
In: Pro
eedings of the the 7th International Conferen
e on Real-Time Computing Systems and Appli
ationsRTCSA'00, De
ember 2000, 

IEEE Computer So
ietyBounding the Exe
ution Time of Real-Time Tasks on ModernPro
essors�Stefan M. PettersInstitute for Real-Time Computer SystemsProf. Dr.{Ing. Georg F�arberTe
hnis
he Universit�at M�un
hen, GermanyStefan.Petters�r
s.ei.tum.deAbstra
tFinding a tight estimate on the exe
ution time oftasks in embedded hard real-time systems is gaining
omplexity and importan
e. Uptodate pro
essors areequipped with a

eleration te
hniques to bridge the gapbetween the fast 
ore frequen
y of the pro
essors andthe 
omparably slow main memory. On the other handthe appli
ation �eld of real-time systems is 
ontinuouslywidening to more 
omplex systems. To keep up with theevolution of pro
essors it is proposed to lay more weighton measurement and less on modeling. By analyzingthe 
ontrol 
ow graph the 
ompiler uses for optimiza-tion, systemati
 information on how the 
ode has tobe measured 
an be gained. Using this information the
ode 
an be automati
ally instrumented and measuredto bound the exe
ution time of the real-time tasks.1 Introdu
tionModern pro
essors work at 
ore frequen
ies whi
hare way beyond the 
apabilities of the main memory.Thus more and more intelligen
e is integrated into thehardware of the pro
essors in order to 
lose the gap be-tween the speed of the pro
essor and that of the mainmemory. Uptodate ar
hite
tures in
lude features likee.g. 
a
hes, spe
ulative exe
ution and bran
h predi
-tion. Intel's P6 family even mimi
s externally a CISCma
hine but has internally a RISC 
ore whi
h inter-prets the in
oming 
ode and reorders the internal 
odefor optimal exe
ution. Meanwhile the domain of real-time systems widens to more 
omplex appli
ations. In�The work presented in this paper is supported by theDeuts
he Fors
hungsgemeins
haft as part of a resear
h pro-gramme on \Rapid Prototyping for Embedded Hard Real{TimeSystems" under Grant Fa 109/11-2.

the automobile industry more and more fun
tionality isrealized in software (e.g. ESP and x-by-wire) and videobased roboti
s is moving to safety 
riti
al appli
ation�elds like e.g. teleoperation and telesurgery.To ta
kle the problem of in
reasing software andhardware 
omplexity it is proposed in this paper touse measurements instead of modeling the pro
essor tothe very detail. Currently the fo
us is laid on the In-tel P6 ar
hite
ture, sin
e it is one of the most 
omplexpro
essors, but the methods are easily portable.In the next se
tion related work is resumed followedby a detailed des
ription of the method. In Se
tion 4the results of 
ase studies are presented before futurework is indi
ated in the last se
tion.2 Related WorkChapman, Burns and Wellings utilize formal proofmethods in [1℄. The program is run by symboli
 exe
u-tion. In the beginning all variables are unde�ned andas the program is exe
uted, the range of values of avariable is redu
ed whenever possible. This approa
hsu�ers from an exploding state spa
e and thus is onlyfeasible for small s
ale software systems.White, M�uller and Harmon have modi�ed the 
om-piler to emit additional 
ontrol 
ow information verysimilar to our te
hnique in [8℄. They model the 
a
heand the pro
essor very detailed. With 512 bytes the
a
he used in this paper is not very large. The prob-lem is also the 
omplexity of the method. The workof Ferdinand and Wilhelm in [3℄ bases on the previousapproa
h. They use data dependen
y analysis and ate
hnique, usually utilized for program restru
turing,to determine the worst 
ase bounds on 
a
he misses.As this method �ts only restri
ted 
lasses of programsit is 
omplemented by persisten
e analysis.Ermedahl et al. 
ombine their approa
hes in [2℄. A



