In: Proceedings of the the 7th International Conference on Real-Time Computing Systems and Applications

RTCSA’00, December 2000, (©IEEE Computer Society

Bounding the Execution Time of Real-Time Tasks on Modern
Processors*

Stefan M. Petters
Institute for Real-Time Computer Systems
Prof. Dr.—Ing. Georg Farber
Technische Universitat Miinchen, Germany

Stefan.Petters@rcs.ei.tum.de

Abstract

Finding a tight estimate on the execution time of
tasks in embedded hard real-time systems is gaining
complezity and importance. Uptodate processors are
equipped with acceleration techniques to bridge the gap
between the fast core frequency of the processors and
the comparably slow main memory. On the other hand
the application field of real-time systems is continuously
widening to more complex systems. To keep up with the
evolution of processors it is proposed to lay more weight
on measurement and less on modeling. By analyzing
the control flow graph the compiler uses for optimiza-
tion, systematic information on how the code has to
be measured can be gained. Using this information the
code can be automatically instrumented and measured
to bound the execution time of the real-time tasks.

1 Introduction

Modern processors work at core frequencies which
are way beyond the capabilities of the main memory.
Thus more and more intelligence is integrated into the
hardware of the processors in order to close the gap be-
tween the speed of the processor and that of the main
memory. Uptodate architectures include features like
e.g. caches, speculative execution and branch predic-
tion. Intel’s P6 family even mimics externally a CISC
machine but has internally a RISC core which inter-
prets the incoming code and reorders the internal code
for optimal execution. Meanwhile the domain of real-
time systems widens to more complex applications. In

*The work presented in this paper is supported by the
Deutsche Forschungsgemeinschaft as part of a research pro-
gramme on “Rapid Prototyping for Embedded Hard Real-Time
Systems” under Grant Fa109/11-2.

the automobile industry more and more functionality is
realized in software (e.g. ESP and x-by-wire) and video
based robotics is moving to safety critical application
fields like e.g. teleoperation and telesurgery.

To tackle the problem of increasing software and
hardware complexity it is proposed in this paper to
use measurements instead of modeling the processor to
the very detail. Currently the focus is laid on the In-
tel P6 architecture, since it is one of the most complex
processors, but the methods are easily portable.

In the next section related work is resumed followed
by a detailed description of the method. In Section 4
the results of case studies are presented before future
work is indicated in the last section.

2 Related Work

Chapman, Burns and Wellings utilize formal proof
methods in [1]. The program is run by symbolic execu-
tion. In the beginning all variables are undefined and
as the program is executed, the range of values of a
variable is reduced whenever possible. This approach
suffers from an exploding state space and thus is only
feasible for small scale software systems.

White, Miiller and Harmon have modified the com-
piler to emit additional control flow information very
similar to our technique in [8]. They model the cache
and the processor very detailed. With 512 bytes the
cache used in this paper is not very large. The prob-
lem is also the complexity of the method. The work
of Ferdinand and Wilhelm in [3] bases on the previous
approach. They use data dependency analysis and a
technique, usually utilized for program restructuring,
to determine the worst case bounds on cache misses.
As this method fits only restricted classes of programs
it is complemented by persistence analysis.

Ermedahl et al. combine their approaches in [2]. A

high level analysis searches for mutual exclusive paths
and the number of loop iterations. Very similar to [1] a
kind of symbolic execution is used. The low level archi-
tecture dependent part is limited to analyzing caching
and pipelining single basic blocks which contain no
loops or procedure calls and only static variables. The
analyzed programs were 10 to 80 lines long.

The work in [9] aims not only at the WCET but
also on the power consumption of an embedded Sys-
tem. Wolf and Ernst limit the search to feasible paths
by using program path analysis. An additional nar-
rowing of the search domain is gained by investigating
the context dependent control flow. In contrast to the
approach presented in this paper the actual WCET is
determined using a simulator or an emulator.

