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Abstract

Assembly at the molecular level is one of the most fundamental approaches in chem-

istry for obtaining new materials with desired novel properties, for instance relevant

for the growing area of molecular electronics. For such nano-assembly, the use of en-

dohedrally doped clusters as building blocks proved to be fruitful due to their suitable

cage-like geometries, high stability and easily tunable electronic and optical properties.

The prevalence of silicon in the semiconductor industry has sparked great interest in such

silicon-based nanostructures that could act as building blocks for new easy-to-integrate

and engineered materials.

The present thesis systematically assesses the feasibility of using endohedrally doped

silicon clusters to design novel cluster-assembled materials using state-of-the-art first-

principles statistical mechanics methodology. Starting with a rigorous analysis of the

nature of chemical bonding within endohedrally doped MSi16
+ (M = Ti, V, Cr) clus-

ters, the diminished role of shell closure for the structure stabilization is traced back to

the adaptive capability of the metal-Si bonding, which is more the result of a complex

hybridization than the originally proposed mere formal charge transfer. The resulting

strong interaction with the encapsulated dopant atom unfortunately goes hand in hand

with a quenching of the dopant spin moment. This drawback is suggested to be overcome

by saturation of the sp3-caused Si dangling bonds, for example through hydrogen termi-

nation. Density functional theory based global geometry optimization finds the smallest

Si16H16 endohedral cage generally too small to encapsulate 3d metal dopant atoms. For

the next larger fullerene-like cage, however, perfectly symmetric MSi20H20 (M = Co, Ti,

V, and Cr) cage structures are identified as ground states. These structures conserve the

high spin moment of the dopant atom and therewith underscore the potential of this Si

nanoform for novel cluster-based materials with unique magnetic properties.

Intriguingly, reducing the degree of hydrogenation may be used to control the number

of reactive sites to which other cages can be attached, while still preserving the structural

integrity of the building block itself. For the prototypical CrSi20H20 cluster, this leads to a

toolbox of CrSi20H20−2n monomers with different number of double “docking sites”, that

allows building network architectures of any morphology. For (CrSi20H18)2 dimer and

[CrSi20H16](CrSi20H18)2 trimer structures we illustrate that such aggregates conserve the

high spin moments of the dopant atoms and are therefore most attractive candidates for

cluster-assembled magnetic materials. The study suggests that the structural completion

of the individual endohedral cages within the doubly bridge bonded structures and the

high thermodynamic stability of the obtained aggregates are crucial for potential synthetic

polymerization routes via controlled dehydrogenation.



Adding several different dopant atoms to each building block opens another config-

urational dimension and can yield unique properties unavailable for singly-doped clus-

ters, such as large dipole or magnetic moments. While M2Si18 has been experimentally

identified as smallest Si structure capable of encapsulating transition metal dimers, we

find that even at the minimized dopant-cage interaction of hydrogenated M2Si18H12 the

spin moments of the appealing Cr2
+, Mn2

+ and CrMn+ magnetic dimers are completely

quenched. This is again much different when going towards larger hydrogenated Si cages

(Si24H24, Si28H28). Here, the identified ground state structures indeed correspond to

multi-doped endohedral cages with magnetic moments that go beyond the single-atom

dopant 4s13d5 septet limit.

As an extensive outlook, the problem of moving from the study of isolated individual

Si clusters towards the properties of such clusters in a non-trivial environment, i.e. under

the influence of other bonding partners, such as extended surfaces, is introduced for

the example of mixed Si/Sb clusters formed on Si(111)-(7×7) surface. The concomitant

necessity of extending the configurational sampling to a grand-canonical ensemble within

the ab initio thermodynamics framework in order to overcome the limitations of the

classical global optimization formulation is critically discussed in the last chapter.
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Zusammenfassung

Konstruktion auf molekularem Niveau ist einer der grundlegensten Ansätze in der

Chemie zur Erzeugung neuer Materialien mit speziellen Eigenschaften. Molekulare Elek-

tronik bietet einen eindrucksvollen, neuen Anwendungsbereich für solche Materialien. Die

Verwendung von dotierten Clustern als Bausteine für solche molekularen Konstrukte hat

sich, aufgrund ihrer käfigartigen Geometrie, hohen Stabilität und ihrer leicht abstimm-

baren, elektronischen und optischen Eigenschaften, als fruchtbarer Ansatz bewiesen. Von

besonderem Interesse sind Silizium-basierte Nanostrukturen, weil Silizium häufige An-

wendung in der Halbleiterindustrie findet und solche Materialien einfach zu integrierende

und abstimmbare Bausteine bilden könnten.

In dieser Arbeit wurde mit Hilfe moderner ab initio statistisch mechanischer Verfahren

systematisch die Anwendbarkeit endohedral dotierter Siliziumcluster für die Konstrukti-

on neuer Cluster-basierter Materialien studiert. Beginnend mit der gründlichen Analyse

der Natur der chemischen Bindung innerhalb endohedral dotierter MSi16
+ (M = Ti, V,

Cr) Cluster, wird ein abgeschwächter Einfluss des Schalenabschlusses beobachtet und auf

die adaptive Fähigkeit der Metall-Silizium Bindung zurückgeführt. Dieses liegt stärker an

komplexer Bindungshybdridisierung als, wie anfangs postuliert, an formalem Ladungs-

transfer. Die daraus resultierende starke Wechselwirkung des Siliziumgerüsts mit dem

eingeschlossenen Dotierungsatom resultiert jedoch in einer Reduktion des Spinmoments.

Dieser Effekt kann durch Wasserstofabsättigung freier sp3-Bindungsstellen an den Siliziu-

matomen rückgängig gemacht werden. Mittels Dichtefunktionaltheorie-basierter globaler

Geometrieoptimierung zeigt sich, dass Si16H16 Käfige zu klein sind, um 3d Metallatome

einzukapseln. Jedoch finden sich perfekt symmetrische fullerenartige Käfigstrukturen als

Grundzustand der nächstgrößeren MSi20H20 (M = Co, Ti, V, and Cr) Cluster. Diese

Strukturen erhalten das hohe Spinmoment des Dotierungsatoms und bezeugen damit

das Potenzial dieser Siliziumnanostrukturen als Bausteine neuartiger Cluster-basierter

Materialien mit einzigartigen magnetischen Eigenschaften.

Interessanterweise kann man den Grad der Hydrogenierung verwenden, um die An-

zahl der Reaktionszentren für die Anknüpfung anderer Cluster zu kontrollieren, ohne

die strukturelle Integrität des individuellen Bausteins zu zerstören. Dadurch ergibt sich

ausgehend von prototypischen CrSi20H20 Clustern eine Vielzahl möglicher CrSi20H20−2n

Monomere mit unterschiedlicher Anzahl doppelter Andockstellen als Bausteine moleku-

larer Netzwerkarchitekturen mit beliebiger Morphologie. Für (CrSi20H18)2 Dimer- und

[CrSi20H16](CrSi20H18)2 Trimerstrukturen zeigen wir, dass solche Aggregate das hohe

Spinmoment der Dotierungsatome erhalten und daher attraktive Kandidaten für magne-

tisch Cluster-basierte Materialien sind. Aus dieser Arbeit ergibt sich, dass der strukturelle



Abschluss individueller, symmetrischer Cluster durch die doppelte Si-Si Bindung, sowie

die hohe thermodynamische Stabilität der so erhaltenen Aggregate entscheidende Fak-

toren für eine mögliche synthetische Polymerisation über kontrollierte Dehydrogenierung

darstellen.

Das Hinzufügen mehrerer verschiedener Dotierungsatome zu jedem Baustein öffnet

eine weitere Konfigurationsdimension und bringt zusätzliche, einzigartige Eigenschaften,

die einzeln gedopten Clustern nicht zugänglich sind, wie zum Beispiel vergrößerte Dipol-

und magnetische Momente. Experimentell wurde M2Si18 als kleinste Siliziumstruktur

identifiziert, die Übergangsmetalldimere umhüllen kann. Wir finden jedoch, dass in sol-

chen Strukturen die Spinmomente von Cr2
+, Mn2

+ und CrMn+ Dimeren komplett ge-

löscht werden. Das ist ganz anders bei größeren hydrogenierten Clustern, wie z.B. Si24H24

und Si28H28. Hier ensprechen die identifizierten Grundzustandstrukturen multi-dotierten

endohedralen Käfigen mit hohen magnetischen Momenten, die über das 4s13d5 Septett-

limit eines einzelnen Atoms hinausgehen.

In den letzten Kapiteln dieser Arbeit werden umfangreiche Zukunftsperspektiven dis-

kutiert. Dies umfasst den Übergang von isolierten einzelnen Siliziumclustern in Richtung

solcher Cluster in nicht-trivialen Umgebungen, wie zum Beispiel ausgedehnten Oberflä-

chen, aber auch die Notwendigkeit einer Ausdehnung der Konfigurationssuche auf das

großkanonische Ensemble mithilfe der ab initio-Thermodynamik Methode um den Ein-

fluss einer finiten Gasphasenumgebung zu berücksichtigen.
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1 Introduction

Clusters are relatively small (containing a countable number of particles) aggregates

of atoms and therefore, in terms of size, bridge the gap between individual atoms (or

small molecules) and bulk matter [1]. However, physical and chemical properties of

clusters differ from those found in both individual atoms and bulk systems, and display a

unique dependence on size, geometry and composition. Most intriguingly, unlike in case

of bulk materials, the properties of clusters do not scale linearly with size, but rather

exhibit discontinuous behavior, where “every atom matters” [2, 3]. This can be clearly

illustrated by the dramatic change of electronic structure when the system is reduced to

a few atoms, where the more-or-less continuous density of states is replaced by a set of

discrete energy levels. Such an intricate relationship between structural and electronic

properties offers a unique opportunity to tailor optical, magnetic and chemical properties

through selection of size and composition, thus providing the field of nanoscale science the

promising prospect of using clusters as building blocks for constructing novel materials

[4]. Another exciting feature of clusters is an unusually high surface to volume ratio. A

large fraction of surface atoms makes, for instance, metal clusters ideal candidates for

applications in catalysis, and modeling active sites of surfaces [5].

Both the possibility of creating clusters with appealing geometries, and their poten-

tially highly-tunable optoelectronic and catalytic properties meet in the field of nanoscale

assembly [6, 7]. Construction of new materials with engineered properties using clusters

as building blocks presents a “bottom up” multiscale approach in material science, fo-

cusing on systems whose properties vary dramatically with composition [8]. Obviously,

building such materials presents its own new challenges, connected to describing a new set

of superatomic building blocks and understanding their individual and material proper-

ties. To date the building blocks used in cluster-assembled materials range from fullerenes

and small clusters to larger nanoparticles [9]. Especially interesting are, of course, func-

tionalized materials made of endohedrally doped clusters, which appears as a remarkable

avenue to tailor the intrinsic properties of clusters — idea initially suggested for car-

bon fullerene cages [10, 11, 12]. For instance, multi-doping of large cages is recognized

as promising method of modifying physical and chemical properties through endohedral

chemical functionalization [13].

The prevalence of silicon in the semiconductor industry and its wide abundance (sil-

icon is the second most abundant element in the Earth’s crust after oxygen [14]) has

sparked great interest in silicon-based nanostructures that could act as building blocks

for new easy-to-integrate and engineered materials. In contrast to the compact and reac-

tive form of pure Si clusters, determined by unsaturated dangling Si bonds due to typical

preference of sp3 bonding [15], endohedral metal doping was found to produce saturated

fullerene and other polyhedral cage structures that represent appealing symmetric and

1



1 Introduction

unreactive building blocks, and therewith an intriguing novel nanoform of Si with great

promise for e.g. optoelectronic device applications [16, 17, 18, 19]. For instance, the

groups of Balbás [20] and Nakajima [21] have demonstrated the theoretical possibility

of building homo- and heterogeneous aggregates of MSi16 clusters with different metal

dopants.

Of course, employing these potential functionalities implies resolving structural in-

formation on an atomic level and a comprehensive description of electronic structure.

Already the first point causes a lot of complications, since there are no experimental

methods available that can directly give such structural information on clusters. The

size of the formed clusters can be deduced from the mass spectra [22, 23], or even the

formation of clusters of certain shape (e.g. cages) can be inferred experimentally from

reactivity [24, 25, 26, 27], photodissociation [28], physisorption [29] and X-ray absorption

spectroscopy [30] studies. However, detailed geometrical information at the atomic level

is not available experimentally. Obviously, there is a direct correlation between the ge-

ometric and electronic structure, which is detected by experiment. This is where theory

comes into play and provides required information to assign the experimental data to the

underlying structure. For instance, by comparison of calculated spectral features for a

set of isomers to the experimentally observed spectrum it is possible to determine the

geometry of the cluster. Such a combined experimental/theoretical approach has been

widely used to assign cluster structures based on e.g. photoelectron spectroscopy [31]

and vibrational spectroscopy, for instance far-infrared vibrational resonance enhanced

multiple photon dissociation spectroscopy [32, 33, 34], as well as several other methods

[35].

However, within such strategy, geometric information is needed as starting point for

the computational spectroscopy investigations. A conventional approach is to try several

structures, the choice of which is guided merely by chemical intuition and/or information

about the structures of adjacent-sized clusters, i.e. with one atom less or more. Obviously,

such approach may be very misleading, since clusters typically possess complex potential

energy surfaces (PES) with multiple minima. Even for a three-atomic cluster one can

easily suggest several different geometries: linear, equilateral triangle, isosceles triangle

and a scalene triangle. The rapid growth of the number of local PES minima, or in other

words metastable isomers, with increasing cluster size quickly limits approaches focusing

only on local structure optimization [36]. Required instead are more systematic unbiased

sampling techniques that allow a global and efficient exploration of the huge configu-

rational space, thus providing the possibility to deal with the challenge of exponential

increase of the number of local minima with system size. This steep growth is e.g. known

as Levinthal’s paradox, according to which a protein would never reach its native state

within the lifetime of the universe if it had to go through all local minima randomly [37].

Among several available global geometry optimization schemes, such as the classical sim-
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ulated annealing algorithm based on methods of statistical mechanics [38] or fashionable

genetic algorithms that mimic Darwin’s principle of survival of the fittest [39], a Monte-

Carlo minimization scheme by Wales and Doye [40] known as basin-hopping proved to

be very efficient in determining both ground-state structure and low-lying isomers of a

given cluster composition [41].

A further complication arises from the fact that a true predictive-quality search for

optimal building blocks to be used for new materials should go beyond the micro-canonical

ensemble sampling. In its classical formulation global geometry optimization samples for

a fixed number of species, i.e. it only identifies the optimum structure for a defined

composition. In reality, aggregation or decomposition with varying number of atoms can

take place. In the spirit of ab initio thermodynamics [42] the cluster environment can

be reduced to chemical potentials with which the cluster is in equilibrium. It is then

possible (albeit has not yet been done in the cluster context) to sample the ground-state

geometries for a wide range of compositions (e.g. cluster sizes MSin) and compare their

stabilities for any given (for instance Si) chemical potential.

Of course, structural information is not enough for studying clusters as potential

building blocks for new materials. A comprehensive description of bonding in building

block monomers and obtained aggregates is an important and necessary further step for a

deeper understanding of possible polymerization mechanisms. To obtain this information,

state-of-the-art density functional theory (DFT) [43, 44] methods need to be employed.

Altogether, these prospects and challenges motivate the present work on controlled

functionalization of endohedrally doped silicon clusters as building-blocks for cluster-

assembled materials. Aiming at ab initio predictive-quality modeling of novel engineered

materials, we conduct a systematic step-by-step investigation of the prospects of bring-

ing the unique magnetic and optical properties of transition metals to the synthetically

feasible nanometer-scale aggregates. The thesis is structured as follows:

In Part I, a concise introduction to different employed methodologies and concepts

to explore the configurational space and thoroughly describe the electronic structure and

properties of doped silicon clusters, on which this work is based, is given. These comprise

density functional theory (including its time-dependent formulation for excited states

calculations (TD-DFT) [45, 46] and density functional based tight binding (DFTB) for

optimizing large, computationally heavy systems [47, 48]) in Chapter 2, and methods

of sampling of the potential energy surface (both locally and globally) in Chapter 3.

The methods of calculating potential functions based on statistical thermodynamics are

presented in Chapter 4.

Results obtained for 3d transition metal doped Si16 and Si20 cage-like clusters are

grouped in Part II, presenting a systematic study from understanding the nature of

bonding within the doped Si clusters, via tuning the magnetic moments of such clusters,

and towards building engineered functionalized cluster-assembled materials. First, the
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geometric and electronic structure of cationic MSi16
+ clusters with Ti, V and Cr dopant

atoms is studied in Chapter 5. The analysis of the electronic manifold traces the dimin-

ished role of shell closure for the stabilization of the endohedral cage geometry back to

the adaptive capability of the metal-Si bonding, which is a result of a complex hybridiza-

tion. Based on these findings, in Chapter 6 the possibility of creating cage structures

with minimized M-Si interaction to preserve unique atomic properties of the dopant is

scrutinized. Perfectly symmetric MSi20H20 (M = 3d metal) cages with Si dangling bonds

saturated by hydrogen termination are found to conserve the atomic character of the

dopants, i.e. high magnetic moments and optical properties. Inspired by these results, in

Chapter 7 we assess the feasibility of potential synthetic polymerization routes of such

highly magnetic building block clusters via controlled dehydrogenation. In contrast to

the known clathrate-type facet sharing, a predisposition to aggregation through double

Si-Si bridge bonds is found, and a toolbox of MSi20H20−2n monomers with different num-

ber of double “docking sites” is suggested, which allows building network architectures

of any morphology.

Part III focuses on further ongoing developments that go beyond the conventional

scope of cluster science studies. In Chapter 8 the possibility of multi-doping of Si clusters

in order to achieve high spin states beyond the single-atom dopant septet limit is criti-

cally evaluated. For instance, we show that it is possible to conserve both the structural

integrity of the host cage and the high spin state of the guest dimer dopant in case of

M2
+@Si24H24 aggregates (with M = Cr2

+, Mn2
+ and MnCr+), thereby exceeding the

magnetic moment feasible with single-atom dopants by almost a factor of two. Moreover,

the possibility of further increasing the cluster spin state by encapsulating a different

number of dopant atoms into a suitably sized hydrogenated Si cage is illustrated with the

example of a (CrMn+)2@28H28 aggregate with the total number of 18 unpaired electrons.

Chapter 9 is devoted to moving from the study of isolated individual Si clusters towards

the properties of such clusters in a non-trivial environment, i.e. under the influence of

other bonding partners, such as extended surfaces. Finally, Chapter 10 introduces an

important discussion of grand-canonical ensemble sampling. Within the ab initio ther-

modynamics approach we discuss the possibility of predicting relative stabilities of clusters

of different size. These developments offer many potential future applications beyond the

specific problem of doped Si clusters. Some of these are surveyed in a concluding outlook

in Chapter 11.

A detailed discussion of current developments within the field, together with an

overview of the relevant literature, is given at the beginning of each respective chap-

ter, instead of cumulating it into a separate state-of-the-art section, which gives the

possibility of continuous narration, following the logic of the research presented here.
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Part I

Theoretical Background



2 Describing the Energetics and Electronic Struc-

ture of Clusters

2.1 Theoretical Basis of Quantum Chemistry Calculations

The basic equation of quantum mechanics is the Schrödinger equation [49], that yields

a wavefunction ψ, from which all physical properties of the system can be found. The

time-dependent Schrödinger equation for a particle, described by the wavefunction ψ and

moving in a potential V , is a second-order differential equation:

(
− h̄2

2m
∇2 + V̂

)
ψ(~r, t) = ih̄

∂ψ(~r, t)

∂t
, (2.1)

where ψ is a wavefunction, ~r − position vector, t − time, ∇2 − Laplacian, V̂ − potential

energy operator, and h̄ − Planck constant divided by 2π. The Hamiltonian is defined as

Ĥ =

[
− h̄2

2m
∇2 + V̂

]
, (2.2)

i.e. it is a sum of kinetic and potential energy operators. The stationary Schrödinger

equation is a first-order differential equation:

Ĥtotψtot = Etotψtot , (2.3)

where Etot and ψtot are eigenvalue and eigenfunction of the Hamiltonian, respectively.

The Hamiltonian consists of five terms: kinetic energy of electrons T̂ e, kinetic energy of

nuclei T̂n, potential energy of electron-electron interaction V̂ ee, potential energy of nuclei

interaction V̂ nn, and potential energy of electron-nucleus interaction V̂ ne.

However, electrons are much lighter than nuclei, therefore they move much faster.

Within this assumption, a Born-Oppenheimer approximation [50] is introduced, according

to which nuclei are fixed, while only electrons move. Thus, the total wavefunction can

be separated into two parts: an electronic part ψe and a nuclear part ψn. In this view,

electrons move in a potential field created by the nuclei, and the Schrödinger equation

for the electron wavefunction ψe is written as follows:

(
Ĥe + V̂nn

)
ψe

(
~r, ~R

)
= Ee

(
~R
)
ψe

(
~r, ~R

)
, (2.4)

where ~r is a position vector for electrons, ~R − position vector for nuclei. For the chemistry

applications in this thesis the electronic wavefunction is sufficient. The nuclei interaction

constant Vnn can be added after solving the electron Schrödinger equation, when the

PES, on which nuclei can move, is known. The deepest minimum point on such a surface
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2.1 Theoretical Basis of Quantum Chemistry Calculations

corresponds to the optimal geometry. Thus we have Ĥ = T̂e + V̂ee + V̂ne, ψ = ψe, E = Ee,

and can re-write the Schrödinger equation in a simpler form:

Ĥψ = Eψ . (2.5)

After multiplying by the complex conjugate and integrating over volume

∫
ψ∗Ĥψdv =

∫
ψ∗Eψdv , (2.6)

a scalar value of the energy E can be found as:

E =

∫
ψ∗Ĥψdv
∫
ψ∗ψdv

. (2.7)

In most cases, finding the exact form of the wavefunction is unfeasible. Therefore,

additional approximations are introduced to simplify the calculation. Historically the first

and most widely used approximation is the Hartree-Fock (HF) method [51]. In order to

solve the Schrödinger equation for a multi-electron system, the approximation of non-

interacting electrons is introduced. In this case the total wavefunction can be described

as a product of one-electron wavefunctions. The Hamiltonian for every electron is:

ĥi = T̂i +
∑

n

V̂ni , (2.8)

where T̂ i is electron kinetic energy, and V̂ ni the potential energy of electron-nucleus

interaction. Thus, the Schrödinger equation can be solved for a single-electron system

hiψi=εiψi, where ψi are single-electron wavefunctions and εi the corresponding energy

values. However, such a single-electron composed wavefunction does not properly describe

the anti-symmetrization requirement for fermionic systems, known as Pauli principle [52].

