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Abstract

In a networked control system (NCS) the plant and the controller are spatially separated and the control loop is closed
through a communication network. Communication time delayin a NCS degrades the performance and may lead to instability.
In this article the scattering transformation is applied toNCS, for the first time, in order to guarantee stability in thepresence
of unknown constant time delay. The scattering transformation approach in its original version relies on the assumption that all
subsystems are passive. This article extends the approach to non-passive, static-output-feedback-stabilizable plants. We consider
linear time invariant (LTI) systems here. It is furthermoreshown that no knowledge of the time delay value is necessary for the
analysis and design of the closed loop system. Lastly, experimental validation shows that the proposed approach is superior to a
delay-dependent controller and the Smith predictor, as faras stability, performance, and sensitivity to time delay are concerned.

Index Terms

Networked control systems, delay-independent stability,linear systems.

I. I NTRODUCTION

THE use of digital communication networks for signal transmission in control systems offers significant advantages over
the traditional point-to-point connections, in terms of reduced wiring and cost, increased modularity, high flexibility, and

reconfigurability. Furthermore, the use of the Internet as acommunication medium offers the possibility of remote control of
the systems without investing in the network infrastructure. Therefore, traditional control systems are increasingly replaced
by systems in which the plant and the controller are connected through a network, see Fig. 1. Such NCS have been already
adopted to numerous applications, see e.g. [1]–[3]. However, the signal transmission over the communication network can
not be regarded as ideal. Time delay, packet loss and the limited communication resources constitute major challenges.These
network induced effects depend principally on the policy the network adopts for sharing the common communication resources,
the number of active nodes, the network configuration, or even the number of intermediate nodes in case of the Internet. Hence,
these parameters are not exactly known during the controller design stage.

Specifically designed networks have been mainly used in NCS,known as control networks. In several cases control networks,
e.g. DeviceNet, can guarantee constant time delay as long asthe network is not saturated [4], [5]. In any case control networks
can at least guarantee bounded time-varying delay. On the other hand in general purpose networks, e.g. Ethernet, time delay
and packet loss behave unpredictably and no guarantees can currently be given for maximum values. With the increasing
deployment of networked real time applications though, quality of service (QoS) functions are likely to be implementedin
the near future. Such QoS functions guarantee a certain communication quality, e.g. in terms of bounded or even constant
time delay. Time-varying delay with an upper bound can be reformulated to constant with the addition of buffers on the
communication network [6], [7], a commonly used technique in praxis.

In this article the unknown constant time delay challenge isaddressed. For a general overview on constant time delay
methodologies see [8], [9]. Time delay in the control loop deteriorates the performance and can lead to instability. Constant
time delay methodologies are distinguished between delay-dependent and delay-independent, according to whether a bound on
the time delay value is necessary for stability guarantees or not. Some commonly in praxis used delay-dependent techniques
include specifically tuned PID controllers [10] [11], and the Smith predictor [12]. The Smith predictor gives good performance,
nevertheless it requires full plant and time delay knowledge, and is sensitive to modelling errors.

Delay-independent control methodologies on the other hand, are usually based on the small gain theorem, which requires
the gain of the open loop transfer function at all frequencies to be smaller than one. The small gain theorem is rather
conservative for real control applications. For instance free integrators in the open loop transfer function are not allowed,
leading to unavoidable significant steady state error. Another delay-independent methodology, commonly used in forcefeedback
telepresence applications, is the scattering transformation. The scattering transformation was initially derived from classical
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Controller Network Plant

Fig. 1. Networked control system architecture.

network theory [13] in order to describe the energy flow through the network1 and was used in a control context for the first
time in [14]. It was firstly defined in continuous time and constant time delay [15]. Extensions have appeared for time-varying
delay [16], discrete time [17] and packet loss [18]. Howeverthe scattering transformation is based on the passivity assumption
of the plant and the controller, i.e. plant and controller must not generate energy. Passivity is a restrictive requirement in
general control applications. This can be clearly seen in the single-input-single-output (SISO) LTI systems, where only transfer
functions with relative degree one or zero are allowed. A simple second order system is in consequence non-passive.

