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Abstract

In a networked control system (NCS) the plant and the cdetr@re spatially separated and the control loop is closed
through a communication network. Communication time detep NCS degrades the performance and may lead to instability
In this article the scattering transformation is applied\i8S, for the first time, in order to guarantee stability in fivesence
of unknown constant time delay. The scattering transfammaapproach in its original version relies on the assunmptimat all
subsystems are passive. This article extends the approawbntpassive, static-output-feedback-stabilizabletplaWe consider
linear time invariant (LTI) systems here. It is furthermat@gown that no knowledge of the time delay value is necessarthé
analysis and design of the closed loop system. Lastly, @rpetal validation shows that the proposed approach isrgrpe a
delay-dependent controller and the Smith predictor, as$astability, performance, and sensitivity to time delag eoncerned.

Index Terms

Networked control systems, delay-independent stabllitgar systems.

|I. INTRODUCTION

HE use of digital communication networks for signal transsion in control systems offers significant advantages over
the traditional point-to-point connections, in terms oflueed wiring and cost, increased modularity, high flexiiland
reconfigurability. Furthermore, the use of the Internet a®mmunication medium offers the possibility of remote cohof
the systems without investing in the network infrastrueturherefore, traditional control systems are increagimgplaced
by systems in which the plant and the controller are condettteough a network, see Fig. 1. Such NCS have been already
adopted to numerous applications, see e.g. [1]-[3]. Howdte signal transmission over the communication netwank c
not be regarded as ideal. Time delay, packet loss and thietinsommunication resources constitute major challenfesse
network induced effects depend principally on the poliay tietwork adopts for sharing the common communication ressu
the number of active nodes, the network configuration, onélie number of intermediate nodes in case of the Internetcéie
these parameters are not exactly known during the contrddlsign stage.

Specifically designed networks have been mainly used in M@&xyn as control networks. In several cases control netsyork
e.g. DeviceNet, can guarantee constant time delay as lotigeasetwork is not saturated [4], [5]. In any case controlvoeks
can at least guarantee bounded time-varying delay. On tier diand in general purpose networks, e.g. Ethernet, tifsg de
and packet loss behave unpredictably and no guaranteesuceentty be given for maximum values. With the increasing
deployment of networked real time applications though liguaf service (QoS) functions are likely to be implemented
the near future. Such QoS functions guarantee a certain cooation quality, e.g. in terms of bounded or even constant
time delay. Time-varying delay with an upper bound can bermfilated to constant with the addition of buffers on the
communication network [6], [7], a commonly used techniquéiaxis.

In this article the unknown constant time delay challeng@adsiressed. For a general overview on constant time delay
methodologies see [8], [9]. Time delay in the control loopedierates the performance and can lead to instability.s@ort
time delay methodologies are distinguished between dddgpendent and delay-independent, according to whethearadban
the time delay value is necessary for stability guaranteesod Some commonly in praxis used delay-dependent teabriq
include specifically tuned PID controllers [10] [11], anetBmith predictor [12]. The Smith predictor gives good perfance,
nevertheless it requires full plant and time delay knowtedand is sensitive to modelling errors.

Delay-independent control methodologies on the other harel usually based on the small gain theorem, which requires
the gain of the open loop transfer function at all frequesidi® be smaller than one. The small gain theorem is rather
conservative for real control applications. For instanceee fintegrators in the open loop transfer function are niotveald,
leading to unavoidable significant steady state error. A@odelay-independent methodology, commonly used in flmedback
telepresence applications, is the scattering transféomalhe scattering transformation was initially derivedri classical
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Fig. 1. Networked control system architecture.

network theory [13] in order to describe the energy flow tiylothe network and was used in a control context for the first
time in [14]. It was firstly defined in continuous time and ctam time delay [15]. Extensions have appeared for timgiagr
delay [16], discrete time [17] and packet loss [18]. Howether scattering transformation is based on the passivitynaggon

of the plant and the controller, i.e. plant and controllerstnoot generate energy. Passivity is a restrictive requargnm
general control applications. This can be clearly seenérsthgle-input-single-output (SISO) LTI systems, whergy aransfer
functions with relative degree one or zero are allowed. Apsinsecond order system is in consequence non-passive.

