rpcgengenerates

1. the stub procedures for the client side,

2. the stub procedures for the server side,
3. procedures to convert the specified data structures

from the internal representation into XDR format and
4. a skeleton for the exported procedures2.

For the server side, the programmer simply has to fill the
generated skeletons with the procedure bodies to implement
the exported procedures and compile and link these with the
server stubs, the XDR procedures and the RPC library. The
client has to be completed with the calls to establish and
shutdown the connection to the server (possibly running on
another computing node) and linked with the library and the
generated client stubs. These encode the arguments, send
the request to the server, wait for the server to execute the
procedure and return the result to the client after decoding
the server’s response.

Exactly this property causes the major disadvantage of
RPC: Just like one has to wait for the execution of a nor-
mal procedure, a client process has to wait until the RPC is
finished and can therefore be blocked for a substantial time.
In complex systems this means that the application designer
has to take care that no deadlock conditions arise if two pro-
cesses communicate with each other (cyclic structure). Also
the client process can not continue processing while being
blocked.

2.2 NoWait–RPC

Avoiding the deadlock situations described above while
keeping compatibility to existing applications was the major
motivation for the development of NoWait–RPC. It should
combine the ease of use of ONC RPC (especiallyrpcgen)

2This feature is not available with old versions of rpcgen.

2



with the capability of asynchronous, non–blocking commu-
nication. The additional flexibility should allow even sce-
narios which would have caused deadlocks before.

2.2.1 Internals

The basic concept is to split the formerclnt call() into two
separate functionsclnt send()andclnt recv()and to replace
the several distinct waiting points in the original RPC li-
brary with one central waiting pointnw work select(). In
order to timely separate the application’s calls from the ac-
tual network communication, RPC requests to be sent and
the server’s responses are buffered in FIFO queues on the
client side. The application just adds data to or retrieves
data out of the FIFO buffers when using clntsend() and
clnt recv() (Figure 1).

SERVER

nw_work_select()

clnt_write() clnt_read()

clnt_send()
CLIENT

clnt_recv()

FIFO queues
send

wait
receive

Figure 1. Buffering client calls

The actual network I/O is done each time
nw work select() is called: In the case of a client
RPC, requests from the send FIFO queues are sent to
the respective servers (represented by their socket file
descriptor) with clntwrite(), and available responses are
read with clntread() and enqueued in the receive FIFO. On
the server side, the requests read from the network are not
buffered, nwwork select() instead decodes the request and
calls the respective service procedure to process the RPC
and send back the result.

Because nwwork select() dispatches any pending RPC
request to the appropriate service procedure, calling this
routine — e.g. while processing a time consuming RPC
— results in a cooperative scheduling. That means, the pro-
cessing of the current request is preempted or interrupted
by another (Figure 2). This feature is important to bound
the maximum response time of RPC servers to urgent re-
quests. In a robotics application e.g., some exploration pro-
cedures with long execution times have to be preemptable
by an emergency stop RPC, which obviously has to be exe-
cuted “immediately”. As indicated in Figure 3 clientserver

SERVER

CLIENT 1 CLIENT 2

Figure 2. Using nw work select() in servers

applications can use this feature to parallelize RPCs. How-
ever, it is up to the programmer to provide a mechanism to
avoid that server procedures never finish, because they are
interrupted all the time or recursively call themselves.

SERVER 2SERVER 1

CLIENT 2

nw_work_select()

queues
FIFO

clnt_send() clnt_recv()

clnt_write() clnt_read()

CLIENTSERVER

CLIENT 1

Figure 3. A complex clientserver using
NoWait–RPC

Handling other input or output is significantly simplified
with NoWait–RPC, as nwwork select() allows the applica-
tion programmer to specify arbitrary file descriptors to be
checked for being ready to read from or write to or for ex-
ceptional conditions (cf. the select(2) system call). This al-
lows e.g. a NoWait–RPC server to provide a graphical user
interface based on a typical X Window System Toolkit li-
brary by specifying the X Server’s file descriptor when call-
ing nw work select() and afterwards call the toolkit’s event
handler if a X event is pending.

