
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Realzeit-Computersysteme

Verifying and Allocating Real-Time Tasks on
Distributed Processing Units

Alejandro Masrur

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. R. Kennel

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. G. Färber (em.)

2. Univ.-Prof. Dr. sc. techn. A. Herkersdorf

Die Dissertation wurde am 16.06.2009 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
10.03.2010 angenommen.

Acknowledgements

First of all, I sincerely thank Prof. Färber for his guidance, his unfailing patience and for being
always available to me. None of this, neither this Ph.D. thesis nor my stay in Munich, would
have ever been possible without his support. I profoundly thank Prof. Chakraborty for his
valuable contributions to this thesis and for helping me find motivation towards the end of my
Ph.D. For the interesting work and discussions shared, I thank Prof. Herkersdorf to whom I am
also particularly grateful for accepting to be my second examiner. I further thank Prof. Kennel
for undertaking the chair of the examination board.

To all my colleagues and the staff at RCS, I am deeply grateful for their unconditional help
whenever I needed it and, of course, for the pleasant and friendly working atmosphere. Because
of them, I will always look back on the time at RCS with great affection.

I would also like to thank my parents and brothers, who ever trusted and supported me. I thank
them for respecting my decisions, even when they sometimes did not agree with me. I thank
very much my beloved wife Ana not only for her tolerance and sympathy, but also for her
contributions to this thesis. I am not sure, if I completely understand her work, but I am certain
that she understands mine.

Finally, I gratefully acknowledge the support by the DAAD at the beginning and during the first
three and a half years of my Ph.D.

Munich, June 2009

To my wife Ana.

Contents

1 Introduction 1
1.1 Related Work . 3

1.1.1 Uniprocessor Scheduling . 3
1.1.2 Multiprocessor Scheduling . 6

1.2 Underlying Models and Assumptions . 8
1.2.1 Task Model . 8
1.2.2 Processor Model . 9

1.3 Structure of this thesis . 9

2 Testing Feasibility for Real-Time Tasks 11
2.1 The Time-Triggered Scheduling Approach . 12

2.1.1 The Minimum Possible Slot . 13
2.1.2 Context Switches . 14
2.1.3 Feasibility Test . 15

2.2 The Event-Triggered Scheduling Approach 15
2.2.1 The EDF Scheduling . 16
2.2.2 The DM/RM Scheduling . 28
2.2.3 Context Switches . 42

2.3 Considering Soft Real-Time . 42
2.4 Key Findings . 45

3 Allocating Independent Real-Time Tasks to Processors 47
3.1 Bin Packing and Task Allocation . 48

3.1.1 Sequential Algorithms for Bin Packing 48
3.1.2 Statistical Performance Comparison 50
3.1.3 Bin Packing for RM . 52

3.2 Task Allocation for Arbitrary Deadlines . 52
3.2.1 Algorithms for EDF . 53
3.2.2 Algorithms for the DM/RM Scheduling 55

3.3 Key Findings . 64

4 Communication and System Constraints 65
4.1 Modeling Task Dependencies . 65

4.1.1 Communication . 66
4.1.2 System Constraints . 68

4.2 Allocating Dependent Real-Time Tasks . 69

v

Contents

4.2.1 The Allocation Matrix . 69
4.2.2 The Matrix of Resulting Communication 70

4.3 Allocation Algorithms . 72
4.4 Amount of Communication between Processors 75
4.5 Reducing Communication between Processors 77

4.5.1 The Communication Volume Matrix 77
4.5.2 Heuristics to Reduce Communication 78
4.5.3 Processors versus Maximum Task Utilization 79
4.5.4 Communication versus Maximum Task Utilization 83
4.5.5 Communication versus Maximum Task Connectivity 88

4.6 Heuristics to Reduce Processors and Communication 93
4.6.1 Processors versus Maximum Task Utilization 96
4.6.2 Communication versus Maximum Task Utilization 99
4.6.3 Communication versus Maximum Task Connectivity 103

4.7 Key Findings . 108

5 Concluding Remarks 109

Bibliography 113

vi

Abstract

In general, two major issues arise when designing real-time embedded systems upon multiple
processors: task allocation and feasibility/schedulability analysis. The task allocation problem
is concerned with the assignment of tasks to processors, whereas the feasibility/schedulability
analysis deals with testing whether a given set of real-time tasks is schedulable or not. A set
of real-time tasks is said to be schedulable or feasible on one or more processors, when all its
timing constraints (deadlines) can be guaranteed. Clearly, we cannot allocate real-time tasks
to processors that are unable to guarantee their deadlines and, hence, these two problems are
interdependent and cannot be handled separately.

In this thesis, we provide an integrated framework for task allocation and feasibility analysis.
In particular, new better linear-time feasibility tests are used in conjunction with allocation
heuristics. This way, we first analyze the case of allocating independent real-time tasks and
then extend algorithms to consider task dependencies. The contributions of this thesis are as
follows:

• A novel technique is proposed to perform the feasibility analysis of both fixed and
dynamic-priority scheduling policies. This new technique consists in calculating the
maximum loading factor generated by real-time tasks on a single processor. The concept
of loading factor is defined as the total execution demand within a specified time interval
divided by the length of this interval. Hence, the maximum loading factor is the upper
bound on the loading factor which results from considering every possible time interval.
As a consequence, if the maximum loading factor of a given task set is less than or equal
to unity on a single processor, the processor will be able to comply with the execution
demand of all tasks. Thus, the task set is said to be feasible on that processor.

• Applying the concept of maximum loading factor, linear-time sufficient feasibility tests
are presented for the most general case of task having arbitrary deadlines. We analyze
both fixed-priority and dynamic-priority scheduling algorithms. Further, the proposed
feasibility tests are shown to be more accurate (i.e., less pessimistic) than the known
algorithms with same complexity that can be found in the literature.

• The proposed feasibility tests are also combined with well-known bin packing heuristics
(e.g., First Fit and First Fit Decreasing) to derive fast polynomial-time allocation algo-
rithms for independent real-time tasks with arbitrary deadlines. By means of a detailed
comparison, we further show that these algorithms achieve better task allocations on the
average than the ones based on feasibility analysis methods from the literature. This
means that the proposed heuristics lead to a bigger reduction of the number of processors,
which are necessary to guarantee feasibility for the whole task set.

vii

• The problem of allocating dependent real-time tasks to multiple distributed processors is
analyzed. Particularly, we focus on task communication and system constraints. For the
case of communicating tasks, different heuristics are presented to reduce the amount of
communication between processors during the allocation procedure. Finally, some addi-
tional allocation heuristics are proposed to minimize both the number of processors and
the amount of communication between them. In contrast to most communication-aware
allocation methods from the literature, the proposed algorithms have polynomial com-
plexity and can possibly be adapted to perform an on-line allocation for communicating
tasks.

viii

Zusammenfassung

In Bezug auf die Entwicklung eingebetteter Realzeit-Systeme basierend auf mehreren Prozes-
soren entstehen im Allgemeinen zwei große Herausforderungen: die Taskallokation und der
Echtzeitnachweis. Während sich die Taskallokation mit der Zuordnung von Tasks auf Prozes-
soren beschäftigt, ist das Echtzeitnachweis-Verfahren dafür verantwortlich, die Machbarkeit
des Realzeit-Tasksystems zu prüfen. Ein Realzeit-Tasksystem ist nur dann machbar oder reali-
sierbar, wenn garantiert werden kann, dass alle Zeitschranken (Deadlines) eingehalten werden.
Dabei soll eine Task keineswegs einem Prozessor zugeordnet werden, der nicht in der Lage ist,
sie rechtzeitig auszuführen. Daher können Echtzeitnachweis und Taskallokation nicht getrennt
und müssen als ein Ganzes betrachtet werden.

Diese Dissertation befasst sich mit einer ganzheitlichen Betrachtung von Taskallokation und
Echtzeitnachweis. Insbesondere werden neue und bessere Echtzeitnachweis-Verfahren li-
nearer Zeit in Verbindung mit Allokationsheuristiken verwendet, wobei die Allokation un-
abhängiger Realzeit-Tasks zunächst analysiert wird. Darüber hinaus werden die Algorithmen
zur Berücksichtigung von Taskabhängigkeiten erweitert. Der wissenschaftliche Beitrag dieser
Dissertation kann folgendermaßen zusammengefasst werden:

• Eine neuartige Technik zum Echtzeitnachweis wird eingeführt, die bei Scheduling-
Verfahren sowohl fester als auch dynamischer Priorität angewandt werden kann. Die
vorgestellte Echtzeitnachweis-Technik basiert auf der Berechnung des maximalen Bela-
stungsmaßes, welches das Tasksystem auf einem Einzelprozessor bewirkt. Der Begriff
Belastungsmaß wird als das Verhältnis zwischen der gesamten Rechenanforderung in-
nerhalb eines bestimmten Zeitintervalls und der Länge des Zeitintervalls definiert. Das
maximale Belastungsmaß ist daher die obere Schranke des Belastungsmaßes, die aus der
Betrachtung jedes möglichen Zeitintervalls resultiert. Wenn das maximale Belastungs-
maß eines Tasksystems auf einem Einzelprozessor nicht die Einheit übersteigt, dann ist
der Prozessor imstande die Rechenanforderung aller Tasks zu entsprechen. Das Tasksy-
stem ist infolgedessen realisierbar auf dem Prozessor.

• Für den allgemeinen Fall beliebiger Deadlines werden hinreichende Echtzeitnachweis-
Verfahren linearer Zeit, basierend auf dem Begriff des maximalen Belastungsmaßes,
präsentiert. Scheduling-Algorithmen mit festen und mit dynamischen Prioritäten wer-
den analysiert. Des weiteren wird gezeigt, dass die vorgestellten Verfahren genauer (d.h.
weniger pessimistisch) sind, als bekannte Algorithmen gleicher Komplexität aus der
Literatur.

• Die vorgeschlagenen Echtzeitnachweis-Verfahren werden mit allgemein bekannten Heu-
ristiken für Bin Packing (z.B. First Fit und First Fit Decreasing) kombiniert, um schnelle

ix

Allokationsalgorithmen polynomischer Zeit für Realzeit-Tasks mit beliebigen Deadlines
abzuleiten. Im Durchschnitt erzielen diese Algorithmen eine bessere Taskzuteilung als
dazu konkurrierende Methoden basierend auf Echtzeitnachweis-Methoden aus der Lite-
ratur. Das heißt, die vorgestellten Heuristiken führen zu einer kleineren Anzahl von Pro-
zessoren, die zur Realisierbarkeit des gesammten Tasksystems notwendig sind. Letzteres
wird anhand eines ausführlichen Vergleichs veranschaulicht.

• Die Zuteilung von abhängigen Realzeit-Tasks auf mehrere verteilte Prozessoren wird
weiterhin analysiert. Insbesondere werden kommunizierende Tasks und systembedingte
Randbedingungen in Erwägung gezogen. Für den Fall kommunizierender Tasks werden
verschiedene Allokationsheuristiken zur Reduktion des Kommunikationsumfangs zwi-
schen Prozessoren vorgeschlagen. Zum Schluss werden ergänzende Heuristiken darge-
stellt, die zur Minimierung der beiden Größen Prozessoranzahl und Kommunikations-
umfang unter Prozessoren dienen. In Gegensatz zu den meisten in der Literatur vorge-
schlagen kommunikationsbewussten Allokationsmethoden zeichnen sich die in dieser
Dissertation dargelegten Algorithmen durch ihre polynomische Komplexität aus. Da-
her eignen sie sich besonders dafür, auf ihrer Basis eine online Taskallokation unter
Berücksichtigung von Kommunikation zu realisieren.

x

1 Introduction

Although the speed of processors has been rapidly increasing in recent decades, there is an
even faster growing demand for computation capacity in embedded systems. The use of mul-
tiple processors is often the only way to fulfill the computation requirements of many current
and upcoming applications. Additionally, most powerful processors are nowadays based on
multicore architectures, so that engineers are frequently confronted with designing embedded
systems upon multiple processing units. As a consequence, there is a strong interest in devel-
oping design methods and techniques for multiprocessor environments.

The problem of executing time-constrained tasks upon multiple processors has been intensively
studied in the literature. However, this still remains a very active area of research. Scientific
work so far has focused on the analysis of either global or partitioned multiprocessor scheduling
for real-time tasks. As discussed later, tasks are globally scheduled when they can be assigned
on-line to any available processor. On the other hand, partitioned scheduling is such a one
in which tasks are assigned off-line and exclusively to one processor. Clearly, the number of
processors is normally known in the case of global scheduling. However, for a partitioned
scheduling, the number of processors may be as well an unknown variable that needs to be
determined at design time.

The problem of finding an optimal task assignment to processors is known to be intractable
[GJ79] (i.e., the running time of an optimal allocation algorithm grows exponentially with the
number of tasks to be allocated). For this reason and because of its on-line nature, heuristic
methods have been proposed to perform a global scheduling. In general, these global scheduling
heuristics are based on simple on-line bin packing heuristic algorithms (like, for example, the
well-known First Fit). Additionally, researchers have been able to come up with total utilization
bounds for which the feasibility of all real-time tasks can be guaranteed on a given number of
processors.

Algorithms to achieve an optimal allocation seem to be preferred with respect to partitioned
schedulings of real-time tasks. As mentioned above, the running time of such an optimal algo-
rithm increases exponentially with the number of tasks. However, there are some considerations
that argue for optimal algorithms. For example, there are normally few tasks to allocate in most
practical situations, so the running time of an optimal allocation algorithm is tolerable in this
case. Further, the task assignment is carried out off-line when considering partitioned multi-
processor schedulings, so we normally have sufficient time to look for the optimal assignment.
Additionally, an optimal task allocation is more desirable because it reduces costs by resulting
in the least possible number of processors. There are some approaches that can be used to solve
this problem for an optimal allocation, however, integer programming seems to be the most
accepted one in the literature. Here, the allocation problem must be expressed as an integer

1

1 Introduction

program and, then, it can be solved with known integer programming techniques. Further, there
exist already a number of efficient solvers which can be used for this purpose.

Several authors have also proposed heuristic methods for allocating tasks to processors under
a partitioned scheduling scheme. The main advantage of heuristic approaches is that they are
much more faster than optimal algorithms while they deliver fairly good allocations. For in-
stance, if all tasks are independent of each other, some of the well-known bin packing heuristics
can also be applied to perform an off-line task allocation. This time, it is not necessary to
restrict oneself to on-line algorithms, but off-line bin packing heuristics (e.g., First Fit Decreas-
ing) are certainly more advantageous because of their better performance ratios. Nevertheless,
more complex heuristics, for example, based on genetic algorithms, have been proposed to al-
locate dependent tasks. Dependent tasks are considered those that influence the behavior of one
another or that interact in some way like, for example, by means of exchanging information
between them, by presenting precedence constraints, etc.

In this thesis, heuristic algorithms are presented to perform a task allocation under a partitioned
scheduling on multiple distributed processors. For this purpose, we also make use of simple bin
packing heuristics, but concentrate on two issues to which it has been paid little attention in the
literature:

• Allocating real-time tasks with arbitrary deadlines under fixed and dynamic-priority
scheduling policies;

• The allocation of real-time tasks considering communication and system constraints.

The choice of bin packing heuristics is due to the fact that they deliver reasonably good task
allocations and that they present polynomial complexity, which is alway desirable in particular
for performing on-line allocations.

Although the allocation problem has already been analyzed before on the basis of bin packing
heuristics, e.g., in [DL78, LDG04], almost all approaches assume that deadlines are equal to
periods. This assumption simplifies substantially the feasibility analysis under both fixed and
dynamic priorities, which can thus be carried out in polynomial time. This way, the allocation
heuristic, which must compulsorily rely on a feasibility test to guarantee that no deadlines are
missed, becomes much more simple.

On the other hand, if deadlines are not restricted to be equal to periods, the feasibility analysis
gets more complex; the methods used for deadlines equal to periods are not valid anymore, and a
feasibility test can at best be performed with pseudo-polynomial complexity. The combination
of these pseudo-polynomial time feasibility tests with bin packing heuristics was studied by
Sáez et al. in [SVC98]. However, in this case, we must resign the desired polynomial complexity
for the allocation heuristics because of using pseudo-polynomial feasibility tests.

For this reason, we propose sufficient feasibility tests which present polynomial complexity
and consequently do not degrade the complexity of the heuristics. The proposed feasibility tests
are shown to be more accurate than all known tests of similar complexity. Furthermore, it is
shown that allocation heuristics based on these new feasibility tests yield less processors than
the respective heuristics from the literature.

2

1.1 Related Work

Additionally, we extend known bin packing heuristics to consider task communication and
system constraints. Even in this case, the resulting heuristics are shown to have polynomial
complexity. Finally, novel heuristics are presented and evaluated for reducing communication
between tasks. In addition, we consider the problem of optimizing the number of processors
and the amount of communication among them simultaneously. For this case, we propose some
more heuristics and compare them with the known bin packing heuristics to minimize the num-
ber of processors and with the proposed algorithms for reducing communication.

1.1 Related Work

Related work is referenced and discussed all throughout this thesis as it gets necessary. This
section gives, however, a general overview of the literature with respect to feasibility analysis
on both uniprocessors and multiprocessors. This topic has been intensively studied in recent
years and is still a very active research area. A brief overview of methods and techniques for
task allocation is further given.

1.1.1 Uniprocessor Scheduling

A feasibility test depends on the scheduling algorithm used to schedule tasks. In general, two
different paradigms has been proposed for real-time tasks: fixed priorities and dynamic priori-
ties. An overview of scheduling theory concerning both of these scheduling paradigms is given
in [SAr+04].

Feasibility Analysis for EDF

The Earliest Deadline First (EDF) algorithm is a dynamic priority algorithm. EDF is optimal on
uniprocessors [Der74], but it is, on the other hand, more complex to implement. An interesting
comparison of EDF against the fixed-priority Rate Monotonic (RM) can be found in [But05].

Liu and Layland proved that a set of real-time tasks is feasible on a uniprocessor under EDF if
the total processor utilization is less than or equal to 1 (i.e., 100%). To obtain this feasibility
condition, Liu and Layland assumed that tasks are fully preemptive, periodic and synchronous
and that deadlines (di) are all equal to the respective periods (pi) [LL73]. Tasks are called
synchronous when they all are released simultaneously at the beginning of the schedule. After-
wards in [BMR90], Baruah et al. proved that applying the utilization test of Liu and Layland is
also valid when di ≥ pi holds for all tasks.

When deadlines are allowed to be less than periods, the complexity grows considerably. How-
ever, Liu and Layland also showed that if a synchronous task set is not feasible, then in its
schedule a deadline is missed without idle time prior to it. Additionally, assuming the proces-
sor utilization to be less than 100% also for a synchronous scheduling, Baruah et al. proved in
[BRH90, BMR90, BHR93] that if a deadline is missed, this happens before a maximum time

3

1 Introduction

upper limit known as feasibility bound. This result allowed Baruah et al. to design a pseudo-
polynomial time algorithm for the case where deadlines are not forced to be equal to periods.

Another pseudo-polynomial time algorithm for di ≤ pi was presented by Ripoll et al. in
[RM96]. Ripoll et al. introduced two better feasibility bounds, which they combined in the
same algorithm. On the other hand, George et al. considered in [GRS96] also the case di > pi

and got a more general expression of the feasibility bound for arbitrary deadlines.

George’s bound reduces to Ripoll’s bound if di ≤ pi holds for all possible i. A similar feasibility
bound was also obtained by Zheng and Shin in [ZS94]. In [MDF08], it was proven that a slight
improvement of George’s feasibility bound is also possible. This improvement requires at least
an additional calculation for any of the tasks and gets maximal when an additional calculation
for all tasks is performed; however, the computation complexity of this bound remains O(n).

The other feasibility bound presented by Ripoll et al. is based on the busy period analysis,
whose calculation itself presents pseudo-polynomial complexity. This latter pseudo-polynomial
feasibility bound was also independently obtained by Spuri [Spu95, Spu96].

All exact algorithms, including the one of Albers and Slomka [AS05] for di ≤ pi, present
pseudo-polynomial complexity. In order to reach polynomial complexity in feasibility testing
for EDF, when di can be less than pi, exactness must be sacrificed. Based on this idea, Liu
in [Liu00] and Stankovic et al. in [SSRB98] propose independently the density test which has
complexity O(n). The density of a task is defined as the ratio of its execution time over the
minimum between pi and di.

A first Fully Polynomial Time Approximation Scheme (FPTAS) for EDF was presented by
Chakraborty et al. in [CKT02], where also the concept of optimistic feasibility test was intro-
duced. An optimistic feasibility test does not guarantee that no deadline is missed, but if this
happens, the optimistic test makes it sure that the time overflow remains below a given config-
urable error. These new concepts were applied in the context of packet processing embedded
systems in [Cha03].

Assuming that tasks are sorted by non-decreasing deadlines di, Devi presented in [Dev03] an
O(n log n) approach that is better in terms of accepted task sets than the density condition.
Albers and Slomka presented in [AS04] a second FPTAS to perform a feasibility test under
EDF. Further, they proved in [AS05] that this FPTAS is a more general expression of Devi’s
test when di ≤ pi for all i. Based on the improved feasibility bound from [MDF08], another
sufficient polynomial-time test was presented, which is more accurate than Devi’s test but has
complexity O(n2).

All mentioned approaches assume that tasks are synchronous, i.e., that they are released simul-
taneously at the beginning of the schedule. When tasks may have offsets, i.e., the initial release
times (also called phases) for some tasks are not zero, the schedulability conditions may relax
with respect to the synchronous case. However, a schedulability relaxation may not happen in
some cases, because tasks can still be released together at some later time instant. A task set
is called asynchronous when some tasks in it have initial release times different than zero. In
general, an asynchronous task set is feasible (no deadlines are missed), if the corresponding
synchronous task set (obtained ignoring offsets in the asynchronous one) is feasible. On the

4

1.1 Related Work

other hand, an asynchronous task set might be feasible, even if its corresponding synchronous
task set is infeasible. Goossens considered in [Goo03] the scheduling of task with configurable
offsets, i.e., tasks for which offset can be freely chosen. Additionally, Pellizzoni and Lipari
presented an approximation algorithm to perform a feasibility test of asynchronous task sets
[PL04, PL05, PL07].

Feasibility Analysis for Fixed Priorities

Unlike dynamic-priority scheduling algorithms, the fixed-priority ones are generally not optimal
on uniprocessors. However, a fixed-priority scheduling algorithm is easier to implement and
integrate in an operating system. On the other hand, if all periods are harmonic, it is possible
to reach 100% processor utilization with RM [Liu00], i.e., RM is optimal like EDF in this
case. Further, if di ≤ pi holds for all tasks, Deadline Monotonic (DM) is the optimal priority
assignment [LW82]. In other words, a set of tasks can be feasibly scheduled on one processor
according to DM whenever it can be feasibly scheduled by any fixed-priority algorithm, but the
inverse does not hold [LW82].

For a set of preemptive, independent, periodic, real-time tasks with deadlines equal to periods,
Liu and Layland observed in [LL73] that the worst-case scheduling situation on a uniprocessor
happens when tasks are released simultaneously. Further, they presented in [LL73], among
others, a utilization bound for the case where tasks are scheduled under RM and di = pi holds
for all tasks.

A better utilization upper bound for this case was proposed independently by Liu in [Liu00] and
by Bini et al. in [BBB01, BB03]. This latter utilization bound does not depend on the number
of tasks as the Liu and Layland bound does. Bini et al. called it hyperbolic bound and showed
that it improves the acceptance ratio over Liu and Layland’s utilization bound by a factor of

√
2

for a large number of tasks. A similar utilization bound was proposed by Oh et al. in [OS95] to
be used in the task allocation problem.

There are some other utilization bounds for the case that di = pi holds for all tasks under RM.
Kuo et al. presented in [KM91] a utilization bound that exploits the fact that 100% utilization
is possible under RM when tasks have harmonic periods. Further, Burchard et al. presented in
[BLOS95] another utilization bound that varies not only with the number of tasks but also with
a factor quantifying how close tasks are to having harmonic periods. For arbitrary deadlines,
Lehoczky proposed in [Leh90] a utilization bound for RM that does not only depend on the
number of tasks but also on the ratio di

pi
. Lehoczky assumed that this factor is further the same

for all tasks.

An exact feasibility test with pseudo-polynomial complexity was presented by Lehoczky et al.
in [LSD89] for the case of RM and deadlines equal to periods. Afterwards, in [ABRW91],
Audsley et al. considered a DM priority assignment and improved in [ABR+93] Lehoczky’s
exact feasibility test by observing that tasks’ worst-case response times can be found in an
iterative manner. Further, Audsley et al. considered deadlines less than or equal to periods and
other priority assignments. More recently, Bini and Buttazzo presented in [BB04b] a tunable

5

1 Introduction

feasibility test for the case that di ≤ pi holds for all tasks under fixed priorities. Bini and
Buttazzo’s test allows configuring complexity versus acceptance ratio for the testing.

For arbitrary deadlines and fixed priorities, Lehoczky showed in [Leh90] that the response time
of the first job of a task Ti, scheduled synchronously with all higher-priority tasks, is not nec-
essarily the maximum response time for Ti. In order to test Ti’s feasibility in this case, the
response times of all Ti’s jobs within its first busy period must be calculated. Based on this
observations, Lehoczky provided in [Leh90] a more general feasibility test for fixed priorities
and arbitrary deadlines. Ti’s first busy period is the time interval from the synchronous release
together with all higher-priority tasks to the time instant at which all previously released jobs
finish executing.

In [FB05b, FB05a, FB06], Fisher and Baruah proposed an approximation scheme for the known
pseudo-polynomial-time exact feasibility test [LSD89, ABR+93, Leh90]. This approximation
has polynomial complexity and is based on the approximation techniques used by Albers and
Slomka in [AS04] for the case of an EDF scheduling.

Finally, all approaches discussed for fixed priorities assume that tasks are synchronous, i.e.,
tasks that are released simultaneously at the beginning of the schedule. The problem of feasi-
bility testing for fixed-priority tasks with offsets has also been studied in the literature [Aud91,
Tin94, PGH98, Goo03].

1.1.2 Multiprocessor Scheduling

Considering a real-time task to be a succession of real-time jobs, there are two approaches to
schedule these jobs on multiple processors: the partitioned (or off-line) and the global (or on-
line) scheduling. Under partitioned scheduling, all jobs of a task are assigned to a particular
processor, i.e., they always run on the same processor. On the other hand, under global schedul-
ing, jobs are not restricted to one processor, but they may run on any available processor at a
given time instant. In this latter case, on which processor the real-time jobs are going to run is
decided on-line by the scheduler.

Global Multiprocessor Scheduling

We know from the previous discussion that EDF is an optimal (on-line) scheduling algorithm on
uniprocessors [Der74], however, Hong and Leung showed that no global (on-line) scheduling
algorithm can be optimal on multiprocessors [HL88, HL92].

For global multiprocessor scheduling, researchers have been proposing utilization bounds in
the same way as Liu and Layland did for single processors [LL73]. The key idea is that a
given set of real-time tasks is feasible on a multiprocessor system, if the total utilization on the
multiprocessor does not exceed a given bound. Along the years, quite a few utilization bounds
for multiprocessors were proposed for different scheduling algorithms; some of these results
are also summarized in [SAr+04].