high level analysis sear
hes for mutual ex
lusive pathsand the number of loop iterations. Very similar to [1℄ akind of symboli
 exe
ution is used. The low level ar
hi-te
ture dependent part is limited to analyzing 
a
hingand pipelining single basi
 blo
ks whi
h 
ontain noloops or pro
edure 
alls and only stati
 variables. Theanalyzed programs were 10 to 80 lines long.The work in [9℄ aims not only at the WCET butalso on the power 
onsumption of an embedded Sys-tem. Wolf and Ernst limit the sear
h to feasible pathsby using program path analysis. An additional nar-rowing of the sear
h domain is gained by investigatingthe 
ontext dependent 
ontrol 
ow. In 
ontrast to theapproa
h presented in this paper the a
tual WCET isdetermined using a simulator or an emulator.Lee et al. regard the e�e
t of 
a
hes in preemptivetask systems in [4℄. Traditional s
hedulability analy-sis does not 
over the time of 
a
he restoration afterpreemption. First the number of useful blo
ks is 
om-puted. This is the set of memory blo
ks needed by theprogram for further exe
ution. Then a phasing of tasksis introdu
ed to eliminate infeasible task intera
tions.The work of Lundqvist and Stenstr�om in [5℄ de-s
ribes the problem of timing anomalies of modernpro
essors 
orresponding to the 
hara
terization in [7℄.They present a method to avoid the timing anoma-lies by modifying the 
ode. Thus it is possible touse the 
onventional WCET/BCET determination ap-proa
hes. A major drawba
k of the des
ribed methodis that it makes 
ompiler optimizations nearly impos-sible to use.3 Measurement approa
hFor the formal proof that a given real-time systemmeets all its deadlines the WCET of all real-time taskshas to be known. To perform the s
hedulability anal-ysis for earliest deadline �rst s
heduling 
onsideringmutual ex
lusive tasks the BCET has to be known aswell. To eÆ
iently determine WCET and BCET for
omplex hardware/software systems a measurements isproposed. Figure 1 illustrates all ne
essary operationswhi
h are explained in the following se
tions.
3.1 Requisite KnowledgeOne of the basi
 ideas of the measurement ap-proa
h is that detailed modeling of the pro
essor andthe mandatory subsystems is avoided. Nevertheless,knowledge about the pro
essor, the memory subsystemand other 
omponents of the real-time system is essen-tial to get reliable and tight bounds for the exe
utiontime of a pie
e of 
ode.

Object
Code

6

Info
Instrument.

4

Analysis and

CFG Reduct.

1

C Code

Instrument.

2nd Stage

Deinstru−

mentation
Executable

Final

8

Executable
Measurement

7
1st Stage

Instrument.

Assembler
Instrumented

5

Assembler
Code

2

Compilation

Assembly

and Linking

Control Flow
Graph

3

Processor

Info

Figure 1. Tool ChainFirst of all the type and impa
t of all a

elerationte
hniques utilized by the pro
essor has to be known.In the following a few examples shall demonstrate thedetail level and the usage of this knowledge. For the P6family pro
essors, it 
an be seen from the data sheetsthat the pro
essor interprets the external x86 CISC
ode to internal RISC format and stores it in an In-stru
tion Pool. Up to 50 external CISC instru
tion 
anbe interpreted and the resulting 
ode exe
uted in anyorder whi
h preserves the semanti
s of the 
ode. Thisleads to three important aspe
ts during analysis andmeasurement: Due to the parallel exe
ution of some in-stru
tions, additional 
ode may lead to shorter insteadof longer exe
ution times by avoiding pipeline stalls.In order to get an exa
t measurement, a serializing in-stru
tion has to be inserted around the measurement
ode, i.e. an instru
tion, that 
auses the RISC exe
u-tion units to exe
ute all 
ode in the Instru
tion Poolbefore taking the time stamp. The overestimation byfor
ing the serialization has to be taken into a

