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All men by nature are actuated with

the desire of knowledge, and an indi-

cation of this is the love of the senses.

For even, irrespective of their utility,

are they loved for their own sakes.

And preeminently above the rest, the

sense of sight. For not only for prac-

tical purposes, but also when not in-

tent on doing anything, we choose the

power of vision in preference (so to

say) to all the rest of the senses. And a

cause of this is the following, that this

one of the senses particularly enables

us to apprehend whatever knowledge

it is the inlet of, and that it makes

many distinctive qualities manifest.
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Abstract

The thesis presents a robotic perception system for manipulation tasks in human liv-

ing environments, that eases the deployment of autonomous service robots in new

environments by enabling it to autonomously learn, model and localize the objects it

perceives through the integration of geometric categorization and instance recogni-

tion.

To do so, we designed, tested and analyzed novel methods for: (i) learning general

object-related principles from the Internet based on their part composition, (ii) com-

puting descriptors that facilitate generalization between instances of the same cate-

gory, (iii) classification that is robust to large variations between training and testing

data, (iv) and surface reconstruction capable of dealing with partial information and

cluttered scenes, while respecting physical constraints. These enable robots to take

advantage of their capability to explore their surroundings and that they are equipped

with sensors with different advantages, by the integration of prior, spatio-temporal

and multi-cue information.

The developed system and the underlying modules and principles were shown to

outperform alternative solutions in extensive experiments, and were applied in real-

world robotic demonstration scenarios, proving the advantage of an embodied, task-

adapting approach towards perception.
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Kurzfassung

Die vorliegende Dissertation repräsentiert ein Roboter-Wahrnehmungssystem für

Häusliche Manipulationsaufgaben, das den Einsatz von autonomen Servicerobotern

in unbekannten Umgebungen erleichtert, indem dem Roboter ermöglicht wird, wahr-

genommene Objekte autonom durch die Integration von geometrischen Kategorisie-

rungs- und Instanzerkennungs-Algorithmen zu lernen, zu modellieren und zu lokali-

sieren.

Methoden wurden konzipiert, analysiert und getestet, die: (i) generische, objektrele-

vante Prinzipien anhand deren Bestandteile über das Internet erlernen, (ii) Gemein-

samkeitsbeschreibungen zwischen Objekten der selben Kategorie errechnen, (iii) mit

großer Robustheit gegenüber Varianz zwischen Trainings- und Verifikationsdaten klas-

sifizieren, (iv) sowie Oberflächen unter Berücksichtigung von partiellen Informatio-

nen, überladenen Szenen und physikalischen Beschränkungen rekonstruieren. Diese

Methoden lassen Roboter den Vorteil ausnutzen, dass sie ihre Umgebung durch die

Integration von vorausgehenden, räumlich-zeitlichen und multimodalen Informationen

unter Verwendung von Sensoren mit unterschiedlichen Vorteilen erkunden können.

Es wurde in umfangreichen Experimenten gezeigt, dass das entwickelte System sowie

die zugrundeliegenden Komponenten und Prinzipien alternative Lösungen an Leis-

tung übertreffen, und hat während der Anwendung in realweltlichen Roboter-Demon-

strationsszenarios den Vorteil eines verkörperten, aufgabengerichteten Ansatzes zur

Wahrnehmung aufgezeigt.

IX





Acknowledgements

First and foremost, my thanks go to my supervisor, Prof. Michael Beetz, PhD. He

always supported and inspired me, and it was a pleasure and honor to work with him.

I hope we will continue collaborating and that the physical distance does not become

a personal one. The same goes for my mentor, Dr. Radu Bogdan Rusu, who took

me under his wing during my university studies and enabled me to write my Masters

thesis at the Technische Universität München. I can safely say that his support while

we were fellow PhD students was crucial for my work.

Over the years, I was closely working with the perception team of our chair, Nico

Blodow, Dejan Pangercic and Mihai Dolha, who were an excellent team for addressing

difficult problems together, and also the best office mates one could wish for. I would

like to thank them for their help, and I will miss our office full of ideas and fun.

Similarly, the whole Intelligent Autonomous Systems group provided an excellent

environment, both professionally and personally. Here I would like to especially thank

the people I work together most closely: Dominik Jain, Alexis Maldonado and Moritz

Tenorth, but my gratitude goes to all of the group members over the years really.

I had the opportunity and pleasure to work with people outside our group as well, and

I feel myself lucky to have met Dr. Oscar Martinez Mozos and Dr. Asako Kanezaki, who

opened my mind to new ways of looking at problems, for which I am very grateful.

Having some great students to supervise was also one of the best things that could

happen, as I would learn just as much from them, as they did from me. I really see Dr.

Lucian Cosmin Goron, Florian Seidel, Ferenc Balint-Benczedi and Darko Stanimirovic

as my colleagues, and I thank them for their unstopping and contagious motivation.

Last but not least, I would also like to thank the people at ISPRS and Leica for giving

us access to the Ljubljana street scans, the Stanford Computer Graphics Laboratory for

XI



releasing The Stanford 3D Scanning Repository, as well as Radiohead for publishing

their urban scan data.

XII



Contents

Abstract VII

Kurzfassung IX

Acknowledgements XI

Contents XIII

List of Resources XVII

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Object Model Fitting for Grasping . . . . . . . . . . . . . . . . . . 14

1.3.3 Object Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.4 Ensemble Methods and Incremental Learning . . . . . . . . . . . 18

1.3.5 Segmentation and Part-Based Recognition . . . . . . . . . . . . . 20

1.3.6 Perception Systems for Object Recognition . . . . . . . . . . . . . 22

2 Analysis of Perception Modules 25

2.1 The Perception Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Next Best View and Registration . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Robust Moving Least Squares . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Segmenting Object Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 49

XIII



Contents

2.5 Estimating Descriptive 3D Features . . . . . . . . . . . . . . . . . . . . . . 54

2.5.1 Local Surface Radius Estimation . . . . . . . . . . . . . . . . . . . 54

2.5.2 Global Feature from Local Surface Types . . . . . . . . . . . . . . 59

2.5.3 Comparison of Features . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Learning Object Models from the Internet . . . . . . . . . . . . . . . . . . 64

2.7 Multi-modal Part-based Classification . . . . . . . . . . . . . . . . . . . . . 65

2.7.1 3D Geometric and Intensity/Confidence Image Features . . . . . 69

2.7.2 Categorization using Statistical Relational Learning . . . . . . . 70

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Multi-cue Perception System for Spatio-temporal Integration 75

3.1 Requirements of a Task-adapting Perception System . . . . . . . . . . . . 76

3.1.1 Regions of Interest and Poses . . . . . . . . . . . . . . . . . . . . . 79

3.1.2 Integrating Results from Different Time-stamps . . . . . . . . . . 80

3.1.3 Task-adapting Examination Methods . . . . . . . . . . . . . . . . . 80

3.1.4 Modular Classification Strategies . . . . . . . . . . . . . . . . . . . 81

3.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Hierarchic Classification for Learning and Adapting Perception . . . . . 84

3.2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.2 Object Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.3 Detection based on Known Views . . . . . . . . . . . . . . . . . . . 93

3.2.4 Improved Detection through Incremental Learning . . . . . . . . 95

3.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Ensemble Learning for Fusing Parallel Processing Results . . . . . . . . . 98

3.3.1 Max and Product Rules . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.2 Weighted Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.3 Error Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.4 Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Modeling the Robot’s Workspace 113

4.1 Segmenting Furniture and Appliance Doors . . . . . . . . . . . . . . . . . 114

4.1.1 Incremental Data Acquisition . . . . . . . . . . . . . . . . . . . . . 114

XIV



Contents

4.1.2 Detecting Doors and Containers based on Fixtures . . . . . . . . 117

4.1.3 Semantic Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Detecting Furniture Pieces by their Part Configurations . . . . . . . . . . 123

4.2.1 3D Point Cloud Segmentation . . . . . . . . . . . . . . . . . . . . . 125

4.2.2 Training Objects from Web Catalogs . . . . . . . . . . . . . . . . . 126

4.2.3 Vocabulary of Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.4 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Detection of Objects in Complex Scenes 143

5.1 Part-based Multi-modal Categorization . . . . . . . . . . . . . . . . . . . . 144

5.1.1 Scene- and Part-graphs for Object Recognition in Clutter . . . . 149

5.1.2 Object Part Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.1.3 Geometric Categorization . . . . . . . . . . . . . . . . . . . . . . . 152

5.2 Large-scale Evaluation and Comparisons . . . . . . . . . . . . . . . . . . . 154

5.2.1 Complete Cluttered Scenes . . . . . . . . . . . . . . . . . . . . . . . 155

5.2.2 Evaluation of Features . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.2.3 Comparison to Previous Methods . . . . . . . . . . . . . . . . . . . 162

5.2.4 Generated Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3 Accumulating Cues and Exploiting the Robot’s Embodiment . . . . . . . 165

5.4 Model Reconstruction for Grasping . . . . . . . . . . . . . . . . . . . . . . 166

5.4.1 Shape-fitting and Verification . . . . . . . . . . . . . . . . . . . . . 167

5.4.2 Creation of Complete 3D Models from a Single View . . . . . . . 170

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 Applications and Discussions 177

6.1 Demonstration Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.1.1 Interactive Segmentation of Textureless Objects . . . . . . . . . . 179

6.1.2 Grasping of Objects using Reconstructed Object Models . . . . . 179

6.1.3 CAD Model-based Object Detection . . . . . . . . . . . . . . . . . 180

6.1.4 Lifelong Dynamic World State Mapping . . . . . . . . . . . . . . . 181

6.1.5 Platform independent Perception System . . . . . . . . . . . . . . 182

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.2.1 Detection of Objects in Complex Scenes . . . . . . . . . . . . . . . 184

XV



Contents

6.2.2 Accumulating Cues from Multiple Sources for Object Classifica-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.2.3 Integration of Algorithms in Large Open Source Projects . . . . 186

List of Prior Publications 187

Bibliography 193

XVI



List of Resources

Figures

1.1 Vision is an inverse problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Difficulties in image-based recognition. . . . . . . . . . . . . . . . . . . . . 10

1.3 Multi-modal part-based segmentation and categorization. . . . . . . . . 12

2.1 An architectural overview of perceptual tasks. . . . . . . . . . . . . . . . 27

2.2 Major steps of the 6DOF next best view algorithm. . . . . . . . . . . . . . 30

2.3 3D registration using visual odometry. . . . . . . . . . . . . . . . . . . . . 32

2.4 WLS and WRANSAC (dark green) for a cloud with 10% outliers. . . . . 34

2.5 Comparison of edge and corner preservation between standard MLS

and Robust MLS for a cube. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Fitted polynomial to a local neighborhood. . . . . . . . . . . . . . . . . . 35

2.7 Effect of the fitted polynomial’s order to a local neighborhood. . . . . . 36

2.8 Effects of smoothing on surface normals and curvature estimation. . . 37

2.9 Triangulation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Greedy projecting triangulation. . . . . . . . . . . . . . . . . . . . . . . . . 42

2.11 Resampling of urban LIDAR data. . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 Surface reconstruction from urban LIDAR data. . . . . . . . . . . . . . . 45

2.13 Triangulation of a surface with adaptive vertex density. . . . . . . . . . . 46

2.14 Adaptive resampling and meshing. . . . . . . . . . . . . . . . . . . . . . . 46

2.15 Linear time complexity and number of triangles as a function of the

number of points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.16 Surface reconstruction from vehicle-mounted LIDAR data. . . . . . . . . 48

2.17 Object detection methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.18 Time-of-flight camera image. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

XVII



Contents

2.19 Object segmentation from time-of-flight camera frames. . . . . . . . . . 53

2.20 Surface normal angle based part segmentation. . . . . . . . . . . . . . . 53

2.21 Radius-based Surface Descriptor principle. . . . . . . . . . . . . . . . . . 55

2.22 Computation of the Radius-based Surface Descriptor. . . . . . . . . . . . 56

2.23 Radius-based Surface Descriptor estimation. . . . . . . . . . . . . . . . . 57

2.24 RSD and (F)PFH comparison for surface type recognition. . . . . . . . . 58

2.25 Global Radius-based Surface Descriptor. . . . . . . . . . . . . . . . . . . . 60

2.26 Additive Global Radius-based Surface Descriptor. . . . . . . . . . . . . . 61

2.27 Furniture models used for training data from the Internet. . . . . . . . . 65

2.28 Processed kitchen scans from Google Sketchup. . . . . . . . . . . . . . . 66

2.29 Sensor mounted on a robot for capturing different visual modalities. . 67

2.30 Segmentation and image features for training examples. . . . . . . . . . 71

3.1 Iterative refinement of object hypotheses by an ensemble of experts. . 79

3.2 Feature vector length and training times. . . . . . . . . . . . . . . . . . . 82

3.3 Service-based classification framework. . . . . . . . . . . . . . . . . . . . 83

3.4 Object processing pipeline architecture: from sensor data to objects. . 88

3.5 Module details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Pipeline that formed by the examination methods. . . . . . . . . . . . . . 91

3.7 Classification results for a variety of objects. . . . . . . . . . . . . . . . . . 93

3.8 Scenes for evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.9 Left: some of training objects. Right: some novel objects for test (iii). 95

3.10 Hierarchic classification results and GRSD statistics. . . . . . . . . . . . . 96

3.11 Learning different views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.12 Technique of concatenation compared to ensembles. . . . . . . . . . . . 100

3.13 Original stacking compared to our stacking version. . . . . . . . . . . . . 103

3.14 Results using AdaBoost compared to those using SVM. . . . . . . . . . . 106

3.15 Error rate of simple ensebles on the 20 classes problem. . . . . . . . . . 107

3.16 Error rate of all simple ensemles on the 51 classes problem. . . . . . . . 108

3.17 Stacking with AdaBoost as level-0 and various level-1 classifiers. . . . . 108

3.18 AdaBoost ensemble and feature concatenation confusion matrices. . . 110

4.1 Segmenting touching furniture and appliance doors from raw data. . . 115

4.2 Incremental triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Segmentation results for a kitchen. . . . . . . . . . . . . . . . . . . . . . . 118

XVIII



Contents

4.4 Color-based segmentation around handles. . . . . . . . . . . . . . . . . . 119

4.5 Reconstructing detected objects. . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Querying the created environment model. . . . . . . . . . . . . . . . . . . 121

4.7 KnowRob integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.8 KnowRob representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.9 Creating a world model using furniture models from the WWW. . . . . 124

4.10 Simulated scanning and segmentation of a CAD model. . . . . . . . . . 127

4.11 Example word activation and corresponding 2D voting space. . . . . . . 129

4.12 Furniture recognition results on a scan of an office. . . . . . . . . . . . . 135

4.13 Furniture recognition results on a scan of a seminar room. . . . . . . . . 136

4.14 Precision recall curves for different scenes. . . . . . . . . . . . . . . . . . 137

4.15 Precision recall curves for different variants. . . . . . . . . . . . . . . . . 138

4.16 Fitting CAD models for pose estimation and verification. . . . . . . . . . 139

4.17 Examples of the furniture detection process. . . . . . . . . . . . . . . . . 140

4.18 Recognition using multiple views. . . . . . . . . . . . . . . . . . . . . . . . 141

5.1 Multi-cue perception system enabling robot to interpret complex scenes

of unknown objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2 Categorization in clutter using part-graph hashing. . . . . . . . . . . . . 145

5.3 Difficulties encountered by texture-only methods. . . . . . . . . . . . . . 146

5.4 Image-based segmentation results of cluttered scenes. . . . . . . . . . . 146

5.5 Overview of part-graph hashing. . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6 Hash table and arrangement keys. . . . . . . . . . . . . . . . . . . . . . . . 151

5.7 Identifying geometric object categories. . . . . . . . . . . . . . . . . . . . 153

5.8 Segmentation and geometric categorization on three cluttered scenes. 155

5.9 Confusion matrices and cumulative score on the RGBD-Large set. . . . 159

5.10 Accuracy vs. number of subspace dimension using LSM. . . . . . . . . . 161

5.11 Confusion matrices of the vocabulary of parts method. . . . . . . . . . . 163

5.12 Synthetic scene automatically created and labeled from individual scans.163

5.13 Per-segment results on the 600 generated scenes from scans in the test-

ing split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.14 Subgraph size and top scores. . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.15 Scanning from multiple viewpoints. . . . . . . . . . . . . . . . . . . . . . . 166

5.16 Accumulating results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.17 Distribution of number of parts per object for different object types. . . 168

XIX



Contents

5.18 Reconstruction results for two touching objects. . . . . . . . . . . . . . . 169

5.19 Geometric modeling of the three test scenes. . . . . . . . . . . . . . . . . 170

5.20 Automatic reconstruction of objects of different types. . . . . . . . . . . 171

5.21 Box and cylinder fitting errors. . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.22 Triangulation of an object where no good model could be fitted. . . . . 175

6.1 High-level demonstration scenarios involving the system. . . . . . . . . 178

6.2 Grasping of the localized object by the PR2 robot. . . . . . . . . . . . . . 179

6.3 Grasp planning application for TUM-Rosie. . . . . . . . . . . . . . . . . . 180

6.4 TUM-Rosie locating the resultant geometric model in an image. . . . . 181

6.5 One object or two: difficulties in definition. . . . . . . . . . . . . . . . . . 183

Tables

2.1 Performance evaluation of our surface reconstruction method for mul-

tiple datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Cross-validation accuracy on the RGBD Object Dataset (51 classes). . . 63

2.3 Per instance classification time in seconds by feature length. . . . . . . . 63

2.4 Feature comparison using SVM. . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Categorization results and comparisons. . . . . . . . . . . . . . . . . . . . 72

2.6 Confusion matrix for the multi-modal categorization. . . . . . . . . . . . 72

3.1 Error rates fusing various features and classifiers for 20 classes. . . . . 81

3.2 Error rates fusing various features and classifiers for 51 classes. . . . . 81

3.3 Improved detection after learning the new object. . . . . . . . . . . . . . 97

3.4 Number of instances in the datasets. . . . . . . . . . . . . . . . . . . . . . 105

5.1 Selected object categories from the RGBD Dataset with good 3D data. 154

5.2 Reduced set of objects from the selected categories. . . . . . . . . . . . . 154

5.3 Results in clutter using different training datasets with GRSD- . . . . . 156

5.4 Results in clutter using different training datasets with VOSCH . . . . . 157

5.5 Average classification times in seconds for the scenes from Figure 5.8 . 158

5.6 Classification results using different distance metrics. . . . . . . . . . . . 158

5.7 Categorization results using different features on the RGDB-Large set . 160

5.8 Per category leave-one-out cross validation tests on the RGBD-Small set 161

XX



Contents

5.9 Results using different methods on the RGDB-Small datasets . . . . . . 162

5.10 Public object model databases and contained object types. . . . . . . . . 168

XXI





Chapter 1

Introduction

It may not come so far that the avalanche of knowledge transforms science

into a specializational porridge, in that state about which an aphorism says

that the future expert will know everything about nothing! The saving turn

is brought about by a global knowledge system that is generally available –

but not for living beings, because they can not cope with this burden.

STANISLAW LEM (OBSERVATION ON THE SPOT)

The ever increasing mechanization and automation of tedious or dangerous tasks

increased our standard of living and created entirely new industries. Robotics, for

example, gradually takes over hard physical labor and increases productivity, most

visibly in factories, but in other domains as well. Some tasks, like the exploration

of Mars would be unimaginable today without robots. However, when it comes to

performing tasks where the steps can not be described easily in an algorithm that the

robot “blindly” follows, we come to the realm of trying to reproduce some aspects of

our brain, i.e. adaptability and problem solving in new situations. This is the case

especially when a robot has to work in the presence of (and together with) humans,

where it has to evaluate and react to large amounts of information. Clearly, a lot of

common sense knowledge is required for the robot.

It is said that we live in an information age, with the Internet holding huge amount of

knowledge readily available. Often we just use search engines and online encyclope-

dias to find the information we need efficiently and in a structured manner. However,

for autonomous agents these data sources are far less intelligible than for us, as of

now. There are efforts to structure the data in a more uniform, and machine read-
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able way, i.e. the Semantic Web effort1, but the information is mostly unstructured.

Similarly, the world as perceived by computers through different sensors is just raw

data, that has to be analyzed by intelligent algorithms before it can be interpreted

and interacted with.

Robots thus need to be able to make sense of what they perceive of the environment

and of the online knowledge sources, that hold information about the world and

object around them, in order to be able to act flexibly, safely and reliably. This is the

large-scale scope of the work presented in this thesis, more specifically, the creation

of a task adapting visual perception system enabling a household robotic system to

understand and interact with its environment.

1.1 Motivation

Visual perception is arguably the most important senses we have for obtaining infor-

mation about the world (Lynott and Connell, 2009), and it is also the most widely em-

ployed environment perception modality in robotics and autonomous systems, used

for task as varied as localization, navigation, environment modeling, object recog-

nition, human robot interaction and shared autonomy. While there were some ad-

vancements in understanding how human vision works, and some of its limitations

can be highlighted with excellent optical illusions, there is no final, unified theory yet,

and computer vision is struggling to reach the level of a two year old child (Szeliski,

2010).

Advancements in the field are, however, already being successfully employed for ex-

ample in human tracking, character recognition, medical imaging and photometry,

with a growing need for more advanced solutions. Autonomous systems are expected

to make an impact not only on our economy2 and production3, but also through the

1http://www.w3.org/2001/sw/
2Frost & Sullivan’s Global Top 10 Hot Technologies to Invest include autonomous systems and 3D inte-
gration: http://www.frost.com/prod/servlet/press-release.pag?docid=182463128

3German Ministry of Economy and Technology funding project AUTONOMIK4.0 as part of the German
Hightech-Strategy 2020: http://www.autonomik40.de/
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field of service robotics456, accompanied by a growing acceptance of service robotic

solutions. According to a German study, the most pressing need in in the elderly

care sector (Beske et al., 2007), where the deployment of service robots is supported

by three quarter of the technical personnel, half of the healthcare professionals and

even 56% of the retired persons (Meyer, 2011). However, there are many skeptics

among the elderly especially, therefore equipping the autonomous agents of the fu-

ture with perception modules, that enable their safe and reliable self-controlled oper-

ation, is a central challenge. This is also supported by various studies created for the

German Ministry for Economy and Technology (Botthof et al., 2011; Künzel, 2012).

These see the autonomous systems capability of acting self-sufficiently being realized

through the use of environment models built using 3D and multi-modal (and multi-

view) technologies, and exploiting the World Wide Web for obtaining information on

understanding their environment. The integration of results from the cognitive sci-

ences is also stressed, as task adaptation semantic reasoning methods, context-based

knowledge integration is needed for the creation of flexible products. It is important

to note that the integration of robots into an ecosystems of agents might be necessary

for reaching such challenging goals as assistance systems for assembly, transportation,

medicine, search and rescue, agriculture, and robotic butlers for assisted living. These

also require software platforms and general, reusable and extensible modules, easily

configurable or self-tuning, that enable scaling to systems of increasing complexity, as

current solutions are quasi-handmade.

There are multiple research projects worldwide, at universities, research institutes and

companies alike, whose aim is the development of service robots (both for personal

and industrial applications). The vacuum cleaner robot Roomba and its competitors

are perhaps the most widely known finished products, but besides iRobot and Evo-

lutionRobotics, for example Rethink Robotics, PAL Robotics and Willow Garage are

developing complex robots to tap this new market, and companies like BOSCH and

KUKA are also moving in this direction. As the large European Robotics Technology

Platform (EUROP) and the Coordination Action for Robotics in Europe (CARE) ana-

4Europe 2020 flagship initiative Digital agenda for Europe: http://ec.europa.eu/digital-agenda/en/
science-and-technology/robotics

5The DARPA Robotics Challenge: http://www.theroboticschallenge.org/
6The AUTOMATICA Internation Trade Fair will have service robotics as new exhibition focal point
starting from 2014.
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lyze the future research directions7, these get pushed forward by research institutes,

mostly in the public sector, forming networks and collaborations (typically involving

industrial partners) like for example in Germany the Cognition Interaction Technol-

ogy (CITEC) and Cognition for Technical Systems (CoTeSys) clusters of excellence,

and the German Service Robotics Initiative (DESIRE).

Such a large effort is needed, as the goal of Artificial Intelligence (AI) turned out to

be more challenging as it was expected at the birth of the field, by scientists and the

public as well. With all the effort and successes in the last decades, there are plenty

of problems remaining for the years to come. Analogously, the task of sensing and

interpretation of the environment and the objects in it was also underestimated at

first (Boden, 2006). In (Künzel, 2012) the careful inching forward of current robots

is contrasted with a person running through a crowd (without injuring anyone), high-

lighting not only the agility of humans, but also the understanding of the dynamics

of the surrounding that is unmatched by robotic perception. Perception, however, is

identified as one of the key challenges that need to be solved generally, for a multi-

tude of research endeavors. In contrast to perception in industrial settings, one of the

impediments is, as described by Szeliski (2010), that vision (in an unknown and “un-

cooperating” environment) is an inverse problem, where the perceived image needs

to be understood without sufficient information. This is especially true in 2D (see

Figure 1.1 for a comic rendering of the problem), and while using 3D technologies

helps to recover some of the information more easily, problems abound.

Autonomous robots that are to perform everyday manipulation tasks in human living

environments must be able to pick up and place many objects of daily use. To manip-

ulate them, the robots first have to perceive these objects, that is, they are to detect

the objects in realistic settings, categorize them, recognize object instances, estimate

their pose or even reconstruct their shape from partial views.

The realization of robot perception systems that can perceive the range of objects to be

manipulated in a typical human environment with the accuracy and reliability needed

for grasping them successfully in real everyday settings poses a very hard and long-

term research problem. Robot manipulation tasks are usually restricted to detecting

7See the Strategic Research Agenda for robotics and its product visions at: http://www.
robotics-platform.eu/sra
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Passive or active
lighting for sensor

Object to be
recognized

What the
robot perceives 

Figure 1.1: Vision is an inverse problem. We, and robots, perceive only a projection of
the world, but still have to create a complete model of it, sometimes leading to
erroneous interpretations. (Underlying drawing taken from: c© New Yorker
Cartoon by John O’brien.)

distinctively textured objects, objects with distinct colors or specific shapes, based on

the full list of possible objects.

The current state of the art algorithms have been developed to solve these problems

for different subsets of objects, with varying accuracy and reliability, with different

requirements for computational resources, and under different context conditions.

Some of them require prior object models while others can do without, some infer

only general categories, others exact instances without the knowledge of the broader

categories these objects fall into. The approaches also differ in the type of sensors

used, in speed, in that not all of them report object poses, in the number of objects

they can deal with at once, etc.
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The perception tasks performed by most of these robots, however, are both too easy

and too hard.

They are too easy because they often cannot perceive the objects to be manipulated

with the accuracy and reliability needed for grasping them successfully in real every-

day settings. The reasons are manifold. Lighting conditions might cause low contrast

and specular reflections. Objects might be partly occluded. The objects themselves

might require different perceptual methods. Some of them are best perceived by their

visual appearance, such as cereal boxes, while others are better perceived by their

shapes. Many objects are quite similar and require detailed-oriented differentiation

methods.

They are too hard because they often do not exploit the regularities of their tasks,

their environments and the objects they are to manipulate.

Human living environments and objects of daily use in them present present regular-

ities that can be used for creating more robust detection routines. For example, most

objects are located at specific locations, placed on horizontal surfaces in a physically

stable position, and fall into few geometric categories, as a survey of publicly available

household object databases shows (see Table 5.10).

There are methods that have been shown to be able to classify some of the objects

that might appear in such settings. There are, however, inherent limitations in these

approaches, and as described by Kragic and Vincze (2009), there is no robust and

large-scale solution yet. However, object classification can be made significantly more

robust if multiple sources of information are used, that capture different aspects of

the objects and contextual information.

The focus of this work is on advancing closer to this goal by forming a multi-cue per-

ception system capable of dealing with the above challenges and provide the required

functionality both for high-level planning and manipulation. This is achieved by tak-

ing advantage of the robots’ exploration capabilities and priors about possible object

locations and types, the use of multiple sensory modalities, various detectors with

different strengths and weaknesses, and the incorporation of multiple observations

over time to obtain better results. The efficiently combination of these ideas is re-

quired for the realization of cognitive technical systems, as suggested by AI research

and cognitive psychology.
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1.2 Outline and Contributions

During my stay at the Intelligent Autonomous Systems (IAS) group at TUM, as part

of CoTeSys, I had the opportunity to explore a large breadth of the difficult, but inter-

esting field of cognitive perception, and there were important lessons to be learned

and transfered between the various related domains. The result was a versatile per-

ception system that is able to deal with different problem domains in a unified way.

After giving an overview of the related work, I will present the outline of the system

in Chapter 2, and describe the repertoire of general algorithms that will be employed

throughout the thesis, along with the specific contributions I made to them to advance

the state of the art. Integrating perception with a robot’s control and planning systems

raises the need for good communication interfaces, but it also offers the opportunity

for embodied learning during long-term operation and multi-cue integration, as dis-

cussed in Chapter 3. In the remaining of the thesis I will then focus on how to use the

system for addressing the challenging problem of object detection in cluttered scenes,

first in the case of modeling the semi-static environment (Chapter 4), and then for

object detection (Chapter 5). Finally, I will present application scenarios in integrated

robotic systems, followed by the concluding remarks and notes on the publishing of

the results in Chapter 6.

As the deployment environment of service robots is almost sure to differ from the one

used in teaching it to perceive and understand it, the thesis focuses on finding the

known category of previously unseen object instances, while incorporating traditional

instance level algorithms as well. More specifically, the thesis contributes along the

following dimensions:

• The perception system uses the Internet as a resource for training general detec-

tion methods, that are then applied in novel settings. Online object databases

can be used to learn the general structure of the objects, and to detect these

structures in the robot’s deployment environment. This was shown to work

even if the models used for learning differ significantly from the object instances

found in the real environment.

• The incorporation of physical constraints into the detection of objects, in order

to validate the object hypotheses, thus reducing false positives. This is achieved

by combining bottom-up, data driven hypothesis generation modules with top-
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down, model driven verification, and knowledge about stability and volume.

Additionally, in order to reconstruct the specific objects’ 3D model for manip-

ulation, geometric fitting methods were developed that are capable of dealing

with partial information.

• The creation of local and global feature descriptors that facilitate generaliza-

tion, and can therefore be applied in adapting to domain specific perception

tasks. The accurate estimation of geometric structure proved to result in a low-

dimensional feature descriptor that has a direct physical interpretation, and the

object-level descriptor built out of it was shown to outperform abstract, high-

dimensional features in the potential for generalization out of the training set.

• The introduction of graph-theoretic processing and classification strategy into

clutter segmentation, that made efficient approximate subgraph matching pos-

sible. Detecting touching and partially visible objects is achieved by employing

the developed feature descriptor, and exploiting its additive property for gener-

ating subgraph descriptors. The use of graph-based hashing then speeds up the

generation of valid segmentation hypotheses.

• The combination of different sensing modalities, classification approaches, and

views of the scene into an ensemble of experts, where the various members can

complement and correct each other. It was found that by using components that

already provide high accuracy multi-class results on their own, and by employ-

ing the right learning strategy, results can outperform traditional methods.

I validate the performance of the building blocks and the whole perception system by

running it on the robot for solving difficult real world perceptual tasks. The developed

recognition method learned object specific part-compositions from online databases

and outperformed alternative solutions by over 17% (Table 5.9). It successfully seg-

mented and reconstructed objects in cluttered scenes, with the designed geometric

feature significantly surpassing RGB-based ones for the geometric categorization task

(Tables 5.3, 5.4 and 5.8).

In the following I will introduce and elaborate on these methods, putting them into

context.
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In the early twentieth century, Gestalt psychology and its theory of perception came

to be formulated, forming a collection of rules collectively called Gestalt laws or prin-

ciples. These deal with properties that define objects, and how they can be separated

from other objects, and are still very much in use in today’s computer vision fields.

As with many other theories of mind, it does not provide a final list of formulas to

follow, rather it is continuously evolving. There have been many advances in the-

ories of perception (Marr, 1982; Palmer, 1999) and cognition, with applications to

the large goal of AI (Brooks, 1999). An ever recurring theme seems to be the neces-

sity of bottom-up data driven hypothesis generation, verified by top-down concept

driven models, both in human and computer vision (Frisby and Stone, 2010). The

cognitivist and emergent philosophies disagree on how high level concepts should be

represented/learned, but getting feedback from the outside world and reacting to it

seems to be an important aspect of cognition (Vernon, 2005). At least that is how we

can intuitively judge intelligence (noting however the issues brought up by Searle’s

Chinese room argument).

The idea that a cognitive agent needs to be embodied to learn based on gathered

experiences has been around since Turing (Turing, 1970), who proposed equipping

computers “with the best sense organs that money can buy” and teaching them in or-

der to pass his famous test (Turing, 1950). Similarly, the authors in (Steels and Brooks,

1995) and Vernon (2005) argue for embodiment, and present different paradigms on

how to approach the learning and grounding of new information. Practically, the cre-

ation of weak AI is enough for mastering many of the tasks we would like a robot to

perform, but the flexibility provided by adaptability is indeed important, as precondi-

tions, environments and objects in it are often changing. Related ideas are discussed

by Horswill (1995), presenting the argument that robot’s task and environment adap-

tation improves its capability to perceive objects.

Autonomous robots would need to detect a large variety of objects, in the range of sev-

eral thousands, thus finding some common structure and categories is important (Bie-

derman, 1987). Biederman brings up the example of lamps, but chairs would also be

a good example, as illustrated by the appropriately named book: 1000 Chairs (Fiell,

2005). Other objects, both large and small, that could be relevant for a robotic house-

hold assistant have a large amount of instances, some of it being captured in the 500

Series of books published by Lark Crafts and Lark Books, for example: tables, cabi-

9
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nets, boxes, baskets, bowl, vases, plates and chargers, teapots, pitchers, cups, and of

course chairs too. Since typical object recognition methods rely on a closed set of well

defined object instances being provided a priori during training, the need for more

general concepts for objects becomes apparent. In addition to the classification, pose

and other grasp-relevant information is needed by the robot, thus exploiting every

possible source of information will be necessary.