In this article, for the first time, the scattering transformation is applied to non-passive LTI NCS with unknown constant
time delay, and a new stability condition is derived. The approach is extended to static-output-feedback-stabilizable plants.
Contrary to the small gain theorem, the scattering transformation can simultaneously guarantee delay-independent stability and
steady state error zero. Performance issues are furthermore considered. Unique, compared to other time delay approaches, is
the consideration of sensitivity issues with respect to time delay. Sensitivity and performance criteria are defined independently
of the time delay value. No time delay knowledge is necessaryduring the controller design. A comparison is performed with
a delay-dependent controller and a Smith predictor in whichall the controllers are designed with numerical optimization. The
proposed approach shows significantly lower sensitivity totime delay. In simulation and experiment the proposed approach
shows better performance in a wide range of time delay valuescompared to the other two approaches.

The remainder of this article is organized as follows: Section II introduces the necessary background. A novel stability
condition is derived in Section III, followed by performance aspects in Section IV. A case study is presented in Section Vand
conclusions are given in Section VI.

II. BACKGROUND

Let R+ be the set of non-negative real numbers andR
m the Euclidean space of dimensionm. Consider a LTI causal

systemh : u → y with input u(·) : R+ → R
m, outputy(·) : R+ → R

m andy(t) = 0, t ≤ 0. With G(s) the m × m transfer
matrix of h is denoted wheres = σ + jω the Laplace variable and withsr = σr + jωr the roots of all elements ofG(s).
With |G|∞ the H∞ norm of the transfer matrixG(s) is denoted. For convenience of notation, where non-ambiguous, the
Laplace variables is dropped.

A. Positive real transfer functions

Positive realness is an equivalent notion to passivity for LTI systems in the frequency domain, which will be used in the
remainder of this article.

Definition 1: A transfer matrixG(s) is positive real (PR) if :

G(s) + G∗(s) ≥ 0, for everyσ > 0,

The positive realness of a transfer matrix can be concluded by its stability and its values on the imaginary axis.
Proposition 1: [19] A transfer matrixG(s) is PR if and only if :

a) σr ≤ 0,

b) G(jω) + G∗(jω) ≥ 0 for everyω ≥ 0,

c) if σr = 0, sr is simple pole and

lim
s→jωr

(s − jωr)G(s) ≥ 0.

Proposition 1 states that the transfer matrix should be stable, positive semi-definite on the imaginary axis, the poles on the
imaginary axis should be simple, and their associate residues non-negative. In case of SISO systems condition b) implies that
the Nyquist plot lies in the right half plane and can be easilychecked.

1In classical network theory a network is defined as a system composed of a finite number of interconnected elements, e.g. resistors, capacitors, coils, and
should not be confused with the communication network in NCS.
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Fig. 2. NCS with scattering transformation.

Another notion necessary in the following is strictly positive realness.
Definition 2: A transfer matrixG(s) is strictly positive real (SPR) ifG(s − ǫ) is PR for someǫ > 0.
Necessary conditions for a SPR system is that it is strictly stable, i.e.σr < 0 and strictly positive definite on thejω-axis, i.e.

G(jω) + G∗(jω) > 0, for everyω ≥ 0.

The major difference between PR and SPR systems is that the first can tolerate poles on the imaginary axis as long as they
are simple and their associated residues are real and non-negative.

B. Scattering transformation

In the rest of this article for convenience of notation the SISO case will be considered, i.e.m = 1. The scattering transfor-
mation acts on the input and outputU, Y of a systemG(s) = Y (s)

U(s) with the equations

Us =

√
2

2

(√
bU +

1√
b
Y

)

, Vs =

√
2

2

(

−
√

bU +
1√
b
Y

)

, (1)

where Us(s), Vs(s) are the input and output of the system extended by the scattering transformation, andb > 0 constant,
resulting to the system

Gs(s) =
Vs(s)

Us(s)
=

G(s) − b

G(s) + b
. (2)

In the case ofb = 1 the scattering operator is obtained, originally defined in classical network theory [13]. The scattering
operator provides an equivalence between positive realness and theH∞ norm of a transfer function, i.e. the next proposition
holds.

Proposition 2: [14] A transfer functionG is PR if and only if theH∞ norm of its scattering operator is less than or equal
to one.