6

1.1 Related Work

Multiprocessor Utilization Bounds for Fixed Priorities: The algorithm Rate Monotonic First
Fit (RMFF) [DL78] was the first proposed approach for performing a multiprocessor scheduling
and is based on the combination of RM and the well-known First Fit (FF) heuristic. RMFF can
be applied to partition the task set on a multiprocessor and also to perform a global scheduling
of tasks. For the use of RMFF as a global scheduling algorithm, different utilization bounds are
already known [OB98, LDG01]. Other utilization bounds for fixed priorities appeared in the
literature over the years [ABJ01, LDG04]. The effect of the utilization of individual tasks on
the multiprocessor utilization bound has also been extensively investigated [PSTW97, ABJ01,
FGB01, Lun02, GFB03, Bak03, Bar04, Bak06, BF06a].

Multiprocessor Utilization Bounds for EDF: In what respects to EDF, López et al. introduced
in [LGDG00] the analogous to RMFF called Earliest Deadline First-First Fit (EDF-FF), for
which they proposed a utilization upper bound on multiprocessors. There exists also a large
body of work concerning multiprocessor utilization bounds for EDF [Bak03, Bak05, FB05c,
BCL05, BB08].

Partitioned Multiprocessor Scheduling and Task Allocation

Clearly, for the partitioned scheduling, it is first necessary to allocate tasks onto processors.
Tasks then remain on the processors they were assigned to and can be scheduled under the
known uniprocessor techniques. However, the task allocation problem is not easy to solve. Let
us assume, for example, that we have n tasks and that the number of processors in fixed to
q. In this case, there are qn different possible ways of assigning tasks to processors. Further,
finding an optimal feasible allocation (i.e., one for which no deadlines are missed) is known to
be NP-hard in the strong sense [GJ79], i.e., it has exponential complexity.

If we consider tasks to be independent of one another, there exist already good bin packing
heuristics, like the previously mentioned First Fit (FF), that can be successfully applied to solve
the allocation problem. An overview of the possible bin packing heuristics was presented by
Coffman et al. in [CGJ97], where the authors discuss among others the complexity of the dif-
ferent algorithms and their worst-case performance ratios.

The allocation problem gets harder if there are dependencies among tasks. For this reason,
researchers have been trying to come up with good approximation algorithms. For instance,
genetic algorithms has been applied in [AD96, Thi00, WYJ+04], but also a technique known
as simulated annealing has shown to deliver reasonable results [Tin90, TBW92, BNTZ94]. In
[AKS+02], greedy heuristics were used to obtain allocations that guarantee a given quality of
service.

On the other hand, many researchers opt for optimal solution approaches. Of course, the com-
putational complexity of these approaches is exponential. However, this can be put into per-
spective by taking into account that we normally have few tasks and that the allocation proce-
dure is performed off-line. There are basically two common approaches to obtain an optimal
allocation: integer programming and graph theoretic approach. The graph theoretic approach
makes use of graph techniques to obtain the best allocation [ST85, Lat94]. However, the integer

7

1 Introduction

programming method has gained more attention lately and consists in formulating the alloca-
tion problem as an integer program [MFHS05, MFHS06, MH06, RGB+08], which can then be
solved with well-known techniques for integer programming.

1.2 Underlying Models and Assumptions

In this section, we briefly discuss the models on which all presented methods are based. Ad-
ditionally, the nomenclature used all along this thesis is introduced. There are, however, some
minor details and definitions that will be presented correspondingly as they become necessary
so as to ease the exposition.

1.2.1 Task Model

First, we specify the task model and some related notation used in the following chapters.
Throughout this thesis, it is assumed that a set of real-time tasks is given. We denote this task
set by Tn, where n represents the number of tasks in it. Further, all real-time tasks are assumed
to be periodic, independent and fully preemptive. In what follows, we will also use Tl to denote
a subset of the first l tasks in Tn.

We consider that each task Ti in Tn is characterized by its period of repetition pi, its relative
deadline di and its worst-case execution time ei. An overview of techniques and tools to obtain
the worst-case execution time of tasks is given in [WEE+08]. More flexible models for real-
time tasks can also be found in the literature [Gre93, MC96, MC97, Bar98, BCGM99, Bar03,
ABS06], however, this simple periodic task model (based on Liu and Layland’s pioneer work
[LL73]) still covers most practical design needs. In case of sporadic tasks, i.e., tasks released
with certain non-periodic patterns, pi may also represent the minimum separation between two
consecutive releases of Ti. On the other hand, there are more sophisticated ways of modeling
sporadic tasks [Gre93, BCGM99], but this escapes the focus of this thesis.

In principle, a task Ti is an infinite succession of jobs Jih. All jobs of Ti have the same worst-
case execution time and relative deadline. Additionally, each job has its own release time tih
and absolute deadline tih + di.

For this thesis, we make no assumptions concerning the events that trigger jobs of a task besides
that they are periodic or present at least a minimum separation between two occurrences. For
this reason, the case where all events occur simultaneously cannot be excluded. As a conse-
quence, in order to consider the worst-case scheduling situation, we need to assume that jobs
of all tasks are released together. The simultaneous release of all tasks is often referred to as
synchronous case, for which Tn is called synchronous task set. In this thesis, unless otherwise
explicitly stated, we consider that Tn is a synchronous task set and that jobs of all tasks are
released simultaneously at the beginning of the schedule (at time t = 0).

The ratio ui = ei

pi
is called Ti’s task utilization. As discussed later, the task utilization is a key

concept in the theory of real-time systems. Further, for the remainder of this thesis, all relative

8

1.3 Structure of this thesis

deadlines di are assumed to be arbitrary; they can be less as well as greater than the respective
periods pi for 1 ≤ i ≤ n. This assumption has a substantial effect on the feasibility test and is
the main difference to the task model applied by Liu and Layland [LL73].

As mentioned above, dependencies among tasks are also going to be considered, so that the task
model will have to be adapted to this case. However, the extension of the task model to include
task dependencies will not be analyzed until Chapter 4.

1.2.2 Processor Model

Processors are the ones in charge of executing the real-time tasks within a task set Tn. Let
us denominate by Pq the set of processors Pf on which Tn is going to be executed. Here, q
represents the number of processors in Pq.

A given processor type P is implicitly modeled within the discussed task model by means of the
worst-case execution time ei of tasks. The worst-case execution time depends on the processor
type and must be calculated assuming that tasks are going to run on a given processor type P . If
tasks then run on another processor type than the originally assumed, their worst-case execution
times must be recalculated to consider the new processor type.

Further, when considering multiprocessor systems, there are in principle three different possible
scenarios: identical, uniform and heterogeneous processors. In the case of identical processors,
a task Ti presents the same worst-case execution time ei on any processor Pf in Pq. On uniform
multiprocessors, the worst-case execution times of tasks in Tn vary uniformly from processor to
processor. Two different tasks Ti and Tj that belong to Tn have the worst-case execution times
ei and ej respectively on a processor Pf . The execution time of these tasks on another uniform
processor Pg is given by αfg · ei and αfg · ej respectively, where αfg is a constant representing
the speed-up between Pf and Pg. Clearly, if a multiprocessor platform can be considered to be
uniform depends not only on the processor types, but also on the characteristics of tasks. On
the other hand, when processors are heterogeneous, the worst-case execution times of tasks on
a given Pg cannot be derived from the tasks’ execution times on Pf .

In this thesis, in order to perform a task allocation, we focus on identical processors. However,
all proposed allocation algorithms can easily be extended to consider uniform processors. In the
case of heterogeneous processors, a vector of wost-case execution times instead of a scalar value
ei will be necessary to model a task Ti. Each entry in this vector must contain the worst-case
execution time of Ti on a different processor type of the heterogeneous platform.

1.3 Structure of this thesis

This thesis is organized in three main chapters presenting the most important contributions.
The next two chapters are concerned with independent real-time tasks, while Chapter 4 con-
siders task communication and system constraints. In Chapter 2, different scheduling policies

9

1 Introduction

are analyzed, for which novel feasibility tests are derived. In particular, we contemplate the
most common real-time scheduling algorithms like Deadline Monotonic and Earliest Deadline
First. Further, an asynchronous time-triggered scheduling is also considered on the processor.
Additionally, for the different scheduling policies, it is shown by means of a thorough statis-
tical comparison that the proposed feasibility tests are more accurate on average than known
approaches from the literature.

Chapter 3 is concerned with the allocation of independent real-time tasks. For this purpose, we
analyze the simpler case where deadlines are all equal to periods in order to identify the most
convenient heuristics independently of the scheduling case. Afterwards, the feasibility test
approaches of Chapter 2 are applied for the more general case of arbitrary deadlines. Further,
an exhaustive comparison reveals that combining the proposed methods from Chapter 2 with
known heuristics results in an improved task allocation, i.e., a bigger reduction of the number
of processors can be achieved.

In addition, Chapter 4 considers the modeling of task communication and system constraints.
For the case of communicating tasks, some new allocation heuristics are proposed. In contrast
to the algorithms of Chapter 3, the presented heuristics are designed in Chapter 4 to reduce the
amount of communication between processors and to perform both a reduction of communica-
tion and of the number of processors. All heuristics are extensively compared to each other and
to the worst-case communication conditions, so as to identify which of these performs the best.
Finally, Chapter 5 summarizes the main contributions of this thesis and presents some ideas for
future work.

10

2 Testing Feasibility for Real-Time
Tasks

When allocating real-time tasks to processors, we must take special care in ensuring that all
tasks meet their deadlines. So, every time a task is assigned to a processor, we have to prove that
neither the new assigned task nor the tasks already running on the processor miss their deadlines.
Otherwise, the resulting task set will not be feasible (or schedulable) on that processor and
correspondingly the whole system may start malfunctioning.

As a consequence, an allocation algorithm for real-time tasks consists of two interlocked com-
ponents: the allocation procedure itself and the feasibility test. The allocation procedure is the
one in charge of deciding to which processor each task should be assigned, whereas the feasi-
bility test proves whether these assigned tasks are schedulable on that processor or not. In this
chapter, we analyze how to improve the feasibility tests for real-time tasks, while the allocation
procedure will be discussed in later chapters.

In order to test feasibility, we first need to identify the scheduling paradigm under which the
tasks are to be scheduled. For the sake of completeness, we analyze both the time-triggered
as well as the event-triggered scheduling approaches. The time-triggered scheduling is going
to be analyzed assuming that no synchronization takes place, which is rather pessimistic and
differs from the common assumptions made [Kop98]. However, the main topic in this thesis
is the event-triggered approach, for which fixed-priority and dynamic-priority algorithms are
considered.

Second, it is necessary to agree on the model used for describing tasks. In this chapter, we apply
the periodic task model already discussed. We further assume that a set Tn of n periodic tasks
is to be scheduled on a processor Pf , where each task Ti is fully preemptive and independent.
Unless otherwise stated, the task set Tn is assumed to be synchronous, i.e., tasks’ initial release
times are zero for all tasks. Additionally, deadlines are considered to be arbitrary, i.e., they can
be less as well as greater than the respective periods.

In this thesis, we focus on allocation algorithms with polynomial complexity for the case of
arbitrary deadlines. That is also the reason why we are interested in feasibility tests with poly-
nomial complexity. Unfortunately, for tasks with arbitrary deadlines, forcing the complexity to
be polynomial reduces the accuracy of tests, i.e., they become pessimistic. As a consequence,
all the polynomial-time tests we can obtain for this case are sufficient but not necessary.

We believe, however, that polynomial complexity is still desirable. This is not only because an
exact feasibility test is not really useful when considering some uncertainty in task parameters
(which is very common in real-world applications), but also because of the more predictable

11

2 Testing Feasibility for Real-Time Tasks

and faster running time of algorithms. Moreover, a faster allocation algorithm makes it possible
to quickly explore the influence of varying task parameters on system requirements.

The use of the proposed feasibility tests is of course not limited to the allocation problem alone.
In particular, algorithms with complexityO(n), where n is the number of tasks, are also suitable
for admission control/on-line testing. This is because testing an additional task on a running
system takes only a constant time. Further, they do not need to know all tasks in advance (no
presorting is required).

2.1 The Time-Triggered Scheduling Approach

In the time-triggered scheduling approach, jobs of a task Ti cannot simply interrupt the sched-
uler at an arbitrary point in time, but they must wait for their previously assigned time slots in
order to run. The processing time on a processor Pf is normally organized in scheduling cycles
of a given length zf , see Figure 2.1. Additionally, these scheduling cycles are divided into time
slots si. As already mentioned, processor time is assigned to tasks in form of slots, so that every
task Ti running on Pf gets its own time slot.

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

s1 s1 s1

zf zf zf

t

s2 s2 s2

Figure 2.1: Scheduling cycle and time slots on Pf

Whenever Jih, an h-th job of Ti, gets ready, it must wait for its corresponding slot si to run,
even if the processor gets idle in the meantime. Further, if there is no synchronization between
external events and the scheduling on Pf , we need to determine the worst-case release time
for jobs of Ti. This latter is important for testing whether Ti’s jobs are always going to meet
their deadlines or not. Now, the worst-case release time of Jih depends on how the scheduler is
implemented. In principle, there are two different possible situations:

1. Jobs of Ti can start executing at any time within the corresponding slot si;

2. Jobs of Ti can only start executing at the beginning of the corresponding slot si.

In the first situation, it is clear that the worst-case release time for Jih is exactly after si has
finished. This is because, in this case, Jih will have to wait the most to run: zf − si time units.
As a consequence, if si = ei holds (i.e., the slot is equal to the job’s execution demand), the
following condition must also hold for Ti to be feasible on Pf :

ei ≤ zf ≤ min(di, pi). (2.1)

According to Inequality (2.1), the processor scheduling cycle zf should always be less than or
equal to min(di, pi) of any Ti that runs on it. By considering min(di, pi) instead of di, we assure

12

2.1 The Time-Triggered Scheduling Approach

that no job backlog is possible, i.e., there is always only one active job of Ti at a time. Recall
that the deadline di can be longer than the period pi for every possible Ti.

In the second situation, however, Jih may only start being executed if it is ready by the time at
which si begins. In such a case, the worst-case release time of Jih will be exactly after si has
begun because the job will have the maximum waiting time to run: a whole cycle zf . Now, if
si = ei holds, the condition expressed in (2.1) must be modified to the following one:

ei ≤ zf ≤ min(di, pi)− ei. (2.2)

As it can be seen, this latter condition yields 2ei ≤ min(di, pi). In accordance with Inequal-
ity (2.2), the processor scheduling cycle zf should always be less than or equal to min(di, pi)−ei

of any Ti assigned to it. Again, considering min(di, pi) instead of di allows assuring that there
is no job backlog.

The conditions in (2.1) and (2.2) express, respectively according to the scheduler implementa-
tion, that the processor Pf must have enough time to execute any Jih before its deadline di in
order that the task Ti can be feasibly scheduled.

2.1.1 The Minimum Possible Slot

Forcing si to be equal to Ti’s execution demand ei allows having only one slot for Ti and
reducing in this way the effect of context switches. In this case, the overhead due to context
switches can simply be considered in ei without additional analysis. However, having only one
slot for Ti might not necessarily be the most efficient way to proceed, because we use at once
too much space in zf instead of distributing Ti’s execution demand over some scheduling cycles
when possible. This is the reason why it might be often necessary to find the minimum possible
value for si.

Let us assume that Ti has to run on Pf which has a scheduling cycle zf . Again, we have to
analyze the two scheduling situations mentioned before in order to determine the length of the
time slot si for Ti. In the first situation, where jobs can start executing at any time within the
slot, we try to find a positive integer κi such that the following holds:

si =
ei

κi

, (2.3)

κi · zf ≤ min(di, pi). (2.4)

Notice that Inequality (2.4) is a more general expression of (2.1). Both si and κi are unknown,
however, κi can be easily calculated as follows in order to get si:

κi =

⌊
min(di, pi)

zf

⌋
. (2.5)

13

2 Testing Feasibility for Real-Time Tasks

Consider the second situation where jobs can only start executing at the beginning of the slot.
Now, we have to find a positive integer number κi such that this time the following conditions
hold:

si =
ei

κi

, (2.6)

κi · zf + si ≤ min(di, pi). (2.7)

Here again, Inequality (2.7) is just a more general expression of (2.2). By replacing Equa-
tion (2.6) in Inequality (2.7), reshaping and equalizing to zero, we obtain a quadratic equation
of κi:

κ2
i · zf − κi ·min(di, pi) + ei = 0. (2.8)

We first solve Equation (2.8) for its roots. Then, if these roots are real numbers, we need to
round up the greatest positive value to obtain κi:

κi =

⌊
ti +

√
t2i − 4zf · ei

2zf

⌋
, (2.9)

where ti represents min(di, pi). Clearly, in the case that none of the roots is a real positive
number, Ti is not going to be feasible on Pf .

2.1.2 Context Switches

By choosing the minimum possible slot for Ti, some more context switches are going to happen
than for the trivial case si = ei. So, we might have sometimes to take the effect of context
switches into account if this is not negligible.

Let us consider the overhead due to a context switch to be denoted by σf on processor Pf , i.e.,
σf is sum of the time necessary to store and restore a process or job on Pf . Inequality (2.7)
must now be modified as follows:

κi · zf + si + (κi + 1) · σf ≤ min(di, pi). (2.10)

Replacing si by ei

κi
in Inequality (2.10), considering ti = min(di, pi) and reshaping, we get:

κ2
i · (zf + σf)− κi · (ti − σf) + ei = 0. (2.11)

Finally, the previous quadratic equation can be solved as previously for κi:

14

2.2 The Event-Triggered Scheduling Approach

κi =

⌊
ti − σf +

√
(ti − σf)2 − 4(zf + σf) · ei

2(zf + σf)

⌋
. (2.12)

2.1.3 Feasibility Test

The great advantage of a time-triggered scheduling is that it is relatively easy to guarantee
its correctness. A task set Tn can be feasibly scheduled on Pf , if an si can be found for
every Ti ∈ Tn so that either the condition of (2.1) or (2.2) holds—according to the scheduler
implementation—and the following inequality also holds true where n is the number of tasks in
Tn:

Sf =
n∑

i=1

si ≤ zf ,

Sf

zf

=

∑n
i=1 si

zf

≤ 1. (2.13)

2.2 The Event-Triggered Scheduling Approach

Another possibility for scheduling real-time tasks is the event-triggered approach. In the event-
triggered approach, jobs interrupt the scheduler, whenever they get ready to run or they finish
executing. This way, every time an interrupt occurs, the scheduler decides which one among
all ready jobs is executed next. The scheduler takes decisions based on the jobs’ priority, so
that the job with the highest priority is the one that is executed first. From an intuitive point of
view, the event-triggered approach is more efficient than the time-driven approach because the
processor cannot idle as long as there are ready jobs to execute.

The concept of priority is not relevant in time-driven schedulings, but it is crucial when the
scheduling is driven by events. If jobs of task Ti present always the same priority along
the schedule, i.e., the priority assignment does not change, we have a so-called fixed-priority
scheduling. On the other hand, we have a dynamic-priority scheduling, when the priority assign-
ment may change throughout the schedule. That is when jobs of a task Ti may assume different
priorities along the schedule. As an example for dynamic-priority scheduling algorithms, we
are going to consider EDF (Earliest Deadline First), whereas we consider a combination of DM
(Deadline Monotonic) and RM (Rate Monotonic) for fixed priorities as explained later.

Although dynamic-priority scheduling algorithms are optimal on uniprocessors (the optimality
on a uniprocessor was proven by Dertouzos for the case of EDF in [Der74]), fixed-priorities are
normally preferred in the real world. A possible reason for this preference is certainly that fixed-
priority scheduling algorithms are easier to implement and to integrate into an operating system.
Another reason is probably that their behavior seems to be more predictable. An interesting

15

2 Testing Feasibility for Real-Time Tasks

comparison between RM and EDF was presented by Buttazzo in [But05]. Buttazzo considered
here characteristics of these algorithms with respect to overload and context switches among
others.

There are also other dynamic-priority algorithms, e.g., the LST algorithm (Least Slack Time
First). The LST algorithm is like EDF optimal on uniprocessors [Liu00]. However, EDF is
unlike LST a job-level fixed-priority algorithm, which makes it more efficient with respect to
context switches. This latter decisive property of EDF is the reason why we chose it for our
analysis on real-time scheduling.

As already mentioned, we chose a combination of DM and RM for analyzing fixed-priority
schedulings. The reason for this choice is that DM is the most efficient fixed-priority algorithm,
i.e., the fixed-priority algorithm that allows a higher processor utilization when di ≤ pi for all
tasks [LW82]. As we have arbitrary deadlines, we believe it is more meaningful to use RM
priorities for tasks with di > pi. So, tasks that are triggered more frequently get higher priority
when their deadlines are longer than their periods. In this way, we combine DM and RM so
that priorities are assigned according to DM for di ≤ pi and according to RM for di > pi. The
result is an algorithm which assigns priorities according to min(di, pi), that is, the task Ti with
the minimum min(di, pi) is the one with the highest priority and so forth.

2.2.1 The EDF Scheduling

The Earliest Deadline First algorithm assigns priorities to individual jobs of a task Ti according
to the jobs’ absolute deadlines. At any point in the schedule, the job with the nearest deadline
has the highest priority. As the priority assigned to a job of Ti may change along the schedule,
EDF is a dynamic-priority scheduling algorithm.

Although exact feasibility tests are already known for arbitrary deadlines, e.g., [BMR90] and
[GRS96], they all present pseudo-polynomial complexity. For the purpose of this thesis, we
prefer, however, a polynomial complexity because of the more predictable and faster running
time.

As stated before, in order to achieve polynomial complexity when testing feasibility for arbi-
trary deadlines under EDF, some accuracy must be sacrificed. Following this principle, some
polynomial-time tests have been already proposed. Among them, we can mention the density
test [SSRB98], [Liu00] and Devi’s test [Dev03].

The density test is with O(n) the less complex polynomial-time test known. On the other hand,
by performing an initial sorting of tasks, Devi proved in [Dev03] that an interesting accuracy
improvement over the density test is also possible. The complexity of Devi’s test becomes
O(n log n) because of sorting tasks at the beginning.

In our case, since the feasibility test should be part of an allocation algorithm, we are normally
interested in keeping the complexity as low as possible. As a consequence, we focus on in-
creasing accuracy of feasibility tests for tasks with arbitrary deadlines under EDF while the

16

2.2 The Event-Triggered Scheduling Approach

complexity remains O(n). We further propose two algorithms, both with complexity O(n),
that outperform the density test while they do not require an initial sorting of tasks.

The Principles

In this section, we discuss the principles on which the proposed feasibility tests are based. For
the sake of clarity, we reproduce at this point some relevant related work. First, let us recall
that an exact feasibility test can be performed as follows in polynomial time, when tasks are
synchronous, scheduled preemptively on a uniprocessor and the deadline di is equal to the
period pi for every task [LL73]:

Un =
n∑

i=1

ei

pi

≤ 1. (2.14)

Here, n is the number of tasks, ei is the worst-case execution time and Un is called processor uti-
lization. For arbitrary deadlines, however, all exact feasibility tests present pseudo-polynomial
complexity. In order to reach polynomial complexity for this case, exactness must be sacrificed.
Based on this idea, Liu in [Liu00] and Stankovic et al. in [SSRB98] propose independently the
density test, which results by replacing pi by min(di, pi) in Inequality (2.14):

δn =
n∑

i=1

ei

min(pi, di)
≤ 1. (2.15)

For the sake of clarity, the following two lemmas restate theorems presented respectively by
George et al. [GRS96] and Devi [Dev03]. Before starting, let us represent by hn(t) the demand
bound function of Tn under EDF, which was defined by Baruah et al. in [BMR90]:

hn(t) =
n∑

i=1

max

(
0,

⌊
t− di

pi

⌋
+ 1

)
· ei. (2.16)

The demand bound function of Equation (2.16) gives the maximum execution requirement of
Tn under EDF at a given point in time t. As a consequence, the task set Tn is going to be
feasible if hn(t) ≤ t holds, for every possible t. That is, for Tn to be feasible, the execution
demand of Tn must always be less than or equal to the available time.

LEMMA 1 If the schedule of a given synchronous task set Tn is not feasible, i.e., a deadline is
missed at tmiss, then tmiss < In holds, where In =

Pn
i=1(pi−min(di,pi))·ui

1−Un
is George’s bound and

ui = ei

pi
[GRS96].

Proof: We know from [LL73] that if a deadline is missed at tmiss in the synchronous case,
there is no idle time previous to tmiss. Further, because a deadline is missed at tmiss, the total

17

2 Testing Feasibility for Real-Time Tasks

execution demand of Tn at tmiss is greater than the available time tmiss, i.e., tmiss < hn(tmiss)
where hn(t) is Tn’s demand bound function under EDF [BMR90]:

tmiss <

n∑
i=1

max

(
0,

⌊
t− di

pi

⌋
+ 1

)
· ei.

Considering min(pi, di) instead of di, we obtain:

tmiss <
n∑

i=1

(⌊
tmiss −min(pi, di)

pi

⌋
+ 1

)
· ei.

Further, removing the floor function, we reach:

tmiss <
n∑

i=1

(
tmiss −min(pi, di)

pi

+ 1

)
· ei.

Reshaping this inequality to obtain tmiss, we get:

tmiss <

∑n
i=1 (pi −min(di, pi)) · ui

1− Un

, (2.17)

where ui = ei

pi
and Un is the total utilization. The right member of Inequality (2.17) is known

as George’s feasibility bound In. As it can be observed, George’s bound is always greater than
the time instant at which a deadline is missed.

LEMMA 2 Let T′
n be a task set of n preemptive, asynchronous, periodic tasks, with arbitrary

relative deadlines, arranged in order of non-decreasing relative deadlines. T′
n is schedulable

using an optimal scheduling algorithm if the following inequality holds for all l for which 1 ≤
l ≤ n [Dev03]:

l∑
i=1

ei

pi

+
1

dl

l∑
i=1

(
pi −min(pi, di)

pi

)
· ei ≤ 1. (2.18)

We do not include the proof of Lemma 2, for which the reader is referred to [Dev03]. The
following lemma is a generalization of the one presented in [MDF08] and demonstrates the
tight relation between Devi’s condition and George’s feasibility bound.

LEMMA 3 Assuming that tasks in the asynchronous T′
n are sorted according to non-decreasing

relative deadlines, Devi’s condition is equivalent to an iterative calculation of George’s feasi-
bility bound for the corresponding synchronous Tn, for which phases of T′

n were simply set to
zero. The task set T′

n is feasible, if George’s bound for Tn’s first l tasks is less than or equal to
dl for every possible l, where 1 ≤ l ≤ n holds.

18

2.2 The Event-Triggered Scheduling Approach

Proof: It is assumed that tasks are sorted according to non-decreasing relative deadlines, so
if i < j holds, di ≤ dj will also hold. Devi’s condition states that T′

n is feasible if the following
inequality holds for every possible l, where 1 ≤ l ≤ n [Dev03]:

l∑
i=1

ei

pi

+
1

dl

l∑
i=1

(
pi −min(pi, di)

pi

)
· ei ≤ 1.

Reordering terms, we get
∑l

i=1

(
pi−min(pi,di)

pi

)
· ei ≤

(
1−

∑l
i=1

ei

pi

)
· dl, and finally:

∑l
i=1 (pi −min(pi, di)) · ui

1− Ul

≤ dl.

Where Ul =
∑l

i=1
ei

pi
and ui = ei

pi
, i.e., the left-hand side of this inequality is George’s bound

Il for the first l tasks of the corresponding synchronous Tn where the initial release times (or
phases) in T′

n are ignored. The lemma follows.

Notice that Lemma 3 shows another way of proving Devi’s condition, i.e., through the iterative
calculation of George’s feasibility bound. The following lemma proves that Devi’s condition
remains valid even if the task set is not sorted according to non-decreasing relative deadlines.