In this article, for the first time, the scattering transfation is applied to non-passive LTI NCS with unknown constan
time delay, and a new stability condition is derived. Therapph is extended to static-output-feedback-stabilegihnts.
Contrary to the small gain theorem, the scattering transéition can simultaneously guarantee delay-independspitist and
steady state error zero. Performance issues are furthercomsidered. Unique, compared to other time delay appesadh
the consideration of sensitivity issues with respect teetiohelay. Sensitivity and performance criteria are defineépendently
of the time delay value. No time delay knowledge is necesdaring the controller design. A comparison is performecwit
a delay-dependent controller and a Smith predictor in whitlthe controllers are designed with numerical optimizatiThe
proposed approach shows significantly lower sensitivitfitee delay. In simulation and experiment the proposed apgro
shows better performance in a wide range of time delay vatoespared to the other two approaches.

The remainder of this article is organized as follows: Swrctil introduces the necessary background. A novel stabilit
condition is derived in Section lll, followed by performanaspects in Section IV. A case study is presented in Sectiandv
conclusions are given in Section VI.

Il. BACKGROUND
Let R, be the set of non-negative real numbers &1t the Euclidean space of dimension. Consider a LTI causal
systemh : u — y with input u(-) : Ry — R™, outputy(-) : Ry — R™ andy(t) =0, ¢t < 0. With G(s) the m x m transfer
matrix of i is denoted where = o + jw the Laplace variable and with, = o, + jw, the roots of all elements af(s).
With |G|* the H,, norm of the transfer matrixz(s) is denoted. For convenience of notation, where non-ambiguthe
Laplace variables is dropped.

A. Positive real transfer functions

Positive realness is an equivalent notion to passivity for ¢ystems in the frequency domain, which will be used in the
remainder of this article.
Definition 1: A transfer matrixG(s) is positive real (PR) if :

G(s) +G*(s) >0, foreveryo >0,

The positive realness of a transfer matrix can be conclugeitsistability and its values on the imaginary axis.
Proposition 1: [19] A transfer matrixG(s) is PR if and only if :
a) o, <0,
b) G(jw)+ G*(jw) > 0 for everyw > 0,
c) if o.=0, s, is simple pole and
lim (s — jw,)G(s) > 0.

S—jw,
Proposition 1 states that the transfer matrix should belestgipsitive semi-definite on the imaginary axis, the polastiee
imaginary axis should be simple, and their associate residgwn-negative. In case of SISO systems condition b) ismpfiat
the Nyquist plot lies in the right half plane and can be easligcked.

1n classical network theory a network is defined as a systemposed of a finite number of interconnected elements, esgstoes, capacitors, coils, and
should not be confused with the communication network in NCS
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Fig. 2. NCS with scattering transformation.

Another notion necessary in the following is strictly pastrealness.
Definition 2: A transfer matrixG(s) is strictly positive real (SPR) it7(s — €) is PR for some: > 0.
Necessary conditions for a SPR system is that it is stri¢dple, i.e.oc. < 0 and strictly positive definite on thgv-axis, i.e.

G(jw) + G*(jw) > 0, for everyw > 0.
The major difference between PR and SPR systems is that gtecdin tolerate poles on the imaginary axis as long as they
are simple and their associated residues are real and ryatives

B. Scattering transformation
In the rest of this article for convenience of notation th&SIcase will be considered, i.e. = 1. The scattering transfor-

mation acts on the input and outpiitY” of a systemG(s) = EE;’; with the equations
V2 ( 1 V2 1

Uy, = — \/5U—|——Y>, VS:—(—\/EU+—Y), 1)
2 Vb 2 Vb

where U, (s), V5 (s) are the input and output of the system extended by the scaftéansformation, and > 0 constant,
resulting to the system
Us(s) G(s)+b
In the case ob = 1 the scattering operator is obtained, originally defined lassical network theory [13]. The scattering
operator provides an equivalence between positive rezalaied theH ., norm of a transfer function, i.e. the next proposition
holds.

Proposition 2: [14] A transfer functionG is PR if and only if theH ., norm of its scattering operator is less than or equal
to one.