III. M AIN RESULT

A. System description

We consider a system consisting of a SISO LTI plant and controller with transfer functionsGp(s) =
Yp(s)
Up(s) andGc(s) = Yc(s)

Uc(s)

respectively, whereUp(s), Yp(s) and Uc(s), Yc(s) are the Laplace transforms of the input and output of the plant and the
controller. The plant is connected to the controller through the communication network. However, between the communication
network, the plant and the controller the scattering transformation is inserted, see Fig. 2. Based on (2), the subsystemG1(s), in-
cluding the plantGp(s) and the right hand scattering transformation, is given byG1(s) = Vr(s)

Ur(s) =
Gp(s)−b

Gp(s)+b
, whereUr(s), Vr(s)

are the right hand values that are communicated through the network, see Fig. 2. Accordingly for the subsystemG2(s) = Ul(s)
Vl(s)

where againUl(s), Vl(s) describe the left hand communicated values. The network is modelled as a time delaying two-port with
forward and backward time delaysT1 andT2 respectively. The time delaysT1, T2 are assumed to be constant but unknown.
Without loss of generality, we assume further, that no energy is stored initially in the communication network, i.e.

ul(θ) = 0, for everyθ ∈ [−T1, 0],

vr(θ) = 0, for everyθ ∈ [−T2, 0].

The relations between the left and right hand transmitted variables are given accordingly byUr(s) = Ul(s)e
−jωT1 andVl(s) = Vr(s)e

−jωT2 .
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B. Stability analysis

In the next it will be shown that the stability of the above system can be concluded from the positive realness of an auxiliary
transfer function. Contrary to the typical case of the scattering transformation in telepresence systems, plant and controller do
not have necessarily to be PR. The next theorem holds.

Theorem 1:If there exists ab > 0 so that

K(s) =
1

b

b2Gc + Gp

1 + GcGp

, (3)

is PR, the closed loop system is stable independently of the time delay. If K(s) is SPR, then the closed loop system is
asymptotically stable.
Proof: The open loop transfer functionGe from the controller inputE to the output of the left hand scattering transformationUc,
see Fig. 2, is computed my means of the scattering transformation equations (1),

Ge(s) = bGc(s)
1 + e−sT G1(s)

1 − e−sT G1(s)
, (4)

with T = T1 + T2 the roundtrip time delay in the communication network and

G1(s) =
Gp(s) − b

Gp(s) + b
. (5)

The polessr of the closed loop system are placed whereGe(sr) = −1 holds, thus, substituting (5) in (4) we get

−1 + e−srT

1 − e−srT
=

1

b

b2Gc(sr) + Gp(sr)

1 + Gc(sr)Gp(sr)
= K(sr). (6)

Considering the real part of (6) it follows

Re{K(sr)} = − 1 − e−2σrT

(1 − e−σrT cosωrT )2 + (e−σrT sinωrT )2
. (7)

Lets assumeK(s) to be PR. Then there exists no solutionsr of (7) in the open right half plane, i.e.σr > 0, as the real
part of K(sr) is always non-negative, while the right part of (7) is negative. Furthermore, ifK(s) is SPR, then (7) has no
solution sr on the imaginary axis as well, because the real part ofK(sr) on the imaginary axis is positive, while the right
part of (7) is zero. Thus, the system is asymptotically stable.

Condition (a) of Proposition 1 implies the stability ofK(s). K(s) has the same poles with the closed loop system without
time delay and scattering transformation. Hence, the set ofthe stabilizing controllers is a subset of the controllers which
stabilize the system without time delay and scattering transformation. Condition (b) of Proposition 1 restricts further the set of
admissible controllers, imposing restrictions on the amplitude and argument of the controllerGc. Taking the real part ofK(jω)
it follows

Re{K} =

Re{Gc}
b2 + ‖Gp‖2

b‖1 + GcGp‖2
+ Re{Gp}

1 + b2‖Gc‖2

b‖1 + GcGp‖2
≥ 0,

(8)

where the dependence onjω is suppressed for convenience of notation. At a fixed frequency ω0, (8) defines admissible areas
on the complex plane forGc(jω0). If Re{Gp(jω0)} < 0, (8) defines a disk of the right half complex plane with the center on
the real axis in positionR and radiusr given by,

