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Abstract

In the field of hand-eye coordination, most state-
of-the-art systems still require the user to select the
grasping points manually. We present a system which
autonomously determines 3D grasping points on un-
known objects from a pair of greyscale images. The
object to be grasped is segmented automatically when
put into the scene. Grasping points are searched on
the object silhouette; their stability is evaluated by a
heuristic algorithm, primarily based on the skeleton of
the region.

The 3D grasping pose is estimated by triangulation
using a simplified geometrical model of the camera sys-
tem; the corresponding points in the second image are
determined via dynamic programming. The whole sys-
tem has been implemented and validated on the exper-
imental hand-eye system MINERVA.

1 Introduction

Despite the increasing popularity of the research
field of visual control of robot manipulators, a system
that is able to grasp arbitrary objects autonomously
still seems to be a distant goal. This may be because
up to now efforts have mainly been directed at the
question how to use visual information in a motion
control loop. The resulting methods for wvisual servo-
ing' have brought forward a number of impressive sys-
tems (for a collection of articles see [10, 14, 23]). How-
ever, many of these systems do not approach the prob-
lem of visually guided grasping, but restrict themselves
to the problem of how to position the end-effector un-
der visual guidance, leaving open the question where
to position it.

IFor an extensive survey see [6], for a tutorial [15].

Most of the systems which actually perform grasp-
ing (e.g. Wunsch et al. [24], Tonko et al. [22],
Allen et al. [1]) retrieve suitable grasping points from
a geometric object model after estimating the pose
of the object to grasp. This approach presents two
main difficulties for the usage in an autonomous sys-
tem: First, it requires a precise geometric calibration
of at least some parts of the hand-eye system, de-
pending on the hand-eye configuration. To become
as calibration-insensitive as possible, a visual servoing
method should be employed in which the (visual) po-
sition of the grasping points and that of the grasping
device, e.g. the tips of a two-finger gripper, are mea-
sured in exactly the same way. Secondly, it requires
geometric models of all objects to be grasped.

Hollinghurst [13] presented a system which ful-
fills at least some of the criteria above: The posi-
tion of grasp and gripper are both determined via
affine stereo; to extract the former, however, it is as-
sumed that the object possesses parallel planar sur-
faces, which can be seen as geometric model know-
ledge.

Without knowledge about the object and with only
one view of the object, there is only one place to
look for grasping points: its silhouette, or apparent
contour. There already exist methods to determine
grasps, heuristic [16, 20] and analytical ones [21, 7]
(see Sec. 2.1), but they all operate on images from a
single camera, and therefore need additional context
knowledge to be applicable to 3D grasping.

In order to overcome this problem, we developed a
system which determines grasps on the apparent con-
tours in a pair of images from a stereo camera sys-
tem. Sec. 2 describes the underlying heuristic algo-
rithm and the corresponding image processing, includ-
ing a method for the automatic detection of the object
to grasp. The reconstruction of 3D grasps is addressed



in Sec. 3; the main components are a matching algo-
rithm based on dynamic programming followed by tri-
angulation using a simplified geometric model of the
camera system. The system is validated in Sec. 4 with
experiments on the hand-eye system MINERVA.

2 Determining 2D grasps

In this section, we first review existing approaches
and develop our own algorithm to determine grasps on
an apparent contour (Sec. 2.1), then move on to de-
scribe the developed image processing modules for the
detection of the object (Sec. 2.2) and the extraction of
grasping points (Sec. 2.3). For image processing, the
image analysis system HALCON [8, 18] was employed.

2.1 Finding grasping points

How to stably grasp an object is a research field of
its own; more information can be found e.g. in [4].
Grasping unknown objects based on visual informa-
tion only limits the field of applicable methods.

Kamon et al [16] present a heuristic algorithm to
determine candidate pairs of contour points from a
single image of an overhead camera and to evaluate
the stability of the resulting grasp. The lack of 3D in-
formation is compensated by a try-and-error scheme:
Successful grasps are learned by executing them with
a real robot and measuring the resulting stability vi-
sually. As quite a number of the generated candidate
grasps are not successful, this approach is not suitable
for on-line experiments.

Another heuristic method using similar but more
restrictive criteria for the evaluation of grasp stabil-
ity is described by Sanz et al [20]; it has been imple-
mented in an eye-in-hand visual servoing system. The
3D problem is not addressed.