Gs(s) =

I1l. M AIN RESULT

A. System description

We consider a system consisting of a SISO LTI plant and cdetrwith transfer functionss,(s) = Z”EZ; andG.(s) = [’;8

respectively, wheré/,(s), Y,(s) andU.(s), Y.(s) are the Laplace transforms of the input and Sutput of thetpjadc the
controller. The plant is connected to the controller thifotlze communication network. However, between the comnattioic
network, the plant and the controller the scattering trammsétion is inserted, see Fig. 2. Based on (2), the subsystgr), in-

cluding the plant, (s) and the right hand scattering transformation, is giverthys) = Z:Ez; = gzg;;g whereU,(s), V,.(s)
Ui(s)

are the right hand values that are communicated throughetveonk, see Fig. 2. Accordingly for the subsystém(s) = A0
where agair;(s), V;(s) describe the left hand communicated values. The networloteffed as a time delaying two-port with
forward and backward time delay/§ and T, respectively. The time delays,, T> are assumed to be constant but unknown.
Without loss of generality, we assume further, that no enégtored initially in the communication network, i.e.

w(9) =0, foreveryd e [-T7,0],

v.(0) =0, foreveryf € [—T5,0].

The relations between the left and right hand transmitteidbkes are given accordingly . (s) = U;(s)e=“T1 andVj(s) = V,.(s)e 7«12,
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B. Stability analysis

In the next it will be shown that the stability of the abovetsys can be concluded from the positive realness of an anxilia
transfer function. Contrary to the typical case of the seaty transformation in telepresence systems, plant anttater do
not have necessarily to be PR. The next theorem holds.

Theorem 1:If there exists & > 0 so that
K(s) = L0Ge+ G

b 1+G.G,

is PR, the closed loop system is stable independently of ithe telay. If K(s) is SPR, then the closed loop system is
asymptotically stable.

Proof: The open loop transfer functigd. from the controller input to the output of the left hand scattering transformation
see Fig. 2, is computed my means of the scattering transtmmequations (1),

1+eTG4(s)

®3)

€ =b c ) 4
Gels) =0Ge() T =7y (4)
with T'= Ty + T5 the roundtrip time delay in the communication network and
Gp(s)—b
G =277 5
1(8) Gp(S)‘i‘b ( )
The poless,. of the closed loop system are placed whétgs,.) = —1 holds, thus, substituting (5) in (4) we get
L+e T  102G.(s,) + Gp(sr)
T—e T b1+ Go(5,)Gp(sr) K(sr) ©
Considering the real part of (6) it follows
1— 6720’7‘T
Re{K(s,)} = — . @)

(1—-eoTcosw,T)2+ (e~ Tsinw,T)?

Lets assuméey(s) to be PR. Then there exists no solutien of (7) in the open right half plane, i.e;. > 0, as the real
part of K (s,) is always non-negative, while the right part of (7) is negatiFurthermore, ifK (s) is SPR, then (7) has no
solution s, on the imaginary axis as well, because the real park¢f,) on the imaginary axis is positive, while the right
part of (7) is zero. Thus, the system is asymptotically stabl [ ]
Condition (a) of Proposition 1 implies the stability &f(s). K (s) has the same poles with the closed loop system without

time delay and scattering transformation. Hence, the sah@fstabilizing controllers is a subset of the controllefsiol
stabilize the system without time delay and scatteringsfiaamation. Condition (b) of Proposition 1 restricts fiattihe set of
admissible controllers, imposing restrictions on the amgé and argument of the controllét.. Taking the real part o (jw)

it follows
Re{K} =
2 2
b+ 11G, | -

Re{G.} ——F—F— —_——
& }b||1+GpoH2 blI1 + G.GplI2 —

where the dependence gw is suppressed for convenience of notation. At a fixed frequen, (8) defines admissible areas

on the complex plane fo&.(jwo). If Re{G,(jwo)} < 0, (8) defines a disk of the right half complex plane with theteen

the real axis in positior? and radius- given by,

B () N (e [ LY ©
20°Re{G)}’ 4Re{G, }2b* b2’

in which G.(jwo) must lie in. In case Rg7,(jwo)} > 0 a disk on the left half complex plane is defined with center and

radius given again by (9), whicf¥.(jwo) must lie out from, see also Fig. 3. These restrictions on thplitude and argument

of the controllerG.(jwy) can be accordingly expressed

|arg{G.}| < tan™" <\/T2 - I(?Re?{cii} - R)2> and

R—r<|G. <R+, if Re{G,} <0,
2 — (Re{G.} + R)?
V2~ (Re(Ge} + >>When

1+ b2||G.|]? 8
+ Re(G PG ®)