Slater therefore suggested to use a linear combination of single-electron spin functions in

form of a determinant [53], which then describes the many-electron wavefunction with

proper account for the symmetry and the Pauli principle. Such an N -electron Slater

wavefunction is written as:

ψ =
1√
N !

∣∣∣∣∣∣∣∣∣

χ1(1) . . . χN (1)
... · · · ...

χ1(N) . . . χN (N)

∣∣∣∣∣∣∣∣∣

, (2.9)

where χ is a spin function, i.e. a single-electron function which accounts for spin. For the

given expression of the determinant, all functions describe occupied orbitals.

Within the restricted Hartree-Fock (RHF) method [54, 55] all electrons are paired.

Then the set of paired differential equations can be written in form of the Hartree-Fock
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2 Describing the Energetics and Electronic Structure of Clusters

equations fiψi = εiψi, where εi are the energy eigenvalues for single-electron functions

ψi, and fi − Fock operator:

fi = ĥi +
N∑

j=1

(Jj(1) −Kj(1)) . (2.10)

In eq. (2.10) a summation is done over the number of electrons N . “1” means that the

operator includes coordinates of one electron only. J is a Coulomb integral describing

the electrostatic repulsion between electrons, K is the exchange integral.

Within the Hartree-Fock method each electron occupies its own orbital and moves

within the potential field of the other N − 1 electrons. Thus, electrons can be located

closer to each other than they would be, if the energy of each electron was minimized

individually. Therefore, the HF method always overestimates the energy. The difference

between the energy in the Hartree-Fock limit and the exact non-relativistic energy of a

system is designated as correlation energy Ecorr = Eexact −EHF. Thus, the sum of single-

electron energy values does not equal the total energy of the system. Electron-electron

interaction is calculated twice upon summation of single-electron energies, and should be

corrected through division of the full interaction by two. Then the total energy is:

EHF =
∑

εi − 1

2

∑

i

∑

j

(Jij −Kij) . (2.11)

Solution of the Hartree-Fock equations yields molecular orbitals, which describe the

spatial distribution of the probability of finding an electron. Each orbital corresponds to

a certain energy level. Orbitals are occupied by maximum of two electrons each, starting

from the energetically lowest. Occupation of N orbitals with minimal energy values

then yields a minimal total energy, which corresponds to the ground state of the system.

The remaining high-energy orbitals are called virtual orbitals. Especially important for

chemical applications are the so-called frontier orbitals, i.e. the highest occupied (HOMO)

and lowest unoccupied (LUMO) molecular orbitals.

Molecular orbitals (MO) filled with electrons are mathematical functions, which can

be represented as linear combinations of atomic orbitals (LCAO):

ψi =
∑

µ

Cµiφµ , (2.12)

where Cµi is a coefficient, φµ is an atomic orbital (AO). Atomic orbitals are the solutions

of the Schrödinger equation for a hydrogen atom, i.e. the orbitals of the hydrogen atom

(1s, 2s, 2p, 3s, 3p, . . .). The LCAO method allows constructing molecular orbitals using

already known functions with only coefficients unknown. Integration over the volume
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2.2 Density Functional Theory

gives the Roothaan equation [56]:

FC = SCε , (2.13)

where F is the Fock matrix, S and C are matrices with overlap integrals Sµυ and coeffi-

cients Cµυ. The matrix elements are

Fµυ =
∫
φ∗

υfφµdV and Sµυ =
∫
φ∗

υφµdV . (2.14)

The solution of the equations can be considered as a procedure of energy minimization,

where, according to the variational principle, the best wavefunction corresponds to the

minimal energy. The problem can be solved iteratively, with the coefficients Cµυ found

by the energy minimization. Such procedure is known as self-consistent field (SCF).

2.2 Density Functional Theory

One of the most common present-day computational chemistry approaches is based on

the density functional theory (DFT). Within this method, the main variable of quantum

mechanics, wavefunction ψ, is substituted by the electron density ρ(r), which is a function

of only three spatial coordinates. The total energy, as well as any other observable

property of a molecular system, can be defined through ρ(r) via so-called functionals.1

According to the Hohenberg-Kohn theorems [43], the electron density can be consid-

ered as a variable in many-electron theory. When the ground-state electron density of a

system is known, it is possible to calculate energy of the ground state and all molecular

properties. The second Hohenberg-Kohn theorem states that the energy of the given

configuration obeys the variational principle, and among all possible electron density dis-

tributions the one that yields the minimal energy is the ground-state density. However,

the Hohenberg-Kohn theorems do not give an exact form of the E(ρ) functional needed

to evaluate such a minimization.

The Kohn-Sham scheme [44] is currently the main procedure for the explicit calcu-

lation of electron density and energy for any atomic and molecular system, and is the

basis of most present-day DFT calculations. The main goal of the Kohn-Sham method is

to calculate a hypothetical system composed of N electrons, which do not interact with

each other, occupy N orbitals ψi, and move within the potential field υs. For this type

of systems, the Slater determinant rigorously describes the wavefunction in the ground

state. Optimal orbitals for the system can be found by solving single-electron equations:

(
−1

2
∇2 + υs

)
ψi = εiψi . (2.15)

1For an extended discussion of Density Functional Theory see ref. [57]. For detailed derivations
consult ref. [58].
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2 Describing the Energetics and Electronic Structure of Clusters

Here, the Hamiltonian consists of the kinetic energy operator and a single-particle effective

potential. The total electron density is a sum of orbital densities:

ρs (~r) =
N∑

i=1

|ψi (~r) |2 . (2.16)

The connection of the system where there is no electron-electron interaction with the

true system, where electrons do interact, can be assessed via the choice of an effective

potential of one particle in such a way that the electron distribution corresponds to the

density distribution of the real system in its ground state. Despite the fact that the

exact expression for the density functional E(ρ) is unknown, its constituent parts can be

expressed as follows:

EDFT(ρ) = TS(ρ) + Ene(ρ) + J(ρ) + EXC(ρ) , (2.17)

where ρ is the density of the system of interacting electrons. The form of the first three

terms is known. TS(ρ) is the kinetic energy of the system with non-interacting electrons,

Ene(ρ) is the potential energy of the Coulomb interaction between nuclei and electrons,

and J(ρ) is the energy of inter-nuclei repulsion. All other terms are accounted for in

the fourth term EXC(ρ), the exchange-correlation functional. EXC(ρ) includes all non-

classical interaction effects, as well as the part of kinetic energy not included in TS(ρ).

The exchange-correlation functional also corrects the J(ρ), which allows for a non-physical

interaction of the electron with itself. Taking into account eq. (2.16), one can rewrite

the eq. (2.17) in the following form:

E(ρ) = −1

2

N∑

i=1

∫
ψ∗

i (~r) ∇2ψi (~r) d~r −
N∑

i=1

∫ M∑

A=1

ZA

|RA − ~r| |ψi (~r) |2d~r +

1

2

N∑

i=1

N∑

j=1

∫ ∫
|ψi (~r) |2 1

|~r − ~r ′| |ψj (~r ′) |2d~rd~r ′ + EXC(ρ) ,

(2.18)

where M and N are the number of nuclei and electrons, respectively. The energy mini-

mization after normalization of the wavefunction yields a set of single-electron Kohn-Sham

equations:

ĥKSψi = εiψi , i = 1, 2, . . . , N . (2.19)

The single-electron operator ĥKS contains the kinetic energy, nuclei potential, the classical

Coulomb potential and the potential caused by EXC(ρ):

ĥKS = −1

2
∇2 −

∑

A

ZA

|RA − ~r| +
∫

ρ (~r ′)

|~r − ~r ′|d~r
′ + υXC (~r) = −1

2
∇2 + υeff (~r) . (2.20)

The exchange-correlation potential υXC is defined as the functional derivative of the

10



2.2 Density Functional Theory

exchange-correlation energy with respect to ρ: υXC = ∂EXC[ρ]
∂ρ(~r)

. Comparison of eqs. (2.15),

(2.19) and (2.20) reveals that if the potential of a single particle υs in eq. (2.15) is defined

as υeff (~r) in eq. (2.20), then the system with non-interacting electrons transforms into

a system where electrons do interact. Thus, the Kohn-Sham equations appear after

substitution υs = υeff (~r) in eq. (2.15), and the solution of this equation yields the

Kohn-Sham orbitals. υeff (~r) depends on the electron density, and in order to find the

Kohn-Sham orbitals, eq. (2.19) needs to be solved iteratively using the SCF procedure,

just like in the HF method. The energy of the system can be obtained by inserting the

electron density found from the Kohn-Sham orbitals (eq. (2.16)) into the eq. (2.17).

As it has been mentioned before, the exact form of the exchange-correlation functional

is unknown. Therefore, the quality of the solution obtained withing the DFT framework

is directly dependent on the chosen functional EXC [59]. Exchange-correlation functionals

can be classified according to the way the electron density distribution is described. The

simplest approximation is the local density approximation (LDA), with the idea of a

hypothetical uniform electron gas, where the electrons sit in an infnite region of space,

with a uniform positive external potential, chosen to preserve overall charge neutrality.

Then ELDA
XC is:

ELDA
XC =

∫
ρ (~r) εXC (ρ (~r)) d (~r) , (2.21)

where εXC is a functional that depends only on the local density at each point ~r. The

exchange-correlation functional can further be divided into two parts EXC = EX + EC,

where EX and EC are functionals accounting for exchange and correlation parts of the

energy, respectively. The form of the exchange part EX for the homogeneous electron

gas is known, and was originally derived by Bloch [60] and Dirac [61]. No such explicit

expression is known for the correlation part EC, however. Several authors developed their

representations of EC [62, 63, 64]. The most recent and accurate one has been suggested

by Perdew and Wang [65]. These functionals can be successfully used in systems where

the real density resembles the one of the uniform electron gas, e.g. in metals.

A step forward in comparison to LDA was done in another (and probably the most

widely used nowadays) method: the generalized gradient approximation (GGA). There,

not only information about the density ρ (~r) at a particular point ~r, but also information

about the gradient of the charge density ∇ρ (~r) is used in the evaluation of EXC, to

account for the non-homogeneity of the true electron density. The general form of the

GGA exchange-correlation functional is:

EGGA
XC =

∫
f (ρ,∇ρ) d~r . (2.22)

Such functionals are better suited for molecular systems, where the electron density

is clearly not uniform. Several GGA functionals have been suggested [66, 67, 68], the

most widely used being the PBE functional by Perdew, Burke and Ernzerhof [69]. As
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it is also the case for the LDA, spin-polarized versions of these functionals (for collinear

treatment of spin) have been developed alongside. The DFT-GGA approach has proven

to be very reliable for a wide range of applications and has served as a “workhorse” of

quantum chemistry for the last twenty years.

However, GGAs still have the disadvantage of yielding only approximate exchange

contributions, which result in certain problems expressing the exchange part of the energy

[57]. A way to overcome these difficulties has been suggested by including a component

of the exact exchange energy calculated from Hartree-Fock theory. Functionals of this

type are known as hybrid functionals [70] and have the following general form:

EHybrid
XC = cEHF

X + (1 − c)EDFT
X + EDFT

C , (2.23)

where the coefficient c defines the HF exchange contribution. Especially successful hybrid

functionals include the empirically-parametrized B3LYP [71] and parameter-free PBE0

[72].

In the present work most claculations have been carried out using the GGA-PBE

functional. For comparison the target quantities were also systematically recomputed

on the hybrid functional level with the PBE0 functional, without ever obtaining any

qualitative changes that would conflict with the conclusions deduced from the standard

PBE calculations. Considering the frequent observation that hybrid functional DFT

yields results that for 3d transition metal containing systems are at least en par, if not

superior to correlated wavefunction approaches [73, 74, 75, 76], this supports the reliability

of the herein reported results. The detailed discussion of the computational setup is given

within the corresponding chapters. Of course, going beyond the accuracy of GGAs and

hybrids is tempting, but more accurate electronic structure theory proves to be extremely

computationally challenging when a large number of evaluations is required like in the

context of global geometry optimization.

2.3 Numerical Atom-Centered Basis Sets

The set of functions that constitutes the molecular orbitals is called a basis set. Each

orbital is described as a linear combination of basis functions according to eq. (2.12),

where Cµi are coefficients and ψµ are basis functions. For constructing MOs, several

kinds of mathematical functions can be used as basis functions, e.g. atomic orbitals of

hydrogen atom as in LCAO, Slater-type [77] orbitals, or analytically defined Gaussians

[78]. The implementation of the all-electron full-potential DFT-code FHI-aims (Fritz-

Haber-Institut ab initio molecular simulations) [79, 80], which was used for all ground-

state calculations in this work, resorts to numerically defined atom-centered orbitals of
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the form

ψ (~r) =
ui(r)

r
Ylm (θ, φ) , (2.24)

where Ylm (θ, φ) are spherical harmonics. The radial part ui(r) is numerically tabulated,

thus being very flexible since any kind of desired shape can be achieved. This allows gen-

erating efficient species-dependent basis sets, which are constructed strictly hierarchical,

so that the accuracy can be continuously increased up to meV level. By including the

radial functions of occupied free-atom orbitals in the basis, the all-electron orbital shape

and nodes near the deep nuclear Z/r potential are close to exact in bonded structures as

well. Specifically, atom-centered orbitals are especially suitable for describing the cusp

at the nucleus of a real AO, which makes them a good choice to treat systems containing

transition metals. Together with a well-defined control of convergence, these advantages

make the FHI-aims package a suitable tool for the calculations of M-doped Si clusters.

In FHI-aims the minimal basis of a species corresponds to the occupied orbitals of the

effective Kohn-Sham potential of the corresponding non-polarized, spherically symmetric

free atom. This basis thus facilitates the all-electron calculation since the oscillatory

behaviour of the wavefunctions in the core-region are already well described at this level.

Additionally the minimal basis avoids the atomic basis set superposition error (BSSE)

[81] which can typically be observed for analytical localized basis sets.

The minimal basis set is further improved by additional classes of basis functions,

one of which is formed by ion-like radial functions that are in particular suitable for

describing a chemical bond as demonstrated by Delley [82]. These are states obtained

from calculations of positive ions, which are supposed to describe the charge transfer of

a system in a chemical bond. Hydrogen-like functions are used in addition, especially as

polarization functions for angular momenta beyond those present in the free atom itself.

These functions are derived from one-electron atoms with an arbitrary nuclear charge,

that does not need to be an integer. Since radial functions originating from different

potentials are not necessarily orthonormal to one another even on the same atomic site,

all on-site radial functions are orthonormalized explicitly using a simple Gram-Schmidt

process [83].

The different basis functions resulting from the basis set generation typically arise in

groups of different angular momenta, spd or spdf , and are thus organized in so-called

“tiers” [79] which contain a basis function of each angular momentum. The number of

the “tier” thereby denotes the accuracy of the basis set.

All global geometry sampling calculations in this work are done with the “tier 2” basis

set, which for instance contains 43 basis functions for Si, 67 basis functions for Ti and

88 basis functions for Cr. For the ensuing electronic structure analysis of the optimized

geometries, the electron density was recomputed with an enlarged “tier 3” basis set which

contains e.g. 64 basis functions for Si, 103 basis functions for Ti and 124 basis functions
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2 Describing the Energetics and Electronic Structure of Clusters

for Cr. Several examples of basis sets used in the present work are given in detail in

Appendix A.

2.4 Relativity with DFT

The hitherto discussed non-relativistic quantum-mechanical model is not suitable for

describing systems containing heavy elements. Instead of the Schrödinger equation, in

principle one there has to solve the Dirac equation, which satisfies both the postulates

of special relativity and those of quantum mechanics, and involves a four component

Hamiltonian [84]: 

 υ cσ · ~p
cσ · ~p −2c2 + υ







ψ
χ



 = ǫ



ψ
χ



 , (2.25)

where ~p = −i∇ is the momentum operator, σ is a vector of Pauli spin matrices, and ψ

and χ themselves have two components each.

However, since the dimension of the secular problem is very large, the requirements

for integral evaluation time and data storage will be unfeasible. An attractive alternative

is to transform the Dirac Hamiltonian to a form with less components. Several such

formalisms have been developed and one of the most simple and elegant approaches is

the zeroth-order regular approximation (ZORA) [85].

FHI-aims adopts a one-component, scalar-relativistic scheme [79], which in its most

general form is found by solving one of the sub-equations of eq. (2.25) for χ and then

eliminating χ from the other one. By neglecting spin-orbit coupling, one obtains:

(
~p · c2

2c2 + ǫi − υ
· ~p + υ

)
ψl = ǫlψl . (2.26)

The scalar-relativistic Hamiltonian in eq. (2.26) is approximated as a whole, and then

corrected by a subsequent perturbative treatment.

Self-consistent solutions of |ψl〉 are obtained by using the ZORA kinetic energy oper-

ator:

t̂ZORA = ~p · c2

2c2 − υ
· ~p , (2.27)

corresponding to |ǫl| ≪ 2c2. After self-consistency is reached, each eigenvalue is rescaled

using the “scaled ZORA” expression:

ǫscaled
l =

ǫZORA
l

1 + 〈ψl | ~p c2

(2c2
−υ)2 ~p |ψl〉

. (2.28)

For total energies the sum of ZORA eigenvalues ǫZORA
l is then replaced with the sum of

scaled ZORA eigenvalues ǫscaled
l .

It has been shown [79] that the ZORA scheme gives good results when treating systems
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with pronounced relativistic effects, for example small gold clusters.

2.5 Time-Dependent DFT

In order to explore optical properties of the transition metal doped silicon clusters, it

is necessary, e.g. to calculate optical excitation spectra. A conventional, ground state

density functional theory calculation can not provide the necessary information for this

task. Instead, a theory capable of describing the excited states of the system is required.

Several approaches for solving this problem have been suggested, ranging from a simple

ground-state based ∆SCF scheme [86] to more complicated and computationally costly

configuration ineraction (CI) [87] and multi-configurational self-consistent field methods,

such as complete active space SCF (CASSCF) [88]. The most widely used approach

nowadays is a time-dependent density functional theory (TD-DFT) [45] linear response

formalism.2

In short, TD-DFT exploits the fact that the frequency dependent linear response

of a finite system with respect to a time-dependent perturbation has discrete poles at

the exact, correlated excitation energies of the unperturbed system [57]. The frequency

dependent mean polarizability α(ω) describes the response of the dipole moment to a

time-dependent electric field with frequency ω(t). It can be shown that the α(ω) are

related to the electronic excitation spectrum according to

α(ω) =
∑

I

fI

ω2
I − ω2

, (2.29)

where ωI is the excitation energy (EI −E0), fi are the corresponding oscillator strengths,

and the sum runs over all excited states I of the system. Translated into the Kohn-Sham

scheme, the exact linear response can be expressed as the linear density response of a

non-interacting system to an effective perturbation. The formal foundation of TD-DFT

is the Runge-Gross theorem [45] − the time-dependent analogue of the Hohenberg-Kohn

theorem [43]. The Runge-Gross theorem shows that, under certain quite general condi-

tions, there is a one-to-one correspondence between time-dependent one-body densities

n (~r, t) and time-dependent one-body potentials υext (~r, t), for a given initial state. This

implies that the many-body wavefunction, depending upon 3N variables, is equivalent

to the density, which depends upon only three, and that all properties of a system can

thus be determined from knowledge of the density alone. Then one can define a fictious

system of non-interacting electrons moving in a time-dependent effective potential:

i
∂ψj (~r, t)

∂t
=

[
−∇2

2
+ υKS [n] (~r, t)

]
ψj (~r, t) , (2.30)

2For a comprehensive discussion of all aspects of the current state of TD-DFT consult ref. [89].
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2 Describing the Energetics and Electronic Structure of Clusters

whose density

n (~r, t) =
N∑

j=1

|ψj (~r, t) |2 (2.31)

is precisely that of the real system. This effective potential is known as the time-

dependent Kohn-Sham potential [89]. After applying standard linear response theory

[90, 91], it is possible to derive the central equation of the TD-DFT linear response:

χ (~r, ~r ′, ω) = χKS (~r, ~r ′, ω) +
∫
d3r1

∫
d3r2χKS (~r, ~r1, ω)

(
1

|~r1 − ~r2|
+ fXC (~r, ~r1, ω)

)
χ (~r2, ~r

′, ω) ,
(2.32)

where all objects are functionals of the ground-state density. This equation is the key

to electronic excitations within TD-DFT. When ω matches a true transition frequency

of the system, the response function χ “blows up”, i.e. has a pole as a function of ω.

Likewise χKS has a set of such poles at the single-particle excitations of the KS system.

In current implementations of TD-DFT the so-called adiabatic approximation [89] is

employed, where the time-dependent exchange-correlation potential that occurs in the

corresponding time-dependent Kohn-Sham equations is approximated as the functional

derivative of a standard, time-independent EXC with respect to charge density at time. It

is worth emphasizing, however, that TD-DFT is not a simple extension of ground-state

DFT. According to one of the developers of the theory, E. K. U. Gross [89], “it is an

application of DFT philosopy to the world of driven systems, i.e. to the time-dependent

Schrödinger equation, a first-order differential equation in time. Thus, while many of the

statements look similar, the functionals themselves contain greatly different physics”.

In the present work a TD-DFT linear response formalism as implemented [46] in

the Gaussian 03 package [92, 93] is used to calculate excitation spectra of M-doped Si

clusters.