Taylor et al [21] present an analytic algorithm to
determine antipodal grasps on the apparent contour.
By using this algorithm in an active vision system, the
relative depth of the grasping points can be estimated
to check if the grasp is antipodal in 3D as well. For the
2D case, this approach was extended by Davidson &
Blake [7] to determine immobilising grasps (“caging”).

The development of “yet another” algorithm in
the presence of the described, successful methods was
prompted by the observation that they unnecessarily
restrict the set of possible solutions: The analytical
algorithms by looking for grasps that are stable even
when grasping with point-sized fingers in the absence
of friction, and the heuristic ones by not using 3D in-
formation. For example, Sanz et al. require that the

grasping points lie in the vicinity of the axis of maxi-
mum (2D) inertia and as close as possible to the (area)
centroid to minimize the effect of gravity and the need
for rotational friction. In the case of a object standing
on a table, this restriction is unnecessary.

Therefore, we start by classifying objects as lying
or standing, using the triangulation method described
in Sec. 3.3. Quasi-spherical objects make up a class of
their own, as they could be termed lying and stand-
ing at the same time. As in [5] and [20], the main
criterion of our algorithm is based on is the symmetry
of the object silhouette. In contrast to [20], symme-
try is evaluated using the skeleton or medial azis (see
Sec. 2.3). Grasps are evaluated using the following
criteria in addition to symmetry:

1. the distance between the two points

2. the angle between the line connecting the two
points and the horizontal plane

3. the distance of this line to the area centroid

The stability of a grasp is estimated as a weighted sum
of these measures. The weights are specific for each
object class: as already mentioned, criterion (3) for
example is meaningless for standing objects.

The algorithm searches for grasping points until the
stability estimate reaches a certain threshold, thus it
finds a probably successful grasp but not necessarily
the optimal one. The reason behind this is that with-
out further knowledge about the object (e.g. density
distribution or material) one cannot guarantee that a
grasp is optimal, anyway.

2.2 Object detection

The main problem when working on the apparent
contour of an object is that a very precise segmenta-
tion is required to prevent looking for grasping points
on a shadow. Robust segmentation is a problem in it-
self, therefore researchers often resort to putting dark
objects on white tables. We are no real exeption to
this rule. However, as one of our scenarios sees the
robot in front of a table on which the objects to grasp
are placed, we developed a module capable of detect-
ing any change in the scene and thereby segmenting
the object to grasp.

First, to reduce run-time computation, the scene is
initalized by defining a region of attention (see Fig. 1).
This region is periodically checked for any changes in
two consecutive images. When placing an object into
the scene, the hand will first enter the region of at-
tention, triggering a kind of alarm; only after it has



Figure 1: Scene in front of the robot: (a) empty table
with region of attention, (b) before placing the object,
(c) after placing the object, (d) segmented object.

left the region again, the inner region is checked for
changes. This is performed by a so-called dynamic
threshold operator provided by HALCON: This oper-
ator segments an image using a local threshold. Small
changes in the scene will be melt into the static back-
ground, whereas larger changes will be signalled to the
user program. A detected object is then segmented
more precisely using combinations of morphological
operations.

2.3 Feature extraction

After segmenting the region corresponding to the
object, features, in the form of grasping points, are to
be extracted. As mentioned in Sec. 2.1, the principal
criterion is the local symmetry of the region as the ob-
ject is to be grasped using a two-fingered gripper. A
morphological feature well suited for the description
of local symmetry is the skeleton or medial azis (see
e.g. [9] and Fig. 2a). Each point on the skeleton corre-
sponds to the center of a maximal-sized disk contained
within the region. The main difference of our approach
to the one of Blake [5] is that we do not search for sym-
metrical or antisymmetrical pairs of contour tangents,
but directly work on the skeleton, which can be ex-
tracted efficiently using a HALCON operator. First,
it is partitioned into line segments. The longer such
a segment is, the higher is the probability of a stable
grasp, so that’s where the algorithm starts looking for
grasping points. The contour is intersected with a line
perpendicular to the skeleton segment iteratively until
the computed stability measure of the grasp meets a
given threshold (see Fig. 2).

a) b)

Figure 2: (a) skeleton, (b) finding grasping points.

3 From 2D to 3D

To reconstruct a 3D grasp from a stereo image pair,
first the corresponding grasping points in the two im-
ages have to be found (Sec. 3.1). Based on a simpli-
fied geometric camera model (Sec. 3.2), a triangulation
method can then be applied (Sec. 3.3).