Lee et al. regard the effect of caches in preemptive
task systems in [4]. Traditional schedulability analy-
sis does not cover the time of cache restoration after
preemption. First the number of useful blocks is com-
puted. This is the set of memory blocks needed by the
program for further execution. Then a phasing of tasks
is introduced to eliminate infeasible task interactions.

The work of Lundqvist and Stenstrém in [5] de-
scribes the problem of timing anomalies of modern
processors corresponding to the characterization in [7].
They present a method to avoid the timing anoma-
lies by modifying the code. Thus it is possible to
use the conventional WCET /BCET determination ap-
proaches. A major drawback of the described method
is that it makes compiler optimizations nearly impos-
sible to use.

3 Measurement approach

For the formal proof that a given real-time system
meets all its deadlines the WCET of all real-time tasks
has to be known. To perform the schedulability anal-
ysis for earliest deadline first scheduling considering
mutual exclusive tasks the BCET has to be known as
well. To efficiently determine WCET and BCET for
complex hardware/software systems a measurements is
proposed. Figure 1 illustrates all necessary operations
which are explained in the following sections.

3.1 Requisite Knowledge

One of the basic ideas of the measurement ap-
proach is that detailed modeling of the processor and
the mandatory subsystems is avoided. Nevertheless,
knowledge about the processor, the memory subsystem
and other components of the real-time system is essen-
tial to get reliable and tight bounds for the execution
time of a piece of code.

Control Flow
Graph
[3]

Assembler
Code

Processor

Info
Instrument.
w 2nd Stage
Assembly Deinstru-
and Linking mentation

Figure 1. Tool Chain

Analysis and
CFG Reduct.

Instrument.
Info

1st Stage

Instrumented
@Assemhler

Measurement
Executable
Final
Executable

First of all the type and impact of all acceleration
techniques utilized by the processor has to be known.
In the following a few examples shall demonstrate the
detail level and the usage of this knowledge. For the P6
family processors, it can be seen from the data sheets
that the processor interprets the external x86 CISC
code to internal RISC format and stores it in an In-
struction Pool. Up to 50 external CISC instruction can
be interpreted and the resulting code executed in any
order which preserves the semantics of the code. This
leads to three important aspects during analysis and
measurement: Due to the parallel execution of some in-
structions, additional code may lead to shorter instead
of longer execution times by avoiding pipeline stalls.
In order to get an exact measurement, a serializing in-
struction has to be inserted around the measurement
code, i.e. an instruction, that causes the RISC execu-
tion units to execute all code in the Instruction Pool
before taking the time stamp. The overestimation by
forcing the serialization has to be taken into account
for the BCET (cf. Sec. 3.5).

Translation Look-aside Buffers (TLB) have to be
considered by invalidating the TLB entries for WCET
measurements. Other examples of such techniques are
Branch Target or Return Stack Buffers.

The individual size and type of all caches (instruc-
tion, data or unified cache) have to be known as well
as their cache-line size, associativity and replacement
scheme. This is necessary to enforce a reproducible and
known state of the system during measurement.

The knowledge of the type of main memory (e.g.
SRAM), the used access modes (burst or single access)
and the access cycles may be necessary to add/subtract
a correct safety margin on the measured values to pro-
duce the WCET/BCET. Additionally the refresh rate
and the duration of a refresh cycle are of interest for
dynamic RAMs. Latencies of all other components like
system bus (e.g. PCI bus) is also have to be known.

BCET WCET Measurement
Reduction Reduction Blocks
a) b) c) d)

Figure 2. Example of a CFG Reduction

3.2 Control Flow Graph (CFG) Analysis

In order to reduce the number of paths under in-
vestigation CFG analysis is used. The compiler was
modified to emit the CFG. To be able to make the nec-
essary changes to the compiler the GNU compiler gcc
was used. This CFG [3] allows an easy mapping of the
assembler code 2] to the source code [1 even when all
compiler optimizations are enabled. Thus the approach
can be combined with a method to avoid mutual ex-
clusive paths and extract the bounds on the loop-count
for the loops like in e.g. [2] and [9]. Currently, the loop-
counts have to be specified in annotations.