Re{G.}
—R—1<||Ge| < —R+r, if Re{G,}>0.

|arg{G.}| < m+tan~! (
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Fig. 3. a) Admissible (dark) area @¥.(jwo) for negative R€G,(jwo)}. b) Admissible (dark) area off.(jwo) for positive R{Gy (jwo)}-

Based on (8) it is clear that a negative real partgfin some range of frequencies can be compensated by a pasitive
part of G. in the same range and vice versa, thus plant and controllaptbave to be PR. In case of PR plant and controller
stability, independently o, can be guaranteed as it can be directly seen from (8) fomegative R¢G,,} and R€G. }.

An additional useful interpretation can be given in termghad small gain theorem. Using Proposition 2 the condition of
Theorem 1 can be rewritten O b1 bC. |

o) o P c

[Gor™ =IGhGel™ = G, +b1+0bG,
whereG1, G represent the transformed plant and controller respégtiVbus, Theorem 1 is equivalent to the small gain condi-
tion in the loop of the extended by the scattering transfdionalantG; (s), and controlleGz(s), see Fig. 2. Since the controller
can be arbitrarily chosen, (10) can be satisfied as long,ais stable. The roots aff; are those of the plant with static output
feedback%. Sinceb can be freely chosen the approach is applicable to all statigut-feedback-stabilizable plants. The stability
in the typical case of scattering transformation in telspree systems can be accordingly expre$§e{°|G2|> < 1. Thus,
the reduction of the conservatism through Theorem 1, conoes the fact that in generdly; G| < |G1]°|G2|>°. Although
Theorem 1 is valid only for constant time delay, by fallingckanto the more conservative stability resji; |°|G2|> < 1, all
the extensions of the scattering transformation for tiragsng delay, e.g. [16], and packet loss, e.g. [18], ardgtttborward
to apply here.

<1, (20)

IV. PERFORMANCE ASPECTS

The transfer function of the closed loop system from thereefee inputiV (s) to the output of the plant,(s), see Fig. 2,
is computed from the transformation equations (1) to be

G(s) = 11;‘;8 = Go(5)Gse(s)e 11, (11)

where
(12)

with K (s) defined according to (3) and
Ge(s)Gp(s)
G = 4
") = T G (9)G, ()
the typical closed loop transfer function without commuation network and time delay. The system can be interpredea a
series connection of the standard closed loop sysigis), the subsystendz,.(s) which incorporates the effect of the time
delay and the scattering transformation on the closed l@b@tor, and the forward time delay shifts”:.

A. Steady state error

The steady state behavior with scattering transformatiohtene delay is equivalent to that without scattering tfamaation
and without time delay, as easily derivable by setting 0 in (11) (12), resulting irG(0) = G((0). Thus, concerning the steady
state error, the controller can be designed without conisigéhe network. In terms of steady state error the propaggidoach
clearly outperforms the standard small gain approach, wrequires|G.(jw)G,(jw)| < 1,w > 0, i.e. free integrators in the
open loop are not allowed. This leads to a rather large stetadg error, e.9y(t)|t—o00 < %|w| for a reference step input. In
the proposed approach free integrators in plant or coetrdth not necessarily violate the positive realnes& ¢f), thus delay-
independent stability and steady state error zero can beltsineously guaranteed. This can be demonstrated by egampl
Consider a non-PR plant with integrat6r,(s) = %, a > 0, and a proportional controllgF.(s) = k.. K(s) (3) is stable
since argG,(s)G.(s)} < 180°. Furthermore, for the real part d (jw) we reach REK (jw)} = w'k.b? + w?[kcb?(a® —
kpke) — kp) + kgkc, which for sufficiently smallk. and sufficient largé, is positive for everyw.
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B. Sensitivity to time delay
The sensitivity function with respect to the time del&lycan be written
g < T dGr sTe *T(K — 1)
T =G dr = K1 -—eT)+ (1+e5T)