3.1 Matching

The correspondence problem falls into two parts:
The easier one is finding points corresponding in 2D,
so to say apparent correspondences. This can be
achieved by matching the two apparent contours and
establishing point-to-point correspondences. For this,
we employ an algorithm which was originally devel-
oped for object recognition [2]. Here, silhouettes in
form of centroidal profiles are compared using dy-
namic programming [3], which yields a distance mea-
sure describing the similarity of the two shapes, and
the point-to-point correspondences.

The second, much more difficult part is to assure
that the points are projections of one and the same 3D
point. Without further knowledge about the object,
this can be achieved via epipolar geometry (see e.g.
[19]). The problem with this approach, again, is that
it is too restrictive: assuming a gripper with “real”,
i.e. not point-sized fingers, many grasps are feasible
even if the 2D points do not precisely correspond in
3D, as e.g. on a rotationally symmetric object.

However, the similarity measure yielded by the
matching algorithm can be used to check if the two
cameras get similar views of the object (see Fig. 3 for
the opposite case). As the camera baseline is small
in comparison with the average object distance, the
remaining errors can be tolerated.



Figure 3: Left and right camera view of a polyhedral
object.

3.2 Geometric model of the camera sys-
tem

The main disadvantage of directly using an esti-
mated 3D position to control robot motion is that the
geometric models of the hand-eye system have to be
very precise to enable a successful grasping. We there-
fore will integrate the method described in this pa-
per into a position-based visual servoing system (see
Sec. 4.2). This allows to use a simplified model of the
camera system.

The cameras are mounted on a standard pan-tilt
head; one can therefore assume that the z- and z-axes
of the cameras are co-planar, i.e. the y-component
of a grasping point is identical. Vergence is allowed.
Fig. 4 shows the resulting, planar model.
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Figure 4: Simplified model of the stereo camera sys-
tem.

Internal and external parameters have been iden-
tified using a multi-image calibration method based
on a 2D calibration object [17] which is provided by
HALCON.

3.3 Triangulation algorithm

Using this camera model, the 3D position of a point
P relative to the left camera (z.r1,,ycr,2c1.), given its 2D
pixel coordinates (X, gy,Y{z,r}) in both images, can
be calculated via the equations for perspective projec-
tion, based on the pinhole camera model:

Tl - Zel YiL * ZcL
Tep = T YeL = T (1)

zip = (X, —Cy) - Se v =Y —Cy)-Sy, (2)

with (Cy, Cy) being the principal point and Sy, 3 the
scaling factors. As we are using wide-angle cameras,
it is useful to compensate for the radial distortion:
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with vy gy = x?{L Rt yf{L ) and & being a coef-
ficient describing radial distortion, which is identified
during calibration.

Zer, 1s calculated using the trigonometric relations
of Fig. 4:

Zer, = dg, - cosar, (4)

T —x;
ar = arctan —= ap = arctan — & (5)
fr R

with frr gy being the respective focal lengths of the
cameras. Using the tangential formula one can derive:

(6)

with the baseline B, v(r, ry = 90° — B¢r,r} — @41 R},
v = 180° — v, — vR, and solve it for dr:
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4 Experimental results

The algorithms were implemented and tested
on our experimental hand-eye system MINERVA
(Manipulating Experimental Robot with Visually
guided Actions), which consists of a 6 DOF manip-
ulator arm (amtec) and a stereo camera system on a
pan-tilt head (RWI) mounted in an anthropomorphic
fashion (see Fig. 5). A variety of everyday objects
were placed on tables of different height in front of
the robot.



Figure 6: Resulting grasping points in the stereo im-
age pair for: (1) bottle, (2) film box, (3) zucchini,
(4) pepper, (5) pen, (6) screwdriver, (7) white board
marker, (8) onion, (9) walnut.

4.1 Feature extraction

In almost all cases the object classification was suc-
cessful. Failures resulted from errors in the rough dis-
tance estimation. However, this does not mean nec-
essarily that no grasp will be computed, but that the
starting conditions are less than ideal.

Fig. 6 shows the extracted grasping points in the
two images.

The extracted grasps were often very similar to
what a human would apply. That is to say, symme-
tries are found and different strategies are used for the
three different object classes.

In the case of standing objects (no. 1 & 2), the
grasps are always above the centroid of the segmented
region to avoid toppling the object. Humans probably
would grasp such objects from aside and not frontally,
implicitly assuming (rotational) symmetry. In con-

trast, our method extracts visible grasps.

Lying objects (no. 3 - 7) are grasped from above,
with variable orientation of the hand. Grasps in the
vicinity of the area centroid are preferred, as they are
more stable, at least in the case of objects with an
almost uniform distribution of mass, which has to be
assumed in the absence of further knowledge.