3



2.2.2 Migrating existing Applications

As mentioned above, NoWait–RPC is fully compatible to
ONC RPC. That provides an easy migration path for RPC
application programmers:

In a first step, the application’s source code is left un-
changed, butnwrpcgenis used to translate the RPCL inter-
face definition into C code and the application is linked with
libnwrpc.a.

The second step is to use the features of NoWait–RPC
by replacing all calls ofclnt call() with nwclnt call() which
already resolves deadlock conditions by using the central
waiting point described above.

Then in a third step the programmer may use the
message passing functionality of NoWait–RPC by split-
ting nwclnt call() in two functions nwclnt send() and
nwclnt recv(), which makes it possible to parallelize calls to
several different servers. While calling a server procedure
the client process can continue to work and some time later
get the answer of the RPC by calling the receiving function.
This may speed up complex applications a lot as shown later
on. The application designer can decide to use this feature
only on demand.

2.2.3 Current Status

NoWait–RPC has been ported to 64 bit3 DEC Alphas, SUNs
(SunOS 4.1.3) and Intel–based Linux machines. Further
ports should be easily possible as demonstrated with the
original ONC RPC sources. The port has been successfully
tested with existing applications according to the migration
path outlined above.

3 Applications

Within the joint research project “Information Process-
ing in Autonomous Mobile Systems” a group of laborato-
ries of theTechnische Universität Münchenis working on
mobile robots that are to plan and execute tasks in service
or production environments autonomously[1]. The system
modules were developed in parallel by the different groups
and at first integrated using ONC RPC. With the increas-
ing complexity of the systems, though, the limitations of
ONC RPC became more and more apparent, which led to
the development of NoWait–RPC. In the following, some
applications are outlined which now have become possible.

3.1 Parallelized image processing

Figure 4 depicts a system structure for a mobile robot au-
tonomously exploring its environment. TheSequencerco-
ordinates the different sub-tasks by calling the correspond-

3This port is based on a DEC Alpha version of the Linux libc.

ing server processes. For localization, an image is requested
of the framegrabber server, then lines are extracted and
matched to model lines provided by the model base, Using
NoWait–RPC it was possible to realize parallelized process-
ing. In this case the time for image grabbing and transfer
could be used by another process to work on the last pic-
ture.

matching

robot platform

framegrabber

pan-tilt head

line extraction

control

control
model base

server

localization
(Kalman filter)

client

image-model

Start / Stop

Sequencer

Figure 4. System structure for autonomous
navigation

By prefetching the different calls with NoWait–RPC
(Figure 5) frame rates of about10 Hz were reached, which
is a speed-up by a factor of 2 compared to the ONC RPC
version.

request image

work on imagerequest image

work on image

t

work on image

request image

request image

work on image

work on image

work on image

request image

request image

work on image

Image 1

Image 2

Image 3

Image 4

Image 1

Image 2

Image 3

. . .

. . .

a)

b)

request image

t

Figure 5. Image processing a) without and b)
with asynchronous RPCs

3.2 Cyclic client/server–structures

In addition to speed up processes, asynchronous, non-
blocking RPCs now make it possible to resolve cyclic
client/server–structures. Consider two clientserver pro-
cesses calling procedures from each other: The first
clientserver process is blocked while waiting for the re-
sponse of the second one and in case the second clientserver
process has to call the first one to finish, the system is obvi-
ously deadlocked when using ONC RPC.

With NoWait–RPC, on the other hand, these structures
present no problem, because the client is unblocked by the

4



Execution Times Protocol / Argument Size [bytes]
[ms] UDP/7 TCP/7 TCP/34000

local ONC RPC 0.516 0.867 15.428
NoWait–RPC 0.764 1.184 14.169

remote ONC RPC 0.510 0.845 15.380
NoWait–RPC 0.782 1.183 14.070

Table 1. Average execution times of a simple
RPC

server’s RPC, processes its request and then blocks again
waiting for its own previous RPC to complete.