whereG* = Gy(s)Gs.(s) represents the closed loop transfer function (11) withbatgurely time delay shifting paet7:.
As long asK (s) = 1 the sensitivity function with respect to time delsg* =~ 0, i.e. the system shows low sensitivity to time
delay and a good performance is guaranteed in a wide rangmefielay values. The ideal caseﬁﬁ* =0= K(s)=1can
be achieved with a proportional controllér.(s) = 1/b, which leads toG. = 1 = G(s) = Go(s)e~*T1, i.e. the time delay
has no effect on the transient response. Thus, the scattieainsformation acts as the Smith predictor, moving the titalay
“out of the loop”, however, without requiring knowledge dfet plant or the time delay value. Most of the times though, a
proportional controller does not meet the performanceireqents and compromise has to be made between performadce a
sensitivity to time delay.

An additional interpretation can be given in terms of thengaf the loop where the time delay is. Therefore, (13) is
reformulated as

(13)

o TdG _ . Gowe ™
T = qgrdar 1 —GopesT"

whereGo 1, = G1G>. The sensitivity to time delay becomes smaller for smd|l@p 1, ||. Note that based on Proposition 2 this

does not contradict Theorem 1, i]&o1|> < 1. Thus, during the controller design the stability requiestiGor|> < 1 can

be substituted withGo|* < a < 1, which ensures also lower sensitivity to time delay.

C. Zero time delay case

As the time delay reduces to zero, i, =T =T = 0, the system reduces to that without scattering transfoomat
i.e. G(s) = Go(s) as straightforward computable from (11) (12). This is iegting, compared to the standard small gain
approach, as the controller can be more aggressively dasifpr the zero time delay case. For zero time delay “nominal”
performance is recovered. Together with low sensitivitytiloe delay, good performance is guaranteed for a wide rafige o
time delay values.

Concluding the above, the overall design goal is to find arodiet and a value fob such that the closed loop systemthout
the time delay and the scattering transformation has ahgatisresponse, whild(s) is PR and approximately one for a broad
range of frequencies. Stability and sensitivity to timeagelequirements can be conjointly expressed®&s;, (jw)|™® < a < 1.
Lower sensitivity to time delay is achieved for lower valudgs:. The significant advantage of the above is that no knowledge
of the time delay value is required during the controllerigies

V. PERFORMANCEEVALUATION

In order to show the efficacy of the proposed approach a casguais performed with a delay-dependent controller and the
Smith predictor. The comparison is in some sense “unfaiitsidelay-dependent methods lead to less conservativissrasu
least for the nominal time delay. The small gain theorem, dv@x; which is the only delay-independent alternative aagin,
cannot be applied because there is an integrator in thensysteler consideration. The system under consideration is an
one-degree-of-freedom (1DOF) robotic system used lateexperimental validation. The robotic system is approxeday
the transfer function 73

G($) = Z 10155
from the input voltage (V) (which is assumed to be propouido the torque, see Section V-C) to the output angle (ral@. T

transfer function is obtained by standard least squardifiation of the response to square pulse input. Note thatpiant
is not PR as a7, (jw)} > 90°, w > 0, i.e. the Nyquist plot lies in the left half plane.

A. Controller design

In order to achieve a fair comparison the controllers foraglproaches are designed by numerical optimization usiag th
ITAE (Integral Time Absolute Error) performance index astcfunction

tr
J = / Tle(r)|dr.
0
The numerical optimization is performed for a nominal timeday of 7' = 300ms over a horizon ofy = 5s usingfmincon

of the Matlab optimization toolbox. As basic structure fbe tcontroller a lead-lag element

Ge(s) = ks:};a’
s+c

is considered wherg, a, c > 0 are parameters to be determined by numerical optimizaiiba.exact design procedure for all
three cases is explained in the next.
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Fig. 4. Amplitude of the sensitivity function with respect time delay, of the scattering approach, delay-dependemiraller and Smith predictor.