The use of multiple detectors is important, as real-world objects, especially products

of the same company have very similar appearance (coffee, cans, chocolate, etc.) as

illustrated in Figure 1.2 and discussed in (Marton et al., 2011). Using only geometric

descriptors is not generally applicable either, as, for example, mugs, drinks and cereal

boxes typically have similar shapes but different appearance. In both cases, the in-

tended use of the object can be significantly different and can be relevant to the task

at hand. Additionally, some objects might be hard to detect with one sensor, but more

easily detectable using others (for example semi-transparent or shiny objects).

Figure 1.2: Two examples of good model matches using local image features. The images
however depict three ketchup bottles with three different shapes which makes
classification of the objects based on visual appearance challenging.

While recognition of specific (especially textured) objects is very advanced, as in the

early days of computer vision, perceptual grouping category recognition approaches

are becoming interesting again (Dickinson, 2009; Szeliski, 2010). This is because

the visual interest-point based feature descriptor matching approaches for object in-

stance recognition are less applicable for category recognition. Another beneficial

development has been the availability of large amounts of richly annotated data on
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the Internet, facilitating advanced learning methods. These can be used for learning

general principles on the part structure of object categories for example. Merging

“partial” information (different sensors, features, viewpoints, part compositions) im-

proves robustness, as does the task-adaptation of the different modules (specialized

class hierarchies, priors on possible object types/locations coming from task specifi-

cation or environment observation).

Such a system was developed in this thesis, as exemplified in Figure 1.3, where differ-

ent part segmentations and various detectors running on complementary sensory data

are combined to produce high quality recognition. In the figure the detections which

are correct are marked with blue, while the ones that are incorrect with red (with the

ground truth in parentheses). The detection of problematic objects like glasses and

silverware is facilitated by the merging of information sources and capturing inter-

part relations. Even though segmentation is not always correct (see the “ambiguous”

ground truth label), when part combinations are taken into account by the method,

there is a chance for recognizing one of the contained objects from the segment. In

this example low quality 3D data was used, in which small boxes and mugs are hard

to distinguish, but, as presented later, these principles were applied to high quality

laser and structured light data as well.

1.3 Related Work

As we are always building on existing work, this section is an attempt to present a

cross-section of the field, placing the presented work into context. In the following

subsections, related approaches are discussed, grouped together according to the the

main areas of research this work falls into.

1.3.1 Surface Reconstruction

Most of the robotic navigation systems today rely on 2D discrete representations of

the world, such as large scale 2D occupancy maps. for example (Vincent et al., 2008;

Thrun et al., 2006; Konolige et al., 2006). This is in contrast with applications in

computer graphics – like the reconstruction of architectural heritage (Levoy et al.,
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(a) RGB camera image and corresponding depth measurements for a tabletop scene

(b) Additional measurements for the 3D points (infrared signal amplitude and confidence)

(c) Merged RGB and 3D data, and its use for part-based segmentation and categorization

Figure 1.3: Multi-modal object detection using a Videre stereo-on-a-chip camera and a
SwissRanger 4000 time-of-flight camera. Please note that due to the low
quality 3D data, small boxes and mugs are hard to distinguish.
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2000) or 3D watertight objects (Gopi et al., 2000) – which build extremely accurate

models whose appearance has to be as close as possible to the original surface, but at

a much smaller scale. In contrast to well known surface reconstruction methods from

computer graphics (Gopi and Krishnan, 2002; Scheidegger et al., 2005; Amenta et al.,

2001; Dey and Goswami, 2003), robotics applications require methods that work

reliably on noisy scans acquired by mobile robots navigating in indoor and outdoor

environments.

Since a single scan usually can not cover the whole region of interest, multiple scans

need to be registered and merged, typically with a variant of the Iterative Closest Point

(ICP) algorithm (Besl and McKay, 1992; Zhang, 1994). In order to autonomously ac-

quire the different views of scenes and objects, Next Best View (NBV) algorithms are

required. This has been a long-explored, and still active field of research, due its com-

putational complexity (Bajcsy, 1988; Pito, 1999; Reed and Allen, 2000; Callieri et al.,

2004; Suppa, 2008; Potthast and Sukhatme, 2011; Kriegel et al., 2012). Another ap-

proach to compute the ego-motion and combine registered views into maps is to use

a combination of multiple sensor, like a laser, a camera, and a stereo pair, aided by an

inertial measurement unit (IMU) as by Mirisola et al. (2007) for example.

Hahne and Alexa (2008); Zhu et al. (2008) present two methods for improving the

depth image of time-of-flight cameras based on a stereo camera setup and graph-cut

and probabilistic algorithms. The cameras used are a 19k type PDM and a Swiss-

Ranger 3000. While these methods give promising results, the increased acquisition

time for a slight improvement in accuracy is a downside for applications such as ours.

A similar approach is presented in (Diebel and Thrun, 2005) but no information is

given by the authors on the computational performance of the algorithm.

Once a complete point cloud model is obtained, points from the different scans can be

used to reconstruct the underlying surface. This step can reduce the amount of noise,

and even out registration mistakes in order to aid further processing of the data. The

Moving Least Squares (MLS) algorithm is a widely used technique for approximating

scattered data using smooth functions. Alexa et al. (2003) describe a method to fit

polynomials to a point cloud based only on coordinate data and estimated surface

normals. To counteract the effects of noise, our approach uses Sample Consensus like

methods and other robust estimators in order to calculate the best reference plane

before fitting a high order polynomial (Rusu et al., 2007). Another Robust Moving
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Least Squares algorithm is described in (Fleishman et al., 2005), which differs from

ours in that it uses LMedS instead of our sample consensus (SAC) based model fitting

approach. To obtain a polygonal model of the world, further surface reconstruction

methods can be applied such as (Hoppe et al., 1992; Gopi et al., 2000).

1.3.2 Object Model Fitting for Grasping

In case a surface model is already available for the object, and it just has to be attached

to the current sensor readings, the process is analogous to robot localization. There as

well a model exists, i.e. the map, and the relative transformation between the robot

and the map is computed based on the sensor readings of the environment. In case

there is an initial guess of this transformation, the model and sensor data just has

to be locally registered by minimizing a distance-based cost function. Such methods

have been widely explored in the Simultaneous Localization And Mapping (SLAM)

field, a short overview of which is given by Sturm et al. (2012). However, for fitting

object models, there is typically no such approximate solution, and global registration

has to be performed, bearing close resemblance to the kidnapped robot problem.

Multiple sensors were used for solving such tasks, like cameras (Ulrich et al., 2009a;

Coates et al., 2009), stereo cameras (Fritz et al., 2009; Hillenbrand, 2008), 3D sen-

sors (Steder et al., 2009), and also their combinations to speed up or improve re-

sults (Klank et al., 2009a).

A vision-based grasping system which segments objects on a table and constructs tri-

angular meshes for them is presented in (Richtsfeld and Vincze, 2008). While the pre-

sented method is general and works for many objects, it creates complicated models

for certain objects, which could be simplified through the usage of geometric primi-

tives. A simplification of the modeling problem is used in Grasp-It (Miller and Allen,

2004), where combinations of geometric shape primitives such as spheres, cylinders,

cones and boxes are used to model each object. Bley et al. (2006) introduced “geons”

(geometric icons), that can be used to develop generic category descriptions using ge-

ometric primitives, but also additional category knowledge, for the purpose of build-

ing libraries of grasp models for a variety of objects.
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A computer vision and machine learning based method is used in (Saxena et al., 2008)

to train classifiers that can predict the grasping points in an image. This is then applied

to images of unseen objects. To obtain 3D positions of grasping points, the authors

use stereo cameras, but their approach works reliably only to the extent provided by

the training data. Another issue is the segmentation of objects, since grasp points

are provided with no information about what objects are in the scene and to which of

them do the identified points correspond. In (Bone et al., 2008) an accurate line laser

and a camera is used to build models and identify grasping points for novel objects

with very encouraging results. However the system was tested only on two objects,

thus its scalability is not clear.

Recently, Richtsfeld et al. (2012) presented a multi-level approach to fit planar or

curved surfaces to over-segment parts, and then define inter-segment relations to de-

cide if they should be merged or not. Unlike our approach, they consider relations

between non-touching parts as well, but the method performs best for merging touch-

ing segments and for convex shapes. Other approaches also focus on creating surface

models by fitting shape primitives or superquadrics and considering the spacial rela-

tions between them (Georg Biegelbauer, 2007; Li et al., 2011; Nieuwenhuisen et al.,

2013), but in slightly simpler scenarios.

Available models of complex objects are decomposed into superquadric parts by Biegel-

bauer and Vincze (2007) and Zhang et al. (2004), and these models are matched to

a point cloud. This needs a database of models, and moreover, their decomposition

into superquadric components, which is often difficult to obtain. A random sample

consensus (RANSAC) based approach for model decomposition is presented by Schn-

abel et al. (2007), where a set of 3D geometric primitives (planes, spheres, cylinders,

cones and tori) are fit to noisy point clouds. Since the point clouds presented there

are complete, the authors do not need to reconstruct the missing parts.

Thrun and Wegbreit (2005) describe a method for detecting and verifying symme-

tries in point clouds obtained from a single viewpoint, and they project the existing

points according to the detected symmetry to obtain the back side. However, using

our methods we were able to reconstruct surfaces by approximating them with shape

equations and thus generate a complete model, which can be meshed with the re-

quired density or sparseness according to the speed and accuracy requirements of our

applications.
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In the work of Xue et al. (2009) the grasping of objects modeled in the 3D object mod-

eling center (KIT Object Models Web Database) was presented. The center employs a

digitizer, a turntable and a pair of RGB cameras mounted to a rotating bracket which

allows for views from above the scene. At the time being, there are around 110 highly

detailed, high-precision objects publicly available. While working with such a system

and data would yield high quality results, its downside lies in the fact that the mod-

eling center is rather expensive and cannot be used online, i.e. mounted on a mobile

robot for autonomous mapping. In another initiative, a database (Columbia Grasp

Database) has been built (Goldfeder et al., 2009). The major difference between this

work and ours lies in how the models are obtained. The authors created artificial 3D

models whereas we acquired our models by scanning real world objects and surfaces,

and are thus facing the problem of noisy and cluttered data.

The method by Romea et al. (2009) estimates 6 degrees of freedom (DOF) object

poses in cluttered scenes by matching local descriptors to stored models. Since the

objects present in household environments are often texture-less, our approach con-

stitutes an important advantage over the above proposed research initiatives, which

fail to work in the absence of well textured objects.

A geometric template (i.e. CAD-like model) matching method is presented by Drost

et al. (2010), where candidate poses are estimated based on local 3D features. A

similar method that uses camera images as input is described by Ulrich et al. (2009b)

and Chen et al. (2010) for example. However, handling very large number of objects

with such methods is very time-consuming.

1.3.3 Object Classification

There are two principal mainstream lines in the area of the object recognition related

research: one aiming at recognition of objects in camera images, and one using 3D

depth data acquired through range scanning devices. While there has been much

valuable research in image-based techniques, e.g. by Savarese and Fei-Fei (2010),

combining these with depth or 3D cues improves their performance.

Depending on the type of perception data, various different 2D distinctive local fea-

tures have been developed. The SIFT descriptor (Lowe, 2004), which is one of the
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best-known keypoint descriptors and detectors, makes use of detected keypoints in

images and compares them with referenced object pictures in order to identify the

objects currently being observed. In the 3D domain, the VFH (Rusu et al., 2010)

descriptor was recently developed as the latest, viewpoint dependent, extension of

of PFH (Rusu et al., 2008a). The feature’s discriminative power is increased by the

inclusion of the viewpoint, which, however, also represents a deficiency in that the

feature becomes orientation variant.

Taken individually however, these two separate approaches are still insufficient to

solve the full object recognition problem as both are prone to failure in situation where

texture-less objects are present or depth data is too noisy or ambiguous. Therefore,

different research initiatives have decided to combine sets of local features and cluster

them together using different metrics (kernels) in order to be able to infer the global

identifiers for objects. This was especially aided by the development of structured

light sensors that provide depth images combined with traditional RGB ones (RGBD),

like the PrimeSense Carmine, Microsoft Kinect and Asus Xtion.

Lai et al. (2011b) validate the use of different visual modalities, using spin images

(Johnson, 1997) for describing shape, and SIFT and texton histogram features to

capture the visual appearance. They showed that color-based cues are more important

for instance recognition, while geometric ones are better suited for categorization,

and that their combination improves on both. This finding is also supported by Sun

et al. (2010).

Inspired by earlier work based on developmental psychology (Griffith et al., 2009),

object categorization using multiple modalities is explored by Sinapov and Stoytchev

(2011). While the authors base their approach on psychological findings that suggest

that a single sensory modality is often not enough, they leave out the most descriptive

modality, vision (Lynott and Connell, 2009), and focus on proprioceptive and auditory

feedback.

The combination of depth information with camera images is addressed by Quigley

et al. (2009). The authors calculate depth information for each pixel in the scene by

applying laser-line triangulation with a rotating vertical laser and a camera. To obtain

high resolution 3D images, each scan requires 6 seconds with an additional 4 seconds
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spent on post-processing and triangulation. Thus a waiting period of 10 seconds has

to be expected before object detection and robot manipulation could be performed.

Sun et al. (2010) presented a method inspired by Hough voting, and take advantage

of both image and depth information from a single view. They evaluated detection

and pose estimation separately, on a dataset containing 30 objects, identifying 16

distinct poses for each.

There are several other features provided in publicly available libraries like the Point

Cloud Library (PCL) (Rusu and Cousins, 2011), for example the global feature GFPFH

(Rusu et al., 2009c), intensity spin and RIFT (Lazebnik et al., 2005) which combine

3D and texture, PFH-RGB that extends PFH with color, and NARF (Steder et al., 2010)

which was developed for range images. Various other global (e.g. BOB by Payet and

Todorovic (2011)) or local (e.g. 3D SURF by Knopp et al. (2010)) features have

been described, and there are also approaches which combine separately developed

geometry and color descriptors into a single feature. However, properly balancing

these two different properties is difficult, as discussed in (Kanezaki et al., 2011c). The

rapid growth of the perception field means that comparing, evaluating, and combining

the available approaches becomes increasingly relevant.

1.3.4 Ensemble Methods and Incremental Learning

While single classifiers, or sequential applications of them are what was typically used

for object recognition so far, a combination of different classifiers and features using

ensemble learning seems like a promising approach as it has been successfully applied

to challenging machine learning problems in other domains.

Jain et al. (2000) provides a taxonomy for ensemble methods. They categorize meth-

ods based on:

• the architecture type (which can be parallel, cascading, gated, hierarchical or a

combination of these)

• whether or not the ensemble is trainable
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• according to the level of information the members of the ensemble produce

about their classification decisions

• whether it is adaptive, which means that the ensemble weights the contribution

of a member to the decision based on the input pattern

Sewell (2007) gives an overview of the literature on ensemble methods and also some

practical advice. He concludes that there is no benefit from combining different clas-

sifiers over the same feature set and there is substantial benefit from combining the

results of one classifier across different features sets, suggesting the applicability of

ensemble learning to multi-modal perception using a single classifier per feature.

Lam and Suen (1995) investigated how to optimally combine classifiers for character

recognition and found that simple voting is often the most robust choice. They found,

that the combination methods which are trainable exhibited better performance than

voting on the partition of the dataset on which they were trained, but performed

worse on a second partition of the dataset.

An approach which has been particularly successful in the Netflix contest (Sill et al.,

2009) is stacking, introduced by Wolpert (1992). In stacking the outputs of so called

level-0 classifiers and also meta-data is combined to form the input for classifiers on

level-1 which are trained to improve generalization accuracy on a validation set.

Madry et al. (2011) evaluated several linear and non-linear methods for combining

classifiers trained on shape and appearance features. They used SIFT (on grayscale

and the opponent color channels) and histograms of oriented gradients (HOG) for 2D

appearance and 2D shape, together with the Fast PFH version for 3D shape. As base

classifiers they used (multi-class) support vector machines (SVM) with χ2 kernel. The

ensemble methods evaluated were the max confidence rule, the product rule using

confidences and the confidence weighted voting rule. They also tested stacking using

SVM with the RBF kernel, the histogram intersection kernel and the χ2 kernel trained

on the confidences of the base classifiers. On a dataset of 11 object categories (10

objects each, 16 views per object), they found that the voting rule outperforms the

other rules as well as the SVM.

Incremental learning and recognition of objects is done in an unsupervised manner

by Triebel et al. (2010), but the authors focus mainly on furniture pieces, and it is
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not clear how well multiple objects could be reliably detected without any prior in-

formation. Our approach is a semi-supervised one, where the robot generates object

hypotheses on its own, but the categorization happens into user-defined classes.

Hager and Wegbreit (2011) present a system that recognizes simple shapes based

on geometry in clutter, on the assumption that the scene changes incrementally over

time. Here we take a slightly different approach in that we are learning new views

of more varied object autonomously and build up a database of the actual object

instances in our environment.

A similar approach to ours is taken by (Hinterstoisser et al., 2010), where a new view

of an object is added to the model if it is so different from the stored ones as to cause

the matching score to drop below the detection level. As we are combining the image

data with 3D information, we effectively eliminate the problem of scale and have a

better segmentation of the objects, and therefore require fewer views to be learned.

1.3.5 Segmentation and Part-Based Recognition

Many of the methods described above rely on a correct segmentation of object hy-

potheses, from which they can compute features to be used for recognizing them.

This is especially the case for global 3D descriptors like VFH. However, correctly seg-

menting objects in not always possible, especially when they are in cluttered scenes. A

solution to this problem is part-based detection, which relies only on the identification

of simple parts, that are typically easier to segment than complete objects.

Additionally, in order to match the perception capabilities of humans, Dickinson (2009)

advocates that searching for predefined templates is not enough, because recognition

of new exemplars of known categories have to be facilitated. Therefore the recogni-

tion and grouping of basic shapes is advocated, an aggregation process called percep-

tual grouping. As argued for example by Huber et al. (2004), part-based detection has

the advantage of generalizing to unknown instances of object types. While in (Huber

et al., 2004), (Marton et al., 2009c) and for the part-based VFH version called CVFH

(Aldoma et al., 2011), a single object is required in the query, approaches like (Lai

and Fox, 2010; Mozos et al., 2011) can efficiently detect objects in clutter.
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This typically requires over-segmenting the the scene, possibly multiple times, such

that object boundaries are respected, but an object can be split into multiple parts.

Therefore, a correct and fully reproducible segmentation is not needed, thus sim-

pler segmentation methods can be employed, usually based on detecting properties

like concavity, that are known to delimit objects (Jacobs, 2001; Singh and Hoffman,

2001). This approach was employed for example in (Kanezaki et al., 2011b) in a

multiple instance learning framework, using the part grouping method presented in

Chapter 5.

While there are many promising advances in correctly segmenting objects, with and

without some human aid, like (Bergström et al., 2011; Mishra and Aloimonos, 2011;

Fowlkes et al., 2007; Comaniciu et al., 2002), as pointed out by Malisiewicz and

Efros (2007), considering multiple over-segmented views is preferable to relying on

a single, possibly erroneous, segmentation. There are several other approaches to

clutter segmentation, but with limited exploration of the object recognition problem,

like (Somanath et al., 2009; Schuster et al., 2010; Goron et al., 2010).

Recent approaches to image segmentation and annotation are presented by Socher

et al. (2011) and shown to be less effective than the part-based approach proposed by

the authors. After over-segmenting the image they create a binary tree representation

by recursive merging nodes and assigning semantic features to them. The authors

apply the same method to parsing natural language as well. While the approach looks

extremely promising, the merges are not guaranteed to be performed first inside a

single object in the case of multiple objects of the same type being next to each other.

Instead of a fixed grouping, we enumerate all the possible subgraphs a node can be

part of, and classify each of them separately. A second voting step to obtain object

assignment and model fitting can then be easily applied, as detailed in (Mozos et al.,

2011).

Fergus et al. (2003) model objects as flexible constellations of parts in an unsupervised

scale-invariant learning approach for detecting objects in a wide range of images.

While our method is somewhat different, it can be viewed as the 3D application of

the presented principles, with the notable difference that we use additive features and

consider part combinations, aided by hashing of graph features that capture spacial

topology.
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Shotton et al. (2007) incorporate poses and viewpoints, texture, layout, and context

information for image segmentation based object recognition. In a complementing

publication (Shotton et al., 2008) they address the problem of categorical objects

recognition and localization in space and scale using a sliding window classifier. The

method is still image based, but in its formulation and its use of geometry related

image features is similar to 3D approaches.

In the 3D domain, a related idea was explored by Mian et al. (2006), but with a hash

table built on local 3D features for CAD fitting, while we have feature independent

hashing. Another approach by Ruiz-Correa et al. (2003) uses abstract shape class

representations that capture the spatial relationships between the object parts. While

the method uses point signatures, we compute descriptors for complete parts, thus

can take advantage of more descriptive features.

1.3.6 Perception Systems for Object Recognition

Existing classification systems like the Shark Machine Learning Library (shark-project.

sourceforge.new) or Shogun (www.shogun-toolbox.org) were not designed to be used

by robots directly, and they would need to be wrapped by some middle-ware in order

to use them during a robot’s operation. Such a wrapping can be provided through

the communication interface of the Robot Operating System (ROS, http://www.ros.

org), since it is portable onto different systems, is distributed and supports multiple

programming languages. Much of the required functionality is already available in

image and 3D data processing libraries like OpenCV (Bradski and Pisarevsky, 2000),

PCL, and the STAIR Vision Library (Gould et al., 2010).

Nakayama et al. (2009) present the AI Goggles system , which is a wearable system

capable of describing generic objects in the environment and retrieving the memories

of them using visual information in real time without any external computation re-

sources. The system is also capable of learning new objects or scenes taught by users,

however the training and testing phases are separate. As the core of the system, a

high-accuracy and high-speed image annotation and retrieval method supporting on-

line learning are considered. The authors use color higher-order local auto-correlation

(Color-HLAC) features and the Canonical Correlation Analysis (CCA) algorithm to
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learn the latent variables. In this work, we present a method for combining multiple

features, and discuss how unknown objects can be detected and learned automati-

cally.

Another system optimized for speed is MOPED (Torres et al., 2010). It builds on

POSESEQ, a state of the art object recognition algorithm and demonstrates a massive

improvement in scalability and latency without sacrificing robustness. The authors

achieve this with both algorithmic (different variations of nearest neighbor search)

and architectural (SIMD instructions, etc) improvements, with a novel feature match-

ing algorithm, a hybrid GPU/CPU architecture that exploits parallelism at all levels,

and an optimized resource scheduler. Since the system considers visual only features,

it has certain limitations that can be tackled by considering 3D data as well. Our sys-

tem uses a different visual classifier, but in theory any method can be used. The main

advantage of our approach is in the combination of image and 3D features, and the

building of models for grasping and re-detection for new objects.

A system for 3D perception and modeling is presented in (Arbeiter et al., 2010), that

can be used to reconstruct a 3D environment or learn models for object recognition on

a mobile robot. Both color and time-of-flight cameras are used, and 2D features are

extracted from color images and linked to 3D coordinates. Those then serve as input

for a modified fastSLAM algorithm for rendering environment maps or object models.

While the 3D aspects are not given that much importance, dealing with repeating

visual landmarks on an object is handled nicely by the system. As the focus is on

determining correspondences between scans, recognizing when an object is novel

and has to be learned is not addressed.

A self-referenced 3D modeler is presented in (Strobl et al., 2009), where the authors

demonstrate that an ego-motion algorithm tracking natural, distinctive features and

a concurrent 3D modeling of the scene is indeed possible. The use of stereo vision,

an inertial measurement unit, and robust cost functions for pose estimation in the

system further increase performance. While the authors build accurate models using

a hand-held device, we are using the robot’s own sensors and movements to not only

model, but also recognize its environment and the objects it encounters.
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Chapter 2

Analysis of Perception Modules

Essentially, all models are wrong, but some are useful.

GEORGE E. P. BOX (EMPIRICAL MODEL-BUILDING AND RESPONSE

SURFACES)

Every kind of ignorance in the world all results from not realizing that our

perceptions are gambles. We believe what we see and then we believe our

interpretation of it, we don’t even know we are making an interpretation

most of the time. We think this is reality.

ROBERT ANTON WILSON

This chapter presents the necessary steps and methods needed for robotic perception,

and how to best group them together to form an integrated and robust processing

pipeline. For the comprehensive perception system described in this thesis, it is very

important to define common processing steps and their possible interconnections,

such that interfaces between the various modules may be fixed. As we will see in

Chapter 5, the right interplay between these modules will enable a more powerful

system than just the combination of the parts.

Apart from innovations in the individual steps, what sets the work in this chapter

apart is the unique integration of different knowledge sources. This was possible at

the Intelligent Autonomous Systems group, thanks to the collaboration of people with

complementing competences. All in all, these methods are attempting to interpret

the world and objects in it based on some assumptions, which might not always hold.
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So they will be extended and combined in the remaining of the thesis to produce

“gambles” that have higher chance of being close to reality.

It is generally true that many of the models, optimization criteria, reconstructions

and features are not capturing the world perfectly. However, as George E. P. Box put

it “Remember that all models are wrong; the practical question is how wrong do they

have to be to not be useful.” Given knowledge about the specific application domain,

improvements are always possible, but these always have to be interpreted in the light

of the scenarios they are used in (Wagstaff, 2012). This chapter will focus on such an

analysis and evaluation of the building blocks used in the later chapters.

2.1 The Perception Pipeline

A typical interconnection of various perception modules is depicted in Figure 2.1.

The individual processing steps are depicted as rectangles with sharp corners while

the data structures are shown as rectangles with round edges. In order to guide

the reader, the specific modules from the application scenario from Figure 1.3 are

used as examples for the processing steps, as used in (Marton et al., 2009c). The

input shown at the top of the figure are the image streams provided by the used

sensor, which can encompass left-right streams of stereo cameras, the distance or

RGBD images produced by 3D cameras, or even infrared images. The output, depicted

at the bottom comprises a set of reconstructions of the objects in the scene together

with their categorization.

A preliminary offline step for an accurate data fusion is the calibration of the different

sensing devices with respect to each other. The calibration enables the data interpre-

tation algorithms to solve the sensor data correspondence problem and to bring the

images in the same coordinate system. Typically the cameras are rigidly mounted, so

we can assume that the extrinsic calibration parameters do not change.

The first step in during processing is the registration of sensor modalities, where the

data of the individual sensors is combined to form a 3D point cloud representation of

the scene. In case of RGBD cameras, each point in the cloud already carries informa-

tion from both the RGB and depth sensors.
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View Registration

Segmentation of Objects

Extracting the 3D Region of 

Interest above the Table

Partially Reconstructed Objects

      Original points                      Reconstruted / Smoothed points

Sensor Combinations

   Stereo: left & right         TOF: depth and intensity         Other modalities

Calibration

Feature Extraction

3D features and features from RGB

Object Categorization

boxes, plates, bottles, glasses, mugs and silverware

Robot Manipulation

Registration of Sensor Modalities

Training a Bayesian Logic 

Network

Visual Odometry

Input and 
Preprocessing

Multi-cue 

Perception 
System

Application

Offline 
Compuations

Figure 2.1: An architectural overview of perceptual tasks, with steps exemplified based
on the application from Figure 1.3.
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The view registration step registers the individual point cloud views into a global point

cloud. This requires the estimation of the poses of the camera relative to the scene.

This step is represented here by visual odometry, which is based on the stereo image

stream obtained so far.

Next, an extraction of the 3D regions of interest is performed. In the example depicted

in Figure 2.1, the robot has to interpret a table-setting scene. Therefore, the table

needs to be segmented and the objects on top of it must be clustered and extracted

as separate regions. Additionally, a table prior could be extracted from a knowledge

database, where available (Rusu et al., 2008c). The segmentation of objects step will

eliminate points that are generated by the table itself in order to find the sets of points

that correspond to objects lying on the table. These sets are then segmented to form

hypotheses about objects on the table. For each of them, the object feature inference

mechanism infers the respective feature values.

The object categorization is then performed using machine learning techniques. The

categorization step returns, for each perceived object, the most probable category

and, depending on the classifier, a measure that signals how confident the system is

that the categorization is right, or a confidence value for all the possible categories.

In the presented example this is achieved by phrasing it as a probabilistic inference

task based on learned statistical relational models about objects, their composition

and their perceptual features. To this end, we have trained a Bayesian logic network

that represents the relationships between features and object categories as a graph

and then learns the probabilistic correlation between objects, categories, and their

perceptual features from a set of training examples.

Finally, using the information provided by the categorization system, the object recon-

struction step partially reconstructs object surfaces into more compact models by the

use of triangular meshes.

The following sections describe the aforementioned processing steps in more detail.
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2.2 Next Best View and Registration

In order to leverage the advantages offered by the embodiment of a mobile robot,

special algorithms are needed for an efficient exploration of the environment and

the fusion of the data obtained from various viewpoints. These tasks of next best

view planning, visual odometry and scan registration are closely related to the SLAM

research field, but constitute separate research directions with a long history already,

as reviewed in subsection 1.3.1.

NBV algorithms and ICP-variants are used both for exploring and fusing scans of large

environments as well as of small objects, and both are important functions for a service

robot. In this section I will shortly present the various methods that can be used by our

robot to explore its surrounding and build models of it, discussing their benefits and

drawbacks given the sensor, the number of degrees of freedom (DOF) and application

domain.

In the simplest case of environment exploration, the robotic platform has a fixed sen-

sor mounted on its body, and it moves around on the floor, changing its 2D position

and orientation. Thus, exploring such an environment and registering scans obtained

by the 3D sensor is a 3DOF problem. This was the case in (Blodow et al., 2011a),

where we described suitable NBV and ICP algorithms. Here, I will present their ex-

tension to 6DOF, while considering both color and geometric cues for aligning the

views.

In order to maximize exploration it is advantageous to “look behind” occluding sur-

faces. This can be achieved by keeping a voxelized or octree representation of the

workspace’s volume (Kriegel et al., 2012), and store in it the information if it was ex-

plored (and found to be free or occupied by an object’s surface) or not. The accessible

boundaries between the two, i.e. between free and occluded voxel cells, can then be

scanned in order to explore as much of the occluded space as possible. Possible sensor

placement poses can be evaluated based on a suitable metric, as was done by (Blodow

et al., 2011a).

However, expanding the method described there to 6DOF poses is problematic, as the

space of possible poses is extremely large. Therefore, a reduced list of them needs

to be generated by the following heuristics. First, exploration boundary regions can
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Figure 2.2: Major steps of the 6DOF next best view algorithm. After a scan is obtained
from the initial view (top left), the boundary between explored and occluded
space can be sampled (purple points in the top right). These regions must be
scanned such that to maximize the explored volume. 6DOF view frustums
(marked by the four blue lines) can be evaluated for occluding surfaces by
simulating the view through raytracing. After a suitable view is selected a
second scan is added (bottom left) and the knowledge about free, occupied
and occluded space updated. The last image shows the two view-rays (green
lines), and the process is repeated until there are no large boundaries left to
explore.

be grouped into connected, nearly flat patches, treating them together. Second, for

each laser and depth camera there is an optimal distance to scan from, which can

be fixed, discarding too distant or too close points relative to the boundary to be

scanned. Third, the orientation of the sensor should align with the largest extent of

the boundary segment being analyzed.

These reductions in the size of the searchspace allow for a near real-time selection of

poses using the procedure described in Figure 2.8. The main difference between the

scan pose selection procedure from (Kriegel et al., 2012) and the one used here is the

fact that we explore the occluded space directly instead of incrementally exploring

along the edges of the scanned surfaces.
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Even if successive scans are made from defined or computed poses, localization errors

and mistakes introduced by calibration errors in the kinematic chains will result in

misalignments between the captured scans. To correct these, the off the shelf solution

is ICP, or one of its variants accessible in the PCL Library. ICP is by design based on

point correspondences, even in the case when the error to be minimized takes into

account surface normals in the “point-to-plane distance” method.

However, if only few good quality point correspondences can be computed, taking

into account the planar patches found in the two scans and aligning those, proved to

be a considerable benefit, as we showed in (Stanimirovic et al., 2013). The described

method takes into account point-to-point correspondences (computed using both 3D

and RGB-based features), but extends them with plane-to-plane correspondences as

well, in a common optimization framework, showing superior results to alternative

point-based approaches. Using the identified plane correspondences it is even pos-

sible to align scans without any estimate of their relative transformation (i.e. global

registration or initial alignment).

For aligning partial point cloud views the example application from Figure 1.3 em-

ploys a Visual Odometer (VO) on the stereo camera images. This is because the low

quality of the Time-of-Flight sensor does not allow an accurate registration. However,

visual odometry is capable of accurate localization, given enough visual features in

the scene.

For each series of monocular and disparity images from the stereo camera, the VO

computes the camera motion between the views and estimates a rigid transformation

(3D rotation and translation). Recent work (May et al., 2008) has addressed the

problem of estimating the camera motion using a SwissRanger SR-3k TOF camera.

However, this did not give satisfactory results for our setup, where the amplitude

of the image is varying substantially depending on whether the camera is closer or

further away from the object scene. Therefore, we used the Visual Odometry system

from (Morisset et al., 2009) that seeks to estimate the camera motion by tracking

CenSurE (Center Surround Extrema) features from one stereo image pair to the other.

Then, the motion is scored using the pixel reprojection errors in both cameras, and its

inliers are evaluated using the disparity space homography. The hypothesis with the

best score (maximum number of inliers) is used as the starting point for a nonlinear
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optimization routine. Figure 2.3 presents the fusion of two different point cloud views

using the camera motion estimates given by the VO framework.

Figure 2.3: Left: the fusion of two different point clouds acquired from separate views
using the information provided by the Visual Odometry system. Right: the
mapping of RGB information to the resultant global point cloud model.

2.3 Surface Reconstruction

Having obtained and registered the measurements from multiple viewpoints, remain-

ing problems in the data have to be corrected, and the real underlying surface ap-

proximated, in order to perform surface reconstruction. This is especially useful for

creating accurate models of objects, but offers substantial benefits for environment

modeling as well, as presented in (Rusu et al., 2008c; Marton et al., 2009b).