2.6 Density Functional Based Tight Binding

The tight binding model [48] is an approach to the calculation of electronic band structure

using an approximate set of wave functions based upon superposition of wave functions

for isolated atoms located at each atomic site3. In the DFTB formalism the Kohn-Sham

single-particle wavefunctions ψi are represented as LCAO:

ψi (~r) =
∑

υ

cυiψυ

(
~r − ~Rα

)
, (2.33)

3An insightful overview of the DFTB capabilities and the theory behind it can be found in the ref.
[94].
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with the nuclei α centered at ~Rα. The atomic orbitals ψυ are determined by self-consistent

calculations of the neutral atoms. Using this approach the Kohn-Sham equations can be

transformed into a secular problem:

N∑

υ=1

cυi (Hµυ − εiSµυ) = 0; ∀ i, µ (2.34)

with the Hamiltonian matrix elements denoted by Hµυ (Kohn-Sham matrix) and the

non-orthogonal overlap matrix elements by Sµυ:

Sµυ = 〈ψµ|ψυ〉 ; Hµυ = 〈ψµ|T̂ + Veff (~r) |ψυ〉 . (2.35)

To achieve a two-center representation for the Hamiltonian matrix elements, the non-

self-consistent effective potential Veff (~r) is formally decomposed into atomic-like contri-

butions, i.e. superposition of potentials of neutral pseudo-atoms [47].

The solution of the Kohn-Sham equations in the form of the secular problem (eq.

2.34) results in approximate molecular orbitals ψ (~r) and therefore the density ρ (~r) of

the system under consideration. From these equations, the total energy Etot and the

forces of the system ~Fα acting on a nucleus α can be obtained by introducing repulsive

pair potentials.

The name “tight binding” of this electronic band structure model suggests that this

quantum mechanical model describes the properties of tightly bound electrons in solids.

The electrons in this model should be tightly bound to the atom to which they belong

and they should have limited interaction with states and potentials on surrounding atoms

of the solid. As a result the wave function of the electron will be rather similar to the

atomic orbital of the free atom it belongs to. The energy of the electron will also be

rather close to the ionization energy of the electron in the free atom or ion because the

interaction with potentials and states on neighboring atoms is limited.

In the non-self-consistent DFTB scheme, first the pseudo atomic wavefunctions and

the effective potential are calculated in the representation of Slater type orbitals [77].

Once these values are calculated, the integrals (2.35) are computed and tabulated as

functions of the distance between the two atomic centers for an adequately dense grid of

nodes. These tables are the so-called Slater-Koster tables [95].

In this work, one of the major codes providing the DFTB method, DFTB+ [96] has

been used for the computationally costly global pre-sampling of the clusters adsorbed on

a surface.
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3 Exploring the Configurational Space of Clusters

One of the largest problems of studying clusters is finding the geometry of the most sta-

ble ground-state structure and also locating the geometries of the energetically low-lying

isomers, that could be observed in experiments due to kinetic effects or finite tempera-

tures. The main reason for the limited data about the geometry of clusters is a lack of

direct experimental methods. Thus, applying theoretical appoaches is necessary. Clus-

ters possess rather complex potential energy surfaces, and since the PES is a function of

3N−6 atomic coordinates, prediction of geometries of large clusters is a challenging task.

To describe and explore the potential energy surface, two problems have to be solved.

First, a method that yields the total energy for a given atomic configuration is needed to

accurately evaluate the PES. This information is obtained through the DFT framework,

described in Chapter 2. Second, methods to sample the vast configurational space are

needed, including local and global geometry optimization schemes [97]. This chapter is

devoted to the most popular algorithms that provide this functionality.

3.1 Local Geometry Optimization

Local geometry optimization requires a method that can bring the system into the next

local potential energy surface minimum from any surrounding starting point, thus follow-

ing the surface downhill according to some algorithm. Typically, local information such

as the gradient (the first derivative of the function being minimized) or in some methods

even the Hessian (the second derivative) are used to obtain the next structure.

The simplest approach, the Steepest Descent method [98], utilizes the fact that the

gradient vector ∇F (~a) always points in the direction where the function increases most,

therefore the function value can be lowered by stepping in the opposite direction:

~b = ~a− γ∇F (~a) , (3.1)

where γ is a step width parameter. The main advantage of the steepest descent algorithm

is that it typically always lowers the function value, provided that the step size is chosen

well, thus being guaranteed to find a minimum. However, there are two main problems.

First, two subsequent line searches are necessarily perpendicular to each other, which

causes typical oscillations around the shortest path to the minimum. Therefore, the

steepest descent algorithm tends to somewhat “spoil” the function lowering obtained by

the previous step. Second, the rate of convergence always slows down as the minimum is

approached. Usually the steepest descent is therefore used to quickly generate a better

starting point before some of the more advanced algorithms are applied.

The Conjugate Gradient [99] scheme, consisting of successive line minimizations along

a search direction, tries to improve on the “spoiling previous result” problem of the steep-
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3.1 Local Geometry Optimization

est descent method by performing each line search not along the current gradient, but

along a line that is constructed in a way that it is conjugate to the previous search direc-

tion. In other words, the method “remembers” the information from previous searches,

so that the new search does not destroy the progress of the previous one. The first step is

equivalent to a steepest descent step, but subsequent searches are performed along a line

formed as a mixture of the current negative gradient and the previous search direction:

~c = ~b− γ∇F (~b) + β~a , (3.2)

where β defines how much of the previous direction is to be taken into account. There-

fore, the conjugate gradient scheme does not strictly follow the PES downhill, but along

a search direction that is conjugate to the previous search directions. There are several

ways of choosing the β value, such as the Fletcher-Reeves [100], Polak-Ribière [97] and

Hestenes-Stiefel [101] approaches. Conjugate gradient methods typically have much bet-

ter convergence than the steepest descent. However, for non-quadratic surfaces [97], the

conjugate gradient does not hold rigorously, and must often be restarted (i.e. β should

be set to zero) during the optimization.

The Newton-Raphson type of methods [102] expand the information needed about the

current point ~a to the second derivative (Hessian):

~b = ~a+ ∇F (~b− ~a) +
1

2
∇2F 2(~b− ~a) . (3.3)

This Newton-Raphson formula is used iteratively for stepping towards a stationary point.

Near a minimum all the Hessian eigenvalues are positive, and the step direction is opposite

to the gradient direction. If, however, one of the Hessian eigenvalues is negative, the

step in this direction will be along the gradient component, and thus will increase the

function value. In this case, the optimization may end up at a saddle point, which can not

occur in the steepest descent or conjugate gradient algorithms. Therefore, besides faster

convergence, another advantage of the Newton-Raphson approach is the ability of locating

saddle points, which is important for finding transition states in mechanistic studies. The

main problems of the Newton-Raphson scheme are the complicated determination of the

step size and its relatively high computational cost, since calculation of the full second

derivative matrix is required, which must be stored and diagonalized.

The FHI-aims package used in this work employs the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) [103, 104] optimization method. The BFGS method is a quasi-Newton

scheme that approximates Newton’s method and also uses the additional information

in the form of the second derivative of the PES. Knowing an approximate form of the

Hessian H , a new search direction ~b can be obtained by solving a Newton-like equation:

H~b = −∇F (~a) . (3.4)
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3 Exploring the Configurational Space of Clusters

The next atomic configuration can then be obtained by performing a line minimization

as in the conjugate gradient scheme (eq. 3.2). If the PES was perfectly harmonic and

the Hessian known exactly, the local minimum would be found within one line search.

In practice, however, the calculation of the Hessian matrix in each iteration step can be

prohibitively expensive, so that it is instead successively approximated in each iteration

step, therewith being a quasi-Newton scheme. Since more information of the PES is

taken into account, the BFGS method can be more efficient than steepest descent or even

conjugate gradient, but it works efficiently only if the system is close to the local minimum,

where the harmonic approximation is justified. It is therefore typically recommended to

start with a few steepest descent steps to bring the system close to the local minimum

as in the case of the conjugate gradient scheme.

3.2 Global Geometry Optimization

All the methods mentioned above are designed to bring the system to the closest local

minimum, located somewhere near the arbitrary starting point. In contrast, a truly global

minimization should be able to find the global minimum irrespective of the starting point.

Since local information is not enough to locate the global minimum, stochastic methods

are required that provide some recipe to systematically sample the huge configurational

space. Considering that the number of minima typically grows exponentially with the

number of variables, the global optimization problem is an extremely difficult task for a

multi-dimensional function, such as a PES of a cluster. Luckily, optimization problems

are quite general in mathematics and physics [105, 106], and several methods of global

geometry optimization have already been developed [107, 108] and succesfully applied

[109] to different chemistry-relevant systems, including silicon clusters [110]. Here a short

summary of the most popular global optimization schemes is presented.

A first intuitive choice for an algorithm capable of overcoming barriers and thus ex-

ploring potential energy surfaces not only strictly downhill would be Molecular Dynamics

[111] (MD) methods. Given a high enough energy, which is closely related to the simu-

lation temperature in a canonical ensemble, the dynamics will sample the whole surface,

but will also require extremely long simulation times, which makes the application of the

method in general impractical.

A classical statistical mechanics global optimization algorithm applied to many fields

is the Simulated Annealing [38] scheme based on the Metropolis algorithm [112]. Similar

to MD, the method employs a system temperature as a guiding parameter for generating

and accepting new geometries. A Monte-Carlo run is then initiated, during which the

temperature is slowly reduced. Starting from an arbitrary configuration with a total

energy E, a new structure is generated by randomly displacing the atoms in the so-called

trial move, leading to a change of the total energy E. If the energy has decreased, i.e.
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3.2 Global Geometry Optimization

∆E < 0, the new structure is accepted and used as starting point for the next step. In

the opposite case, however, the structure is not discarded unconditionally, but accepted

with a probability

P (∆E) = exp

(
− ∆E

kBT

)
. (3.5)

At zero temperature, only isomers that are lower in energy would be accepted which

would be an intuitive choice at first glance, since the system is thereby pushed towards

the ground state. However, the system is then likely to get stuck in a local minimum.

A finite temperature allows instead for controlled uphill steps, thus enabling the system

to get out of local minima. The name, simulated annealing, comes from the analogy of

growing crystals. If a melt is cooled slowly, large single crystals, representing a ground

state, are formed. A rapid cooling produces a disordered solid, representing local minima,

such as glas [97].

A further development of the simulated annealing idea has been implemented in the

basin-hopping algorithm [40]. Additional to the trial move, a local structure relaxation is

performed and the total energy of this local minimum is then assigned to the initial con-

figuration. Therefore within this idea the configuration space is explored by performing

consecutive jumps from one local PES minimum to another. The PES is therewith trans-

formed into a set of interpenetrating staircases, known as “basins of attraction”, formed

by all PES points whose local optimization paths lead to a certain local minimum:

Ẽ
{
~R
}

= minE
{
~R
}
. (3.6)

The most significant feature of this method is the allowance for the system to navigate

between local minima, in particular, from a lower energy minimum to a higher one,

enabling the system to hop among them. The basin-hopping algorithm has been shown to

be very successful in dealing with complex systems ranging from clusters to biomolecules

[113, 114], and demonstrated high efficiency for locating the geometries of small silicon

clusters [41].

Obviously, there are many technical aspects that influence the performance of the

global sampling technique. First of all, the initial geometry has to be chosen either

randomly or guided by some sort of a chemical intuition based educated guess. Secondly,

this geometry has to be disturbed in one or another way. For this, single-particle or

collective moves, in which all atoms (collective move) or a randomly picked atom (single-

particle move) is displaced in a random direction, can be chosen. The direction and the

step size of the displacement is not a priori specified, and therefore, the displacement

vector has to be chosen somehow and might even be optimized in the process of sampling.

Besides the move class and displacement vector, the acceptance criterion, according to

which a generated trial structure is accepted and then replaces the current structure as
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a new starting point, needs to be specified. For this, some kind of effective temperature

Teff should be chosen, which, on the one hand, would allow the system to overcome PES

barriers, and, on the other hand, would eventually lead the system to the lowest lying

PES areas in order to be able to find the ground-state structure. Then the basin-hopping

acceptance rule based on the Metropolis algorithm [112] can be formulated like this:

P (∆E) = exp

(
− ∆Ẽ

kBTeff

)
. (3.7)

Finally, a method to perform local geometry optimizations and energy evaluations for

the basin-hopping sampling has to be chosen.

Another popular type of global optimization schemes is represented by Genetic Al-

gorithms, that take their idea and name from Darwin’s principle of the survival of the

fittest [39, 115, 116]. Based on the principles of natural evolution, it uses operators that

are analogues of the evolutionary processes of mating, mutation and natural selection to

explore the configurational space. Instead of a single initial configuration used in simu-

lated annealing or basin-hopping algorithms, here the starting point is a population of

randomly generated cluster structures. New clusters are generated by choosing two can-

didate structures from the population (“parents”), which are then “mated” to create a

“child”, allowing for “mutations” in the process. The best species from the population are

selected based on Darwin’s principle, and carried on to the next “generation”, while the

less suitable structures are discarded. Genetic algorithms have become popular recently

due to ease of implementation [97] and have been applied for studying a wide range of

clusters of different type, such as fullerenes, metal, ionic and molecular clusters [116].

A number of other algorithms has been suggested, such as the Diffusion Methods,

where the energy surface is changed so that it will eventually contain only one minimum

[117], or the Distance Geometry Methods, where the trial geometries can be generated

from a set of lower and upper bounds on distances between all pairs of atoms [118].

Besides, many modifications of the basic types of global optimization schemes have been

suggested, such as the minima hopping algorithm, where the random displacements are

substituted by a molecular dynamics trajectory [119, 120], or the landscape paving, where

the energy is artificially increased in regions that have already been explored [121].

In this work a basin-hopping implementation by Ralf Gehrke [41, 122] using the

FHI-aims package as a “calculator” for local geometry optimizations has been used to

sample the geometries of clusters, as well as a self-implemented version for optimizations

of clusters on surfaces using the DFTB+ package as a “calculator”.
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4 Statistical Thermodynamics

In Chapter 2 the basic DFT machinery has been discussed, which provides a wealth of

information about the electronic structure of the system under consideration as a function

of its electronic density. Despite common belief, DFT is not merely a zero-temperature

zero-pressure technique [123]. Instead, since the electronic density is itself a function

of the atomic configuration, it provides complete information on the potential energy

surface, which then contains the relevant information needed to describe the effect of

temperature on the atomic positions.

In order to be able to discuss the influence of finite temperature and pressure, one

needs to achieve a matching with thermodynamics. This idea is explored by ab initio

atomistic thermodynamics, which employs the information of the first-principles poten-

tial energy surface to calculate appropriate thermodynamic functions, such as enthalpy,

entropy or the Gibbs free energy [42, 124, 125, 126]. After getting the thermodynamic

potential function in question, it is possible to evaluate macroscopic system properties

using the standard methodology of thermodynamics [127, 128, 129].

Especially interesting for our clusters discussion is the Gibbs free energy, which under

the defined conditions (temperature and pressure) is the appropriate thermodynamic

potential to consider. Free energy per formula unit is equivalent to the chemical potential

µ in case of infinite, homogeneous system. In other words, if the homogeneous system is

viewed as a reservoir, µ gives the cost at which this reservoir provides particles. Then

the cluster environment can be reduced to chemical potentials with which the cluster is

in equilibrium. This then suggests a route to sample the ground-state geometries for a

wide range of compositions and compare their relative stabilities for any given chemical

potential. As a first step, obviously, we need a way to calculate the Gibbs free energy

of the reference system to get information on the chemical potential of the atom in

question. For this, we need to compute the so-called partition function, from which all

thermodynamic values can be obtained. 4

4.1 Partition Function

Assume that a thermodynamically large system is in constant thermal contact with the

environment, with a temperature T , and both the volume of the system and the number

of constituent particles are fixed. Such system is usually called a canonical ensemble.

Then all possible states of such system can be described as:

Q =
∑

i

e
−

Ei

kBT , (4.1)

4For detailed discussion of Statistical Thermodynamics please refer to refs. [130] and [131].
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where kB is the Boltzmann constant and T is temperature. This expression is called

partition function (denoting the partition of the ensemble into a set of systems) or

the sum over states (referring to the summation over i). The 1/kBT coefficient is often

denoted as β and called Boltzmann factor. The partition function is obtained by summing

Boltzmann factors over all states (or integrating over the phase space in case of the system

with continuous energies). Thus, Q is obtained as a result of summing over all macroscopic

states and is not a function of an individual state. Through Q, however, it is possible to

connect macroscopic quantities with microscopic states [132].

The probability of finding the canonical ensemble system in one given energy state Ei

is given by:

Pi =
e−βEi

Q
. (4.2)

Gibbs first obtained the distribution function Pi given by eq. (4.2) by considering such

an ensemble. Therefore, the method of deriving the distribution function for a canonical

ensemble is called Gibb’s ensemble method. Using the expression for Pi, we can evaluate

canonical ensemble averages. For instance, the average energy is:

U =
∑

i

Eie
−βEi

Q
. (4.3)

From here, the relations between statistical averages of observables and thermodynamic

functions can be found. For example, eq. (4.3) can be obtained by differentiating lnQ

with respect to −β. Taking into account that Q is a function of temperature and total

volume, we take a total derivative of kBT lnQ:

−d(kBT lnQ) = −kBT

(
∂ lnQ

∂T
+

1

T
lnQ

)
dT − ∂(kBT lnQ)

∂V
dV . (4.4)

At the same time, according to the second law of thermodynamics:

dU = TdS − pdV , (4.5)

where U is the internal energy, S is the entropy, and p is the pressure. Thus, the Helmholtz

energy is defined by:

F = U − TS , (4.6)

which gives

dF = −SdT − pdV = −
(
U − F

T

)
dT − pdV . (4.7)

Taking into account eq. (4.4), the average energy given by eq. (4.3) is:

U = −
(
∂ lnQ

∂β

)

V

=

(
∂ lnQ

∂T

)

V

kBT
2 . (4.8)
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If we consider U as the thermodynamic internal energy, eq. (4.4) and eq. (4.7) become

identical, giving

F = −kBT lnQ , (4.9)

which is one of the fundamental equations of thermodynamics. Taking the same approach,

one can show that, due to its important general statistical meaning, the partition function

can be used to derive all other thermodynamic functions.

4.2 Getting Thermodynamic Functions From Molecular Data

As we have discussed above, all thermodynamic functions can be obtained through the

partition function Q. In the general case, the total energy of a molecule (within the ideal

gas approximation, suitable for calculating a finite gas phase environment of clusters) can

be presented as a sum of at least four different contributions:

ε = ε0 + εtransl. + εrotat. + εvibrat. + εelectr. , (4.10)

where ε0 is the energy in the lowest energetical state. Within the Born-Oppenheimer

approximation [50] all these contributions are considered to be independent of each other.

Then the total partition function is

Q = Qtransl. +Qrotat. +Qvibrat. +Qelectr. . (4.11)

The partition function can be used to express any thermodynamic function [133, 134].

The translational contribution to the partition function (within the ideal gas model)

is described as:

Qtransl. =
(2πkBTm)3/2

h3
· kBT

p
. (4.12)

Then the translational part of the Gibbs free energy per one mole of particles is:

Gtransl. = −RT ln

(
(2πkBTm)3/2

h3
· kBT

p

)
= −RT lnQ . (4.13)

For entropy:

Stransl. = R ln

(
(2πkBTm)3/2

h3
· kBT

p

)
+

5

2
R = R lnQ+

5

2
R . (4.14)

For enthalpy and heat capacity:

Htransl. =
5

2
RT Ctransl.

p =
5

2
R . (4.15)

As one can see from the equations above, only the mass of the molecule under consider-
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ation, as well as the temperature and pressure are required to calculate the translational

contribution to thermodynamic functions.

The rotational contribution to the partition function is usually computed within the

rigid rotor approximation. For symmetrical molecules (e.g. a diatomic gas) the rotational

partition function is:

Qrotat. =
∞∑

J=0

(2J + 1) exp

(
−J(J + 1)h̄2

2 I kBT

)
, (4.16)

where J is the rotational quantum number and I is the moment of inertia. The rotational

constants can be computed from molecular data. For this, one first needs to calculate

the product of the moments of inertia IAIBIC :

IAIBIC = IxxIyyIzz − 2IxyIxzIyz − I2
xxIyy − I2

xyIzz − I2
yzIzz , (4.17)

with individual products defined as

Ixx =
∑

i

mi(y
2
i + z2

i ); Iyy =
∑

i

mi(x
2
i + z2

i ); Izz =
∑

i

mi(x
2
i + y2

i );

Ixy =
∑

i

mixiyi; Ixz =
∑

i

mixizi; Iyz =
∑

i

miyizi ,
(4.18)

where mi are atomic masses, and (xi, yi, zi) are atomic coordinates. Then the rotational

partition function is:

Qrotat. =
8π2

σ

(
2πkBT

h2

)3/2

· (IAIBIC)1/2 , (4.19)

where σ is a classical symmetry number, indicating the number of indistinguishable ori-

entations that the molecule can have. Then the rotational part of the Gibbs free energy

per one mole of particles is:

Grotat. = −RT ln


8π2

σ

(
2πkBT

h2

)3/2

· (IAIBIC)1/2


 = −RT lnQ . (4.20)

For entropy:

Srotat. = R ln


8π2

σ

(
2πkBT

h2

)3/2

· (IAIBIC)1/2


+

3

2
R = R lnQ+

3

2
R . (4.21)

For enthalpy and heat capacity:

Hrotat. =
3

2
RT Crotat.

p =
3

2
R . (4.22)
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4.2 Getting Thermodynamic Functions From Molecular Data

As one can see from the equations above, only the coordinates of the atoms in the molecule

under consideration, as well as the temperature and pressure are required to calculate

the rotational contribution to thermodynamic functions.