1) Scattering transformation:The constrained optimization problem can be formulatedmas; . .. subject to the
constraintsk, a, ¢, b > 0. The numerical optimization gives the controller for th@uit-output transformation

1.3981(s +9.9114)
Gur(s) = — 3 9 1m58
and b = 0.6203. The optimal cost function value ig = 0.1976. For the above controller it is straightforward to compute
that K (jw) is PR and|| K (jw) — 1] < 0.1702.
2) Delay-dependent controller-or the delay-dependent controller the lead-lag elememsésl directly to control the plant.
Similarly to the previous case the optimization problem eépresented byning , . J Subject to the constraint, a,c > 0
resulting in the controller

3.2649(s + 4.7877)
Gdd - )
(s + 57.7271)

with the optimal cost function valug = 0.4797.

3) Smith predictor:For the Smith predictor the controll€¥. is designed initially without considering the time delayel
optimization problem is given byhin , . .JJ subject to the constrairit, a,c > 0 andk < 5 as otherwise an indefinitely large
gain is given by the optimization, resulting in the contoll

o _ 5(s+84642)
O 5 422.5354
with the optimization errot/ = 0.0871. The finally used controller is given by
Ge.sp(s)

Corl) = T G ()G ()L =]’

whereT' = 300ms represents the nominal time delay. Note, that full kndg#eof the plant is required for the design. In
the case of exact plant and time delay knowledge, the respohthe time delayed system with Smith predictor equals the
response of the system without time delay shifted in the txis by the forward dela{.

B. Simulations

TABLE |
SIMULATION RESULTS. 5% SETTLING TIME
[ TimeDeday (ms) [ 50 ][] 200 ] 300 [[ 400 |
Scattering 0.58s 0.64s 0.60s 0.84s
Delay-dependent 1.64s 1.24s 0.58s 1.92s
Smith unstable || unstable || 0.30s || unstable

The response to a step input with a final value of 0.2rad isider=d in the simulations. Additionally the disturbance
rejection in the input of the plant is studied. A zero refeeimput is used, in order for the robotic system to remairhto t
initial position, and a step disturbance of 0.2V to its injstapplied. Four different values for the round trip timeajere tested,

the nominal time delay df' = 300 ms, andl’ = 50, 200, 400 ms, with equal forward and backward time deldys= 1> = 3.

T
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Fig. 5. Simulation step response of the system with scagemansformation, delay-dependent controller and Smiddiptor for different values of time
delay.

TABLE I
SIMULATION RESULTS: OVERSHOOT%
[ TimeDelay (ms) [ 50 [] 200 ][] 300 [[ 400 |
Scattering 19.11 11.78 13.59 14.24
Delay-dependent none none 3.52 23.04
Smith unstable || unstable || 4.31 unstable

Of specific interest is the stability, the performance areldansitivity to time delay. The amplitude of the senskiitnction
with respect to time delay for the various controllers in tloeninal time delayl’ = 300ms, is shown in Fig. 4. The amplitude
is plotted until the maximum cut-off frequency for the difat systems, i.e. for the Smith predictar= 21rad/sec. The
proposed approach shows indeed significantly lower seitgitd time delay. This is also verified in the simulation uls that
follow.

The simulation results for the step input are shown in Figarid Tables | and Il. The scattering transformation approach
performs well in all cases. Furthermore the response ibtyfigffected by the time delay value. The delay-dependentroller
performs well in the nominal time delay; the settling timesightly smaller than the scattering approach and the beerts
also small, but the performance becomes rather poor foerdift time delay values. The delay-dependent controlleorbes
unstable forl" ~ 850ms. The Smith predictor gives indeed the best performancéh&®nominal time delay. However, in all
the other time delay values the system becomes unstable.

The simulation results for the step disturbance in the plaptut are shown in Fig. 6 and Table Ill. The scattering
transformation approach shows the smallest remainingridiahce and the lowest sensitivity to time delay. The deleyendent



JOURNAL OF ETEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

T=50 ms T=200 ms
1 | Delay 1 | Delay
dependent . dependent
Smith _*~ P
/7 - e Scatterin
e Scattering 7 smith g
i Ja *
0 ‘ ‘ 0
0 1 2 3 0 1 2 3
T= 300 ms (nominal delay) T'=400 ms
1 | Delay 1 | Delay
y/dependent #7 ~.¢/dependent
/'/ /;/ o \ .
= 0.5} P B - | 205! / 7.~ 7NN
= / / Scattering = / / Scattering
, Smith / /' Smith
- ’ S §
0 - 0 .
0 1 2 3 0 1 2 3

time [s] time [s]

Fig. 6. Simulation response to step disturbance of the systéh scattering transformation, delay-dependent cdletr@and Smith predictor for different
values of time delay.