2.3.1 Robust Moving Least Squares

Single-scan, or registered point cloud data (PCD) typically contains holes due to scan-

ning non-Lambertian surfaces (i.e. reflective or absorbing), and drastically changing

point densities combined with doubled regions because of imprecise alignment. The

surface reconstruction module transforms this PCD model into a homogeneous point

distribution suitable for geometrical reasoning, containing interpolated points (which

approximate the original input data) that account for the above mentioned problems.

To do this we use our Robust Moving Least Squares (RMLS) algorithm (Rusu et al.,

2007, 2008c). We summarize the algorithm here, extending the short overview pro-

vided in (Rusu, 2009) based on (Marton, 2007).
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The first step of the algorithm is to compute a set of points which are to be fitted to

the surface. If only surface reconstruction is required, the initial guess for the surface

can be the original PCD itself. To up- or down-sample the underlying surfaces, an

initial guess is computed by approximating the point cloud with a set of points Q that

are in the vicinity of the original points and their coordinates are integer multiples of

a specified resampling step size s:

Q = {qk ∈ R3 | qk = s ·
�

�

�

p j

s

�

�

� , p j ∈ P} (2.1)

Note, that s can be selected also adaptively, by making it depend on the estimated local

surface curvature. The uniqueness of the obtained points must be ensured and extra

points must be added to areas where a hole was detected. The algorithm is similar

to the one for boundary points detection, with the difference that here we check if a

point is inside of an object, so the computed maximal angle must be sufficiently small

to ensure correct filling.

In the second step, for each point qk ∈Q a local neighborhood Pk is selected, by using

either a fixed number of nearest neighbors, or all neighbors in a fixed radius. The first

method can result in neighbors that are relatively far away form the currently fitted

point, and their influence must be minimized when fitting the point. The second

method has the disadvantage that it may yield too few neighbors if the search radius

is too small, but it ensures that the neighbors will surround the point to be fitted. In

practice this second method is preferred, as the relevant parts of the point cloud are

typically nearby, thus possessing a high enough density.

Weights are assigned to every neighbor pi ∈ Pk of qk based on the distance to the

currently fitted point.

W
qk

(pi)
= exp−

dist(p j, qk)
2

h2
, qk ∈Q, p j ∈ Pk (2.2)

Each point q from the initial guess will be projected onto the plane fitted through its

nearest neighbors. To fit a plane to the local neighborhood Pk, the minimization of

the weighted squares of the error (defined as the sum of weighted distances of the

points from the plane) was suggested by an iterative projection approach (Alexa et al.,

2004). This method, although weighted, takes into account the whole neighborhood
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2 Analysis of Perception Modules

of the projected point, meaning that it will be influenced by a relatively small patch

of outliers, which we found to be common in point clouds obtained by laser scanners.

These groups of outliers cannot be eliminated statistically (e.g. using the method

from Rusu et al. (2008c)) because they have approximately the same density as the

points that are actually on the surface, so a method with a larger breakdown point

is needed. We developed a weighted distance based version of the Random Sample

Consensus (RANSAC) algorithm (Rusu et al., 2007). This algorithm will yield good

results as long as the plane having the highest inlier weights is not one formed by noisy

measurements (which can be the case even above 50% noise in the neighborhood).

To identify the inliers pl ∈ Pin ⊂ Pk, a random sample is selected from the neighbor-

hood and a plane D is fitted to them. To measure the probability that the obtained

plane is correct, the weighted distances of the points near the plane are summed up

and mapped on the (0, 1) interval. Iterating through a statistically defined number of

steps, the inliers will be obtained as the points close to the fitted plane. These inliers

will be used as the reduced neighborhood of the projected point. It must be noted

that the weighting ensures that the plane will be fitted to points that are closest to qk.

A comparison between the Weighted Least Squares and our Weighted RANSAC can

be seen in Figure 2.4.

Figure 2.4: WLS and WRANSAC (dark green) for a cloud with 10% outliers.

The fitted plane’s equation and the curvature can be obtained by performing eigen-

analysis on the covariance matrix of the selected inliers (while the color of the ob-

tained point can be approximated with the weighted average of the inliers’ colors).

We assemble a weighted covariance matrix from the points pl of the inlier set (where

l = 1...m):

C =

m
∑

l=1

Wl · (pl − p)T · (pl − p), p =
1

m
·

m
∑

l=1

pl

followed by the eigenvector V and eigenvalue λ computation C · V = λ · V .
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2.3 Surface Reconstruction

In the third fitting step the polynomial approximation is performed. For this, the x yz

coordinate system is transformed into the uvn local coordinate system and a high-

order bivariable polynomial is fitted to the heights of the points above the plane and

the height of the fitted point is recalculated. For example, a polynomial of order 3 is

of the form:

h(u,v) = c0 + c1u+ c2v + c3uv + c4u2 + c5v2 + c6u2v + c7uv2 + c8u3 + c9v3 (2.3)

where u and v are coordinates in the local coordinate system lying on the tangent

plane, having the projection of the query point as the origin.

Figure 2.5: Comparison of edge and corner preservation between standard MLS (left)
and our Robust MLS (right) for a cube. Both pictures show curvature values
in grayscale: low curvatures are darker.

Figure 2.6: Fitted polynomial to a local neighborhood. Left: local coordinate frame
(green) and points forming the neighborhood (blue). Right: supporting
plane (purple) and polynomial approximation (blue).
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2 Analysis of Perception Modules

To compute the vector of unknown coefficients ci, we minimize the error function as

in (Alexa et al., 2003; Wang and Oliveira, 2003) (see Figure 2.6). Since the reference

plane was computed robustly, the height function defined on it preserves the edges

sharper than in regular MLS (see Figure 2.5). After resampling, surface normals have

to be re-computed as the normal of the fitted polynomial in point q, through the

partial derivatives. We can easily compute the normal ~n of the estimated surface by

computing the two partial derivatives at (u, v) = (0, 0) in the local coordinate system

and their cross product:

~n= ( ~U + c1
~N)× (~V + c2

~N) (2.4)

where c1 and c2 are the first order coefficients for the u and v coordinates, respectively,
~U and ~N being the corresponding unit vectors.

Figure 2.7: Effect of the fitted polynomial’s order to a local neighborhood. Local coor-
dinate frame and points forming the neighborhood overlayed with the fitted
polynomials of order 2 (left) and 3 (right), along with the estimated surface
normal (blue arrow).

While it is computationally more expensive to fit 3rd order polynomials, in this case

the results are better especially if one considers the correctness of the recalculated

surface normals (see Figure 2.7). Fitting higher order polynomials is more and more

costly as the number of members increases, and the additional precision gained is

insignificant.

To process 3D points obtained by the noisier or sparser sensors (like the Hokuyo laser

or the Kinect camera), the presented RMLS method can be sped up and simplified.

For such data it proved sufficient to use the Principle Component Analysis (PCA) ap-

proximation of the tangent plane’s normal, and re-fit the points and normals using

the MLS optimization as shown in Figure 2.8. Moreover, for 2.5D datasets the neigh-
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2.3 Surface Reconstruction

borhood searches can be sped up by considering the organized grid-like structure of

the points.

a) Teapot photo b) Raw and smoothed 
3D mesh (side view)

c) Surface curvature values with 
and without smoothing (front view)

d) Distribution of normals 
with and without smoothing

Figure 2.8: Effects of smoothing on surface normals and curvature estimation.

2.3.2 Triangulation

These datasets represent discrete, sampled representations of the world, so a trans-

formation into continuous surfaces is required for advanced grasp planning systems.

To this end, we investigate the following computational problem: given a noisy 3D

point cloud model of a real-world scene as depicted in Figure 2.9, create a continuous
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2 Analysis of Perception Modules

triangular mesh surface representation which reliably represents the scene, as fast as

possible.

Figure 2.9: Left: point cloud dataset of an indoor kitchen environment (15 millions of
points) shown in grayscale intensity. Right: its mesh representation (down-
sampled for visualization).

Our approach for creating the triangular mesh is based on the incremental surface

growing principle (as devised by (Mencl and Müller, 1998)), because it can deal with

all types of surfaces where points on two different layers can be distinguished by a

distance criterion. Our algorithm selects a starting triangle’s vertices and connects

new triangles to it until either all points are considered or no more valid triangles can

be connected. In the second case a new seed triangle is placed in the unconnected

part and the triangulation is restarted.

In contrast to well known surface reconstruction methods from computer graph-

ics (Gopi and Krishnan, 2002; Scheidegger et al., 2005; Amenta et al., 2001; Dey

and Goswami, 2003), our method works reliably on noisy 2.5D data scans acquired

by mobile robots navigating in indoor and outdoor environments.

The proposed surface reconstruction algorithm called Greedy Projection Triangula-

tion (GP3), is partially based on the triangulation algorithm presented in (Gopi and

Krishnan, 2002). The method has the advantage that it is a greedy type approach,

where edges are written directly and are never deleted, making it fast and memory

efficient, yielding the first correct triangulation (Marton et al., 2009b).

Triangulation is done incrementally: i) for each point p, a neighborhood is selected

by searching for the point’s nearest k neighbors in a sphere with radius r = µ · d0
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2.3 Surface Reconstruction

that adapts to the local point density (d0 is the distance of p to its closest neighbor

and µ is a user-specified constant); ii) the neighborhood is projected on a plane that

is approximately tangential to the surface formed by the neighborhood and ordered

around p; iii) then the points are pruned by visibility and connected to p and to

consecutive points by edges, forming triangles that have a maximum angle criterion

and an optional minimum angle criterion.

The projection along the estimated surface normal occurs in the last two steps pre-

viously mentioned. In (Gopi and Krishnan, 2002), this normal is estimated as the

average of the normals of the triangles that have p as one of their vertices. This sim-

plification makes sense only if the underlying surface is assumed to be smooth, i.e.

the deviation between the normals of any two incident triangles on a vertex is less

than 90◦. The projection of the neighborhood along the computed normal is then or-

dered around p, and the points that have to be connected to it are identified based on

their visibility with respect to previous triangle edges (here only the current bound-

aries of the mesh have to be considered). The remaining points are connected to p in

consecutive pairs, forming triangles.

The advantage of this method is that it preserves all points and makes no interpola-

tion, over which we want to have greater control in our algorithm. However, for noisy

datasets the smoothness and locally uniform sampling constraints presented in (Gopi

and Krishnan, 2002) do not hold. In our implementation, this problem is solved, and

we adapt the resulting triangle sizes to the surface’s properties. A similar method is

presented in (Scheidegger et al., 2005), though it suffers from the limitation of not

being able to deal with sharp features, and it only works with densely sampled point

sets.

Our hole filling approach is similar to the one presented in (Wang and Oliveira, 2003),

but we identify holes automatically and grow the triangle mesh into it by the use of

robustly fitted vertices.

The main contributions of our surface reconstruction method include the following

ones:

• adaptability to variable densities: Our method does not assume smooth surfaces

or locally uniform neighborhoods, and can adapt to the point density variations

present in 2.5D datasets.
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2 Analysis of Perception Modules

• near realtime performance: We employ fast kd-tree searches for nearest neighbor

computations (Arya and Mount, 1993) and optimized lookups of previously

computed triangle edges, to achieve extremely fast visibility checks (i.e. tests

for the intersections of triangle edges).

• noise robustness: Estimated surface normals at a point are computed using a

robust Weighted Least Squares method on the full neighborhood, rather than

averaging the normals of the current adjacent triangles as done in (Gopi and

Krishnan, 2002).

• memory efficiency: For each point we propagate a front wave, updated contin-

uously, containing the point’s associated advancing triangular edges. This has

the advantage that we do not have to remember all the triangles in the entire

dataset, and the lookup of edges that have to be checked for visibility is per-

formed locally, as opposed to Gopi and Krishnan (2002)).

• fast updates for incremental scans: By determining the overlapping area between

each new registered data scan and the existing surface mesh, our method is able

to grow the existing model without recreating the entire triangular mesh.

• supporting point labels: The proposed surface reconstruction framework is flex-

ible with respect to a local triangulation stopping criterion, in the sense that

previously determined point labels can be used to decouple triangular meshes.

An example is presented in Figure 4.5, where a distance connectivity criterion

was used to segment and label objects lying on a horizontal planar surface, and

thus resulting in separate triangular meshes for each object.

The algorithm has no constraint on the data being watertight or complete, and the

data can contain occlusions and may be a combination of several registered partial

views. Therefore, the data may represent both large environmental models such as

complete rooms, but also smaller segmented objects lying on horizontal planar sur-

faces (e.g. tables, cupboard shelves, counters) which may be manipulated by the

robot. These particularities of our application scenario, require a set of constraints on

our surface reconstruction system’s behavior:
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2.3 Surface Reconstruction

• since the robot acquires data in stages (i.e. partial scans of the world), whenever

new data scans are available, the current existing mesh needs to be updated

efficiently;

• to support dynamic scenes, such as objects being moved around from one place

to the other, a mechanism for decoupling and reconstructing the mesh as fast as

possible needs to exist, and separate objects should be triangulated separately;

• a re-sampling step with variable vertex densities needs to be available, as de-

scribed in subection 2.3.1, for performing triangulation when the input data

contains high levels of noise, measurement errors, and holes, i.e. missing mea-

surements.

The last step is especially useful for large datasets when a compact representation is

needed for high variations in surface curvature, requiring higher vertex densities on

sharp edges and lower on flat surfaces.

In order to deal with the special requirements posed by our application and to achieve

near real-time performance, we employ several techniques and optimizations. An

important difference between our approach and (Gopi and Krishnan, 2002) is that

our method works directly on the 3D point cloud data as we facilitate fast nearest

neighbor searches with kd-trees, and avoid creating an additional dexel structure,

which requires a two step search through the entire dataset.

Additionally, since we deal with large datasets, we optimize the lookup of edges that

have to be checked for pruning points by the visibility criterion in a neighborhood.

Whenever a new triangle is generated, the two neighbors that are connected to each

fringe point (i.e. a point on the boundary of the current mesh) through the edges of

the advancing front are saved. This creates a redundancy that is required for cases

when only one of the two vertices is in a neighborhood, but speeds up the selection

of the edges since we find them locally, by looking at the fringe points.

This has the advantage of automatically providing a closed loop of boundary points

(i.e. points lying on the boundary of the underlying surface) on the sides of the surface

and around its internal holes. We use these points to fill small holes in the data, as

explained in 2.3.1.
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2 Analysis of Perception Modules

Figure 2.10: Two parts of the advancing fronts touched in a single point (red) resulting
in multiple incident front edges for that point, which was solved by adding
an extra triangle (black dashed line) – see pictures on the right. The green
point is the current source for triangulation, the blue and red points are the
points in its neighborhood, the green lines are the front edges of the green
point, while the red ones are for the red point. The light gray triangles
are the ones originally connected to the green and red points, while the
dark ones would be the only new triangles if no correction would occur,
producing four front edges connected to the red point – see picture in right-
middle.

The disadvantage of this optimization is that it creates special cases which have to

be solved locally when the advancing fronts touch in a single point (this happens at

≈ 6% of the points in a dataset). We solved this problem by connecting additional

points until each point has only two front edges, thus avoiding to run into the same

situation again (see Figure 2.10 right, from top to bottom).

Due to the amount of noise present in our datasets, the modeled surface is not smooth,

and averaging normals of incident triangles (as done by Gopi and Krishnan (2002))

in a point p ∈ P to obtain an approximation of the surface normal gives unsatisfac-

tory results. To account for noise, we compute a weighted least squares plane in the

p’s neighborhood, and use the normal of the plane as an estimate of the true surface

normal (as detailed in 2.3.1). Optionally, we refine the normal by fitting a bivariate

polynomial to the neighborhood, as by Alexa et al. (2004). This extra step is computa-
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tionally more expensive than averaging triangle normals, but this way triangles don’t

have to be stored and looked up, rendering our approach more memory efficient.

Note that the pruning of small triangles is mandatory for our application because

noisy real world scenes are not smooth, and thus vertices of a small triangle could

appear as “flipped” in different neighborhoods, creating small inconsistencies in the

triangulation.

Finally, we are using our RMLS algorithm to achieve locally uniform sampling where

needed by resampling the underlying surface while preserving its edges. The level of

smoothing can be adjusted and it produces adaptive vertex densities for triangulation,

as presented below.

The triangulation method is capable of correctly adapting to locally uniform sampling.

If the point density is variable, but there are smooth transitions between the different

densities, the local neighborhood search radius adapts to it and makes sure that no

point is left out. When distances between the scan lines are substantially different

than the distances between the points in a scan line, the data does not satisfy this

sampling criterion (see Figure 2.11).

To ensure a correct triangulation, extra points need to be interpolated between the

existing ones. We are using our RMLS algorithm to resample the point data, as

described previously. Figure 2.12 presents the results obtained after resampling an

outdoor urban scene to achieve a local uniform density using RMLS.

Resampling has another advantage that we can exploit: by influencing the density

of the generated vertices based on the estimated curvature of the underlying sur-

face (Pauly et al., 2002), more points can be fitted to regions where more detail

is needed. The density for the average estimated surface curvature in the dataset

is specified by the user and for other values it is linearly interpolated with a given

slope (Marton et al., 2009b). This ensures that the reconstruction will be finer in

these areas (see Figure 2.13), and thus adaptive with respect to the underlying sur-

face curvature.

An additional hole filling strategy is to use the known holes from the internal boundary

loops that result from triangulation. We automatically fit extra vertices to the covered
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Figure 2.11: Top: 3D scan of an urban scene with 497220 points (top view) and non-
uniform local point density; bottom: resampled scene with 289657 points
and even sampling distribution and filled holes. The colors represent the
estimated surface curvatures (red meaning low, yellow colors medium, and
green to blue meaning high curvature).

area if its size is smaller than a user-defined threshold, and advance the boundary loop

further to close the hole.

To evaluate our system’s efficiency, we performed several tests using multiple datasets.

Since the input datasets are comprised of millions of points with dense neighborhoods

at small scales, it would be extremely inefficient to reconstruct the surface using the

complete data. To obtain sensible data resolutions, the datasets are resampled with

RMLS using variable vertex densities. The results are presented in Table 2.1.

The timings presented in Table 2.1 represent the actual time our methods took to com-

pute the surface mesh for each dataset, excluding any I/O operations. The hardware

used was a standard notebook at 2Ghz with 2GB of RAM. Depending on the desired

mesh accuracy, the input dataset could potentially be downsampled even more, re-

sulting in faster surface mesh computation times.
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2.3 Surface Reconstruction

Figure 2.12: Triangulation of the urban scene from Figure 2.11 (downsampled for vi-
sualization) with a closeup on the far side of the street, where the trian-
gulation fails in the original dataset. Colors represent estimated surface
curvature (red meaning low, and blue high curvature).

Dataset points triangles time

Mug with adaptive resampling (Fig. 2.14) 4754 9330 0.079 sec
Kitchen front (Fig. 2.10, final result in Fig. 2.13) 24378 45828 0.816 sec
Chicken (from the Stanford dataset) 29518 57476 1.262 sec
Oil pump (from the Stanford dataset) 30932 61082 1.610 sec
Kitchen 360◦, downsampled (Fig. 2.9) 40242 71436 2.347 sec
Dragon (from the Stanford dataset) 41841 80101 2.107 sec
Parasaurolophus (from the Stanford dataset) 47758 92898 2.093 sec
Ljubljana urban scene (Fig. 2.12) 65646 114452 8.983 sec
Chef (from the Stanford dataset) 69007 134633 3.104 sec
Rhino (from the Stanford dataset) 79934 155872 3.593 sec
Radiohead street scan (Fig. 2.16) 329741 546516 17.857 sec

Table 2.1: Performance evaluation of our surface reconstruction method for multiple
datasets. Several standard datasets were used from the well known Stanford
3D Scanning Repository1.

The results from Table 2.1 are visualized in Figure 2.15. Aside from small variations

that depend on the local topology of the datasets, the timings depend linearly on the
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2 Analysis of Perception Modules

Figure 2.13: Triangulation of a surface with adaptive vertex density. Left: triangulated
surface colored based on estimated surface curvature (red meaning low,
and green high curvature). Right: close-up on an edge where the vertices
generated by RMLS are denser than on planar areas.

Figure 2.14: 3D scan of a mug triangulated, shown as surface on the left, and as trian-
gles on the right.
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number of points used, as expected from a local triangulation (the logarithmic nearest

neighbor search is much faster than the remaining operations). The exception is the

Ljubljana street scan with the problematic point density that has to be accounted for,

as discussed earlier.
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Figure 2.15: Linear time complexity (top) and number of triangles (bottom) as a func-
tion of the number of points. The linear approximation is visualized using
the orange lines, with the equation and correlation coefficient values shown
in the respective plots. Data from Table 2.1.
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The datasets presented in Table 2.1 are all formed of one part and were all recon-

structed using the entire data as a whole, thus leaving little space for further opti-

mizations, like for example a parallelization of the triangles computation. In contrast,

the dataset presented in Figure 4.5 is comprised of 22 parts with 252719 points total,

where a part is defined by a subgroup of points which share the same attribute or

label. A triangulation of the entire dataset without using the point labels results in a

total computation time of 14.842 seconds. However, by using the extra information

present in the data, we can create each triangle mesh individually, and thus paral-

lelize the results. By performing the reconstruction on 4 different parts at once, the

average computation time was brought down to 3.905 seconds.

Figure 2.16: Scan of an approximately 500m long stretch of an urban street resampled
and triangulated (top) and closeup (bottom left). The triangulation pre-
sented in (Gopi and Krishnan, 2002) failed because the dataset does not
respect the local uniform sampling criterion (bottom right).

In order to compare our results with the method by Gopi and Krishnan (2002), we

obtained the 3D scan of a stretch of street taken for a Radiohead video clip. The
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bottom left part of Figure 2.16 presents the correct triangulation by our algorithm for

the scan, where the density of points in a scan line is much higher than the distance

between the scan lines. The triangulation method presented in (Gopi and Krishnan,

2002) failed to correctly triangulate the dataset since the locally uniform sampling

criterion was not met. Even with µ = 5 and a running time of 1134.36 seconds the

result is not satisfactory as seen in the bottom right.

2.4 Segmenting Object Hypotheses

As discussed in (Blodow et al., 2010; Pangercic et al., 2010; Marton et al., 2011),

approaches to segment camera or point cloud percepts into distinct objects can be

roughly split into two paradigms: i) locating an instance of a known object in the

scene, using e.g. appearance models or feature descriptors, and ii) segmenting the

sensory data without prior knowledge about the objects or their views in order to

acquire information about them.

In the first case, a direct search for each appearance can be performed, or a set of

feature words can be extracted from the sensor data and matched to a model database

as in (Torres et al., 2010; Hinterstoisser et al., 2010). These approaches are usually

limited by the fact that for locating one or more of a very large number of possible

objects, performance can decrease significantly.

1 2

3 4

5 6

Figure 2.17: Different object detection methods, from left to right: background subtrac-
tion, planar support, and environment map based.

In the second case, as the objects to be detected are unknown, it is possible to segment

scenes under certain assumptions, as presented in Figure 2.17:
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• Background Subtraction: Supposing successive addition of objects to the scene,

one can easily detect successive changes even in cluttered scenes2.

• Planar Support: Supposing a detectable support that assures physical stability

allows for segmentation of objects in an euclidean sense, as long as the objects

are apart from one another (Rusu et al., 2009a). However, too much clutter is

not acceptable in this case.

• Environment Maps: Supposing a known 3D environment, such as stored in a

Semantic Object Map, makes it possible to define regions of interest in which

objects are expected, which can then be processed as in the Planar Support

method. This approach is a natural extension to the 3D semantic mapping ef-

forts.

Apart from these, part based segmentation and recognition is getting more and more

popular, due to its potential to deal with cluttered scenes, based only on a single

frame (Marton et al., 2014). We will give a short overview here on obtaining parts

of various types through segmentation techniques, but will analyze and evaluate this

idea in greater detail in the following.

In our example application from Figure 1.3, the biggest errors in the depth images are

produced while scanning shiny or transparent objects, and these are hard to account

for using other sensor sources. Therefore, we make use of a machine learning ap-

proach for categorization, and use the results to decide how to partially reconstruct

the missing 3D data. For a partial view or a given set of partial views registered

together, our framework proceeds to extract horizontal planes which might support

objects on them.

The supporting planes are computed by making use of standard robust estimators

such as RANSAC (Fischler and Bolles, 1981) and fitting restricted planar models to it.

In our implementation, we assume that the camera is close enough to the actual table

and looking at it, so the largest planar model found closest the viewpoint is assumed

to be the table. Once a model has been found, we compute the table inliers T and

boundaries, approximate them with a convex polygon, and extract all point clusters

2More advanced methods include the learning of a foreground/background model for example.
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located on it by checking if their projection on the plane intersects the polygon. This

results in a rough geometrical segmentation of the scene.

An important aspect of the sensed 3D data is that because of highly reflective or non-

refractive surfaces, points which physically describe a given object will be estimated

and sampled somewhere else in space, thus returning erroneous measurements. This

mostly occurs with glasses, bottles, and silverware, but can seldom be encountered

for certain cups as well. Although in most cases these erroneous points are clustered

together above the table plane, there are situations where they are distributed along

the table surface, thus making it impossible for any geometric method to segment

them accurately (see Figure 2.18).

A solution to this problem is to perform a clustering of the point cloud in the Swiss-

Ranger amplitude space, which can be used together with the geometric information

to extract different object components. Our clustering method is based on a region

growing approach, where points with the same amplitude characteristics are added

to a list of seed points, and a region is grown until no neighboring points with the

same characteristics are left (Marton et al., 2009c; Rusu et al., 2008c). Since it is

impossible to set the amplitude clustering thresholds to some fixed values that would

work for any table setting, we automatically estimate them as follows.

We approximate the distribution of the amplitude values of the points in T with a

Gaussian distribution (≈ 65% being in the µ±σ interval) and we compute the mean µ

and standard deviationσ. Then, we estimate the mean µ of the amplitude differences

between neighboring points in T as

µ=
1

nrT

∑

t i∈T

 

1

nrN

∑

n j∈Ni
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�
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(2.5)

where Ni ⊂ T is the set of neighboring pixels of t i in the amplitude image that are

also on the table (n j ∈ T ), t int
i

and nint
j

are the amplitude values at the respective

points, and the number of points in T and Ni is nrT and nrN respectively.

Since the goal is to prevent the under-segmentation of the table and the objects on

it, we can tighten the statistical threshold and use µ/2 as a connectivity criterion in

amplitude to limit the 3D region growing in the table points. Additionally we impose

a maximum divergence of two standard deviations to avoid growing too far even if
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there is a small gradient. This way we obtain multiple region patches on and in the

vicinity of the table.

Figure 2.18: A table setting view in amplitude space (grayscale). A close-up of a glass
object is shown in the left part of the figure, showing no geometry informa-
tion at all. For a side view including the bottle see Figure 2.3.

Due to the strict thresholds, the different parts of the table will be over-segmented,

but they can be easily merged by verifying their estimated plane normal to the one

estimated for all the points in T . The rest of the points are marked as either belonging

to an object on the table (e.g. a plate) or to a shadow. The parts of the scene where the

amplitude values change drastically will produce very small regions. These shadow

points are typically produced either by shiny objects like silverware or transparent

objects that create patterns on the part of the table which they occlude. Glasses and

bottles in particular reflect the waves of the sensor such that some of the resulting

points will be below or inside the table (see Figure 2.18, for example).

By using the relative viewpoint information of every scene, we can locate the points

that are above or slightly below the table and group them into connected components

– labeled as belonging to objects outside the table’s plane.

Thus, our region growing method will yield three types of point labels: outside –

belonging to a region of an object that is outside the table, near – belonging to a

region of an object that is near the table, and shadow – belonging to a small region

with distinctive amplitude value near the table. The resulting labeling can be seen

in the left part of Figure 2.19, where each connected group of points with the same
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2.4 Segmenting Object Hypotheses

Figure 2.19: Left: different object regions in different colors together with points on the
table (light blue) and discarded points (yellow). Note that shadow points
are in very small regions and are marked with the same label (purple).
Right: object candidate clusters in random colors.

label is considered a component of an object. These labeled points are then clustered

together in 3D to form object candidates (see Figure 2.19, right).

As a summary, over-segmentation is typically easier than a correct segmentation of

a difficult scene. Such an approach can provide informative object, or object part

hypotheses for machine learning approaches, as we will see in the following. Other

over-segmentation approaches also exist, out of which we found the surface normal

angle based one to be the most relevant for geometry-based approaches (Mozos et al.,

2011). Such a segmentation is presented in Figure 2.20.

Figure 2.20: Cut out object from a Kinect frame with visualized color (left) and parts
identified by region growing using a normal angle criteria (right).
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2 Analysis of Perception Modules

2.5 Estimating Descriptive 3D Features

Pinz (2005) defines categorization as being a generic object recognition (generic OR),

this being the opposite of a specific OR, which deals with the recognition of a specific

object (an instance of those categories). Example general categories are cups, plates,

boxes, etc., while in specific OR one aims to recognize a specific instance of box, cup

etc. Since most household objects from the same category share similar shape, but

distinctive appearance, 3D features are typically used for generic ORs, while visual

features for specific ones.

Here we will focus on geometric ones, which will be shown in Chapter 5 to be more

suitable to generalize to novel object instances of trained categories. More specif-

ically, we will describe the design, analysis and evaluation of the local (i.e. point-

based) Radius-based Surface Descriptor (RSD) and the Global Radius-based Surface

Descriptor (GRSD), introduced in (Marton et al., 2010a) and (Marton et al., 2010b)

respectively.

2.5.1 Local Surface Radius Estimation

The most descriptive 3D features are normal based as we reviewed in (Aldoma et al.,

2012), so accurate normal estimation is one of the first preprocessing steps in 3D

point cloud processing. Thus the RMLS smoothing and normal estimation presented

in 2.3.1 is a necessary precondition for computing descriptive local features.

While estimated surface normals are important, they alone tell little about the sur-

face’s type. The estimation of the curvature using the ratio of eigenvalues of a neigh-

borhood’s covariance matrix on the other hand neglects surface normals and we found

it to be too inaccurate. As argued in (Marton et al., 2010a), the approximated radii of

the smallest and biggest fitting curves to a local neighborhood are values with physi-

cal meaning, which can be tied directly to the underlying surface without the need for

classification. These values form the RSD feature which is computed starting similarly

as in the case of spin images with a local support (Johnson, 1997). However, we have

the added advantage that we consider the normals of the neighboring points directly,
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2.5 Estimating Descriptive 3D Features

and that we can extract values that intuitively describe the local surface (as shown in

Figure 2.21).
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Figure 2.21: Left: Illustration of how a distance and an angle between normals define
a radius as per Equation (2.6). Right: Identifying surface classes without
the need of classification. The plot shows the log density/number of points
in a 1 cm range in the feature space of rmin and rmax for a variety of objects,
with the rough ranges corresponding to certain shapes marked.

If we look at the case of the sphere, for each point all the circles that fit to its neighbor-

hood have the same radius, namely the radius r of the sphere itself. For each of these

circles we can write the following relation between the distance d of a point on the

sphere from the original point and the angle α between these two points’ (undirected)

normals:

d(α) =
p

2r
Æ

1− cos(α) (2.6)

From this we can see that given the distance and the angle between two point normals

one can approximate the radius of the circle the point is on.

In the case of an ideal plane, this estimated radius will always be infinite with all

neighbors, since they have parallel normals. A point on a cylinder is on multiple
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Ideal, synthetic data, producing perfect histograms

plane sphere sphere side corner cylinder cylinder top cylinder side edge handle

Real data from smoothed scans of objects

small cylinder medium cylinder big cylinder handle1 handle2 handle3

Figure 2.22: Computation of the Radius-based Surface Descriptor (RSD). First, a 2D
histogram of normal angle difference and distance from a reference point
to its neighbors is computed. Then, from these histograms the physical
surface radii can be read as the slopes of the different lines going through
the lower left corner.

circles (ellipses actually), and the radius estimated with different neighbors will vary

between the minimum radius (the radius of the cylinder) and the maximum radius

(infinity). For corners and edges the estimated radius changes similarly as for spheres

and cylinders (see Figure 2.22).

Given a point on a surface along with its neighbors, this minimum and maximum

radius can be estimated using the model in Equation (2.6) by solving the equation

system for r given the maximum and minimum angles for different distance intervals.

To make the estimation easier, we can exploit the fact thatα ∈ [0,π/2]3 and the Taylor

decomposition of Equation (2.6) is simple:

d(α) = rα+ rα3/24+O(α5) (2.7)

where O(α5) indicates the existence of elements with order 5 and upwards. Thus we

can assume d ≈ rα which renders the problem of finding r to a simple regression –

as seen in Figure 2.23.

3Since we don’t assume that normals are oriented consistently we compute α as the angle between the
lines defined by the two points and their normals.
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2.5 Estimating Descriptive 3D Features

To find the minimum and maximum radius of a point based on its nearest neighbors,

we compute the minimum and maximum angle in each of 5 distance bins, and com-

pute the corresponding radius value. This introduces a small error (rmin is typically

under- and rmax over-estimated), which we found to be less than 1 cm for all points of

a set of 10 synthetic spheres with different surface radii R (for which rmin = rmin = R).

For the real scan of the teapot in the right part of Figure 2.23 we found similar errors

(its top cylinder having a radius of 4 cm and the bottom 7 cm).

In the cases where the two normals do not form an equal angle with the distance

vector, the algorithm would assume they do and compute the radius like that. How-

ever, as the process is repeated for every point pair, and we are only interested in the

minimum and maximum radius, these small errors are either evened out, or produce

the typical result for curvature computation – i.e. estimated radii on a plane start

dropping from very large to very small values the closer the point is to an edge. In

the case of RSD this is also aided by the fact that the previous surface and normal

estimation step also relies on a neighborhood of points. Please see Figure 5.20 for an

example involving sharp edges (tea box).
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Figure 2.23: Left: variation of point-to-point distance by angle, measured from the cen-
ter point of a half-sphere. Right: radius estimation results for a scan of
a teapot – values are color-coded from red (radius of 0) to blue (radius of
0.2 m or higher). Note that for visualization purposes the values were
capped at 0.2 m, as planar regions have an infinite or very large radius.