ountfor the BCET (
f. Se
. 3.5).Translation Look-aside Bu�ers (TLB) have to be
onsidered by invalidating the TLB entries for WCETmeasurements. Other examples of su
h te
hniques areBran
h Target or Return Sta
k Bu�ers.The individual size and type of all 
a
hes (instru
-tion, data or uni�ed 
a
he) have to be known as wellas their 
a
he-line size, asso
iativity and repla
ements
heme. This is ne
essary to enfor
e a reprodu
ible andknown state of the system during measurement.The knowledge of the type of main memory (e.g.SRAM), the used a

ess modes (burst or single a

ess)and the a

ess 
y
les may be ne
essary to add/subtra
ta 
orre
t safety margin on the measured values to pro-du
e the WCET/BCET. Additionally the refresh rateand the duration of a refresh 
y
le are of interest fordynami
 RAMs. Laten
ies of all other 
omponents likesystem bus (e.g. PCI bus) is also have to be known.



Reduction
BCET WCET

Reduction
Measurement
Blocks

d)c)b)a)

Figure 2. Example of a CFG Reduction

3.2 Control Flow Graph (CFG) AnalysisIn order to redu
e the number of paths under in-vestigation CFG analysis is used. The 
ompiler wasmodi�ed to emit the CFG. To be able to make the ne
-essary 
hanges to the 
ompiler the GNU 
ompiler g

was used. This CFG 3 allows an easy mapping of theassembler 
ode 2 to the sour
e 
ode 1 even when all
ompiler optimizations are enabled. Thus the approa
h
an be 
ombined with a method to avoid mutual ex-
lusive paths and extra
t the bounds on the loop-
ountfor the loops like in e.g. [2℄ and [9℄. Currently, the loop-
ounts have to be spe
i�ed in annotations.The CFG is redu
ed as depi
ted in Figure 2. A 
lipof a CFG is shown as basis in Fig. 2b). A path 
an onlybe omitted for WCET/BCET measurement, when thedi�eren
e between this and alternative paths 
onsistsof more than a few additional assembler instru
tions,sin
e e.g. pipeline stalls may lead to a longer exe
utiontime for a path with additional instru
tions. Thus, twopaths remain to be measured for the BCET in Fig. 2a)and the path from node 27 to node 29 is still underinvestigation for the WCET measurement (Fig. 2
).The analysis of the CFG, the assembler 
ode and thesubsequent redu
tion of the CFG results in a des
rip-tion of paths to be measured and additional instrumen-tation whi
h has to be in
luded into the assembler 
ode4 . Ea
h path des
ription 
orresponds to one path andspe
i�es the ne
essary instrumentations.
3.3 Handling the ComplexityA 
ommon problem in WCET/BCET analysis is theexploding state spa
e for 
omplex systems. The ap-proa
h followed here is to trade some of the tightness

of the bounds on the exe
ution time for a lower 
om-plexity by splitting the appli
ation into measurementblo
ks (
f. Fig. 2d). These measurement blo
ks areanalyzed and measured separately.For the measurement of the exe
ution time, ea
hmeasurement blo
k has a measurement routine put infront and after the 
ode to be measured. Additionallythis routine enfor
es all useful data and 
ode out ofthe 
a
he. In [7℄ the 
ode just wrote ba
k and inval-idated the 
a
he. The 
onstru
tion of this routine is
riti
al and requires knowledge about the a