The vibrational contribution to the partition function is obtained within the harmonic

approximation by writing the partition function as a sum over the harmonic oscillators

of all N fundamental modes υi of the particle:

Qvibr. =
N∑

i

[
1 − exp

(
−hυi

kBT

)]
−1

. (4.23)

Then the vibrational part of the Gibbs free energy per one mole of particles is:

Gvibr. = RT
∑

i

ln

[
1 − exp

(
−hυi

kBT

)]
, (4.24)

or with the account of zero-point vibrations:

Gvibr. = EZPE + ∆Gvibr =
∑

i

{
NA

h̄υi

2
+RT ln

[
1 − exp

(
−hυi

kBT

)]}
, (4.25)

where NA is Avogadro’s constant. Obviously, for evaluating the vibrational contribution,

we need to compute the vibrational spectrum of the molecule under consideration. The

expression for entropy is:

Svibr. = R
∑

i

hυi

kBT

[
exp

(
hυi

kBT

)
− 1

]
−1

−R
∑

i

ln

[
1 − exp

(
−hυi

kBT

)]
. (4.26)

For enthalpy and heat capacity:

Hvibr. =
R

kB

∑

i

hυi

exp
(

hυi

kBT

)
− 1

Cvibr.
p = R

∑

i

(
hυi

kBT

)2
exp

(
hυi

kBT

)

[(
exp hυi

kBT

)
− 1

]2 . (4.27)

For certain molecules (mostly organic) a part of the 3N − 6 intermolecular degrees

of freedom appear not as vibrations, but instead as rotations, e.g. of the CH3 group

around the single C−C bond. Such rotations do not break the bonds, and can lead to

existence of rotational isomers (conformers), which can be distinguished experimentally.

The difference between vibrations and rotations is small in case of steric or energetic

constraints limiting the rotation. In other cases, however, if such limiting potential is

low, the contribution of internal rotations to thermodynamic functions has to be taken

into account. In case of Si clusters there are no internal rotations, therefore this type of

motion is not that important for the present work.

Thus, with an electronic contribution to the free energy computed as total energy
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4 Statistical Thermodynamics

of the structure, we have a complete machinery that allows us to calculate the total

Gibbs free energy of a system under consideration. From here, standard thermodynamics

approaches can be used, for example, to evaluate relative stabilities of different systems.

A more detailed discussion on this topic regarding clusters is given in Chapter 10.
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Part II

From Building Blocks to

Functionalized Materials



The prevalence of silicon in the semiconductor industry has sparked great interest in

silicon-based nanostructures that could act as building blocks for new easy-to-integrate

and engineered materials. Endohedral doping appears as a remarkable avenue to tailor

the intrinsic properties of silicon clusters [15, 16, 17, 18, 135]. In contrast to the com-

pact and reactive structures caused by the preferable sp3 bonding in pure Si clusters

[136, 137, 138, 139], the incorporation of even a single impurity atom can lead to the

stabilization of otherwise unfavourable cage-like geometries [140, 141, 142, 143], such as

saturated fullerenes and other polyhedral cage structures. As in clathrates [144] or carbon

nanostructures [13], these cages with endohedral metal atoms then represent appealing

symmetric and unreactive building blocks for novel cluster-assembled materials with en-

gineered properties. For instance, such systems have shown potential as an intriguing

novel nanoform of Si for e.g. optoelectronic device applications [18, 145].

Of course, it’s a long way from creating doped Si cluster building blocks to assembling

a material with fine-tuned properties. First of all, one would need to assess the stability of

such endohedrally doped clusters, since there is no systematic recipe known in literature

to predict which dopants and/or cluster sizes should be stable. For this, a comprehensive

study of the stabilization mechanism and electronic manifold of the structure has to be

carried out in order to understand the nature of the bonding within the cluster. This

problem is addressed in Chapter 4, largely based on our published article [146].

The next step would be to find a way to tune the magnetic and optical properties

of doped clusters, i.e. to suggest a strategy to conserve the high spin moment of the

encapsulated transition metal. In order to achieve this, one has to make sure that there

is no charge transfer from the endohedral metal to the surrounding Si cage. Taking into

account the large number of Si dangling bonds caused by the preferable sp3 hybridized

state of Si in such clusters, this seems to be an essential problem. Chapter 5, as well as

our paper [147], is devoted to this discussion.

Finally, a central question for chemistry and material science is how to assemble

individual building blocks into one material. A critical evaluation of synthetically feasible

routes to polymerization is of vital importance for a theoretical study of new materials.

In Chapter 6, supported by our recently published work [148], the possibility of using

endohedrally doped Si cages as building blocks for constructing highly magnetic materials

is systematically assessed.
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5 Stabilization Mechanism of Endohedrally Doped

Si Clusters

A prerequisite to a systematic synthesis of silicon cluster based materials are simple

rules that rationalize which metal dopants stabilize cages and of which size. While this

has been controversially discussed, one commonly agreed criterion for highly stable so-

called “magic” clusters is geometric and electronic shell closure [16, 141, 142]. Here, the

electronic manifold of a highly symmetric cage is viewed as states in a spherical potential,

and particular stability is expected, if the electrons fill any one of the angular momentum

shells, i.e. 1s (2e−), 1p (6e−), 1d (10e−), 1f (14e−), 2s (2e−), 1g (18e−), 2p (6e−), 2d

(10e−) etc. [149].

For a 16 Si atom endohedral Frank-Kasper (FK) polyhedron [150, 151] “magicity”

would hence be predicted for a dopant atom donating four valence electrons, as the

resulting 16 × 4 + 4 = 68 electrons achieve closure of the 2d shell. Within this model the

known high stability of VSi16
+ is thus naturally explained, if the nature of the bonding

in the cluster is viewed in terms of a full formal charge transfer, i.e. “VSi16
+ = V5+ +

Si16
4−” [27, 143, 152]. Recently, however, Lau et al. deduced from their X-ray absorption

spectroscopy data that also TiSi16
+ and CrSi16

+ with one valence electron less and more,

respectively, stabilize in a cage geometry, with furthermore a highly similar local electronic

structure around the dopant atom compared to the classic VSi16
+ system [30]. These

findings were a motivation of the investigation presented in this chapter as a first step

of our theoretical study, which follows a twofold approach. First, we perform a first-

principles global geometry optimization of the three cluster systems MSi16
+ (M = Ti, V,

Cr) to firmly establish that the endohedral FK cage indeed represents the ground state

geometry for all three dopant atoms. Second, we analyze the obtained electronic structure

to obtain a more qualified view on the nature of the chemical bonding and elucidate the

mechanism that still stabilizes the cage despite the differing number of valence electrons

in these three systems.

5.1 Computational Setup

All calculations presented within this chapter have been performed with the all-electron

full-potential density functional theory (DFT) code FHI-aims [79, 80]. Electronic ex-

change and correlation was treated within the generalized-gradient approximation (GGA)

functional due to Perdew, Burke and Ernzerhof (PBE) [69]. For comparison single-point

calculations at the optimized PBE geometries were also performed on the hybrid func-

tional level using the B3LYP [71] and PBE0 [72] functionals, without obtaining results

that would lead to any conclusions different to the ones derived and presented below

on the basis of the PBE data. This concerns in particular the energetic ordering of the
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5 Stabilization Mechanism of Endohedrally Doped Si Clusters

low-lying isomers and the electronic structure analysis.

FHI-aims employs basis sets consisting of atom-centered numerical orbitals (see Sec-

tion 2.3). All sampling calculations are done with the “tier 2” basis set, which contains

43 basis functions for Si, 67 basis functions for Ti, 88 basis functions for V, and 88 basis

functions for Cr, respectively. The numerical integrations have been performed with the

“tight” settings, which correspond to integration grids with 85, 97, 99, and 101 radial

shells for Si, Ti, V, and Cr, respectively, in which the number of integration points is suc-

cessively decreased from 434 for the outermost shell to 50 for the innermost one [79]. For

the ensuing electronic structure analysis of the optimized geometries the electron density

was recomputed with an enlarged “tier 3” basis set, which contains 64 basis functions

for Si, 103 basis functions for Ti, 115 basis functions for V and 124 basis functions for

Cr (see Appendix A). Systematic convergence tests indicate that these settings are fully

converged with respect to the target quantities (energetic difference of different isomers

in the sampling runs; electron density distribution in the electronic structure analysis).

This holds in particular for a central quantity of our analysis, the radial electron density

distribution of the different doped cages. This quantity is defined as

n(r) =
∫ 2π

0

∫ π

0
r2n(r, θ, φ) sinθ dθdφ , (5.1)

where n(r, θ, φ) is the electron density at a given point at spherical coordinates (r, θ, φ)

away from the central dopant atom at r = 0. To build a radial distribution of the electron

density we calculate the surface integral (eq. (5.1)) for a set of spheres of increasing radii,

and then plot the obtained values as a function of the sphere radius. The numerical

integration is hereby performed using a cubic (400×400×400) volumetric data grid with

0.02 Å voxel width. The chosen finite integration radius and angle steps equal 0.02 Bohr

and π/360, respectively.

Local structure optimization is done using the Broyden-Fletcher-Goldfarb-Shanno

[103, 104] method relaxing all force components to smaller than 10−2 eV/Å. To make

sure that the cage-like geometry indeed represents the ground-state structure for all

three dopant atoms we relied on basin-hopping (BH) based global geometry optimization

[36, 40, 41] (for details on the method see Section 3.2). Within the BH idea the con-

figuration space is explored by performing consecutive jumps from one local minimum

of the potential energy surface (PES) to another. To achieve this, positions of atoms in

the cluster are randomly perturbed in a so-called trial move followed by a local geometry

optimization which brings the system again into a local PES minimum. A Metropolis-

type acceptance rule is used to either accept or reject the jump into the PES minimum

reached by the trial move. As specific BH implementation we chose collective as well

as single-particle trial moves, in which all atoms (collective move) or a randomly picked

atom (single-particle move) is displaced in a random direction. Two different starting
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5.2 Cage-like Ground State Geometry

Figure 5.1: Ball-and-stick views of the identified ground-state FK cage geometries.

points were used for all optimization runs: 1) All atoms are randomly positioned inside a

box of dimension (9×9×9) Å3, or 2) the solution for the Thomson-problem [153] (how to

put point charges on a sphere with minimal energy) is employed to position the Si atoms

and then the doping metal atom is added at the center. Typical BH runs comprised of

the order of 100 accepted trial moves, and unanimously identified the cage geometry as

lowest energy structure regardless of the specific settings employed for the Metropolis

rule [112] or the single-particle/collective moves.

5.2 Cage-like Ground State Geometry

In contrast to preceding work on Si20 fullerenes [154], our extended unbiased configuration

searches confirm that the endohedral FK cage indeed represents the ground-state isomer

for MSi16
+ with all three dopant atoms, cf. Fig. 5.1. The “non-magicity” in case of

Ti and Cr doping only expresses itself in form of a much reduced energetic gap to the

second lowest energy isomer identified in the BH runs: For VSi16
+ this gap amounts

to 1.00 eV, whereas for TiSi16
+ and CrSi16

+ it is only 0.01 eV and 0.08 eV, respectively.

Within a 1.00 eV range above the identified ground state we correspondingly found about

15 inequivalent isomers for the latter two systems. In the Cr-doped case all of them are

capped CrSi15
+ cages, for Ti more compact TiSi16

+ cages are found within 0.1 eV above

the ground state. Above this mostly capped TiSi15
+ structures are identified. For none of

the three systems do we thus find exohedral structures among the energetically low-lying

isomers. Detailed information about the structures of these lowest lying isomers can be

found in Appendix B and ref. [146].

The incomplete shell-closure of TiSi16
+ and CrSi16

+ also shows up in the symmetry of

the FK cage. Whereas the “ideal” VSi16
+ cluster exhibits perfect Td symmetry, the cages

with Ti and Cr dopants only exhibit C1 symmetry. The distortions away from perfect Td

symmetry are, however, only minor, as can best be seen from the M-Si bond distances

within the cage. In a perfect FK polyhedron these distances fall into two closely spaced

shells: one with four Si atoms that form a perfect tetrahedron, and slightly beyond that

another one with 12 Si atoms that are all equidistant from the encapsulated metal atom.
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5 Stabilization Mechanism of Endohedrally Doped Si Clusters

In the VSi16
+ cluster, these two shells are located at distances of 2.54 Å and 2.81 Å,

respectively. In the less symmetric TiSi16
+ and CrSi16

+ geometries the distortions lift the

degeneracies of the two shells and we instead find M-Si distances spread over a range of

2.64 Å to 2.86 Å for Ti and over a range of 2.50 Å to 3.35 Å for Cr, respectively. Overall

this leads in case of Ti doping to a slightly increased average cage radius of 2.78 Å,

compared to the average M-Si distance of 2.74 Å in both VSi16
+ and CrSi16

+.

Overall, the geometric differences between the three cages are thus rather small. We

furthermore verified that these differences have only insignificant effects with respect to

the discussion of the electronic structure of the cage presented in the following. In fact,

also the other low-lying endohedral isomers identified for the “non-magic” clusters exhibit

(despite their somewhat larger geometric distortions) an electronic structure that differs

only insignificantly with respect to the following analysis from the one obtained for the

ground-state isomer. We keep this in mind and correspondingly base our analysis for all

three doped and the empty cages on the symmetric ground-state geometry obtained for

VSi16
+, i.e. in all cases the geometry was kept as in VSi16

+ and only the electron density

was each time self-consistently computed. This procedure facilitates the qualitative dis-

cussion of the nature of the bonding and of the concomitant charge redistribution as it

allows to directly subtract the electron densities obtained for the different dopants and,

because of the higher symmetry, makes the presentation of radial electron distributions

averaged over the solid angle more meaningful.

5.3 Spherical Potential Model

The prevalent model to rationalize the stability of doped Si cage geometries is the spher-

ical potential model [16, 140, 141, 142, 143, 149], which has been discussed in detail for

the “magic” VSi16
+ cluster by Torres, Fernández and Balbás [143]. As a first step in our

attempt to qualify the chemical bonding and stability in the “non-magic” FK clusters

doped with Ti and Cr we first briefly recapitulate the essentials of this discussion. The

spherical potential model exploits the near sphericity of the ideal FK polyhedron, which

suggests to classify the electronic states in shells of a determined radial and angular

momentum quantum number. The computed density of states (DOS) of VSi16
+ shown

in Fig. 5.2(b) demonstrates that the Kohn-Sham states indeed group into the expected

sequence (1s, 1p, 1d, 1f, 2s, 1g, 2p, 2d, 1h, . . .), with the 68 valence electrons exactly achiev-

ing closure of the 2d shell. Also more subtle features like the splitting into the different

tetrahedral (Td) sub-groups are perfectly obeyed, i.e. the different shells are sub-divided

as s(a1), p(t2), d(e + t2), f(a2 + t1 + t2), g(a1 + e + t1 + t2), h(e + t1 + 2t2). Bonding to

the transition metal dopant is predominantly expected via the π-type orbitals with one

radial node (2s, 2p, 2d), with hybridization following an approximate l-selection rule, i.e.

the dopant 3d and 4s valence orbitals mix with Si cage d and s π-orbitals, respectively.

34



5.3 Spherical Potential Model

Figure 5.2: Total density of states (DOS) and DOS projected on the metal dopant for
a) TiSi16

+, b) VSi16
+, and c) CrSi16

+. Panel d) directly compares the metal-projected
DOS for the three cases to illustrate the varying degree of metal-Si hybridization. The
zero-reference for the energy scale is the vacuum level, and the labels given to the different
groups of states follow the notation of the spherical potential model (see text).

The metal-projected DOS contained in Fig. 5.2(b) proves that also this feature of the

spherical potential model is fully reproduced by the actual computation.

However, these features are not a specificity of the “magic” VSi16
+ cluster, but instead

simply inherent properties of the near-spherical polyhedral cage shape. As apparent

from Fig. 5.2(a) and 5.2(c) essentially the same groupings of the Kohn-Sham states

are equally obtained for the other two dopants, i.e. also here the electronic manifold

is well described within the spherical potential model. Exactly as expected from the

differing number of valence electrons, the only difference is that electronic shell closure

is not achieved. In TiSi16
+ (with 67 valence electrons) the highest energy state of the

2d shell is unoccupied, and in CrSi16
+ (with 69 valence electrons) the lowest energy

state of the 1h shell is occupied. This lifts many of the degeneracies within the different

electronic shells and leads to small inter-spin HOMO-LUMO gaps (see Tables 5.1 and

5.2), but the overall structure in terms of angular momentum shells is still preserved.

Furthermore, as confirmed by our first-principles sampling calculations the endohedral

FK polyhedron still represents the lowest-energy isomer for the “non-magic” TiSi16
+ and
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5 Stabilization Mechanism of Endohedrally Doped Si Clusters

System Spin
HOMO, eV LUMO, eV gap, eV

alpha beta alpha beta
same spin
channel

by defini-
tion

TiSi16
+ doublet −9.01 −9.28 −7.12 −8.69 1.89 0.32

VSi16
+ singlet −9.44 −6.99 2.45

CrSi16
+ doublet −7.90 −9.17 −7.16 −7.26 1.91 0.64

Table 5.1: MSi16
+ (M = Ti, V, Cr) HOMO and LUMO levels and HOMO-LUMO gap,

computed both within the same spin channel and by definition.

CrSi16
+. Electronic shell closure might thus be a criterion for enhanced stability with

respect to other potential isomers. However, it is not a necessary condition to stabilize

the endohedral cage geometry per se.

5.4 Charge Transfer vs. Hybridization

Insight into the weakened role of electronic shell closure can come from a more qualified

discussion of the nature of the chemical bond within the doped clusters. The simplified

picture connected with the “magicity” of VSi16
+ assumes a formal charge transfer of all

five valence electrons to the Si cage manifold. This “formal” view is readily checked

by evaluating the difference of the actually computed electron density of VSi16
+ with

respect to a mere superposition of the electron densities of an empty Si16
4− cage and a

V5+ cation. If the formal charge transfer picture was correct, then this electron density

difference should be zero throughout. Figure 5.3 shows this difference in form of the

radial electron density distribution, i.e. averaged over the solid angle, cf. eq. (5.1). The

largely negative values exhibited at radii larger than the average cage radius of 2.74 Å

indicate that a formally 4− charged Si cage would contain much more electron density

at the outside as compared to the real VSi16
+ system, while simultaneously there would

be much less charge in the inside (positive regions in Fig. 5.3). However, this does not

simply indicate that a smaller formal charge transfer from metal to cage takes place.

As illustrated in Fig. 5.3 also other superpositions of differently charged empty cages

and cations do not represent the real electron density well. This holds in particular for

the radial region between ∼ 1 − 2 Å, i.e. exactly the bonding region between central

metal atom and cage. The metal-Si bonding is thus rather the result of a more complex

hybridization than mere formal charge transfer.

Equivalent results shown in Fig. 5.4 are also obtained for the “non-magic” TiSi16
+ and

CrSi16
+ clusters, which means that also there the real electron density of the endohedral

cage cannot be fully rationalized in terms of a formal charge transfer. However, in

all three dopant cases the true electron density outside the cage is best represented,
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5.4 Charge Transfer vs. Hybridization

System MO
Spin channel

Alpha Beta
E, eV Isosurface E, eV Isosurface

TiSi16
+

L
U

M
O

−7.12 −8.69

H
O

M
O

−9.01 −9.28

VSi16
+

L
U

M
O

−6.99

Singlet spin state:
same as alpha

H
O

M
O

−9.44

CrSi16
+

L
U

M
O

−7.16 −7.26

H
O

M
O

−7.90 −9.17

Table 5.2: MSi16
+ (M = Ti, V, Cr) frontier orbitals.

i.e. the radial electron density difference distribution is closest to zero, for a charge

combination of a positively charged Si cage and a neutral metal atom. This suggests

that the different number of valence electrons in the three systems resides predominantly

around the dopant. Figure 5.5 demonstrates that this is indeed the case. Depicted is the

electron density difference between VSi16
+ and TiSi16

+, as well as between VSi16
+ and

CrSi16
+, which allows to locate the missing electron in TiSi16

+ and the excess electron

of CrSi16
+ as compared to the “magic” VSi16

+ cluster, respectively. In both cases this is

close to the central metal atom.

37



5 Stabilization Mechanism of Endohedrally Doped Si Clusters

Figure 5.3: Radial distribution, cf. eq. (5.1), of the electron density difference, ∆n(r) =
nVSi+

16
(r) − nSi4−

16
(r) − nV5+(r) (black solid line), where nVSi+

16
(r) is the electron density of

the doped cage, nSi4−

16
(r) the density of the empty Si cage, and nV5+(r) the density of the

V cation. If the formal charge transfer picture was correct, ∆n(r) should be essentially
zero throughout. Note the average cage radius, i.e. the position of the Si atoms, is at
2.74 Å. Additionally shown are other charge combinations of the two fragments (Si16 +
V+, red dashed line; Si+16 + V, blue dotted line).

Figure 5.4: Same as Fig. 5.3, but for TiSi16
+ (left panel) and for CrSi16

+ (right panel).

A complementary view comes from the analysis of the projected DOS. For this Fig.

5.2(d) specifically compares the metal-projected DOS for the three doped cages. Inter-

estingly, the metal contribution to the lower lying electronic shells up to the 2p shell

is essentially the same in all cases, i.e. the intra-shell bonding is little affected. This

is much different for the frontier shells 2d and 1h, which are mostly responsible for the

bonding between cage and dopant. Here, there is a clear trend of increasing metal weight

to the states when going from TiSi16
+ over VSi16

+ to CrSi16
+. If we add up these metal

contributions over the occupied set of 2d and 1h states, we arrive at a total of 2.1 (Ti),

3.1 (V) and 3.7 (Cr) electrons in the three cases. Between Ti and V, as well as be-

tween V and Cr the metal dopant provides thus each time around one electron more to

the hybridized states. The adapting degree of metal-Si hybridization hence compensates
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Figure 5.5: Electron density difference VSi16
+ − TiSi16

+ (left panel) and VSi16
+ − CrSi16

+

(right panel). The radial electron density distribution, cf. eq. (5.1), as well as the 3D
isosurface at 0.02 e/Å3 in the inset demonstrate that the missing electron in the former
and excess electron in the latter case are predominantly located around the central metal
atom.

largely for the different total electron numbers. In other words, while from TiSi16
+ over

VSi16
+ to CrSi16

+ there is each time one more valence electron in the topmost 2d and

1h shells, the number of electrons that is actually assigned to the Si cage remains es-

sentially the same. The cage therefore effectively “sees” similar charge numbers, as the

adaptive ability of the orbitals that are predominantly responsible for the metal-silicon

bonding can accommodate for the charge excess or deficit. However, intriguingly it is

not just one state that is responsible for this, e.g. intuitively the one with the changed

occupation. Instead it is the rehybridization of the entire set of 2d and 1h states, which

effectively compensates for the “non-magicity”. This adaptive capability diminishes the

role of electronic shell closure and is in our view the main reason that helps to stabilize

the endohedral cage geometry also for TiSi16
+ and CrSi16

+ despite their differing number

of valence electrons.