R = −b2 + ‖Gp‖2

2b2Re{Gp}
, r2 =

(b2 + ‖Gp‖2)2

4Re{Gp}2b4
− 1

b2
, (9)

in which Gc(jω0) must lie in. In case Re{Gp(jω0)} ≥ 0 a disk on the left half complex plane is defined with center and
radius given again by (9), whichGc(jω0) must lie out from, see also Fig. 3. These restrictions on the amplitude and argument
of the controllerGc(jω0) can be accordingly expressed

| arg{Gc}| ≤ tan−1

(

√

r2 − (Re{Gc} − R)2

Re{Gc}

)

and

R − r ≤ ‖Gc‖ ≤ R + r, if Re{Gp} < 0,

| arg{Gc}| ≤ π + tan−1

(

√

r2 − (Re{Gc} + R)2

Re{Gc}

)

when

− R − r ≤ ‖Gc‖ ≤ −R + r, if Re{Gp} ≥ 0.
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Fig. 3. a) Admissible (dark) area ofGc(jω0) for negative Re{Gp(jω0)}. b) Admissible (dark) area ofGc(jω0) for positive Re{Gp(jω0)}.

Based on (8) it is clear that a negative real part ofGp in some range of frequencies can be compensated by a positivereal
part of Gc in the same range and vice versa, thus plant and controller donot have to be PR. In case of PR plant and controller
stability, independently ofb, can be guaranteed as it can be directly seen from (8) for non-negative Re{Gp} and Re{Gc}.

An additional useful interpretation can be given in terms ofthe small gain theorem. Using Proposition 2 the condition of
Theorem 1 can be rewritten

|GOL|∞ = |G1G2|∞ =

∣

∣

∣

∣

Gp − b

Gp + b

1 − bGc

1 + bGc

∣

∣

∣

∣

∞

< 1, (10)

whereG1, G2 represent the transformed plant and controller respectively. Thus, Theorem 1 is equivalent to the small gain condi-
tion in the loop of the extended by the scattering transformation plantG1(s), and controllerG2(s), see Fig. 2. Since the controller
can be arbitrarily chosen, (10) can be satisfied as long asG1 is stable. The roots ofG1 are those of the plant with static output
feedback1

b
. Sinceb can be freely chosen the approach is applicable to all static-output-feedback-stabilizable plants. The stability

in the typical case of scattering transformation in telepresence systems can be accordingly expressed|G1|∞|G2|∞ < 1. Thus,
the reduction of the conservatism through Theorem 1, comes from the fact that in general|G1G2|∞ ≤ |G1|∞|G2|∞. Although
Theorem 1 is valid only for constant time delay, by falling back into the more conservative stability result|G1|∞|G2|∞ < 1, all
the extensions of the scattering transformation for time-varying delay, e.g. [16], and packet loss, e.g. [18], are straightforward
to apply here.

IV. PERFORMANCE ASPECTS

The transfer function of the closed loop system from the reference inputW (s) to the output of the plantYp(s), see Fig. 2,
is computed from the transformation equations (1) to be

G(s) =
Yp(s)

W (s)
= G0(s)Gsc(s)e

−sT1 , (11)

where
Gsc(s) =

2

K(s)(1 − e−sT ) + (1 + e−sT )
, (12)

with K(s) defined according to (3) and

G0(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)
,

the typical closed loop transfer function without communication network and time delay. The system can be interpreted as a
series connection of the standard closed loop systemG0(s), the subsystemGsc(s) which incorporates the effect of the time
delay and the scattering transformation on the closed loop behavior, and the forward time delay shifte−sT1 .

A. Steady state error

The steady state behavior with scattering transformation and time delay is equivalent to that without scattering transformation
and without time delay, as easily derivable by settings = 0 in (11) (12), resulting inG(0) = G0(0). Thus, concerning the steady
state error, the controller can be designed without considering the network. In terms of steady state error the proposedapproach
clearly outperforms the standard small gain approach, which requires|Gc(jω)Gp(jω)| < 1, ω ≥ 0, i.e. free integrators in the
open loop are not allowed. This leads to a rather large steadystate error, e.g.|y(t)|t→∞ < 1