elerationte
hniques of the pro
essor as stated in Se
tion 3.1.The advantage of �lling the 
a
he with useless dataand 
ode instead of leaving the 
a
he 
lean lies in theavoidan
e of an additional penalty to the WCET. The
a
he invalidation and the 
ush of the exe
ution unitslead to an overestimation of the exe
ution time, whi
hhas to be 
orre
ted for BCET measurements by sub-tra
tion of a time bonus (
f. Se
. 3.5).The pla
ement of the measurement blo
k boundariesis 
riti
al. Sin
e an inapt pla
ement of these lead toa severe loosening of the exe
ution time bounds, thepartitioning is done by hand.Loops inside 
ode 
an be divided into two 
ategories.The �rst are loops where the exe
ution path inside theloop does not depend on input data. Su
h loops 
anoften be found in e.g. image pro
essing and signal pro-
essing algorithms. The e�e
t of input data on thenumber of loop iterations has to be eliminated, i.e.maximized for WCET measurement and minimized forBCET measurement.The se
ond 
ategory of loops embodies looserbounds on exe
ution time. Espe
ially loops with alarge number of iterations lead to an enormous over-head for instrumentation inside the loop body. In some
ases it is even ne
essary to measure the worst and best
ase of one loop iteration and multiply the result withthe number of iterations. The resulting underestima-tion of the BCET 
aused by the subtra
ted 
a
he bonusand overestimation of the WCET due to the virtuallynot used 
a
he are 
onsiderable.
3.4 Instrumentation and MeasurementThe instrumentation is done in two stages. In the�rst stage additional 
ode 5 is inserted into the assem-bler output of the 
ompiler 2 . This is ne
essary tofor
e the loops to their spe
i�ed exe
ution 
ount andto add the 
ode that triggers the measurement whi
his des
ribed in greater detail below.The optimizations of the 
ompiler leave the result-ing 
ode for the loop 
ontrolling part often in a way,that is hardly to interpret automati
ally. Thus during



measurement the loop is 
ontrolled by an instrumented
ontrol stru
ture whi
h is pla
ed around the entire orig-inal loop. After this stage the instrumented assembler
ode is assembled and linked to an exe
utable 6 .The se
ond part of the instrumentation is done onthe obje
t 
ode and for
es the exe
ution of the sele
tedmeasurement paths 7 . During the measurement phasethis is done repeatedly to be able to measure all pos-sible paths. The original loop 
ontrolling stru
turesinserted by the 
ompiler are disabled during this stageby substituting the 
ontrolling 
onditional jumps bynops. Thus the 
ode loop is 
ontrolled by the instru-mented 
ode whi
h enfor
es the maximum loop-
ount.For the alternatives the 
onditional jump is repla
edeither by an un
onditional one or by nops.After all measurements have been made, the 
odehas to be de-instrumented 8 . Normally this is avoidedfor the produ
tion 
ode, sin
e it is in most 
ases doneby hand and therefore error prone. In 
ontrast to thatthe de-instrumentation is stri
tly ne
essary in this ap-proa
h to revert the 
ode to a state as intentioned in thesour
e 
ode. A software monitor is used for the mea-surements in 
ontrast to previous work in [6℄ . At ea
hmeasurement blo
k boundary a 
all to a small measure-ment routine is inserted as des
ribed previously in thisse
tion. The routine takes two time stamps. One atthe start of the routine, to 
omplete the measurementof the last measurement blo
k and one at the end ofthe routine, to start the measurement of the next.To a
hieve a high resolution of the time stamps thepro
essors internal 
y
le 
ounter is utilized. After the�rst time stamp is taken, the 
a
he is �lled with dataand 
ode whi
h is useless for the appli
ation underinvestigation. This is done by exe
uting 
ode whi
hutilizes all instru
tion 
a
hes and loading data whi
h
overs all data 
a
hes available. The memory utilizedfor this holds the measurement re
ords taken by theroutine. A fake modify on the data in the 
a
he for
esthat the 
a
he is written ba
k before repla
ing it by theappli
ation data. By doing this the worst 
ase 
a
hestate is 
reated. The Bran
h Target Bu�er are initial-ized to a known state and for the WCET measurementthe TLB is invalidated.
3.5 Time Penalty and BonusTo use the measured times for BCET and WCETestimation, a few 
orre
tions are ne
essary. A list ofne
essary and possible 
orre
tions will be given. Notall of these will apply on every given pro
essor.The WCET of ea
h measurement blo
k 
an be re-du
ed by the BCET of the measurement routine. Onthe P6 ar
hite
ture this is only useful for small mea-