This feature is easy to compute, while still being very descriptive (see Figure 2.24)

and does not require consistently oriented normals. Because it is a continuous value
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2 Analysis of Perception Modules

that estimates the real minimal metric radius of the curve each point lies on, it can be

used for example as a prior when sampling points to fit different surfaces.

Figure 2.24: Comparison of RSD on the top (rmin and rmax ) to PFH (Rusu et al., 2008a)
on the bottom (the slower, but more descriptive version of the popular
FPFH (Rusu et al., 2009b) descriptor) for surface type recognition. RSD
is faster to compute and more descriptive as it assigns continuous values
instead of discrete labels. It only has two dimensions as opposed to 81 or
125 used in PFH (33 in FPFH), and no machine learning is needed for
surface type labeling due to physical meaning (see next subsection). As
we discussed in (Aldoma et al., 2012), for using RSD as a local feature in
(global) registration tasks the whole underlying 2D histogram should be
used.

For model reconstruction scenarios, points with very high estimated minimal radius

are preferred when fitting boxes, while they are avoided along with points having a

very small radius when searching for rotational models. We incorporated this pref-

erence in the random sampling step for each model fitting algorithm (Marton et al.,

2011). Since the surfaces scanned with these noisy sensors appear to be “bumpy”

even after MLS, the estimated minimal radius is in some cases smaller than it ideally

should be. Still, they provide our RANSAC methods with a fast and accurate weight-
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2.5 Estimating Descriptive 3D Features

ing for the points, depending on the model to be fit. The inliers are also weighted by

how well their radius fits the model.

Based on the minimum and maximum radius it is possible to devise simple heuris-

tic rules that categorize the surface types and enable the computation of a global

descriptor (GRSD and GRSD-) as detailed in the next subsection.

2.5.2 Global Feature from Local Surface Types

We are using a two layered classification scheme for geometric categorization (Marton

et al., 2010b), where local surface labels are combined in a global descriptor. To

speed up the local surface classification, we label voxels directly instead of individual

points, as those are needed for the global classification. This reduces the complexity

proportionally to the average number of points in a voxel.

In each voxel with a width of 2.5 cm, we compute the minimum and maximum radius

and label the surface by successive checks of the radii: planar (rmin > 0.1), cylindrical

(if not planar and rmax > 0.175), sharp edge/corner or noisy (if not cylindrical and

rmin < 0.015), spherical (if not edge and rmax−rmin < 0.05) and rim (in the remaining

cases). This is a simple and fast way to categorize surfaces (see Figure 2.21), and it

divides the feature space formed by the radii well enough for the computation of a

global feature. We picked the local surface labels to have an intuitive significance, but

the actual correctness of these labels is not relevant for the global classification.

Once all voxels are annotated locally using a geometric class, our processing pipeline

constructs a global feature space that can produce a unique signature for each object

cluster. This space is based on the idea that, for a set of labeled voxels, a global feature

can be constructed by observing the relationships between all these local labels (and

the encompassed free space). Since the labels represent geometric classes obtained

from the classification of RSD descriptors, we call this new feature the Global Radius-

based Surface Descriptor (GRSD).

Figure 2.25 shows two sets of feature vectors for different objects generated by the

GRSD estimation. We were using the Octomap library (Wurm et al., 2010) to facilitate

ray intersection tests in the voxels encompassing the objects.
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2 Analysis of Perception Modules

Figure 2.25: Plots of GRSD histograms (left) and identified surface types based on RSD
(middle) for a flat box (i.e. book, upper row) and a cylinder (i.e. mug,
bottom row). Left: the GRSD histogram bin values are scaled between -1
and 1 (based on the value ranges found in the training data). Middle: the
colors represent the following local surfaces: red - sharp edge/corner (or
noise), yellow - plane, green - cylinder, light blue - sphere (not present),
and dark blue - rim (i.e. boundary, transition between surfaces).

The computation of GRSD is similar to GFPFH (Rusu et al., 2009c), but we use voxel-

based labeling based on RSD, and we sum up the individual histograms instead of

computing their distribution, to further reduce computational complexity. This way,

the complete processing of a cluster (correcting, estimating normals, computing the

voxelized RSD values, labeling voxels and constructing the GRSD) takes between 0.2

and 0.5 seconds (depending on object size) on a single core working at 2 GHz.

As described in (Kanezaki et al., 2011c), we adapted the GRSD feature to be additive4,

by simplifying it to a histogram of transitions between surfaces of different type (and

free space), thus neglecting the ray-tracing step. This simplified feature (which we

4The additive property means that adding the feature computed for two point sets separately results
(approximately) to the feature obtained for the joined point sets. This will be an important aspect for
object recognition in clutter by efficient matching of part-graphs to scene-subgraphs in the application
scenario from Chapter 5.
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called “GRSD-”) is very efficient to compute, and we compared its descriptiveness

to the original implementation for geometric categorization tasks. To generate the

results from Figure 2.26, we used over 7500 scans from the object model database

presented by Lai et al. (2011a), with a 2 : 1 split between training and testing data.

Figure 2.26: Comparison of the raycasting GRSD (left) and the additive GRSD- (right)
versions using a Support Vector Machines (SVM) classifier (Chang and
Lin, 2001). Cross-validation results for different SVM parameters on the
top show a slight increase in performance of GRSD- over the original
GRSD, and the much lower C parameter value suggests less overfitting.
The confusion matrices in the bottom reveal that the mistakes in catego-
rization are very similar using the two features. However, GRSD- is more
efficient to compute and has the additive property.

Another additive feature that works similarly as GRSD- but captures color correla-

tions is Circular Color Cubic Higher-order Local Auto-Correlation (C3-HLAC). As pre-
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sented in (Kanezaki et al., 2011a), it is rotation variant and artificial rotations need

to be included during training. Additionally, the Linear Subspace Method exploits

the additive property of the feature for classification based on partial views, but not

the relations between the different parts of the objects. In (Kanezaki et al., 2011c)

we introduced a rotation-invariant C3-HLAC and its combination with GRSD-, named

Voxelized Shape and Color Histogram (VOSCH). VOSCH outperformed, or performed

similarly as C3-HLAC and GRSD- for instance recognition tasks, but we will see that

this does not hold for general category recognition.

2.5.3 Comparison of Features

In order to evaluate the GRSD- feature, unlike in the tests presented in (Kanezaki

et al., 2011c), we are interested in categorization, not instance level recognition, a

task at which geometric features excel more (Marton et al., 2014).

First, we compared GRSD- to standard features whose implementation is available in

PCL. For this large scale test we used the complete RGBD Object Dataset (Lai et al.,

2011a) and the methodology presented by the authors. We performed 10 catego-

rization tasks using their 51 object categories, and reported the mean and standard

deviation of the success rate in Table 2.2. The high-dimensional features we tested,

i.e. VFH (Rusu et al., 2010) and the earlier Point Feature Histogram (PFH) (Rusu

et al., 2008a), performed in the same range as reported by Lai et al. for geometric

categorization, however using a simpler classifier.

This test is an extension of the experiments we performed in (Aldoma et al., 2012).

We also evaluated a version of PFH that takes colors into account, called PFHRGB, to

highlight the limitation of color-based features for categorization tasks.

Another way of capturing global information about a part, would be using a bag-of-

features approach (Csurka et al., 2004). To evaluate this, we used K-Means to create

a codebook of 50 RSD features. We sampled ten points of each object, again using

K-Means, for classification, but could not match the results obtained by GRSD-.

5Building the search tree took approximately 12 hours for this metric, so it was evaluated only for a
single partitioning of the dataset.
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k-nn VFH GRSD- PFH PFHRGB RSD
metric [308d] [20d] [125d] [250d] [50d]

L1 56.44 ± 2.66 43.93 ± 2.20 53.00 ± 1.64 49.11 ± 1.73 37.98 ± 2.11
L2 52.75 ± 2.33 43.10 ± 2.20 51.31 ± 1.86 51.4 ± 2.41 35.19 ± 1.82

Hellinger 57.20 5 45.91 ± 2.00 55.95 ± 1.48 51.41 ± 2.41 38.25 ± 2.15
χ2 56.3 ± 2.86 45.95 ± 1.99 55.63 ± 1.49 51.17 ± 2.33 38.16 ± 2.02

Table 2.2: Cross-validation accuracy on the RGBD Object Dataset (51 classes).

While the performance of GRSD- is somewhat less than that of VFH and PFH, thanks

its low dimensionality, classification has very low time complexity as shown in Ta-

ble 2.3.

k-nn VFH GRSD- PFH PFHRGB RSD
metric [308d] [20d] [125d] [250d] [50d]

L1 0.427 0.006 0.075 0.103 0.041
L2 0.078 0.001 0.011 0.015 0.007

Hellinger 0.671 0.004 0.061 0.073 0.048
χ2 0.225 0.002 0.031 0.054 0.028

Table 2.3: Per instance classification time in seconds by feature length.

A second comparison, now involving the raytracing GRSD feature as well was done by

training a multi-class Support Vector Machines (SVM) (Chang and Lin, 2001) classifier

with an Radius Basis Function (RBF) kernel, with the best parameters found using grid

search. Due to excessively long training and test times, tests were performed on the

dataset presented in Table 5.2 (a subset of the (Lai et al., 2011a) dataset), and the

evaluation procedure is also simplified. The data was split up for training and testing

by using every third scan of an object for testing purposes and training the classifier

on the rest of the scans. Nonetheless, it is sufficient to draw some conclusions from

the results shown in Table 2.4.

Feature Number of Dimensions Accuracy [%]
GRSD 21d 95.21
GRSD- 20d 95.29
VFH 308d 97.35

Table 2.4: Feature comparison using SVM.

As we can see, the GRSD versions have less dimensions but they do not fall pro-

hibitively behind the high dimensional VFH’s performance. Additionally, they are not
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view dependent, and GRSD- offers the required additive property to easily compute

the descriptors of grouped parts. View invariance is especially useful because datasets

may contain different/unknown orientation (depending on sensor) and the acquisi-

tion angles can vary greatly in household robotic applications.

2.6 Learning Object Models from the Internet

To obtain the necessary “common sense” knowledge needed for performing complex

tasks, using rich information from online sources is a promising approach (Waibel

et al., 2011). Therefore, we expect the future World Wide Web to include a shared web

for robots, in which they can retrieve data and information needed for accomplishing

their tasks. Among many other information, this web will contain models of robots’

environments and the objects therein. It is to be expected that a World Wide Web for

robots will include thousands of object models encountered by the agents operating

in our working and living environments, so enabling robots to use them, will bring

them one step closer to being fully autonomous. Recognizing and handling objects

and furniture pieces is a basic step for realistic manipulation activities, thus detecting

the different object categories and localizing specific object instances is a fundamental

issue.

There are already huge databases online that hold robotic perception relevant infor-

mation, like the Trimble (Google) 3D Warehouse6, product catalogs of online stores7,

or object model databases (like the aforementioned (Lai et al., 2011a) and the ones

we reviewed in (Marton et al., 2011)). These can be used as training data for de-

tecting similar objects in real sensor data acquired by the robot (Klank et al., 2009b;

Zia et al., 2009), and can even be enhanced by real, environment specific data us-

ing domain adaptation (Lai and Fox, 2010). Such links to online structured object

descriptions, knowledge bases and web stores allows the creation of more complete

object descriptions and to reason on more than what is visible (backsides, storage

temperature, weight, etc.) as in (Tenorth et al., 2011). By combining perception

and knowledge reasoning to improve information gathered by the robotic agent, it is

possible to treat perception as an integrated system of the autonomous agent, capa-

6http://sketchup.google.com/3dwarehouse/
7http://GermanDeli.com
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ble of answering complex queries about its perceived environment (Pangercic et al.,

2010).

Figure 2.27: In order to obtain training data for the different objects we want to de-
tect, we downloaded several CAD models from databases like the Trimble
(Google) 3D Warehouse, Vitra Furnishnet database for office equipment8,
and the pCon.catalog from EasternGraphics9.

We already created (Kanezaki et al., 2011c) and used such databases before as a re-

source for training methods dealing with object recognition in clutter, semantic map-

ping and environment adaptation (Mozos et al., 2011; Rusu et al., 2009d; Marton

et al., 2013) as exemplified in Figures 2.27 and 2.28.

2.7 Multi-modal Part-based Classification

In order for household robots to become capable of localizing, recognizing, catego-

rizing, and reconstructing the objects that are relevant for their manipulation tasks,

they must be able to perceive the objects that are typical for kitchen environments.

The materials that many kitchen objects are made of (including cups, glasses, plates,

silverware, bottles, and boxes) present difficult challenges for state-of-the-art sensing

technology: glasses and bottles are translucent and knives and forks are shiny. They

are therefore challenging to detect. Also, silverware and the bottoms of plates are

very flat and therefore difficult to discriminate from the table plane in noisy PCDs.

Because the perception task is too hard for any individual sensor type, we proposed

the usage multiple sensors to recognize and analyze living environment scenes (Mar-

ton et al., 2009c). Here we will show, within a table setting scenario, that we can

learn, classify and localize objects like cups, glasses, plates, silverware, bottles and

boxes.
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Figure 2.28: Processed kitchen scans from Google Sketchup. From top to bottom: orig-
inal model, simulated depth scan, automatically detected horizontal and
vertical furniture faces. Since we have ground truth information for these
scans, they can be used as training and evaluation data for the classifica-
tion of container types.
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To perform these perceptual tasks, we use a composite sensor that includes a color

stereo camera providing RGB images and VO, and a time-of-flight camera providing

intensity, depth and confidence images, as illustrated in Figure 2.29. A 2D laser sensor

is also present in the figure but it is not used for the purpose of the experiments

presented in this section.

Each of the individual sensors cannot obtain enough information for the task of object

categorization on its own. Stereo cameras, for example, cannot provide the necessary

depth information for untextured planes, while glasses are transparent and not easily

visible with any camera. However, combining the complementary perceptual evi-

dence provided by the individual sensors gives us a much more valuable source of

information.

Figure 2.29: Sensor mounted on a robot for capturing different visual modalities.
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The novel aspect of this approach is that using multiple sensors together with the pro-

posed processing system enables robots to perform object categorization for a range of

objects that are typical for domestic environments but represent challenges for state-

of-the-art recognition methods. In particular, we are able to perceive and categorize

transparent objects such as glasses and bottles, shiny objects such as knives and forks,

and untextured objects.

Our work concentrates on combining multiple data sources from the used composite

sensor, and extracting informative geometric and appearance-based features. These

features are used in conjunction with a probabilistic Markov Logic Network which

enforces contextual relationships between adjacent data, as developed and described

by Dominik Jain (Marton et al., 2009c).

In this application we use the original RGB images for extracting the color information

based features because of the bigger resolution, so we are interested in mapping the

3D information (the detected object hypotheses) onto the color images. Each cluster

from 3D segmentation represents a region in the RGB images which can be extracted

using the calibration parameters. From these regions we can extract image based

features. Since we have structured objects with mainly round and straight edges,

we employed an ellipsoid feature that is extracted using a method similar to the one

proposed in (Hofhauser et al., 2008). This approach allows us to match any planar

substructure of objects perspectively invariant.

The features from the other modalities, described in greater detail in the next subsec-

tion, will be combined with these for object categorization. In (Marton et al., 2010b)

we combined the 3D and RGB-based modalities using a geometric classifier based on

GRSD and a visual classifier based on SIFT, using a hierarchic classification approach.

Here we treat the two modalities at the same level, and add another hierarchical level

represented by relations between them.

In (Posner et al., 2008), the authors also propose a two-stage process to object recog-

nition, where, at the local level, classification is based on appearance descriptors, and

at the global scene level, Markov Random Fields (MRFs) are applied to model relation-

ships. In this work, we take a similar approach in that we, too, consider a multi-stage

process and leverage the promising combination of both 3D data and vision, where

we first segment the point cloud data and process the corresponding image data,
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computing a rich set of features from it. In the literature, approaches that consider

segmentation and classification at the same time – by defining an MRF directly over

the scan points – have also been proposed (Anguelov et al., 2005), yet we believe that

a hierarchical approach is preferable, not only from the perspective of computational

efficiency. In (Triebel et al., 2006), the authors draw upon statistical relational learn-

ing methods, specifically associative Markov networks, to solve a similar problem –

again, however, on laser data only and at a low level of abstraction.

2.7.1 3D Geometric and Intensity/Confidence Image Features

Unfortunately the TOF camera does not provide accurate enough 3D information for

RSD/GRSD, so simple statistical features were used. On the other hand, the added

modalities enabled us to segment various types of parts (see Section 2.4) and the

confidence values also provide object relevant information.

Each part cluster representing an object candidate is analyzed based on the different

sensor modalities. By analyzing the points in each cluster we can extract the features

described below, based on the measurements of the time-of-flight camera. The fea-

tures can be grouped into two categories: attributes (atomic values), and relationships

(features computed by comparing parameters of the clusters’ components). See the

feature extraction and object categorization modules in Figure 2.1).

The list of attributes proposed in (Marton et al., 2009c) is as follows:

• average normal angle: the average angle of the estimated point normals (relative

to the table’s normal);

• maximum and average height: maximum and average distance of the points

from the table’s plane;

• base area: estimated area of the cluster’s footprint on the table, based on occu-

pancy of octree leaves;

• volume: estimated volume of cluster, based on the maximum heights above the

cells in the base area;
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• average point density: number of points in unit volume10;

• thickness, longness, wideness: proportions of cluster along its principal direc-

tions;

• points above and below the table: percentage of points with positive / negative

distance to the table’s plane;

• shadow and near points: percentage of points marked with the shadow and near

label;

• zero and low confidence: percentage of points which have 0 and respectively

very low (< 1% of the maximum) confidence values assigned by the sensor 11;

• number of components: the number of outside, near and shadow connected com-

ponents defined as detailed in the previous section.

The relationships which we defined between the components (if there are more than

one components in the cluster):

• above / below / same level: the order of the components based on their centroid’s

height relative to the table;

• front/behind: the order of the components based on their distance from the

viewpoint.

2.7.2 Categorization using Statistical Relational Learning

To evaluate our approach, we applied our system to the problem of object catego-

rization in table-setting scenes. The types of objects include regular everyday kitchen

objects, such as boxes of cereals, boxes of tea, different types of glasses and mugs, a

few bottles, plates, and two types of silverware. The training data for the categoriza-

tion was generated by placing two objects of the same type on the table, and creating

10An object which has shiny or transparent parts (like a bottle) will have a considerably lower den-
sity than the normal variations one gets by changing distances in indoor applications (especially
considering the sensor limits too).

11The SR-4k grades each measurement accuracy with a value, 0 being the lowest confidence, typically
assigned to points on metallic surfaces.
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2.7 Multi-modal Part-based Classification

a series of views in a 180◦ arc of a circle, which were then processed through our geo-

metric segmentation and feature estimation pipeline. A few examples of such scenes

are presented in Figure 2.30, with the RGB images and the ellipsoidal features in the

first row, and the 3D point clouds and the segmented clusters in the bottom row.

Figure 2.30: Training samples for the classes mug, glass, plate and bottle. Please note
that the glasses would be very hard to detect using camera images alone.
The bottom row shows the RGB images with the 3D Segmentation pro-
jected and dilated with corresponding detected ellipses in green.

We generated roughly 50 views for each object class which resulted in ≈ 80 training

examples for bottles, boxes, glasses, mugs, plates and silverware. From some view-

points, occlusions or measurement errors produced incorrect object clusters, leading

to errors in the class label estimation. These cases were marked as ambiguous, and

we trained the model by including a few of these cases, since they do occur in highly

cluttered scenes like the one we used for testing. Please note that while we didn’t train

for all the special cases on how objects can occlude each other, the learned model still

recognized some unseen examples of clustering failure.

Our training database contained 19224 facts on 570 objects that were comprised of

1851 spatially related components and featured 1308 ellipses. Training was com-

pleted in roughly 10 minutes. The learned model was applied to a more complex,

partially cluttered scene (see Figures 2.3 and 1.3), which contained a mixture of new

unseen objects with random objects picked from the training dataset.

Table 2.5 shows the classification results, which indicate an overall classification rate

of about 54%, yet the accuracy on properly segmented objects is almost 70%. The
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2 Analysis of Perception Modules

Class Correct Number Ratio
1 - box 23 27 0.85
2 - plate 52 67 0.78
3 - glass 7 31 0.23
4 - mug 39 40 0.98
5 - bottle 4 5 0.80
6 - silver 21 43 0.57
7 - ambiguous 17 87 0.20
overall (1-7) 163 300 0.54
objects (1-6) 146 213 0.69

comparisons

no relations between components 143 300 0.48
no 2D data 151 300 0.50
no 3D data 62 300 0.21
decision tree 148 300 0.49

Table 2.5: Categorization results for all experiments performed.

ground truth \ categorization box plate glass mug bottle silver ambiguous
box 23 0 0 2 1 0 1
plate 0 52 0 0 0 5 10
glass 0 14 7 0 0 2 8
mug 0 0 0 39 1 0 0
bottle 1 0 0 0 4 0 0
silver 0 0 7 2 0 21 13
ambiguous 20 8 1 5 28 8 17

Table 2.6: Confusion matrix for the results in Table 2.5.

time taken for a run of the feature estimation and the classifier on a single scene was

but a few seconds.

During the experiments we observed that the ellipsoidal features helped with the

categorization of plates, and most of the mugs and glasses. Due to low contrast in the

scene, the system extracted a few ellipsoid features on some of the spoons or several

textured parts of the scene, which usually lead to false positives. However, because of

the probabilistic nature of our learning scheme and the number of feature spaces we

used, the model was not affected significantly. Additional features would also help
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distinguish the glasses better from other types of objects (plates in particular) and

improve their classification rate.

The ambiguous category was also recognized only 20% of the time, but in some cases,

our system recognized such ambiguous clusters instead as one of the object classes

that do indeed appear within the cluster, even though the presence of clutter was not

explicitly trained for. Such a case can be seen in Figure 1.3.

Finally, the results show that the fusion of sensory information is indeed helpful, since

any model that considered only a subset of the information that was available failed

to deliver equivalent results (see bottom part of Table 2.5). The following chapters

will analyze this idea in greater detail.

2.8 Discussion

We have presented and motivated the use of the modules required by a perception

system, in order to explore the scene, pre-process the data, detect objects, extract fea-

tures from different sensor modalities, recognize and reconstruct objects for solving

the problem of understanding scenes of different objects present in kitchen environ-

ments.

As we saw through the presented experiments, cue-integration at each level is a pow-

erful source of robustness, be it surface reconstruction from multiple views, feature

estimation through a hierarchy of point-, voxel-, patch- and relation-based features,

or at the level of multiple sensing modalities. The next chapter will focus on design-

ing the right interconnections between these modules to form a multi-cue percep-

tion system. This will be then used to address the problem of semantic modeling of

the environment and its objects in cluttered scenarios, through the incorporation of

spatio-temporal information and ensemble learning.
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Chapter 3

Multi-cue Perception System for

Spatio-temporal Integration

Painting is concerned with all the 10 attributes of sight; which are: Dark-

ness, Light, Solidity and Colour, Form and Position, Distance and Propin-

quity, Motion and Rest. This little work of mine will be a tissue [of the

studies] of these attributes, reminding the painter of the rules and meth-

ods by which he should use his art to imitate all the works of Nature which

adorn the world.

LEONARDO DI SER PIERO DA VINCI

(OF THE 10 ATTRIBUTES OF THE EYE, ALL CONCERNED IN PAINTING)

This chapter investigates the required perceptual capabilities of personal robots that

are to pick and place objects in the context of everyday manipulation tasks in domes-

tic environments. Before presenting the technical details that make the perception

system work, I would like to give a birds eye view of how it functions and combines

various information sources to achieve its task.

Not only painters try to reproduce the visual world in an artificial medium, that is

what should happen in the “head” of robots as well. The more realistic their internal

representations (or 3D paintings, we could say) get, the better they can interpret and

interact with the world. Therefore, the ten attributes of sight should be considered

not only by those painters who aim for a verisimilar world presentation, but also by

autonomous agents who only try to understand it.

Da Vinci wasn’t a stranger to poetry either, and while he preferred painting, he was

also able to write very capturing comparisons. He described the scattering of light by

75



3 Multi-cue Perception System for Spatio-temporal Integration

objects, and its importance to seeing as follows: “Just as a stone flung into the water

becomes the centre and cause of many circles, and as sound diffuses itself in circles in the

air: so any object, placed in the luminous atmosphere, diffuses itself in circles, and fills

the surrounding air with infinite images of itself.”

We saw already how to capture different aspects of objects from these images in the

previous chapter, and that the more the robot knows about about an object the better

it can recognize it. In this chapter the focus will be on strategies on how to combine

the different sources of information from different timestamps and viewpoints, and

on creating a system that integrates the presented methods.

3.1 Requirements of a Task-adapting Perception System

Let us start with analyzing what capabilities a multi-cue perception system should

posses, and how the modules described in the previous chapter should interplay in

order to achieve them. As we saw in the example application detailed in the previous

chapter, we require the robot to achieve the following tasks: finding a certain object,

enumerating everything at a certain location, and modeling objects for grasping either

from scratch or by matching existing models. These require the robot to learn and

create new representations and to fuse multiple sources of information for an accurate

semantic interpretation.

Typically, research in the area of robotic perception focuses on the development of

new or improved algorithms, solving a specific problem using a specif method. These

approaches are valuable, and have come close to solving some of the perception prob-

lems like textured object detection, as shown in the Solutions in Perception Chal-

lenge1. However, it is unlikely that a single algorithm will perform sufficiently well

in all the possible cases a household robot might encounter. In another machine

learning application domain, the NetFlix Prize challenged researchers to predict user

preferences based on information about their and their friend’s ratings. As individual

teams started to join efforts, ensemble learning became a popular, and very success-

ful approach (Sill et al., 2009), similarly to the question answering scenario tackled

by IBM’s Watson system (Ferrucci et al., 2010). We expect a similar development

1http://opencv.willowgarage.com/wiki/SolutionsInPerceptionChallenge

76

http://opencv.willowgarage.com/wiki/SolutionsInPerceptionChallenge


3.1 Requirements of a Task-adapting Perception System

in the perception field as well, as combining various approaches with complementary

strengths can improve over the individual performance of the methods (Sewell, 2007;

Ting and Witten, 1997) and make it generalize better (Lam and Suen, 1995).

The reason for success of these systems are not specific algorithms but rather that they

solve the problems through ensembles of experts. According to Ferrucci et al. (2010),

progress in the Watson project was mainly due to system-level advances which al-

lowed rapid integration and evaluation of new ideas and components. As we men-

tioned in the introduction, data from both the real and the online world is mostly

unstructured information for a machine, which is where approaches like that of IBM’s

Watson hold a great advantage and generality.

While there is large variance in the objects to be perceived by a household robot,

in a typical environment, the objects (furniture pieces, items of daily use, etc.) do

not change very often. Therefore, after an object was detected using a more general

approach, task and environment adaptation (Horswill, 1995) can make the perception

task less error-prone by using more specialized perception routines. For example, not

all possible templates need to be matched for finding a bowl, or a color-based detector

can be employed as well. If these methods fail, the robot can still fall back to the more

general method, thus achieving an on-demand adaptation of process execution.

To achieve this, previously generated/reconstructed information (completed, regis-

tered CAD models, object position lifecycles etc.) can be reused as priors in future

processing as well. Additionally, task adaptation requires to limit detectors to the

ones that provide relevant information for the task at hand (Marton et al., 2011), and

take into account for example intended object use (pouring, select storage location,

etc.) for selecting the right approach. Similarly, context (task/domain/current room

etc.) can shape object database selection, generate search regions of interest, select

segmentation strategy, etc. as in (Aydemir et al., 2011).

As we saw in the previous chapter, we need multiple sensing modalities and data

processing for being able to cope with all types of objects. Textured, textureless,

3-dimensional, flat, transparent objects, require different capabilities of the various

sensors and features, some examples solutions including (Torres et al., 2010; Aldoma

et al., 2012; Lysenkov et al., 2012). These can be combined into an ensemble of
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3 Multi-cue Perception System for Spatio-temporal Integration

experts, and thanks to the synergistic effects produced by complementing functional-

ities, the resulting system can become more than the sum of the parts.

As a summary, it should allow bottom-up processing to extract primitive object an-

notations, then linking them with richer models for obtaining an improved represen-

tation (top-down). This combination of top-down and bottom-up processing is what

is assumed to be done by humans as well (Frisby and Stone, 2010). Therefore, a

perception system should:

• provide a common input-output defined for segmentation and detection meth-

ods,

• enable the specialization of each method to a subset of objects,

• support for consecutive or parallel methods to correct or support each-other,

• learn model representation from online sources or from experience to improve

performance,

• incorporate information from multiple views to disambiguate complex cases.

Our proposed solution to integrate the approaches supported in the previous chapter

for a modular, multi-cue perception system that takes advantage of the robot’s explo-

ration capabilities is exemplified in Figure 3.1. It builds on the lessons learned form

the previously presented experiments, and on many discussions from people involved

not only in perception, but also high-level planning, manipulation and knowledge

engineering for example. A similar perception system was also described by Okada

et al. (2007), where a particle filter based integration of multiple detectors and views

was achieved, however only for searching for a given (known) object instance. As we

will see in this and the following chapters, we applied our method for autonomously

learning and modeling novel objects, be it container or appliance doors, furniture

pieces, or (chiefly) objects in cluttered scenes.

The main idea is to obtain priors relating to the object from high-level planning, and

providing poses and reconstructed models for grasping as an output. An ensemble

of multi-modal and multi-view methods is used, followed by a geometric verification

step. The following subsections give more details on the specific components of our

multi-cue perception system.
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Task Specification

(object priors)

Current Belief State (Regions of

Interest and Class Probabilities)

Graph of Perception Primitives

(bottom-up, data-driven)

STOP

START

- CAD Models

- Appearances

- Extracted Features

- Observed Locations

  and associated data

- Segmentation

- Detection

- Feature Extraction

- Classification

- Pose Estimation

Examination

Method Library

Object Model

Database
b

Merge and Verify

(top-down, concept-driven)

List of Object Hypotheses (Regions

of Interest and Class Probabilities)

Figure 3.1: Basic setup of the proposed system for iterative refinement of object hypothe-
ses by multiple methods according to a task specification.

3.1.1 Regions of Interest and Poses

Most related systems from literature are either doing segmentation or classification

(or both at once), but in both cases a region of space is observed, and hypotheses are

given about what objects, or parts of them, it contains. A segmentation routine for

example breaks large regions up into smaller ones, and assigns to each of them a non-

informative prior, i.e. from the point of view of the method each segment can contain

anything. Subsequent processing (classification) steps then refine these possibilities.

Template matching methods for example do both steps at once, by returning possible

(scored) positions in which an object could be in the scene.

Therefore, we propose the use of volumes of space, or regions of interest (ROIs) as the

basic input and output data for object perception methods. These can be for example

the hulls of clusters for 3D data, or the estimated volumes of image pixels. These, and

the associated probabilities of given objects being contained in it, are received and
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updated by the perception methods, and can be used to merge information coming

from different sensors, and different views.

3.1.2 Integrating Results from Different Time-stamps

Since each examination method refines the result of its input, the ROIs are trimmed

down (if necessary) and the class probabilities accumulated. In the merging step all

the results can be united through ROI unification, and a decision can be made by an

ensemble method. Subsequent sensor readings can be accumulated using the same

procedure, and the object hypotheses and their poses can then be verified if they

match the data as in (Mozos et al., 2011).

Accumulating or comparing object poses is more complicated, but a scored list of

poses can also be maintained, and checked against the accumulated data in the given

volume – similarly to (Drost et al., 2010). Merging the different votes for poses can

be performed as in (Pham et al., 2011), which we successfully demonstrated recently

in (Kriegel et al., 2013), but here we focus on object recognition.

3.1.3 Task-adapting Examination Methods

When performing perceptual examination, the system starts off with the complete

workspace of the robot as its region of interest, with the different priors for the oc-

currence of the possible objects assigned to it. The list of these objects and their prior

probability can then be considered by the different methods, and when summarizing

their results.

We call all the segmentation, detection, fitting and classification methods examina-

tion methods, as they are the different modules the system is build of. They can use

different sensors, extract various features, apply different recognition methods, and

have only to respect the aforementioned input and output in order to be part of the

“ensemble”.

Classification methods such as those based on nearest neighbors, are easy to be re-

trained, and this allows simple integration of new data as well. However, with the
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addition of more and more classes, the accuracy can drop – this can be avoided by

taking advantage of the known task specification (i.e. list of possible objects and list

of sought objects). Similarly, the accuracy of other classifiers deteriorates with the

increase in the number of classes (see Tables 3.1 and 3.2 created based on the dataset

from Lai et al. (2011a)), something that can be alleviated by task and environment

specialization.

Classifier VFH GRSD- SURF O.SURF All
SVM-linear 0.081 0.270 0.154 0.163 0.0188
AdaBoost 0.087 0.293 0.254 0.202 0.0544

Table 3.1: Error rate for 3D (VFH (Rusu et al., 2010) and GRSD-) and image based
(SURF (Bay et al., 2008) and OpponentSURF (van de Sande et al., 2008))
feature descriptors, and their concatenation. Different classifiers were used
for distinguishing 20 classes.

Classifier VFH GRSD- SURF O.SURF All
SVM-linear 0.133 0.409 0.281 0.301 0.031
AdaBoost 0.149 0.435 0.360 0.361 0.0991

Table 3.2: Error rates in the same setup as Table 3.1, but for distinguishing 51 classes.

Not all classes are as fast to be re-trained as nearest neighbors though, as shown in

Figure 3.2, but methods like locally weighted logistic regression (Deng, 1997) could

be used to avoid re-training by adjusting only the weighting of the examples.

3.1.4 Modular Classification Strategies

Modularity and redundancy are generally of benefit both to engineering solutions,

and biological ones. This allows for specialization and adaptation in both domains

(Noble, 2006), and is of great advantage in integrative fields like robotics. Identifying

common characteristics of algorithms and defining common interfaces for them allows

for simpler building of large systems, and facilitates easy integration of 3rd party

components. This has been a large contributing factor to the success of ROS and

PCL.