LEMMA 4 Given a task set T′
n of n preemptive, asynchronous, periodic tasks, with arbitrary

relative deadlines. T′
n is feasible under EDF if the following inequality holds for all l for which

1 ≤ l ≤ n:

l∑
i=1

ei

pi

+
1

dl

l∑
i=1

(
pi −min(pi, di)

pi

)
· ei ≤ 1. (2.19)

Proof: Notice that this lemma assumes no particular order for the tasks in T′
n. Let us first

consider what happens for l = 1. If Inequality (2.19) holds, Lemma 2 guarantees that the task
subset of only T1 is feasible.

Suppose that Inequality (2.19) holds for l = 2. It is clear that the task subset of T1 and T2 is
feasible if d1 ≤ d2 because of Lemma 2. On the other hand, we know from Lemma 3 that Devi’s
condition is equal to the gradual calculation of George’s feasibility bound for the corresponding
synchronous Tn. So, if Inequality (2.19) holds for l = 2, we have that George’s bound I2 for
T1 and T2 is less than or equal to d2. Additionally, Lemma 1 guarantees that tmiss < d2. As a
consequence, if d1 > d2 holds, there are no deadline in (0, d2) that could be missed and the task
subset of T1 and T2 is also feasible in this case.

For a third task, if now Inequality (2.19) holds, George’s bound I3 for T1, T2 and T3 is less
than or equal to d3, what implies tmiss < d3. There is no deadline of T3 in (0, d3) that could
be missed. Additionally, whatever value d3 may have, the task subset of T1 and T2 alone was
proven feasible in the previous step. Consequently, the task subset of T1, T2 and T3 is also
feasible regardless of the order of tasks.

19

2 Testing Feasibility for Real-Time Tasks

Proceeding as previously, let us assume that Inequality (2.19) holds for 1 ≤ l ≤ n−1, George’s
bound Il ≤ dl holds for 1 ≤ l ≤ n − 1. If Inequality (2.19) holds for l = n too, In ≤ dn also
holds. In accordance with Lemma 1, if a deadline miss occurs, tmiss < dn holds. Further, Tn is
feasible because the first n − 1 tasks were proven to be feasible in the previous steps and there
are no deadlines of Tn in (0, dn) that could be missed. The lemma follows.

As it can be noticed, Lemma 4 allows reducing the complexity of Devi’s test from O(n log n)
to O(n). However, Lemma 4 results in a feasibility test that is extremely pessimistic as it is
shown later.

In general, an asynchronous task set T′
n is feasible if its corresponding synchronous task set Tn

is feasible where the initial release times in T′
n are not considered [SSRB98]. As a consequence,

the remainder of this section concentrates on synchronous task sets.

The following lemma is about finding the maximum loading factor for a group of two tasks
scheduled under EDF. As already mentioned, the loading factor is defined as the total execution
demand in a given time interval over the length of this interval. Further, the maximum loading
factor is the upper bound on the loading factor. Two tasks are feasible together if their maximum
loading factor is less than or equal to 1.

LEMMA 5 Let Txy be a subset of two arbitrary tasks Tx and Ty from Tn scheduled under EDF,
where ty = min(dy, py), tx = min(dx, px) and ty ≤ tx hold. The loading factor ρxy(t) of the

subset Txy is bounded above by ρ̂xy = max

(
ey

ty
, exy

tx
,

(px−tx)· ex
px

+(py−ty)· ey
py

tyk
+ ex

px
+ ey

py

)
, where

exy = ex + k · ey, tyk = min(dy, py) + k · py and k is given by b tx−ty
py

c+ 1.

Proof: The loading factor of Txy is defined as the ratio ρxy(t) = hxy(t)

t
, i.e., the subset’s

execution demand in the interval (0, t] over the interval’s length t:

ρxy(t) =
max

(
0, b t−dx

px
c+ 1

)
· ex + max

(
0, b t−dy

py
c+ 1

)
· ey

t
.

By considering ty = min(dy, py) and tx = min(dx, px), we can get rid of the max function:

ρxy(t) ≤

(
b t−tx

px
c+ 1

)
· ex +

(
b t−ty

py
c+ 1

)
· ey

t
. (2.20)

As ty ≤ tx holds, the right member of Inequality (2.20) is zero for t < ty. So, the first interval
that needs to be checked is (0, ty] in order to find an upper bound for ρxy(t). Additionally,
between ty and tx, there can only be jobs of Ty. It is clear that Ty’s loading factor cannot exceed

ey

min(dy ,py)
, so deadlines of Ty in (ty, tx) do not need to be checked. The second interval that

needs to be tested is clearly (0, tx]:

20

2.2 The Event-Triggered Scheduling Approach

ρxy(tx) ≤
ex +

(
b tx−ty

py
c+ 1

)
· ey

tx
.

The numerator in the previous expression is what we denominated exy in this lemma. Now,
in order to find an upper bound on ρxy(t), it is required to calculate Inequality (2.20) for all
possible time intervals. However, we can approximate hxy(t) in Inequality (2.20):

ρxy(t) ≤

(
t−tx
px

+ 1
)
· ex +

(
t−ty
py

+ 1
)
· ey

t
,

≤
(px − tx) · ex

px
+ (py − ty) · ey

py

t
+

ex

px

+
ey

py

. (2.21)

From Inequality (2.21), it can be concluded that our approximation of ρxy(t) increases as the
interval (0, t] decreases. As we have already analyzed intervals up to tx, we can choose the
shortest interval greater than tx without committing any error. This shortest interval greater
than tx is given by the next deadline of Ty after tx—considering ty = min(dy, py) instead of dy:
tyk = ty + k · py, where k = b tx−ty

py
c+ 1. Although there may be jobs of Tx between tx and tyk,

the loading factor for these Tx’s jobs cannot exceed the loading factor at tx = min(dx, px).

Finally, the greatest of the three ey

ty
, exy

tx
and

(px−tx)· ex
px

+(py−ty)· ey
py

tyk
+ ex

px
+ ey

py
is going to determine

the upper bound ρ̂xy for the loading factor of Txy and the lemma follows.

Further, the next two lemmas give upper bounds for the loading factor of several synchronous
tasks scheduled under EDF. We will see later that calculating the upper bound on the loading
factor of several tasks results in more accurate feasibility tests.

LEMMA 6 Let Tl−1 be the subset of the first l − 1 tasks from Tn scheduled under EDF,
for which we know the maximum loading factor ρ̂l−1. If task Tl, also from Tn, is added
to Tl−1, the loading factor of the resulting subset Tl is going to be bounded above by

max

(
ρ̂l−1,

Pl
i=1(pi−min(di,pi))·

ei
pi

min(dl,pl)
+

∑l
i=1

ei

pi

)
.

Proof: The loading factor of Tl−1 plus Tl is defined as the ratio ρl(t) = hl(t)
t

.

ρl(t) =

∑l
i=1 max

(
0, b t−di

pi
c+ 1

)
· ei

t
,

≤

∑l
i=1

(
t−min(di,pi)

pi
+ 1

)
· ei

t
.

Finally, we can reshape the previous expression to obtain:

21

2 Testing Feasibility for Real-Time Tasks

ρl(t) ≤
∑l

i=1 (pi −min(di, pi)) · ei

pi

t
+

l∑
i=1

ei

pi

. (2.22)

If we choose t in Inequality (2.22) to be the least possible, we can get an approximation for
the loading factor of Tl. As ρ̂l−1 is the maximum loading factor of Tl−1, the loading factor for
intervals previous to min(dl, pl) is already considered in ρ̂l−1. The value of t in Inequality (2.22)
can consequently be set to min(dl, pl). Further, the upper bound on Tl’s loading factor is the

maximum of the two ρ̂l−1 and
Pl

i=1(pi−min(di,pi))·
ei
pi

min(dl,pl)
+

∑l
i=1

el

pl
.

LEMMA 7 Let Tl−1 be the subset of the first l−1 tasks from Tn scheduled under EDF, for which
we know the maximum loading factor ρ̂sup

l−1 and that min(di, pi) ≥ tsup holds for all 1 ≤ i ≤ l−1.
If task Tl, also from Tn, is added to Tl−1, where tsup ≥ min(dl, pl), the loading factor of the

resulting subset is going to be bounded above by ρ̂sup
l−1 + max

(
k·el

tsup
,

(pl−min(dl,pl))·
el
pl

tlk
+ el

pl

)
for

all t ≥ tsup, where k = b tsup−min(dl,pl)

pl
c+ 1 and tlk = min(dl, pl) + k · pl.

Proof: The loading factor of Tl−1 is at maximum ρ̂sup
l−1. That is, ρl−1(t) = hl−1(t)

t
≤ ρ̂sup

l−1

holds for all possible t, what yields hl−1(t) ≤ t · ρ̂sup
l−1. Hence, we can approximate the loading

factor of Tl−1 plus Tl as shown below:

ρl(t) ≤ ρ̂sup
l−1 +

max
(
0, b t−dl

pl
c+ 1

)
· el

t
,

≤ ρ̂sup
l−1 +

(
b t−min(dl,pl)

pl
c+ 1

)
· el

t
. (2.23)

As we are interested in finding an upper bound for ρl(t) from tsup onwards. The first interval
for which we need to calculate Inequality (2.23) is (0, tsup]. That is:

ρl(tsup) ≤ ρ̂sup
l−1 +

(
b tsup−min(dl,pl)

pl
c+ 1

)
· el

tsup

.

Where b tsup−min(dl,pl)

pl
c + 1 was denoted by k in this lemma. Further, by getting rid of the floor

function in Inequality (2.23) and reordering, we reach:

ρl(t) ≤ ρ̂sup
l−1 +

(pl −min(dl, pl)) · el

pl

t
+

el

pl

. (2.24)

From Inequality (2.24), we know that we need to choose the shortest possible t to get the
upper bound on ρl(t). However, we do not need to calculate Inequality (2.24) until tlk =

22

2.2 The Event-Triggered Scheduling Approach

min(dl, pl) + k · pl for k = b tsup−min(dl,pl)

pl
c + 1. This is because the loading factor for jobs in

(tsup, tlk) cannot exceed the one at tsup. Thus, the upper limit for ρl(t) and t ≥ tsup is given by

ρ̂sup
l−1 + max

(
k·el

tsup
,

(pl−min(dl,pl))·
el
pl

tlk
+ el

pl

)
.

Notice that the order of tasks does neither affect the validity of Lemma 6 nor of Lemma 7, so
that these lemmas can be used to design O(n) feasibility tests for EDF. The following section
shows how the different lemmas can be combined for this purpose.

Feasibility Tests for EDF

In this section, we explain two better linear-time feasibility tests for EDF based on the principles
already discussed. Both algorithms calculate the maximum loading factor ρ̂n of the whole task
set Tn. So that if ρ̂n ≤ 1 holds, Tn is feasible. In what follows, we assume that there is already
a set of l − 1 tasks running on processor Pf , where 1 ≤ l ≤ n, and that a new task Tl should be
tested for feasibility on Pf . Clearly, the complexity in this case is only O(1) because only the
new task Tl must be tested.

Figure 2.2 presents the flow chart of the first algorithm we propose, which will be called
EDFTest1. In principle, EDFTest1 applies Lemma 5 to compute the loading factor of two
tasks together. If one task was accepted, EDFTest1 keeps the task parameters until the next
task arrives. This way, the loading factor of the previous and the current task can be calculated.
EDFTest1 uses the boolean variable called previous task to indicate that the previous task pa-
rameters are available. When a new task Tl arrives, EDFTest1 checks up whether previous task
parameters are available at the moment. If previous task is true, i.e., the previous task param-
eters are available, EDFTest1 applies Lemma 5 to calculate the maximum loading factor ρ̂xy

of previous accepted and the current task. If the maximum loading factor of all other accepted
tasks denoted by ρ̂sum plus ρ̂xy is not greater than one, the new task Tl is accepted, ρ̂sum is set
to ρ̂sum + ρ̂xy and previous task is set to false. On the other hand, if previous task is false, this
algorithm uses the density condition, i.e., Inequality (2.15), to get the maximum loading factor

el

min(dl,pl)
of the current task Tl alone. If further ρ̂sum + el

min(dl,pl)
≤ 1 holds, Tl is accepted. In

this case, Tl’s parameters are stored for later calculations, previous task is set to true, but ρ̂sum

is not updated until another task arrives.

The flow chart for our second algorithm is shown in Figure 2.3. This latter algorithm is called
EDFTest2 and applies Lemma 6 and Lemma 7 to calculate the maximum loading factor ρ̂n of
Tn. A particularity of this latter algorithm is that it divides the loading factor into three. In
this way, ρ̂inf is the upper bound on the loading factor between tinf and tsup for tinf ≤ tsup,
whereas ρ̂sup is the maximum loading factor from tsup onwards. The loading factor for intervals
less than tinf is zero, because tinf ≤ min(dl, pl) holds for 1 ≤ l ≤ n. So, the maximum
of the two ρ̂inf and ρ̂sup is the maximum loading factor of tasks. Before we start discussing
this algorithm, let us denote by ρ̃sup, ρ̃inf , t̃sup and t̃inf temporal variables for the previously
mentioned parameters. These variables are used to store temporal calculations of ρ̂sup, ρ̂inf , tsup

and tinf that are then discarded if the new task is not accepted.

23

2 Testing Feasibility for Real-Time Tasks

Figure 2.2: Algorithm EDFTest1

For an arriving Tl, if min(dl, pl) > tsup holds, Lemma 6 is applied to obtain ρ̂l and considering
all previously accepted tasks. In this case, ρ̂l−1 from Lemma 6 is set to the current value of
ρ̂sup. Because min(dl, pl) > tsup holds, Tl has only influence on ρ̂sup, but not on ρ̂inf . For the
moment, the maximum value of the two ρ̂l and ρ̂sup is stored in the temporal variable ρ̃sup.

On the other hand, if min(dl, pl) < tinf holds, i.e., min(dl, pl) is the shortest until now, Tl

influences both ρ̂sup and ρ̂inf . Consequently, Lemma 7 can be applied to obtain ρ̂inf because
min(dl, pl) < tinf holds and ρ̂inf is the maximum loading factor between tinf and tsup. In this
case, ρ̂sup

l−1 from Lemma 7 is set to the current value of ρ̂inf and ρ̂inf is temporarily stored in
ρ̃inf . Further, ρ̂sup can be calculated using Lemma 7 because min(dl, pl) < tinf ≤ tsup holds
and ρ̂sup is the maximum loading factor from tsup on. Now, ρ̂sup

l−1 from Lemma 7 is set to the
current value of ρ̂sup instead and ρ̂sup is stored in the temporal variable ρ̃sup. Further, t̃inf is
set to min(dl, pl), which is the shortest up to the moment, and ρ̃inf must be set to maximum
between ρ̃inf and the maximum loading factor el

min(dl,pl)
of the current task Tl alone.

24

2.2 The Event-Triggered Scheduling Approach

Figure 2.3: Algorithm EDFTest2

25

2 Testing Feasibility for Real-Time Tasks

In case that min(dl, pl) is between tinf and tsup, t̃sup is going to be set to min(dl, pl). So,
ρ̂sup is the only one which must be recalculated. For this purpose, Lemma 6 is applied to get
ρ̂l considering ρ̂l−1 = ρ̂inf and only the tasks for which min(di, pi) ≤ tsup holds. Further,
Lemma 7 is used in order to find ρ̂sup considering for this ρ̂sup

l−1 = ρ̂sup and storing it temporarily
in ρ̃sup. As mentioned, t̃sup is set to min(dl, pl) and ρ̃sup must be set to the maximum between
ρ̂l and ρ̃sup.

Now, if the maximum loading factor of all other accepted tasks denoted by ρ̂sum plus the max-
imum of the two ρ̃sup and ρ̃inf is not greater than 1, the new task Tl is accepted and the values
of temporal variables can be adopted. The computation of ρ̂sup and ρ̂inf can be performed in
the proposed way for all tasks. However, for most cases, it results better to calculate them for
smaller task groups of w tasks each. When ρ̂sup and ρ̂inf have been calculated for w tasks,
the maximum between these two is accumulated in ρ̂sum. All variables with exception of ρ̂sum

must be initialized at this point in order to start calculating ρ̂sup and ρ̂inf for the next group of
w tasks. The variable w can be set to any arbitrary integer value in 1 ≤ w ≤ n. The technique
used in EDFTest2 can further be extended as shown in [MCF10b] to improve the accuracy of
the resulting algorithm (i.e., its capability of detecting schedulable task sets).

Some Experimental Results

In this section, we present and evaluate some experiments comparing the proposed algorithms
against the known feasibility tests of the same complexity O(n). Hence, we compare the two
new algorithms with the density test and with Devi’s test according to Lemma 4, i.e., Devi’s test
without initial sorting of tasks. For EDFTest2, we use in this section w = 5, i.e., we compute
the maximum loading factor for groups of 5 tasks each. Additionally, we include Baruah’s
pseudo-polynomial-time exact feasibility test from [BMR90] denoted by Baruah’s PPT in this
comparison.

The mentioned algorithms are contrasted with respect to their accuracy versus utilization for dif-
ferent numbers of tasks per task set. In order to achieve a meaningful comparison, random task
sets were uniformly generated for different processor utilizations as recommended in [BB04a]
and [BB05]—UUniFast was used to generate a set of tasks utilizations ui.

For each of the presented curves, test data was obtained as follows: Once generated a set of task
utilizations ui as mentioned above, we created periods pi also in a random way with uniform
distribution. Consequently, we got the worst-case execution times by ei = ui · pi. The rela-
tive deadlines di were uniformly chosen from the range [ei, pi]. Additionally, we sampled the
utilization axis at 24 points, for which 1000 different task sets were generated each time.

Figures 2.4 to 2.6 present schedulability curves for 5, 10 and 100 tasks per task set. Remember
that the Devi’s test in this curves is the one without initial sorting. For tens of tasks Figure 2.4
and 2.5, the proposed algorithms reach around 20% more accepted task sets than the density
test in the utilization interval (30%, 70%). As the number of tasks grows, the performance of
all polynomial-time algorithms, the proposed and the known ones, decays rapidly. Where for
10 tasks the polynomial-time algorithms detect feasible task sets up to 90% utilization, they are

26

2.2 The Event-Triggered Scheduling Approach

0 20 40 60 80 100
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e
ta

sk
 se

ts

EDFTest2
EDFTest1
Devi’s test (unsorted)
density test
Baruah’s PPT

Figure 2.4: Schedulability vs. utilization for 5 tasks

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e
ta

sk
 se

ts

EDFTest2
EDFTest1
Devi’s test (unsorted)
density test
Baruah’s PPT

Figure 2.5: Schedulability vs. utilization for 10 tasks

27

2 Testing Feasibility for Real-Time Tasks

0 10 20 30 40 50
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e
ta

sk
 se

ts

EDFTest2
EDFTest1
Devi’s test (unsorted)
density test
Baruah’s PPT

Figure 2.6: Schedulability vs. utilization for 100 tasks

unable to find schedulable task sets for a utilization over 50% and 100 tasks per task set. For
100 tasks, the performance improvement over the density test goes down to around 10% in the
utilization range (15%, 35%). The algorithm EDFTest2 is always around 5% or 10% better than
EDFTest1. The performance of EDFTest1 and EDFTest2 with respect to the exact algorithm
can be improved as discussed in [MCF10b].

2.2.2 The DM/RM Scheduling

The combination of Deadline Monotonic (DM) and Rate Monotonic (RM) that is used assigns
priorities according to min(di, pi). A task Ti receives a higher priority than another task Tj if
min(di, pi) < min(dj, pj) holds. For this, DM is used to assign priorities when di ≤ pi holds
whereas RM is used to assign priorities when di > pi holds.

The DM algorithm assigns priorities according to tasks’ relative deadlines. That is, all jobs of
the task with the shortest relative deadline are going to have the highest priority throughout the
schedule and so on. Under the RM algorithm, priorities are given to tasks according to their rate
(the inverse of the period). The task with the highest rate is the one with the highest priority and
so forth. Notice that the DM scheduling reduces to RM when deadlines are equal to periods for
all tasks. Priorities assigned like this do not change along the schedule, so we talk about fixed
priorities.

An exact feasibility test with pseudo-polynomial complexity is also known for arbitrary dead-
lines and fixed priorities, i.e., [Leh90]. However, as stated previously, we are interested in

28

2.2 The Event-Triggered Scheduling Approach

polynomial complexity because of the more predictable and faster running time. To reach poly-
nomial complexity when testing feasibility for arbitrary deadlines under fixed priorities, some
accuracy gets lost. Analogously to EDF, it is possible to come up with algorithms of complexity
O(n) and O(n log n) too.

Here again, we are normally interested in keeping the complexity as low as possible because
the feasibility test is going to be part of an allocation algorithm. As a consequence, we focus
on increasing accuracy for O(n) feasibility tests and tasks with arbitrary deadlines under the
suggested DM/RM scheduling. For this purpose, we extend the concepts presented for EDF in
the previous section so that they can be applied for the DM/RM scheduling as well.

The Principles

In [LL73], Liu and Layland also gave a utilization upper bound for RM schedulings and dead-
lines equal to periods, which has the following expression:

URM(n) = n · (21/n − 1), (2.25)

where n is the number of tasks. So, if di = pi holds for all tasks and the total utilization is not
greater than the bound of Equation (2.25), a task set scheduled under Rate Monotonic is going
to be feasible. Unlike Equation (2.14) for EDF, this is a sufficient but not necessary test for
the case di = pi and Rate Monotonic. A better utilization upper bound for the given case was
presented in [Liu00, BBB01], which additionally does not depend on the number of tasks as the
previous one:

n∏
i=1

(
1 +

ei

pi

)
≤ 2. (2.26)

Kuo and Mok presented another utilization bound for di = pi and RM schedulings [KM91],
however, this latter bound needs to sort tasks in order to exploit the higher utilization that gets
possible for harmonic periods. As any sorting yields a complexity of at least O(n log n), this
bound of Kuo and Mok is less interesting for the purpose of this thesis. In [BLOS95], Burchard
et al. proposed a better utilization bound also for di = pi and RM that quantifies how close
tasks are to having harmonic periods and does not require any sorting. For arbitrary deadlines,
Lehoczky et al. proposed in [Leh90, LS86] a utilization bound that does not only depend on the
number of tasks but also on the ratio di

pi
. Lehoczky et al. assumed this ratio to be same for all Ti.

On the other hand, we can proceed as for EDF and come up with a sort of density test for the
DM/RM algorithm, for example, using the bound of Inequality (2.26):

n∏
i=1

(
1 +

ei

min(di, pi)

)
≤ 2. (2.27)

29

2 Testing Feasibility for Real-Time Tasks

The validity of latter test follows immediately from the validity of Inequality (2.26) and needs no
further explanation. In the same manner, it is also possible to extend the Liu and Layland bound
(i.e., Equation (2.25)), but Inequality (2.27) results in a less pessimistic test. Although we do not
go deeper into details, experimental results with a large number of synthetic tasks have shown
that the test of Inequality (2.27) is even less pessimistic than Lehoczky’s utilization bound
[Leh90, LS86] and than Burchard’s bound [BLOS95]. So Inequality (2.27) is the best possible
linear-time feasibility test for the DM/RM policy, which we can obtain based on techniques
from the literature.

The following lemma presents a new polynomial-time test for the DM algorithm, which can
also be applied without changes in the context of the DM/RM policy. The presented test is
based on calculating the maximum loading factor for each individual task Ti. If the sum of
all maximum loading factors is less than or equal to unity, the task set is feasible. First, let us
denote by hn(t) the demand bound function of Tn under whichever fixed-priority scheduling
(DM, RM, DM/RM, etc.) [Leh90]:

hn(t) =
n∑

i=1

⌈
t

pi

⌉
· ei. (2.28)

The demand bound function of Equation (2.28) gives the maximum execution requirement of
Tn under fixed priorities at a given point in time t. The task set Tn is going to be feasible under
fixed priorities if hn(t) ≤ t holds for every possible t, where t can be any deadline of the tasks
in Tn. In other words, for Tn to be feasible, the execution demand of Tn must always be less
than or equal to the available time just as in the case of EDF.

LEMMA 8 Let Tn be a task set of n preemptive, synchronous, periodic tasks, with arbitrary
relative deadlines. Tn is schedulable under Deadline Monotonic priorities if the following
inequality holds:

n∑
i=1

max

(
ei

min(di, pi)
, 2

ei

pi

)
≤ 1. (2.29)

Proof: The loading factor is given by the execution demand over the available time. So, it
is clear that Tn is going to be feasible, if the loading factor is not greater than 1 throughout its
schedule. Further, if ρ̂n is Tn’s maximum loading factor, i.e., the upper bound for Tn’s loading
factor, Tn is going to feasible if ρ̂n ≤ 1 holds.

In order to obtain ρ̂n, we proceed calculating an upper bound on the loading factor of individual
tasks. With this purpose, let us consider a single task Ti from Tn. It is clear that the upper
bound on Ti’s loading factor is given by ei

min(di,pi)
. Furthermore, if ei

min(di,pi)
≤ 1 holds, Ti alone

will be feasible/schedulable.

However, Ti is scheduled together with other tasks under DM; it will be preempted by higher
priority tasks and it will preempt lower priority tasks. So, some more analysis is required to
find an upper bound on Ti’s loading factor considering the influence of concurrent tasks.

30

2.2 The Event-Triggered Scheduling Approach

Ti’s execution demand under DM is given by d t
pi
e · ei [Leh90]. So that Ti’s loading factor will

be given by: (d t
pi
e · ei)/t. In order to obtain an upper bound on this expression, we remove the

ceiling function and reorder terms:

d t
pi
e · ei

t
≤

(t
pi

+ 1) · ei

t
,

≤ ei

t
+

ei

pi

. (2.30)

From Inequality (2.30), it can be concluded Ti’s loading factor gets maximum as t decreases
to the minimum possible. Since we assume that the synchronous scheduling of Tn begins at
t = 0, there can only be deadlines that are less than di in the time interval (0, di). These shorter
deadlines belong to higher-priority tasks, which cannot be preempted by Ti. As a consequence,
Ti’s loading factor does not need to be calculated for time intervals that are less than di. Further-
more, as we have already discussed, the maximum loading factor due to Ti at t = di is clearly
given by ei

min(di,pi)
.

On the other hand, tasks with longer deadlines than Ti will be preempted by this latter. From
the point of view of lower-priority tasks, Ti’s jobs are going to start running as soon as they get
ready. Consequently, we need to calculate Inequality (2.30) at t = pi where the next Ti’s job
gets ready, which results in 2 ei

pi
. Hence, the upper bound on Ti’s loading factor is given by the

maximum value between ei

min(di,pi)
and 2 ei

pi
. Finally, if the sum of all maximum loading factors

for every Ti is not greater than one, Tn is going to be feasible and the lemma follows.

The algorithm of Lemma 8 can be improved as shown in [MCF10a]. Now, if we use the DM/RM
policy, Lemma 8 is still valid. For this reason and because we focus on DM/RM, we referred to
the test of Lemma 8 as DM/RMTest1 in the remainder of this thesis.

For fixed-priority schedulings and arbitrary deadlines, Lehoczky showed in [Leh90] that the
response time of the first job of a task Tl, scheduled synchronously with all higher-priority
tasks, is not necessarily the maximum response time for Tl. In order to test Tl’s feasibility
in this case, the response time of all Tl’s jobs within its first busy period must be calculated.
Tl’s first busy period is the time interval from the synchronous release together with all higher
priority tasks to the time instant at which all previously released jobs finish executing.

Considering that tasks in Tn are sorted according to non-increasing priorities, so that if i < j
holds, Ti has priority higher than or equal to Tj . The busy period for Tl can be found in the
following way [Leh90]:

t =
l∑

i=1

⌈
t

pi

⌉
· ei. (2.31)

Equation (2.31) can be solved iteratively starting from t(1) =
∑l

i=1 ei and until t(k+1) = t(k) for
some k ≥ 1. This t(k) is the upper bound of Tl’s busy period. The number of steps for solving
Equation (2.31) is finite if the utilization is not greater than 100% [Leh90].