2 |w| for a reference step inputw. In
the proposed approach free integrators in plant or controller do not necessarily violate the positive realness ofK(s), thus delay-
independent stability and steady state error zero can be simultaneously guaranteed. This can be demonstrated by examples.
Consider a non-PR plant with integratorGp(s) =

kp

s(s+a) , a > 0, and a proportional controllerGc(s) = kc. K(s) (3) is stable
since arg{Gp(s)Gc(s)} < 180o. Furthermore, for the real part ofK(jω) we reach Re{K(jω)} = ω4kcb

2 + ω2[kcb
2(a2 −

kpkc) − kp] + k2
pkc, which for sufficiently smallkc and sufficient largeb, is positive for everyω.
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B. Sensitivity to time delay

The sensitivity function with respect to the time delayT can be written

SG∗

T =
T

G∗

dG∗

dT
= − sT e−sT (K − 1)

K(1 − e−sT ) + (1 + e−sT )
, (13)

whereG∗ = G0(s)Gsc(s) represents the closed loop transfer function (11) without the purely time delay shifting parte−sT1 .
As long asK(s) ≈ 1 the sensitivity function with respect to time delaySG∗

T ≈ 0, i.e. the system shows low sensitivity to time
delay and a good performance is guaranteed in a wide range of time delay values. The ideal case ofSG∗

T = 0 ⇒ K(s) = 1 can
be achieved with a proportional controllerGc(s) = 1/b, which leads toGsc = 1 ⇒ G(s) = G0(s)e

−sT1 , i.e. the time delay
has no effect on the transient response. Thus, the scattering transformation acts as the Smith predictor, moving the time delay
“out of the loop”, however, without requiring knowledge of the plant or the time delay value. Most of the times though, a
proportional controller does not meet the performance requirements and compromise has to be made between performance and
sensitivity to time delay.

An additional interpretation can be given in terms of the gain of the loop where the time delay is. Therefore, (13) is
reformulated as

SG∗

T =
T

G∗

dG∗

dT
= sT

GOLe−sT

1 − GOLe−sT
.

whereGOL = G1G2. The sensitivity to time delay becomes smaller for smaller‖GOL‖. Note that based on Proposition 2 this
does not contradict Theorem 1, i.e.|GOL|∞ < 1. Thus, during the controller design the stability requirement |GOL|∞ < 1 can
be substituted with|GOL|∞ < a < 1, which ensures also lower sensitivity to time delay.

C. Zero time delay case

As the time delay reduces to zero, i.e.T1 = T2 = T = 0, the system reduces to that without scattering transformation,
i.e. G(s) = G0(s) as straightforward computable from (11) (12). This is interesting, compared to the standard small gain
approach, as the controller can be more aggressively designed for the zero time delay case. For zero time delay “nominal”
performance is recovered. Together with low sensitivity totime delay, good performance is guaranteed for a wide range of
time delay values.

Concluding the above, the overall design goal is to find a controller and a value forb such that the closed loop systemwithout
the time delay and the scattering transformation has a satisfying response, whileK(s) is PR and approximately one for a broad
range of frequencies. Stability and sensitivity to time delay requirements can be conjointly expressed as|GOL(jω)|∞ < a < 1.
Lower sensitivity to time delay is achieved for lower valuesof a. The significant advantage of the above is that no knowledge
of the time delay value is required during the controller design.

V. PERFORMANCEEVALUATION

In order to show the efficacy of the proposed approach a comparison is performed with a delay-dependent controller and the
Smith predictor. The comparison is in some sense “unfair” since delay-dependent methods lead to less conservative results at
least for the nominal time delay. The small gain theorem, however, which is the only delay-independent alternative approach,
cannot be applied because there is an integrator in the system under consideration. The system under consideration is an
one-degree-of-freedom (1DOF) robotic system used later for experimental validation. The robotic system is approximated by
the transfer function

Gp(s) =
73

s2 + 10.15s
.

from the input voltage (V) (which is assumed to be proportional to the torque, see Section V-C) to the output angle (rad). The
transfer function is obtained by standard least square identification of the response to square pulse input. Note that the plant
is not PR as arg{Gp(jω)} ≥ 90o, ω ≥ 0, i.e. the Nyquist plot lies in the left half plane.

A. Controller design

In order to achieve a fair comparison the controllers for allapproaches are designed by numerical optimization using the
ITAE (Integral Time Absolute Error) performance index as cost function

J =

∫ tf

0

τ |e(τ)|dτ.