The framework has a layered architecture consisting of feature extraction tools, dataset

tools and the classifier manager.
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Figure 3.2: Feature vector length vs. training time (using 7200 instances and 20
classes) on a standard desktop PC.

The feature extraction tools are capable of walking directory structures and extracting

various 3D and 2D features from the files encountered. Additionally it is labeling

the instances according to the hierarchical relationships reflected by the directory

structure of the dataset. This is especially important for the perception system to

be able to import data from various databases found on the WWW and use it as an

integral information source.

All the feature extraction tools use a file format to store the extracted features. The

datasets produced in the feature extraction layer can be further processed by tools

from the dataset tools layer. Here various operations are implemented, some of which

are:

• serialization tools for loading/saving in ASCII or binary format,

• concatenation of features, combination of datasets and dropping of columns,

• re-labeling of hierarchical dataset to flatten them,

• splitting of datasets for creating training and test partitions (for example for

cross-validation),
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• bag-of-words (BoW) creation from a feature dataset (used for creating global

descriptors out of local ones, like SURF),

• converting classifier confidences to datasets (used for stacking),

• pre-processing like dimensionality reduction, whitening.

The classifier manager is integrated in ROS to allow using the trained classifiers in

ROS-based applications. It manages the life-cycle of classifier instances and acts as

a facade for communicating with the classifier instances which must all be derived

from a simple interface. Currently Support Vector Machines (Chang and Lin, 2001),

K-Nearest-Neighbors (Muja and Lowe, 2009), Multi-Layer Perceptrons (Bishop, 1995)

and one-against-all boosting approaches based on decision trees (Friedman et al.,

1998) from OpenCV (Bradski, 2000) are implemented.

Classifier 
Manager

Remove
 Dataset

Add 
Classifier

Remove 
Classifier

Load 
Dataset

Save 
Dataset

Evaluate

Train
Test

SVM

Ensemble Methods

KNN

Boosting

Multi-Layer 
Perceptrons

Classifier

Collection

Figure 3.3: Simplified scheme of the classification framework. The thin arrows represent
possible service requests.

The most common operations for classifiers implemented are shown in Figure 3.3.

These are ROS services that are handled by a classifier manager node and each service

can operate on different classifiers that run in parallel having a unique identifier.

Other services that ease and make classification tasks more efficient include adding

a common dataset to be shared by all classifiers, computing and storing a confusion

matrix, returning various evaluation statistics (e.g. number of true positives) and

timing of feature estimation and classification. All of these primitive operations form

a simple domain specific language from which experiments can be constructed using

shell scripts or ROS nodes, i.e. C++, Python, Java and Lisp code.
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This classification interface made the creation of the large architecture needed for our

multi-cue perception system possible, and enabled the seamless integration of various

modules as we will see in the next two sections.

3.1.5 Conclusions

As we saw, there are specific challenges to be addressed by a multi-cue perception

system, but as we will see in the next sections and the following chapters, it comes

with substantial benefits for robotic applications. In order to detail and evaluate the

implementation of our system, we will first examine the case of sequential exami-

nation method execution in a hierarchic setup (see next section), and then focus on

running perception modules in parallel and fusing their results in Section 3.3.

3.2 Hierarchic Classification for Learning and Adapting

Perception

Service robots, such as household robots, perform the same kinds of tasks with the

same objects in the same environment over and over again. This enables them to learn

and make use of more specific perception mechanisms for the particular objects and

environments. Task and environment adaptation thereby enables the robot to better

perceive the objects in its environment by exploiting its experience and considering

only relevant objects.

One example of such an environment adaptation is that the a robot performing daily

chores in a specific kitchen environment exploits the fact that it knows almost all

objects in its environment. It can then use this assumption in order to specialize its

perception mechanisms. It might turn out that cups are the only yellow objects in

the environment. Thus in order to find the cups it suffices to look for yellow ob-

jects. The advantage of such specialized perception mechanisms is that they are often

more reliable, more accurate, and more resource efficient than their general counter

parts. However, as the knowledge of all objects is only an assumption and will often

be violated as new objects are acquired and old ones thrown away, the robot must
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be prepared that its perception routines might not work as intended and adapt its

perceptual apparatus in a lifelong learning process.

As discussed in Section 2.4 and (Marton et al., 2011), we consider that perceptions

tasks can be intuitively categorized into active or passive. In the first type of task, a

specific object or a set of objects needs to be located and thus the robot has to actively

search for them. In the second case, the robot, possibly while performing other tasks,

observes the environment or a specific region and identifies the different objects. For

example, while setting the table for breakfast, the robot might spot a bottle of wine

somewhere. Later, when the robot is to set a table for a lunch that includes a wine

beverage, it does not need to actively start searching for a bottle, but instead retrieves

the bottle’s location from memory and navigates directly to it.

In both types of perception tasks, some sort of model is needed that describes what

constitutes a certain object or an object of a certain type. Since we are most inter-

ested in pick-and-place scenarios like completing a table setting (which encompasses

both active and passive perception), models that aid the robot in grasping are of great

importance. While identifying objects based on their appearance works reasonably

well (Kragic and Vincze, 2009), a 3D model is required in order to manipulate these

objects and it has to be matched to the observed model. Also, as concluded in (Kragic

and Vincze, 2009), a problem of current vision systems is robustness and scalability.

Our system uses general perception methods to initialize learning, adapt and special-

ize their strategies as much as possible to the environment and objects it has to use.

By this, some of the problems become easier to deal with, thus improve efficiency.

The proposed object perception system maintains an Object Model Database that pro-

vides information for the detection, recognition, pose estimation and grasping of the

objects in the environment, and show how can use and build such a database under

some assumptions. Our approach is to start with general detection routines and cate-

gorization modules to limit the possibilities for identities of objects and then add more

and more details until an acceptable solution can be found (Marton et al., 2011).

Though the set of objects of daily use that a personal robot could encounter in its tasks

is unlimited, there are certain regularities that can be exploited with respect to the

objects’ shapes, textures and locations. Therefore, the perception system can adapt

itself to a specific set of objects that are usually present in the world while at the same
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time retaining a certain degree of flexibility with respect to the incorporation of novel

objects in its database of models. For example, a new flavor of iced tea should be

recognized and manipulated as an instance of a box from its geometry, even though

the robot has never seen it before. The knowledge about the iced tea can then be

easily enriched with its appearance, provided it can be re-detected using geometric

information.

Also, certain information can be incorporated from external sources, for example a

database of semantically labeled visual appearances of objects, which lacks the geo-

metric appearance. In this case, the system should complete the missing information

whenever possible. Similarly, in the case of autonomously learned object models,

the semantic label or the correction of the assumed object identities could be done

externally. To this end, our system can learn the specific models of the objects it en-

counters. These models can then be used to decide on highly specialized detection

strategies, that give accurate results as long as the underlying assumptions hold. This

enables the system to scale well with the number of objects in the environment. The

accumulated data about each object can be used for the accurate verification of its

hypothesized detection, and the detection strategy can be adapted accordingly.

As a high-level task specification is typically available, the system can take advantage

of the fact that only some objects are probable to be at different places in the close

surrounding of the robot, and of these ones, only some are relevant for the task at

hand. Different perception methods can then be activated (or tuned) and combined,

in order to improve detection rates.

Since we do not assume that every perceived object in the environment is known,

the system can mistakenly assume, for example, that a certain feature is unique to

an object when in fact it is not. Our view is, however, that these mistakes are un-

avoidable during autonomous object learning; they are compensated by the ability to

automatically acquire models.

As an example, let us consider the case where the robot is to fetch a green object.

Since this object happens to be the only green one it already knows about, it looks for

the first green object it finds while heading towards the last observed position of the

object. While it drives around, it observes various other objects that do not match the

feature (color) it is looking for. But since navigating around and taking laser scans
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takes longer than identifying the objects (scans with adequate resolution take in the

range of seconds), the robot is constantly executing an “identify-all-objects” routine.

The latter updates the stored time-stamped position of recognized objects and assigns

all unrecognized ones to new entries, assuming they are objects that were previously

unknown to it. As a way to keep track of the detections, and to maintain the right

associations between different viewing angles, we are using a simplified version of the

probabilistic framework for identity resolution developed by Blodow et al. (2010).

The kinds of limitations of the system (that would require human supervision at some

point) are as follows:

• previously unseen objects could be erroneously classified – this effect can, how-

ever, be minimized to the combined false classification rate of the detectors if

the specialization step uses all of them;

• previously unseen faces of object could lead to the classification of a novel object

if in the previous step it was not observed in the same location or identified

correctly – this is unavoidable, but new views of known objects can be identified,

given continuous observations;

• known objects can be miss-classified for example in cases where objects have

identically textured faces (some cereal boxes for example) – this issue also oc-

curs in re-detection-based systems, but if the object is continuously observed,

and one of the ambiguous faces is not the first one that is seen, misclassification

can be avoided.

3.2.1 System Overview

Figure 3.4 shows the schematic representation of the multi-cue perception system in-

tegrated into the whole robot control architecture (Marton et al., 2011). The system

obtains the task from high level planning and executes it, performing the necessary

processing steps on the data coming from the sensors of the robot used for localiza-

tion and perception of the environment. These include the possible Object Detection

Methods, the selection of modules from the Examination Method Library, and object

recognition and learning using the information stored in the Object Model Database.

87



3 Multi-cue Perception System for Spatio-temporal Integration
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Figure 3.4: Object processing pipeline architecture: from sensor data to objects.

The images and 3D information coming from the robot’s sensors are processed by

the Perception Executive and the gathered data is interpreted according to the task

at hand (searching for a specific object or identifying all objects). First, to limit the

search-space for object locations, a set of possible locations is extracted and the cor-

responding sensor readings (3D clusters, 2D Regions-Of-Interest) are considered to

represent object candidates. These object hypotheses are then processed as needed

(please see Figure 3.5 and the previous chapter) in order to associate the percepts to

the correct object in the Object Model Database.

When an object is being sought for, the system selects a set of features, whose val-

ues uniquely describe the object amongst all the objects in the database. The same

features’ values are then computed using the examination modules for each object hy-

pothesis, and the first one that presents matching ones is selected as the target object

for e.g. grasping. In the case that no geometric model is associated with the database

object in question, we compute it on demand and feed it to the grasp planner.

If computational resources allow all object hypotheses can be checked against all ob-

jects in the database – and new objects, or new positions or views of known objects,

can be detected. In this case, the features for each object hypothesis are computed

one by one, according to a hierarchy, and the possible object identities are filtered in

each step. The selection of the feature to be used in each step is hand encoded as

of now, but an expansion of the single-object case is envisioned to be extended for

finding the most discriminative features in each step.
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Figure 3.5: Details of the Perceptual Task Execution module’s operation. Selecting
and combining methods from the Examination Method Library to recog-
nize known objects (either based on their stored features, or by co-locality in
subsequent cycles), and to update their position or add their new view. The
loop-back is not needed if a single object is being searched for. In case new
objects were found, all features and representations are computed from the
available data in order to be inserted into the Object Model Database.

This process is repeated until either an object is found whose stored features match all

observed features, or until there are no matching objects left in the database, signaling

that a novel object was observed. In the ambiguous case, when all features were

computed and there are still multiple matching objects left from the database, the

system takes no action and leaves the object hypothesis unclassified. Note that this is

the case only if the classification step does not assign each observation to at most one

modeled object.

Since the computation of the features for an object hypothesis is not too expensive,

as shown in the corresponding sections, the aim of the procedure is to minimize the

number of objects that have to be compared against as drastically as possible in each

step, and allow a large number of objects to be handled efficiently. Given enough

descriptive features, this method can scale well in the context of objects of daily use

in human living environments. We consider this approach to be a move away from

bottom-up, rigid pipelines, towards a more flexible setup. This enables the robot to
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specialize to the current situation, producing shorter processing times as not all the

methods are needed all the time.

The following sections detail the functioning principles of the building blocks of our

system as shown in Figure 3.4.

Our system is developed within the ROS open-source framework as a collection of

modules (so called “nodes”), that each tackle a specific sub-problem, and can either

be run separately or as dynamically loadable libraries (i.e. “plugins”). Thus, the

data flow between nodes can either occur through shared memory, when optimal

performance is required, or over the network, which is convenient for decentralized

processing.

The use of ROS and general examination methods based on PCL enables us to be

platform independent in the sense that the system can be run on different robots, and

results can be interchanged between them. So far, we have successfully performed

our experiments on two different robots, TUM-Rosie (Pangercic et al., 2010; Marton

et al., 2010a; Blodow et al., 2010) and the PR2 (Wyrobek et al., 2008; Bohren et al.,

2011).

Currently we employ the following methods to achieve the overall classification:

• auxiliary modules (noise removal, kd-tree, octree – see below, and the next

chapter for registration and segmentation);

• local feature estimation (see previous chapter): Moving Least Squares (MLS)

and Radius-based Surface Descriptor (RSD);

• global (view-based) features: Global RSD (GRSD) feature and Scale-Invariant

Feature Transform (SIFT) (Lowe, 2004) feature using Vocabulary Trees (Marton

et al., 2011);

• building geometric models: box/cylinder/rotational model fitting and triangu-

lation (see previous chapter);

• geometric categorization using Support Vector Machines (SVM) and instance

level classification using SIFT descriptors with vocabulary trees.
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Figure 3.6: The conceptual
representation of the
complete pipeline
that can be formed
by the examination
methods.
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To increase the performance of the 3D data processing steps, we rely on noise re-

moval (Rusu et al., 2008c), and efficient spatial decompositions such as kd-trees and

octrees. Noise removal is performed to remove jump edges in the laser scans and to

remove points from noisy or low density areas of object clusters. We use kd-trees to

find a fixed number of neighbors or all the neighbors in a sphere with a given radius,

while octrees are useful for down-sampling and occupancy grids, but also for the veri-

fication of the geometric models (Blodow et al., 2009), and for computing object-level

features efficiently, as described in the previous chapter.

Examination methods and their possible connections are shown in Figure 3.6. Each

method has a common interface, with initializing, processing, and result validating

and returning functions, that enable the easy extension with additional methods if

needed. Each method lists the data type it requires and provides, and the parameters

are obtained through the parameter server of ROS.

To facilitate object recognition we maintain a database of the descriptors provided

by the examination methods. It is important to note that not all descriptors must be

known due to the multi-modal nature and incremental learning feature of our system.

The view-dependent variations of the descriptors are stored for every view, thus each

view of an object that has been observed can be looked up and compared with object

hypotheses during classification. The examination methods described above provide

the following data on a per-view basis: the geometric category, the appearance de-

scriptors, the model parameters and the 3D mesh. The timestamped position of the

last detection is saved for each object as well.
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The following subsections detail the object identification and model learning modules

using the above presented subsystems. We have to differentiate between the two

operating modes, active perception, when a given object needs to be located, and

passive perception of objects for updating their locations and models. Since the Object

Model Database does not have to contain every possible information about the objects,

it is straightforward to look for a novel object by adding a new entry that contains

known information about the object.

3.2.2 Object Classification

For classification, we are iterating over the examination methods (Figure 3.6), run

them on the object hypotheses to extract features (if possible), and search through the

list of available objects in the database to see which ones present the same or similar

features. Those that match are kept in the list for the next iteration of comparison, and

the others are removed. This way, at each step the set of possible objects gets reduced.

As discussed before, if multiple objects remain after checking all features, the result

is deemed ambiguous, whereas if at a given step no objects match, we consider the

object hypothesis to be a novel object.

Due to the combination of features, an object candidate is accepted only if it matches

all of the checked features. This reduces the effect of miss-classifications, at the cost

of observed views of known objects presenting previously unobserved features being

added as new objects (unless observed in subsequent scans). As the preceding process

is started only if the object was not identified in the previous step (otherwise the pre-

vious identity is assumed), new views can be learned through continuous observation

of an object as presented in 3.2.4.

Figure 3.7 shows results we obtained with a batch of 12 testing objects. The tests

show correct classifications, achieved in under 2 seconds (not considering acquisition

time). Please see the next subsections for a more detailed evaluation.
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(a) Cup-0
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CowsMilk-Product-0

(d) Tea-Iced-0

Book-0

Book-1
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Potato-Chips-0
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Figure 3.7: Classification results for a variety of objects. Clusters shown in random
colors.

3.2.3 Detection based on Known Views

In order to evaluate our approach as a whole, we performed the detection and recog-

nition test in our kitchen laboratory (see left column of Figure 3.8). The test was

carried out on a total number of 13 objects located at 4 different scenes.

The robot navigated to each of the scenes and captured point clouds and images from

several different views by moving along the collision free paths around the scenes.

The environment map aided object detection, as for the scenes 2 and 4 the support-

ing planes are too high, thus impossible to scan with either of our robots (see Sec-

tion 2.4).

The texture based detection obtained the correct label with 83% accuracy and geo-

metric classification achieved just below 80% success rate (see Marton et al. (2011)

for details).

There were five SIFT-based classification failures for Scene 2, due to the reflective

metallic surface of a green chips cylinder which made the classification using SIFT

descriptors practically impossible in that position. And this is where the power of our

multi-modal system becomes apparent. It was in all 6 measurements of this object

for this scene correctly categorized as a tube-like cylinder, which for the set of our

13 objects, made the Perceptual Task Execution to decide for the instance of green

chips cylinder – the only tall cylindrical object that was currently in the Object Model
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Figure 3.8: We performed our tests on a total number of 13 objects located at 4 different
scenes in our kitchen lab (denoted with Scene 1 ... Scene 4 and depicted in
top-down order in the right column).

Database. In a database with a larger number of objects containing e.g. multiple tall

cylinders correct geometric categorization would still provide a significant hint at the

possible class instance. Additionally, the geometric model reconstruction provides the

means for eventual manipulation.

For a large-scale evaluation of the hierarchic classification strategy, we have per-

formed several experiments on around 400 partial views of 29 objects (shown in

Figure 3.9). We used data taken using a turntable for training, and additional views

of table scenes for testing (examples in Figure 3.10). Please see (Marton et al., 2010b)

for more details.

To evaluate the overall performance of our approach we carried out three types of

object recognition test: (i) test with different splits of the training dataset (around

300 views), (ii) test with 76 views of the objects in regular table settings, and (iii) test

with 15 previously unseen objects/views (i.e. geometric classification alone) on the

table. While the best accuracy (95.45%, see bottom of Figure 3.10) was obtained in
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Figure 3.9: Left: some of training objects. Right: some novel objects for test (iii).

the first case, the accuracies for the remaining tests (85.53% and 80% respectively)

were still encouraging.

For the full evaluation of the image-based recognition module developed by Dejan

Pangercic we kindly refer the reader to (Marton et al., 2011).

3.2.4 Improved Detection through Incremental Learning

In the case that an object hypothesis is detected in the same position in the map’s

coordinate frame in subsequent scans we assume it is the same object as the one

identified previously. For the localization we use an AMCL-based framework combin-

ing robot’s odometry and laser readings in a priori built 2D map (Pfaff et al., 2006).

Localization’s absolute error margin lies at 0.02 m on average, thus we consider ob-

ject hypotheses to represent the same object if they are not further away than 0.05 m.

If the subsequent call of the examination methods returns no matching views for the

given object hypothesis, we store the current observation as a new view of the object

in the Object Model Database, as shown in Figure 3.11.

To demonstrate the capability of our system to acquire new object models on the fly

we set up Scene 1 with one unknown object (green milk box), which of course could

not be identified. Knowing that its views don’t match anything in the database, we

can introduce them as new object models. The assumption we are making here is that

the scene remains static, thus the cluster cloud and the defined ROI at the given 3D

position in the world coordinate frame contain the same object.
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Figure 3.10: The table scene at the top shows hierarchic classification results of test (ii).
Red labels denote geometric miss-classification, yellow ones correct geo-
metric category but incorrect visual classification, while green labels sig-
nal the correct object identification. The confusion matrix in the bottom
provides the true and false positive normalized GRSD statistics for the test
with training objects.
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Figure 3.11: Different views of a cereal box (top) and chips (bottom) learned by multiple
observations in the same position. The green line represents the table’s edge
as detected by the laser (some parts of it were not scanned), and the green
markers denote the projections of the fitted 3D model onto the image data.

Scene 1 #Views/#Known #Failures #Unknown Success (with/no unknowns)
Before 52/42 0 10 80.8%/100%
After 52/52 2 0 96.2%/96.2%

Table 3.3: Improved detection after learning the new object for Scene 1 from Figure 3.8.
All in all, more views got the correct label.

After this we performed another test run on the Scene 1, and were able to reduce

the number of not detected objects down to 2 as shown in Table 3.3. Subsequent

detections of this type of milk box thus have a better chance of being recognized.

Since most large databases (e.g. GeranDeli.com) offer only single pictures of objects,

incremental learning is an important feature for a perception system that needs to

develop over time.

3.2.5 Conclusions

In this section, we presented a system for automatic and efficient object detection and

modeling that can improve its models with limited human supervision. Multi-modal

methods (both data and model driven) are combined for building and extending an

open-ended object model database by learning novel objects and new information on

known objects online. The high number and variety of objects in a typical house-

hold require the use of multiple descriptive features and the automatic construction

of geometric models for performing robotics tasks autonomously, as we believe that
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having an object database built by the robot itself in the operating environment (or

adapting/enriching a seed database) is more suitable to deal with the specifics of the

environment efficiently than a generic approach of providing as many models of as

many objects as possible.

3.3 Ensemble Learning for Fusing Parallel Processing Results

So far we considered a hierarchic execution of the examination methods, but this way

errors at a higher level get propagated, without a way for the lower levels to correct

it. Therefore, instead of a sequential execution, this section will focus on merging the

results of parallel perception modules, using the method we developed in (Marton

et al., 2012b).

As we discussed, these object classification tasks can be made significantly more robust

if multiple sources of information are used. Since each perception method captures

only some aspect of the objects, the situation is similar to the old story about the six

blind men trying to describe an elephant based on a single touch. Clearly, a correct

combination of different sensor modalities for classification would improve results.

Combining multiple sensor modalities to improve detection can be done in general

either by combining multiple features in a single classification pipeline, or by sepa-

rate processing pipelines for each modality whose results are combined. The former

approach is pursued by Lai et al. (2011b), where a combination of visual and depth

cues is used. We explored the latter approach in the previous section, highlighting

the limitations of the different sensors, and exploiting that not all features need to be

checked if there is a subset of them that uniquely describes the object (Marton et al.,

2011).

While both approaches use different features from different sensing modalities, each

of them has inherent drawbacks. Combining different features by concatenation pro-

duces very high-dimensional features that produce excessively long training (and pos-

sibly classification) times. Additionally, any change in the used features requires a

complete re-training of the whole classifier. On the other hand, it is a simple way

of obtaining a very accurate classifier that considers all the useful information. The

sequential method is very modular, and some features can be left out if needed (e.g.
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those from camera images in low light conditions) or new ones added without the

need to re-train the whole system, but the errors get accumulated from each step,

and correlations can not be exploited. Ideally, one would like to have a separate

classifier for each feature, evaluate what it is good at and what mistakes it makes,

and then produce a final classification by considering the results of all the individual

ones.

This is exactly the idea behind ensemble methods in machine learning and pattern

recognition, which combine a number of different models, trained for the same task,

in such a way that the performance of the ensemble surpasses the performance of

the best of its members. In this work we add another requirement to the ensemble,

namely to outperform the classifier that uses the concatenation of the features, thus

to bring the best properties of the two approaches together for robotic object recog-

nition.

During our evaluations we found that it is quite difficult to surpass the results ob-

tained by concatenating all the features, but that it is possible with the right training

strategy and ensemble method. More specifically, we explored a novel technique for

creating uncorrelated ensemble members that is substantially different from previ-

ously used methods. The technique consists of training strong learners on subsets of

a set of features extracted from different sensor modalities and to combine them using

either simple heuristics or stacking. This is in sharp contrast to many other ensemble

methods which combine weak learners on a indivisible set of features by perturbing,

for example, the data distribution by re-sampling or re-weighting.

We also gave special consideration to ensemble methods that do not need to be trained

together. While this approach produces slightly inferior results, its modularity makes

it especially advantageous for large systems integrating multiple sensors, where (with

the improvements in hardware and addition of new sensors) novel features are being

developed that need to be integrated.

Furthermore, in the area of autonomous robotics, the ability to direct gaze only with

certain sensors or changing environmental conditions can have the effect that some

of the sensing modalities can not be used for observing an object (e.g. low light

conditions for cameras, or objects with specular, transparent or reflective surfaces for

3D sensors), thus online modularity is an additional plus.
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In this section we will present the ensemble methods we implemented and evaluated

to find an alternative to concatenating features. As Figure 3.12 summarizes, the key

idea is to create separate classifiers for different features and to combine their output

for the final classification.

Sensor 1 Sensor 2

Feature 

extraction 2

Feature 

extraction 3

42 3

Classifier

Classifier 1 Classifier 2 Classifier 3 Classifier 4

Ensemble

Feature 

extraction 4

1

Feature 
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Sensor 1 Sensor 2
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Feature 
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extraction 4

Feature 

extraction 1

42 31

Figure 3.12: Technique of concatenation (left) compared to ensembles (right).

Fumera and Roli (2005) analyzed linear combinations of classifiers and found that

the performance depends on the correlation of the outputs of the ensemble members.

This is intuitively clear, since if two classifiers often make the same prediction little

additional information is gained by observing the output of both. This is obviously

also true for all other ensemble methods.

A lot of the best performing ensemble methods have some scheme for re-weighting

or re-sampling the dataset for training the ensemble members to achieve this lack

of correlation. One example is bagging, which stands for bootstrap aggregation, in

which a random subset of the dataset is used for training each member. Another

method is the popular AdaBoost in which the classifiers are trained in sequence and

the training data is re-weighted for training a new classifier in the sequence. When

using neural networks the random initialization of the weights leads to different local

minima and it is then possible to combine these networks to committees.

In the next subsections we present the various ensemble methods we used grouped

into four categories, starting with the simpler “max rules” and finishing with stack-

ing.

The accuracy of the classifiers are estimated from a validation partition of the dataset.

In some of the rules it is quite likely to get a tie between two decisions. The ties are
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broken by making a random decision. To keep things simple this is not stated explicitly

for each rule for which it applies.

3.3.1 Max and Product Rules

The max accuracy rule is to choose the classifier whose classification decision has the

highest class-conditional classification accuracy. Similar to this, the max confidence

rule is to choose the classifier which has the highest confidence in it’s decision. The

combined max confidence and accuracy rule is to choose the classifier whose classifi-

cation decision has the highest class conditional classification accuracy multiplied by

the classifiers confidence. These are simple ways of combining classifiers that do not

require a common training and consider the result of only one selected classifier. An-

other well known method we explore that does not need optimization of parameters

but does merge all the available information is the product rule.

3.3.2 Weighted Voting

The weighted votes method assigns an additional weight to every classifier. We exper-

imented with various voting approaches that do not require combined training and

are thus modular. In accuracy weighted voting each classifiers vote counts weighted

with the accuracy of the classifier. Confidence weighted voting is equivalent to sim-

ple voting with the addition of having a vote count with the classifiers confidence.

Confidence and accuracy rated voting is equivalent to simple voting with the addi-

tion of having a vote count with the classifiers confidence multiplied with it’s class

conditional accuracy.

3.3.3 Error Correlation

For regression problems it is possible to find a closed form solution for the weights of

a linearly combined ensemble of classifiers if the expected sum of squares loss is to be

minimized. Bishop (2006) analyzes this approach and a closed form solution is given

and shows that for all convex loss functions this method’s expected performance is
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higher than simple averaging and can not produce an increase in the expected error.

He discusses the topic in the context of regression but it is also possible to use this

approach for classifier ensembles. The derivation goes through unchanged for the

classification case.

3.3.4 Stacking

Stacking or stacked generalization as it was originally called by Wolpert (1992) is an

ensemble method in which classifiers are stacked to achieve improved classification

performance. Stacking classifiers is done by collecting the outputs of so called level-0

classifiers into a new dataset and to train one or more level-1 classifiers on the outputs

of the level- 0 classifiers. When doing this it is of importance to build the dataset on

which the level-1 classifiers will be trained from training data that wasn’t used to to

train the level-0 classifiers, since what we are interested in is to improve the perfor-

mance on the test set, not on the training set, in short to improve generalization.

This is usually done by separating the dataset into n folds, removing one, training

one of the classifiers on the remaining folds and evaluating the classifier on the fold

which was left out. This is repeated for all the folds. Together with the labels this

process creates the level-1 training dataset, which has the same size as the level-0

training set. Formally, the level-0 training set D0 is split up into m= |E| equally sized

folds P1, .., Pm. By P−i we denote D\Pi. Each ei ∈ E is trained on P−i and evaluated on

Pi to yield a part of D1, the level-1 training set. Then the level-1 classifier is trained

on D1. The accuracy of the stack is evaluated on a separate test dataset. Stacking is

illustrated schematically in Figure 3.13.

The procedure described above is the classical formulation. We take a slightly differ-

ent approach which is motivated by the abundance of data we have, the multi-modal

nature of our features and the goal to easily try feature combinations without hav-

ing to retrain a classifier on the combined feature vector every time. Let D1, ..., DN

be N different datasets obtained from N different feature extraction processes. The

datasets are split up into three parts each (D0
i

to D2
i
), the level-0 training sets, level-0

evaluation sets and level-1 evaluation sets. The classifiers ei ∈ E with |E| = N are

trained on D0
i

and evaluated on D1
i

to produce D′
i

the level-1 training-set parts which

102



3.3 Ensemble Learning for Fusing Parallel Processing Results

Figure 3.13: Original stacking compared to our stacking version.

are combined to form D′ the full level-1 training-set on which a level-1 classifier is

then trained. The whole stack is then evaluated on the D2
i

datasets.

So far we only spoke of the “outputs” of the classifiers without defining them more

precisely. Ting and Witten (1997) evaluated stacking on four different classifiers and

their combinations and found that for stacking to work the level-0 classifiers have

to output a confidence rating for each label. Since our AdaBoost multi-class version

outputs confidence ratings we were able to use it as a level-0 classifier. The SVM

implementation we use is also capable of training a probability model, unfortunately

the training process is very time consuming and so we were not able to try SVMs as

level-0 classifiers.

3.3.5 Experimental Results

The following subsections present the results we got during the evaluation of the

presented method. The results will be discussed in the next section.
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3.3.5.1 Dataset preparation and feature extraction

The full dataset presented in (Lai et al., 2011a) contains roughly 250,000 scans of the

300 objects organized in 51 categories2. This is a lot of data and handling datasets

of this size poses a challenge in itself. Therefore, like the original authors as well, we

decided on using only every 5th sample in the dataset. This still leaves us with about

1 day of extraction time for the whole dataset, but it assures that enough views of the

objects are considered in order to make a proper evaluation.

After extracting the VFH, GRSD-, SURF and OpponentSURF features, the Bag of Words

(BoW) model is used to create a global descriptor for the objects when using OpenCV

features. Then the datasets were split up further by removing every second instance

to obtain the training partitions of the dataset. Of the removed instances every second

was used to form a validation set for the level-0 classifiers and the remaining instances

were used to form a validation set for the level-1 classifiers. Table 3.4 contains the

number of instances for each partition of the datasets.

We use PCL to extract the VFH and GRSD- features. The point clouds in the dataset

are very dense so to speed up normal estimation the point clouds were down-sampled

using a voxel grid filter with 0.001 meters grid size. The local neighborhood for es-

timating the normals is determined using a 0.02 meter radius search. In our experi-

ments we use the OpenCV 2.2 implementation of SURF. We detect features using the

dynamic SURF detector, an extension which lowers the detection threshold until a

sufficient number of points have been found. We also scaled each dimension of the

VFH and GRSD- features to the range [0, 1] by subtracting the minimum value along

a dimension and dividing by the maximum along that dimension (determined after

subtracting the minimum). The SURF BoW feature vectors were linearly scaled so

make the bins of the histogram sum to one.

As a next step the datasets were concatenated to yield six datasets containing the con-

catenations of each group of two features, four datasets containing the combinations

of each group of three features, and one combination containing concatenations of all

four features. We call the single features (VFH, GRSD-, SURF and OpponentSURF)

“singles”, the concatenations of two features “doubles”, of three features “triples”, and

of all features “all” in the following.

2http://www.cs.washington.edu/rgbd-dataset/
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Table 3.4: Number of instances in the datasets containing 20 classes (left) and all of the
51 classes (right).

Number of classes 20
Training instances 3600
# eval level-0 1800
# eval level-1 1800
Total scans 7200

Number of classes 51
Training instances 20738
# eval level-0 10369
# eval level-1 10369
Total scans 41476

Next the comparisons of results obtained by the different classifiers and ensembles

are presented, considering the simple features as well as their combinations. As we

will discuss later, outperforming the classifier trained on the concatenation of all the

features requires the use of pairwise combinations even with the most complicated

ensemble method. Nonetheless, this solution leaves us with a relatively good modu-

larity, as the cost of adding a new feature to the list of level-0 classifiers is linear in

the number existing ones (training the pairwise combinations), and only the level-1

classifier has to be re-trained.

3.3.5.2 Evaluation of Features and Classifiers

Throughout the experiments we will present performance using the error rate, i.e. the

fraction of object scans to which a false label was assigned. As shown in Figure 3.14

AdaBoost is not very good with the concatenations and/or is very bad with the BoW

model. Regarding the SVM classifier, the linear kernel is as good as the RBF kernel

for high dimensional features. This implies that AdaBoost is inferior to SVM. For the

51 class problem the accuracy is roughly halved for both methods, but SVM scales

marginally better. On the other hand, as it can be seen from the classification times,

the AdaBoost classifier can be trained in less time and the time for classification with

AdaBoost is independent of the feature length. These findings were to be expected

given the generally known behaviors of the used classifiers. Therefore, for some tests,

using SVM with RBF kernel was attempted, but was found to be prohibitively time-

consuming and was left out.
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3 Multi-cue Perception System for Spatio-temporal Integration

(a) Error rate for the 20 classes problem

(b) Error rate for the 51 classes problem

(c) Feature vector length vs. training and classification time (for 20 classes)

Figure 3.14: Results using AdaBoost compared to those using SVM.