31

2 Testing Feasibility for Real-Time Tasks

In [FB05a], Fisher and Baruah proposed an approximation of Lehoczky’s exact test. This ap-
proximation has polynomial complexity and is based on the approximation techniques used by
Albers and Slomka in [AS04] for the case of EDF.

Based on the Fisher and Baruah’s work, it is possible to propose an O(n log n) sufficient but not
necessary feasibility test for fixed priorities and arbitrary deadlines. This test is the analogous
to Devi’s test for EDF and is presented by the following lemma.

LEMMA 9 Let T′
n be a task set of n preemptive, asynchronous, periodic tasks, with arbitrary

relative deadlines, arranged in order of non-increasing priorities. T′
n is schedulable using

any fixed-priority scheduling algorithm if the following inequality holds for all l for which
1 ≤ l ≤ n:

l∑
i=1

ei

pi

+

∑l
i=1 ei

dl

≤ 1. (2.32)

Proof: It is assumed that tasks are sorted according to non-increasing priorities, so if i < j
holds, Ti’s priority is higher than or equal to the priority of Tj . As T′

n is asynchronous and
because we cannot find the worst-case release of tasks in polynomial time, we assume that a
synchronous release happens at time t = 0. In this way, we just reduce the T′

n to a synchronous
task set Tn for which the initial release times of tasks are ignored. Further, as already known,
if Tn can be shown to be feasible, T′

n is also feasible.

In order to guarantee feasibility for arbitrary deadlines and fixed priorities, we know from
Lehoczky’s exact feasibility test [Leh90] that all jobs of a task Tl, where 1 ≤ l ≤ n, must be
verified within the task’s first busy period starting from the synchronous release onwards. We
can get the upper bound of a Tl’s busy period by solving Equation (2.31) as stated in [Leh90].
Let us further denote by t̂l the upper bound of Tl’s busy period. By definition, the following
equation obtained replacing t by t̂l in Equation (2.31) must hold:

t̂l =
l∑

i=1

⌈
t̂l
pi

⌉
· ei.

However, instead of solving this equation in an exact manner, we just consider the following
approximation and remove the ceiling function:

t̂l ≤
l∑

i=1

(
t̂l
pi

+ 1

)
· ei.

Reshaping the previous inequality and considering that Ul =
∑l

i=1
ei

pi
is the utilization due to

the first l higher-priority tasks including Tl, we get an estimation of t̂l:

t̂l ≤
∑l

i=1 ei

1− Ul

. (2.33)

32

2.2 The Event-Triggered Scheduling Approach

Inequality (2.33) gives an approximated upper bound for Tl’s busy period. If we now calculate
the response times of all Tl’s jobs up to the bound given by Inequality (2.33), we will have an
exact feasibility test. The only difference to Lehoczky’s test is that we might have to test more
jobs of Tl because of overestimating t̂l.

Furthermore, because Tl’s busy period t̂l is the time instant at which all previously released
jobs—belonging to the first l higher-priority tasks including Tl—finish executing, we can con-
clude that Tn and consequently T′

n are feasible if t̂l ≤ dl holds for 1 ≤ l ≤ n. This latter is not
an exact feasibility test anymore, because it does not verify all Tl’s jobs within its busy period.
On the contrary, this test concludes that Tl is feasible only if all jobs in Tl’s busy period, all Tl’s
jobs and all higher-priority jobs, finish executing before the deadline of the first Tl’s job. Instead
of calculating t̂l in an exact way, we can use the approximation given by Inequality (2.33) as
before. Finally, we have that the task set is feasible if the following holds for all 1 ≤ l ≤ n:

∑l
i=1 ei

1− Ul

≤ dl.

Recalling that Ul =
∑l

i=1
ei

pi
and rearranging terms, we obtain the following expression:

l∑
i=1

ei

pi

+

∑l
i=1 ei

dl

≤ 1.

Hence, this lemma holds true.

The test of Lemma 9 is a sufficient but not necessary test, which is the analogous for fixed
priorities to Devi’s test for EDF. Notice at this point that the complexity of this test is also
O(n log n), because tasks in T′

n must be sorted according to non-increasing priorities (e.g.,
non-decreasing relative deadlines for DM). For the case of the DM policy, the following lemma
proves that the test of Lemma 9 remains valid even if the task set is not sorted according to
non-decreasing relative deadlines.

LEMMA 10 Given a task set T′
n of n preemptive, asynchronous, periodic tasks, with arbitrary

relative deadlines. T′
n is feasible under the Deadline Monotonic algorithm if the following

inequality holds for all l for which 1 ≤ l ≤ n:

l∑
i=1

ei

pi

+

∑l
i=1 ei

dl

≤ 1. (2.34)

Proof: Notice that this lemma assumes no particular order for the tasks in T′
n. Let us first

consider what happens for l = 1. If Inequality (2.34) holds, Lemma 9 guarantees that the task
subset of only T1 is feasible.

Suppose that Inequality (2.34) holds for l = 2. It is clear that the task subset of T1 and T2

is feasible if d1 ≤ d2 because of Lemma 9. On the other hand, if d1 > d2 holds, we know

33

2 Testing Feasibility for Real-Time Tasks

from Lemma 9 that t̂2, the first busy period for synchronous T1 and T2, is less than d2. As a
consequence, T1 and T2 are feasible under DM in this case too.

Considering a third task, if Inequality (2.34) holds, the first busy period for the synchronous
T1, T2 and T3 is less than or equal to d3. That is t̂3 ≤ d3 holds. This implies further that T3

is feasible independently of the value of d3, because all jobs released previous to t = d3 finish
executing before d3. Additionally, whatever value d3 may have, the tasks T1 and T2 were proven
feasible in the previous steps. For example, if d3 were the shortest deadline (T3 had the highest
priority), the fact that t̂3 ≤ d3 holds guarantees the feasibility of T1 and T2, which have longer
deadlines. Consequently, the task subset of T1, T2 and T3 is also feasible regardless of the order
of tasks.

Proceeding as previously, let us assume that Inequality (2.34) holds for 1 ≤ l ≤ n − 1, so Tl’s
first synchronous busy period t̂l is less than or equal to dl for 1 ≤ l ≤ n−1. If Inequality (2.34)
holds for l = n too, t̂n ≤ dn also holds. This further implies that Tn is feasible independently
of the value of dn, because all synchronous jobs released previous to t = dn finish executing
before dn. Additionally, whatever value dn may have, the task subset of the first n − 1 tasks
was proven feasible in the previous steps. Furthermore, even if dn were the shortest deadline
in T′

n (Tn has the highest priority among all tasks), the fact that t̂n ≤ dn holds guarantees the
feasibility of the first n − 1 tasks, which have all longer deadlines than dn. As a result, T′

n is
feasible independently of the order of tasks. Hence, the lemma follows.

Lemma 10 allows us to reduce the complexity of Lemma 9’s test from O(n log n) to O(n) in
case DM is used for assigning priorities. It is easy to see that Lemma 10 is also valid for the
DM/RM policy.

In general, an asynchronous task set T′
n is always feasible if its corresponding synchronous task

set Tn is feasible (where phases of T′
n are not considered) [SSRB98]. As a consequence, we

focus on synchronous task sets in the remainder of this section.

The following lemma is about finding the maximum loading factor for a group of two tasks
scheduled under the DM/RM algorithm discussed previously. That is, priorities are assigned
according to min(di, pi), so that the Ti with the shortest min(di, pi) is the one with the highest
priority and so forth. The next lemma is the analogous to Lemma 5 for EDF.

LEMMA 11 Let Txy be a subset of two arbitrary tasks Tx and Ty from Tn scheduled under the
DM/RM algorithm, for which ty = min(dy, py), tx = min(dx, px) and ty ≤ tx hold. The loading

factor ρxy(t) of the subset Txy is bounded above by ρ̂xy = max
(

ey

ty
, 2 ey

py
, exy

tx
, ex+ey

t′x
+ ex

px
+ ey

py

)
,

where exy = ex + d tx
py
e · ey and t′x is given by min

(
px, ty + (b tx−ty

py
c+ 1) · py

)
.

Proof: We know from Lemma 8 that an upper bound on Ty’s loading factor is given by

ρ̂y = max
(

ey

ty
, 2 ey

py

)
, where ty is equal to min(dy, py). Because ty ≤ tx holds, Tx cannot

preempt Ty under the DM/RM algorithm. So, Txy’s loading factor is at maximum equal to ρ̂y

for t < tx.

34

2.2 The Event-Triggered Scheduling Approach

For greater time intervals, we use the definition of loading factor as the ratio ρxy(t) = hxy(t)

t
,

i.e., the subset’s execution demand in the interval (0, t] over the interval length t:

ρxy(t) =
d t

px
e · ex + d t

py
e · ey

t
. (2.35)

Calculating Equation (2.35) for tx = min(dx, px), we get the following if dx < px holds:

ρxy(tx) =
ex + d tx

py
e · ey

tx
.

The numerator of the previous expression is what we denoted by exy in this lemma. Now, in
order to find an upper bound on ρxy(t), we would need to calculate Equation (2.35) for all
possible time intervals. However, we can approximate hxy(t) in Equation (2.35) as follows:

ρxy(t) ≤

(
t

px
+ 1

)
· ex +

(
t

py
+ 1

)
· ey

t
,

≤ ex + ey

t
+

ex

px

+
ey

py

. (2.36)

From Inequality (2.36), we can conclude that our estimation of ρxy(t) increases as the interval
(0, t] decreases. As we have already analyzed intervals up to tx assuming dx < px, we can
choose the shortest interval greater than tx without committing any error. This shortest interval
greater than tx can be given by px in case dx ≥ px holds or the next deadline of Ty after
tx—considering ty = min(dy, py) instead of dy. The minimum of these two will have to be

considered, i.e., t′x = min
(
px, ty + (b tx−ty

py
c+ 1) · py

)
.

Finally, the greatest of the four ey

ty
, 2 ey

py
, exy

tx
, and ex+ey

t′x
+ ex

px
+ ey

py
is going to determine the upper

bound ρ̂xy for the loading factor of Txy under the DM/RM scheduling algorithm.

The following two lemmas give upper bounds for the loading factor of several tasks scheduled
under DM/RM. As in the case of EDF, calculating the maximum loading factor for a group of
several tasks leads to more accurate feasibility tests. These next two lemmas are analogous for
DM/RM to Lemma 6 and Lemma 7 for EDF.

LEMMA 12 Let Tl−1 be the subset of the first l− 1 tasks from Tn scheduled under the DM/RM
algorithm, for which we know the maximum loading factor ρ̂l−1. If task Tl, also from Tn, is
added to Tl−1, the loading factor of the resulting subset Tl is going to be bounded above by
ρ̂l−1 + max

(
el

min(dl,pl)
, 2 el

pl

)
.

Proof: It follows immediately from Lemma 8 observing that an upper bound for Tl’s loading
factor is given by max

(
el

min(dl,pl)
, 2 el

pl

)
.

35

2 Testing Feasibility for Real-Time Tasks

LEMMA 13 Let Tl−1 be the subset of the first l− 1 tasks from Tn scheduled under the DM/RM
algorithm, for which we know the maximum loading factor ρ̂sup

l−1 and that min(di, pi) ≥ tsup

holds for all 1 ≤ i ≤ l − 1. If task Tl, also from Tn, is added to Tl−1, where tsup ≥
min(dl, pl), the loading factor of the resulting subset is going to be bounded above by ρ̂sup

l−1 +

max
(

k·el

tsup
, el

tlk
+ el

pl

)
for all t ≥ tsup, where k = d tsup

pl
e and tlk = k · pl.

Proof: The loading factor of Tl−1 is at maximum ρ̂sup
l−1. That is, ρl−1(t) = hl−1(t)

t
≤ ρ̂sup

l−1

holds for all possible t, what yields hl−1(t) ≤ t · ρ̂sup
l−1. As a result, we can approximate the

loading factor of Tl−1 plus Tl in the following way:

ρl(t) ≤ ρ̂sup
l−1 +

d t
pl
e · el

t
. (2.37)

As we are interested in finding the upper bound for ρl(t) from tsup onwards. The first interval
for which we need to calculate Inequality (2.37) is (0, tsup]. That is:

ρl(tsup) = ρ̂sup
l−1 +

d tsup

pl
e · el

tsup

,

where d tsup

pl
e was denoted by k in this lemma. Further, getting rid of the ceiling function in

Inequality (2.37) and reordering, we reach:

ρl(t) ≤ ρ̂sup
l−1 +

el

t
+

el

pl

. (2.38)

From Inequality (2.38), we need to choose the shortest possible t so as to get the upper bound
of ρl(t). However, we do not need to calculate Inequality (2.38) until tlk = k · pl for k = d tsup

pl
e.

This is because the loading factor for jobs in (tsup, tlk) cannot exceed the one at tsup. Thus, the

upper limit for ρl(t) and t ≥ tsup is given by ρ̂sup
l−1 + max

(
k·el

tsup
, el

tlk
+ el

pl

)
.

As it can be seen, the order of tasks in Tn does neither matter for Lemma 12 nor of Lemma 13.
The following section is concerned with applying these lemmas in order to design feasibility
tests with complexity O(n) for the DM/RM scheduling algorithm.

Feasibility Tests for the DM/RM algorithm

In this section, we explain two better linear-time feasibility tests for the DM/RM algorithm,
which are analogous to the ones presented for EDF. Both algorithms calculate the maximum
loading factor ρ̂n of the whole task set Tn. If ρ̂n ≤ 1 holds, Tn is feasible. Again, we assume
that there is already a set of l − 1 tasks running on processor Pf , where 1 ≤ l ≤ n holds, and
that the feasibility of a new task Tl should be tested in constant time on Pf .

36

2.2 The Event-Triggered Scheduling Approach

Figure 2.7 presents the flow chart of a further algorithm proposed, which will be called
DM/RMTest2. In principle, DM/RMTest2 applies Lemma 11 to obtain the loading factor
of two tasks together under the DM/RM policy. If one task was accepted, DM/RMTest2 main-
tains the task parameters until the next task arrives. This way, the loading factor of the previous
and the current task can be calculated. Analogously to EDFTest1, DM/RMTest2 uses a boolean
variable called previous task to indicate that the previous task parameters are available. When
a new task Tl arrives, DM/RMTest2 verifies whether previous task parameters are available.
Then, if previous task is true, DM/RMTest2 applies Lemma 11 to calculate the maximum
loading factor ρ̂xy of previous accepted and the current task under DM/RM. If the maximum
loading factor of all other accepted tasks denoted by ρ̂sum plus ρ̂xy is not greater than one, the
new task Tl is accepted, ρ̂sum is set to ρ̂sum + ρ̂xy and previous task is set to false. Other-
wise, if previous task is false, this algorithm uses Lemma 8 to get the maximum loading factor
max

(
el

min(dl,pl)
, 2 el

pl

)
of the current task Tl alone. If ρ̂sum + max

(
el

min(dl,pl)
, 2 el

pl

)
≤ 1 holds, Tl

is accepted. In this case, Tl’s parameters are stored for later calculations, previous task is set to
true, but ρ̂sum is not updated until another task arrives.

The flow chart of our last algorithm for DM/RM is shown in Figure 2.8. This algorithm is called
DM/RMTest3 and applies Lemma 12 and Lemma 13 to compute the maximum loading factor
ρ̂n of Tn. Like EDFTest2, this algorithm divides the loading factor into three. In this way, ρ̂inf

is the upper bound on the loading factor between tinf and tsup for tinf ≤ tsup, whereas ρ̂sup is
the maximum loading factor from tsup onwards. The loading factor for intervals less than tinf

is zero, because tinf ≤ min(dl, pl) holds for 1 ≤ l ≤ n. So, the maximum of the two ρ̂inf and
ρ̂sup is the maximum loading factor of all tasks. Before we start discussing this algorithm, let us
denote by ρ̃sup, ρ̃inf , t̃sup and t̃inf temporal variables for the previously mentioned parameters.
In the same way as in EDFTest2, these temporal variables are used to store temporal calculations
of ρ̂sup, ρ̂inf , tsup and tinf that are then discarded if the task cannot be accepted.

For an arriving Tl, if min(dl, pl) > tsup holds, Lemma 12 is applied to obtain ρ̂l. In this case,
ρ̂l−1 from Lemma 12 is set to the current value of ρ̂sup. Because min(dl, pl) > tsup holds, Tl

has only influence on ρ̂sup, but not on ρ̂inf . The maximum value of the two ρ̂l and ρ̂sup is then
stored in ρ̃sup.

On the other hand, if min(dl, pl) < tinf holds, i.e., min(dl, pl) is the shortest so far, Tl af-
fects both ρ̂sup and ρ̂inf . Consequently, Lemma 13 can be applied to obtain ρ̂inf because
min(dl, pl) < tinf holds and ρ̂inf is the maximum loading factor between tinf and tsup. In this
case, ρ̂inf is temporarily stored in ρ̃inf . The variable ρ̂sup

l−1 of Lemma 13 is here set to the current
value of ρ̂inf . Further, ρ̂sup can be calculated using Lemma 13 because min(dl, pl) < tinf ≤ tsup

holds and ρ̂sup is the maximum loading factor from tsup onwards. Now, ρ̂sup is stored in the tem-
poral variable ρ̃sup. This time, ρ̂sup

l−1 of Lemma 13 is set to the current value of ρ̂sup. Further,
t̃inf is set to min(dl, pl), the shortest at the moment, and ρ̃inf must be assigned the maximum

between ρ̃inf and the maximum loading factor of the current task Tl: max
(

el

min(dl,pl)
, 2 el

pl

)
.

When min(dl, pl) is between tinf and tsup, t̃sup is going to be set to min(dl, pl). As a result,
only ρ̂sup needs to be recalculated. For this purpose, Lemma 12 is applied to get ρ̂l considering
ρ̂l−1 = ρ̂inf . Further, Lemma 13 is used in order to find ρ̂sup considering for this ρ̂sup

l−1 = ρ̂sup

37

2 Testing Feasibility for Real-Time Tasks

Figure 2.7: Algorithm DM/RMTest2

and storing it temporarily in ρ̃sup. As it was mentioned before, t̃sup is set to min(dl, pl) and
the temporal variable ρ̃sup is assigned the maximum between ρ̂l and the value that is currently
contained in ρ̃sup.

Now, if the maximum loading factor of all other accepted tasks denoted by ρ̂sum plus the max-
imum of the two ρ̃sup and ρ̃inf is not greater than 1, the new task Tl can be accepted in the
system. Then, the values stored in temporal variables need to be adopted for later calculations.

The computation of ρ̂sup and ρ̂inf can be performed in the proposed way for all tasks in Tn. For
most cases, it results better to calculate them for smaller task groups of w tasks each. When
ρ̂sup and ρ̂inf were computed for w tasks, the maximum between these two is accumulated in
ρ̂sum. Then, all variables with exception of ρ̂sum must be set to zero at this point in order to start
calculating ρ̂sup and ρ̂inf for the next group of w tasks. The variable w can assume any integer
value between 1 and n.

38

2.2 The Event-Triggered Scheduling Approach

Figure 2.8: Algorithm DM/RMTest3

39

2 Testing Feasibility for Real-Time Tasks

0 10 20 30 40 50 60 70
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e
ta

sk
 se

ts

DM/RMTest3
DM/RMTest2
DM/RMTest1
hyperbolic bound
Lehoczky’s PPT

Figure 2.9: Schedulability vs. utilization for 5 tasks

Some Experimental Results

In this section, we evaluate some experiments comparing the proposed algorithms against the
best known feasibility tests of the same complexity O(n). Hence, we compare the three new
algorithms DM/RMTest1 from Lemma 8, DM/RMTest2 and DM/RMTest3 with the hyperbolic
bound of Inequality (2.27). For DM/RMTest3, the size of the task groups was chosen to be
w = 5, i.e., the maximum loading factor is calculated for groups of 5 tasks each. Additionally,
we include Lehoczky’s pseudo-polynomial-time exact feasibility test from [Leh90] denoted by
Lehoczky’s PPT in this comparison.

The mentioned algorithms are contrasted with respect to their accuracy versus utilization for
different numbers of tasks per task set. As in the case of EDF, random task sets were uni-
formly generated for different processor utilizations as recommended in [BB04a] and [BB05]—
UUniFast was used to generate a set of task utilization ui. Further, once generated a set of ui

this way, we created periods pi also randomly with uniform distribution. Consequently, we got
ei = ui · pi. The relative deadlines di were uniformly chosen from the range [ei, pi]. Addition-
ally, the utilization axis was uniformly sampled at 24 points, for which 1000 different task sets
were generated each time.

Figures 2.9 to 2.11 present schedulability curves for 5, 10 and 100 tasks per task set. For 5 tasks
per task set, the proposed algorithms reach around 20% to 40% more accepted task sets than
the hyperbolic bound in the utilization interval (20%, 40%). For a utilization of approximately
45% and 5 tasks, the hyperbolic bound test has a better performance than the DM/RMTest1
and than DM/RMTest2. As the number of tasks grows, the performance of all polynomial-time

40

2.2 The Event-Triggered Scheduling Approach

0 10 20 30 40 50 60
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e
ta

sk
 se

ts

DM/RMTest3
DM/RMTest2
DM/RMTest1
hyperbolic bound
Lehoczky’s PPT

Figure 2.10: Schedulability vs. utilization for 10 tasks

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e
ta

sk
 se

ts

DM/RMTest3
DM/RMTest2
DM/RMTest1
hyperbolic bound
Lehoczky’s PPT

Figure 2.11: Schedulability vs. utilization for 100 tasks

41

2 Testing Feasibility for Real-Time Tasks

algorithms, the proposed and the known ones, decays rapidly. For 10 tasks the polynomial-
time algorithms detect feasible task sets up to 60% utilization, whereas they are unable to find
schedulable task sets for a utilization over 40% and 100 tasks per task set. For an increasing
number of tasks, the performance improvement of the three proposed algorithms over the hyper-
bolic bound gets better: around 50% more accepted tasks sets for 100 tasks and 20% utilization.
On the other hand, the proposed tests perform similarly to one another also as the number of
tasks increases.

2.2.3 Context Switches

It is clear that tasks’ priority and consequently the one of jobs is fixed for DM and RM. On the
other hand, the priority of tasks may change dynamically under EDF, i.e., jobs of the same task
may assume different priorities along the schedule. However, once a job of any task is released
under EDF, it gets a priority that will not change as long as the job exists. So, EDF, DM and
RM are called job-level fixed-priority scheduling algorithms.

For job-level fixed priorities, in oder to take the effect of context switches into account, we
apply the method proposed in [Liu00]. This method consists in adding σf to the worst-case
execution time ei of jobs, where σf is the overhead due to a context switch on the processor Pf

(i.e., the sum of the time for storing and restoring a job on Pf). In this way, every time a job
is preempted by another one, the overhead to store and restore a job will be considered. Our
previous analysis on EDF and on fixed priorities remains unchanged.

2.3 Considering Soft Real-Time

For some applications, for which the system functioning does not degrade drastically if a dead-
line is missed, it is possible to allow a controlled deadline violation. Of coarse, these applica-
tions cannot be considered to be hard real-time, but they are quite common in today’s world,
e.g., multimedia applications, etc. If a deadline is missed when processing video streams, there
will be some quality loss, but the system can continue running. As long as this deadline viola-
tion does not make the quality loss to be intolerable, nobody will notice the difference.

Allowing a controlled deadline violation can relax the system requirements and reduce costs,
so that it is worth to research on techniques for making this possible. Chakraborty et al. intro-
duced in [CKT02] the concept of optimistic feasibility test. An optimistic feasibility test is such
that considers a task set to be feasible if the deadline violations do not exceed a given config-
urable upper limit. In this section, we use the concept of optimistic feasibility test to propose
polynomial-time tests for EDF and fixed priorities. The difference to the tests of [CKT02] is
that we sacrifice accuracy for the sake of faster running times.

The following lemma is about finding a time upper bound under EDF after which an overflow
cannot be greater than a given limit ε. This follows similar principles to the ones presented in
[MF06a, Mas07].

42

2.3 Considering Soft Real-Time

LEMMA 14 If a time overflow occurs at tmiss when scheduling a synchronous task set Tn under
EDF, ε < hn(tmiss)−tmiss holds for a given ε, if and only if tmiss ≤ In,ε also holds, where In,ε =Pn

i=1(pi−min(di,pi))·ui−ε

1−Un
, hn(t) =

∑n
i=1 max

(
0,

⌊
t−di

pi

⌋
+ 1

)
· ei, ui = ei

pi
and Un =

∑n
i=1

ei

pi
is

the total utilization.

Proof: Because a deadline is missed at tmiss, the total execution demand of Tn at tmiss is
greater than the available time tmiss, i.e., tmiss < hn(tmiss) where hn(t) is the demand bound
function under EDF [BMR90]. Now, if the time overflow is greater than a given ε, we will have
ε < hn(tmiss)− tmiss:

ε <
n∑

i=1

max

(
0,

⌊
tmiss − di

pi

⌋
+ 1

)
· ei − tmiss.

Considering min(pi, di) instead of di, we obtain:

ε <
n∑

i=1

(⌊
tmiss −min(pi, di)

pi

⌋
+ 1

)
· ei − tmiss.

Further, removing the floor function, we reach:

ε <
n∑

i=1

(
tmiss −min(pi, di)

pi

+ 1

)
· ei − tmiss.

Reshaping this inequality to obtain tmiss, we get:

tmiss <

∑n
i=1 (pi −min(di, pi)) · ui − ε

1− Un

, (2.39)

where ui = ei

pi
and Un is the total utilization. The right member of Inequality (2.39) was

previously denoted by In,ε. The lemma follows.

Based on Lemma 3 and on Lemma 14, it is possible to come up with the following O(n log n)
feasibility test for soft real-time tasks where the time overflow is bounded to ε. The proof is
straight forward and requires no further analysis.

LEMMA 15 Let Tn be a task set of n preemptive, synchronous, periodic tasks, with arbitrary
relative deadlines, arranged in order of non-decreasing relative deadlines. In Tn’s schedule
under EDF, there is no time overflow greater than a given ε, if the following inequality holds
for all l for which 1 ≤ l ≤ n:

l∑
i=1

ei

pi

+
1

dl

l∑
i=1

(
pi −min(pi, di)

pi

)
· ei −

ε

dl

≤ 1. (2.40)

43

2 Testing Feasibility for Real-Time Tasks

The following lemma is the analogous to Lemma 14 for fixed priorities. That is, a time upper
bound is given after which an overflow under fixed priorities cannot exceed a given limit ε.

LEMMA 16 If a time overflow occurs at tmiss when scheduling a synchronous task set Tn under
fixed priorities, ε < hn(tmiss) − tmiss holds for a given ε, if and only if tmiss ≤ In,ε also holds,

where In,ε =
Pn

i=1 ei−ε

1−Un
, hn(t) =

∑n
i=1

⌈
t
pi

⌉
·ei, ui = ei

pi
and Un =

∑n
i=1

ei

pi
is the total utilization.

Proof: Because a deadline is missed at tmiss, the total execution demand of Tn at tmiss is
greater than the available time tmiss, i.e., tmiss < hn(tmiss) where hn(t) is the demand bound
function under fixed priorities [Leh90]. If the time overflow is greater than a given ε, we will
have ε < hn(tmiss)− tmiss:

ε <
n∑

i=1

⌈
tmiss

pi

⌉
· ei − tmiss.

Now, removing the ceiling function, we obtain:

ε <
n∑

i=1

(
tmiss

pi

+ 1

)
· ei − tmiss.