3.3 Responding to asynchronous events

The sequencer in Figure 4 should respond to an asyn-
chronous start/stop call in some hundred Milliseconds. This
was not possible before, because it was sometimes blocked
while waiting for the answer of a previous RPC. With
NoWait–RPC it is possible to respond to this asynchronous
signal while waiting for an answer.

3.4 Performance

Table 1 compares the average execution times of a sim-
ple RPC (library functionclnt call()) for different transport
protocols, argument sizes4 and server locations.

The times were measured on two identically configured100 MHz Intel Pentium PCs with32 MByte main memory,
running Linux 1.3. The machines were connected by an
otherwise unloaded10 MBit Ethernet using NE 2000 com-
patible Ethernet adapter cards.

In the case of an RPC to a server on the same machine,
NoWait–RPC is about50 % slower than ONC RPC for
small amounts of data (FIFO management overhead), while
it shows a slight better performance (3 %) than the original
implementation for the large argument string due to mem-
ory allocation in bigger chunks. If the server on the remote
node is used, network latency slows down RPC through-
put for both versions. In this case NoWait–RPC is approxi-
mately20 % and3 % slower than ONC RPC for small and
large arguments, respectively.

The performance costs of NoWait–RPC compared to
ONC RPC are clearly outweighed if a process can actually
engage in useful work after issuing the non–blocking RPC
request and before receiving a reply. Furthermore the ben-
efits of avoiding deadlocks and easier programmability of
client/server code (e.g. compared to using callbacks) have
proved to be a valuable consideration.

4Argument type “string”, return type “int”.

4 Conclusion

RPC is a user friendly way to develop and integrate dis-
tributed applications in heterogeneous environments. It is
fast, already available on almost all architectures, there is
a protocol compiler which generates the necessary C code
for the network communication and data conversion out
of an interface description and the source code is freely
available. Unfortunately with complex and therefore maybe
cyclic structures the danger of deadlocks arises.

NoWait–RPC extends the functionality of ONC RPC to
resolve these deadlocks and to allow parallelization of RPC
requests, while still being fully upward compatible, i.e. ex-
isting, unmodified ONC RPC servers and clients can remain
untouched. This is done by using a central waiting point and
adding an asynchronous, easy to use message passing capa-
bility. Nevertheless it is still up to the programmer to use
these extensions with care.

NoWait–RPC is an easy and powerful tool for robust dis-
tributed development and integration of complex systems
with the focus on the functionality of the systems and not
on the communication problems. In such scenarios it is eas-
ier to use than more complex message passing libraries.

References

[1] C. Eberst, D. Burschka, A. Hauck, G. Magin, N. O. Stöffler,
and G. Färber. A System Architecture Supporting Multiple
Perception Tasks on an Autonomous Mobile Robot. pages
1–8, 1996.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam. PVM: Parallel Virtual Machine. A
User’s Guide and Tutorial for Networked Parallel Com-
puting. MIT Press, 1994. Also available on-line at
http://www.netlib.org/pvm3/book/pvm-book.html.

[3] M. M. Kong. DCE: An Environment for Secure Client/Server
Computing. Hewlett Packard Journal 12/95, S.6 ff, 1995.

[4] T. Lyons. Network Computing System: Tutorial. Prentice–
Hall, 1991.

[5] MPI Forum. MPI: A Message Passing Interface Stan-
dard. Int. Journal of Supercomputer Applications, 8(3/4),
1994. Version 1.1 of this document is available on-line at
http://www.mcs.anl.gov/mpi/mpi-report-1.1/mpi-report.html.

[6] ONC. Solaris ONC, Design and Implementation of
Transport–Independent RPC. Sun Microsystems, Inc., 1991.

[7] Open Network Computing Group ONC.Remote Procedure
Programming Guide. Sun Microsystems, Inc., 1988.

[8] R. Rabenseifner and H. D. Reimann.Verteilte Anwendungen
über Hochgeschwindigkeitsdatenkommunikation. Rechenzen-
trum der Universität Stuttgart, 1992.

5