3.3.5.3 Simple Ensemble Methods

We tested the simple ensemble methods described in Section 3.3 using several feature-

classifier combinations, as shown in Figures 3.15 and 3.16. The provided error rate

for the concatenation and the best member being the error rates achieved with the

respective classifier. Due to time constraints we did not train a probability model for

the SVM and consequently all the ensemble methods involving confidences were left

out.
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3.3 Ensemble Learning for Fusing Parallel Processing Results

Figure 3.15: Error rate of all simple methods on the 20 classes problem with (from
top to bottom) AdaBoost, linear SVM and SVM with RBF kernel as base
classifier.

3.3.5.4 Stacking Compared to Simple Ensembles

In this experiment we evaluate performance of our variation of stacking as described

in subsection 3.3.4. We used Real AdaBoost as level-0 classifiers and Real AdaBoost,

LogitBoost and Gentle Boost as well as a linear SVM and a SVM with Radial Basis

Function kernel as level-1 classifiers. As for the simple ensemble methods we com-

bine level-0 classifiers trained on the singles, doubles and triples for the 20 classes

problem. For the 51 classes problem we combined the singles and doubles only due

to excessively long run times. The results are shown in Figure 3.17, with the pro-

vided “concat.” error rate as the best error rate achieved using the concatenation

approach.
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Figure 3.16: Error rate of all simple methods on the 51 classes problem with AdaBoost
(top) and linear SVM (bottom) as base classifier

Figure 3.17: Stacking with AdaBoost as level-0 classifier and various level-1 classifiers,
for 20 classes (top) and 51 classes (bottom).

3.3.6 Conclusions

To establish a baseline to which we can compare the performance of the ensemble

methods we evaluated a small number of classifiers (linear-SVM, RBF-SVM and Ad-
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aBoost) on a number of features, which capture different aspects of the objects, and

their concatenations. From the experiments we conclude that VFH is the most descrip-

tive feature, among the features considered, for the task at hand. Not surprisingly,

the accuracy of all the classifiers and the time required for training increases with

the number of features used. Furthermore, the direct comparison of the classifiers

shows, that the SVMs can utilize the information contained in the diverse features

better than AdaBoost and also that the linear-SVM approaches the RBF-SVMs accu-

racy for concatenations of features of increasing length – as suggested also in (Chang

and Lin, 2001). Regarding the training time, we see an approximately linear increase

with feature vector length for all classifiers.

In every ensemble method the goal is to produce a number of uncorrelated classifiers

and the experiments described in the previous section provide ample evidence to sug-

gest that our feature recombination method leads to uncorrelated classifiers. Most

noteworthy is the significant increase in accuracy obtained over the single feature en-

sembles by the ensemble whose members were trained on two element subsets of the

feature set. In virtually all cases for the 20 classes problem this setup was able to im-

prove even on the classifiers trained on the concatenation of all the features, and for

the 51 classes problem at least the stacking approaches were able to achieve this goal.

However, adding further classifiers trained on larger subsets of the feature set to the

ensemble did not lead to much improvement in most cases and to decreased accuracy

in some cases. As shown in Figure 3.18 the results of the concatenated features were

almost reached already by stacking the single original features.

One important advantage of the simple rule ensembles over monolythic classifiers

and stacking is their modularity which, as we could show, comes at the cost of de-

creased accuracy. The hybrid model of the simple rule ensembles trained on two

element subsets, however, is an approach balancing the conflicting goals of accuracy

and modularity while incurring only an insignificant increase in the time needed for

training. It therefore presents an attractive addition to the machine learning toolch-

est for applications which can take advantage of multiple data sources. In particular,

accuracy and confidence based voting approaches seem to be the method of choice as

they deliver the highest accuracy among the simple rules.

All in all, we can say that multi-modal and multi-featured object classification has a

clear advantage over single-featured one. In contrast to our earlier work where a se-
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3 Multi-cue Perception System for Spatio-temporal Integration

Figure 3.18: Confusion matrices for the AdaBoost ensemble (left) as compared to the
classifiers of the concatenation of all features with a linear SVM classifier
(right) for the 20 classes problem. Best viewed in color.

quential approach was used (Marton et al., 2011), here all modalities are considered

together. Ensemble methods are a viable way of combining the various sources of

information, and they allow for a higher modularity and efficiency than simple con-

catenations of features. As we saw, with the right approach, we can improve not only

over the best ensemble member, but also the concatenation.

3.4 Discussion

In this chapter we introduced a perception system that is capable of multi-cue infor-

mation fusing for object recognition tasks. In the following chapters, the presented

approach for taking advantage of multiple sources of information was shown to reli-

ably deal with a large number of objects and environmental conditions.

In the experiments presented until now we assumed a correct segmentation, that is

however difficult to obtain in cluttered scenes. Therefore, segmenting and categoriz-

ing objects in such scenarios requires part based approaches, which we explore next

(for furniture pieces and small objects). As we will see, the voting-based ensemble

learning method of our perception system was used to merge information from differ-

ent detected parts and viewpoints, leading to superior performance over alternative

solutions.
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3.4 Discussion

Chapter 4 will deal with creating an environment model, while Chapter 5 with object

recognition, both in complex scenes, with high clutter and occlusion levels.
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Chapter 4

Modeling the Robot’s Workspace

Up to now it has been assumed that all our cognition must conform to the

objects; but [...] let us once try whether we do not get farther with the

problems of metaphysics by assuming that the objects must conform to our

cognition.

IMMANUEL KANT

Having described a repertoire of scene and object examination methods, and the inte-

gration strategies employed by our system, this chapter will focus on how to use them

in real-wold settings to achieve complex tasks. First and foremost, the robot needs to

understand the environment in which it is operating. This conceptual understanding

is a semantic map of the surroundings and the objects therein, that is either provided

to the robot or built autonomously. This chapter will detail and evaluate the seg-

mentation, recognition, and modeling methods for automatic semantic mapping in

cluttered settings, i.e. where different objects are nearby or touching, such that a

correct segmentation is challenging.

Semantic maps are resources which robots can use to aid them during the execution of

their task. Whenever a robot has to act in environments designed for humans, it can

take advantage of the wealth of common sense information to interpret and recognize

the different common objects in it. Therefore, to build semantic maps it needs to find

known or learned structures that are typical in man made environments.

When modeling the robot’s workspace, the imposed logical and physical constraints

must be satisfied by the built models. This can be achieved by “hallucinating” de-

tection hypotheses based on our understanding of the objects and checking if these
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4 Modeling the Robot’s Workspace

illusions conform to our knowledge about the real scene. After the detection of larger

structures, these can guide the detection of smaller objects. Thus, the recognition of

typical objects like chairs and armchairs, tables and sideboards will facilitate more

powerful task planning, because they could be important for the task at hand. Tables

can be used to place things for the use of the human, sideboards are containers that

could hold objects that the robot has to find, and chairs could be potentially moved

out of the way if needed.

To enable modeling in cluttered scenes, we will focus on the combination of bottom

up reconstruction from parts and top down hints (from predefined common sense

knowledge, or learned concepts from the World-Wide-Web). Physical constraints are

incorporated by assuming stable, non-intersecting configurations, and also by the

knowledge about occupied and unoccupied space that 3D technologies provide. Ad-

ditionally, the benefit of over-segmentation and multiple viewpoints is introduced, to

be explored further in the next chapter.

4.1 Segmenting Furniture and Appliance Doors

First, I will give an overview of the segmentation and model reconstruction meth-

ods that we employed for detecting container doors during the creation of Semantic

Object Maps (Rusu et al., 2008c; Marton et al., 2008; Rusu et al., 2009d; Blodow

et al., 2011a), as shown in Figure 4.1. For this, we used and extended the modules

described in Chapter 2 to be able to deal with incremental data acquisition, use ge-

ometric fitting of handles to guide door segmentation, and to create 3D models that

can be used by the robot for planning its interaction strategies.

4.1.1 Incremental Data Acquisition

A single scan typically is not enough to capture the complete workspace, so multiple

viewpoints are needed. To construct complete models from partial views, the exist-

ing model needs to be updated by aligning it with newly acquired data scans, using

the presented efficient methods for exploration and point cloud registration. These

scans are overlapping with the current surface mesh, and all the new points have to
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4.1 Segmenting Furniture and Appliance Doors

Figure 4.1: Segmenting touching furniture and appliance doors from raw data. Doors
and their corresponding handles are segmented, and different container
types classified by the properties of their parts and the relations between
them, based on online training data (see 2.28). Blue: cupboard, green:
drawer, yellow: owen, purple: dishwasher, red: table, dark red/purple: wall
and floor, grey: unrecognized/obstacle, and detected objects in random color.
Please note that since the bottom right furniture face (below the sink) did
not have a handle it was not classified as a container.

be incorporated into the model. However, neglecting all the previously constructed

triangulations and creating a new mesh containing all the points each time a new

scan is acquired does not constitute a feasible solution.

To solve this problem, our method triangulates the new vertices of the point cloud

into the existing mesh (Marton et al., 2009b). By determining the overlapping area

between each new data scan and the current surface mesh, and removing those points

which are close to existing triangle faces, we can grow the existing model without

recreating the entire triangular mesh.

In order to include points that are in the vicinity of a triangle into the mesh, the

corresponding triangle is neglected, and is treated as a hole containing the new points

inside it, by initializing the advancing front with its vertices. The method is similar

to the normal initialization, where a seed triangle is filled and the advancing front

is initialized in the same way, with its vertices. This guarantees that no change is

required in the actual triangulation algorithm – it is basically a restart of the previously
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4 Modeling the Robot’s Workspace

Figure 4.2: Left: a new registered data scan has been acquired and the mesh model needs
to be updated; right: the results after incremental triangulation, by preserv-
ing the mesh in the parts where no data update exists, and triangulating
the new vertices. The colors represent the estimated surface curvature (red
meaning low, and green high curvature).

finished step. The points in the new parts of the scene are also straightforward to

include, as the previous step’s boundary loop has to be treated as the advancing front

that will expand into the new area.

Figure 4.2 presents the result of these re-initialization methods in the kitchen scene

which was extended with a new scan performed by the robot. To obtain a more

compact representation, the high density of points can be reduced by adaptively re-

sampling the surface in the overlapping area, as described in subection 2.3.1.
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4.1 Segmenting Furniture and Appliance Doors

4.1.2 Detecting Doors and Containers based on Fixtures

Man made environments typically contain a large number of planar structures, of

which the ones possessing handles (indicating that they can be manipulated) are some

sort of door that can be relevant for a household robot. As an exhaustive search for all

planes is computationally intractable, we are only searching for those that are aligned

with the walls of the room. The orientations of the main walls are determined using

a RANSAC based approach on the normal sphere, as in (Marton et al., 2010a). Since

in many indoor environments, most of the surface normals estimated at every point

coincide with one of the three main axes of the room, these directions can be used to

limit the plane extraction.

After extracting the principal axis-aligned planes, they are classified into floor and

ceiling based on horizontal orientation and height, and parts of the walls based on

the observation that they are typically adjacent to the ceiling. The remaining planar

connected components constitute candidates for tables or furniture faces. In order to

detect fixtures we first find point clusters that are within the polygonal prism of the

furniture faces using euclidean distance measure and then fit RANSAC lines or circles

to those clusters and thereby differentiate between handles and knobs.

Kitchen appliances, doors and drawers typically have fixtures that allow interaction

with them. The existence of fixtures is a good indication to the presence of these

objects, so the algorithm searches for clusters of points in the vicinity of detected

vertical planar structures. Since the ultimate goal is the manipulation of the handles

by our robot, we discard clusters that are too big in diameter for grasping. These

filters are simple enough to be performed for all possible clusters and explain all of

the fixtures in typical kitchen environments. The result of this process can be seen in

Figure 4.3.

In our previous work (Marton et al., 2008), we found gaps between adjacent cabinet

doors using curvature from laser data alone. We used handles as guides for segmen-

tation as well for finding the correct breakup of regions that are likely to be under-

segmented. Since the accuracy of our current laser sensor is considerably lower than

the one employed there, we cannot purely rely on geometry, but perform the seg-

mentation of furniture faces using camera images registered onto our laser data (see

Figure 4.4).
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4 Modeling the Robot’s Workspace

Figure 4.3: Segmentation results for a kitchen visualized with floor and ceiling points
removed.

The algorithm uses seed points around the footprint of fixtures to estimate an initial

model of the color distribution of the door, consisting of the intensity values’ median

ĩ and median average distance (MAD). The seed regions are expanded by adding

neighboring points whose colors match the estimated color model (using region grow-

ing) based on the assumption that points on the door border are surrounded by points

with different color. The color model for a region is updated after all possible points

are added, and the process is repeated until the values of ĩ and MAD stabilize. After
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4.1 Segmenting Furniture and Appliance Doors

this step, fixtures that produce overlapping segments are marked for further exami-

nation, while the rest are added to the map, along with rectangular approximations

to the found planar segments.

The algorithm is parameterized on the maximum search radius for fixture footprint

points, the equivalent threshold for the region growing phase, and a color threshold

α, which defines how much the color of a point is allowed to deviate from the door

color model. In our experiments, we found a value of α = 2 · MAD to yield stable

results. The method deals well with the shadows of handles and doors of different

appearance (metallic for the oven and light gray for the rest of our kitchen). Stronger

shadows did prevent small parts of some doors to be segmented correctly, but the

rectangular approximation still included them.

Figure 4.4: Region growing based generation of drawer and door hypotheses. Left: point
cloud data overlaid with reprojected intensity information. Right: the same
kitchen part overlayed with segmentation results for doors (shades of green)
and handles (red). Note the difficulty of segmenting the shiny oven door.

Since the robot can interact with the environment, doors can also be segmented by

opening them, and evaluating the temporal differences. However, this process is rela-

tively slow, so one idea would be to only do this for ambiguous segmentations. How-

ever, when opening them, we can also determine the type of joint (rotational or pris-

matic, i.e. translational). This means that for mapping whole kitchens, including
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4 Modeling the Robot’s Workspace

estimating articulation models, we do perform this for every handle found, but if nec-

essary, we can fall back to geometric and visual segmentation in cases where time is

critical or where the handles can not be operated by the robot gripper (Blodow et al.,

2011a).

4.1.3 Semantic Interpretation

Figure 4.5: Surface models generated for detected objects standing on a table.

As seen in Figures 4.1 and 4.5, the environment includes several objects that can be

classified as described in the previous chapter and their surface models incorporated

into the map.

The objects in our maps are instances of object classes where the object classes are

organized in a specialization hierarchy. Thus, a cupboard is a specialization of a con-

tainer and can therefore be used to store objects, and an oven is a specific kind of

container that is used to prepare meals. As an intermediary representation XML is

used, such that we can import them into different applications. For example, in the
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Figure 4.6: Querying the object map using XQuery and the visualization of the re-
sults (yellow arrow) superimposed on a photograph of the scanned kitchen.
Labeled 3D points and semantic information from other sources is also
overlayed.

Gazebo 3D simulator1 it is possible to perform a validation of the estimated door

hinges and object classes (Marton et al., 2008), while the map can be queried us-

ing XQuery in order to retrieve necessary information from the model, as shown in

Figure 4.6.

In order to import the map into our knowledge processing system, it is transformed

into the Web Ontology Language OWL-DL, with objects being identified as instances

of the classes in our knowledge base. This allows for querying all relevant knowledge

and performing reasoning about objects which are grounded in actual sensor data.

This makes it possible to query for objects that serve for a purpose (see Figure 4.7),

and get their spatial properties as the result. For every detected furniture object,

we record a dataset that contains an ID, the type of the container/articulation model

1http://gazebosim.org/
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4 Modeling the Robot’s Workspace

Figure 4.7: The results are exported to KnowRob (Tenorth, 2011) in OWL-DL repre-
sentation that allows for semantic queries. The integration with KnowRob
can be used for example to locate containers where cups can be stored (re-
sults highlighted in red). In the figure, all objects identified as cupboards
are returned since the query asks for objects where cups are stored. (Image
courtesy of Moritz Tenorth.)

found, geometric extents in depth, width and height, and the position and orientation

in space. We also record hierarchical information such as a kitchenette consisting of

several pieces of furniture or which handles were found on which furniture pieces. It

is being used in the knowledge processing system KnowRob (Tenorth et al., 2010) and

can be exported to URDF (Unified Robot Description Format), which we use in order

to get the collision and the articulation models of environments (see Figure 4.8).

This map was used to reason about and interpret human gestures in (Blodow et al.,

2011b), where we combined it with human tracking and our 3D segmentation meth-

ods2 in order to generate plans for the robot. For example, virtually grabbing an

2See our entry to the ROS 3D Contest:
http://www.ros.org/news/2011/02/ros-3d-entries-teleop-kinect-cleanup.html
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4.2 Detecting Furniture Pieces by their Part Configurations

Figure 4.8: Semantic map of the kitchen from Figure 4.3 as represented for KnowRob.

object and hovering it into the fridge could be interpreted as grasping, door opening,

releasing and door closing by KnowRob.

Such complex interactions can be further improved by obtaining information on other

furniture pieces as well besides appliances, containers and doors. Since other furni-

ture pieces are not as simple to describe as a having a door with fixtures, we explore

this topic further in the next section.

4.2 Detecting Furniture Pieces by their Part Configurations

In this section, I will address the problem of exploiting the structure in today’s work-

place interiors in order for service robots to add semantics to their sensor readings

and to build models of their environment by learning generic descriptors from on-

line object databases. These world models include information about the location,

the shape and the pose of furniture pieces (chairs, armchairs, tables and sideboards),

which allow robots to perform their tasks more flexibly and efficiently.
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To recognize the different objects in real environments, where high clutter and oc-

clusions are common, our method, introduced in (Mozos et al., 2011), automatically

learns a vocabulary of object parts from CAD models downloaded from the Web. After

a segmentation and a probabilistic Hough voting step, likely object locations and a

list of its assumed parts can be obtained without full visibility and without any prior

about their locations. These detections are then verified by finding the best fitting

object model, filtering out false positives and enabling interaction with the objects.

Table Chair Sideboard

Figure 4.9: Using furniture models from the WWW together with a segmented scan
of its real environment, the robots create a world model (different parts are
indicated by random colors).

This application scenario will demonstrate how autonomous robots can exploit the

high quality information already available from the WWW concerning 3D models

of office furniture. Apart from the hobbyist effort in Google 3D Warehouse, many

companies providing office furnishing have already modeled considerable portions of
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the objects found in our workplaces and homes. In particular, we present an approach

that allows a robot to learn generic models of typical office furniture using examples

found in the Web. These generic models are then used by the robot to locate and

categorize unknown furniture in real indoor environments as shown in Figure 4.9.

Furniture pieces share many common parts, especially if their purpose is similar. For

example, most chairs have an approximately horizontal and vertical part, and rectan-

gular planar patches are quite common. Thus the key idea of this work is to represent

the object models learned by the robot using a vocabulary of these common parts,

together with their specific spatial distributions in the training objects.

During the training process the CAD (Computer Aided Design) models from furniture

Web catalogs are converted into point clouds using a realistic simulation of laser scans,

as described in Section 2.6. These point clouds are segmented and the resulting parts

from the different training objects are clustered to create a vocabulary of parts. In

the detection step, we match similar parts and apply probabilistic Hough voting to

get initial estimates about the location and categories of objects found in the scene.

Finally, these detections are verified by finding the CAD model that best fits to the

measurements. This last step allows the robot to reject false positive detections.

Using larger regions (instead of points) as basic units for learning offers many advan-

tages. As was already shown in Sections 4.1 and 2.7, the knowledge about different

functional units of objects can contribute significantly to a correct detection. More-

over, we use training examples that are similar but not necessarily the same as the

objects encountered during the operation of the robot, thus improving the general-

ization of the final classifier.

4.2.1 3D Point Cloud Segmentation

Our classification of objects is based on the detection of the different parts that com-

pose them. To determine these parts, we segment the 3D point clouds representing the

objects and scenes using the normal-based part decomposition algorithm described

in Section 2.4. A segmentation defines a disjunct partition P = {S1, . . . , SM} of the

3D point cloud. Our segmentation method follows a criterion based on a maximum

angle difference between the surface normals. This condition is easily checked and
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can be applied to any type of surface (see Figure 2.20). We smooth the PCD and for

each point we calculate its normal using RMLS (see Equation 2.4).

Using the obtained normals for each point in the cloud, we apply a region growing

algorithm where we mark a point p as belonging to a part S if the distance between

the point p and some point in S is closer than δ = 5 cm, and if the angle formed by the

normal of p and the seed normal of S is less than α= 40◦. Seed points are iteratively

selected as points with the lowest curvature that do not belong to any part yet. This

ensures that flat parts are identified first and makes the identification process more

robust. The parts that have less than 10 points are considered to be too small, and are

most probably produced in regions with high normal variations or by spurious points.

Thus we perform a simple distance-based region growing to group them together

and the resulting parts that are still too small are discarded. The parameters were

selected because they provide good partitions in our setup (see subsection 4.2.5). An

example segmentation of an object is depicted in Figure 4.10, and segmentations of

point clouds in indoor environments are shown in Figures 4.12 and 4.13.

Finally, our segmentation method produces parts with only slight curves. As explained

in the introduction, the reason is that this kind of surface is very common in furniture

objects in indoor environments. However, cylindrical objects would be broken up

into parts covering at most 2α degrees, and the extracted features account for the

curvature of the part.

4.2.2 Training Objects from Web Catalogs

In this work we use established online databases, to obtain information about typical

objects found in indoor environments, as shown in Figure 2.27.

To obtain realistic point cloud representations for these objects, we simulated our

laser scanner’s sweeping motion on the robot, intersected each beam with the CAD

model of the object, and added realistic noise to the depth measurements. Then,

each obtained scan was segmented to obtain its part structure. An example process

for obtaining training data for a chair is shown in Figure 4.10. The whole process

takes, on average, 4.67s per view on a single core using a good graphics card.
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Figure 4.10: Left: Example point cloud acquisition and segmentation of a chair. Right:
Example shape model for a partial view. Please note that one of the legs
and the extensible beam of the chair were occluded in the scan.

4.2.3 Vocabulary of Parts

We build a common vocabulary of parts for all the classes in the training data, since

most of the objects contain similar parts (Usenko et al., 2012). The vocabulary is

constructed by segmenting the training objects into parts, each of which is then rep-

resented by a feature vector encoding its geometrical properties, and the feature vec-

tors are clustered to form groups of similar object parts. Next we describe the last

two steps in detail.

4.2.3.1 Feature Vectors for Parts

We found that the various part types differ quite substantially from another (e.g. legs,

table lanes, chair back-leans, etc), so a simple statistical features that considers part

orientation as well (like in the case of inaccurate depth data in Chapter 2) can outper-

form global 3D features designed for general object recognition (Marton et al., 2014).

Therefore, for each part S obtained in the segmentation from 4.2.1, we calculate the

following set of geometrical features:

1. Proportion of boundary points in S computed as in (Rusu et al., 2008c).

2. Average curvature of S computed as the smallest eigenvalue’s proportion to the

sum of eigenvalues in the local neighborhoods of all points.

3. Volume occupied by the voxelized points in S.
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4. We calculate three eigenvalues, e1, e2, e3, of S and calculate six proportions:

e1/e2, e2/e3, e1/e3, e1/sum, e2/sum, e3/sum, where sum= e1 + e2 + e3.

5. We obtain three eigenvectors, ~e1, ~e1, ~e1, of S, project the points onto each of

them, and calculate three metric variances v1, v2, v3 (which we used instead of

e1, e2, e3).

6. Orientation of the eigenvector corresponding to the smallest eigenvalue, indi-

cating the orientation of S.

7. We project the points onto each eigenvector and get the distance to the farthest

point from the medium in both directions l1
~e1
, l2
~e1
, l1
~e2
, l2
~e2
, l1
~e3
, l2
~e3
. We then calculate

the following values: (l1
~e1
+ l2

~e1
), (l1

~e2
+ l2

~e2
), (l1

~e3
+ l2

~e3
), (l1

~e1
/l2
~e1
), (l1

~e2
/l2
~e2
), (l1

~e3
/l2
~e3
),

(l1
~e1
+ l2

~e1
)/(l1

~e2
+ l2

~e2
).

8. Three proportions between features 5 and 7: v1/(l
1
~e1
+ l2

~e1
), v2/(l

1
~e2
+ l2

~e2
), v3/(l

1
~e3
+

l2
~e3
).

9. Proportion between the occupied volume (feature 3) and the volume of the

oriented bounding box of the part.

Each part S is finally represented by a vector containing 24 features normalized to

the range [0,1].

Similar features were used in parallel to our work for grouping similar object and body

parts together with great success in an assembly-based 3D modeling work (Chaudhuri

et al., 2011). As there for humanoid and vehicle parts, in our case for furniture parts

as well, these types of features create semantically meaningful clusters.

4.2.3.2 Words and Shape Models

The resulting set of training feature vectors is clustered to obtain the words forming

the vocabulary of parts. In our approach, we apply k-means, since it has given good

results in previous works (Csurka et al., 2004; Coates et al., 2010). After applying k-

means to the training feature space, we obtained a clusteringC = {C1, . . . , CV}, which

represents our vocabulary of parts. Each cluster Ci is called a word. An example word
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Figure 4.11: Example word activation and corresponding 2D voting space.

is shown in the center of Figure 4.11 representing the back of a chair from different

views.

In addition, and following (Leibe et al., 2008), we learn a shape model for each train-

ing object view. This model specifies the distance relations among the different parts

that compose the object. We extract the center of mass s ∈ ℜ3 of each part S, and the

center of mass p ∈ ℜ3 of the complete point cloud. We then calculate each relation

as the 3D vector ~d = p− s. An example is shown in the right image of Figure 4.10.

4.2.4 Object Recognition

In contrast to previous works (Nüchter et al., 2005; Klasing, 2010), we do not isolate

possible objects in the scene before the classification. In our approach, we detect the

objects by simultaneously collecting the information provided by all the parts in the

scene.

Our object recognition process is composed of three main steps: i) a set of hypotheses

is generated which indicate possible locations for objects in the point cloud, ii) a

selection of the best hypotheses is done following a set of criteria, iii) model fitting

and verification is applied.
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4.2.4.1 Hypotheses Generation

Here we make use of the ensemble learning method that we found to be very robust in

the previous chapter: weighted voting. Given an initial partition P = {S1, . . . , SM} of

a 3D point cloud representing an indoor environment, we first obtain the correspond-

ing feature vector fi for each part Si. Each feature vector is then matched to a subset

of wordsA ⊂C from the learned vocabulary (activation), which constitute possible

interpretations of the part S. Each element of an activated word casts a vote for a

possible object location. This scheme is known as probabilistic Hough voting (Leibe

et al., 2008), and an example is shown in Figure 4.11. In this case, a part in the scene

activates a word representing backs of chairs. Each element in A casts a vote for the

center of the chair inside the point cloud.

Formally, given a feature vector f representing a part S located at position l in a 3D

point cloud, the probability of finding an object of class o at position x is

p(o, x | f , l) =
∑

i

p(o, x | Ai, f , l)p(Ai | f , l). (4.1)

The term p(o, x | Ai, f , l) represents the probability of finding object o at location x

given that feature f at position l activated the word Ai. The term p(Ai | f , l) indicates

the probability that the feature vector f matches the word Ai.

As we discussed in (Mozos et al., 2011), we make two further assumptions. First, the

probability of finding an object given an activated word Ai is independent of the fea-

ture vector f . Second, the activation of a word Ai by feature vector f is independent

of the location of the corresponding part S. Thus,

p(o, x | f , l) =
∑

i

p(o, x | Ai, l)p(Ai | f ). (4.2)

It remains to describe each term in (4.2). The term p(Ai | f ) represents the activation

of Ai by f . In order to do ensemble learning, we do not activate just one vocabulary

word, but several of them. Each activation is assigned a probability indicating how

well the feature vector f matches the codebook entry Ai as
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p(Ai | f ) =
w( f , Ai)

∑

j w( f , A j)
(4.3)

where w( f , Ai) is a distance function proportional to the inverse of the Euclidean

distance between vector f and the mean vector of cluster Ai.

The term p(o, x | Ai, l) represents the probability of finding object o at position x given

the activated word Ai at location l. Once a word is activated, each of its elements a

casts a vote to the position xv = l + ~d. Here l is the position of the part S found

in the point cloud, and ~d is the relation vector of the element’s shape model (see

subsection 4.2.3.2). Finally the probability p(o, x | Ai, l) is given by

p(o, x | Ai, l) =

¨

1
#(Ai ,o)

if x = xv ;

0.0 otherwise,
(4.4)

where #(Ai, o) indicates the number of elements a in word Ai that pertain to object

o.

4.2.4.2 Hypothesis Selection

The result of the voting process is a set of weighted hypotheses for possible object

locations as shown in Figure 4.11. The final score V (o, x) of a hypothesis representing

an object and its position can be obtained by marginalizing over all the parts found

in the scene,

V (o, x) =
∑

k

p(o, x | fk, lk)p( fk | lk) . (4.5)

The first term in this expression is calculated as in (4.2), and the second term p( fk | lk)

is assumed to be a uniform distribution.

To find the locations of the different object hypotheses, we search for the most likely

positions (analogously to the most likely class label in the previous chapter). Local

maxima in the voting space are identified using a search window whose size cor-

responds to the width of the particular object class we are looking for. We project
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the votes onto the (x,y)-plane in order to simplify this search (see Figure 4.11). Af-

ter obtaining the local maxima, we apply a threshold to select the best hypotheses.

Moreover, hypotheses are checked for inconsistencies in the space. In our case, two

hypotheses for the same type of object at two different locations x i and x j are in-

consistent if the 2D-convex hulls of the objects centered at x i and x j overlap. This

condition assumes that all objects are lying on the floor.

4.2.4.3 Model Fitting and Verification

Having detected positions where a certain object type is likely to be found, we verify

the detection and select the best model for the object, along with its pose. To be

able to do this, we first need to retrieve the most important parts that voted for the

location. Some of these parts are incorrect but their weights are low.

Our task is now to select the model and its pose from a 3D model database that

explains most of the detected object parts. We employ a more detailed model database

for this, in order to be able to account for the variations in shapes and sizes of the

different objects. To fit these models to our 3D scans robustly and efficiently, we

transform them to noiseless point clouds by filling the outer triangle faces with points,

and use a RANSAC-based algorithm to select the best pose and the best model for each

detected object. Since we take the complete model into account at once instead of

each view separately, we can reduce the number of trials considerably and we do not

require the point cloud to come from a single scan. This can become important later,

as detailed in subsection 4.2.5.3. The search time is further reduced by assuming that

objects are upright, thus only the location in 2D and the rotation around the up axis

is required to be found.

In a regular RANSAC algorithm, one can estimate the number of required iterations

T to find the best model with probability psuccess as

1− psuccess = (1− pgood)
T ⇒ T =

log(1− psuccess)

log(1− pgood)
. (4.6)

The value of pgood = wn is the probability of randomly selecting the best model, and

can be estimated after each fit (that is better than the best one found so far) as the

probability w of selecting a good sample to the power of the number of samples n. As
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the algorithm finds models that are increasingly better, the value of w can be updated

as #inl iers/#points, resulting in a decrease in the number of iterations needed.

Thus the number of iterations adapts to the estimated number of matches, starting at

infinity when no inliers are known and decreasing to a number that ensures that the

chance of finding a better model than the current one drops below 1− psuccess.

As the runtime depends on the number of samples, it is advisable to keep it as low

as possible. If we were to pick both the model and the scan points at random, we

would have had to use pgood = (#cor rect_matches/#possible_matches)2 a very

small number that is also hard to estimate. However, if we assume that by selecting

a random point from the scan, we can find the corresponding model point. This

simplifies the equation to pgood = #covered_scan_points/#all_scan_points. The

number of covered scan points can be found by nearest neighbor searches with a

maximum distance in a search tree.

We found that selecting the corresponding model point to a scan point can be done

by iterating over the possible matches (points at similar height), and selecting the

one that would result in a transformation that covers most scan points. Significant

speedups can be achieved by selecting only a subset of the possible correspondences

and scan points. Our experiments provided good results with around 50% of the

points checked. Additionally, by keeping track of the best score found, subsequent

searches can be stopped early if it becomes clear that they can not produce better

scores. The same principle can be applied over multiple models as well.

Using these techniques, we were able to identify the best pose of the good model

in around 15s on a standard dual-core laptop, without parallelization or other op-

timizations. Our models contain between 5000-15000 points, while the identified

object parts around 2500. For non-optimally matching models, the verification takes

around 60s, while non-matching models are rejected in under a second. After each

object model from the identified category is fitted to the object parts, we select the

one that explains the most model points.

Before this model and its pose can be used for various applications, it first needs to

be checked in order to filter out false positives. We first check if the model covers

less than 50% of the points of the parts, and reject such detections (e.g. the chair

in column two of Figure 4.17). The threshold of 50% is tied to how well the CAD

133



4 Modeling the Robot’s Workspace

models and the real objects match. The real chair and the best fitting model are not

identical; however, all CAD models we used cover much more than 50% of the points

if a good match is found.

We then check if the identified pose contradicts the measurements, i.e. if it has faces

that should have been visible while scanning, but the laser returned points behind

them. This can be done efficiently by building one occupancy grid per scan, in which

each voxel is labeled as free, occupied or unknown (Blodow et al., 2009). We reject

models that have large parts in free space, e.g. the sideboard in the first column

of Figure 4.17. Such a grid is needed for the operation of the robot for tasks like

collision avoidance and path planning. Thus it is natural to use it for the verification

of model fittings attempts, as we did in our experiments involving smaller objects as

well (Marton et al., 2010a).

Finally, when the scan point has a normal vector which is close to being parallel to the

upright axis, the rotation of the model can not be accurately estimated. In these cases,

we use a random rotation and since we check a high percentage of points, the models

are correctly identified. Tables are especially affected by this, and we see larger fitting

errors in finding them but the best models get identified correctly and a subsequent

fine registration using ICP (Besl and McKay, 1992) or one of its many variants can be

used to correct the pose.

4.2.5 Experiments

The goal of the experiments is to demonstrate that a robot can learn models for 3D of-

fice objects found on the Web, and using these models, is able to locate and categorize

pieces of furniture in 3D point clouds representing indoor environments.