Reshaping this inequality to obtain tmiss, we get:

tmiss <

∑n
i=1 ei − ε

1− Un

, (2.41)

where Un is the total utilization. The right member of Inequality (2.41) was previously denoted
by In,ε. The lemma follows.

Finally, as in the case of EDF, we can apply Lemma 9 and Lemma 16 to derive an O(n log n)
feasibility test for soft real-time tasks scheduled under fixed priorities. As for the test of
Lemma 15, the time overflow is bounded to ε. The proof of Lemma 17 is also straight for-
ward and needs no further attention.

LEMMA 17 Let Tn be a task set of n preemptive, synchronous, periodic tasks, with arbitrary
relative deadlines, arranged in order of non-increasing priorities. In the Tn’s schedule under
fixed priorities, there is no time overflow greater than a given ε, if the following inequality holds
for all l for which 1 ≤ l ≤ n:

l∑
i=1

ei

pi

+

∑l
i=1 ei − ε

dl

≤ 1. (2.42)

44

2.4 Key Findings

2.4 Key Findings

Based on the concept of maximum loading factor, we have derived linear-time feasibility tests
for the case of arbitrary deadlines. These tests are more accurate than known tests with the
same complexity (e.g., the density condition in case of EDF and the hyperbolic bound in case
of the DM/RM policy). The most accurate linear-time feasibility test for EDF resulted to be
EDFTest2, whereas DM/RMTest3 (the analogous of EDFTest2) is the best linear-time feasibil-
ity test proposed for the DM/RM policy. Both of these tests compute the maximum loading
factor for groups of several tasks. The number of tasks in these groups can be configured by a
parameter denoted w.

45

2 Testing Feasibility for Real-Time Tasks

46

3 Allocating Independent Real-Time
Tasks to Processors

When allocating real-time tasks, we are normally interested in finding the minimum possible
number of processors that guarantees feasibility. That is, we are concerned with the partitioning
of tasks onto processors, so that they all can meet their deadlines while the number of processors
is reduced to the minimum possible. Even in its simplest form, the task allocation problem
is an extremely complex one. It still remains very complex when tasks are independent of
one another, i.e., even if there are no interactions among tasks: no precedence order and no
communication.

In the case of independent tasks and considering the most favorable scheduling conditions
(deadlines equal to periods under EDF), the task allocation reduces to the bin packing problem
[GJ79]. The bin packing problem has been proven to be NP-hard in the strong sense [GJ79],
i.e., it is an intractable problem. Intuitively, this means that an algorithm with exponential com-
plexity will be necessary to find an optimal solution to this problem. In other words, even for
the simplest form of the allocation problem, the running time of an optimal algorithm grows
exponentially with the number of tasks to be allocated.

On the other hand, heuristic approximation methods, e.g., simulated annealing and genetic al-
gorithms, have been proposed to solve the allocation problem [Thi00]. These methods aim at
achieving a good but not optimal solution while they present less computational complexity.
A deeper analysis of these methods goes, however, beyond the scope of this thesis—for more
information see [ACG+03].

The approach chosen for this thesis is based on sequential approximation algorithms [ACG+03],
which are also of heuristic nature. However, in contrast to other heuristic methods, sequential
algorithms do not attempt to optimize the allocation, but they just build task partitions sequen-
tially a task after the other. The greatest advantage of sequential algorithms over all other
approaches is their simplicity. We can further differentiate between on-line and off-line sequen-
tial algorithms. On-line sequential algorithms perform no initial sorting of tasks, so they do not
require all tasks to be known at the beginning. On the other hand, off-line sequential algorithms
do perform an initial sorting of tasks according to a given criterion and require consequently to
know all tasks before running.

In this chapter, we focus on sequential algorithms for allocating independent real-time tasks to
processors. These algorithms will be extended to consider task communication and system con-
straints in the following chapter. We first discuss known sequential algorithms for bin packing
and compare their efficiency, in terms of reducing the number of processors, by means of an

47

3 Allocating Independent Real-Time Tasks to Processors

extensive statistical comparison. As stated above, the bin packing problem is the simplest form
of task allocation where tasks are scheduled under EDF and deadlines are equal to periods. In
order to consider more general scheduling conditions, we apply the feasibility tests from Chap-
ter 2 to extend known sequential algorithms for bin packing. The resulting algorithms are able
to deal with the allocation of real-time tasks with arbitrary deadlines under both EDF and the
DM/RM scheduling policy.

3.1 Bin Packing and Task Allocation

The bin packing problem consists in partitioning a given finite set of items, which have rational
sizes in [0, 1], into disjoint subsets, such that the sum of the sizes of the items in each subset is
no more than 1 and such that the number of subsets is as small as possible [GJ79].

Clearly, the task allocation problem can directly be expressed as a bin packing problem if the
processor utilization can be as high as 1 (i.e., 100%) without missing deadlines. However,
this is only possible under an optimal scheduling algorithm like EDF when tasks are periodic,
independent and fully preemptive and their deadlines are equal to periods [LL73]. (A 100%
utlization is also possible for harmonic periods under RM, however, we consider periods to be
arbitrary in this thesis.) Further, tasks should be scheduled on identical processors [GJ79], so
that their utilizations do not change from processor to processor. If all these conditions hold,
the tasks Ti can be considered to be the items to partition in a bin packing problem, where task
utilizations ui = ei

pi
are the corresponding item sizes and processors are the bins where items

should be placed.

As previously mentioned, sequential algorithms are applied to solve the task allocation problem.
In this section, our aim is to compare the performance of these algorithms in the context of the
bin packing problem before we start analyzing more complex allocation scenarios. For this
purpose, an extensive statistical comparison is presented in contrast to the known worst-case
performance metrics [CGJ97], which are most of the time too pessimistic.

3.1.1 Sequential Algorithms for Bin Packing

For the sake of the comparison, we analyzed four of the most common sequential algorithms
for bin packing: Next Fit (NF), First Fit (FF), Best Fit (BF), First Fit Decreasing (FFD) and
Best Fit Decreasing (BFD). NF, FF and BF are on-line algorithms, i.e., they do not require to
know all tasks at the beginning. On the other hand, FFD and BFD perform an initial sorting of
tasks and are consequently off-line algorithms [CGJ97].

Before describing the different algorithms, let us define by open processor a processor to which
tasks can still be allocated. In the same way, a closed processor is a processor to which no
additional task can be allocated. Normally, algorithms have different strategies to change the
state of a processor from open to closed (to close a processor) and to add a new processor (to
open a processor).

48

3.1 Bin Packing and Task Allocation

• Next Fit (NF) has only one open processor at a time and allocates tasks to it as long as
the processor utilization is less than or equal to 1. The processor is closed whenever its
utilization reaches 1 or a task does not fit into it (i.e., the available processor utilization
does not suffice for the new task). Once the processor has been closed, it cannot be
accessed anymore and a new empty one must be opened.

• First Fit (FF) can have more than one open processor at a time. It tries to allocate tasks
to open processors in the order in which they were opened. A task can be allocated to a
given processor if the processor utilization including the new task is less than or equal to
1. If a task cannot be allocated to any open processor, a new processor is opened for this
task. Processors are only closed if their corresponding utilization is equal to 1, i.e., if they
have run out of capacity.

• Best Fit (BF) can also have more than one open processor at a time. However, it tries to
allocate tasks to open processors in increasing (non-decreasing) order of available pro-
cessor utilization. That is, BF first tries to allocate a task to the processor with the least
available utilization. If this is not possible (the processor utilization with the new task is
greater than 1), it tries to allocate the task to the processor with the second least available
utilization and so forth. If a task cannot be allocated to any open processor, a new pro-
cessor is opened for this task. Like FF, BF closes a processor only if its total utilization is
equal to 1 (when there is no remaining capacity on the processor).

• First Fit Decreasing (FFD) sorts tasks according to decreasing (non-increasing) task uti-
lization ui and then proceeds as described for FF (i.e., it allocates tasks to processors in
the order in which processors were opened).

• Best Fit Decreasing (BFD) also sorts tasks according to decreasing (non-increasing) task
utilization ui and then proceeds as described for BF (i.e., it assigns tasks to processors in
order of increasing available processor utilization).

The complexity of NF is clearly O(n), while all other algorithms can be implemented with
complexity O(n log n) [CGJ97]. In case of BF and BFD, for example, when a new processor
is opened, it can be added to a sorted list according to its available utilization. This can be
performed in O(log n), because the number of open processors, and consequently the number
of entries in the sorted list, can be as large as the number of tasks n. Every time a task must
be allocated, the sorted list of open processors can be sought for the appropriate one also in
O(log n). Further, whenever a task is allocated to an open processor, the resorting of the pro-
cessor in the sorted list can also be performed in O(log n). As a consequence, the whole BF
algorithm presents a complexity O(n log n). On the other hand, FF and FFD require using an
appropriate data structure [Joh73].

All described algorithms process tasks sequentially until all of them are allocated, so they al-
ways provide a solution for the bin packing problem. Let us analyze how good this solution is
for most cases, i.e., by means of a statistical comparison.

49

3 Allocating Independent Real-Time Tasks to Processors

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

BFD
FFD
BF
FF
NF

(a) n = 10

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

BFD
FFD
BF
FF
NF

(b) n = 50

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

BFD
FFD
BF
FF
NF

(c) n = 100

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

BFD
FFD
BF
FF
NF

(d) n = 500

Figure 3.1: Bin packing: average number of processors vs. maximum task utilization

3.1.2 Statistical Performance Comparison

An extensive statistical comparison is provided for all previously described bin packing algo-
rithms. Further, let us consider a pseudo-optimal bin packing algorithm (we refer to as BestBP)
that returns the smallest possible number of processors at all. BestBP calculates the number of
processors as the ceiling of the sum of all task utilizations: d

∑n
i=1 uie. Clearly, BestBP returns

a total of processors that is always less than or equal to the one resulting from an optimal bin
packing. However, we chose to use BestBP for the statistical comparison, because an optimal
bin packing algorithm presents exponential complexity and, consequently, a huge running time
for large numbers of tasks.

Figure 3.1 shows how algorithms behave, for which task sets were randomly generated for dif-
ferent numbers of tasks n. The maximum task utilization represented on the x-axis is the upper
bound of the uniform distribution, i.e., task utilizations within task sets were uniformly gener-
ated between 0 and a varying maximum task utilization. Further, we increased the maximum
task utilization from 0 to 1 in 10 steps of size 0.1 each. Every time the maximum task utiliza-
tion was increased, 1000 different task sets of n tasks each were created. Curves in Figure 3.1
were plotted for 10, 50, 100 and 500 tasks. NF is as expected the on-line algorithm with the

50

3.1 Bin Packing and Task Allocation

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

BFD
FFD
BF
FF
NF

(a) n = 10

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

BFD
FFD
BF
FF
NF

(b) n = 50

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

BFD
FFD
BF
FF
NF

(c) n = 100

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

BFD
FFD
BF
FF
NF

(d) n = 500

Figure 3.2: Bin packing: average number of additional processors with respect to BestBP vs.
maximum task utilization

worst performance, whereas FF and BF show similar performance. On the other hand, FFD and
BFD behave exactly the same and are more efficient at reducing the number of processors than
on-line algorithms. In other words, allocating tasks from the biggest (the one with the highest
utilization) to the smallest leads to a more significant reduction of the number of processors.

In addition, Figure 3.2 shows the algorithms’ performance compared to BestBP in a more illus-
trative manner. The length of bars represents the average distance to BestBP, which provides an
estimation of how many additional processors are going be necessary because of using a non-
optimal bin packing algorithm. In general, the average number of additional processors falls as
the maximum task utilization within the task set decreases. Further, the number of additional
processors decreases with an increasing number of tasks. The following table summarizes this
for FFD and BFD, which behave almost identically and perform better than the other algorithms
we discussed.

NF is the algorithm with the least complexity, however, it results in a rather pessimistic task
allocation. On the other hand, FF and BF perform much better than BF. From a statistical point
of view, both FF and BF produce quite similar task allocations, although it is possible to find

51

3 Allocating Independent Real-Time Tasks to Processors

maximum task utilization n = 10 n = 50 n = 100 n = 500

1 8.87% 6.14% 4.67% 2.32%
0.6 2.76% 1.04% 0.68% 0.02%

Table 3.1: Bin packing: percent average number of additional processors with respect to BestBP
for FFD and BFD

cases for which FF is better than BF and vice versa. In the same way, FFD presents almost the
same statistical behavior as BFD. As a consequence, in the remainder of this chapter, we focus
on solutions based on FF and FFD to perform a task allocation.

3.1.3 Bin Packing for RM

Before continuing, let us briefly consider what happens when RM is used instead of EDF for
tasks with deadlines equal to periods. In this case, it will generally not be possible to have pro-
cessor utilizations as high as 100%. This is only possible under RM if all periods are harmonic
[Liu00]. So, the bin packing algorithms must be adapted to utilize processors up to a given
bound less than 1.

In general, the described bin packing algorithms can be extended to use Liu and Layland’s
utilization bound of Equation (2.25). Following this idea, an algorithm called Rate Monotonic
First Fit (RMFF) was proposed by Dhall and Liu in [DL78]. Using a similar feasibility test to
the hyperbolic bound from Equation (2.26), Oh and Son presented other two algorithms based
on FF [OS95]. Further, Burchard et al. prosed two algorithms that exploit the fact that a higher
processor utilization is possible when periods are closer to being harmonic [BLOS95].

3.2 Task Allocation for Arbitrary Deadlines

In this section, we extend the described bin packing algorithms to the case of arbitrary deadlines.
For this purpose, the feasibility tests from Chapter 2 are applied. Because EDF and the DM/RM
scheduling require different feasibility tests, we have to analyze them separately.

For both mentioned scheduling policies, possible allocation algorithms are presented and com-
pared statistically for a large number of synthetic task sets. All curves presented in the following
sections were generated as before, i.e., using a uniform distribution to generate n tasks utiliza-
tions between 0 and a given maximum task utilization. The maximum task utilization (x-axis)
was increased in steps of length 0.1 until reaching 1, for which 1000 different sets of utilizations
were created each time. Once a set of utilizations ui was obtained, we generated periods pi also
with a uniform distribution in the interval (0, 1]. Further, the worst-case execution times were
obtained (ei = ui · pi) and deadlines were uniformly generated in the interval [ei, pi].

52

3.2 Task Allocation for Arbitrary Deadlines

3.2.1 Algorithms for EDF

Clearly, it is possible to use the density test together with FFD or BFD to perform a task al-
location when deadlines are not restricted to be equal to periods. On the other hand, it is also
possible to combine Devi’s test with FF or BF [BF05, BF06b, MF06b, BF07], which results in a
better allocation. Further, we can use EDFTest1 and EDFTest2 to design allocation algorithms
in combination with FFD or BFD.

Let us now compare how these possible algorithms perform with respect to each other and to
BestBP. The following four algorithms are considered in this section: DensityFFD, DeviFF,
EDFTest1FFD and EDFTest2FFD.

• DensityFFD results from combining the density test and the FFD heuristic, where tasks
are sorted according to decreasing (non-increasing) density ei

min(di,pi)
to consider arbitrary

deadlines.

• DeviFF combines Devi’s test [Dev03] and the FF heuristic as proposed in [MF06b]. Al-
though Devi’s test remains valid when tasks are not sorted—see Lemma 4, it performs
better if tasks are arranged according to non-decreasing (increasing) deadlines. In order to
exploit this, DeviFF sorts tasks according to increasing deadlines and uses FF to perform
an allocation.

• EDFTest1FFD uses EDFTest1 of Figure 2.2 together with the FFD heuristic, where tasks
are sorted in order of decreasing density. In contrast to the density test, EDFTest1 com-
putes the maximum loading factor ρ̂xy (see Lemma 5 in Chapter 2) for two tasks together.

• EDFTest2FFD results from applying EDFTest2 of Figure 2.3 and the FFD heuristic,
where tasks are also sorted in order of decreasing density. EDFTest2 computes the maxi-
mum loading factor for groups of several tasks using Lemma 6 and Lemma 7 from Chap-
ter 2. The maximum loading factors ρ̂sup and ρ̂inf are calculated for groups of w = 10
tasks in Figure 2.3.

Notice that all these algorithms have the same polynomial complexity as FFD and BFD, i.e.,
O(n log n). So, applying the new feasibility tests does not degrade the complexity of the orig-
inal heuristics and results consequently in very fast allocation algorithms. Because of needing
tasks to be sorted according to deadlines, Devi’s test can only be used for an off-line allocation.
On the other hand, the density test, EDFTest1 and EDFTest2 can also be combined with on-line
heuristics (e.g., NF, FF and BF) to design on-line algorithms for arbitrary deadlines under EDF.

Figure 3.3 to Figure 3.6 show how the different algorithms behave for different numbers of tasks
and an increasing maximum task utilization. The heuristic DensityFFD is the most pessimistic
of all, whereas DeviFF has a good performance in terms of reducing the number of processors
when the maximum task utilization is not greater than 0.4. On the other hand, EDFTest1FFD
performs very well when the maximum task utilization is greater than 0.4 and independently of
the number of tasks n.

EDFTest2FFD is the algorithm that has the smoothest curve giving good results all along the
x-axis and independently of n. For n = 100 and a maximum task utilization of 0.8 in Figure 3.5,

53

3 Allocating Independent Real-Time Tasks to Processors

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

EDFTest2FFD
EDFTest1FFD
DeviFF
DensityFFD

Figure 3.3: Arbitrary deadlines under EDF: average number of processors vs. maximum task
utilization, n = 10

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

EDFTest2FFD
EDFTest1FFD
DeviFF
DensityFFD

Figure 3.4: Arbitrary deadlines under EDF: average number of processors vs. maximum task
utilization, n = 50

54

3.2 Task Allocation for Arbitrary Deadlines

both algorithms EDFTest1FFD and EDFTest2FFD lead to a reduction of around 10 additional
processors when compared to the other heuristics. In Figure 3.6 for n = 500 and also a maxi-
mum task utilization of 0.8, the additional reduction of the number of processors produced by
these algorithms is around 50 processors.

The distance of these algorithms to BestBP is shown in Figure 3.7 to Figure 3.10, where the
length of bars represents the number of additional processors compared to BestBP that results
from the different algorithms. As discussed above, BestBP yields an estimation of the optimal
number of processors in the case that tasks have deadlines equal to periods. So, contrasting the
heuristics of this section with BestBP leads to a rather pessimistic comparison. However, these
plots give us an idea of how the different algorithms perform with respect to each other and
of how their performance degrades regarding the case where deadlines are equal to periods. In
Figure 3.9, for n = 100 and a maximum task utilization of 0.8, we can notice that EDFTest1FFD
yields 10 more processors than BestBP and that DeviFF results in approximately 20 additional
processors with respect to BestBP. Figure 3.10 shows that, for n = 500 and also a maximum
task utilization of 0.8, EDFTest1FFD leads to around 40 additional processors compared to
BestBP whereas DeviFF results in over 80 more processors than BestBP.

3.2.2 Algorithms for the DM/RM Scheduling

When considering the DM/RM scheduling, there are also few algorithms that can be designed
using feasibility tests from Section 2.2.2. Let us consider the following allocation algorithms:
HBFFD, PTASFF, DM/RMTest1FFD, DM/RMTest2FFD and DM/RMTest3FFD. These heuris-
tics apply respectively the hyperbolic bound, the feasibility test of Lemma 9, and the three new
feasibility tests proposed for DM/RM.

• HBFFD (Hyperbolic Bound FFD) results from combining the hyperbolic bound from
Equation (2.27) and the FFD heuristic, where tasks are sorted according to decreasing
(non-increasing) 1 + ei

min(di,pi)
to take arbitrary deadlines into account.

• PTASFF (Polynomial Time Approximation Scheme FF) combines the feasibility test of
Lemma 9 and the FF heuristic. The test of Lemma 9 is the analogous for fixed priorities
to Devi’s test. This test requires tasks to be sorted according to decreasing priority, i.e.,
according to non-decreasing (increasing) min(di, pi) under the DM/RM policy. PTASFF
first arranges tasks according to increasing min(di, pi) and then uses the FF heuristic to
perform an allocation.

• DM/RMTest1FFD applies DM/RMTest1 of Lemma 8 in Chapter 2 together with the FFD
heuristic, where tasks are sorted in order of decreasing max

(
ei

min(di,pi)
, 2 ei

pi

)
.

• DM/RMTest2FFD uses DM/RMTest2 of Figure 2.7 together with the FFD heuris-
tic, where tasks are sorted in order of decreasing max

(
ei

min(di,pi)
, 2 ei

pi

)
. In contrast to

DM/RMTest1, DM/RMTest2 computes the maximum loading factor ρ̂xy (see Lemma 11
in Chapter 2) for groups of two tasks.

55

3 Allocating Independent Real-Time Tasks to Processors

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

EDFTest2FFD
EDFTest1FFD
DeviFF
DensityFFD

Figure 3.5: Arbitrary deadlines under EDF: average number of processors vs. maximum task
utilization, n = 100

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

EDFTest2FFD
EDFTest1FFD
DeviFF
DensityFFD

Figure 3.6: Arbitrary deadlines under EDF: average number of processors vs. maximum task
utilization, n = 500

56

3.2 Task Allocation for Arbitrary Deadlines

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

EDFTest2FFD
EDFTest1FFD
DeviFF
DensityFFD

Figure 3.7: Arbitrary deadlines under EDF: average number of additional processors with re-
spect to BestBP vs. maximum task utilization, n = 10

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

EDFTest2FFD
EDFTest1FFD
DeviFF
DensityFFD

Figure 3.8: Arbitrary deadlines under EDF: average number of additional processors with re-
spect to BestBP vs. maximum task utilization, n = 50

57

3 Allocating Independent Real-Time Tasks to Processors

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

EDFTest2FFD
EDFTest1FFD
DeviFF
DensityFFD

Figure 3.9: Arbitrary deadlines under EDF: average number of additional processors with re-
spect to BestBP vs. maximum task utilization, n = 100

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

EDFTest2FFD
EDFTest1FFD
DeviFF
DensityFFD

Figure 3.10: Arbitrary deadlines under EDF: average number of additional processors with re-
spect to BestBP vs. maximum task utilization, n = 500

58

3.2 Task Allocation for Arbitrary Deadlines

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

DM/RMTest3FFD
DM/RMTest2FFD
DM/RMTest1FFD
PTASFF
HBFFD

Figure 3.11: Arbitrary deadlines under the DM/RM policy: average number of processors vs.
maximum task utilization, n = 10

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

DM/RMTest3FFD
DM/RMTest2FFD
DM/RMTest1FFD
PTASFF
HBFFD

Figure 3.12: Arbitrary deadlines under the DM/RM policy: average number of processors vs.
maximum task utilization, n = 50

59

3 Allocating Independent Real-Time Tasks to Processors

• DM/RMTest3FFD is the combination of DM/RMTest3 shown in Figure 2.8 with the FFD
heuristic. Here, tasks are again sorted in order of decreasing max

(
ei

min(di,pi)
, 2 ei

pi

)
. The

test DM/RMTest3 allows computing the maximum loading factor for groups of several
tasks. For this purpose, DM/RMTest3 applies the presented Lemma 12 and Lemma 13
from Chapter 2. As discussed previously, DM/RMTest3 can be configured to compute
the maximum loading factor for groups of w tasks. For the case of DM/RMTest3FFD, we
chose w = 10, i.e., the maximum loading factors ρ̂sup and ρ̂inf are computed for groups
of 10 tasks each (see Figure 2.8).

All these algorithms have also polynomial complexity O(n log n) like FFD and BFD. So, they
neither degrade the complexity of the original heuristics. Because of needing tasks to be sorted
according to priorities, the feasibility test of Lemma 9, like Devi’s test, can only be used for
an off-line allocation. On the other hand, the hyperbolic bound, DM/RMTest1, DM/RMTest2
and DM/RMTest3 can also be combined with on-line heuristics (e.g., NF, FF and BF) to design
on-line algorithms for arbitrary deadlines under the DM/RM policy.

Figure 3.11 to3.14 illustrate how the described algorithms perform for different numbers of
tasks and an increasing maximum task utilization. They all behave almost the same, however,
DM/RMTest2FFD is slightly better than all other algorithms for a maximum task utilization
over 0.3 independently of the number of tasks n. For a maximum task utilization less than 0.3,
PTASFF is the algorithm leading to a more significant reduction of processors. For n = 100
and considering a maximum task utilization of 0.6 in Figure 3.13, DM/RMTest2FFD leads to a
reduction of around 5 additional processors compared to the others. For n = 500 in Figure 3.14
and also a maximum task utilization of 0.6, the additional reduction of the number of processors
produced by this algorithm is around 25 processors.

The distance to BestBP is shown in Figure 3.15 to Figure 3.18, for which the length of bars
represents the number of additional processors compared to BestBP that result from the different
algorithms. BestBP gives an estimation of the optimal number of processors under EDF and for
deadlines equal to periods. As a consequence, comparing the DM/RM allocation heuristics with
BestBP is more pessimistic than comparing to an optimal allocation algorithm for DM/RM.
However, an optimal allocation algorithm for DM/RM has exponential complexity. It is not
practicable to perform a statistical comparison including such an optimal algorithm, so that we
use BestBP instead. On the other hand, a comparison of the DM/RM allocation algorithms with
BestBP shows, on one hand, how the different algorithms perform with respect to each other.
On the other hand, it gives us an idea of the performance degradation regarding the case where
processors can be utilized up to 100% (i.e., with respect to EDF and deadlines equal to periods
as mention above).

For n = 100 in Figure 3.17, DM/RMTest2FFD leads to over 25 more additional processors
than BestBP when considering a maximum task utilization of 0.6. In this case, HBFFD, for
example, needs over 30 more additional processors than BestBP. For n = 500 in Figure 3.18
and also considering a maximum task utilization of 0.6, DM/RMTest2FFD requires around
125 more additional processors than BestBP while HBFFD results in approximately 150 more
additional processors with respect to BestBP. The other algorithms introduced in this section
show approximately the same behavior.

60

3.2 Task Allocation for Arbitrary Deadlines

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

DM/RMTest3FFD
DM/RMTest2FFD
DM/RMTest1FFD
PTASFF
HBFFD

Figure 3.13: Arbitrary deadlines under the DM/RM policy: average number of processors vs.
maximum task utilization, n = 100

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

DM/RMTest3FFD
DM/RMTest2FFD
DM/RMTest1FFD
PTASFF
HBFFD

Figure 3.14: Arbitrary deadlines under the DM/RM policy: average number of processors vs.
maximum task utilization, n = 500

61

3 Allocating Independent Real-Time Tasks to Processors

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

DM/RMTest3FFD
DM/RMTest2FFD
DM/RMTest1FFD
PTASFF
HBFFD

Figure 3.15: Arbitrary deadlines under the DM/RM policy: average number of additional pro-
cessors with respect to BestBP vs. maximum task utilization, n = 10

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

DM/RMTest3FFD
DM/RMTest2FFD
DM/RMTest1FFD
PTASFF
HBFFD

Figure 3.16: Arbitrary deadlines under the DM/RM policy: average number of additional pro-
cessors with respect to BestBP vs. maximum task utilization, n = 50

62

3.2 Task Allocation for Arbitrary Deadlines

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

DM/RMTest3FFD
DM/RMTest2FFD
DM/RMTest1FFD
PTASFF
HBFFD

Figure 3.17: Arbitrary deadlines under the DM/RM policy: average number of additional pro-
cessors with respect to BestBP vs. maximum task utilization, n = 100

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

DM/RMTest3FFD
DM/RMTest2FFD
DM/RMTest1FFD
PTASFF
HBFFD

Figure 3.18: Arbitrary deadlines under the DM/RM policy: average number of additional pro-
cessors with respect to BestBP vs. maximum task utilization, n = 500

63

3 Allocating Independent Real-Time Tasks to Processors

3.3 Key Findings

In this chapter, we have applied the feasibility tests proposed in Chapter 2 to come up with
allocation heuristics for real-time tasks with arbitrary deadlines. In case of an EDF scheduling,
we have seen that the heuristic EDFTest2FFD yields a better task allocation, i.e., EDFTest2FFD
reduces more the number of processors than the other heuristics for EDF. EDFTest2FFD is the
combination of EDFTest2 and FFD. For the DM/RM policy, DM/RMTest2FFD is the heuristic
which presents the better results. This latter is the combination of DM/RMTest2 and FFD.