The CFG is reduced as depicted in Figure 2. A clip
of a CFG is shown as basis in Fig. 2b). A path can only
be omitted for WCET/BCET measurement, when the
difference between this and alternative paths consists
of more than a few additional assembler instructions,
since e.g. pipeline stalls may lead to a longer execution
time for a path with additional instructions. Thus, two
paths remain to be measured for the BCET in Fig. 2a)
and the path from node 27 to node 29 is still under
investigation for the WCET measurement (Fig. 2c).

The analysis of the CFG, the assembler code and the
subsequent reduction of the CFG results in a descrip-
tion of paths to be measured and additional instrumen-
tation which has to be included into the assembler code
4. Each path description corresponds to one path and
specifies the necessary instrumentations.

3.3 Handling the Complexity
A common problem in WCET/BCET analysis is the

exploding state space for complex systems. The ap-
proach followed here is to trade some of the tightness

of the bounds on the execution time for a lower com-
plexity by splitting the application into measurement
blocks (cf. Fig. 2d). These measurement blocks are
analyzed and measured separately.

For the measurement of the execution time, each
measurement block has a measurement routine put in
front and after the code to be measured. Additionally
this routine enforces all useful data and code out of
the cache. In [7] the code just wrote back and inval-
idated the cache. The construction of this routine is
critical and requires knowledge about the acceleration
techniques of the processor as stated in Section 3.1.
The advantage of filling the cache with useless data
and code instead of leaving the cache clean lies in the
avoidance of an additional penalty to the WCET. The
cache invalidation and the flush of the execution units
lead to an overestimation of the execution time, which
has to be corrected for BCET measurements by sub-
traction of a time bonus (cf. Sec. 3.5).

The placement of the measurement block boundaries
is critical. Since an inapt placement of these lead to
a severe loosening of the execution time bounds, the
partitioning is done by hand.

Loops inside code can be divided into two categories.
The first are loops where the execution path inside the
loop does not depend on input data. Such loops can
often be found in e.g. image processing and signal pro-
cessing algorithms. The effect of input data on the
number of loop iterations has to be eliminated, i.e.
maximized for WCET measurement and minimized for
BCET measurement.

The second category of loops embodies looser
bounds on execution time. Especially loops with a
large number of iterations lead to an enormous over-
head for instrumentation inside the loop body. In some
cases it is even necessary to measure the worst and best
case of one loop iteration and multiply the result with
the number of iterations. The resulting underestima-
tion of the BCET caused by the subtracted cache bonus
and overestimation of the WCET due to the virtually
not used cache are considerable.

3.4 Instrumentation and M easurement

The instrumentation is done in two stages. In the
first stage additional code [5] is inserted into the assem-
bler output of the compiler [2. This is necessary to
force the loops to their specified execution count and
to add the code that triggers the measurement which
is described in greater detail below.

The optimizations of the compiler leave the result-
ing code for the loop controlling part often in a way,
that is hardly to interpret automatically. Thus during

measurement the loop is controlled by an instrumented
control structure which is placed around the entire orig-
inal loop. After this stage the instrumented assembler
code is assembled and linked to an executable [6].

The second part of the instrumentation is done on
the object code and forces the execution of the selected
measurement paths [7. During the measurement phase
this is done repeatedly to be able to measure all pos-
sible paths. The original loop controlling structures
inserted by the compiler are disabled during this stage
by substituting the controlling conditional jumps by
nops. Thus the code loop is controlled by the instru-
mented code which enforces the maximum loop-count.
For the alternatives the conditional jump is replaced
either by an unconditional one or by nops.

After all measurements have been made, the code
has to be de-instrumented [8]. Normally this is avoided
for the production code, since it is in most cases done
by hand and therefore error prone. In contrast to that
the de-instrumentation is strictly necessary in this ap-
proach to revert the code to a state as intentioned in the
source code. A software monitor is used for the mea-
surements in contrast to previous work in [6] . At each
measurement block boundary a call to a small measure-
ment routine is inserted as described previously in this
section. The routine takes two time stamps. One at
the start of the routine, to complete the measurement
of the last measurement block and one at the end of
the routine, to start the measurement of the next.