To carry out the experiments, we first downloaded the CAD models of a chair, a table

and a sideboard (colored as blue, red and yellow in Figure 4.9). These objects were

obtained from different Web catalogs. Following the procedure of subsection 4.2.2,

we placed the objects in front of the simulated laser and rotated them around the up

axis, obtaining 16 scans of each object which were segmented using our algorithm.

A final common vocabulary of parts was created with k = 40. These values provide a

good balance between performance and computational costs (see Figure 4.15).
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(a) Segmented scan (b) Detected object parts

(c) Ground truth (d) Detected centers

Table Chair Sideboard

Figure 4.12: Furniture recognition results on a scan of an office. The segmented scans
of an office is depicted in (a). The detections of the objects’ parts for the
office is shown in (b). In (c) we can see the ground truth of the positions
for the objects’ centers (bird’s eye view). The detected centers obtained by
our method are shown in (d), where bigger circles indicate a bigger weight.

To obtain point clouds from real scenes, we used a Hokuyo laser mounted on a pan

tilt on a robot approximately 1.5m above the floor (see Figure 4.9). Service robots

working in human environments typically have their 3D sensor at that height such

that its perspective is similar to that of a person. Both of the robots we used had

such a setup, and since they both ran ROS, changing the robot was transparent to

our algorithm. However, different robots or sensors at different heights can be used

if the scanning of the training data is adapted accordingly. Finally, the point clouds
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(a) Segmented scan (b) Detected object parts

(c) Ground truth (d) Detected centers

Table Chair Sideboard

Figure 4.13: Furniture recognition results on a scan of a seminar room. Please see
Figure 4.12 for details.

were segmented using the same algorithm as for the training data. Each obtained

part activated the best two vocabulary entries.

4.2.5.1 Recognition of Objects in Real Environments

The first experiment was carried out in an office of our floor at TUM. The correspond-

ing segmented 3D point cloud is shown in Figures 4.12 and 4.13. This office contained

two tables, different armchairs and a sideboard. We would like to point out that the
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objects located in the office were similar to but not the same as the 3D models we

downloaded from the Web. In particular, the table in the middle of the chairs was

round and we did not have any round table in our training set, and the chairs around

the table were different from the training models. This setting aimed to demonstrate

that our approach is well-suited for detecting categories of objects instead of concrete

instances only.

We set the thresholds for the final hypotheses to 1.0 for tables, 0.6 for chairs, and 1.4

for sideboards. These values were selected as desired working points in classification

performance plots (Figure 4.14). The result of applying our detector is shown in

Figures 4.12 and 4.13. The two tables were correctly detected and the system was

able to detect 5 chairs out of 7, although including one false positive. An additional

experiment was carried out in a seminar room containing a big table and 15 chairs

around it. The resulting classifications are also shown in Figures 4.12 and 4.13.

Data acquisition using our laser takes 10 s. Smoothing, segmenting and extracting the

features takes another 7.12 s on average using C++ code on a single core. The time

needed to select the final hypotheses for an object center mainly depends upon the

total number of parts in the scene and the number of clusters in the vocabulary (since

each of the parts should activate the closest clusters). It also depends on the number of

final selected hypotheses because they are checked for inconsistencies (see 4.2.4.2).

Using our current configuration, and without any optimization, our approach took

0.20 s for the office, and 0.24 s for the seminar using Matlab on an Intel Core i5.
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Figure 4.14: Classification results for the office (left) and seminar (right) using our ap-
proach (Vo), nearest neighbor (NN), and a reduced set of features (Re).
More details are given in the main text.
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To quantitatively evaluate the performance of our approach, we generated recall vs.

(1-precision) plots for the two previous scenes. Different false positive values were

obtained by increasing the threshold for the final hypotheses selection. A true positive

is obtained when the distance between the detected center and the original center is

less than half of the width of the object. The test set included two scans of the office

and two scans of the seminar obtained from different viewpoints. The resulting plots

are shown in Figure 4.14. In each plot we additionally compare our approach based

on a vocabulary of parts (Vo) with two simplified versions: a version in which only the

nearest neighboring part in the training data is used for voting (NN); and a version

with a reduced number of features (ignoring features 4, 7 and 8) (Re). This last

version aims to show the importance of all the features in the final classification. In

both scenes our approach outperforms the simplified ones.
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Figure 4.15: Left: Classification performance using different number clusters k and a
fixed number of 16 views. Right: Classification performance using differ-
ent number of views and fixed number of clusters k=40.

We also analyzed the influence of the vocabulary size in the classification performance.

Results are shown in the left image of Figure 4.15. Finally, in the right image of Fig-

ure 4.15 we analyzed the performance of the classifier when increasing the number

of training views. Interestingly, using 16 views for training gives slightly better re-

sults than using more. This could be because the segmentation and features produce

similar patches. Improving the feature extraction is on our agenda, thus exploiting

our classification to the fullest. However, the results are quite similar for the different

parameters.
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4.2.5.2 Model Fitting and Verification

In this section we present results on applying model fitting for the final verification

of the detected objects. In the first experiment we used the classification results ob-

tained in the previous section for the office and seminar environments. The classi-

fication outputs consist of the center of the detected objects together with the parts

that contributed to its detection (see Figures 4.12 and 4.13). Using these outputs we

fitted the best original CAD model for each final hypothesis using the corresponding

retrieved parts and verifying the fitting as described in 4.2.4.3. The results are shown

in Figure 4.16.

Table Chair Sideboard

Figure 4.16: Model fitting in the scenes from Figures 4.12 and 4.13.

The poses are good for most of the objects and a subsequent ICP step would improve

them further. However, here we focus on the possibility of using it to reject false

positives. The two false positives in the right side of the seminar room were indeed

removed, but the four chairs in the walls of the office and seminar room could not be

filtered, as they covered the parts (which were quite small) well and were in occluded

space. These could be filtered for example by having a 2D floor map available, as

they are outside the boundaries of the rooms. False positive rejection is also shown

in Figure 4.17.

There were four occasions where the fitted models were incorrect. One chair in the

office and one in the seminar room are oriented backwards because their seats were

occluded and the best matching CAD model that was available fits the data best when

it is rotated in the wrong direction. Because of the large occlusions, these orientations

could not be filtered. Two other chairs in the left part of the scans had very small
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parts (31 and 32 points), rendering correct matching impossible. In the office the

bad orientation was preserved due to the high occlusion, but in the seminar room it

was rejected.

Table Chair Sideboard

Figure 4.17: Two examples of the whole process.

4.2.5.3 Recognition Using Multiple Views

In the following experiment we showed how to take advantage of multiple views of

the same scene to alternatively improve the final detection of objects. We used the two

scenes of Figure 4.17 and applied the voting approach on each of the scenes as in the

previous experiment. We then translated the resulting voting spaces into a common

coordinate system. This process is equivalent to the alignment of the two scenes and

the simultaneous voting in both of them. As shown in Figure 4.18, after merging
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both voting spaces the system is able to reject both false positives detections: the

sideboard sharing place with the chair in the first scene; and the shadow of the man in

the second scene (see previous experiment). The improvement in the recognition is a

consequence of the simultaneous accumulation of evidence from both views. Correct

detected objects received a much higher weight since they are detected twice, whereas

false positives objects get evidence from only one view.

Table Chair Sideboard

Figure 4.18: The two scenes from Figure 4.17 are shown in a common coordinate sys-
tem, along with the detected object centers after merging the corresponding
voting spaces (see legend for center colors).

4.3 Discussion

If maps are to be used for more than navigation and mere obstacle avoidance, a se-

mantic interpretation of the observed scenes is required, which necessitates a mean-

ingful labeling of objects appearing in mapped scenes. This chapter presented an ap-

proach that allows a robot to achieve this by learning models of objects downloaded

from the Web and using them to detect and localize instances of these types of objects

in new scenes represented by 3D point clouds.

Nowadays, typical indoor objects like chairs, tables or sideboards are found all over

the world and globalization makes it likely to find the same objects in different places.
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The ultimate goal would be to enable a robot to download 3D models of objects from

the WWW and to learn general representations of them in order to be able to rec-

ognize similar objects in a new environment somewhere else in the world. Taking

the idea one step further, robots could also map their environments, and the point

clouds corresponding to high-scoring detections could be used for training and veri-

fication or could even be shared with other robots, thus enriching existing databases

by distributed world modeling and experience-based learning.

What is needed, however, is the initial set of training examples, in an easily accessible

way. As previously pointed out by other authors (Lai and Fox, 2009), one of the main

problems when working with 3D point clouds is the availability of labeled training

data. Model representation needs to be enriched as well, to account for different

measurement units and orientations. Not to mention the problems arising from dif-

ferent data formats. Fortunately, there are efforts to solve these issues, and additional

data can be obtained by shape morphing – e.g. using techniques such as the one from

Hillenbrand (Hillenbrand, 2010).

In conclusion, by taking advantage of the explosion in the number of WWW resources

that is driven by industry, we can avoid instrumentation to a large degree and allow

robots to act successfully in unknown environments. The successful approach to cap-

ture information on part relations and multiple views, by accumulating them in a

robust voting approach for ensemble learning, will be explored further in the next

chapter.
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Chapter 5

Detection of Objects in Complex Scenes

Eventually everything connects – people, ideas, objects... the quality of the

connections is the key to quality per se...

CHARLES ORMOND EAMES, JR

We saw in the previous chapter how part-based learning of the overall structure of

objects from online databases can aid the detection of similar ones in real-world scans.

Additionally, the actual 3D models can be used to verify the detections to filter out

false positives, and to obtain a reconstruction of the scene. In this chapter the lessons

learned from environment modeling will be applied to the more difficult case of object

detection in cluttered scenes. New difficulties arise since the possible object poses are

not restricted to be always upright, there is typically greater variance of smaller objects

in a scene, and the assumption on the planar supporting plane does not always hold,

or is more difficult to detect. Additionally, there might be no well matching model

in the CAD database, and thus the final 3D shape has to be reconstructed from the

partial and noisy real-world data.

Therefore, in this chapter we introduce novel ways of dealing with these challenges

of scene understanding, relying heavily on the unsupervised learning (and detection)

of part structure. Large online databases are used as training data here as well, but as

we will see, the usefulness of the learned information is enhanced by the right com-

bination with domain-specific knowledge. To capture the topology of object parts a

graph-based approach is developed that facilitates efficient (approximate) subgraph

isomorphism checks through the use of additive geometric features and hashing. In-

formation from multiple segmentations and views is accumulated and geometric ob-
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ject models fitted to the data. This allows the robot to obtain a CAD-like reconstruction

of the scene and plan grasps for the objects to execute its task. During the complete

process we will see that the quality of the connections between the points is indeed

an important measure of the overall quality of the reconstruction.

5.1 Part-based Multi-modal Categorization

Figure 5.1: Multi-cue perception system enabling robot to interpret complex scenes of
unknown objects. Left: PR2 mobile manipulator equipped with RGBD cam-
eras used in our experiments. Right: geometric reconstruction based on the
part-based categorization.

In this section, we present the application of our multi-cue perception system to en-

able a robotic household assistant to deal with detection of general geometric cat-

egories of previously unseen objects in clutter, as depicted in Figure 5.1. Since the

robot could encounter new objects during its operation, no matter how large a training

database is, geometric (edge-based or 3D) categorization and perceptual grouping of-

fers specific advantages over instance-level (template-based) recognition (Dickinson,

2009; Marton et al., 2011). Additionally, we present how to improve detection results

through multiple views of the scene, multiple interpretations of the data, learning the

part structure from online databases and locating these through subgraph matching,

in a recognition-by-components approach (Biederman, 1987). The main steps of the

process are shown in Figure 5.2, and described in (Marton et al., 2013, 2014).

In the previous chapter we found that a part-based approach lends itself easily for

solving such problems. Learning the different parts and their combinations is a scal-
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(a) Hand-held RGBD Scanning by the PR2

(b) Scene-graph Creation

(c) Part-based Categorization

Figure 5.2: Categorization in clutter using part-graph hashing. The left image shows
our service robot PR2 equipped with a hand-held RGBD camera, capturing a
3D scan from a table-top scenario. The images on the right show the process
of categorization of the different segments in the scene. On the top, the scene
is over segmented and a graph is created with neighboring segments. On the
bottom, the final categorization results is shown where cylinders are marked
with blue, boxes with yellow, rectangular flat faces with cyan, and (half)
spheres with red.

able way to capture the different object categories a service robot could encounter

in a domestic environment. For example, a mug is typically a cylindrical part next

to a handle, or a teapot is a combination of different rounded shapes. This idea is

supported by research on visual perception (Biederman, 1987), and by our previous

results on part-based object categorization (Marton et al., 2009c; Mozos et al., 2011;

Marton et al., 2012a).

Similar ideas were explored also in purely image-based approaches as well, but these

may fail for textureless objects, or under bad lighting conditions for example, as seen

in Figures 5.3 and 5.4. However, our geometric-based part categorization approach

lends itself easily for solving such problems.
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Figure 5.3: Clustered keypoints detected using the SIFT-based ODUfinder (Pangercic
et al., 2011a), showing the difficulties encountered by texture-only methods.

Figure 5.4: Image-based segmentation results of cluttered scenes using the method
by Felzenszwalb and Huttenlocher (2004).
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In Lai and Fox (2010) the authors also propose a similar system for understanding

cluttered scenes, in that it performs part-based categorization in cluttered scenes. We

combine the over-segmentation from (Mozos et al., 2011) with an extended version

of creating multiple groupings of these “parts” (Lai and Fox, 2010), and present our

approach that was designed to handle multiple instances of objects from several cat-

egories, that were labeled according to their general 3D shape.

To be able to deal with more complex shapes and greater variance in pose than in

the case of furniture pieces, we identify to what object does each part belong by con-

sidering its descriptor and that of neighboring parts, together with the local topology

of the scene. In this sense, it is an improvement over the vocabulary of parts and

simple vote accumulating approach from the previous chapter. In an extension of this

work, classification of part groupings (and a better part categorization) was found to

improve performance in the case of furniture pieces as well (Usenko et al., 2012).

Our classification is less complex than the one presented by Lai and Fox (2010) and

still manages to capture relations between parts in the “soup of segments” approach

of (Malisiewicz and Efros, 2007) and can be used to achieve similar effect as their

“domain adaptation”, as we will show in our experiments. Additionally, we trained

on the same number of categories, but with multiple objects per category by grouping

objects based on their geometry, and described the topology of the segment groups

by graph-theoretic properties in order to improve and speed up classification through

hashing.

Since multiple objects of the same type could be located in close proximity, assigning

the correctly identified parts to two separate objects is difficult using this method and

the one from Lai and Fox (2010). For this step the spacial relations between identified

parts and the object center and the geometric validation step from (Mozos et al.,

2011) is needed, for which CAD models would be needed, however. Therefore, we

incorporate a general geometric model reconstruction method that takes the output

of the categorization and produces completed (but simplified) 3D models that are

directly usable for grasp planning, as we will detail in Section 5.4. The whole process

is designed such that it can handle cases where objects are only partially visible and

that it assigns a label to each detected part, in contrast to methods like (Lai et al.,

2011a,b).
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Detection of small objects in clutter using a sliding window was explored in (Kanezaki

et al., 2010) using an additive feature. If a feature is additive, the descriptor that

would be computed for the object is the same as the sum of the features of its parts.

Thus it is especially useful for detecting objects based on features computed only for

parts of it, for example by using the Linear Subspace Method (LSM) on the feature

space, as presented by Watanabe and Pakvasa (1973). However, the Linear Sub-

space Method does not exploit the relations between the different parts of the ob-

jects. We used the additive property of 3 features (GRSD- (Marton et al., 2012a),

C3-HLAC (Kanezaki et al., 2011a) and VOSCH (Kanezaki et al., 2011c)1) to compute

the descriptor of grouped parts by summing up the parts’ descriptors. The advantage

of additive features for our part-grouping method is that we only need to create the

descriptor for each part, and all the possible part combinations can be described by

the sum of the features of the constituent parts much more efficiently than comput-

ing a feature for each combination. We compare our classification method to that

presented in (Kanezaki et al., 2010) and (Mozos et al., 2011).

For our experiments we used the large RGBD Dataset from Lai et al. (2011a) and

created groups containing different categories of them, similarly as in (Marton et al.,

2011), and validate the choice of our geometric categories. We evaluated our geomet-

ric categorization approach on RGBD scans of cluttered tabletop scenes of previously

unknown objects, and experimented with enriching the training set by combining

different databases. Geometric, color, and combined features were compared and

the advantages and disadvantages contrasted. As was shown previously by Lai et al.

(2011a), geometric features are more appropriate for categorization, while image

features for instance recognition. However, their results suggested that overall, col-

or/texture features are more suitable for categorization as well. In contrast, in our

experiments we employ geometric, color, and combined features for categorization

and find that color features do not generalize as well as geometric ones.

1VOSCH and GRSD- are rotation invariant, and all three features work on general 3D data, not only
depth images. Therefore, the presented method can be applied to other types of data as well, like
registered scans for example.
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5.1.1 Scene- and Part-graphs for Object Recognition in Clutter

Our geometric categorizations’ basic idea is that segmenting objects accurately does

not always work robustly and will result in labeling mistakes, but over-segmentation is

easily realizable (Malisiewicz and Efros, 2007; Lai and Fox, 2010). We use the normal-

based segmentation criteria presented in Section 2.4 to over-segment the scans, such

that patches with a relatively small curvature are considered, as shown in Figure 5.2.

The obtained segments represent only a sub-part of objects but can be used to compute

features, and combined to build up object candidates.

There are of course multiple ways of combining parts and not all of them create a valid

object. However, we can test if a combination is valid by checking if the combined

feature vector is known. We also exploit the fact that parts and their connections

(neighborhood relations) can be treated as a graph, and only certain types of sub-

graphs are present in the graph formed by the parts of an object.

We extract the part neighborhoods by checking if the physical distance between two

parts falls below a threshold, and build a connectivity matrix. Starting at each vertex,

we then create all the possible groupings up to a certain size (number of regions in

the grouping) in order to obtain our “soup of segments” and create a hash code for

each of the groups, as shown in Figure 5.5. Note that since the graph vertices can be

sorted, it is possible to efficiently enumerate all sub-graphs containing a given vertex

without repeating already generated ones.

As motivated in the previous chapter, the over-segmentation into parts does not have

to be completely reproducible, given a robust voting method that creates an ensemble

of the (possibly inaccurate) part categorization results. In a typical scene consisting of

around 105 points, this method created around 50 segments, and over 100 groupings

of parts.

Checking for subgraph isomorphism is not practical, but there are several descriptors

one can employ to rule out isomorphism. Thus, during training we decompose our

objects into parts, compute the features for each part, build the part-graph, and gen-

erate all sub-graphs along with their combined features. These features along with

the object’s class are then saved in a multi-level hash table, where the keys are: i) the

number of parts, and ii) the identifiers of the subgraph topology. When testing, the
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Figure 5.5: Overview of part-graph hashing (using a single object, as during training)

procedure of decomposition and part-graph building is repeated, and starting at each

part, all the subgraphs are grown that are not larger than anything seen during train-

ing. These are then classified for which objects can they be parts of and similarities

are accumulated in the source part for final classification.

In the following, we will detail the hashing procedure and analyze the selection of

appropriate geometric classes.

5.1.2 Object Part Hashing

As mentioned before, the summed-up training features are saved in a hash table, a

classifier is built for the training exemplars in each entry, and the classifier to be used
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5.1 Part-based Multi-modal Categorization

for a testing features are looked up in it based on the two keys. The structure of the

hash table is shown in Figure 5.6.

ClassificationPart 
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...
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11
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(a) Structure of the Hash Table

(b) Key: 211

(c) Key: 222

Figure 5.6: Structure of the hash table and two different arrangements of three parts.

Since the hashing procedure partitions the training data, training classifiers for each

key is computationally less expensive and speeds up classification time as well. For the

hash codes, we use the the number of vertices/parts at the first level, and at the second

level we concatenate the sorted list of vertex degrees. This degree order is unique for

isomorph graphs, however different graphs can have the same degree order. The same

property holds also for the eigenvalues obtained by spectral analysis of the sub-graph’s

connectivity matrix, but during our experiments we found no significant increase in

performance when using them (or combining the two keys).

The part grouping process can be applied for training data, where the scan contains

a single object, or to test data containing a complete clutters scene. The task is then

to classify the subgraphs created for a test scene using the part-graphs created dur-

ing training. During lookup, the same hashing procedure is repeated for the query,

and the part grouping’s feature is classified using nearest neighbors classification.

This allows for fast training and testing times, but more powerful classifiers from the

repertoire of our perception system could be used (see Section 3.1.4).

The obtained probability distributions are accumulated in the constituent parts, using

weighted voting (see 3.3) assigning lower weight to larger groups. In contrast to the

product of the class probabilities for each grouping that was used in (Lai and Fox,
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2010), we found that the (confidence weighted) voting approach performs better.

Similar findings supporting voting were made by Lam and Suen (1995) when evalu-

ating combinations of classification results. For efficiency, if a certain group of parts

does not produce high-enough scores, its growing can be discontinued. Similarly, if

a class gets very low scores it can be discarded for the sub-graphs grown from the

current grouping. While the runtime performance improves by using these cut-offs,

we found better performance if all scores are computed and considered.

If there is a known assignment of parts to objects, like in the experiments described

in 5.2.3, or following a Hough voting procedure for identifying the object center as in

(Mozos et al., 2011), the final distribution over the category labels can be obtained

by merging those stored in the part.

5.1.3 Geometric Categorization

As described earlier, for each grouping we compute one of the additive features. These

features are then used to classify the parts as forming an object of the following ge-

ometric categories: sphere, box, flat rectangle, cylindrical, disk/plate, or other. These

intuitive categories match most of the objects for which we had appropriate train-

ing data (and the remaining ones were assigned to the other category), and also the

categories we found in public household objects databases (Marton et al., 2011), e.g.

KIT object Models Web Database2, Household Objects Database from Willow Garage3,

and TUM Semantic Database of 3D Objects4 (a compressed version can be seen in Ta-

ble 5.10). As in our previous works, the categories are given by human intuition, but

results using unsupervised clustering show that they make sense also based on the

data.

We used the recently introduced Regularized Information Maximization (RIM) tech-

nique (Gomes et al., 2010) to find meaningful clusters of our training data (see Sec-

tion 5.2) and assign testing instances to these clusters in the GRSD- and VFH feature

spaces. Since there is no standard way for evaluating clustering without ground truth,

as it depends on the application, we measured how well do the clusters overlap with

2http://i61p109.ira.uka.de/ObjectModelsWebUI/
3http://www.ros.org/wiki/household_objects_database
4http://ias.in.tum.de/software/semantic-3d
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Sphere
Box
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Plate/disk
Other
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Other

   Cluster: 1 2 3 4 5 6 7

Figure 5.7: Unsupervised clustering results using RIM compared to the manually de-
fined geometric categories (left: GRSD-, right: VFH). Clusters overlap well
with the used categories, with two geometrically similar pairs merged using
GRSD-. However, in the higher dimensional VFH feature space these can
be distinguished.

the given categories by computing the Adjusted Rand Index (ARI), using different

parameters.

For GRSD- the best ARI (0.36) is obtained using 6 clusters and λ = 90, with stable

results around these values. As shown in Figure 5.7 (left), the clusters are quite clean,

and also the categories are grouped nicely with clusters, but cylindrical objects were

merged with boxes and flat ones with plates. This makes sense given that GRSD-

encodes only relations between neighboring voxels, thus features like the contour

are not captured. Additionally, small boxes and cylinders can look quite similarly in

Kinect scans, especially after smoothing. However, we chose to keep these two pairs

as separate categories as they are semantically different (using a different feature

they still could be separated) and provide relevant information for model fitting and

grasping applications.

Using VFH these clusters could be separated, thanks to the increased descriptiveness

given by the higher dimensionality and viewpoint variance. Here the best ARI (0.42)

is obtained using 7 or 8 clusters and λ between 75-80, but the results are not as

stable as in the case of GRSD-, suggesting that the clustering depends very much on

the random initialization.

In both cases, smaller clusters are created as well, into which parts of the object cate-

gories are separated, suggesting that some views of object instances from a category

could be grouped together (e.g. side and front views of flat rectangular objects like
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cereal boxes). Such a strategy was used in (Marton et al., 2011) to increase the geo-

metric categorization accuracy.

5.2 Large-scale Evaluation and Comparisons

Sphere Box Flat (rectangle) Cylindrical Plate (disk) Other
bowl (6) food box (4) notebook (5) coffee mug (8) plate (7) cap (4)
ball (6) sponge (8) cereal box (5) food cup (3) kleenex (5)

food box (8) soda can (4) pitcher (3)
food can (14)
food jar (6)

water bottle (6)

Table 5.1: Selected object categories from the RGBD Dataset with good 3D data,
grouped into general geometric categories (“RGBD-Large” set). The num-
ber of objects in each category is given in parentheses, with the total number
of scans being roughly 80000, of which every fifth is used.

For our tests we used the large RGBD dataset from (Lai et al., 2011a), which contains

a total of over 200,000 scans of 300 objects from 51 object categories. As in (Lai et al.,

2011a), we use every fifth point cloud from the dataset in our experiments, because

the similarity between consecutive point clouds is extremely high. Since in this work

we focus on 3D classification, we selected those object categories that have good 3D

data (and excluded very small, shiny or transparent objects) and grouped them into

geometric categories as shown in Table 5.1. Please note that the “food box” category

contained both regular boxes and large flat boxes, so we split them up accordingly.

Sphere Box Flat (rectangle) Cylindrical Plate (disk) Other
ball (6) food box (4) food box (8) coffee mug (8) plate (7) cap(4)

sponge(8) food cup (3) pitcher(3)
soda can(4)

Table 5.2: Reduced set of objects from the selected categories (“RGBD-Small” set). The
number of objects in each category is given in parentheses, with the total
number of scans being roughly 30000, of which every fifth is used.

In order to be able to test and compare our method and features, for some of the more

time-intensive tests we reduced the dataset from Table 5.1 to roughly 7000 scans of

57 objects from 9 object categories, presented in Table 5.2. For generating a large
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amount of labeled test scenes, we combined test scans from the dataset to generate

realistic cluttered scenes. Additionally, we used the dataset from (Kanezaki et al.,

2011c) for some of the tests to provide the classifier with knowledge about the objects

in our environment. Real cluttered scenes were tested on several combinations of the

training datasets, presented in more detail below.

5.2.1 Complete Cluttered Scenes

In this subsection we present categorization results of several cluttered table-top

scenes containing different objects. Since labeling these scenes is a time-consuming

process, we could evaluate only a couple of them. We present results on 3 frames in

this subsection, and a sequence of 6 scans of a fixed scene will be used in the next

section. Figure 5.8 show three tabletop scenes on which we tested our approach. The

color red represents the sphere class, blue cylinders, yellow boxes, and cyan the flat

class.

Testing on the cluttered scenes was run using different datasets (or combinations) as

training data, as shown in Tables 5.3 and 5.4. As it is expected, result vary depending

on the type of feature descriptor and on the training dataset.

Figure 5.8: Segmentation and geometric categorization on three cluttered scenes.
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In order to diversify our training data we combined the RGBD datasets with the

“VOSCH” Kinect scan dataset (VDB) used in (Kanezaki et al., 2011c), consisting of

63 similar objects than in our scenes, captured from different viewpoints with an

angular step of 15 degrees. Similarly to (Lai and Fox, 2010), we found that this “do-

main adaptation” improves results, as seen in Table 5.3. However, as the results on

the larger RGBD dataset suggest, identifying the correct weighting of the two data

sources is necessary, possibly based on an evaluation set. Apparently, as the number

of objects increases, confusions get more frequent, therefore the weight of the domain

specific objects need to be increased. In the case of the smaller dataset, the combina-

tion with the scans from VDB improved over the results on both separate training sets,

highlighting the importance of mixing various sources of information while keeping

specific specialties5. Related ideas are discussed by Horswill et.al. Horswill (1995) as

well (task and environment adaptation improving perception capabilities).

Datasets: RGBD- RGBD- VDB Small+ Large+
Small Large VDB VDB

Scene 1

per point 73% 47% 76% 84% 54%
per segment 83% 49% 67% 83% 54%

Scene 2

per point 76% 54% 70% 80% 58%
per segment 76% 41% 72% 74% 47%

Scene 3

per point 70% 42% 78% 88% 70%
per segment 76% 45% 84% 80% 76%

AVERAGE

per point 73% 48% 75% 84% 61%
per segment 78% 45% 74% 79% 59%

Table 5.3: Results in clutter using different training datasets with GRSD-

Lai et al. reported results on the comparison of visual and geometric features using the

database presented in (Lai et al., 2011a). Their tests highlight the fact that geometric

features are more suitable for categorization and visual ones for instance recognition,

but they found that visual features outperformed geometric ones both at instance and

category recognition, while a combination of both works best. Using our experiments

5Thanks to the hashing approach, handling large databases and dynamically adding new objects is
alleviated, as only affected groups have to be re-trained.
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Datasets: RGBD- RGBD- VDB Small+ Large+
Small Large VDB VDB

Scene 1

per point 29% 39% 77% 60% 55%
per segment 47% 43% 75% 64% 50%

Scene 2

per point 26% 25% 79% 52% 40%
per segment 36% 27% 72% 50% 32%

Scene 3

per point 73% 81% 45% 73% 81%

per segment 56% 68% 60% 56% 68%

AVERAGE

per point 43% 48% 67% 62% 59%
per segment 46% 46% 69% 57% 50%

Table 5.4: Results in clutter using different training datasets with VOSCH

this was not the case, suggesting that their conclusion does not hold in every case.

When using the color-dependent VOSCH feature, the fact that many of the test objects

are from VDB becomes reflected in higher success rates, as shown in Table 5.4. How-

ever, these results are worse than the corresponding results using GRSD- and much

worse than the best results obtained with the purely geometric feature (despite the

large difference in dimensionality). We believe that the contradicting results are due

to the fact that in (Lai et al., 2011a) some categories show little variation among the

instances (at least with the employed features).

Run-times vary depending on the dimensionality of the extracted feature and the

scale of the used dataset, with classification on the small VDB dataset using the only

20 dimensional GRSD- feature yielding the fastest results, due to the fact that the VDB

contains only around 900 individual scans of objects. The classification times shown

in Table 5.5 were obtained on a single core 2.4 GHz CPU.

For a more detailed evaluation, the next subsections will focus on large scale tests

using the RGBD dataset, using separated objects as queries. The RGBD-Small set was

split in a ratio of 2 : 1 into training and testing scans, except for the cross-validation

test that was performed using the methodology from (Lai et al., 2011a). Given that

the objects are already segmented, our approach can take advantage of the fact that

only a single object needs to be categorized, and merge the results obtained for the
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Runtimes using RGBD- RGBD- VDB Small+ Large+
diff. datasets Small Large VDB VDB
GRSD- [20d]

per point 2.4E-05 4.4E-0.5 0.41E-05 2.88E-05 4.76E-05
per segment 0.043 0.083 0.007 0.053 0.089

VOSCH [137d]

per point 1.4E-04 2.3E-04 0.19E-04 1.6E-04 2.5E-04
per segment 0.27 0.43 0.03 0.30 0.47

Table 5.5: Average classification times in seconds for the scenes from Figure 5.8

different parts by weighting the label probabilities by the number of points in the

part.

5.2.2 Evaluation of Features

GRSD- distance metric Accuracy [%]
Manhattan 92.5
Euclidean 94.5
Jeffries-Matsuhita 95.5
Baseline (SVM – not part-based) 95.3

Table 5.6: Classification results using different distance metrics as compared to the base-
line obtained for GRSD-.

We tested different distance metrics for nearest neighbors classification and found

that the Jeffries-Matsuhita distance performs best, as shown in Table 5.6. Due to

the hashing procedure, the separate classifiers for each hash key combination have

an easier job in distinguishing parts coming from different categories. Thus, results

are on par with that obtained with SVM with RBF kernel, but using a simple nearest

neighbors approach, which has considerably shorter training time.

Here, the splits of the RGBD-Small dataset were used, to obtain an SVM classifier in

practical time, meaning that the method was trained on different views of the objects

encountered during testing. Additionally, the results were obtained by testing objects

as separate clusters, thus giving considerably better performance than during testing
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on the cluttered scenes of unknown objects. This highlights the difference in difficulty

between instance recognition and categorizing novel objects in difficult settings. For

instance recognition RGB image-based information is more informative than 3D one,

but this does not hold for categorization, not even for categorizing complete objects

as we will see below.

(a) GRSD- (b) Cumulative result GRSD-

(c) VOSCH (d) C3-HLAC

Figure 5.9: Confusion matrices and cumulative score on the RGBD-Large set.
Please note the different scale of the confusion matrices used for better
visualization.

To show this, the results obtained by our method on the RGBD-Large dataset using

GRSD-, were compared to the C3-HLAC and VOSCH additive features. For this test,
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GRSD- [%] C3-HLAC [%] VOSCH [%]
RGBD-Large 92.1 98.48 94.59

Table 5.7: Categorization results using different features on the RGDB-Large set

we left out every third scan of an object from the training set, and used it for testing.

Results are shown in Figure 5.9 and Table 5.7, with an interesting observation relating

to (b): the two most likely results are by 5% better than the ones reported as most

likely. This suggests that in case we obtain similar top scores, re-segmenting the test

scene (with different random seeds) could improve the labeling, by merging the votes

from different segmentations. This approach was employed in the next section in the

case of different views.

We also compared GRSD- to rotation-invariant C3-HLAC (Kanezaki et al., 2011a),

and their combination VOSCH (Kanezaki et al., 2011c) using the Linear Subspace

Method. In the training process of LSM, we divided the whole voxel grid of each

object segment into cubic subdivisions of a certain size (14 cm × 14 cm × 14 cm with

10 cm × 10 cm × 10 cm overlapping in our case) and then extracted feature vectors

from all of the subdivisions to perform Principal Component Analysis. In the testing

process, we extracted one feature vector from the whole voxel grid of each object

segment. Note that we do not need to divide the voxel grid in the testing process,

because we can calculate the similarity value of the query object to a reference object

by simply projecting its feature vector to the subspace, owing to the additive property

of the used features.