64

4 Communication and System
Constraints

In many practical situations, tasks are not really independent as assumed previously but they
interact with each other in some way. In general, there are two types of task dependencies
that cover practical design needs to a large extent and that are worth a more detailed analysis:
communication and system constraints.

Tasks communicate if they exchange some kind of information. This is the case, for example,
when tasks exchange messages containing necessary data for their execution, when there is a
given order of execution and some synchronization is needed, etc.

On the other hand, system constraints are preliminary design restrictions, which we have to
take into account. For instance, if we were to include some redundancy in order to increase the
reliability of the system, it is important not to place two redundant tasks into the same processor.
If we were to do so and the processor fails, both redundant tasks will not be available anymore
and the redundancy will not comply with its function. This latter necessary mutual exclusion of
redundant tasks is what we call a system constraint.

In order to allocate dependent real-time tasks to processors, the task model should be able to
describe all dependencies between tasks. For this reason, the task model applied in previous
chapters will be first extended to consider communication and system constraints. Afterwards,
we adapt the heuristics discussed in Chapter 3 to make use of the extended task model. For
the sake of simplicity, we focus on the case under EDF where deadlines are equal to periods
(i.e., the case for which the task allocation reduces to the bin packing problem). However, all
methods presented in this chapter are general enough and their extension to other discussed
scheduling cases is straight forward.

Further, to illustrate the average performance of the different algorithms, an extensive statistical
comparison will be presented. In particular, we are interested in analyzing the ability of the
different allocation heuristics to reduce the amount of communication between processors.

4.1 Modeling Task Dependencies

In the previous chapters, we have assumed that a task Ti is modeled by a 3-tuple (pi, di, ei)
(i.e., period, deadline and worst-case execution time, where pi can also be seen as the minimal
inter-arrival time between two jobs of Ti). This task model was used to describe the execution

65

4 Communication and System Constraints

demand of tasks and is still valid in this chapter. However, we have to add some more parameters
to be able to capture other task properties like, for example, the amount of communication that
it produces, with which other tasks it communicates, etc. The following sections introduce the
model used in this thesis to characterize these other task properties.

4.1.1 Communication

In principle, we assume that tasks can send messages to and/or receive messages from any other
task in the task set. This establishes a communication dependency between two communicating
tasks. For the sake of generality, no restrictions are imposed to the number of communication
dependencies that a task may have. So, theoretically, a task can send messages to and/or re-
ceive messages from every other task in the system. In this case, the task system is a fully
connected and every task sends information to and receives information from every other task
in the system.

For every communication dependency, we need to distinguish which two tasks communicate,
the amount of information (in bits or bytes) they exchange, the direction of the information
exchange (incoming or outgoing messages) and how often messages are sent or received. All
this data is contained in the communication matrix Cn×n where n is the number of tasks in Tn

(n = |Tn|).

The Communication Matrix

As stated above, we need to identify which task sends and which task receives which messages.
This information is provided by the communication matrix Cn×n. Columns and rows in the
communication matrix are given by tasks Ti in the task set Tn, so that the i-th row and the i-th
column correspond to Ti. An element cij of Cn×n contains the amount of bits (or bytes) per time
unit that are sent from Ti to Tj . In the same way, the element cji is the amount of bits (or bytes)
per time unit that Ti receives from Tj . That is, the i-th row from Cn×n contains all outgoing
messages of Ti, whereas the i-th column contains Ti’s incoming messages. To illustrate the use
of the communication matrix, let us consider the following example of four tasks:

• T1 sends b1,2 bits to T2 every p1 seconds and receives b4,1 bits from T4;

• T2 receives b1,2 bits from T1 and sends b2,3 to T3 and b2,4 to T4 every p2 seconds;

• T3 receives b2,3 bits from T2, b4,3 bits from T4 and sends no message;

• T4 receives b2,4 bits from T2 and sends b4,1 and b4,3 bits respectively to T1 and T3 every p4

seconds.

The first row of the communication matrix C4×4 represents T1’s outgoing messages. The second
row represents T2’s outgoing messages and so forth. Because T1 sends b1,2 bits only to T2 every
p1 seconds, c1,2 = b1,2

p1
while all other entries in T1’s row will be zero. On the other hand, T2

sends b2,3 and b2,4 bits to T3 and T4 respectively and every p2 seconds, so c2,3 = b2,3

p2
, c2,4 = b2,4

p2

66

4.1 Modeling Task Dependencies

and all other entries in the second row will be zero. As T3 sends no messages at all, the third
row will have all entries equal to zero. Finally, T4 sends b4,1 and b4,3 bits every p4 seconds to
T1 and T3, consequently, c4,1 = b4,1

p4
and c4,3 = b4,3

p4
whereas other entries in the fourth row are

zero. The communication matrix for the given example is the following one:

C4×4 =


0 b1,2

p1
0 0

0 0 b2,3

p2

b2,4

p2

0 0 0 0
b4,1

p4
0 b4,3

p4
0

 .

Notice that the main diagonal elements in the communication matrix are always zero (cij = 0
for all i = j where 1 ≤ i ≤ n and 1 ≤ j ≤ n), because they would otherwise represent
messages from the tasks to themselves. As already mentioned, columns contain the incoming
messages per task. However, the information contained in the columns results clearly from
filling in the outgoing messages into rows.

Communication Signatures

The communication matrix can be implemented in form of communication signatures. In this
case, it is necessary to index all individual messages sent by the tasks, so that each of these
messages gets a univocal index. Let us further denote by Mm the set of messages, where m is
the number of messages in the system. Then, every task Ti is assigned a sequence of m bits
that we denominate communication signature Ci. Every bit in Ci represents a message in Mm.
This way, the k-th bit in Ci refers to the k-th message Mk and will be set to 1 only if T1 sends
the message Mk, otherwise it is set to zero. In our previous example, let us make the following
assumptions:

• M1 denotes the message from T1 to T2;

• M2 and M3 are the messages from T2 to respectively T3 and to T4;

• M4 is the message sent from T4 to T1 and M5 the message from T4 to T3.

The communication matrix can be rewritten as follows:

C4×4 =


0 M1 0 0
0 0 M2 M3

0 0 0 0
M4 0 M5 0

 .

The communication signature C4 for task T4 is given by the m-bit sequence “00011”, where the
first bit represents M1, the second bit denotes M2 and so forth. Notice that only the bits 4 and
5 are set to 1 in C4 because T4 sends only the messages M4 and M5. All other bits in C4 are
consequently zero.

67

4 Communication and System Constraints

4.1.2 System Constraints

Besides the case of mutual exclusion mentioned above, there are also other system constraints
that might be useful to consider. For instance, it might sometimes be interesting to bind one or
more tasks to a given processor type presenting certain characteristics like, e.g., an A/D con-
verter, a DMA channel, etc. The procedure we use to model mutual exclusion can be extended
to other system constraints as well, so we use the mutual exclusion example to illustrate it.

In order to take mutual exclusion into account when performing a task allocation, we need to
identify which tasks should not be placed together on the same processor. This information is
provided by the mutual exclusion matrix discussed next. Like the communication matrix, the
mutual exclusion matrix Xn×n is a square one where n is the number of tasks in Tn.

The Mutual Exclusion Matrix

Columns and rows in the mutual exclusion matrix Xn×n are given by tasks in Tn, so that the
i-th row and the i-th column correspond to Ti. An element xij of Xn×n is set to 1 if Ti excludes
Tj (i.e., if Ti and Tj cannot be placed on the same processor), otherwise it will be set to zero.
Clearly, if Ti excludes Tj , Tj also excludes Ti, so the mutual exclusion matrix is symmetric. To
illustrate the construction of the mutual exclusion matrix, we consider the following example
of four tasks:

• T1 excludes T3;

• T2 does not exclude any task;

• T3 excludes T1 (because T1 excludes T3) and T4;

• T4 excludes T3 (because T3 also excludes T4).

The first row of X4×4 represents T1, the second one represents T2 and so forth. In the same
way, the first column represents T1, T2 is represented by the second column and so on. As T1

and T3 exclude each other mutually, x1,3 = x3,1 = 1. The other entries for T1 will be zero
while x3,4 = 1 because T3 excludes T4. On the other hand, T2 does not exclude any tasks so all
elements of the second row and column are zero. The mutual exclusion matrix for the previous
example is the following one:

X4×4 =


0 0 1 0
0 0 0 0
1 0 0 1
0 0 1 0

 .

In the mutual exclusion matrix, like in the communication matrix, elements of the main diagonal
are all zero. This is because a task Ti cannot exclude itself.

68

4.2 Allocating Dependent Real-Time Tasks

Mutual Exclusion Signatures

The mutual exclusion matrix can also be implemented in form of binary signatures. This way,
every task Ti is assigned a bit sequence denominated mutual exclusion signature Xi, which
corresponds to the i-th row of the mutual exclusion matrix and has a length of n bits. Every bit
in this signature represents a different task from the task set Tn, so that the j-th bit refers to Tj

and so forth. In our previous example, the mutual exclusion signature for task T3 will be given
by the bit sequence “1001”, where the first bit represents T1, the second bit represents T2 and so
on.

4.2 Allocating Dependent Real-Time Tasks

In this section, we extend the algorithms discussed in Chapter 3 to consider communication
and mutual exclusion—this latter as an example of system constraints. Other possible system
constraints can be modeled as shown for the mutual exclusion case and included in the allocation
algorithms as well.

The algorithms presented in this section differentiate from those of Chapter 3 in that they utilize
the communication and mutual exclusion matrix. Before we can start discussing how to inte-
grate these two matrices in the allocation procedure, it is necessary to introduce the concept of
allocation matrix and matrix of resulting communication. These two matrices contain the infor-
mation about which task is assigned to which processors and the resulting outgoing messages
per processor respectively.

4.2.1 The Allocation Matrix

The algorithms presented in this chapter use an allocation matrix Aq×n to identify which pro-
cessors the different tasks have been assigned to. The dimensions of this matrix are given by
the number of processors q and the number of tasks n. The number of processors q is increased
dynamically during the allocation procedure. At the beginning, there is no processor (q = 0),
and then processors are dynamically added as they get necessary to reach a feasible task alloca-
tion (i.e., the number of rows in Aq×n changes at run time). The f -th row in Aq×n corresponds
to processor Pf independently of whether Pf is open or closed at the moment. On the other
hand, columns in Aq×n relate to tasks, so that i-th column represents Ti, the j-th Tj and so on.
An element afi in Aq×n is set to 1 if the task Ti was assigned to the corresponding processor
Pf , otherwise it is set to zero.

Let us analyze briefly the following example to clarify how the allocation matrix is built:

• T1 and T2 were assigned to processor P1;

• T3 was allocated to P2;

• T4 was assigned to a third processor P3.

69

4 Communication and System Constraints

The first row of the allocation matrix A3×4 represents the processor P1, the second row repre-
sents P2 and so forth. Because T1 and T2 run on P1, a1,1 and a1,2 are both set to 1 whereas all
other entries in the first row will be zero. On the other hand, T3 and T4 were assigned respec-
tively to P2 and P3, so a2,3 and a3,4 are toggled to 1 and all other elements in these two rows are
zero. The resulting allocation matrix A3×4 is the following one:

A3×4 =

1 1 0 0
0 0 1 0
0 0 0 1

 .

Clearly, a task Ti can only be assigned once to only one processor, so if afi = 1 holds, all other
elements of the i-th column must be zero.

Allocation Signatures

We can implement the allocation matrix by means of binary signatures as well. Each processor
Pf is given a bit sequence denominated allocation signature Af , which corresponds to the f -th
row of the allocation matrix and has a length of n bits. Every bit in this signature represents
a different task from the task set Tn, so that the i-th bit refers to Ti, the j-th bit to Tj and so
forth. In the previous example, the allocation signature for P1 will be given by the bit sequence
“1100”, where the first bit represent T1 and so on.

4.2.2 The Matrix of Resulting Communication

For each processor, it is necessary to keep track of which messages are sent out towards other
processors. This is the function of the matrix of resulting communication Rq×n. Rows and
columns in the this matrix are given by processors and tasks respectively. As for the case of the
allocation matrix, the f -th row corresponds to processor Pf while the i-th column corresponds
to task Ti. An element rfi of Rq×n contains the amount of bits (or bytes) per time unit that is
sent from the tasks on Pf to Ti, if Ti runs on another processor. That is, the i-th entry of the f -th
row from Rq×n contains the sum of all outgoing messages from Pf towards Ti, if this latter is
located on another processor.

To illustrate the use of the resulting communication matrix, let us put together the examples of
Section 4.1.1 and 4.2.1:

• T1 runs on P1, sends b1,2 bits to T2 every p1 seconds and receives b4,1 bits from T4;

• T2 is executed on P1, it receives b1,2 bits from T1 and sends b2,3 to T3 and b2,4 to T4 every
p2 seconds;

• T3 is executed on P2, it receives b2,3 bits from T2 and b4,3 bits from T4, but it sends no
message;

70

4.2 Allocating Dependent Real-Time Tasks

• T4 runs on P3, receives b2,3 bits from T2 and sends b4,1 and b4,3 bits respectively to T1 and
T3 every p4 seconds.

Because T1 and T2 are both on P1, the message b1,2

p1
will not be sent out of P1 and r1,2 is zero.

The only messages going out of P1 are b2,3

p2
from T2 to T3 that runs on P2 and b2,4

p2
from T2 to

T4 that runs on P3. As a consequence, r1,3 = b2,3

p2
, r1,4 = b2,4

p2
and all other elements of the

first row are zero. On the other hand, all elements of the second row are zero because T3 sends
no messages to other tasks. Finally, r3,1 = b4,1

p4
and r3,3 = b4,3

p4
in P3’s row, because T4 sends

messages to T1 and T3 that are both executed on other processors.

R3×4 =

 0 0 b2,3

p2

b2,4

p2

0 0 0 0
b4,1

p4
0 b4,3

p4
0

 .

Notice that the sum of all elements from the resulting communication matrix constitutes the
total amount of communication taking place in the system.

Resulting Communication Signatures

In the same way as discussed above for the other matrices, the resulting communication matrix
can be implemented in form of bit sequences. In this case, we also need to identify individual
messages that are sent by tasks, so that each of these messages gets a univocal index. If Mm

denotes the set of messages, where m is the number of messages in the system. Then, every
processor Pf is assigned a sequence of m bits that we denominate resulting communication
signature Rf . Every bit in Rf represents a message in Mm. Just like before, the k-th bit in Rf

refers to the k-th message Mk and will be set to 1 only if Mk is sent out of Pf , otherwise it will
be zero. As in Section 4.1.1, we can index messages in our previous example as follows:

• M1 denotes the message from T1 to T2;

• M2 and M3 are the messages from T2 to respectively T3 and to T4;

• M4 is the message sent from T4 to T1 and M5 the message from T4 to T3.

The matrix of resulting communication can further be rewritten as follows:

R3×4 =

 0 0 M2 M3

0 0 0 0
M4 0 M5 0

 .

Finally, the resulting communication signature R3 for processor P3 is given by the m-bit se-
quence “00011”, where the first bit represents M1, the second bit denotes M2 and so forth.
Notice that only the fourth and fifth bit are set to 1 in R3 because only the messages M4 and M5

are sent out of P3. All other bits in R3 are consequently zero.

71

4 Communication and System Constraints

//Input: Tn=tasks, Cn×n and Xn×n

//Output: Pq=processors, Aq×n and Rq×n

sort Tn according to a heuristic criterion;
5: n=size(Tn); //number of tasks

for i = 1 to n
q=size(Pq); //number of processors
if q > 0 //if there are open processors

for f = 1 to q
10: if !(A(f, 1 : n) & X(i, 1 : n))

if Ti fits on Pf

update Pf parameters;
A(f, i) = 1;
R(f, 1 : n) = (R(f, 1 : n) + C(i, 1 : n)) .∗ !A(f, 1 : n);

15: break; //exits the inner for-loop
end if

elseif f == q
open Pq+1;
update Pq+1 parameters;

20: A(q + 1, i) = 1;
R(q + 1, 1 : n) = C(i, 1 : n);

end if
end for
sort Pq according to heuristic criterion;

25: else
open P1;
update P1 parameters;
A(1, i) = 1;
R(1, 1 : n) = C(i, 1 : n);

end if
end for
return(Pq, Aq×n, Rq×n);

Figure 4.1: General pseudo-code for the allocation algorithms

4.3 Allocation Algorithms

As mentioned above, the allocation algorithms presented in this section use the four matrices
Cn×n, Xn×n, Aq×n and Rq×n to take task communication and mutual exclusion (as an example
for system constraints) into account. To illustrate how these four matrices are integrated into the
allocation procedure, let us consider the pseudo-code of Figure 4.1. This is a general pseudo-
code that can be applied for all heuristics in Chapter 3.

72

4.3 Allocation Algorithms

In Figure 4.1, the following input parameters are required: the task set Tn, the communication
matrix Cn×n and the mutual exclusion matrix Xn×n. Notice that other system constraints can
be modeled by means of a matrix as in the mutual exclusion case. If so, this system constraint
matrix must also be passed to the algorithms as a separate input parameter.

Algorithms based on the pseudo-code of Figure 4.1 populate a set of processors Pq dynami-
cally together with Aq×n and Rq×n, which contain information about the processors needed to
schedule all tasks. A new processor is added to Pq when there are no open processors q = 0
(lines 25 to 29) and whenever a task Ti cannot be assigned to any open processor Pf (lines 17
to 21), e.g., because it is excluded from every processor. As discussed in the previous chapters,
the decision of whether a task fits (i.e., whether it is feasible/schedulable) on a given processor
depends on the scheduling. In case that tasks are scheduled under EDF and deadlines are equal
to periods for all tasks, we only have to test that the total utilization on the processor Pf does
not exceed 100% for 1 ≤ f ≤ q. This is a sufficient and necessary condition [LL73]. How-
ever, other tests like the ones proposed in Chapter 2 must be applied when no restrictions can
be imposed to deadlines or whenever other scheduling algorithms are used (e.g., the DM/RM
scheduling policy).

Now, before testing whether a task Ti fits on Pf , it should be checked that no mutual exclusion
exists between Ti and other tasks already allocated to Pf . The information concerning all tasks
already assigned to Pf is contained in the f -th row of the allocation matrix Aq×n, whereas
mutual exclusion restrictions for Ti are given by the i-th row in Xn×n. As a consequence, an
element-wise AND (line 10) is performed between this two rows. If this results in a vector of
zeroes, there are no excluding tasks already allocated to Pf and Ti’s schedulability can be tested
in line 11. If including Ti does not result in any deadline miss, Ti can be assigned to Pf (lines
12 to 15). If the vector resulting from line 10 has at least one non-zero entry, there is a task on
Pf conflicting with Ti and Ti must be placed somewhere else on another processor.

Every time a new task Ti is assigned to a given processor Pf , the corresponding i-th entry in the
f -th row of the allocation matrix must be set to 1 to reflect that Ti is now allocated to Pf (lines
13, 20 and 28). Besides updating Pf ’s parameters (e.g., the remaining available utilization on Pf

or similar depending on the scheduling case), the resulting communication must be calculated
for Pf . This can be achieved by summing the i-th row of the communication matrix Cn×n and
the f -th row of the matrix of resulting communication Rq×n (line 14). The i-th row of Cn×n

contains all outgoing messages that Ti sends to other tasks, while the f -th row of Rq×n contains
all outgoing messages that are sent out from Pf to tasks on other processors. The sum of this
two rows is going to result in the amount of communication sent out from Pf when the new
task Ti is placed on Pf . However, messages that are sent to tasks that are already allocated to
Pf must be omitted. So, the sum of these two communication rows must be then multiplied
element by element (this is represented by the operator “.∗”) by the negated f -th row of the
allocation matrix. This way, messages being sent to tasks that are already on Pf will be set to
zero (line 14).

Sorting the task set Tn (line 4) and the processor set Pq (line 24) is something that varies from
heuristic to heuristic as discussed in Chapter 3. For example, NF and FF do not perform any
kind of sorting. On the other hand, FFD and BFD sort the task set according to decreasing

73

4 Communication and System Constraints

task utilization (which is the analogous to the item size in the bin packing terminology) and BF
and BFD also arrange processors according to increasing available utilization (available space).
Apart from this, all mentioned heuristics can be easily derived from Figure 4.1.

When a processor is closed, e.g., when no further task would fit into it, it cannot be accessed
anymore and the inner for-loop becomes shorter. However, closed processors’ entries in Aq×n

and Rq×n are still available, so some more elaborated indexing must be implemented to access
the right rows in these matrices. This more complex indexing is not really relevant and makes
algorithms more difficult to understand, so it was excluded from the pseudo-code of Figure 4.1.

Finally, all algorithms based this pseudo-code return the resulting set of processors Pq, the al-
location matrix Aq×n and the matrix of resulting communication Rq×n. From Pq and Aq×n,
we know where the different tasks are going to run. Rq×n contains the information concern-
ing the amount of communication that originates from the performed task allocation, which is
necessary to dimension the communication medium.

Complexity of the Algorithms

Clearly, ignoring all matrix operations, the pseudo-code presented in Figure 4.1 presents a com-
plexityO(n2) in the number of tasks. This is because we have two nested for-loops and the limit
of the inner for-loop, i.e., the number of processors q, can be as large as n. We chose to present
this pseudo-code with O(n2) to ease its exposition, however, algorithms based on it can also be
implemented with complexity O(n log n). The only exception is NF which can be implemented
with linear complexity O(n).

Now, if we use the correct hardware all these matrix operations (which can be easily paral-
lelized) can be perform in O(1). Furthermore, programming languages like Matlab are also
very efficient to perform matrix operations. On the other hand, we can also use the discussed
signatures to implement matrices. This way, all matrix operations reduce to logical operations
that can be performed in O(1). The number of bits in the signatures is still going to depend on
the number of tasks (and messages in the case of the communication signature), but this can be
limited to a certain upper bound achieving in this way a constant complexity.

When using binary signatures instead of matrices, a bit-wise AND can be performed between
the allocation signature Af of processor Pf and the mutual exclusion signature Xi of Ti in order
to verify whether Ti is allowed to run on Pf or not (see line 10 in Figure 4.1). Additionally, every
time that messages must be sent out from Pf , the corresponding bits that represent messages
in the resulting communication signature Rf will be toggled to 1. In the same way, bits in Rf

will be toggled to 0 if messages are not necessary anymore, because the communicating tasks
could be placed together on Pf . The activating of messages can be carried out by a bit-wise
OR between Rf and the communication signature Ci of task Ti (line 14 in Figure 4.1). Further,
messages can be deactivated by performing a bit-wise AND between the result of the previous
OR operation and the negated allocation signature Af (also line 14 in Figure 4.1).

Once all tasks have been allocated to processors, we obtain the set Pq of necessary processors
to guarantee feasibility. Every processor Pf ∈ Pq has a communication signature Rf which

74

4.4 Amount of Communication between Processors

10−1 1000

2000

4000

6000

8000

10000

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

BFD
FFD
BF
FF
NF

(a) n = 10

10−1 1001

1.2

1.4

1.6

1.8

2 x 105

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

BFD
FFD
BF
FF
NF

(b) n = 50

10−1 1001.4

1.6

1.8

2

2.2 x 105

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

BFD
FFD
BF
FF
NF

(c) n = 100

10−1 1001.35

1.4

1.45

1.5 x 106

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

BFD
FFD
BF
FF
NF

(d) n = 500

Figure 4.2: Bin packing: average amount of communication vs. maximum task utilization

results from the allocation reached. Which messages must finally be transmitted on the bus can
be obtained by performing an bit-wise OR of all Rf and then using the information from the
message set Mm to compute the amount of communication.

4.4 Amount of Communication between Processors

In this section, we analyze how the different bin packing heuristics perform at reducing the
amount of communication between processors. Recall that, in this chapter, we focus on the case
under EDF where deadlines are all equal to periods, i.e., the case for which the task allocation
reduces to the bin packing problem. For this case, we also consider the heuristics previously
discussed in Section 3.1.1: NF, FF, BF, FFD and BFD.

For the purpose of obtaining meaningful test data, a large number of task sets were randomly
generated for 10, 50, 100 and 500 tasks respectively as described in Section 3.1.2 (i.e., task
utilizations within task sets were chosen uniformly between 0 and a varying maximum task uti-
lization, where 1000 different task sets were generated every time the maximum task utilization
was increased).

75

4 Communication and System Constraints

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

BFD
FFD
BF
FF
NF

(a) n = 10

0.2 0.4 0.6 0.8 1
0

10

20

30

40

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

BFD
FFD
BF
FF
NF

(b) n = 50

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

BFD
FFD
BF
FF
NF

(c) n = 100

0.2 0.4 0.6 0.8 1
0

2

4

6

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

BFD
FFD
BF
FF
NF

(d) n = 500

Figure 4.3: Bin packing: average communication reduction compared to WorstCP vs. maxi-
mum task utilization

In order to generate communication matrices for the different task sets, it was assumed that a
task can only communicate (send and/or receive messages) at maximum with only one other
task in the task set. Further, tasks are supposed to send messages at the end of their execution
time, which yields that messages present the same period as the respective tasks. For the pre-
sented curves, periods were uniformly distributed in the range of (0, 1] seconds. These were
generated first and remain the same for all task sets in each plot, so that the effect of increasing
the maximum task utilization on the amount of communication can be illustrated more easily.
(Only the periods are uniformly chosen once at the beginning of each plot, all other parame-
ters are randomly created every time a new task set is generated.) The pairs of communicating
tasks were chosen randomly with a uniform distribution. Then, for every pair of communicating
tasks, random messages were created also uniformly in the range [0, 1024] bits, where 1024 bits
is the maximum length assumed for a message (longer messages have an effect on the scale, but
not on the curves’ shape).

Figure 4.2 shows the amount of communication in bits per second that results from applying the
different bin packing heuristics to reduce the number of processors. In this figure, a logarithmic
scale was used for the x-axis representing the maximum task utilization, so as to increase the

76

4.5 Reducing Communication between Processors

separation between curves. Figure 4.2 shows that FF and BF result in a greater reduction of the
amount of communication than other heuristics for 10 tasks, however, FFD and BFD reduce
communication the most when the number of tasks grows. In general, heuristics that are more
efficient reducing the number of necessary processors are statistically better to reduce com-
munication. This is because they can place more tasks in one processor producing that more
messages can be omitted on average.