The numerical optimization is performed for a nominal time delay of T = 300ms over a horizon oftf = 5 s usingfmincon
of the Matlab optimization toolbox. As basic structure for the controller a lead-lag element

Gc(s) = k
s + a

s + c
,

is considered wherek, a, c > 0 are parameters to be determined by numerical optimization.The exact design procedure for all
three cases is explained in the next.
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Fig. 4. Amplitude of the sensitivity function with respect to time delay, of the scattering approach, delay-dependent controller and Smith predictor.

1) Scattering transformation:The constrained optimization problem can be formulated asmink,a,c,b J subject to the
constraintsk, a, c, b > 0. The numerical optimization gives the controller for the input-output transformation

Gtr(s) =
1.3981(s + 9.9114)

s + 9.1558
,

and b = 0.6203. The optimal cost function value isJ = 0.1976. For the above controller it is straightforward to compute
that K(jω) is PR and‖K(jω) − 1‖ < 0.1702.

2) Delay-dependent controller:For the delay-dependent controller the lead-lag element isused directly to control the plant.
Similarly to the previous case the optimization problem is represented bymink,a,c J subject to the constraintk, a, c > 0
resulting in the controller

Gdd =
3.2649(s + 4.7877)

(s + 57.7271)
,

with the optimal cost function valueJ = 0.4797.
3) Smith predictor:For the Smith predictor the controllerGc is designed initially without considering the time delay. The

optimization problem is given bymink,a,c J subject to the constraintk, a, c > 0 andk < 5 as otherwise an indefinitely large
gain is given by the optimization, resulting in the controller

Gc,sp =
5(s + 8.4642)

s + 22.5354

with the optimization errorJ = 0.0871. The finally used controller is given by

Gsp(s) =
Gc,sp(s)

1 + Gc,sp(s)Gp(s)[1 − e−sT ]
,

whereT = 300ms represents the nominal time delay. Note, that full knowledge of the plant is required for the design. In
the case of exact plant and time delay knowledge, the response of the time delayed system with Smith predictor equals the
response of the system without time delay shifted in the timeaxis by the forward delayT1.

TABLE I
SIMULATION RESULTS: ±5% SETTLING T IME

Time Delay (ms) 50 200 300 400

Scattering 0.58s 0.64s 0.60s 0.84s
Delay-dependent 1.64s 1.24s 0.58s 1.92s

Smith unstable unstable 0.30s unstable

B. Simulations

The response to a step input with a final value of 0.2 rad is considered in the simulations. Additionally the disturbance
rejection in the input of the plant is studied. A zero reference input is used, in order for the robotic system to remain to the
initial position, and a step disturbance of 0.2V to its inputis applied. Four different values for the round trip time delay are tested,
the nominal time delay ofT = 300ms, andT = 50, 200, 400 ms, with equal forward and backward time delays,T1 = T2 = T

2 .
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Fig. 5. Simulation step response of the system with scattering transformation, delay-dependent controller and Smith predictor for different values of time
delay.

TABLE II
SIMULATION RESULTS: OVERSHOOT%

Time Delay (ms) 50 200 300 400

Scattering 19.11 11.78 13.59 14.24
Delay-dependent none none 3.52 23.04

Smith unstable unstable 4.31 unstable

Of specific interest is the stability, the performance and the sensitivity to time delay. The amplitude of the sensitivity function
with respect to time delay for the various controllers in thenominal time delayT = 300ms, is shown in Fig. 4. The amplitude
is plotted until the maximum cut-off frequency for the different systems, i.e. for the Smith predictor,ω = 21 rad/sec. The
proposed approach shows indeed significantly lower sensitivity to time delay. This is also verified in the simulation results that
follow.

The simulation results for the step input are shown in Fig. 5,and Tables I and II. The scattering transformation approach
performs well in all cases. Furthermore the response is slightly affected by the time delay value. The delay-dependent controller
performs well in the nominal time delay; the settling time isslightly smaller than the scattering approach and the overshoot
also small, but the performance becomes rather poor for different time delay values. The delay-dependent controller becomes
unstable forT ≈ 850ms. The Smith predictor gives indeed the best performance for the nominal time delay. However, in all
the other time delay values the system becomes unstable.