surement blo
ks. Another in
uen
e of the instrumenta-tion is the substitution of 
onditional jumps by un
on-ditional ones or nops. For ea
h the di�eren
e betweenthe measured operations and the 
onditional jump withthe bran
h target bu�er (BTB) set to the wrong desti-nation has to be added to the measured exe
ution time.The e�e
t of the BTBs on 
onditional jumps remainingin the 
ode have to be 
onsidered as well.We have to assume that the measured WCET wasnot a�e
ted by the memory refresh of the DRAM andwe need to 
orre
t it by the penalty Trp whi
h is 
om-puted using the following equation:Trp = Tr � dWCETmeasT
 eWhere WCETmeas is the measured WCET, T
 is theinterval between two memory refresh 
y
les and Tr isthe time for a memory refresh 
y
le. Typi
al values forTr are in the order of magnitude of 100 ns. The 
y
leperiod T
 is usually some 10 us.Given that there are laten
ies in the bus system andother system 
omponents, the those laten
ies not reli-ably 
overed by the measurement must be added to theWCET. For example, the laten
y penalty for the PCIbus is gained in a straightforward way by multiplyingthe worst 
ase number of a

esses with the worst 
aselaten
y. The modeling of more 
omplex laten
ies in-trodu
ed by dire
t memory a

ess or the laten
ies ofthe CAN bus is beyond the s
ope of this paper.In 
ontrast the BCET only has to be 
orre
ted bytime bonuses. Other than for the WCET, we have toassume that ea
h measurement blo
k was a�e
ted bythe maximum impa
t of memory refresh 
y
les. Thebonus Trb is 
omputed analogous to Trp for the WCET.The WCET of the measurement routine has to besubtra
ted and the e�e
t of the useless data in 
a
he atthe beginning of ea
h measurement blo
k taken into a
-
ount for the BCET. All data referen
ed and 
ode hasto be assumed to be in 
a
he. To �x this, the 
a
he re�lltime has to be subtra
ted from the measured BCET. Ina simple approa
h the re�ll time of the 
omplete 
a
heutilized by the program is subtra
ted. A greater a

u-ra
y 
an be gained by only subtra
ting the amount of
a
he used in the part of the task under investigation.By applying the method of useful blo
ks des
ribed in[4℄, only the 
a
he used in the measurement blo
k hasto be 
overed.Analogous to the WCET those laten
ies 
overed bythe measurement and possibly absent during exe
utionhave to result in a bonus as well. Finally the stall ofthe exe
ution units by the measurement 
ode and theprolonged exe
ution by the loop instrumentation haveto be taken into a

ount.



4 Measurement ResultsFor the measurements an Intel Pentium II Pro
essorwith 233 MHz was used. A matrix multipli
ation pro-gram was 
hosen to measure the deviation of mediumsized appli
ation. The exe
ution time of this exam-ple deviated between 286219 and 287284 
y
les. This
orresponds to an error of 0.3 %.As an example from the image pro
essing �eld, anappli
ation was implemented whi
h segments 128x128pixel images and re
ognizes 3 di�erent types of obje
tsand the orientation of two of them (the third is rotarysymmetri
al). Sin
e is no sear
h for the orientation ofthe third item, the BCET is rather small 
ompared tothe WCET. The measured BCET was 241529 
y
les.Corre
tion the result with a 
omplete 
a
he re�ll timewould leave the 
orre
ted BCET with 0. S
aled to thea
tual size of the task, whi
h was 73 KByte for 
odeand data, the bonus for possibly 
a
hed data and 
odewould be 1.5 105 
y
les. The additional bonuses fora memory refresh 
y
le and the measurement routineare already 
overed by the rounded up 
a
he bonus.Thus the measured BCET would be adjusted to halfits value for later use.To evaluate the results measurements with uninstru-mented 
ode and real data were taken. The WCET asfor
ed by the instrumented 
ode was 198424706 
y
les.Compared to the exe
ution time of 198387085 
y
leswith real data the bound is extremely tight. The best
ase was a
hieved when leaving out the 
ode responsi-ble for 
a
he destru
tion and 
ode serializing and doingseveral measurements in a row. The best 
ase takenfrom these measurements with real data was 215231
y
les. The 
orre
ted save estimate of the BCET wasonly 
y
les. The reason for the estimate being only42,5% of the the real BCET lies in the fa
t that 48KByte of data is not tou
hed in the best 
ase, but is
overed in the 
a
he bonus of 73 KByte. An analysis ofmemory usage 
ould further minimize the gap betweenreal BCET and the BCET used for analysis.5 Con
lusionIn this paper an approa
h for a feasible worst 
aseand best 
ase exe
ution time estimation is presented.For the analysis the 
ontrol 
ow graph generated bythe 
ompiler is used and thus the analysis of fully op-timized 
ode is possible. A method for automated in-strumentation, measurement and de-instrumentation isintrodu
ed. It has been shown how the 
omplexity oflarge tasks 
an be redu
ed by partitioning. While theWCETs 
an be bounded very eÆ
iently and tightly bythe presented measurement methods, due to the ne
es-