Further, let us consider an algorithm referred to as WorstCP (Worst Communication Packing)
that returns the worst-case communication scenario. WorstCP calculates the amount of commu-
nication as the sum of all messages in the communication matrix:

∑n
i=1

∑n
j=1,j 6=i cij . Clearly,

WorstCP is the most pessimistic communication scenario at all, however, we chose to use it
as reference for this statistical comparison: the greater the distance to WorstCP, the better the
heuristic. The reason for this is that an optimal allocation algorithm to obtain the optimal com-
munication case presents exponential complexity and consequently a huge running time for
large numbers of tasks. Performing a comparison to WorstCP further gives a notion of how
much the different algorithms reduce the communication between processors when allocating
tasks. Figure 4.3 shows the communication reduction achieved by the different algorithms in
comparison to WorstCP for 10, 50, 100 and 500 tasks per task set. The length of bars represents
how much communication was reduced: a longer bar means a greater communication reduction
and consequently a better performance of algorithms. As it can be seen in Figure 4.3, all heuris-
tics produce a communication reduction of at least 40% when the maximum task utilization is
less than 0.5 and for n = 10. However, they are unable to reduce communication over 5% for a
maximum task utilization of 0.5 and n = 100.

4.5 Reducing Communication between Processors

The known bin packing heuristics compared in the previous section were designed to reduce
the number of processors (the number of bins in the bin packing terminology). However, per-
forming a task allocation to reduce the number of processors results most of the time in an
increased communication flow between processors. A greater communication flow produces
additional delay because tasks must wait for messages to arrive. Moreover, in embedded sys-
tems, it is normally associated with more costs because adding a new communication bus might
be required. For these reasons, four additional heuristics are further proposed to reduce the
amount of communication between processors. These new heuristics can also be derived from
the pseudo-code of Figure 4.1 and are based on the communication volume matrix described in
the following section.

4.5.1 The Communication Volume Matrix

The communication volume between two tasks is given by total amount of bits per second that
they exchange with each other. For example, if a task Ti sends bij bits to Tj every pi seconds
and Tj sends Ti an amount of bji bits every pj seconds, the communication volume between

77

4 Communication and System Constraints

Ti and Tj is given by the sum bij

pi
+

bji

pj
. Now, the sum of all messages from Ti directed to

Tj is contained in the entry cij of the communication matrix Cn×n discussed in Section 4.1.1.
Similarly, cji contains the sum of all messages from Tj to Ti, so that the communication volume
between Ti and Tj is given by vij = vji = cij + cji. As a consequence, the communication
volume matrix is a symmetric matrix and can be obtained summing the communication matrix
and its transpose: Vn×n = Cn×n + C′

n×n.

4.5.2 Heuristics to Reduce Communication

As already stated, the heuristics proposed in this section make use of the communication volume
matrix Vn×n in the way explained next.

• The Maximum Communication First Fit Decreasing heuristic (maxCFFD) is based on
FF. Similar to FFD, maxCFFD sorts tasks at the beginning. However, the initial sorting
in maxCFFD is done according to the decreasing maximum communication volume of
tasks and not according to decreasing task utilization as FFD. That is, the tasks Ti in Tn

are sorted according to decreasing values of maxn
j=1(vij), i.e., the maximum value in the

i-th row of Vn×n. Then, FF is used to perform an allocation to processors.

• The Total Communication First Fit Decreasing heuristic (totCFFD) is also based on FF
and sorts tasks according to the decreasing total communication volume that they ex-
change with all other tasks. The total communication volume of tasks can be obtained
by summing up all elements in the communication volume matrix row by row:

∑n
j=1 vij .

After sorting tasks with respect to this parameter, FF is applied to allocate them to pro-
cessors.

• The Maximum Communication Best Fit Decreasing heuristic (maxCBFD) is based on BF.
As maxCFFD, it sorts tasks according to decreasing maximum communication volumes,
but then it uses a best fit technique to perform an allocation. In contrast to the original BF,
processors are not sorted according to remaining available utilization, but they are sorted
according to outgoing communication. This means that maxCBFD tries to allocate a task
Ti on the processor whose allocated tasks communicate the most with Ti. If this is not
possible, it continues with the next processor having the greatest communication towards
Ti and so on.

• The Total Communication Best Fit Decreasing heuristic (totCBFD) is also based on BF.
The only difference between totCBFD and maxCBFD is that totCBFD sorts tasks ac-
cording to decreasing total communication volumes like totCFFD, but then it proceeds as
discussed for maxCBFD.

Let us further define task connectivity as the maximum number of tasks with which any task
in Tn is allowed to communicate (receive messages from and/or send messages to). So, two
comparison scenarios can be taken into account. The first one consists in increasing the maxi-
mum task utilization with a minimum connectivity between tasks, i.e., for the case where tasks
communicate with only one other task in the task set. The second comparison scenario is about
increasing the task connectivity from 0 to n for a fixed maximum task utilization.

78

4.5 Reducing Communication between Processors

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.4: Heuristics to reduce communication: average number of processors vs. maximum
task utilization, n = 10

Before comparing the proposed heuristics with respect to their ability to minimize communica-
tion, we first analyze how good these heuristics are in reducing the number of processors.

4.5.3 Processors versus Maximum Task Utilization

All plots in this section are generated as for Chapter 3 for a large number of synthetic task
sets and different numbers of tasks per task set. In Figure 4.4 to Figure 4.7, the proposed
heuristics are compared against FFD with respect to the number of processors they obtain. As
expected, the heuristics to reduce communication are not as effective as FFD when compared
with regard to the number of processors that they result in. The proposed algorithms to reduce
communication perform similar to FF and BF because of sorting tasks in another order than the
decreasing order of task utilization.

Figure 4.8 to Figure 4.11 show the average difference of the new algorithms to BestBP, i.e.,
the best bin packing algorithm discussed in Chapter 3. Clearly, the proposed heuristics to re-
duce communication yield more additional processors than FFD. When compared to BestBP,
FFD results in around 1 additional processor for n = 100 and a maximum task utilization of
0.8—see Figure 4.10. In this case, the proposed heuristics to reduce communication lead to
approximately 4 additional processors compared to BestBP. In Figure 4.11, for n = 500 and a
maximum task utilization of 0.8, FFD still results in 1 additional processor. This time, however,
the proposed heuristics are unable to reduce the number of additional processors to less than 10.

79

4 Communication and System Constraints

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.5: Heuristics to reduce communication: average number of processors vs. maximum
task utilization, n = 50

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.6: Heuristics to reduce communication: average number of processors vs. maximum
task utilization, n = 100

80

4.5 Reducing Communication between Processors

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.7: Heuristics to reduce communication: average number of processors vs. maximum
task utilization, n = 500

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.8: Heuristics to reduce communication: average additional number of processors com-
pared to BestBP vs. maximum task utilization, n = 10

81

4 Communication and System Constraints

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.9: Heuristics to reduce communication: average additional number of processors com-
pared to BestBP vs. maximum task utilization, n = 50

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.10: Heuristics to reduce communication: average additional number of processors
compared to BestBP vs. maximum task utilization, n = 100

82

4.5 Reducing Communication between Processors

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.11: Heuristics to reduce communication: average additional number of processors
compared to BestBP vs. maximum task utilization, n = 500

4.5.4 Communication versus Maximum Task Utilization

In this section, we compare the proposed heuristics to reduce communication with the FFD
heuristic. For this purpose, a large number of task sets were generated exactly as for Section 4.4
and also for 10, 50, 100 and 500 tasks respectively.

Communication matrices for the different task sets were generated assuming that a task can
communicate with only one other task in the task set. Further, tasks are supposed to send
messages at the end of their execution times, so messages present the same period as the orig-
inating tasks. In addition, periods were uniformly generated in the range of (0, 1] seconds and
remain the same for all task sets in each plot. This way, the effect of increasing the maximum
task utilization on the amount of communication can be observed more clearly. The pairs of
communicating tasks were chosen randomly with a uniform distribution, for which random
messages were created also uniformly in the range [0, 1024] bits.

Figure 4.12 to Figure 4.15 show the amount of communication in bits per second that results
from applying the different heuristics to allocate tasks. From this figure, it can be observed that
the proposed heuristics to reduce communication present a remarkable improvement over FFD
and consequently over all previously discussed bin packing heuristics. Both, maxCFFD and
maxCBFD perform exactly the same, i.e., sorting processors as in maxCBFD does not present
much advantage from a statistical point of view. In the same way, totCFFD and totCBFD behave
very similar to each other. Additionally, the two heuristics based on the maximum communi-
cation volume (maxCFFD and maxCBFD) are slightly better than totCFFD and totCBFD, i.e.,

83

4 Communication and System Constraints

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.12: Heuristics to reduce communication: average amount of communication vs. max-
imum task utilization, n = 10

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
x 104

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.13: Heuristics to reduce communication: average amount of communication vs. max-
imum task utilization, n = 50

84

4.5 Reducing Communication between Processors

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 105

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.14: Heuristics to reduce communication: average amount of communication vs. max-
imum task utilization, n = 100

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 106

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.15: Heuristics to reduce communication: average amount of communication vs. max-
imum task utilization, n = 500

85

4 Communication and System Constraints

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.16: Heuristics to reduce communication: average communication reduction compared
to WorstCP vs. maximum task utilization, n = 10

they result in less communication flow. In Figure 4.14 for n = 100 and a maximum task uti-
lization of 0.6, the proposed algorithms lead to 250 Kbps, whereas FFD is unable to reduce
the amount of communication more than 420 Kbps. On the other hand, the proposed algorithm
reach 1.2 Mbps for n = 500 and a maximum task utilization of 0.6 (FFD delivers 2.5 Mbps, see
Figure 4.15). Clearly, as the number of tasks grows, the communication flow is also going to
grow. (Where in the case of 100 tasks, we have a communication flow of Kbps, we have Mbps
for 500 tasks.) This is because every task is allowed to send a message in this comparison. As
a consequence, if the number of tasks increases, there will be also more messages that need to
be exchanged among processors.

From Figure 4.16 up to Figure 4.19, algorithms are contrasted with respect to WorstCP (the
worst-case communication case) for different numbers of tasks. Comparing to WorstCP gives
an idea of the communication reduction that can be achieved by the different algorithms. The
length of bars represents how much communication was reduced: longer bars mean a greater
communication reduction and consequently a better performance of algorithms. As it can be
seen in these figures, all heuristics produce a communication reduction of at least 40% com-
pared to WorstCP, when the maximum task utilization is less than 0.5 and independently of the
number of tasks. As expected, maxCFFD and maxCBFD are slightly better than totCFFD and
totCBFD, and all of them outperform FFD in that they produce a more significant communica-
tion reduction. Whereas the communication reduction resulting from FFD degrades drastically
as the number of tasks grows, the proposed algorithms allow for a more stable and meaningful
reduction of communication.

86

4.5 Reducing Communication between Processors

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.17: Heuristics to reduce communication: average communication reduction compared
to WorstCP vs. maximum task utilization, n = 50

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.18: Heuristics to reduce communication: average communication reduction compared
to WorstCP vs. maximum task utilization, n = 100

87

4 Communication and System Constraints

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.19: Heuristics to reduce communication: average communication reduction compared
to WorstCP vs. maximum task utilization, n = 500

4.5.5 Communication versus Maximum Task Connectivity

Now, Figure 4.20 to Figure 4.23 show the amount of communication that results as the max-
imum task connectivity is increased. The task connectivity is defined as the number of tasks
with which each task in Tn is allowed to communicate. The maximum task connectivity will
be increased from 0 to n tasks. The case where the maximum task connectivity is 1 was al-
ready studied in the previous section and corresponds to a loosely connected task set. On the
other hand, when the maximum task connectivity is n, all tasks are allowed to send and receive
messages from all other tasks, i.e., we have a fully connected task set.

A large number of task sets were created randomly for 10, 50, 100 and 500 tasks respectively.
This time, the maximum task utilization within task sets was fixed to 0.5, i.e., task utilizations
were uniformly taken from (0, 0.5]. The maximum task connectivity was then increased from 0
to n in uniform steps of n

10
tasks each.

Every time the maximum task connectivity was increased, communication matrices were gen-
erated for the different task sets. For this, it was also assumed that tasks send messages at the
end of their execution times, such that messages have the same periods as the tasks they come
from. For the presented curves, periods were uniformly distributed in the range of (0, 1] sec-
onds. These were generated first and remain the same for all task sets in each plot to emphasize
the effect of an increasing task connectivity on the resulting amount of communication. (Here
again, only the periods are chosen once at the beginning of each plot, all other parameter are
randomly generated every time a new task set is created.) The pairs of communicating tasks

88

4.5 Reducing Communication between Processors

0 2 4 6 8 10
0

0.5

1

1.5

2
x 105

maximum task connectivity

co
m

m
un

ic
at

io
n

[b
its

/s]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.20: Heuristics to reduce communication: average amount of communication vs. max-
imum task connectivity, n = 10

were chosen randomly with a uniform distribution as well. Then, for every pair of communi-
cating tasks, random messages were created also uniformly in the range [0, 1024] bits, where
1024 bits is the maximum length assumed for a message (longer messages have no effect on the
shape of curves).

In Figure 4.20 to Figure 4.23, the resulting amount of communication for an increasing maxi-
mum task connectivity is compared. As expected, the performance of all algorithms gets very
similar as the number of tasks grows. Where for n = 10 all heuristics to reduce communication
present a interesting improvement over FFD, this practically disappears for n = 500. However,
this drastic change is also because the task connectivity is increased in steps of 1 task for n = 10,
whereas the connectivity grows in steps of 50 tasks for n = 500. For n = 10 and a maximum
task connectivity of 6 in Figure 4.20, the proposed heuristics to reduce communication deliver
60 Kbps, while FFD reaches 140 Kbps. In the case of n = 100 and maximum task connectivity
of 60, FFD achieves 55 Mbps and the new heuristics yield 45 Mbps (see Figure 4.22).

A comparison to WorstCP for an increasing task connectivity is given in Figure 4.24 to Fig-
ure 4.27. As expected in Figure 4.24, algorithms produce around 60% communication reduc-
tion with respect to WorstCP when n = 10 and tasks are allowed to communicate with the
half of the other tasks in Tn (with 5 tasks in this case). On the other hand, in Figure 4.27 for
n = 500, algorithms reach only between 2% and 1.5% communication reduction when tasks
are connected to the half of the other tasks in Tn (i.e., with 250 tasks).

89

4 Communication and System Constraints

0 10 20 30 40 50
0

1

2

3

4

5
x 106

maximum task connectivity

co
m

m
un

ic
at

io
n

[b
its

/s]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.21: Heuristics to reduce communication: average amount of communication vs. max-
imum task connectivity, n = 50

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8
x 107

maximum task connectivity

co
m

m
un

ic
at

io
n

[b
its

/s]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.22: Heuristics to reduce communication: average amount of communication vs. max-
imum task connectivity, n = 100

90

4.5 Reducing Communication between Processors

0 100 200 300 400 500
0

1

2

3

4

5

6

7
x 108

maximum task connectivity

co
m

m
un

ic
at

io
n

[b
its

/s]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.23: Heuristics to reduce communication: average amount of communication vs. max-
imum task connectivity, n = 500

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

maximum task connectivity

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.24: Heuristics to reduce communication: average communication reduction compared
to WorstCP vs. maximum task connectivity, n = 10

91

4 Communication and System Constraints

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

maximum task connectivity

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.25: Heuristics to reduce communication: average communication reduction compared
to WorstCP vs. maximum task connectivity, n = 50

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

maximum task connectivity

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.26: Heuristics to reduce communication: average communication reduction compared
to WorstCP vs. maximum task connectivity, n = 100

92

4.6 Heuristics to Reduce Processors and Communication

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

maximum task connectivity

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxCBFD
maxCFFD
totCBFD
totCFFD
FFD

Figure 4.27: Heuristics to reduce communication: average communication reduction compared
to WorstCP vs. maximum task connectivity, n = 500

4.6 Heuristics to Reduce Processors and
Communication

Finally, let us consider two more heuristics that aim at reducing both the total of processors and
the communication flow between them. In general, it will not be possible to reduce the number
of processors much more than what FFD does (at least with sequential algorithms) [CGJ97].
Nevertheless, we know from Chapter 3 that the number of processors given by FFD is quite
close to the optimum (i.e., to BestBP) from a statistical point of view.

On the other hand, it is desirable to combine FFD with the much more better communication
reduction obtained by the proposed maxCFFD and totCFFD. With this purpose, we propose
two other heuristics described below.

• The Maximum Load First Fit Decreasing heuristic (maxLFFD) is based on FF. Similar
to FFD, the maxLFFD heuristic sorts tasks at the beginning. However, the initial sorting
in maxLFFD is performed according to decreasing order of a parameter we call maxi-
mum load of tasks. The maximum load takes the maximum communication volume and
the task utilization into account to express the load produced by tasks on the system. We
know from our previous discussion that the maximum communication volume of a task Ti

is given by maxn
j=1(vij). Let us further represent by vmax the maximum of the maximum

communication volumes of all tasks, i.e., vmax = maxn
i=1

(
maxn

j=1(vij)
)
. Now, the max-

93

4 Communication and System Constraints

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.28: Heuristics to reduce processors and communication: average number of processors
vs. maximum task utilization, n = 10

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.29: Heuristics to reduce processors and communication: average number of processors
vs. maximum task utilization, n = 50

94

4.6 Heuristics to Reduce Processors and Communication

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.30: Heuristics to reduce processors and communication: average number of processors
vs. maximum task utilization, n = 100

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.31: Heuristics to reduce processors and communication: average number of processors
vs. maximum task utilization, n = 500

95

4 Communication and System Constraints

imum load of Ti will be given by
maxn

j=1(vij)

vmax
+ ui. This is the maximum communication

volume of Ti normalized with respect to vmax plus Ti’s utilization. Thus, maxLFFD sorts
all tasks Ti in Tn according to decreasing values of this parameter and then performs an
allocation based on FF.

• The Total Load First Fit Decreasing heuristic (totLFFD) is also based on FF. This heuristic
sorts tasks according to decreasing order of a parameter called total load of tasks. This pa-
rameter is similar to the previously defined maximum load, however, it uses total commu-
nication volume to come up with a measure of the load produced by tasks on the system.
The total communication volume of a task Ti is given by

∑n
j=1 vij and vtot is the max-

imum of the total communication volumes of all tasks, i.e., vtot = maxn
i=1

(∑n
j=1 vij

)
.

Now, the total load of Ti is defined as
Pn

j=1 vij

vtot
+ ui. That is, the total communication

volume of Ti normalized to vtot plus Ti’s utilization. Finally, totLFFD sorts all tasks Ti in
Tn according to decreasing values of total load and then performs an allocation based on
the FF heuristic.

The following sections are concerned with comparing these two heuristics with FFD and the
previously presented maxCFFD and totCFFD. FFD is together with BFD the best heuristic
we have discussed so far to reduce the number of necessary processors. On the other hand,
maxCFFD and totCFFD present better results than FFD in reducing communication between
processors.

4.6.1 Processors versus Maximum Task Utilization

For generating curves in this section, we proceeded as in Chapter 3. A huge number of task sets
were created for different numbers of tasks per set, where task utilizations were uniformly
chosen between 0 and a variable maximum task utilization. Figures 4.28 to 4.31 compare
the proposed heuristics against FFD, maxCFFD and totCFFD with respect to the number of
processors they obtain. The proposed heuristics to reduce both the number of processors and
the amount of communication perform better than maxCFFD and totCFFD, i.e., they obtain less
processors. As expected, these heuristics are not as effective as FFD regarding the number of
processors that they deliver for a small n. These new algorithms get, however, closer to FFD
when n grows.

In Figure 4.32 to Figure 4.35, the average distance of algorithms to BestBP, i.e., the best bin
packing, is shown. The proposed heuristics to reduce processors and communication result in
a number of additional processors that is quite close to FFD and they outperform maxCFFD
and totCFFD. For n = 100 and a maximum task utilization of 0.8, the three FFD, maxLFFD
and totLFFD produce around 1 additional processor, whereas maxCFFD and totCFFD can only
reduce the number of additional processors to approximately 4—see Figure 4.34. In the case of
500 tasks and also a maximum utilization of 0.8, maxLFFD and totLFFD still produce around
1 additional processor like FFD. However, maxCFFD and totCFFD come to 10 additional pro-
cessors compared to BestBP (Figure 4.35).

96

4.6 Heuristics to Reduce Processors and Communication

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.32: Heuristics to reduce processors and communication: average additional number of
processors compared to BestBP vs. maximum task utilization, n = 10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.33: Heuristics to reduce processors and communication: average additional number of
processors compared to BestBP vs. maximum task utilization, n = 50

97

4 Communication and System Constraints

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.34: Heuristics to reduce processors and communication: average additional number of
processors compared to BestBP vs. maximum task utilization, n = 100

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

maximum task utilization

nu
m

be
r o

f p
ro

ce
ss

or
s

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.35: Heuristics to reduce processors and communication: average additional number of
processors compared to BestBP vs. maximum task utilization, n = 500

98

4.6 Heuristics to Reduce Processors and Communication

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.36: Heuristics to reduce processors and communication: average amount of communi-
cation vs. maximum task utilization, n = 10

4.6.2 Communication versus Maximum Task Utilization

In this section, the proposed heuristics maxLFFD and totLFFD are compared to FFD, maxCFFD
and totCFFD concerning the amount of communication they lead to. For this purpose, a large
number of task sets were generated exactly as for Section 4.5.4.

Communication matrices were randomly generated considering that a task can only communi-
cate with only one task at a time (a loosely connected task system). Further, messages present
the same period as the originating tasks. These periods were uniformly generated in the range
of (0, 1] seconds and remain the same for all task sets in each plot to make the effect of in-
creasing the maximum task utilization more clear. The pairs of communicating tasks were also
chosen randomly with a uniform distribution, for which random messages were created also in
the range [0, 1024] bits.

Figures 4.36 to 4.39 show the amount of communication in bits per second that results from the
different heuristics. It can be seen that maxLFFD and totLFFD are not as efficient as maxCFFD
and totCFFD to reduce communication. However, they still show a remarkable improvement
over FFD. Both, maxLFFD and totLFFD behave approximately the same for the different num-
bers of tasks per task set considered. For 100 tasks in Figure 4.38, maxLFFD and totLFFD
reach 140 Kbps for a maximum task utilization of 0.4. This is around 30 Kbps more than max-
CFFD and approximately 60 Kbps less than FFD. In Figure 4.39, for n = 500, maxLFFD and
totLFFD reach 1.4 Mbps for a maximum task utilization of also 0.4. In this case, they achieve
around 300 Kbps more than maxCFFD but also approximately 700 Kbps less than FFD.

99

4 Communication and System Constraints

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 104

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.37: Heuristics to reduce processors and communication: average amount of communi-
cation vs. maximum task utilization, n = 50

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 105

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.38: Heuristics to reduce processors and communication: average amount of communi-
cation vs. maximum task utilization, n = 100

100

4.6 Heuristics to Reduce Processors and Communication

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 106

maximum task utilization

co
m

m
un

ic
at

io
n

[b
its

/s]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.39: Heuristics to reduce processors and communication: average amount of communi-
cation vs. maximum task utilization, n = 500

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.40: Heuristics to reduce processors and communication: average communication re-
duction compared to WorstCP vs. maximum task utilization n = 10

101

4 Communication and System Constraints

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.41: Heuristics to reduce processors and communication: average communication re-
duction compared to WorstCP vs. maximum task utilization n = 50

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.42: Heuristics to reduce processors and communication: average communication re-
duction compared to WorstCP vs. maximum task utilization n = 100

102

4.6 Heuristics to Reduce Processors and Communication

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

maximum task utilization

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.43: Heuristics to reduce processors and communication: average communication re-
duction compared to WorstCP vs. maximum task utilization n = 500

In Figure 4.40 to Figure 4.43, algorithms are compared with respect to WorstCP, i.e., the worst-
case communication case. Comparing to WorstCP gives an idea of the communication reduction
that algorithms are able to achieve. The length of bars represents how much communication was
avoided. From Figure 4.40, it can be observed that maxLFFD and totLFFD result in only 5%
less communication reduction than maxCFFD when the maximum task utilization is less than
0.5 and n = 10. However, this difference increases to 10− 20% less communication reduction
for n = 500 in Figure 4.43.

4.6.3 Communication versus Maximum Task Connectivity

Figures 4.44 to 4.47 present the amount of communication that results as the maximum task
connectivity is increased. The task connectivity stands for the number of tasks with which each
task communicates. The maximum task connectivity will be increased from 0 to n tasks, i.e.,
we go from an unconnected to a fully connected task set.

A large number of task sets were created randomly for different numbers of tasks per task set.
As in Section 4.5.5, the maximum task utilization within task sets was also fixed to 0.5. The
maximum task connectivity was then increased from 0 to n in uniform steps of n

10
tasks each

time.

Every time the maximum task connectivity was increased, communication matrices were gen-
erated for the different task sets as described in Section 4.5.5. The periods for the messages

103

4 Communication and System Constraints

0 2 4 6 8 10
0

2

4

6

8

10
x 104

maximum task connectivity

co
m

m
un

ic
at

io
n

[b
its

/s]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.44: Heuristics to reduce processors and communication: average amount of communi-
cation vs. maximum task connectivity, n = 10

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16
x 106

maximum task connectivity

co
m

m
un

ic
at

io
n

[b
its

/s]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.45: Heuristics to reduce processors and communication: average amount of communi-
cation vs. maximum task connectivity, n = 50

104

4.6 Heuristics to Reduce Processors and Communication

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 107

maximum task connectivity

co
m

m
un

ic
at

io
n

[b
its

/s]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.46: Heuristics to reduce processors and communication: average amount of communi-
cation vs. maximum task connectivity, n = 100

0 100 200 300 400 500
0

1

2

3

4

5

6

7
x 108

maximum task connectivity

co
m

m
un

ic
at

io
n

[b
its

/s]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.47: Heuristics to reduce processors and communication: average amount of communi-
cation vs. maximum task connectivity, n = 500

105

4 Communication and System Constraints

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

maximum task connectivity

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.48: Heuristics to reduce processors and communication: average communication reduction
compared to WorstCP vs. maximum task connectivity, n = 10

were uniformly distributed in the range of (0, 1] seconds and generated once at the beginning of
each plot, so that the effect of an increasing task connectivity can be emphasized. Further, for
every pair of communicating tasks, random messages were created also uniformly in the range
[0, 1024] bits.

The resulting amount of communication for an increasing task connectivity is shown in Fig-
ure 4.44 to Figure 4.47. As expected, the performance of all algorithms becomes similar as
the number of tasks increases. In Figure 4.44 for n = 10, maxLFFD and totLFFD show
an interesting improvement over FFD, however, maxCFFD and totCFFD are still better. For
n = 10, maxLFFD is slightly better than totLFFD, i.e., it results in less communication flow.
For n = 500, the improvement of all new heuristics over FFD decreases drastically—see Fig-
ure 4.47. This behavior is partially due to the different step sizes with which the task connec-
tivity is increased: 1 task for n = 10 and 50 tasks for n = 500.

Algorithms are compared to WorstCP under these conditions in Figure 4.48 to Figure 4.51. The
heuristics maxLFFD and totLFFD produce around 55% communication reduction with respect
to WorstCP when n = 10 and tasks are allowed to communicate with 5 of the other tasks in
Tn—see Figure 4.48. These two heuristics are outperformed in around 5% by maxCFFD. On
the other hand, for n = 500 in Figure 4.51, maxLFFD and totLFFD arrive only to a communica-
tion reduction of 1.5% to 1% when tasks are connected to 250 of the remaining tasks. However,
maxCFFD and totCFFD are not much better at this point. From Figure 4.48 to Figure 4.51,
it can be observed that maxLFFD is slightly better than totLFFD in reducing the amount of
communication between processors.