Spherical objects (no. 8 & 9) can be grasped from
above or frontally. In the actual implementation, they
are grasped frontally since in this case the fingers of
the gripper are visible most of the time. This will fa-
cilitate the integration into the visual servoing system.

The obvious differences in the point-to-point corre-
spondences are due to the fact that the contours were
sub-sampled (factor 4) to speed up matching. The re-
sulting errors are at the limit of what can be tolerated
(see the following sections).

4.2 Reconstruction

The triangulation algorithm was tested by placing
a known object at a known distance relative to the left
camera, selecting corresponding points manually, and
estimating their 3D position. In the relevant working
space (50cm—90cm from the head), the resulting error
was well below 0.5¢m in all dimensions. No special
pains have been taken regarding the calibration and
the manual selection. The average error of the latter
was 2 Pixel, which is similar to the error occurring
during the extraction of the grasping points or the
matching process.

In the case of a precise calibration of the head-arm
relation, this error can be tolerated as the grasping
area of the fingers is 1em? (see Fig. 7). Additional er-
rors in the calibration of the hand-eye system will be
compensated by using this method in a position-based
visual servoing loop. The principal idea is that by
using the same method (here: the triangulation algo-
rithm) to estimate the position of target and gripper,
calibration errors cancel out. For more information on
position-based visual servoing see [15], for a detailed
description of our motion control scheme [12].

4.3 Discussion

To evaluate the results, we will focus on crite-
ria commonly used by researchers in computer vi-
sion: scope (“For what kind of objects in what kinds
of scenes grasps can be found?”), robustness (“How
much noise and occlusion can be tolerated?”), ef-
ficiency (“How much computing power/time is re-
quired?”), and correctness (“Will a detected grasp be
successful?”).



Figure 7: Camera view of the gripper at grasp posi-
tion.

As already mentioned, the scope had been focussed
on objects for which geometrical models cannot, easily
be constructed, i.e. non-polyhedral objects. In the
other case, grasps can be modelled along with the ob-
ject and then detected in the image by matching image
features with model features as described for the task
of object recognition in [11]. As shown in this sec-
tion, indeed a great variety of everyday objects can be
successfully processed. Polyhedral objects usually will
be rejected during 2D matching. The main constraint
on the kinds of scenes is that the object to grasp has
to differ clearly from the background, in order to be
segmented correctly. We will mitigate this problem
by using active contours as proposed in [21] in the
future. This will also enhance the robustness of the
system, which is influenced by the same problems as
the segmentation.

Concerning efficiency, it is worth noting that the
fear expressed in [20] that 3D vision would be too
costly with respect to processing time is unfounded:
On a Pentium 166, the yet unoptimized software de-
termines a 3D grasp in less than 0.5s for an object of
average size including segmentation. As the visual ser-
voing part has been designed specifically to work with
asynchronous, definitely non-frame-rate feedback [12],
this level of efficiency will already suffice. The main
bottle-neck is the 2D matching which is highly depen-
dent on the number of contour points (order O(mn)).
We plan to approach this problem by using a multi-
scale algorithm.

The correctness can be evaluated qualitatively
(“Does the determined grasp appear to be graspable
to a human observer?”) and quantitatively (“Would
the robot successfully grasp the object when moving
its gripper to the 3D grasp position?”). Qualitatively,
it can be stated that with the used parameters the de-
termined grasps always appeared to be correct; some-
times, however, no grasp is found. The quantitative
correctness is harder to determine, as the module is

part of a bigger system. The maximum error of the
3D position relative to the head (0.5¢m in all direc-
tions) alone could be tolerated; this is not true in case
of additional errors in the head-to-arm calibration or
the model of the manipulator itself. Actually we have
integrated this method with the motion control mod-
ule described in [12] and thereby realized the visual
servoing system. The results showed that for objects
placed in the reachable area of the robot the method
was precise enough for grasping different objects (e.g.
the neck of the bottle, see Fig. 5, 6).

5 Conclusion

We presented a method that will determine 3D
grasps on unknown, non-polyhedral objects from a
stereo pair of greyscale images. The method is re-
liable and fast, without using any image processing
hardware. Integrated into a position-based visual ser-
voing system, this method will bridge a gap on the way
towards an autonomous hand-eye system by specify-
ing the target position in the absence of a model of
the object to grasp.

The method itself will be further improved by using
active contours for a more robust segmentation, and
by speeding up the matching process.
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