TABLE Il
SIMULATION RESULTS: REMAINING DISTURBANCE IN %
[ TimeDeay(ms) [ 50 [] 200 ][ 300 [[ 400 |
Scattering 66.1 66.1 66.1 66.1
Delay-dependent 369.2 369.3 369.3 369.2
Smith unstable || unstable || 269.0 || unstable

controller and especially the Smith predictor are seresitivtime delay.

C. Experimental setup

The experimental testbed consists of the 1DOF robotic Bysteown in Fig. 7 connected to a PC running under Real-Time
Linux. The original design can be found in [20]. The DC-mdtmque is controlled over a PWM amplifier operated underanitrr
control with the reference signal given by a voltage from W@ converter output of the 1/O board. Thus, the input voltag
can be considered to be proportional to the torque. Theiposif the lever is measured by an optic pulse incrementad@esic
and processed by a counter on the 1/0O board. The control lndpding the controller and the communication network with
constant time delay and the scattering transformation pdlemented as MATLAB/SIMULINK blocksets. Standalone reat
code is generated directly from Matlab. The sampling timeriral is74 = 1 ms. In real NCS applications the right hand
scattering transformation can be implemented as a locdrater in the plant CPU which implements the network pratisc
The right hand scattering transformation can be intergret® a static-output-feedback-input-feedforward contsahce no
dynamic is involved very limited computational power is esgary, so computational power is not an issue. The left hand
scattering transformation can be implemented as part o€dnéroller.
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Fig. 7. Experimental testbed

TABLE IV
EXPERIMENTAL RESULTS. 5% SETTLING TIME
[ TimeDeday (ms) [ 50 ][ 200 ] 300 [[ 400 |
Scattering 0.32s 0.38s 0.43s 0.48s
Delay-dependent > 5 3.31s 3.28s 3.28s
Smith unstable || unstable || 0.48s || unstable

The experimental results for the step input are presentddgn8, and Tables IV and V. The delay-dependent controller
has a smaller steady state error but its response is very slgwin case of’ = 50ms the settling time is more than 5s. The
steady state error in all the cases is most likely due to umftedi nonlinearities of the plant, e.g. backlash.

TABLE V
EXPERIMENTAL RESULTS: STEADY STATE ERROR IN%
[ Time Delay (ms) || 50 ][] 200 ][] 300 [[ 400 |
Scattering 24.14 17.59 22.2 18.74
Delay-dependent|| 313.07 9.66 12.43 4.54
Smith unstable [[ unstable || 41.1 unstable

The experimental results for the step disturbance are piegdan Fig. 9 and Table VI. The scattering transformation
approach gives by far the smallest remaining disturban@dl icases. The Smith predictor becomes unstable only indke c
with T' = 400ms, however, the remaining disturbance is by far larger tharscattering transformation approach. In short, the
proposed approach guarantees delay-independent stainitit shows low sensitivity to time delay, while even del@pehdent
approaches are outperformed.

VI. CONCLUSION

In this article a delay-independent control methodologyiieposed for NCS based on the scattering transformation. A
novel contribution is an extension of the known scatterirsgngformation to non-PR, static-output-feedback-sizdiile LTI
plants. Sensitivity to time delay and performance issuesathermore examined. All the design goals can be defindtbwi
assuming knowledge of the time delay value. In a simulatican®le the proposed approach outperforms the Smith poedict
and a delay-dependent controller as far as stability, pedace and sensitivity to time delay are concerned. A harehve
the-loop experiment with a 1DOF robotic system verifies tfieacy of the proposed approach. Future work is to approach
time-varying delay, packet loss, and non-linear systems.

TABLE VI
EXPERIMENTAL RESULTS. REMAINING DISTURBANCE IN %
[ TimeDelay (ms) [ 50 [ 200 [ 300 [[ 400 |
Scattering 67.9 68.1 68.8 69.1

Delay-dependent|| 265.8 || 445.1 || 552.8 670.9
Smith 330.9 || 346.9 || 377.1 || unstable
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