The reason why GRSD- performed poorly compared to the features that captured

color information, is that in these tests scans in the training and testing set came from

different views of the same object. Therefore, we also performed a cross validation

experiment (following the methodology in (Lai et al., 2011a)) to test how well these

additive features generalize to unknown objects. See Table 5.8 for results. As it was to

be expected, the purely color based C3-HLAC feature performs worst (except for the

typically white plates), with an average success rate of 59.19%. The VOSCH feature

is aided by its geometric part, and achieves 70.88%, while in this experiment GRSD-

performed best, with an average of 72.06%. There are large variations in the success

rates for certain classes, due to the fact that we used only the RGBD-Small set, and
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Figure 5.10: Accuracy vs. number of subspace dimension using LSM. The red cross
shows the result with GRSD-, blue circle with C3-HLAC and green trian-
gle with VOSCH.

some classes are more varied than others. Still, the smallest variance is produced by

the RGB-insensitive GRSD- feature descriptor.

Sphere [%] Box [%] Flat [%] Cylinder [%] Plate [%] Other [%] Total

GRSD- 67.5±26.2 52.5±15.2 95.8±2.7 89.5±2.6 47.1±22.5 79.9±14.2 72.06

C3-HLAC 53.0±28.8 32.1±17.6 80.2±8.6 77.4±10.7 65.1±32.2 47.3±22.7 59.19
VOSCH 63.2±27.2 60.4±25.2 90.6±7.2 90.1±9.5 50.9±27.7 70.1±24.5 70.88

Table 5.8: Per category leave-one-out cross validation tests on the RGBD-Small set

In conclusion, these tests underline the fact discussed earlier, that geometry is more

stable between instances from the same category as color. This is also supported

by findings suggesting that geometric knowledge (shape primitives and their spacial

relations) have a modality-independent representation in the human brain (Yildirim

and Jacobs, 2013).

161



5 Detection of Objects in Complex Scenes

5.2.3 Comparison to Previous Methods

In our previous work (Marton et al., 2012a) we performed a comparison to segmen-

tation based categorization, by segmenting round and rectangular objects using the

method from (Goron et al., 2012), and found a significant drop in accuracy due to

segmentation mistakes. Since we consider multiple segmentation possibilities and the

relations between parts, the results were more robust than for a single segmentation

and global feature based approaches.

Here we compared our results to those obtained with the statistical features and

method described in (Mozos et al., 2011), considering only the part voting step, with-

out the geometric object (pose) identification, as CAD models and ground truth poses

are not available for our objects. A vocabulary of size 400 was created out of the

descriptors of the parts from the training dataset using K-Means, and used to assign

class probabilities to parts in the testing dataset. These votes cast by the different

parts are weighted by their similarity to the activated cluster, and the final class is

assigned to the highest scoring one.

Both the statistical features used in the original publication and GRSD- were tested

using this method, and we obtained a mean success rate of 80.45% for the former

and 75.86% for the latter. As seen from the corresponding confusion matrices in

Figure 5.11, the difference is due to the fact that the miscellaneous “other” class is

handled considerably better by the statistical features – if this class is ignored, the two

features give practically the same result. Since the original features are not additive,

using them in the current method would require its repeated re-computation, some-

thing we would like to avoid. Moreover, some of the statistical features are orientation

dependent, thus would require training objects in multiple poses.

Our method and the sliding window based Linear Subspace method was also evalu-

ated on the same data. Overall, the results indicate a clear advantage of the part-based

categorization process, as shown in Table 5.9.

Part-graph Part Vocabulary Linear Subspace Method
Hashing (Mozos et al., 2011) (Kanezaki et al., 2010)

Success rate 95.5 75.9 77.8

Table 5.9: Results using different methods on the RGDB-Small datasets
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(a) Statistical Feature (b) GRSD-

Figure 5.11: Confusion matrices of the vocabulary of parts method. Please note the
different scale of the confusion matrices used for better visualization.

5.2.4 Generated Scenes

Figure 5.12: Synthetic scene automatically created and labeled from individual scans.

This subsection presents results on a large scale test on scenes containing touching

objects (without occlusions). As ground truth data is difficult to obtain, we generated

scenes containing from 2 to 6 object scans from the testing dataset (100 scenes from

each type) and labeled them with the known object category, as shown in Figure 5.12.

This way we can quantitatively evaluate the effect of scene complexity on the results,

as shown in Figure 5.13. Since in this test unknown objects are not considered, the

features incorporating color outperform GRSD-.

The generated scenes do not contain occlusions, but the results are indicative about

the performance drop when more and more false groupings are considered by our

method. Considering more than 6 touching objects should affect the results less and
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Figure 5.13: Per-segment results on the 600 generated scenes from scans in the testing
split. Please note the different scale of the confusion matrices used for better
visualization.

less, as the number of parts that are grouped is limited. Best results on the real scenes

were obtained for 3-4 parts being considered, as detailed in the next section.
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5.3 Accumulating Cues and Exploiting the Robot’s

Embodiment

One of the important contributions of our work is the grouping of neighboring parts

and taking into account the results of these groups for classifying a part. When group-

ing parts, there is an upper threshold on the maximum number of them that can form

a grouping. During training, this threshold was set to 8. In the case of tabletop scenes

we experimented with this threshold and found that the optimal maximum number

of parts that can form a grouping is actually less then the one used for single objects.

Results of this evaluation are shown in Figure 5.14 (a). It can be observed that group-

ing the segments greatly improves the classification process up to a given number of

parts. However, if we choose the threshold to be too high in a cluttered scene, we risk

grouping parts together that do not belong to the same object.

(a) effect of part sub-graph size (b) percentage of correct top k votes

Figure 5.14: Results for different maximum parts in a grouping, and different number
of top votes considered averaged for the scenes 1 and 2.

As a final experiment, we repeated the experiment from Figure 5.9 (b) for the com-

bined (per-point) results of the first two scenes as well, see Figure 5.14 (b). Again,

we found that the top votes are correct in the majority of cases, with the success rate

increasing by nearly 12% to 95.8% with the first two votes being considered. These

results suggest that the highest votes are close to each other, and additional informa-

tion is needed for choosing the correct one. As we saw in the previous chapter, this

extra information could come from a second scan of the scene from a new viewpoint,

as shown in Figure 5.15.
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5 Detection of Objects in Complex Scenes

Figure 5.15: As the camera is moved (left), multiple frames can be captured that cover
different parts of the objects in the scene (right). Thanks to the calibration
of the kinematic chain and localization, registered frames can be captured
from a variety of viewpoints.

The advantage of incorporating multiple views is evaluated on six views of a test

scene. We used GRSD- as a feature for speed and the “Small+VDS” dataset combina-

tion for training to obtain a good balance between general objects and environment

specific ones. As the robot is calibrated, all the scans can be placed into the same

coordinate system, with only small misalignments (that could be fixed by an Iterative

Closest Point algorithm). Then a 5 mm voxel grid was used to assign points from

different frames to each other. The votes were accumulated for each voxel, and a

per-point success rate is calculated both for the individual frames, their average and

for the merged RGBD point cloud, presented in Figure 5.16.

The robot’s end-effector was moved such that to point the camera towards the scene

while moving along a circle that respects the minimum range requirement from the

scene. Still, some of the scenes were not captured fully, or not from an optimal angle,

so large variations in accuracy can be observed. By incorporating multiple views

however, the overall success rate could be improved by nearly 5%.

5.4 Model Reconstruction for Grasping

After a geometric labeling is obtained of the point cloud, the next logical step is to use

this information to guide the segmentation and reconstruction of 3D models of the
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Figure 5.16: Results for a cluttered scene with 7 frames from multiple viewpoints (de-
noted by angles around the table’s normal).

objects. In order for these to be useful for manipulation tasks, they should include

also the occluded sides of objects, s.t. the grasp planning algorithm can reason about

valid finger positioning, minimizing the risk of collisions (Marton et al., 2010a).

5.4.1 Shape-fitting and Verification

Since the geometric categorization of parts does not give the correct grouping of these

parts to form objects, simply grouping the parts of the same category together does

not always separate the objects, especially if classification errors occur as well. How-

ever, the categorization method was already successfully employed to pre-segment

scenes and to signal the presence of remaining under-segmented parts to an interac-

tive segmentation system (Hausman et al., 2013).

Whereas the segmentation of objects is not uniquely defined, there are still regularities

in the number of parts they are broken up into. As shown in Figure 5.17, the distribu-

tion of the number of different object parts can be modeled as a Poisson distribution,

with an average error of 1.7% (and at most roughly 9%). Since some geometrical

classes have similar looking distributions, we merge them together by considering ev-

erything spherical and cylindrical being round and disks/plates, flat rectangles and
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boxes as flat objects. With the category other we thus get three object types, whereas

most household objects fall into the first two types, as summarized in Table 5.10.

OPD KIT SDO WG TOTAL
Round 151 43 12 107 313

Flat 69 52 12 6 139
Other 99 15 11 19 144

Table 5.10: Public object model databases and contained object types, from the follow-
ing sources: TUM Organizational Principles Database (OPD), KIT Ob-
ject Models Web Database (KIT), TUM Semantic Database of 3D Objects
(SDO), and Household Objects DB from Willow Garage (WG), Based on
(Marton et al., 2011) by merging the geometric categories appropriately.
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Figure 5.17: Distribution of number of parts per object (for different object types) in the
training dataset and their approximation with a Poisson distribution.

The Poisson distribution described by Equation 5.1 describes the probability of dif-

ferent number of events occurring in a given interval, which we interpret here as the

number of part boundaries encountered over the surface of the scanned object. The

parameter λ is the mean of number of parts, which in our case is 0.876 for flat, 2.166

for round, and 3.317 for other object types.

P(k parts forming a single object) = λke−λ/k! (5.1)

This probabilistic approximation can be used to judge if a group of parts of the same

geometric category forms a single object or not.

However, before an interactive segmentation is performed, as in the case of doors and

drawers (Blodow et al., 2011a) and household objects (Bersch et al., 2012; Hausman

et al., 2013), fitting of object models should be attempted in order to disambiguate,
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5.4 Model Reconstruction for Grasping

verify and correct the segmentation. We described a method for voting for object

centroids followed by a model fitting step in (Mozos et al., 2011), but that would

require CAD models of the objects known a priori and the consideration of 6DOF

poses as well.

Therefore, here we focus on obtaining a grouping of parts into objects by geometric

fitting and grouping. We extend the model reconstruction method from (Goron et al.,

2012) to use the obtained probability distributions over the geometric labels as pri-

ors when selecting the type of object. The work deals only with upright rectangular

and cylindrical shapes for now, but this covers a large percentage of objects in our

household table-top settings, as discussed earlier and in (Marton et al., 2011).

(a) (b) (c) (d)

Figure 5.18: Reconstruction results using the method from (Goron et al., 2012) for the
two touching objects in (a). Regions of the final reconstructed surface
are labeled: marking verified (orange), invalid (black) and occluded parts
(green), as shown in (b) and in the back-side view (c). Even with these
verifications, in some cases objects are incorrectly reconstructed, without
violating the visibility checks: the cereal box is approximated by a flat box
and a cylinder in (d).

The method works by selecting the geometric model that best explains the data in a

combination of RANSAC and Hough voting. There are several checks to filter out bad

models, but as seen in Figure 5.18 these not always suffice. We observed these bad

fits in out table-top scans as well, as shown in the top row of Figure 5.19. Thus we

used the categorization results to better guide the model selection, by incorporating

the shape probabilities as weights into the sampling (which used to be random) and

the scoring as well. To match the methods capabilities, the categories were collapsed
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into rectangular and round shapes. As shown in the bottom row of Figure 5.19, this

is able to correct some of the inaccuracies of the fitting.

Figure 5.19: Geometric modeling of the three test scenes. Top: original method (Goron
et al., 2012) with fitting errors marked with red. Bottom: correct recon-
struction using the priors from the categorization.

By reconstructing completed 3D models that include the back side as well, the robot is

equipped with the necessary information to grasp the objects (reactively, and avoiding

the regions labeled as invalid) instead of pushing them for individuation. This way

the segmentation and the models could be checked and improved. That constitutes

a completely new research direction, however, so we will focus here on the passive

observation of the scene.

In the following subsection we will evaluate and give more detail on the reconstruc-

tion methods that lay the foundation for the line of research (Marton et al., 2009a;

Goron et al., 2010) that lead to (Goron et al., 2012) and the integrated reconstruction

approach used here.

5.4.2 Creation of Complete 3D Models from a Single View

In this subsection, we will lay out the 3D reconstruction methods from (Marton et al.,

2010a) we integrated in order to create complete object model hypotheses that can

be used in grasping scenarios. The focus here does not lie on millimeter-accurate

modeling of clusters, which is realistically not possible in a lot of cases due to sensor

noise and large variability in the objects we encounter. Instead, we strive to improve

the models generated from point cloud data in two aspects. First, we want the re-
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5.4 Model Reconstruction for Grasping

sulting reconstruction to be smooth, especially when compared to a simple meshing

approach, where sensor noise causes problems in the grasp planner, e.g. when com-

puting contact points and forces. Second, we want to generate a working hypothesis

concerning the backside of an object perceived only partially. Otherwise, grasp anal-

ysis might suggest a pinch grasp on the edge of the cluster, even though the object

continues smoothly towards the unobserved back.

Figure 5.20: Automatic reconstruction of objects of different types. Top row shows the
estimated rmin values color-coded by the legend of Figure 2.23 (red 0, blue
0.2 m or higher).

We have developed reconstruction algorithms for boxes, cylinders and rotational ob-

jects (Marton et al., 2010a), as shown in Figure 5.20. We chose these models because

they are inherently symmetrical and occur frequently in a large number of objects (as

shown in Table 5.10). In the case of cylinders and rotational objects, a rotation axis is
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determined, which allows for simple completion of the object model, and the hidden

surfaces can be retrieved for boxes as well.

5.4.2.1 Box and Cylinder Fitting

The selection of the appropriate fitting model is based on our previous work on foot-

print analysis (Marton et al., 2009a), but in addition, we rely on the 3D normals to

robustly detect a circular or a rectangular footprint, also during the 3D model fitting

and validation step. This enables our method to make the best choice regarding what

model it should choose.

If a sufficient number of points have a minimum radius greater than 0.1m they highly

likely lie on planar surfaces and we set out to find the best fitting box to the cluster.

Unlike in (Marton et al., 2009a), we fit a rectangular model directly to the points

having normals perpendicular to the “up” axis (as we assume boxes to be statically

stable, i.e. standing on one of their sides) and maximize the number of inliers in a

RANSAC loop. This direct approach estimates the box orientation and outperforms

the line detection and merging and/or box detection based on PCA. Since we assume a

correct segmentation and noise is removed in pre-processing, the box dimensions are

computed from the oriented bounding box, and a final inlier count is performed.

For cylinders, we use a RANSAC approach which is based on the observation that on

a cylinder surface, all normals are orthogonal to the cylinder axis, and intersect it. We

consider the two lines defined by two sample points and their corresponding normals

as two skew lines, and the shortest connecting line segment as the axis. Determining

the radius is then a matter of computing the distance of one of the sample points to

the axis.

The quality of box and cylinder fittings for two objects is presented in Figure 5.21.

Further tests on a total of 267 measurements of 5 objects show an average fitting error

in 5.31 mm with a standard deviation (STD) of 2.69 mm for the extensions of boxes,

and slightly less for cylinder radii, an average of 2.85 mm and STD of 1.23 mm. Both

are well below the original sensor noise of roughly 1 cm. The average error for the axis

orientation for cylinders was 1.11 degrees with a STD of 0.34 degrees. By enforcing

an upright position for the axes results are more robust, but it is not mandatory.
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5.4 Model Reconstruction for Grasping

Compared to the original approach presented in (Marton et al., 2009a) we can see

a clear increase in accuracy. On the same scans, the obtained average errors for box

extents was 10.6 mm with STD 6.05 mm. Results did not improve (nor worsen) for

cylinders as the methods have the same basis, but instead we are now reconstructing

them in arbitrary poses, while the original approach assumed all objects to be upright

(and would consider lying cylinders to be boxes).
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Figure 5.21: Left: visualization of the setup used for measuring fitting errors. The model
and the table are marked with green. Right: errors in estimated box width
(W), height (H), thickness (T) – and in estimated cylinder radius (R) and
angle to the vertical (A). Graph shows these errors for subsequent scanning
and fitting (X axis shows the scan number).

5.4.2.2 Estimation of Rotational Surfaces

To reconstruct surfaces of revolution, we employ a RANSAC-based two-step approach

as described in (Blodow et al., 2009). In the first step, a rotation axis is estimated
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from sample points by minimizing a function over the line-to-line distances between

the axis and the lines defined by each sample point and its corresponding normal.

This is based on the observation that for a rotational object, a line constructed from a

point and corresponding normal intersects the symmetry axis, similar to the cylinder

case. The contour line is then estimated in the second step, which is explained and

evaluated in greater detail in (Marton et al., 2011).

Although the rotational estimation is less accurate and computationally more inten-

sive than fitting of simple models, it is an important addition in order to be able to

deal with more types of objects. More accurate results can be obtained by increas-

ing the expected probability of a successful fit for RANSAC (and thus the maximum

number of iteration), but in order to obtain results under 2 seconds, axis estimation

errors around 10 degrees were obtained.

In the case of box-like and cylindrical models, the fact that the dimensions are com-

puted accurately from partial views already validates the use of this approach for

grasp planning. As presented in subsection 6.1.2 having a hypothesized back side

makes a significant difference when the goal is to pre-compute realistic stable grasps.

Similarly, this is an important consideration for rotational objects as well, as consid-

ering only the scanned points does not give any estimate on how large the object is,

and what the back side looks like.

5.4.2.3 Mesh Representation

If a fitted model does not have at least 75% of the points as inliers, we assume that it

has a more complex shape, and a simple triangulation is performed as a fall back, as

described in 2.3.2. Also in the other cases, the outliers of the geometric models are

triangulated and added to the final model as a mesh, e.g. to model additional geo-

metric features of an object, such as handles. Figure 5.22 shows such an example. As

the majority of grasp planning methods use triangular meshes, the geometric shapes

are decomposed in triangles as well, but we are exploring the usage of the shapes

directly for more optimized grasping.
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Figure 5.22: Triangulation of an object
where no good model could
be fitted.

5.5 Discussion

In this chapter we have shown the capability of our perception system for exploit-

ing multiple frames and part-graph descriptors to deal with object categorization in

clutter. The system was evaluated on a large RGBD dataset, and on Kinect scans of

cluttered tabletop scenes, and showed promising results when compared to alterna-

tive approaches. The advantage of geometric features was shown for the cases when

testing objects that are very different from the trained ones needed to be categorized.

Thanks to the efficient hashing-based categorization, it is possible to obtain classifica-

tion results fast for complete scenes. This allows the merging of results coming from

multiple views of the same scene in order to improve detection. As argued by Fergus

et al. (2003) as well, partial occlusion and shape variability is handled well by ob-

ject part relations. As we can produce multiple segmentations by choosing different

(random) seed points, different part decompositions can be used for training, which

improved classification rates by 5% in our first experiments (Balint-Benczedi et al.,

2012). Analogously, multiple segmentations of a frame, or segmentations of consec-

utive frames could be merged, using the presented voting method fusing different

viewpoints.

The presented large scale evaluations validate the development of the presented multi-

cue perception system, and the following chapter presents some additional applica-

tion scenarios and the most important demonstrations that were performed using

it.
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Chapter 6

Applications and Discussions

Humans are really good at being able to take a bit of knowledge and use

it to great advantage. [...] It’s important not to wait until we understand

everything, because that’s going to be a long time away.

BERT VOGELSTEIN

As in biological systems, robotic systems are composed of several layers of complexly

interacting subsystems. Current robots are far away from the flexibility and robust-

ness of living things, but that does not mean that there are no good solutions for

certain subproblems already. In this chapter, I will present some of the higher level

applications of the work described so far, to highlight the uses of a multi-cue percep-

tion system for robotic object manipulation tasks.

6.1 Demonstration Scenarios

The proposed system was validated in the context of the execution of a high-level task

like preparing a meal and going shopping, as shown in Figure 6.1.

Demonstrations of the presented approach were made for example during the 2nd

BRICS Research Camp “From 3D sensing to 3D models” (www.best-of-robotics.org/

2nd_researchcamp/MainPage) and various workshops of the Cognition for Technical

Systems (CoTeSys) cluster of excellence. Among others, these included the pancake1

and shopping2 (Pangercic et al., 2011b) demos, taking advantage of the built environ-

1www.youtube.com/watch?v=4usoE981e7I&feature=channel_video_title
2www.youtube.com/watch?v=x0Ybod_6ADA

177

www.best-of-robotics.org/2nd_researchcamp/MainPage
www.best-of-robotics.org/2nd_researchcamp/MainPage
www.youtube.com/watch?v=4usoE981e7I&feature=channel_video_title
www.youtube.com/watch?v=x0Ybod_6ADA


6 Applications and Discussions

(a) Pancake making (b) Going shopping (c) Sandwich preparation

Figure 6.1: High-level demonstration scenarios involving the developed multi-cue per-
ception system, on public CoTeSys Fall Workshops involving the TUM-
Rosie and PR2 robots.

ment map, and employing the perception system for detecting the shopping basket

and other objects that were manipulated.

During the last CoTeSys Fall Workshop sandwich preparation was demonstrated using

the TUM-Rosie robot3. A region of interest was provided by the task executive using

the known environment model (see Chapter 4), along with the list of possible objects

to be detected. Then, the different detection, classification and model fitting meth-

ods decide for each request to activate or not. They do this based on the objects to be

detected and if they have models for those, as they are specialized for different de-

tection tasks (see Section 3.1). Different 2D and 3D methods are chained in order to

produce the final result, i.e. list of object locations and poses or reconstructed models.

The task executive then interprets the results, decides on the next action to be taken

(which could be repeating a failed procedure) and triggers a new task if necessary.

Specifically, this meant locating the cutting board, toaster plates, etc. using the appro-

priate methods, given the location of the table from the semantic environment map.

Having obtained these regions of interests (ROIs), the toast bread and other ingre-

dients were located, either geometrically or image-based. After each manipulation

tasks as well, detection tasks are assigned to the multi-cue perception system in order

to verify the success of the results (as in the case of the salami for example).

Thus, the presented system was instrumental in achieving high-level functionality

through providing accurate object reconstruction, categorization and classification

routines to the planning system. Additional use cases are described below, despite

these not being the main focus of the thesis.

3www.youtube.com/watch?v=DTaeWITW1kI
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Figure 6.2: Grasping of the localized ob-
ject by the PR2 robot. The fit-
ted geometric model was trian-
gulated and fed into the grasp
planning software to obtain
grasping points.

6.1.1 Interactive Segmentation of Textureless Objects

Similarly to view planning, interacting with the scene is an important strategy for

understanding a difficult scene or to gather more information about it, as we discussed

in Section 4.2.1. Inspired by the correction of door segmentation through opening

it and observing the difference (Blodow et al., 2011a), we developed a system for

introducing a change in a cluttered setting in order to segment the objects.

The approach, that was a finalist at for the Best Service Robotics Paper Award at ICRA

2013 (Hausman et al., 2013), used the presented system for analyzing the scene and

to create the final object segmentation that considers both the part structure and

the additional movement trajectory information. The fact that different parts of the

(rigid) objects move together in a geometrically consistent way was included in the

part grouping strategy, enabling the robot to deal with scenes that are difficult to

segment on visual information alone.

6.1.2 Grasping of Objects using Reconstructed Object Models

The reconstructed geometric models are of utmost importance for accurate grasping.

In our grasping scenarios the triangulated meshes are compared with stored models

which have already grasp points computed, and if no good enough match was found

they are uploaded into the GraspIt simulator (Goldfeder et al., 2009) where they get

annotated with large sets of stable, pre-computed grasp points. Computed grasps can

then be performed by the robot, as shown in Figure 6.2
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Grasps for novel objects (e.g. Figure 5.22) are computed for the specific robot (PR2

and TUM-Rosie) at run-time from 3D sensor data, using heuristics based on both the

overall shape of the object and its local features. We kindly refer the reader to the pa-

pers by (Hsiao et al., 2010) and (Marton et al., 2010a) to obtain more information for

PR2 and TUM-Rosie calculation of grasps. We make use of the grasping pipeline de-

veloped for the PR2 robot, adapted to our application, which is thoroughly described

in (Ciocarlie et al., 2010).

Each of the resulting grasps is then tested for feasibility in the current environment;

this includes collision checks for both the gripper and the arm against potential obsta-

cles, as well as generation of a collision-free arm motion plan for placing the gripper

in the desired pose.

Figure 6.3: Grasp planning application for TUM-Rosie. Note that we used incomplete
scans of the objects, like the one depicted in the last image (side view of
triangulated mesh) and were still able to generate good grasps for the back
sides.

The major benefit of the reconstruction routine is that grasps are calculated by also

considering the backsides of the objects as depicted in Figure 6.3. From the contacts,

the grasp quality is statically estimated using the algorithm presented in (Ferrari and

Canny, 1992).

6.1.3 CAD Model-based Object Detection

In case 3D data is unavailable or of too low quality to perform pose estimation as

in (Aldoma et al., 2012), it is possible to perform 6 DOF position retrieval of objects

on camera images using state-of-the-art 3D shape model matching technique that

simulates the 2D appearance of the objects in a shape model generation phase (Ulrich
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et al., 2009a). The routine gets object candidates (clusters of points) projected onto

the corresponding 2D image from point cloud data and then uses a priori built CAD

model of objects to perform the actual detection. The strength of this approach is in

that the CAD models do not need to be modeled manually but can rather be generated

by the robot itself in the desired complexity (see Figure 6.4 for the matching results

and Section 5.4.2 for the generation of CAD models).

Figure 6.4: TUM-Rosie locating the resultant geometric model in an image.

These meshes can be used by other systems as well, even if the sensors and their

setup is different. If, however, the model is built by the agent performing the CAD

model-based detection, the known pose of the model can be used to avoid unnecessary

matching of very different poses in the image.

6.1.4 Lifelong Dynamic World State Mapping

The multi-modal nature of our perception system lends itself to applications for entity

resolution (Blodow et al., 2010), where we proposed to use Markov Logic Networks

to probabilistically track trajectories of objects over time using reconstructions and

refinement algorithms as described in in this thesis. The approach computes simi-

larity measures between different object cluster observations from compatible object

descriptions and uses the full power of first-order logic with the probabilistic seman-

tics of graphical models in order to deal with difficult conditions such as partial ob-

servability of the robot’s environment, incomplete object descriptions, and a dynamic

environment in which we can not observe the human and his actions directly.

181



6 Applications and Discussions

6.1.5 Platform independent Perception System

Our perception system has been validated on 2 state-of-the-art service robots, the

TUM-Rosie and the PR2 thanks to the general infrastructure provided by ROS. Since

the only prerequisite is to have the kinematic chains between the 2D cameras and

the 3D tilting laser sensor calibrated with the precision under 5 mm (which still as-

sures correct region-of-interest extraction for the purpose of tabletop manipulation),

our system can thus be ported to any arbitrary robot platform that meets the above

requirement. As most of the testing was done on the PR2 robot, Figures 6.3 and 6.4

verify our claims for the TUM-Rosie robot by showing the execution of the shape-based

matching algorithm and grasp planning respectively.

6.2 Conclusions

Scientists and others tend to be quite fond of neat, clear-cut patterns. Nature

is not. [...] Why, then, should the outcome correspond to our logical ideas

about how to build a living system that succeeds?

DENIS NOBLE (THE MUSIC OF LIFE)

So that the possible may arise, the impossible must always be attempted.

HERMANN HESSE

The presented work was put to use in real-world scenarios, demonstrating its uses

and potential to scale, and be integrated into a complete robotic system. While con-

necting the perception system to planning and knowledge representation modules is

clearly mutually beneficial, there are inherent limitations in perception that remain

difficult to solve. This is due to difficult, ambiguous situations, like the one exempli-

fied in Figure 6.5, and limited understanding of how humans deal with such cases.

Nonetheless, the system is capable to deliver useful results, and is a step in the right

direction, as suggested by theories of human cognition.
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Figure 6.5: One object or two: difficulties in definition are reflected by difficulties in
object segmentation, recognition and reconstruction. While the presented
combination of a tea cup and tea pot respects many principles defining a
single object, it is not physically connected and is separated during manip-
ulation. The color-, texture- and 3D-based boundaries in some cases do and
in others don’t present real boundaries. My wife and I also tend to call and
treat it as one object or two, depending on the situation.

While there is no generally accepted theory explaining human brain function, there

are large scale projects aiming to elucidate it in the near future (Alivisatos et al.,

2012). There are several theories on how the brain perceives and reacts to the world,

and these provide promising research directions also for robotics. In line with the

integration approach presented here, the Bayesian brain principle (Doya et al., 2007)

assumes a continuous update of hypotheses about the world, and correcting them

through sensory information.

In the machine learning field, deep learning using artificial neural networks is be-

coming an increasing popular concept also in computer vision (Le et al., 2012). It is

being deployed already by companies like Google, Microsoft and Apple’s Siri virtual

personal assistant for speech recognition tasks, but also has uses in address identifi-

cation from images and drug design (Markoff, 2012). Friston and Stephan (2007)

details how ideas related to artificial neural networks might explain the real network

of the brain’s neurons and its capability for inference, adaptation and plasticity, using

Bayesian filtering in a neurobiologically plausible way.

This framework is closely related to the common coding theory (Sperry, 1952), ar-

guing that perception and action are treated together in the brain, one generating
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the other such that to achieve a desired configuration. This calls for a closer inte-

gration for perception and action than the classic perception-cognition-action loops

that is also followed in this thesis. This would mean extending the described multi-

cue perception system with a perception generating action module. First attempts in

this direction have been the next best view planning and interactive segmentation ap-

proaches described earlier, and this research direction is starting to gain momentum

both in the robotic vision and action planning domains (early examples of this being

systems inspired by mirror neurons).

All in all, the thesis presents theoretical and practical solutions for the development

of cognitive robotic systems, that are supported by theories of the brain and per-

ception, and advance the field by creating reference implementations for them. Two

main ideas span multiple chapters and methods and serve as a condensed lesson from

the contributions of this work. These general principles are based on psychological

findings and practical experience, which were applied and evaluated throughout the

thesis, confirming their validity:

1. the fusion of segmentation (bottom up) and model fitting (top down) approaches

for pose estimation and reconstruction;

2. the merging of cues/information for object recognition, on the levels of sensor

data, feature, object part, and classification.

The following subsections summarize in the light of these principles the specific prob-

lems that were addressed (listing our publications that are most relevant for the topic),

and present the open source dissemination of the results.

6.2.1 Detection of Objects in Complex Scenes

Shape-fitting and Verification. Categorization and model reconstruction of previ-

ously unknown objects, based on geometric properties, as published in (Marton et al.,

2009a; Rusu et al., 2009a; Goron et al., 2010; Blodow et al., 2009; Marton et al.,

2010a, 2011; Goron et al., 2012).
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Geometric Over-segmentation. Detection/segmentation of furniture pieces and con-

tainer doors in realistic cluttered scenes of complete rooms, and similarly detected ob-

jects based on over-segmentation and sub-graph classification (Marton et al., 2009c;

Blodow et al., 2011a; Mozos et al., 2011; Marton et al., 2012a; Usenko et al., 2012;

Marton et al., 2013, 2014).

Detection Based on Environment Models. The use of the acquired environment

model by the robot to improve and guide object detection. Methods like incremen-

tal triangulation, moving least squares, and segmentation methods are presented in

(Rusu et al., 2007, 2008c, 2009d; Marton et al., 2009b), and their use in object de-

tection (e.g. detecting fixtures, moving objects). These models can also be used for

improved human-robot-interaction (Blodow et al., 2011b).

6.2.2 Accumulating Cues from Multiple Sources for Object

Classification

Informative Local Features for 3D Data. Efficient computation of informative fea-

tures from 3D data used for local shape classification, registration and model fit-

ting (Rusu et al., 2008a,b; Marton et al., 2010a, 2011).

Part-based Multi-modal Classification. The advantages of the deep combination

of 3D and color/texture features for object detection clutter shown based on TOF,

laser, mono and stereo cameras, and on the Kinect sensor (Marton et al., 2009c,

2010b; Kanezaki et al., 2011c) and also for improving the detection of furniture pieces

(Blodow et al., 2011a).

Ensemble Learning for Multi-cue Classification. Combinations of classifiers that

are trained on different features (potentially coming from different sensors) are shown

to be able to outperform individual classifiers and classifiers trained on a simple

concatenation of features (Marton et al., 2012c,b). This idea can be applied for

merging results obtained from different viewpoints or segmentation results (Mozos

et al., 2011; Balint-Benczedi et al., 2012; Marton et al., 2013, 2014). Similarly, fus-

ing multi-modal correspondences also improves local and global registration (Stan-

imirovic et al., 2013).
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6.2.3 Integration of Algorithms in Large Open Source Projects

My work formed a part of the Cognitive Perception (CoP) project in the CoTeSys

cluster of excellence, that resulted in the creation of the Point Cloud Library (PCL) and

its predecessors (Rusu, 2009), which constitutes the 3D perception backbone of the

Robot Operating System (ROS). I integrated the methods which are mostly related to

3D data processing (like surface resampling, triangulation, segmentation, 3D feature

descriptors, etc.) into PCL4, while methods that integrate robotics related information

(e.g. trajectories, or are meant to run on a distributed system) got integrated into ROS

packages for simple reusability5.

The PCL project started at the IAS group by Radu B. Rusu, Nico Blodow and myself got

extremely popular, attracting many contributors and user, becoming a self-supporting

community whose activities are handled by Open Perception6. It is used and sup-

ported by several companies and became the 3D equivalent of OpenCV. On the 22nd

of November 2011, PCL was awarded the Grand Prize of the Open Source Software

World Challenge 2011 by the Ministry of Knowledge and Economy of Korea7.

4http://pointclouds.com
5http://code.in.tum.de
6http://openperception.org
7http://ossaward.org/
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