sary time bonus for the 
a
hes, the BCETs leave roomfor optimization.Future work will fo
us on in
luding the aspe
ts of anunderlying real-time operating system. Evaluation ofthe method on other pro
essing hardware is 
urrentlya work in progress. As mentioned before the underes-timation of the BCETs has to be redu
ed.Referen
es[1℄ R. Chapman, A. Burns, and A. Wellings. Integratedprogram proof and worst{
ase timing of SPARC Ada.In Pro
eedings of the ACM SIGPLAN Language, Com-piler, and Tool Support for Real-Time Systems (LCTS)workshop, Orlando, Florida, June 1994.[2℄ J. Engblohm, P. Altenbernd, and A. Ermedahl. Fa
ili-tating worst{
ase exe
ution time analysis for optimized
ode. In Pro
eedings of the 10th Euromi
ro Workshopon Real-Time Systems, Berlin, Germany, June 1997.[3℄ Christian Ferdinand and Reinhard Wilhelm. On pre-di
ting data 
a
he behavior for real{time systems. InPro
eedings of the ACM SIGPLAN Workshop on Lan-guages, Compilers and Tools for Embedded Systems(LCTES'98), Montreal Canada, June 19{20 1998.[4℄ C.{G. Lee, J. Hahn, Y.{M. Seo, S.L. Min, R. Ha,S. Hong, C.Y. Park, M. Lee, and C.S. Kim. Bound-ing 
a
he-related preemption delay for real{time sys-tems. In 18th IEEE Real{Time Systems Symposium,San Fran
is
o USA, De
ember 3{5 1997.[5℄ Thomas Lundqvist and Per Stenstr�om. Timing anoma-lies in dynami
ally s
heduled mi
ropro
essors. In Pro-
eedings of the IEEE Real{Time Systems Symposium,Phoenix, AZ, De
ember 1999.[6℄ Stefan Petters, Annette Muth, Thomas Kollo
h,Thomas Hopfner, Franz Fis
her, and Georg F�arber. TheREAR framework for emulation and analysis of embed-ded hard real{time systems. Design Automation forEmbedded Systems, 5(3):237{250, August 2000.[7℄ Stefan M. Petters and Georg F�arber. Making worst
ase exe
ution time analysis for hard real{time taskson state of the art pro
essors feasible. In Pro
. of the6th Int. Conf. on Real{Time Computing Systems andAppli
ations, Hongkong, De
ember 13{15 1999.[8℄ R. White, F. Mueller, C. Healy, D. Whalley, and M. G.Harmon. Timing analysis of data 
a
hes and set{asso
iative 
a
hes. In 3rd IEEE Real{Time Te
hnologyand Appli
ations Symposium, Montreal Canada, June9{11 1997.[9℄ F. Wolf and R. Ernst. Exe
ution 
ost interval re�ne-ment in stati
 software analysis. Journal of SystemsAr
hite
ture, The EUROMICRO Journal, Spe
ial Issueon Modern Methods and Tools in Digital System De-sign, 2000.