The simulation results for the step disturbance in the plantinput are shown in Fig. 6 and Table III. The scattering
transformation approach shows the smallest remaining disturbance and the lowest sensitivity to time delay. The delay-dependent
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Fig. 6. Simulation response to step disturbance of the system with scattering transformation, delay-dependent controller and Smith predictor for different
values of time delay.

TABLE III
SIMULATION RESULTS: REMAINING DISTURBANCE IN %

Time Delay (ms) 50 200 300 400

Scattering 66.1 66.1 66.1 66.1
Delay-dependent 369.2 369.3 369.3 369.2

Smith unstable unstable 269.0 unstable

controller and especially the Smith predictor are sensitive to time delay.

C. Experimental setup

The experimental testbed consists of the 1DOF robotic system shown in Fig. 7 connected to a PC running under Real-Time
Linux. The original design can be found in [20]. The DC-motortorque is controlled over a PWM amplifier operated under current
control with the reference signal given by a voltage from theD/A converter output of the I/O board. Thus, the input voltage
can be considered to be proportional to the torque. The position of the lever is measured by an optic pulse incremental encoder
and processed by a counter on the I/O board. The control loop including the controller and the communication network with
constant time delay and the scattering transformation is implemented as MATLAB/SIMULINK blocksets. Standalone realtime
code is generated directly from Matlab. The sampling time interval is TA = 1 ms. In real NCS applications the right hand
scattering transformation can be implemented as a local controller in the plant CPU which implements the network protocols.
The right hand scattering transformation can be interpreted as a static-output-feedback-input-feedforward control. Since no
dynamic is involved very limited computational power is necessary, so computational power is not an issue. The left hand
scattering transformation can be implemented as part of thecontroller.
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Fig. 7. Experimental testbed

TABLE IV
EXPERIMENTAL RESULTS: ±5% SETTLING T IME

Time Delay (ms) 50 200 300 400

Scattering 0.32s 0.38s 0.43s 0.48s
Delay-dependent > 5 3.31s 3.28s 3.28s

Smith unstable unstable 0.48s unstable

The experimental results for the step input are presented inFig. 8, and Tables IV and V. The delay-dependent controller
has a smaller steady state error but its response is very slow, e.g. in case ofT = 50ms the settling time is more than 5s. The
steady state error in all the cases is most likely due to unmodelled nonlinearities of the plant, e.g. backlash.

TABLE V
EXPERIMENTAL RESULTS: STEADY STATE ERROR IN %

Time Delay (ms) 50 200 300 400

Scattering 24.14 17.59 22.2 18.74
Delay-dependent 313.07 9.66 12.43 4.54

Smith unstable unstable 41.1 unstable

The experimental results for the step disturbance are presented in Fig. 9 and Table VI. The scattering transformation
approach gives by far the smallest remaining disturbance inall cases. The Smith predictor becomes unstable only in the case
with T = 400ms, however, the remaining disturbance is by far larger thanthe scattering transformation approach. In short, the
proposed approach guarantees delay-independent stability and shows low sensitivity to time delay, while even delay-dependent
approaches are outperformed.

VI. CONCLUSION

In this article a delay-independent control methodology isproposed for NCS based on the scattering transformation. A
novel contribution is an extension of the known scattering transformation to non-PR, static-output-feedback-stabilizable LTI
plants. Sensitivity to time delay and performance issues are furthermore examined. All the design goals can be defined without
assuming knowledge of the time delay value. In a simulation example the proposed approach outperforms the Smith predictor
and a delay-dependent controller as far as stability, performance and sensitivity to time delay are concerned. A hardware-in-
the-loop experiment with a 1DOF robotic system verifies the efficacy of the proposed approach. Future work is to approach
time-varying delay, packet loss, and non-linear systems.

TABLE VI
EXPERIMENTAL RESULTS: REMAINING DISTURBANCE IN %
Time Delay (ms) 50 200 300 400

Scattering 67.9 68.1 68.8 69.1
Delay-dependent 265.8 445.1 552.8 670.9

Smith 330.9 346.9 377.1 unstable
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Fig. 8. Experimental step response of the system with scattering approach, delay-dependent controller and Smith predictor for different values of time delay.
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Fig. 9. Experimental response to step disturbance of the system with scattering transformation, delay-dependent controller and Smith predictor for different
values of time delay.