5.5 Conclusions to Chapter 5

In summary our DFT-based unbiased configuration searches confirm the preceding in-

terpretation of Lau et al. [30] that the Frank-Kasper polyhedron indeed represents the

ground-state geometry for the series of doped TiSi16
+, VSi16

+ and CrSi16
+ clusters. En-

dohedral doping can thus be used as avenue to stabilize cage-like Si16 geometries. The

electronic structure analysis demonstrates that all three systems are well described within

the spherical potential model, i.e. the electronic manifold groups into states of defined

radial and angular momentum number. Only the classic VSi16
+ cluster achieves closure

of the electronic 2d shell, while the varying number of valence electrons leads to an un-

occupied 2d state in case of TiSi16
+ and an occupied 1h state in case of CrSi16

+. Shell
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5 Stabilization Mechanism of Endohedrally Doped Si Clusters

closure is thus not a necessary condition for the stabilization of the cage-like geometry

as ground-state structure.

We attribute this diminished role of shell closure for the stabilization to the adaptive

capability of the metal-Si bonding, which is more the result of a complex hybridization

than the mere formal charge transfer picture originally proposed in connection with the

spherical potential model. This adaptive capability allows to locate the deficient electron

in case of TiSi16
+, as well as the excess electron in case of CrSi16

+ predominantly around

the metal dopant. The effective charge assigned to the Si cage is then essentially the

same in all three systems, i.e. the rehybridization of the 2d and 1h shells compensates

for the “non-magicity”. This re-hybridization also causes a complete quenching of the

dopant spin moment, which itself is thus a confirmation of the here suggested view.

While electronic shell closure is still certainly a criterion for particularly enhanced

stability, the flexibility of the metal-Si bond can thus help to stabilize also other cage-

dopant combinations than predicted by this simple rule. Enhanced stability here does

not refer to other cluster sizes or dopants, but as confirmed by our global geometry

optimizations to alternative, potentially exohedral isomers of the given doped cluster. If

such an enhancement is a necessary criterion to maintain the structural integrity of the

endohedral cage upon ligand bonding remains to be confirmed by future studies explicitly

addressing the adsorption of such groups. Only if it is the case, it would make sense to

transfer the concept of “magicity” — relating geometric stability to electronic shell closure

— to the design of cluster-assembled materials.
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6 Hydrogenated Si Fullerenes as Magnetic Building

Blocks

As has been shown in Chapter 5, the cage geometry in endohedrally doped silicon clusters

is stabilized through a strong interaction with the encapsulated dopant atom, which

unfortunately goes hand in hand with a quenching of the dopant spin moment [146]. The

recent suggestion that also hydrogen termination of Si clusters could yield an (empty)

fullerene configuration [155, 156] has thus raised hopes that metal-doping of corresponding

hydrogenated fullerenes would yield cage structures with minimized M-Si interaction

[157]. With the atomic character of e.g. magnetic dopants then likely conserved, this

would offer a route to specifically develop Si fullerene species with large magnetic moments

for magneto-electronic applications.

In order to further explore and substantiate this idea, within this chapter we perform

density functional theory based global geometry optimizations of the smallest hydro-

genated endohedral cage, Si16H16, for a range of metal dopants. In order to address a

possible influence of the size of the dopant atoms, this range comprises not only previ-

ously discussed high magnetic moment species like Ti or Cr [157], but extends over the

entire 3d series. While our extensive unbiased sampling indeed confirms the cage-like

geometry as global ground state of empty Si16H16, this is unfortunately not the case for

any of the 3d dopants. Instead of a symmetric metal encapsulation, strongly distorted or

even broken cages are significantly more stable in all cases. Moreover, the stronger M-Si

interaction in these ground-state structures leads to the same quenching of the magnetic

moment as in the regular MSi16 fullerenes. Attributing these discouraging findings to

the insufficient space inside Si16H16, we therefore extend our study to the next larger

fullerene-like structure, Si20H20 [155]. Testing the high magnetic moment sequence Ti, V,

Cr, and Co we now obtain in all cases perfectly symmetric endohedral cage geometries as

ground states. Spin density distribution analysis furthermore reveals that the high spin

states of these structures come indeed primarily from conservation of the dopant magnetic

moment, i.e. the tested sequence already offers an intriguing toolbox of Si nanoforms with

septet to quartet spin, respectively. Confirming also the next larger Si24H24, Si26H26 and

Si28H28 cages in the fullerene sequence as corresponding ground-state geometries, this

strongly supports the idea of generating promising magnetic building blocks by doping

sufficiently-sized hydrogenated Si cages.

6.1 MSi16H16 (M = 3d Metal) Clusters

The starting point of our investigation is an extended configurational search, which even

after thousands of trial structures confirms that the ground-state structure of Si16H16 is

indeed the perfectly symmetrical tetrahedral (Td) cage shown in Fig. 6.1 [155]. Featuring

41



6 Hydrogenated Si Fullerenes as Magnetic Building Blocks

Figure 6.1: Identified ground-state geometry of Si16H16, as well as of MSi16H16 clusters
(with M covering the 3d metal series).

Si atoms at distances of 2.95 Å and 3.17 Å from the center, this cage provides in principle

enough geometric space to host an endohedral dopant atom, with the hydrogenation

hoped to minimize the actual M-Si interaction. Unfortunately, the global geometry

optimization results for MSi16H16 clusters with metal dopant atoms ranging over the

entire 3d series from Sc to Zn reveal a different picture. In all cases only a few BH steps

are required to identify significantly more stable geometries, which correspond to severely

distorted cages or more compact structures that push the dopant atom from the center

to the cluster fringe (or even expel it completely in case of Zn), cf. Fig. 6.1 (consult

Appendix B or ref. [147] for detailed information about the stuctures and energetics of

identified low-lying isomers). With the exception of Zn (0.37 eV) the energetic difference

of these new structures to the symmetric endohedral cage is of the order of 1 eV or larger,

which makes a kinetic trapping in the high-energy tetrahedral cage geometry rather

unlikely. It also suggests that the obtained energetic order is not affected by the well-

known limitations of the employed semi-local DFT functional. To further validate this,

we nevertheless evaluated the energetic differences also with the hybrid PBE0 functional

[72], without obtaining any qualitative changes.

As already indicated by the typically high Si coordination, the identified low-energy

isomers exhibit a rather strong M-Si interaction involving substantial charge rearrange-

ments. Not surprisingly, this goes along with an almost complete quench of the dopant

spin moment. Clusters having an even number of electrons are singlets (Ti, Cr, Fe, Ni

and Zn doping), clusters with odd number of electrons are doublets (Sc, V, Mn, Co and

Cu doping), with again no changes observed when repeating the calculations at the PBE0

hybrid functional level. In case of the doublets, the unpaired electron is hereby not even

necessarily centered on the dopant atom: For both Co and Sc the spin density is either

partly or even mainly located on Si atoms, respectively. Obviously, this completely rules

out the original proposition of using these clusters as highly magnetic Si building blocks.
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6.2 MSi20H20 (M = Co, Ti, V, Cr) Clusters

Ti V Cr Co

Relative, energy, eV

PBE PBE0 PBE PBE0 PBE PBE0 PBE PBE0

singlet 0.00 0.00 0.00 0.00

doublet 0.00 0.00 0.00 0.00

triplet −0.35 −0.31 −0.46 −0.51

quartet −0.67 −0.86 −0.78 −0.69

quintet −0.43 −0.39 −1.65 −1.88

sextet −1.23 −1.25 3.06 2.37

septet −2.78 −3.09

Table 6.1: Calculated spin states (GGA-BPE and hybrid-PBE0) of Ti, V, Cr and Co
atoms. Highlighted are the most stable spin states.

6.2 MSi20H20 (M = Co, Ti, V, Cr) Clusters

Suspecting an insufficient space inside the cage as reason for these findings we proceed

to the next larger hydrogenated fullerene-like cage Si20H20, for which extensive sampling

again confirms the empty cage geometry shown in Fig. 6.2(a) as ground-state structure.

Intriguingly, the increased radius of 3.33 Å of this icosahedral (Ih) cage now seems to be

large enough to even accommodate most space-demanding high spin-state dopant atoms.

Focusing on the sequence Co, Ti, V, and Cr with quartet, quintet, sextet and septet

atomic spin moments, respectively (see Table 6.1), the endohedrally-doped symmetric

cage corresponds each time to the most stable structure found in our extensive sampling

runs. Moreover, the energetic gap to the second lowest identified isomer, which then

corresponds to a distorted or broken cage structure, is in all cases larger than ∼ 0.5 eV.

From this we again do not suspect our findings to be jeopardized by the limitations of the

employed semi-local DFT functional; an interpretation that we find confirmed by hybrid

PBE0-level calculations that yield for all four dopant atoms the same energetic order of

ground-state cage and second lowest isomer as in the PBE case.

Now, let’s take a look at the electronic structure of the CrSi20H20 cluster as an example

of the doped hydrogenated silicon fullerene system. To locate the position of unpaired

electrons we have plotted the spin density distribution of the cluster, in a form of both

space-averaged radial distribution (zero corresponds to the center of the cage, i.e. the

dopant atom) and a three-dimensional isosurface plot (Fig. 6.3(a)). Analysis of the spin

density distribution confirms that the unpaired electrons indeed reside predominantly on

the central metal atom. The area below the plot integrates to 6.0 e−, which corresponds

to six unpaired electrons (septet state). The area under the first peak gives an estimation

of the share of Cr dopant. This is in line with the obtained almost negligible hybridization
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6 Hydrogenated Si Fullerenes as Magnetic Building Blocks

Figure 6.2: Identified hollow cage ground-state geometries of the next larger hydrogenated
Si fullerenes.

Figure 6.3: a) Radial spin density distribution of the CrSi20H20 cluster. The inset shows
the spin density distribution within the structure; b) Total DOS (black solid line) and
DOS projected on metal dopants (red dashed line) for the CrSi20H20 cluster.

of the occupied metal 3d states. The Density of States (DOS) diagram of the CrSi20H20

cluster, both total and dopant-projected, is presented in Fig. 6.3(b). The Cr-specific peak

shows that five unpaired 3d electrons belong almost exclusively to Cr atom. Thus, the

atomic character of the dopant is largely preserved in the endohedral doped structure. A

very similar picture is also observed for the other MSi20H20 clusters considered. Thus, one

can see that endohedral doping within the hydrogenated Si20H20 cage allows conservation

of the magnetic moments typical for the atomic states of the considered dopants.

For this fullerene size we thus find a beautiful confirmation of the hydrogenation con-

cept, considering that previous global geometry optimization work clearly identified the

corresponding endohedral MSi20 cages (M = Ti, V, Cr) as metastable, with the ground-

states of these unhydrogenated clusters instead given by heavily distorted and reactive

structures [154]. In contrast to the again almost complete spin quench in the latter

structures, the doped hydrogenated fullerenes furthermore perfectly conserve the high

magnetic moments of their metal dopants, i.e. CoSi20H20, TiSi20H20, VSi20H20, CrSi20H20

exhibit quartet, quintet, sextet and septet spin moments, respectively. Analysis of the

spin density distribution confirms that the unpaired electrons indeed reside predomi-
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6.2 MSi20H20 (M = Co, Ti, V, Cr) Clusters

System MO
Spin channel

Alpha Beta
E, eV Isosurface E, eV Isosurface

CrSi20H20

L
U

M
O

+
1

−3.30 −2.94

L
U

M
O

−3.31 −4.13

H
O

M
O

−5.23 −6.14

H
O

M
O

−
1

−5.40 −6.16

Table 6.2: CrSi20H20 frontier orbitals.

nantly on the central metal atom, which is in line with the obtained almost negligible

hybridization of the occupied metal 3d states. The metal-cage interaction instead seems

to be largely mediated via the metal 4s state, which rationalizes the stabilization of a

symmetric dopant position in the center of the cage. The high stability of the stuctures

is reflected in rather high values of the HOMO-LUMO gaps (see Table 6.2 and 6.3).

Despite considerable binding energies, which at the PBE-level exceed 1 eV (see Table

6.3) and therewith stabilize the endohedral cage geometry, the atomic character of the

metal dopant atom is thus largely conserved. Energies of the frontier orbitals in Table

6.3 are presented with respect to the vacuum (zero) level. For open-shell systems both

alpha and beta spin channels are presented. Since the definition of the HOMO-LUMO

gap for open-shell systems is somehow arbitrary, here we present two values: energy

difference corresponding to the same spin channel orbitals and energy difference computed

by definition (unoccupied orbital with the lowest energy minus occupied orbital with the
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6 Hydrogenated Si Fullerenes as Magnetic Building Blocks

Figure 6.4: Calculated TD-DFT optical excitation spectrum of the endohedral CrSi20H20

fullerene ground-state, with the insets illustrating the dominant Kohn-Sham orbitals be-
hind the individual transitions.

highest energy). Binding energies are computed as follows:

Eb = E(SinHn) + E(M) − E(MSinHn) , (6.1)

where, E(M) is total energy of isolated dopant atom, E(SinHn) and E(MSinHn) are total

energies of global minima of empty and doped hydrogenated silicon cage, respectively.

One can see that systems with strong M-Si interaction (MSi16H16) exhibit quenching of

the dopant spin moments, as opposed to highly symmetric MSi20H20 clusters with min-

imized M-Si interaction, featuring spin states of quartet, quintet, sextet and septet for

Co, Ti, V and Cr, respectively. It is worth mentioning that strong-interacting systems are

also characterized by typically higher binding energies towards the metal dopant. Com-

paring HOMO-LUMO gaps, one can come to the conclusion that all MSi16H16 clusters

show a smaller gap than the empty Si16H16 cage, which can again be attributed to strong

M-Si interaction, while highly symmetric MSi20H20 systems with minimized dopant-cage

interaction do not exhibit significant gap quenching.

The preserved atomic character of the metal dopant is also apparent in the optical

excitation spectra, computed within the time-dependent density functional theory (TD-

DFT) linear response formalism [45, 46] as implemented in the Gaussian 03 suite [92].

To calculate the excitation spectrum of the cluster, the first one hundred transitions

have been computed using the PBE0 [72] functional and the effective core potential

double-zeta type LANL2DZ [158] basis set, which describes 28 core electrons with a

pseudopotential and 3s23p63d104s1 electrons with a [5s, 5p, 5d/3s, 3p, 2d] valence basis
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6.2 MSi20H20 (M = Co, Ti, V, Cr) Clusters

System Spin
HOMO, eV LUMO, eV gap, eV

BE, eV
alpha beta alpha beta same ch.

by
def.

Si16H16 singlet −5.46 −3.05 2.40 −
ScSi16H16 doublet −4.91 −5.18 −3.81 −4.03 1.10 0.89 4.17

TiSi16H16 singlet −4.88 −4.24 0.65 3.61

VSi16H16 doublet −4.20 −4.79 −3.24 −3.49 0.96 0.71 4.70

CrSi16H16 singlet −4.66 −3.43 1.23 3.38

MnSi16H16 doublet −4.76 −4.91 −3.72 −3.95 1.04 0.81 3.16

FeSi16H16 singlet −4.54 −3.12 1.42 5.24

CoSi16H16 doublet −4.59 −5.19 −3.36 −4.14 1.23 0.44 4.96

NiSi16H16 singlet −4.92 −3.10 1.82 6.28

CuSi16H16 doublet −3.79 −5.54 −2.90 −3.41 0.89 0.38 4.86

ZnSi16H16 singlet −4.91 −3.47 1.45 0.62

Si20H20 singlet −6.15 −3.26 2.89 −
TiSi20H20 quintet −4.21 −6.14 −3.68 −4.03 2.11 0.18 1.87

VSi20H20 sextet −4.58 −6.16 −4.50 −4.10 2.06 0.09 1.72

CrSi20H20 septet −5.23 −6.14 −3.31 −4.13 1.92 1.09 1.42

CoSi20H20 quartet −5.57 −5.21 −3.32 −4.93 2.26 0.28 1.34

Si24H24 singlet −6.02 −3.23 2.79 −
Si26H26 singlet −6.08 −3.24 2.83 −
Si28H28 singlet −6.19 −3.25 2.94 −

Table 6.3: Spin states, frontier orbitals energies, HOMO-LUMO gaps and binding energies
for MSinHn clusters. See text for details.

set. Figure 6.4 illustrates this for the CrSi20H20 case. In stark contrast to corresponding

spectra of e.g. the broken cage structures of MSi16H16, only a few well-defined transitions

are apparent in the optical range. These transitions are energetically shifted and changed

in their order in comparison to the corresponding spectra of the isolated atomic dopants.

Nevertheless the “atomic” character is preserved, i.e. apart from their magnetic properties

the endohedrally-doped hydrogenated fullerenes also exhibit promising optical properties.

We have also checked whether the symmetry of the dopant atom’s electronic config-

uration can influence the preferred SinHn cage geometry and therefore size. For this, we

have run global geometry optimization for MSi16H16 and MSi20H20 clusters encapsulating
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6 Hydrogenated Si Fullerenes as Magnetic Building Blocks

several different f -elements. In all cases for MSi16H16 the found ground-state structures

correspond to highly distorted geometries, which agrees well with the results obtained

for d-metal dopants. Si20H20 cage is again found to be sufficiently large to accommodate

the dopant atom, despite the increased atomic radius. For instance, we have found a

perfectly symmetrical USi20H20 cluster with a spin state of quintet, which agrees nicely

with the dopant’s electronic configuration 5f 36d17s2.

6.3 Conclusions to Chapter 6

In summary, we have thus systematically scrutinized the possibility of stabilizing en-

dohedrally doped Si fullerenes through hydrogenation. Our unbiased global geometry

optimization based on semi-local and hybrid functional DFT undoubtedly revealed that

the smallest hydrogenated Si16H16 cage focused on in previous works is generally too small

to encapsulate 3d transition metals. On a conceptual level this underscores the danger

of basing nanoscale materials design through predictive-quality theory on incomplete ex-

plorations of the vast configurational space, such as simple comparisons of chemically

intuitive candidate structures. For the next larger fullerene-like cage though, our first-

principles sampling indeed identifies perfectly symmetric MSi20H20 (M = Co, Ti, V,

Cr) cage structures as ground states. Compared to distorted or broken cage geometries,

these structures are stabilized through substantial delocalized 4s-cage interaction, while

nevertheless largely retaining the atomic character of the metal dopant. With respect

to magnetic properties, the confirmed quartet, quintet, sextet and septet spin moments

of CoSi20H20, TiSi20H20, VSi20H20, and CrSi20H20, respectively, thus already offer a nice

toolbox of unreactive building blocks with high magnetic moments. Nicely shielded by

the fullerene cage, the encapsulated dopants furthermore also conserve atom-like optical

properties. This strongly suggests endohedral doping of hydrogenated fullerenes as a

viable route to novel cluster-based materials for magneto-optic applications. This vision

gets further support by extensive sampling runs that also suggest empty cage geome-

tries as ground states for the next larger hydrogenated Si fullerenes up to Si28H28, cf.

Fig. 6.2. Eventually, these cages will offer enough space to also host multi-core dopants.

Encapsulation into hydrogenated Si fullerenes thus appears as a promising avenue to gen-

erally protect metal clusters from reactive environments and make their unique material’s

properties available in applications.
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7 Assembling Functionalized Materials

As has been suggested in Chapter 6, especially interesting for magnetic applications is the

case of hydrogenated metal-doped Si clusters, where a minimized cage-dopant interac-

tion preserves the high magnetic moments of the encapsulated transition metal dopants

[147, 155]. This discriminates such saturated structures from their non-hydrogenated

counterparts, where the cage geometry is often stabilized through a strong cage-dopant

interaction, which leads to quenching of the metal magnetic moment [146] (see Chapter

5). Without doubt, such highly-magnetic building blocks offer great potential for instance

for data storage or spin-based electronic devices [159, 160].

Assembling the building blocks into one material structure is, of course, a key problem

in chemistry and material science. The possibility of building homo- and heterogeneous

aggregations of MSi16 clusters for different metal dopants M has been theoretically inves-

tigated by the groups of Balbás [20] and Nakajima [21]. Robles and Khanna reported that

assemblies of CrSi12 clusters may have a net spin moment [161]. However, to the best

of our knowledge, no study of potentially highly magnetic aggregates of hydrogenated

endohedrally doped Si cages has been performed so far. The key question in this is

how such saturated clusters can be assembled at all. As we have shown in the previous

chapter, Si20H20 is the smallest Si fullerene capable of conserving a high spin state of

an encapsulated 3d transition metal atom [147], with the H termination simultaneously

ensuring total saturation of all Si dangling bonds, cf. Fig. 7.1(a). As opposed to this,

non-hydrogenated MSi20 clusters do not form cage-like structures at all as the Si com-

pensates for its undercoordination through strong M-Si interaction [154]. This suggests

that a carefully reduced degree of hydrogenation (and, therefore, increased amount of

unsaturated Si bonds) might be used to control the number of bonding sites offered by

the cluster. As long as this does not jeopardize the structural integrity of the cage, such

a strategy would lead to a toolbox of monomers with differing number of “docking sites”,

that may offer the possibility to build network architectures of any morphology.

Scrutinizing this idea through quantitative first-principles calculations is the objec-

tive of this chapter dedicated to MSi20H20 aggregates. The approach taken is as follows:

First, we perform density-functional theory based global geometry optimizations for the

prototypical high-spin CrSi20H20 cage with different number of H vacancies introduced.

This indeed validates the structural integrity of such “non-ideal” clusters. Second, we

also use DFT-based global geometry optimization to show that particularly Si-Si doubly

bridged dimers and trimers of these clusters actually represent most stable and highly

magnetic ground-state configurations for a given Si/H composition. The energetics thus

obtained finally allows us to discuss the thermodynamic feasibility of further polymeriza-

tion of such clusters into one-dimensional chains, two-dimensional sheets or, eventually,

more complicated three-dimensional structures.
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7 Assembling Functionalized Materials

Figure 7.1: Identified ground-state geometries of possible monomer structures, together
with their spin states and energies relative to their lowest-lying non-cage isomers: a)
Si20H20, singlet, −3.96 eV; b) Si20H19, doublet, −3.18 eV; c) CrSi20H19, sextet, −1.23 eV;
d) CrSi20H18, singlet, −1.95 eV; e) CrSi20H16, singlet, −0.80 eV; f) CrSi20H12, singlet,
−0.24 eV.