To achieve a high resolution of the time stamps the
processors internal cycle counter is utilized. After the
first time stamp is taken, the cache is filled with data
and code which is useless for the application under
investigation. This is done by executing code which
utilizes all instruction caches and loading data which
covers all data caches available. The memory utilized
for this holds the measurement records taken by the
routine. A fake modify on the data in the cache forces
that the cache is written back before replacing it by the
application data. By doing this the worst case cache
state is created. The Branch Target Buffer are initial-
ized to a known state and for the WCET measurement
the TLB is invalidated.

3.5 Time Penalty and Bonus

To use the measured times for BCET and WCET
estimation, a few corrections are necessary. A list of
necessary and possible corrections will be given. Not
all of these will apply on every given processor.

The WCET of each measurement block can be re-
duced by the BCET of the measurement routine. On
the P6 architecture this is only useful for small mea-

surement blocks. Another influence of the instrumenta-
tion is the substitution of conditional jumps by uncon-
ditional ones or nops. For each the difference between
the measured operations and the conditional jump with
the branch target buffer (BTB) set to the wrong desti-
nation has to be added to the measured execution time.
The effect of the BTBs on conditional jumps remaining
in the code have to be considered as well.

We have to assume that the measured WCET was
not affected by the memory refresh of the DRAM and
we need to correct it by the penalty 7, which is com-
puted using the following equation:

WCETcas

Trp=Tp %[T

]

Where WCET, 05 is the measured WCET, T, is the
interval between two memory refresh cycles and T;. is
the time for a memory refresh cycle. Typical values for
T, are in the order of magnitude of 100 ns. The cycle
period T, is usually some 10 us.

Given that there are latencies in the bus system and
other system components, the those latencies not reli-
ably covered by the measurement must be added to the
WCET. For example, the latency penalty for the PCI
bus is gained in a straightforward way by multiplying
the worst case number of accesses with the worst case
latency. The modeling of more complex latencies in-
troduced by direct memory access or the latencies of
the CAN bus is beyond the scope of this paper.

In contrast the BCET only has to be corrected by
time bonuses. Other than for the WCET, we have to
assume that each measurement block was affected by
the maximum impact of memory refresh cycles. The
bonus T} is computed analogous to T, for the WCET.

The WCET of the measurement routine has to be
subtracted and the effect of the useless data in cache at
the beginning of each measurement block taken into ac-
count for the BCET. All data referenced and code has
to be assumed to be in cache. To fix this, the cache refill
time has to be subtracted from the measured BCET. In
a simple approach the refill time of the complete cache
utilized by the program is subtracted. A greater accu-
racy can be gained by only subtracting the amount of
cache used in the part of the task under investigation.
By applying the method of useful blocks described in
[4], only the cache used in the measurement block has
to be covered.

Analogous to the WCET those latencies covered by
the measurement and possibly absent during execution
have to result in a bonus as well. Finally the stall of
the execution units by the measurement code and the
prolonged execution by the loop instrumentation have
to be taken into account.

4 Measurement Results

For the measurements an Intel Pentium II Processor
with 233 MHz was used. A matrix multiplication pro-
gram was chosen to measure the deviation of medium
sized application. The execution time of this exam-
ple deviated between 286219 and 287284 cycles. This
corresponds to an error of 0.3 %.

As an example from the image processing field, an
application was implemented which segments 128x128
pixel images and recognizes 3 different types of objects
and the orientation of two of them (the third is rotary
symmetrical). Since is no search for the orientation of
the third item, the BCET is rather small compared to
the WCET. The measured BCET was 241529 cycles.
Correction the result with a complete cache refill time
would leave the corrected BCET with 0. Scaled to the
actual size of the task, which was 73 KByte for code
and data, the bonus for possibly cached data and code
would be 1.5 10° cycles. The additional bonuses for
a memory refresh cycle and the measurement routine
are already covered by the rounded up cache bonus.
Thus the measured BCET would be adjusted to half
its value for later use.