106

4.6 Heuristics to Reduce Processors and Communication

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

maximum task connectivity

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.49: Heuristics to reduce processors and communication: average communication re-
duction compared to WorstCP vs. maximum task connectivity, n = 50

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

maximum task connectivity

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.50: Heuristics to reduce processors and communication: average communication re-
duction compared to WorstCP vs. maximum task connectivity, n = 100

107

4 Communication and System Constraints

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

maximum task connectivity

co
m

m
un

ic
at

io
n

re
du

ct
io

n
[%

]

maxLFFD
maxCFFD
totLFFD
totCFFD
FFD

Figure 4.51: Heuristics to reduce processors and communication: average communication re-
duction compared to WorstCP vs. maximum task connectivity, n = 500

4.7 Key Findings

The problem of allocating dependent real-time tasks to processors was addressed. We focused
on the allocation of communicating tasks to multiple processors, for which several possible
heuristics were analyzed. In general, maxCFFD (Maximum Communication First Fit Decreas-
ing) is the most suitable heuristic for minimizing the amount of communication between pro-
cessors. This heuristic consists in sorting tasks according to their maximum communication
volume. Concerning the minimization of both the number of processors and the amount of
communication, maxLFFD (Maximum Load First Fit Decreasing) has been shown to be the
more efficient than the other heuristics. The heuristic maxLFFD sorts tasks according to a pa-
rameter we called maximum load, which represents the load generated by tasks on the system.
The maximum load parameter takes both the communication and the computation demand into
account.

108

5 Concluding Remarks

In this thesis, we have analyzed the problem of allocating real-time tasks onto distributed pro-
cessing units. For this purpose, we concentrated on allocation algorithms with polynomial
complexity that are based on well-known techniques for bin packing like First Fit (FF) and First
Fit Decreasing (FFD). In particular, we focused on the analysis of real-time tasks with arbitrary
deadlines and considered also task communication and system constraints.

We have seen that an allocation algorithm for real-time tasks is composed of two interdependent
parts: an allocation procedure and a feasibility test. Whilst the allocation procedure is the one
deciding how tasks are going to be placed onto processors, the feasibility test is in charge of
proving that no deadlines are missed when a new task is assigned to a processor.

In the literature, it is often assumed that deadlines are equal to periods so as to simplify the
feasibility test when allocating real-time tasks to processors. In this context, there has been very
little work with respect to the more general case of tasks with arbitrary deadlines. The problem
is that, when considering arbitrary deadlines, the known methods for feasibility analysis have
either a pseudo-polynomial complexity or a poor accuracy.

Clearly, the complexity of an allocation algorithm degrades if a feasibility test with higher
complexity is used in combination with it. As we concentrate on allocation algorithms with
polynomial complexity, we cannot make use of feasibility tests with pseudo-polynomial com-
plexity. On the other hand, the use of simple polynomial-time feasibility tests (e.g., the density
test under EDF [SSRB98, Liu00]) results in less efficient allocation algorithms. In order to
retain the polynomial complexity of bin packing heuristics and, at the same time, to obtain
more efficient allocations, we proposed a novel technique for the feasibility analysis of real-
time tasks. This technique consists in calculating the maximum loading factor produced by
tasks on a given processor and can be applied to both fixed-priority as well as dynamic-priority
scheduling policies.

The loading factor is defined as the total execution demand of tasks in a specified time interval
over the length of this interval. Further, the maximum loading factor is the upper bound for
the loading factor. If the maximum loading factor is less than or equal to 1, the processor has
always sufficient time to execute all real-time tasks within their deadlines and the tasks are said
to be feasible or schedulable on that processor.

This way, two new feasibility tests were proposed for the EDF scheduling, which we called
respectively EDFTest1 and EDFTest2. Furthermore, three additional tests were also introduced
for tasks scheduled under the DM/RM policy: DM/RMTest1 to DM/RMTest3. All these tests
are based on calculating the maximum loading factor produced by tasks on a given processor.
The test DM/RMTest1 is the analogous for DM/RM to the density test for EDF [SSRB98,

109

5 Concluding Remarks

Liu00]. DM/RMTest1 is concerned with the computation of the maximum loading factor of
individual tasks. The tests DM/RMTest2 and EDFTest1 compute the maximum loading factor
for a group of two tasks achieving this way a better accuracy. A further accuracy improvement
can be obtained if the maximum loading factor is calculated for several tasks. This latter is what
DM/RMTest3 and EDFTest2 deal with.

These proposed feasibility tests were combined with some of the well-known bin packing
heuristics in order to come up with polynomial-time allocation algorithms for real-time tasks
with arbitrary deadlines. The heuristic EDFTest2FFD, i.e., the combination of the mentioned
EDFTest2 with the FFD heuristic, has shown to be better at reducing the number of proces-
sors under an EDF scheduling. In the same way, DM/RMTest2FFD is the combination of
DM/RMTest2 and FFD and resulted to be the best heuristic for allocating tasks under the
DM/RM policy.

On the other hand, we have also seen that simple bin packing heuristic perform very well on the
average for the case under EDF of independent tasks with deadlines equal to periods (i.e., for the
case where the task allocation reduces to the bin packing problem). However, as already stated,
very little work have been done so far on extending these methods to other more interesting
allocation scenarios, where, for example, tasks present communication between them. On the
contrary, researchers have rather focused on other approaches to solve the allocation problem in
more complex contexts like the one mentioned. In this thesis, we intended to bridge this gap by
proposing new heuristics based upon the known bin packing heuristics and that consider task
communication and system constraints. The main advantage of the proposed heuristics over the
methods from the literature is that they all have polynomial complexity.

Four new heuristics were presented to reduce the amount of communication when allocating
tasks to processors: maxCFFD, maxCBFD, totCFFD and totCBFD. As the known FFD, these
heuristics are based on sorting tasks according to a given criterion and then performing a sequen-
tial assignment to processors one task after the other. The criteria to sort tasks are concerned
with the communication characteristics among them. This way, maxCFFD and maxCBFD
sort tasks according to the maximum communication volume they exchange with other tasks,
whereas totCFFD and totCBFD arrange tasks according to their total communication volume.
The maximum communication volume of a task was defined to be the maximum message ex-
change (i.e., incoming and outgoing messages) with any other task. On the other hand, a task’s
total communication volume is the sum of all incoming and outgoing messages associated with
it. All four proposed heuristics were shown by means of a thorough statistical comparison to
achieve a substantial reduction of the communication among processors. However, maxCFFD
leads to the maximum communication reduction among all proposed heuristics.

The heuristics to reduce communication perform similar to FF in minimizing the number of
processors. This is because they do not sort tasks according to their utilizations as, for example,
the better FFD does (the task utilization is the analogous to the item size in the bin packing
problem). However, we know from [CGJ97] that sorting task according to their utilizations
results in a better allocation in the sense that less processors will be necessary. As a conse-
quence, two further heuristics were presented to reduce both the number of resulting processors
and the amount of communication between them: maxLFFD and totLFFD. These heuristics

110

also sort task according to given criteria. This time, the sorting criteria depend not only on the
communication characteristics of tasks, but also on their respective utilizations. As shown by
means an extensive comparison, these two other heuristics achieve fairly good allocations in
what respects to both the reduction of communication and processors, whereupon maxLFFD is
slightly better than totLFFD.

Finally, the proposed feasibility tests are general enough and can of course also be used in other
contexts. Particularly, because the proposed tests present all linear complexity O(n), they are
suitable for performing an (on-line) admission control. In this case, whether a new task can be
accepted on a system of already running tasks can be determined more accurately in constant
time O(1) by the new algorithms.

In addition, all presented heuristics were conceived to be used as off-line allocation algorithms.
This is because they sort tasks according to given criteria and, consequently, they need to know
all tasks in advance. However, if tasks are sorted as they arrive it may also be possible to use
these communication-aware heuristics to performs an on-line global scheduling upon multipro-
cessors. In this case, the task sorting might have to be restricted so as to be performed more
efficiently in on-line operation.

111

5 Concluding Remarks

112

Bibliography

[ABJ01] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multipro-
cessors. Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS),
pages 193–202, December 2001. 7

[ABR+93] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal, 8(5):284–292, September 1993. 5, 6

[ABRW91] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard real-time scheduling:
The deadline-monotonic approach. Proceedings of the 8th IEEE Workshop on
Real-Time Operating Systems and Software, pages 133–137, May 1991. 5

[ABS06] K. Albers, F. Bodmann, and F. Slomka. Hierarchical event streams and event
dependency graphs: A new computational model for embedded real-time systems.
Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS),
pages 97–106, July 2006. 8

[ACG+03] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation: Combinatorial Optimization Prob-
lems and Their Approximability Properties. Springer Verlag, Berlin, Germany,
2003. 47

[AD96] I. Ahmad and M. Dhodhi. Multiprocessor scheduling in a genetic paradigm. Par-
allel Computing, 22(3):395–406, 1996. 7

[AKS+02] S. Ali, J.-K. Kim, H. Siegel, A. Maciejewski, Y. Yu, S. Gundala, S. Gertphol, and
V. Prasanna. Greedy heuristics for resource allocation in dynamic distributed real-
time heterogeneous computing systems. Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications, pages
519–530, June 2002. 7

[AS04] K. Albers and F. Slomka. An event stream driven approximation for the analysis
of real-time systems. Proceedings of the 16th Euromicro Conference on Real-Time
Systems (ECRTS), June-July 2004. 4, 6, 32

[AS05] K. Albers and F. Slomka. Efficient feasibility analysis for real-time systems with
edf scheduling. Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), March 2005. 4

[Aud91] N. Audsley. Optimal priority assignment and feasibility of static priority tasks with

113

Bibliography

arbitrary start times. Technical Report YCS 164, University of York, Deparment of
Computer Science, 1991. 6

[Bak03] T. Baker. Multiprocessor edf and deadline monotonic schedulability analysis. Pro-
ceedings of the 24th IEEE Real-Time Systems Symposium (RTSS), pages 120–129,
2003. 7

[Bak05] T. Baker. An analysis of edf schedulability on a multiprocessor. IEEE Transactions
on Parallel Distributed Systems, 16(8):760–768, 2005. 7

[Bak06] T. Baker. An analysis of fixed-priority schedulability on a multiprocessor. Real-
Time Systems, 32(1-2):49–71, 2006. 7

[Bar98] S. Baruah. A general model for recurring real-time tasks. Proceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS), pages 114–122, December 1998. 8

[Bar03] S. Baruah. Dynamic- and static-priority scheduling of recurring real-time tasks.
Real-Time Systems, 24(1):93–128, 2003. 8

[Bar04] S. Baruah. Optimal utilization bounds for the fixed-priority scheduling of peri-
odic task systems on identical multiprocessors. IEEE Transaction on Computers,
53(6):781–784, 2004. 7

[BB03] E. Bini and G. Buttazzo. Rate monotonic analysis: the hyperbolic bound. IEEE
Transactions on Computers, 52(7):933–942, July 2003. 5

[BB04a] E. Bini and G. Buttazzo. Biasing effects in schedulability measures. Proceedings
of the 16th Euromicro Conference on Real-Time Systems (ECRTS), June-July 2004.
26, 40

[BB04b] E. Bini and G. Buttazzo. Schedulability analysis of periodic fixed priority systems.
IEEE Transactions on Computers, 53(11):1462–1473, November 2004. 5

[BB05] E. Bini and G. Buttazzo. Measuring the performance of schedulability tests. Real-
Time Systems, 30(1-2):129–154, 2005. 26, 40

[BB08] S. Baruah and T. Baker. Schedulability analysis of global edf. Real-Time Systems,
38(3):223–235, 2008. 7

[BBB01] E. Bini, G.C. Buttazzo, and G.M. Buttazzo. A hyperbolic bound for the rate mono-
tonic algorithm. Proceedings of the 13th Euromicro Conference on Real-Time
Systems (ECRTS), June 2001. 5, 29

[BCGM99] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe tasks.
Real-Time Systems, 17(1):5–22, 1999. 8

[BCL05] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis of edf
on multiprocessor platforms. Proceedings of the 17th Euromicro Conference on
Real-Time Systems (ECRTS), pages 209–218, July 2005. 7

[BF05] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of sporadic

114

Bibliography

task systems. Proceedings of the 26th Real-Time Systems Symposium (RTSS),
pages 321–329, December 2005. 53

[BF06a] S. Baruah and N. Fisher. The feasibility analysis of multiprocessor real-time
systems. Proceedings of the 18th Euromicro Conference on Real-Time Systems
(ECRTS), pages 85–96, July 2006. 7

[BF06b] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of deadline-
constrained sporadic task systems. IEEE Transactions on Computers, 55(7):918–
923, 2006. 53

[BF07] S. Baruah and N. Fisher. The partitioned dynamic-priority scheduling of sporadic
task systems. Real-Time Systems, 36(3):199–226, 2007. 53

[BHR93] S. Baruah, R. Howell, and L. Rosier. Feasibility problems for recurring tasks on
one processor. Theoretical Computer Science, 118(1):3–20, 1993. 3

[BLOS95] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New strategies for assigning
real-time tasks to multiprocessor systems. IEEE Transactions on Computers,
44(12):1429–1442, December 1995. 5, 29, 30, 52

[BMR90] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time spo-
radic tasks on one processor. Proceedings of the 11th IEEE Real-Time Systems
Symposium (RTSS), pages 182–190, December 1990. 3, 16, 17, 18, 26, 43

[BNTZ94] A. Burns, N. Nicholson, K. Tindell, and N. Zhang. Allocating and scheduling
hard real-time tasks on a parallel processing platform. Technical Report YCS 238,
University of York, Deparment of Computer Science, 1994. 7

[BRH90] S. Baruah, L. Rosier, and R. Howell. Algorithms and complexity concerning the
preemptive scheduling of periodic real-time tasks on one processor. Real-Time
Systems, 2(4):301–324, November 1990. 3

[But05] G. Buttazzo. Rate monotonic vs. edf: Judgment day. Real-Time Systems, 29(1):5–
26, January 2005. 3, 16

[CGJ97] E. Coffman, M. Garey, and D. Johnson. Approximation algorithms for bin packing:
A survey. Approximation Algorithms for NP-Hard Problems by D. Hochbaum,
pages 46–93, March 1997. Book Chapter. 7, 48, 49, 93, 110

[Cha03] S. Chakraborty. System-Level Timing Analysis and Scheduling for Embedded
Packet Processors. Eidgenössische Technische Hochschule (ETH) Zürich, Zurich,
Switzerland, 2003. Ph.D. Thesis. 4

[CKT02] S. Chakraborty, S. Künzli, and L. Thiele. Approximate schedulability analysis.
Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS), pages 159–
168, December 2002. 4, 42

[Der74] M. Dertouzos. Control robotics: The procedural control of physical processes.
Information Processing, 74:807–813, 1974. 3, 6, 15

115

Bibliography

[Dev03] M. Devi. An improved schedulability test for uniprocessor periodic task systems.
Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS),
pages 23–30, July 2003. 4, 16, 17, 18, 19, 53

[DL78] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Reser-
ach, 26(1):127–140, 1978. 2, 7, 52

[FB05a] N. Fisher and S. Baruah. A fully polynomial-time approximation scheme for fea-
sibility analysis in static-priority systems with arbitrary relative deadlines. Pro-
ceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS), pages
117–126, July 2005. 6, 32

[FB05b] N. Fisher and S. Baruah. A polynomial-time approximation scheme for feasibility
analysis in static-priority systems with bounded relative deadlines. Proceedings of
the 13th International Conference on Real-Time Systems, April 2005. 6

[FB05c] S. Funk and S. Baruah. Task assignment on uniform heterogeneous multipro-
cessors. Proceedings of the 17th Euromicro Conference on Real-Time Systems
(ECRTS), pages 219–226, July 2005. 7

[FB06] N. Fisher and S. Baruah. A fully polynomial-time approximation scheme for fea-
sibility analysis in static-priority systems with bounded relative deadlines. Journal
of Embedded Computing, 2(3,4):291–299, 2006. 6

[FGB01] S. Funk, J. Goossens, and S. Baruah. On-line scheduling on uniform multiproces-
sors. Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS), pages
183–192, December 2001. 7

[GFB03] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task
systems on multiprocessors. Real-Time Systems, 25(2-3):187–205, 2003. 7

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., San Francisco, USA, 1979. 1, 7, 47, 48

[Goo03] J. Goossens. Scheduling of offset free systems. Real-Time Systems, 24(2):239–
258, 2003. 5, 6

[Gre93] K. Gresser. Echtzeitnachweis ereignisgesteuerter Realzeitsysteme. VDI-Verlag,
Düsseldorf, Germany, 1993. Ph.D. Thesis (in German). 8

[GRS96] L. George, N. Rivierre, and M. Spuri. Preemptive and non-preemptive real-time
uniprocessor scheduling. Rapport de Recherche RR-2966, INRIA, 1996. 4, 16, 17

[HL88] K. Hong and J. Leung. On-line scheduling of real-time tasks. Proceedings of the
9th IEEE Real-Time Systems Symposium (RTSS), pages 244–250, December 1988.
6

[HL92] K. Hong and J. Leung. On-line scheduling of real-time tasks. IEEE Transactions
on Computers, 41(10):1326–1331, October 1992. 6

116

Bibliography

[Joh73] D. Johnson. Near-Optimal Bin Packing Algorithms. Massachusetts Institute of
Technology (MIT), Department of Mathematics, Cambridge, USA, 1973. Ph.D.
Thesis. 49

[KM91] T.-W. Kuo and A. Mok. Load adjustment in adaptive real-time systems. Pro-
ceedings of the 12th IEEE Real-Time Systems Symposium (RTSS), pages 160–170,
December 1991. 5, 29

[Kop98] H. Kopetz. The time-triggered model of computation. Proceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS), December 1998. 11

[Lat94] S. Latifi. Task allocation in the star graph. IEEE Transactions on Parallel Dis-
tributed Systems, 5(11):1220–1224, 1994. 7

[LDG01] J. López, J. Dı́az, and D. Garcı́a. Minimum and maximum utilization bounds for
multiprocessor rm scheduling. Proceedings of the 13th Euromicro Conference on
Real-Time Systems (ECRTS), June 2001. 7

[LDG04] J. López, J. Dı́az, and D. Garcı́a. Minimum and maximum utilization bounds for
multiprocessor rate monotonic scheduling. IEEE Transactions on Parallel and
Distributed Systems, 15(7):642–653, 2004. 2, 7

[Leh90] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary dead-
lines. Proceedings of the 11th IEEE Real-Time Systems Symposium (RTSS), pages
201–209, December 1990. 5, 6, 28, 29, 30, 31, 32, 40, 44

[LGDG00] J. López, M. Garcı́a, J. Dı́az, and D. Garcı́a. Worst-case utilization bound for edf
scheduling on real-time multiprocessor systems. Proceedings of the 12th Euromi-
cro Conference on Real-Time Systems (ECRTS), pages 25–33, June 2000. 7

[Liu00] J. Liu. Real-Time Systems. Prentice Hall, New Jersey, USA, 2000. 4, 5, 16, 17, 29,
42, 52, 109, 110

[LL73] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in hard
real-time environments. Journal of the Association for Computing Machinery,
20(1):40–61, 1973. 3, 5, 6, 8, 9, 17, 29, 48, 73

[LS86] J. Lehoczky and L. Sha. Performance of real-time bus scheduling algorithms.
Proceedings of the ACM SIGMETRICS joint international conference on computer
performance modeling, measurement and evaluation, pages 44–53, May 1986. 29,
30

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. Proceedings of the 10th IEEE Real-
Time Systems Symposium (RTSS), pages 166–171, December 1989. 5, 6

[Lun02] L. Lundberg. Analyzing fixed-priority global multiprocessor scheduling. Pro-
ceedings of the 8th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 145–153, September 2002. 7

117

Bibliography

[LW82] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Performance Evaluation, 2(4):237–250, 1982. 5, 16

[Mas07] A. Masrur. Feasibility conditions for edf. Technical Report, Technische Universität
München (TUM), Institute for Real-Time Computer Systems, September 2007. 42

[MC96] A. Mok and D. Chen. A multiframe model for real-time tasks. Proceedings of the
17th IEEE Real-Time Systems Symposium (RTSS), pages 22–29, December 1996.
8

[MC97] A. Mok and D. Chen. A multiframe model for real-time tasks. IEEE Transaction
on Software Engineering, 23(10):635–645, October 1997. 8

[MCF10a] A. Masrur, S. Chakraborty, and G. Färber. Constant-time admission control for
deadline monotonic tasks. Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), March 2010. 31

[MCF10b] A. Masrur, S. Chakraborty, and G. Färber. Constant-time admission control for
partitioned edf. Proceedings of 22nd Euromicro Conference on Real-Time Systems
(ECRTS), July 2010. 26, 28

[MDF08] A. Masrur, S Drössler, and G. Färber. Improvements in polynomial-time feasibility
testing for edf. Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), March 2008. 4, 18

[MF06a] A. Masrur and G. Färber. Ideas to improve the performance in feasibility testing
for edf. Proceedings of the WiP Session of the 18th Euromicro Conference on
Real-Time Systems (ECRTS), July 2006. 42

[MF06b] A. Masrur and G. Färber. An off-line variable-size bin packing for edf. Technical
Report, Technische Universität München (TUM), Institute for Real-Time Computer
Systems, July 2006. 53

[MFHS05] A. Metzner, M. Fränzle, C. Herde, and I. Stierand. Scheduling distributed real-
time systems by satisfiability checking. Proceedings of the 11th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), pages 409–415, August 2005. 8

[MFHS06] A. Metzner, M. Fränzle, C. Herde, and I. Stierand. An optimal approach to the
task allocation problem on hierarchical architectures. Proceedings of the 20th In-
ternational Parallel and Distributed Processing Symposium (IPDPS), April 2006.
8

[MH06] A. Metzner and C. Herde. Rtsat– an optimal and efficient approach to the task al-
location problem in distributed architectures. Proceedings of the 27th IEEE Inter-
national Real-Time Systems Symposium (RTSS), pages 147–158, December 2006.
8

[OB98] D.-I. Oh and T. Bakker. Utilization bounds for n-processor rate monotone schedul-

118

Bibliography

ing with static processor assignment. Real-Time Systems, 15(2):183–192, 1998.
7

[OS95] Y. Oh and S.H. Son. Allocating fixed-priority periodic tasks on multiprocessor
systems. Real-Time Systems, 9(3):207–239, 1995. 5, 52

[PGH98] J Palencia and M. González Harbour. Schedulability analysis for tasks with static
and dynamic offsets. In Proceedings of the 19th IEEE Real-Time Systems Sympo-
sium (RTSS), pages 26–37, December 1998. 6

[PL04] R. Pellizzoni and G. Lipari. A new sufficient feasibility test for asynchronous
real-time periodic task sets. Proceedings of the 16th Euromicro Conference on
Real-Time Systems (ECRTS), pages 204–211, June-July 2004. 5

[PL05] R. Pellizzoni and G. Lipari. Feasibility analysis of real-time periodic tasks with
offsets. Real-Time Systems., 30(1-2):105–128, 2005. 5

[PL07] R. Pellizzoni and G. Lipari. Holistic analysis of asynchronous real-time transac-
tions with earliest deadline scheduling. Journal of Computer and System Sciences,
73(2):186–206, 2007. 5

[PSTW97] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via
resource augmentation. Proceedings of the 29th Annual ACM Symposium on The-
ory of Computing (STOC), pages 140–149, May 1997. 7

[RGB+08] M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, and L. Benini. A fast and accurate
technique for mapping parallel applications on stream-oriented mpsoc platforms
with communication awareness. International Journal on Parallel Programming,
36(1):3–36, 2008. 8

[RM96] A. Ripoll, I. Crespo and A. Mok. Improvement in feasibility testing for real-time
tasks. Real-Time Systems, 11(1):19–39, 1996. 4

[SAr+04] L. Sha, T. Abdelzaher, K. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
J. Caccamo, C. Lehoczky, and A. Mok. Real- real time scheduling theory: A
historical perspective. Real-Time Systems, 28(2-3):101–155, November 2004. 3, 6

[Spu95] M. Spuri. Earliest Deadline Scheduling in Real-Time Systems. Scuola Superiore
Sant’Anna, Pisa, Italy, 1995. Ph.D. Thesis. 4

[Spu96] M. Spuri. Analysis of deadline scheduled real-time systems. Rapport de Recherche
RR-2772, INRIA, 1996. 4

[SSRB98] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo. Deadline Scheduling
for Real-Time Systems: EDF and Related Algorithms. Kluwer, Dordrecht, The
Netherlands, 1998. 4, 16, 17, 20, 34, 109, 110

[ST85] C.-C. Shen and W.-H. Tsai. A graph matching approach to optimal task assignment
in distributed computing systems using a minimax criterion. IEEE Transactions on
Computers, C-34(3):197–203, March 1985. 7

119

Bibliography

[SVC98] S. Sáez, J. Vila, and A. Crespo. Using exact feasibility tests for allocating real-time
tasks in multiprocessor systems. Proceedings of the 10th Euromicro Workshop on
Real-Time Systems, pages 53–60, June 1998. 2

[TBW92] K. Tindell, A. Burns, and A. Wellings. Allocating hard real time tasks + (an np-
hard problem made easy). Real Time Systems, 4(2):145–165, 1992. 7

[Thi00] H. Thielen. Optimierte Auslegung verteilter Realzeitsysteme. Technische Uni-
versität München (TUM), Intitute for Real-Time Computer Systems, München,
Germany, 2000. Ph.D. Thesis (in German). 7, 47

[Tin90] K. Tindell. Allocating hard real time tasks + (an np-hard problem made easy).
Technical Report YCS 149, University of York, Deparment of Computer Science,
1990. 7

[Tin94] K. Tindell. Adding time-offsets to schedulability analysis. Technical Report YCS
221, University of York, Deparment of Computer Science, 1994. 6

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, S. Holsti, N.and Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenström. The worst-case execution-time problem—overview
of methods and survey of tools. ACM Transactions on Embedded Computing Sys-
tems, 7(3):1–53, 2008. 8

[WYJ+04] A. Wu, H. Yu, S. Jin, K.-C. Lin, and G. Schiavone. An incremental genetic al-
gorithm approach to multiprocessor scheduling. IEEE Transactions on Parallel
Distributed Systems, 15(9):824–834, 2004. 7

[ZS94] Q. Zheng and K. Shin. On the ability of establishing real-time channels in point-
to-point packet-switched networks. IEEE Transactions on Communications, 42(2-
3-4), 1994. 4

120

	Contents
	Introduction
	Related Work
	Uniprocessor Scheduling
	Multiprocessor Scheduling

	Underlying Models and Assumptions
	Task Model
	Processor Model

	Structure of this thesis

	Testing Feasibility for Real-Time Tasks
	The Time-Triggered Scheduling Approach
	The Minimum Possible Slot
	Context Switches
	Feasibility Test

	The Event-Triggered Scheduling Approach
	The EDF Scheduling
	The DM/RM Scheduling
	Context Switches

	Considering Soft Real-Time
	Key Findings

	Allocating Independent Real-Time Tasks to Processors
	Bin Packing and Task Allocation
	Sequential Algorithms for Bin Packing
	Statistical Performance Comparison
	Bin Packing for RM

	Task Allocation for Arbitrary Deadlines
	Algorithms for EDF
	Algorithms for the DM/RM Scheduling

	Key Findings

	Communication and System Constraints
	Modeling Task Dependencies
	Communication
	System Constraints

	Allocating Dependent Real-Time Tasks
	The Allocation Matrix
	The Matrix of Resulting Communication

	Allocation Algorithms
	Amount of Communication between Processors
	Reducing Communication between Processors
	The Communication Volume Matrix
	Heuristics to Reduce Communication
	Processors versus Maximum Task Utilization
	Communication versus Maximum Task Utilization
	Communication versus Maximum Task Connectivity

	Heuristics to Reduce Processors and Communication
	Processors versus Maximum Task Utilization
	Communication versus Maximum Task Utilization
	Communication versus Maximum Task Connectivity

	Key Findings

	Concluding Remarks
	Bibliography