7.1 Building Block Monomers

The starting point of our investigation is the check on the structural integrity of a

MSi20H20 building block, when introducing an increasing number of H vacancies to create

undercoordinated reactive Si sites that would then represent natural “docking” candidates

for aggregation. At the minimized M-Si interaction in the hydrogenated cage, we do not

expect a strong dependence on the actual metal M used for doping [147]. This view

receives support from test calculations with different metals, as well as from the fact that

we obtain comparable findings also for the empty Si20H20 cluster, which already by itself

adopts a fullerene-type cage structure, cf. Fig. 7.1(a). Within the focus on magnetic

properties, we therefore concentrate in the following on Cr as prototypical dopant atom,

which we previously reported to yield the highest septet spin state in the CrSi20H20 cage

[147].

Extended configurational sampling shows that one hydrogen vacancy does not change

the geometrical and electronic structure much, i.e. the identified CrSi20H19 global min-

imum is still a (slightly distorted) cage, cf. Fig. 7.1(c), with a rather high sextet spin

moment. In order to further analyze the M-Si interaction and the concomitant magnetic

properties, Fig. 7.2 summarizes the total and Cr-projected density of states (DOS) of

CrSi20H19. Consistent with the equally shown 3D spin density distribution this confirms

that the unpaired electrons are predominantly located on the metal dopant, i.e. the latter

preserves most of its atomic character as was the case for the ideal CrSi20H20 cage [147].

The next lowest isomer found, which then corresponds to an irregular compact geom-

etry, is 1.23 eV higher in energy. For the empty Si20H19, cf. Fig. 7.1(b), this energetic
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7.1 Building Block Monomers

Figure 7.2: Total density of states (DOS) (black solid line) and DOS projected on the
metal dopant (red dashed line) for CrSi20H19 (highest occupied state lies at −5.23 eV,
vacuum level is used as zero reference). The Cr-specific peak (shown with arrow) indicates
that five unpaired 3d electrons belong almost exclusively to the Cr atom. The inset shows
the spin density distribution within the cluster, which resides almost exclusively on the
metal dopant.

gap to broken cage geometries even amounts to 3.18 eV. In both cases there is thus a

clear thermodynamic preference for the endohedral cage, which demonstrates that the

reduced hydrogenation has almost no effect on the structural integrity. What if we thus

further increase the amount of H defects? Fig. 7.1(d) shows the identified ground-state

structure for CrSi20H18 corresponding to two H vacancies. Again, the cage-like geometry

is preserved and the energetic gap to the lowest-lying non-cage-like isomer is with 1.95 eV

quite pronounced. Still, what has changed is the position of the metal-dopant, which is

now no longer more or less centered within the cage, but located close to the two dehy-

drogenated Si atoms. This indicates a stronger M-Si interaction of the type found for

bare MSi20 cages. This perception is confirmed by a spin DOS analysis as the one in Fig.

7.2 and is also reflected in the spin-quenched singlet state of the CrSi20H18 cage.

An intriguing feature that will become central for the aggregation discussed below is

the obtained preference to locate the two H vacancies directly next to each other in the

CrSi20H18 structure. Energetically lowest-lying alternative arrangements with the two H

vacancies e.g. located at opposite sides of the cage are by 0.3 – 0.4 eV less favorable than

the paired-vacancy ground-state isomer. This structural motif intriguingly prevails if the

number of H defects is further increased. Fig. 7.1(e) shows the identified ground-state

geometry for the CrSi20H16 cluster featuring a total of four hydrogen vacancies. Again,

the H vacancies are paired and furthermore located at opposite ends of the cage. In
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7 Assembling Functionalized Materials

System Spin state
H2 abstraction
cost, eV

CrSi20H20 septet 1.92

CrSi20H18 singlet 1.25

CrSi20H16 singlet 0.47

Table 7.1: Relative stability of the monomer clusters against dehydrogenation.

fact, despite substantial sampling, this was the only H arrangement we could identify

that yields a stable cage-like geometry at all. All other energetically low-lying isomers

found, which start above an energetic gap of 0.8 eV to the cage ground-state, correspond

to irregular structures. Concomitant with the tendency to pair H vacancies, there is thus

a tendency to arrange such H vacancy pairs as far away from each other as possible.

Considering that an agglomeration of vacancies at one side of the cage is likely to break

it up, the latter tendency is indirectly a consequence of the energetic stability of the

cage, i.e. its resilience to alternative compact geometries. Quite nicely, these effectively

repulsive interactions between H vacancy pairs then allow to accommodate an unusually

high amount of H defects without jeopardizing the structural integrity of the cage. This

is also reflected in the obtained ground-state geometry for the CrSi20H12 cluster, cf. Fig.

7.1(f), which despite a total of eight H vacancies still maintains an (admittedly distorted,

but still) endohedral geometry exhibiting four H vacancy pairs.

The energy cost to remove H2 molecules from the suggested monomer structures

follows the intuitive trend. It costs more energy to abstract an H2 molecule from the

perfectly symmetrical, totally saturated CrSi20H20 cluster to form CrSi20H18, than it

does to remove a second one from CrSi20H18 to form CrSi20H16: 1.92 eV vs. 1.25 eV. The

abstraction of the next two H2 molecules to form a CrSi20H12 cluster requires even less

energy (0.47 eV per H2 molecule). These data are summarized in Table 7.1.

7.2 Dimerization and Trimerization

The results of the last section reveal the prevalence of the cage-like geometry despite

an increasing degree of dehydrogenation. One would expect the H vacancy sites formed

at the CrSi20H20−n cages to then be natural candidates for aggregation, i.e. the docking

sites to fuse clusters together. With just one H defect per cluster, the obtained CrSi20H19

cage only allows for the formation of a dimer. However, the resulting dimer shown

in Fig. 7.3(a) is with a computed binding energy of 0.15 eV only very weakly bound.

Notwithstanding, the geometry shown is the end result of extensive sampling runs, i.e. it

is the optimum structure found for a given composition of Cr2Si40H38. In particular, this

means that the identified dimer is thermodynamically stable against decomposition into

52



7.2 Dimerization and Trimerization

Figure 7.3: Identified ground-state geometries of cluster dimers: a) (CrSi20H19)2, ten
unpaired electrons, 3.83 Å intermonomer distance and 0.15 eV binding energy; b)
(CrSi20H18)2: twelve unpaired electrons, 2.42 Å intermonomer distance and 3.46 eV bind-
ing energy.

any smaller sub-units (under the constraint that in the present microcanonical sampling

the total number of species in all sub-units together must equal Cr2Si40H38). Furthermore

intriguing is the finding that the overall spin moment of the obtained dimer corresponds

to ten unpaired electrons, i.e. we arrive at a highly magnetic structure.

As reflected in the 3.83 Å distance between the undercoordinated Si atoms in the

two cages, we attribute the low binding energy particularly to steric constraints that

prevent the two clusters from further approaching each other without H atoms coming

uncomfortably close, cf. Fig. 7.3(a). This should be much alleviated for the H-vacancy

pairs. Indeed, we obtain a significantly increased binding energy of 3.46 eV for the dimer

formed by two CrSi20H18 cages, which after extensive sampling again results as ground-

state isomer with as large an energetic gap as 6.63 eV to the next low-lying structure.

As apparent from Fig. 7.3(b), the intermonomer distance is concomitantly significantly

decreased to 2.42 Å and therewith within the normal range found for Si-Si bonds. The

resulting Si double-bridge type bonding between the two monomers has recently also

been suggested by Nakajima and coworkers [21] as a favorable motif for the aggregation

of smaller MSi16 clusters. In difference to these works, the appealing feature of the

present structure is that it affords for a minimized M-Si interaction and yields a high

magnetic moment of twelve unpaired electrons.

The analysis of the DOS diagram in Fig. 7.4(a) shows that the overall picture behind

this high magnetization stays the same as discussed for the monomer CrSi20H20 case

before. The distribution of the spin density, inset in Fig. 7.4(a), further supports this

view. Moreover, the optical excitation spectrum in Fig. 7.4(b), computed within the
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7 Assembling Functionalized Materials

Figure 7.4: a) Total DOS (black solid line) and DOS projected on metal dopants (red
dashed line) for the (CrSi20H18)2 dimer (highest occupied state lies at −4.67 eV, vacuum
level is used as zero reference). The inset shows the spin density distribution within the
structure; b) Calculated TD-DFT optical excitation spectrum of the (CrSi20H18)2 dimer
ground state, with the insets illustrating the dominant Kohn-Sham orbitals behind the
characteristic Cr transitions.

time-dependent DFT (TD-DFT) linear response formalism, indicates that the optical

properties of the (CrSi20H18)2 dimer still have a lot in common with those of the CrSi20H20

monomer, and even with an isolated Cr atom. Similar to the monomer case, several well-

defined excitations from Cr 4s and 3d orbitals can be clearly discerned, where, due to

the presence of two Cr atoms, intensities are just typically higher than in the case of the

monomer, and some of the peaks are split.

Analysis of the dimer electronic structure shows that several bonding frontier orbitals

have distinct p-character (e.g. LUMO in alpha spin channel, as well as several energetically

close to it orbitals in beta spin channel). This, therefore, seems to suggest that the

tendency of H vacancies to pair might be caused by the formation of intra-molecule Si-Si

π-bonds that change into inter-molecular ones upon aggregation. However, the position of

the dopant atom within the CrSi20H18 monomer cage indicates strong interaction between

Cr and Si, as is also reflected by the observed quenching of the spin moment (singlet vs.

septet in CrSi20H20 cluster with isolated Cr dopant located right in the center, as we have

shown in previous) chapter. In many of the CrSi20H18 frontier orbitals there is thus an

evident contribution of the dopant, which supports an explanation of the reasons for the

vacancies pairing along the lines of dopant-cage interaction. The information about the

frontier orbitals of the CrSi20H18 monomer and (CrSi20H18)2 dimer is summarized in the

Tables 7.2 and 7.3, respectively.

Encouraged by these findings we have run a global geometry optimization of the linear

[CrSi20H16](CrSi20H18)2 trimer, which is at the edge of present-day computational capabil-

ities. The resulting ground-state geometry is presented in Fig. 7.5 and indeed corresponds

to a highly symmetrical, doubly Si-Si bridge bonded trimer structure with a very high spin
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System MO MO energy, eV Isosurface

CrSi20H18

LUMO+1 −3.73

LUMO −3.86

HOMO −4.70

HOMO−1 −4.75

Table 7.2: CrSi20H18 monomer frontier orbitals.

moment of 18 unpaired electrons altogether, again located predominantly on the three Cr

dopants. The energetic gap to the next low-lying isomer has increased to an incredible

7.16 eV. We stress again that as a result of extensive sampling this includes the stability

against decomposition into any set of separated smaller clusters containing in sum the

same number of species. For instance, we have explicitly evaluated by separate global ge-

ometry optimization of the smaller fragments that the obtained [CrSi20H16](CrSi20H18)2

trimer is by 8.15 eV more stable than a set formed of two CrSi20H20, one CrSi8 and one

Si12H12, or by 9.03 eV more stable than a set formed of two CrSi20H20, one Si8 and one

CrSi12H12.

7.3 Routes to Polymerization

The dimerization and trimerization results indicate possibility of assembling very stable

aggregates that largely conserve the magnetic properties of the dopant atoms. Involving

cages with higher degree of dehydrogenation then opens up a pathway to more compli-

cated network architectures, e.g. the CrSi20H12 cage with four H vacancy pairs might

be used for building two-dimensional sheets. Another important feature here is that the
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System MO
Spin channel

Alpha Beta
E, eV Isosurface E, eV Isosurface

(CrSi20H18)2

L
U

M
O

+
1

−3.36 −3.83

L
U

M
O

−3.46 −4.21

H
O

M
O

−4.67 −5.78

H
O

M
O

−
1

−5.05 −6.00

Table 7.3: (CrSi20H18)2 dimer frontier orbitals.

Figure 7.5: Ground-state geometry of the [CrSi20H16](CrSi20H18)2 trimer, featuring 18
unpaired electrons.
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7.3 Routes to Polymerization

Figure 7.6: Locally optimized geometry of a [CrSi20H8](CrSi20H18)6 doubly Si-Si bridge
bonded 3D octahedral aggregate, exhibiting 42 unpaired electrons.

doubly-bridged Si bonding between the cages compensates for the H-vacancy pair induced

Si undercoordination in the monomers. Whereas CrSi20H20−2n monomers with larger

numbers of H vacancy pairs were found to keep their structural integrity, the increased

M-Si interaction still led to a quenching of the dopant spin moment, cf. Fig. 7.1. In con-

trast, within the dimer and trimer structures the magnetic moment is re-established and

contributes to the high total number of unpaired electrons. Indeed, consistent with this

understanding we have managed to obtain the locally optimized [CrSi20H8](CrSi20H18)6

doubly Si-Si bridge bonded 3D octahedral aggregate shown in Fig. 7.6 with the overall

number of unpaired electrons reaching an impressive 42. At the implied reminimized M-

Si cage interaction within the aggregates our findings should also not be specific to the

Cr dopant used as showcase. In previous chapter we have established that dopants from

the entire 3d transition metal series yield MSi20H20 cages as ground state isomers [147].

Correspondingly, we expect the here suggested dehydrogenation route to polymerization

to hold for a wider range of in particular magnetic dopants, which would then offer a

flexible toolbox to engineer electronic or magnetic properties in hetero-aggregates [21].

In our view crucial for a potential synthesis is the structural completion of the indi-

vidual endohedral cages in the doubly-bridge bonded aggregates. In this respect, they

are real cluster-assembled materials and thus differ qualitatively from known Si clathrates

which are also composed of endohedral fullerene-like building blocks (e.g. MSi20, MSi24,

MSi28). Elements of a typical Si clathrate usually share facets [162, 163, 164, 165],

such that all Si valence bonds are saturated by surrounding Si atoms. They can thus

not be separated into structurally complete fullerene monomers and represent rather a
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7 Assembling Functionalized Materials

Figure 7.7: Total DOS (black solid line) and DOS projected on metal dopants (red dashed
line) for a) Cr2Si35H30 cluster made of two CrSi20H20 sharing facets; b) Cr2Si43H38 cluster
made of one CrSi28H28 and one CrSi20H20 sharing a pentagonal facet. Insets show the
spin density distribution within the corresponding structures.

space-filling framework than a cluster assembly at the molecular level.

To check if clathrate-like facets-sharing assemblies are possible in our case, we have

constructed two dimer structures: a Cr2Si35H30 cluster made of two CrSi20H20 cages shar-

ing facets (to directly compare with our (CrSi20H18)2 dimer), and a Cr2Si43H38 cluster

made of one CrSi28H28 and one CrSi20H20 cluster sharing a pentagonal facet (as an ex-

ample of a proper clathrate structure consisted of the elements of different size). Such a

choice also allows to check whether different size of building blocks in clathrates is deter-

mined by purely geometrical reasons or there is an electronic structure argument behind

it. Our global geometry optimization shows that in both cases the ground state struc-

tures are symmetrical clathrate-type dimers, which are 1.40 eV (in case of Cr2Si35H30)

and 3.84 eV (in case of Cr2Si43H38) lower in energy compared to the corresponding next-

lowest lying isomer (see insets in Fig. 7.7). The electronic structure analysis reveals that

in both cases there are twelve unpaired electrons mostly located at Cr dopant atoms.

DOS diagrams of these dimers (Fig. 7.7) also appear quite similar to the double-bridge

dimer (Fig. 7.4). However, one can see that in case of clathrate-type dimers there is

much smaller HOMO-LUMO gap, which can be explained by the closely bound facet-

sharing geometry. Nevertheless, due to equivalent full saturation of Si dangling bonds,

clathrate-type facets sharing can also be used as a route to build cluster aggregates.

This underlines the fact that a key to stabilization of cage-like cluster assemblies is

full saturation of Si bonds. As long as all four Si valence bonds are saturated, there is no

tendency for cage-dopant interaction, provided that, as we have shown previously [147],

there is enough geometrical space to isolate a dopant. Therefore, both double-bridge

binding and clathrate-type facets sharing can be used to construct highly magnetic ma-

terials. However, these possibilities are not equivalent from the point of view of practical
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design and obtained material architecture.

In contrast to concomitant clathrate synthesis routes via annealing of bulk material,

we thus rather expect polymerization strategies via controlled dehydrogenation of formed

MSi20H20 clusters to potentially realize the here suggested doubly Si-Si bridge bound

aggregates. A central feature for this could be their very high stability, which renders e.g.

a simple H2 abstraction reaction upon aggregation exothermic. For the dimer formation

reaction CrSi20H20 + CrSi20H20 → (CrSi20H18)2 + 2H2 we compute this as 0.35 eV (0.17 eV

per formed H2) released upon aggregation, and similarly 0.14 eV per formed H2 for the

abstraction of 4 or 12 H2 molecules upon the formation of the trimer and 3D octahedral

aggregate shown in Fig. 7.5 and Fig. 7.6, respectively. This suggests a range of hydrogen

chemical potential to selectively dehydrogenate and build corresponding oligomers, for

example in solution.

7.4 Conclusions to Chapter 7

In summary, we have systematically assessed the possibility of using endohedrally-doped

hydrogenated Si-cages as building blocks for constructing highly magnetic materials. Our

unbiased first-principles global geometry optimization highlights the structural integrity

of the cage geometry of e.g. the CrSi20H20 fullerene despite an increasing degree of de-

hydrogenation. The preferentially formed H-vacancy pairs then act as natural “docking

sites” for polymerization. Depending on the amount of H-vacancy pairs of the involved

monomers, this yields network architectures of any morphology, including linear chains,

2D sheets or 3D structures.

In contrast to face-sharing Si clathrates, the resulting aggregates represent real clus-

ter assembled materials, in which structurally complete endohedral Si cages are doubly

bridged through Si-Si bonds. The latter geometric motif yields a high thermodynamic

stability and has also been observed in preceding work on smaller MSi16 clusters [20, 21].

For the present hydrogenated fullerenes, it affords a flexible and controllable molecular

assembly, while maintaining the high magnetic moments of the dopant atoms inside the

constituent cluster monomers. Taking into account the possibility to also stabilize larger

cages (such as Si24H24, Si26H26, Si28H28) and combining metal dopants having different

spin states in hetero-aggregates, this strongly suggests such assemblies of hydrogenated

endohedral Si-clusters as promising candidates for the construction of highly magnetic

nanostructured materials.

Unlike in the case of carbon fullerenes, where sp2 bonding makes the aggregation

of several cages improbable due to the concomitant necessity of breaking double bonds,

synthetic control of the hydrogenation degree of Si cages by reducing the number of H2

molecules in the reactive environment seems to be quite feasible. This renders Si clusters

not as just another possible building block composition that mimics the properties of
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carbon fullerenes, but rather as a new type of host cages, allowing for both isolation of

the dopant from reactive environment and controllable building of extensive aggregates

with engineered properties.
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8 Multi-Doped Si Cages: High Spin States Beyond

the Septet Limit

Adding several different dopant atoms to the system appears to yield unique properties,

unavailable for singly-doped clusters, such as large dipole [21] or magnetic [166] moments.

Recent studies show high potential of complex molecular systems to be used in the rapidly

growing field of molecular electronics, with the possibility of building conductive molec-

ular junctions [167], charge separation layers for photovoltaic cells [168, 169, 170], p−n

junctions to serve as transistors and emitting diodes [171]. To date, two main directions

of the cluster multi-doping idea have been looked upon: either to form multiply doped

systems by creating hetero-oligomers [18, 20, 21, 148, 172, 173] and even silicon nanorods

[174, 175, 176] made of several singly-doped clusters, or to create truly multiply doped

individual cages, accommodating several dopant atoms [13, 166, 177, 178] or even whole

molecules [179, 180] within the same cavity. It has been shown that incorporation of mag-

netic ions within the cluster cage can lead to the formation of so-called single-molecule

magnets with long relaxation times [166]. To the best of our knowledge, the latter idea

has only been applied to carbon fullerene cages, being sufficiently large and stable to

accommodate complex dopants. However, as we have shown in Chapter 6, hydrogenated

Si clusters are also capable of forming large fullerene-like cages [147, 148, 155, 156, 157],

which suggests the possibility of providing sufficient space to create multi-doped endohe-

dral Si structures.

One of the first experimental steps towards Si cluster multi-doping has been reported

by the groups of A. Fielicke and P. Lievens [29]. They demonstrated that the physi-

sorption of Ar can act as a structural probe for transition metal doped silicon clusters,

and is very sensitive to the position of the transition metal in the cluster. The experi-

mental study shows that argon does not attach to elemental silicon, but instead only to

surface-located transition metal atoms. Using this technique, “critical” sizes for Ar at-

tachment to doubly doped clusters have been suggested. For instance, Cr2Si16
+ has been

predicted as a smallest doubly Cr-doped Si cluster (however, it should be noted that “en-

dohedral” generally means that the dopant is surrounded by other atoms, not necessarily

encapsulated within a symmetric cage-like structure). Several theoretical works have also

been carried out on this topic. For example, Kumar and Kawazoe [155] suggested a dou-

ble prism structure for Cr2Si18. Ji and Luo [181] studied M2Si18 clusters for the whole

range of 3d metal dopants and found several symmetric geometries. However, although

no systematic global PES sampling has been performed, no highly magnetic structures

have been reported.

One of the exciting prospects of multi-doping within the same cluster cavity is the

potentially increased magnetic moments of such complex dopants. While single-atom

dopants are limited by the maximum number of five (d-shell) or six (s and d) unpaired
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electrons (e.g. 4s23d5 or 4s13d5 configurations of Mn and Cr, among the 3d series), com-

plex dopants open a path for larger spin moments. For instance, T. Lau et al. have re-

ported X-ray absorption spectroscopy evidence for the localized character of the valence

electrons in Cr2
+, Mn2

+, and CrMn+ dimer cations [182]. With bonding predominantly

mediated by 4s electrons, these transition-metal dimers exhibit local high spin states

with up to 5 µB spin moment of the 3d electrons at each metal core. If such dopants

can preserve their unique properties when encapsulated within the Si cage, it might be a

way to bring these properties to cluster-assembled materials, for example by constructing

doubly Si-Si bound aggregates, as was discussed in Chapter 7.