To evaluate the results measurements with uninstru-
mented code and real data were taken. The WCET as
forced by the instrumented code was 198424706 cycles.
Compared to the execution time of 198387085 cycles
with real data the bound is extremely tight. The best
case was achieved when leaving out the code responsi-
ble for cache destruction and code serializing and doing
several measurements in a row. The best case taken
from these measurements with real data was 215231
cycles. The corrected save estimate of the BCET was
only cycles. The reason for the estimate being only
42,5% of the the real BCET lies in the fact that 48
KByte of data is not touched in the best case, but is
covered in the cache bonus of 73 KByte. An analysis of
memory usage could further minimize the gap between
real BCET and the BCET used for analysis.

5 Conclusion

In this paper an approach for a feasible worst case
and best case execution time estimation is presented.
For the analysis the control flow graph generated by
the compiler is used and thus the analysis of fully op-
timized code is possible. A method for automated in-
strumentation, measurement and de-instrumentation is
introduced. It has been shown how the complexity of
large tasks can be reduced by partitioning. While the
WCETSs can be bounded very efficiently and tightly by
the presented measurement methods, due to the neces-

sary time bonus for the caches, the BCETSs leave room
for optimization.

Future work will focus on including the aspects of an
underlying real-time operating system. Evaluation of
the method on other processing hardware is currently
a work in progress. As mentioned before the underes-
timation of the BCETSs has to be reduced.

References

[1] R. Chapman, A. Burns, and A. Wellings. Integrated
program proof and worst—case timing of SPARC Ada.
In Proceedings of the ACM SIGPLAN Language, Com-
piler, and Tool Support for Real-Time Systems (LCTS)
workshop, Orlando, Florida, June 1994.

[2] J. Engblohm, P. Altenbernd, and A. Ermedahl. Facili-
tating worst—case execution time analysis for optimized
code. In Proceedings of the 10th Euromicro Workshop
on Real-Time Systems, Berlin, Germany, June 1997.

[3] Christian Ferdinand and Reinhard Wilhelm. On pre-
dicting data cache behavior for real-time systems. In
Proceedings of the ACM SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Embedded Systems
(LCTES’98), Montreal Canada, June 19-20 1998.

[4] C.—G. Lee, J. Hahn, Y-M. Seo, S.L. Min, R. Ha,
S. Hong, C.Y. Park, M. Lee, and C.S. Kim. Bound-
ing cache-related preemption delay for real-time sys-
tems. In 18th IEEE Real-Time Systems Symposium,
San Francisco USA, December 3-5 1997.

[6] Thomas Lundqvist and Per Stenstrém. Timing anoma-
lies in dynamically scheduled microprocessors. In Pro-
ceedings of the IEEE Real-Time Systems Symposium,
Phoenix, AZ, December 1999.

[6] Stefan Petters, Annette Muth, Thomas Kolloch,
Thomas Hopfner, Franz Fischer, and Georg Farber. The
REAR framework for emulation and analysis of embed-
ded hard real-time systems. Design Automation for
Embedded Systems, 5(3):237-250, August 2000.

[7] Stefan M. Petters and Georg Farber. Making worst
case execution time analysis for hard real-time tasks
on state of the art processors feasible. In Proc. of the
6th Int. Conf. on Real-Time Computing Systems and
Applications, Hongkong, December 13-15 1999.

[8] R. White, F. Mueller, C. Healy, D. Whalley, and M. G.
Harmon. Timing analysis of data caches and set—
associative caches. In 8rd IEEE Real-Time Technology
and Applications Symposium, Montreal Canada, June
9-11 1997.

[9] F. Wolf and R. Ernst. Execution cost interval refine-
ment in static software analysis. Journal of Systems
Architecture, The EUROMICRO Journal, Special Issue
on Modern Methods and Tools in Digital System De-
sign, 2000.