In order to systematically assess the possibility of multi-doping of Si clusters, we here

again apply density functional theory based global geometry optimization to validate the

idea of stabilizing symmetric structures with high magnetic moments within the smallest

possible hydrogenated M2Si18H12 clusters. After this, we scrutinize the possibility of

multi-doping of larger hydrogenated Si cages (Si24H24, Si28H28) with highly magnetic

dimers (Cr2
+, Mn2

+ and CrMn+) with the view of going beyond the single-atom dopant

4s13d5 septet limit.

8.1 M 2Si18H12 Clusters

The starting point of our investigation is an extended configurational search, which con-

firmed that the ground-state structure of Cr2Si18 is indeed a highly symmetric (D6h)

double prism (see Fig. 8.1(b)), as suggested by Kumar and Kawazoe [155] and Ji and

Luo [181]. An energetic difference to the next isomer of 0.68 eV and a HOMO-LUMO

gap of 1.17 eV indicate a rather high stability of this symmetrical structure. As can

be clearly seen from Fig. 8.1, the Cr2Si18 structure is basically composed of two CrSi12

prisms [183, 184] merged together. Although such a combination does not provide the

possibility of achieving electronic shell closure (18 × 4 e− from Si atoms + 6 × 2 e−

from Cr atoms = 84 e−, with 2d or 1h shell closure requiring 68 and 90 electrons, re-

spectively) [143, 146, 149], it does effectively saturate all Si dangling bonds through the

strong Cr-Si interaction, thus stabilizing the found geometrical structure. Therefore, one

may expect the electronic structure of the Cr2Si18 cluster to be rather similar to that of

its “monomer”, i.e. CrSi12.

Indeed, the electronic structure analysis reveals a very similar character of the dopant-

cage interaction, as is observed for the CrSi12 case. For instance, the comparison of the

density of states (DOS) diagram of Cr2Si18 (Fig. 8.2(b)) and the corresponding DOS of

CrSi12 (Fig. 8.2(a)) shows that the main features of the two are very similar, just with

Cr2Si18 states being higher populated, owing to the presence of two Cr atoms and six

additional Si atoms. Here in both cases one can see a significant contribution of the Cr

dopant atom to the frontier levels of the cluster, which illustrates a strong interaction
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Figure 8.1: The identified ground-state structures of (a) CrSi12, (b) Cr2Si18 and (c)
Cr2Si18H12 with singlet spin state in all cases.

Figure 8.2: Total density of states (DOS) (black solid line) and DOS projected on the
metal dopant (red dashed line) for (a) CrSi12 and (b) Cr2Si18. Highest occupied orbitals
lie at −5.63 eV (CrSi12) and −5.32 eV (Cr2Si18); the vacuum level is used as a zero
reference.

between the dopant and the cage. A quite similar DOS structure has been observed

earlier for MSi16
+ (M = Ti, V, Cr) cages [146]. In contrast, larger hydrogenated silicon

cages with the dopant metal isolated inside exhibit negligibly small Cr-Si hybridization,

which is illustrated by a clear separation of the silicon and metal dopant levels in the DOS

(see Fig. 6.3 and Fig. 7.4) [147, 148]. This view is in line with the complete quenching

of the Cr spin state within both structures and is also complemented by the analysis of

the frontier orbitals shapes, where the contribution of Cr is quite pronounced (see insets

in Table 8.1).

As has been mentioned above, a rather high value of the HOMO-LUMO gap (1.17 eV

for Cr2Si18 cluster) also indicates that the structure should be rather stable. However,

it is significantly smaller than the one corresponding to truly “magic” structures, like

e.g. VSi16
+ (more than 2 eV) [146]. Interestingly, even the positions of the HOMO and

LUMO of the Cr2Si18 cluster (−5.32 eV and −4.15 eV with respect to the vacuum level)

are very close to those of the CrSi12 cluster (−5.63 eV and −4.66 eV respectively, see Table

8.1). Similar to the CrSi12 cluster, argon does not bind to either neutral or positively
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CrSi12 Cr2Si18

Energy, eV Gap, eV Isosurface Energy, eV Gap, eV Isosurface

HOMO −5.63

0.96

−5.32

1.17

LUMO −4.66 −4.15

Table 8.1: Frontier orbitals of CrSi12 and Cr2Si18 clusters.

charged Cr2Si18 clusters (with an optimized Ar-Si distance of about 4Å) which supports

the experimental observations reported in ref. [29].

To check if the hydrogen termination idea is applicable in our case, we also run a global

geometry optimization of the hydrogen-terminated Cr2Si18H12 structure. The identified

ground-state structure has a heavily distorted geometry, presented in Fig. 8.1(c). The

symmetric hydrogenated double-prism is only a local minimum, lying 1.81 eV higher

than the here identified ground-state structure. This may be explained in view of the

strong interaction between Si and H atoms, trying to saturate Si dangling bonds. With

the apparently insufficient space within the cluster to keep the dopant atoms inside, the

structure ends up with the complex combination of Si-H and Si-Cr interactions which

makes the structure “explode”. This result agrees well with the previously reported

insufficient space within Si16H16 clusters for conserving any 3d metal dopants [147]. While

in case of Si16H16 the average radius of the cage is about 3Å, here in the symmetric Cr2Si18

cluster the dopant-cage distance amounts only to 2.67Å, which makes the concept of

conservation of the atomic character of the magnetic dopant impossible.

Curiously, the available space within the Si18 double prism structure is hardly enough

to accommodate two dopant atoms even with the strong dopant-cage interaction. To

check on the size effects, we have tried to locate the M2Si18 and M2Si18H12 ground-state

structures for the metal dopant having more valence electrons. For this, we have chosen

the iron atom, having the 4s23d6 configuration, where the half-filled d-shell stability is

broken by an additional electron. Our global geometry optimization has found distorted

structures for both Fe2Si18 and Fe2Si18H12 clusters (Fig. 8.3). With symmetrical double-

prism local minima isomers lying 0.75 eV and 2.79 eV higher in energy for Fe2Si18 and

Fe2Si18H12 respectively, it is quite evident that the insufficient space within the cluster

leads to a significant distortion of the structure. Obviously, due to the even stronger
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Figure 8.3: Ground-state structures of (a) Fe2Si18 and (b) Fe2Si18H12 clusters.

interaction between the dopant and the cage, the dopant spin state is quenched to singlet

in both cases.

Therefore, it is evident that the Si18 cluster is generally too small to accommodate

two dopants with their magnetic character preserved. Thus, we need to take a look at

larger SinHn cages in order to be able to stabilize multiple magnetic dopants. As has

been reported earlier [147], extensive sampling runs suggest empty cage geometries as

ground states for the larger hydrogenated Si fullerenes, such as Si20H20, Si24H24, Si26H26

and Si28H28. Eventually, these cages should offer enough space to also host multicore

dopants, which allow achieving higher magnetic moments than are available through

encapsulation of the single-atom transition metals. This idea constitutes the next part

of our investigation.

8.2 Electronic Structure of Cr2
+, Mn2

+, and CrMn+ Magnetic

Dimers

The first question we have to answer is whether the suggested dimers (Cr2
+, Mn2

+,

and CrMn+) are indeed highly magnetic. For this, we optimized the geometries of all

three dimers for all possible spin states at the hybrid functional level using the PBE0

[72] functional, which is commonly agreed to yield reliable results for the rich transition

metal chemistry [76]. The obtained results are then compared to the neutral Cr2 and

Mn2 dimers in order to discuss the difference in their electronic structure.

Table 8.2 summarizes the obtained results for the cationic dimers. In good agreement

with experiment [182], Cr2
+ and Mn2

+ both exhibit ground-state configurations with 11

unpaired electrons. Since the 3d electrons are localized at the metal cores in both clusters,

bonding is predominantly mediated by the remaining 4s electron, shared between the two

atoms (Cr2
+), or the remaining three 4s electrons (Mn2

+) situated in a fully occupied

bonding and a singly occupied antibonding σ-orbital, respectively. The experimentally

observed values of the bond energies of about 1.4 eV [185] also agree well with the obtained

results.
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+, Mn2

+, and CrMn+ Magnetic Dimers

unpaired e−
M-M distance,
Å

Relative energy,
eV

Binding energy,
eV

Cr2
+

11 2.90 0.00 1.55
9 2.64 1.03 0.52
7 2.28 3.24 -1.68
5 1.77 3.74 -2.18
3 1.65 4.31 -2.76
1 1.56 4.24 -2.68

Mn2
+

13 4.18 2.51 -0.83
11 2.93 0.00 1.68
9 2.48 0.97 0.71
7 2.13 3.67 -1.99
5 1.90 5.43 -3.75
3 1.73 7.46 -5.78
1 1.63 7.14 -5.46

CrMn+

12 3.34 0.90 0.61
10 2.80 0.00 1.51
8 2.44 1.72 -0.22
6 2.29 4.40 -2.89
4 1.81 4.45 -2.95
2 1.60 5.54 -4.04
0 1.61 6.07 -4.56

Table 8.2: Optimized M-M distances, relative stabilities and binding energies (all calcu-
lated using PBE0 functional with “tier 3” basis set) for all possible spin states of Cr2

+,
Mn2

+, and CrMn+ dimers.

In CrMn+, two 4s orbitals occupy a bonding orbital, leading to the overall number

of ten unpaired 3d electrons. In all cases the rather high bond lengths (2.80 to 2.93

Å) confirm that only s-electrons contribute to bonding. Despite of being isoelectronic

to the neutral Cr2 dimer, CrMn+ shows a very different electronic structure. Cr2 is a

singlet with a formal sextuple bond, exhibiting a bond length of only 1.59 Å, which agrees

well with the experimental value of 1.68 Å [187]. Mn2, on the other hand, is an only

weakly bound (0.17 eV) dimer with a very long equilibrium distance of 3.48 Å (Table

8.3), and can be described as a van der Waals molecule. Again, this agrees perfectly

with the experimentally reported values of the bond length (3.4 Å) and the bond energy

(0.44±0.30 eV), cf. ref. [188, 189].

Thus, a strong 3d valence electron localization in Cr2
+, Mn2

+, and CrMn+ dimers due

to the half-filled 3d shells of Cr and Mn atoms, observed in the core-level X-ray absorption

spectroscopy experiments [182], is also confirmed by DFT calculations at the hybrid PBE0

functional level. This opens the perspective of using such high spin dimers as dopants
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unpaired e−
M-M distance,
Å

Relative energy,
eV

Binding energy,
eV

Cr2

12 3.23 1.36 0.11
10 2.71 0.98 0.49
8 2.38 2.56 -1.08
6 2.04 2.40 -0.93
4 1.79 1.47 0.00
2 1.68 1.02 0.45
0 1.59 0.00 1.47

Mn2

14 2.88 3.49 -3.32
12 2.91 0.94 -0.78
10 3.48 0.00 0.17
8 2.54 1.96 -1.80
6 1.96 3.50 -3.34
4 2.21 5.23 -5.06
2 2.49 8.36 -8.19
0 1.64 5.61 -5.44

Table 8.3: Optimized M-M distances, relative stabilities and binding energies (all cal-
culated using PBE0 functional with “tier 3” basis set) for all possible spin states of Cr2

and Mn2 dimers.

for larger hydrogenated Si cages, in order to construct highly magnetic building blocks

for novel engineered cluster-assembled materials.

8.3 Si24H24 Cage Doped with Magnetic Dimers

The next question to address is what size of the SinHn cage is capable of accommodating

an intact high spin state dimer, conserving its individual magnetic moment. As we have

shown previously [147], Si20H20 is the smallest cluster capable of conserving the atomic

character of the high-spin single-atom dopant, such as Cr. Therefore, intuitive candidates

for multi-doping are the next hydrogenated Si fullerene-like cages, i.e. Si24H24, Si26H26,

and Si28H28.

As the first step in this part of our study we have run global geometry optimization

of the Si24H24 cage doped with the chromium dimer cation Cr2
+, denoted therewith

as Cr2
+@Si24H24. The unbiased configurational sampling reveals that the ground-state

structure corresponds to a highly symmetric D6d structure (Fig. 8.4(a)) with 11 unpaired

electrons (structure I). Interestingly, this turned out to be not the only possible structure

with a Cr2
+ dimer encapsulated within the cage. Figure 8.4(b) illustrates another high-

spin isomer with the dimer oriented perpendicular to the cage’s principal axis, which

corresponds to the C2v symmetry group (structure II). This structure also has 11 unpaired
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Figure 8.4: Selected cage-like structures of Cr2
+@Si24H24 with their multiplicities, relative

energies and Cr-Cr bond lengths. (a) ground-state structure (D6d, structure I) with 11
unpaired electrons; (b) structure II (11 unpaired electrons, 1.20 eV above the global
minimum); c) and d) − doublet structures with one unpaired electron (3.87 and 5.47 eV
less stable than the ground-state structure, respectively).

electrons in total. However, it is 1.20 eV higher in energy than the ground-state structure.

For comparison, the most stable compact structure (with distorted non-cage geometry)

is 2.09 eV less stable than the ground-state structure.

It is also possible to stabilize other spin states within the cage. For example, a doublet

Cr2
+ dimer can also be encapsulated in the Si24H24, oriented either along (structure III,

C6v) or perpendicular to (structure IV, C2v) the cage’s principal axis (see Fig. 8.4(c)

and Fig. 8.4(d)). However, these structures possess much higher total energies (3.87 eV

and 5.47 eV higher than the ground-state structure, respectively), which agrees well with

the 4.24 eV difference between the corresponding spin states of the isolated Cr2
+ dimer.

Another peculiarity is a remarkable agreement in the bond lengths of the isolated and

encapsulated Cr2
+ dimers. In both high-spin structures the PBE0-optimized Cr-Cr bond

lengths are 2.83 Å and 2.71 Å (compared to the 2.90 Å for isolated Cr2
+ with 11 unpaired

electrons), while for low-spin state structures the corresponding distances are 1.65 Å and

1.60 Å (compared to 1.56 Å in an isolated doublet Cr2
+ dimer).

Stabilization of the high spin state of the encapsulated dimer in the Cr2
+@Si24H24

ground-state structure, and reasonable agreement in both relative energies and equilib-

rium distances between the dopants encapsulated in different cage-like isomers and the

isolated Cr2
+ dimers, suggest that there should not be much interaction between the

dopant dimer and the cage. On the other hand, a rather high binding energy (3.26 eV for

structure I) and a notable difference between the two high-spin isomers (1.20 eV between

the structure I and structure II) indicate the presence of some interaction that helps

to stabilize the endohedral structure. In order to clarify this, we plot the spin density

distribution within the Cr2
+@Si24H24 ground-state structure (see the inset in Fig. 8.5)

and analyze the density of states (DOS) diagram (Fig. 8.5).

The 3D spin density distribution in the inset of the Fig. 8.5 clearly indicates that the
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8 Multi-Doped Si Cages: High Spin States Beyond the Septet Limit

Figure 8.5: Total density of states (black solid line) and DOS projected on the metal
dopant (red dashed line) for Cr2

+@Si24H24 (structure I, ground state) calculated at the
hybrid PBE0 functional level. Highest occupied state lies at −9.04 eV, lowest unoccupied
state lies at −6.30 eV; the vacuum level is used as reference. The inset shows the spin den-
sity distribution (isosurface at 0.02 e−/Å) within the cluster, which resides predominantly
on two metal cores.

unpaired electrons are predominantly located on the Cr atoms of the encapsulated dimer.

However, there are two protrusions of the spin density through two hexagonal facets of

the cage, which indicate some spin density delocalization over the adjacent Si-Si bonds.

Consistent with this explanation, the density of states (DOS) plot depicts that, despite

the predominance of the Cr in the last peak in the occupied orbitals area (around −9

eV), which agrees nicely with the position of the ten unpaired d-electrons in the isolated

Cr2
+ dimer, there is a small fraction of cage Si atoms contributing to this peak.

The picture gets further support from the total density difference analysis (Fig.

8.6(a)). For this, we subtract the sum of the total densities of the empty Si24H24 cage

and the isolated Cr2
+ dimer from the total density of the Cr2

+@Si24H24 aggregate. The

resulting total density (blue regions indicate more electronic density, i.e. more negative

charge) shows that in the Cr2
+@Si24H24 aggregate there is more electronic density located

at the edges of the structure (connecting Cr atoms with the hexagonal facets of the cage).

At the same time the small red-colored areas at the Cr atoms indicate that there was

slightly higher electron density on Cr atoms in the isolated dimer. This suggests that a

fraction of the d-electrons, located at the Cr cores in the isolated dimer, are now partially

re-distributed in the area between the outer sides of the dimer and the hexagonal facets

of the cage, however still located mostly at the metal core. On the other hand, the one

remaining unpaired s-electron, through which binding in the isolated Cr2
+ dimer was

mediated, is intact, which is indicated by the zero total density difference between the

Cr cores, and is also reflected by the conserved Cr-Cr equilibrium distance.
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8.3 Si24H24 Cage Doped with Magnetic Dimers

Figure 8.6: 3D distribution of the (a) total electron density difference ∆n(total) =[
n(Cr+

2 @Si24H24) − n(Si24H24) − n(Cr+
2 )
]

and (b) spin density difference ∆n(spin) =
[
n(Cr+

2 @Si24H24) − n(Cr+
2 )
]

calculated at the hybrid PBE0 functional level; blue color

depicts regions with more electron density. Note that here enlarged (0.015 e−/Å) isosur-
faces are presented for clarity.

This is in line with the spin density difference between the Cr2
+@Si24H24 aggregate

and the isolated Cr2
+ dimer, depicted in Fig. 8.6(b). Here one can see that in the

resulting Cr2
+@Si24H24 aggregate, there is more spin density located at the outskirts of

the cluster (Si-Si bonds within the two hexagonal facets) and less spin density at the

Cr cores, compared to the isolated Cr2
+ dimer. However, the spin density between the

cores stays the same, as indicated by the zero density difference in this area, and by

the total spin density distribution within the cluster (inset in the Fig. 8.5). Thus one

can conclude that, while the overall high spin state of the structure is conserved, the

additional interaction via the adjacent hexagonal facets of the cage helps to stabilize the

resulting aggregate, which is also reflected in large HOMO-LUMO gap value of 2.74 eV.

The higher total energy of the structure II (1.20 eV less stable than the global mini-

mum) can be explained in the view of the dopant’s location within the cluster. As can

be seen in the Fig. 8.4(b), it features a shorter intermetallic distance (2.71 Å), which is

0.19 Å smaller than the equilibrium distance in the high-spin Cr2
+ dimer (see Table 8.2).

Such unfavorable geometry is most likely caused by the orientation of adjacent pentagonal

facets of the cage, which need to be used for additional partial spin density delocalization

similar to the above described case of the ground-state structure I (compare Fig. 8.7

and Fig. 8.6(b)). Therefore, the more complicated character of the hybridization and

consequently shortened intermetallic distance in the structure II of the Cr2
+@Si24H24

aggregate leads to the higher total energy, compared to the ground-state structure.

We have also run global geometry optimization and carried out subsequent electronic

structure analysis of the identified ground-state structures for two other dopants (Mn2
+,

CrMn+) encapsulated within the Si24H24 cage and found quite similar results. Fig. 8.8

illustrates the obtained ground-state structures.
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8 Multi-Doped Si Cages: High Spin States Beyond the Septet Limit

Figure 8.7: 3D distribution of the spin density difference for the Cr2
+@Si24H24 structure

II: ∆n(spin) =
[
n(Cr+

2 @Si24H24) − n(Cr+
2 )
]
.

Figure 8.8: Ground-state structures of (a) Mn2
+@Si24H24 (9 unpaired e−, 2.59 Å Mn-Mn

distance, 1.89 eV to the next (distorted) isomer) and (b) CrMn+@Si24H24 (10 unpaired
electrons, 2.80 Å Cr-Mn distance, 4.29 eV to the next isomer).

As expected, CrMn+ encapsulated within the Si24H24 cage (see Fig. 8.8(b)) has an

equilibrium distance close to the one observed for the isolated cluster (2.80 Å in both

cases) and exhibits a high spin state of ten unpaired electrons. The analysis of the spin

density distribution of CrMn+@Si24H24 (see inset in Fig. 8.9(a)) reveals that the ten

unpaired electrons are predominantly located on the metal cores, with the Mn atom (on

the right in the inset picture) showing more interaction with the adjacent hexagonal

facet of the Si cage. The density of states depicts two distinct peaks for the d-electrons

located at the Cr and Mn cores, with their separate positions (near −9 eV and −13 eV,

respectively, which matches the positions of the corresponding electrons in the isolated

CrMn+ dimer reasonably well) suggesting a localized character of d-electrons belonging

to Cr and Mn metal cores. Overall, it shows a very similar stabilization mechanism as

was discussed for Cr2
+@Si24H24 above, with some fraction of the Mn electrons partially

delocalized over the adjacent hexagonal cage facet, and the Cr atom compensating for

this by shifting some of its electronic density along the Cr-Mn bond towards Mn (see

Fig. 8.10(a)). The lower degree of interaction between the encapsulated dopant and

the surrounding cage compared to the Cr2
+@Si24H24 case (compare Fig. 8.9(a) and Fig.
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8.3 Si24H24 Cage Doped with Magnetic Dimers

Figure 8.9: Total density of states and DOS projected on the metal dopants for (a)
CrMn+@Si24H24 (HOMO lies at −8.04 eV, LUMO at −6.02 eV) and (b) Mn2

+@Si24H24

(HOMO lies at −7.38 eV, LUMO at −5.85 eV) aggregates. The insets show the spin
density distribution within clusters.

8.5), is reflected in less delocalization of the spin density and sharper metal-projected

DOS peaks. Besides, it is also supported by a smaller value of the binding energy (2.67

eV for CrMn+@Si24H24 vs. 3.26 eV for Cr2
+@Si24H24).

The Mn2
+@Si24H24 aggregate shows slightly different behavior. Here also the unpaired

electrons, as expected, are predominantly located on the two Mn metal cores (see inset

in Fig. 8.9(b)). Two distinct peaks around −13 eV in the DOS plot support this view.

However, the total number of unpaired electrons is not eleven, as might be expected

from the analogy with the Cr2
+@Si24H24 results, but only nine. To figure out where

this additional electron paring comes from, we take a look at the spin density difference

between the Mn2
+@Si24H24 aggregate and the Mn2

+ dimer with nine unpaired electrons

(Fig. 8.10(b)). Here the additional electron density between the metal cores (blue region)

clearly indicates additional binding in the encapsulated dimer compared to the isolated

one. This suggests that one additional d-electron can be used together with the three

remaining s-electrons to additionally stabilize the bond within the encapsulated dimer.

This is also reflected in the shortened Mn-Mn distance (2.59 Å in Mn2
+@Si24H24 aggregate

vs. 2.93 Å in Mn2
+ dimer). Additionally, the Mn2

+@Si24H24 structure exhibits the least

interaction between the dopant and the cage among all three considered dopants (compare

insets in Fig. 8.5 and Fig. 8.9), which is also reflected in the smallest binding energy

value of 1.77 eV.

Thus the results presented above suggest that Si24H24 cage is generally large enough

to accommodate high-spin dimer dopants, such as Cr2
+, Mn2

+, and CrMn+. While the

stabilization of the single-atom dopants is largely mediated through the s-electrons, which

helps to stabilize the symmetrical position of such dopants in the middle of the cage, as it

has been previously shown e.g. for the CrSi20H20 aggregate [147], here in case of magnetic
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8 Multi-Doped Si Cages: High Spin States Beyond the Septet Limit

Figure 8.10: 3D distribution of the spin density difference for (a) the CrMn+@Si24H24

aggregate: ∆n(spin) =
[
n(CrMn+@Si24H24) − n(CrMn+)

]
; and (b) the Mn2

+@Si24H24

aggregate: ∆n(spin) =
[
n(Mn+

2 @Si24H24) − n(Mn+
2 , 10-tet)

]
.

dimers the interaction picture is more complicated. Owing to the naturally less symmet-

rical orientation of the dimer compared to the single atom, less space within the cage, and

higher spin densities, the dimer aggregates structures are predominantly stabilized either

through partial delocalization of the spin density over the adjacent (preferably hexago-

nal) facets of the cage (Cr2
+@Si24H24, CrMn+@Si24H24), or via increasing the binding

between the metal cores (Mn2
+@Si24H24). However, these subtle effects do not cause

any distortion of the symmetrical cage structure or quenching of the total spin moment

(except from the lowered spin state of the Mn2
+@Si24H24), but nevertheless help to sta-

bilize the structures. Therefore, despite the fact that the dimer encapsulated within the

Si24H24 cage might not be completely isolated, such M2
+@Si24H24 aggregates allow stabi-

lization of the high spin states of the magnetic dimer dopants. Especially interesting is the

CrMn+@Si24H24 aggregate, which exhibits an intriguing combination of conserving the

original high spin state of the dimer (10 unpaired electrons) and keeping the dopant-cage

interaction relatively low, thus suggesting a route to go beyond the single-atom dopant

4s13d5 septet limit, exceeding it by almost a factor of two.

8.4 Si28H28 Cage Doped with Two CrMn+ Dimers

The next obvious question to consider is whether it is possible to further increase the total

number of unpaired electrons in the system by encapsulating several of the highly mag-

netic dimers within a larger cage. If e.g. two dimers are only bound through the common

s-electrons, it raises hopes for the possibility to double the total magnetic moment of such

complex aggregate. To check this assumption, we run a global geometry optimization of

the Si28H28 cage accommodating two CrMn+ dopants, i.e. (CrMn+)2@Si28H28 aggregate

cluster. The CrMn+ dopant dimer has been chosen based on the results of the previous

section, as being able to both conserve the high spin moment and to keep the dopant-cage
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Figure 8.11: Total density of states and DOS projected on the metal dopants for
(CrMn+)2@Si28H28. Highest occupied state lies at −10.22 eV, lowest unoccupied state
lies at −8.59 eV. The inset shows the ground-state geometry of the clusters (4.76 eV lower
than the next isomer).

interaction low, when encapsulated within the silicon cage.

Indeed, our unbiased sampling revealed that the ground-state structure is a symmet-

rical C2v cage (see inset in the Fig. 8.11) with the total number of 18 unpaired electrons

(the structure with the fixed 21-tet configuration turned out to be 0.50 eV higher in

energy). The spin density distribution indicates that all unpaired electrons are predomi-

nantly located at the four metal cores (see Fig. 8.12(a)).

A closer look at the DOS diagram reveals two distinct peaks corresponding to Cr-

located and Mn-located unpaired electrons, confirming their localized character. An

additional Mn peak at −10 eV shows partial redistribution of the Cr electrons towards

the Mn cores. This can also be seen in the spin density difference plot (Fig. 8.12(b)),

depicting ∆n(spin) = n
[
(CrMn+)2@Si28H28

]
− 2 × n

[
CrMn+

]
.

From Fig. 8.12(b) it is obvious that, first, there are less unpaired electrons in the

final aggregate than there were in the two isolated dimer cations (18 vs. 20), and, second,

that there is some spin density redistribution towards the Mn along two Cr-Mn bonds,

which is also reflected in the additional small peak in the DOS plot. The decreased

total spin moment may be explained in view of the decreased bond length between Mn

atoms. The observed Mn-Mn equilibrium distance in the (CrMn+)2@Si28H28 aggregate

is 2.62 Å, which is much closer to the one observed for Mn2
+@Si24H24 (2.59 Å), than to

that of the Mn2
+ dimer cation (2.93 Å). Interestingly, Mn2

+@Si24H24 exhibits the same

decrease of the spin moment (nine unpaired electrons vs. expected eleven). Therefore, the

above mentioned additional partial redistribution of the spin density towards Mn might

be explained as an attempt to compensate for this effect. Besides, such redistribution is

also consistent with the results observed for CrMn+@Si24H24 structure (see Fig. 8.10(a)).
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8 Multi-Doped Si Cages: High Spin States Beyond the Septet Limit

Figure 8.12: (a) 3D distribution of the spin density in the (CrMn+)2@Si28H28 aggregate,
and (b) spin density difference ∆n(spin) = n

[
(CrMn+)2@Si28H28

]
− 2 × n

[
CrMn+

]
.

As can be seen from the DOS plot (Fig. 8.11) and the spin density analysis (Fig.

8.12), there is no large contributions of the cage into the binding. The only notable effect

is the distribution of the density within the double dimer dopant itself leading to some

intra-dopant charge rearrangement. In fact, the tetrahedral configuration adopted by

the four metal cores in the (CrMn+)2@Si28H28 aggregate does not in any case justify a

discussion in terms of two adjacent CrMn+ dimers. This is supported by the decreased

binding energy value of 1.71 eV, which is relatively low compared to the 3.26 eV for the

Cr2
+@Si24H24 structure, and is very close to that of the Mn2

+@Si24H24 cluster (1.77 eV).

Thus, the (CrMn+)2@Si28H28 cluster indeed illustrates the possibility of further in-

creasing the magnetic moment of the endohedrally doped hydrogenated silicon fullerene-

like clusters by combining suitable dopants with sufficiently large cages.

8.5 Conclusions to Chapter 8

In summary, we have systematically assessed the possibility of multi-doping of hydro-

genated silicon clusters to obtain stable cage-like building blocks with high spin moments,

suitable for constructing highly magnetic materials. Our unbiased first-principles global

geometry optimizations showed that it is possible to conserve both the structural in-

tegrity of the host cage and the high spin state of the guest dimer dopants M2
+ = Cr2

+,

Mn2
+, and CrMn+ already for a Si24H24 fullerene. For instance, for the CrMn+@Si24H24

cluster the ground-state structure exhibits a total number of 10 unpaired electrons, which

illustrates the possibility of going beyond the single-atom dopant 4s13d5 septet limit by

exceeding it by almost a factor of two. The crucial influence of the silicon cage size

is thereby illustrated by the distorted ground-state structure obtained for the doubly-

doped hydrogenated CrSi18H12 cluster, previously suggested as smallest cage size capable

of encapsulating metal dimers [155]. On the other hand, choosing sufficiently large cages

allows accommodating even larger aggregates, as demonstrated for the combination of

two CrMn+ dimers inside a Si28H28 fullerene. The corresponding (CrMn+)2@Si28H28
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ground-state structure exhibits a total number of 18 unpaired electrons, which is the

highest magnetic moment of an endohedral cage reported so far.

This gives confirmation for the exciting perspective of tuning the magnetic moment

by encapsulating a range of different dopants (starting from single atoms with different

spin states, through highly magnetic dimers, and eventually up to more complex dopant

aggregates) into a suitably sized hydrogenated silicon cage. Taking into account that N -

atomic fullerene-like cages are possible with N taking any even integer value greater than

or equal to 20 (except 22) [1], this suggests a path to tune the size of the hydrogenated Si

cage to eventually accommodate dopants of virtually any size and complexity. Such highly

magnetic doped clusters can then be used as building blocks for cluster-assembled mate-

rials, for example by constructing doubly Si-Si bound aggregates, as we have discussed

in Chapter 7. Endohedral multi-doping of hydrogenated silicon fullerenes thus appears

as a viable route to novel cluster-based materials for magneto-optic applications.
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9 Towards Adsorption On Surfaces

Of course, the ultimate goal of the cluster studies would be to move from isolated, in-

dividual metal-doped Si clusters towards the properties of such clusters in a non-trivial

environment, i.e. under the influence of other bonding partners, such as extended sur-

faces. Experimentally this can e.g. be realized through deposition of pre-formed cages

[190] or through silicide formation on the surface [191, 192, 193]. The central question

here is a balanced cage-surface interaction that is strong enough to lead to a desired fixa-

tion of the cage, but not too strong to jeopardize the geometric integrity of the cage. For

this, obviously, we first need to develop methodology for future studies and to thoroughly

benchmark it, preferentially against experimental data. This requires choosing the model

surface and suitable adsorbates as a first step. Silicon surfaces attract much attention,

due to the variety of possible surface structures and their semiconductor properties [194].

The study of adsorbates on such surfaces is an active area of research with high relevance

to micro- and nanoelectronic technology [195]. Among possible adsorbates, Si clusters

are widely studied [196].

The Si(111)-(7 × 7) surface is investigated in a large number of studies focused on

self-assembled clusters, as this surface provides a structured template, characterized by

diffusion barriers between its half unit cells [197]. For instance, it is possible to grow

arrays of identical clusters with many metals as adsorbates [198, 199, 200, 201]. Ap-

pelfeller, Franz and Dähne [202] recently reported the growth of mixed Sb/Si ring-like

nanostructures at submonolayer coverages on the Si(111)-(7 × 7) surface, investigated

using scanning tunneling microscopy (STM) [203]. Based on the observed structural and

electronic properties, a structure model for such adsorbed clusters has been suggested.

However, due to the nature of the STM observations, no detailed atomically resolved ge-

ometry information has been obtained. We have chosen this system as a model to check

if theoretical investigations can provide the necessary structural information.

9.1 Theoretical STM Simulations of the Si(111)-(7 × 7) Surface

The (7 × 7) reconstruction [204] of the Si(111) surface is modeled according to a dimer-

adatom-stacking-fault (DAS) model suggested by Takayanagi et al. in 1985 [205]. This

model involves dimers, adsorbed atoms, and stacking faults. Extending through the five

top layers of the surface, the unit cell of the reconstruction contains 12 adatoms as well

as two triangular subunits, nine dimers and a deep corner hole that extends to the fourth

and fifth layers (see Fig. 9.1). The detailed atomic structure of the unit cell containing

200 atoms was suggested by Tong et al. in 1988 [206]. The (7×7) reconstruction has been

extensively studied both experimentally and theoretically in the 1990s (see the references

within [204]). Among these studies the work of the J. D. Joannopoulos’ group needs to

be emphasized [207].
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Figure 9.1: Si(111)-(7 × 7) DAS model. The faulted half of the unit cell (FHUC) is on
the left, the unfaulted half of the unit cell (UHUC) is on the right.

In order to make sure that we are able to describe the surface properly, we first

performed the optimization (PBE/tier2) of the periodic structure having 200 atoms in

the unit cell with initial atomic positions taken from ref. [206] with the following lattice

vectors: 


26.878 0.000 0.000

13.439 23.277 0.000

0.000 0.000 20.000


Å.

After optimization, the surface looks like the one presented in Fig. 9.1.

The successful interpretation of the Si(111)-(7×7) surface reconstruction was first ob-

tained based on STM measurements [205]. Scanning tunneling microscopy was developed

in the early 1980s by Binnig and Rohrer [208] and has proven to be a powerful technique

for the study of the electronic topography of surfaces and adsorbed layers [209, 210]. The

principle and operation of STM is rather simple. A sharp metal tip, usually made of

W or Pt-Ir alloy, is brought very close (5 – 10 Å) to the sample. At this distance the

wave functions of the sample and the tip start to overlap. If a bias voltage is applied

to the sample, an electron tunneling current flows between the sample and the tip. The

direction of electron flow depends on the sign of the bias applied to the sample. For

positive sample bias, electrons flow from occupied states of the tip to empty states of

the sample. For negative sample bias the direction is reversed. The tip can be moved

in three dimensions, and the tunneling current depends exponentially on the tip-surface

distance. Typically, the scan is performed by keeping the tunneling current constant via

dynamically adjusting the tip-surface distance (the so-called constant current mode).

The objective of our work was to simulate the experimentally observed STM pictures.

A simple and prevalent approach to simulate STM images from electronic structure cal-
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9 Towards Adsorption On Surfaces

Figure 9.2: Simulated STM image at −2.5 V (filled states, left) and +2.0 V (empty states,
right) bias voltage. The faulted half of the unit cell (FHUC) is framed in purple, and
the unfaulted half of the unit cell (UHUC) is framed in red. Adatoms of the FHUC are
highlighted in blue, and rest-atoms in yellow.

culations is due to Tersoff and Hamann [211], who proposed the following equation:

It = CV
∑

n~k

|ψn~k(~r)|2 , (9.1)

where the sum is taken over all Kohn-Sham states that fall between ǫF and ǫF +V , where

ǫF is the Fermi energy, V is the potential (in volts) of the sample with respect to the

tip, ~r is the position of the tip’s center of curvature (the tip is assumed to be spherical),

and C is a prefactor that in principle depends on the density of states of the tip, surface

work function, and radius of the tip. In general, it is simply assumed to be constant.

The STM simulation within the Tersoff-Hamann approach then reduces to a calculation

of the partial electron density at the position ~r due to states within the energy window

between ǫF and ǫF + V .

As one can see from the experimental STM images (see e.g. ref. [212] or [213]), the

appearance of the clean (7×7) surface depends strongly on the applied tunneling voltage.

At negative sample voltage the filled substrate states contribute to the STM picture and

the rest-atoms are observed additionally to the adatoms, while the faulted half unit cell

(FHUC) appears a bit brighter. In contrast, at positive sample voltage empty substrate

states are probed, only the adatoms are imaged and no height difference is observed. Fig.

9.2 depicts our simulated STM pictures for filled states (−2.5 V, left) and empty states

(+2.0 V, right). As can be seen from the Fig. 9.2, these features are nicely reproduced

by the calculation.
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9.2 Sb/Si Clusters Formation

Figure 9.3: Experimental STM image of the empty (a) and filled (b) states of the ring-like
clusters together with the suggested structural model (c). Adopted from [202].

9.2 Sb/Si Clusters Formation

By means of their STM measurements, Appelfeller, Franz and Dähne observed the for-

mation of self-assembled Sb/Si clusters on the Si(111)-(7 ×7) surface [202]. They showed

that with increasing Sb coverage in particular ring-like clusters are formed preferentially

in the faulted half of the unit cell, exhibiting a central density depression at the empty

states STM images (Fig. 9.3(a)). Based on a careful analysis of the obtained STM pic-

tures, it was concluded that, first, Sb atoms show a high affinity to substitute Si adatoms

of the Si(111)-(7×7) reconstruction. Second, the ring-like appearance is only observed in

the empty states STM images, while filled states images reveal structureless appearances

(Fig. 9.3(b)). The average Sb atom content has been estimated to be in the order of

five atoms per cluster. On the basis of these data, the following structural model was

suggested to explain the observed features: The cluster is assumed to consist of seven

Si and three Sb atoms. One Si atom in the symmetry center bonds to three Sb atoms,

which are surrounded by three Si dimers. Each of these dimers bonds to two of the Sb

atoms. The four central atoms have fully saturated bonds and are in an sp3-like bonding

configuration, which is the energetically most favorable one (Fig. 9.3(c)).

This structure model can in principle nicely explain the STM images of the ring-like

clusters: In empty state images, we mainly observe the partly filled dangling bonds of the

outer dimers because they protrude far into the vacuum. In contrast, the empty states

at the cluster center are characterized by antisymmetric orbitals of the Sb/Si bonds that

are located near the bonding atoms. This leads to a depression in the STM image and

therewith to a ring-like appearance. The dangling bonds of the dimers are also seen

in filled state STM images, but here the high electron density at the completely filled

dangling bonds of the three central Sb atoms leads to a protrusion at the cluster center

and thus to a broad, less structured appearance.

To check if the suggested structural model indeed corresponds to the observed STM

pictures we first ran global geometry optimization of the respective Si7Sb3 cluster ad-
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Figure 9.4: Identified ground-state structure of the Si7Sb3 clusters on the FHUC: Si atoms
of the cluster are highlighted in orange, Sb − in purple. Top view (left) and perpendicular
view (right).

Figure 9.5: Simulated STM picture of the empty states (+1.5 V) of the Si7Sb3 clusters.

sorbed on the faulted half of the unit cell. The identified ground-state structure is pre-

sented in Fig. 9.4.

Analysis of the identified structure shows that, due to the tetrahedral coordination of

the fully saturated central Si atom, and due to the high overall number of atoms for the

assumed cluster radius, Sb atoms have to be located rather high above the surface. This

topographical feature would most likely lead to brighter appearance of these atoms even

in the empty states image, thus making the ring-like appearance unlikely. This indeed

can be clearly seen in the corresponding simulated STM image (Fig. 9.5).

Thus, additionally taking into account that the number of atoms of both species in

the cluster is uncertain, other possible cluster structures have to be suggested. The

structure needs to have a number of dangling bonds along the edge of the cluster to yield

a bright “ring” in the empty states STM picture, and has to provide the possibility for
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9.2 Sb/Si Clusters Formation

Figure 9.6: Locally optimized structure of the suggested Si6Sb3 clusters on the FHUC:
Si atoms of the cluster are highlighted in orange, Sb − in purple. Top view (left) and
perpendicular view (right).

appearance of the density depression in the middle, i.e. all bonds of the central atom

should be saturated. Additionally the atom should not be located much higher above the

surface.

Keeping in mind these constraints, we suggested another structure, similar to the

originally proposed one, but with the top central Si atom removed. In such a way, in

order to saturate all bonds, Sb atoms have to form a connection with the lower-lying

central Si atom. Therefore, Sb atoms should be located lower and somehow closer to the

center. At the same time, the very center of the cluster stays “empty”, so the depression

in electron density is more likely to be observed. The optimized structure of this newly

suggested cluster geometry is presented in Fig. 9.6.

Within this structure, each Sb atom again forms two bonds to the neighboring Si

atoms, and the third bond to the central Si atom of the lower layer, and is thus located

closer to the surface compared to the originally proposed Si7Sb3 cluster. This raises hopes

for the possibility of a ring-like appearance in the empty states STM picture. Indeed, this

time the simulated STM image looks much more like the experimental one. Here, in the

empty states picture (Fig. 9.7, on the right) we can see the ring-like appearance similar

to the one observed in the experiment. In contrast, in the filled-states image (Fig. 9.7, on

the left) we again observe a “density blob”, likely caused by the rather high concentration

of Sb electrons in this area.

Intriguingly, varying the number of Sb atoms in this structure (by substituting Si

atoms in dimers with Sb one by one), we also managed to reproduce the different apparent

heights of the ring-like clusters, observed in experimental STM images, which can be

explained by the gradually decreasing number of the Si dangling bonds in the cluster,

and the concomitant decrease of the empty states density, which is immediately reflected

in the STM picture obtained at positive bias voltage.

The next obvious question is whether the suggested structure corresponds to the
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9 Towards Adsorption On Surfaces

Figure 9.7: Simulated STM picture of the filled (−1.5 V, on left) and empty (+1.5 V,
right) states of the Si6Sb3 clusters.

Figure 9.8: Ground state structure of Si6Sb3 (left) and simulated STM picture of the
empty (+1.5 V) states (right).

global minimum or not. Our unbiased systematic sampling revealed that, indeed, for

the Si7Sb3 cluster, the originally suggested structure corresponds to the ground state

geometry. However, for the Si6Sb3 cluster, with the simulated STM image agreeing to

the one observed in the experiment, this is not the case. For the latter case we found a

less symmetrical structure having a Sb atom in the center to substitute the missing Si

to be 3.04 eV lower in energy (Fig. 9.8, on the left). Furthermore, this structure has a

typical tilting of Si dimers, also observed in the originally proposed structure, as well as

for the simple Si(001) surface [216]. Unfortunately, this structure doesn’t produce any

ring-like appearance in the STM image (Fig. 9.8, on the right). Instead, the obtained

simulated STM depicts a featureless high density area similar to the one observed for

the orginally proposed structure (see Fig. 9.5), due to the high electronic density in the

middle of the cluster, and caused by the presence of the central atom in both cases.
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9.3 Conclusions to Chapter 9

This brings us to a very important conclusion that, since the number of atoms in the

cluster is only roughly estimated based on the average Sb coverage and the configuration of

bonds within the cluster, even global optimization of the fixed cluster composition, to say

nothing about the local geometry relaxation, is not enough for a reliable determination

of the experimentally observed structure. Instead, a systematic way of sampling the

grand-canonical ensemble of possible cluster compositions has to be suggested in order to

efficiently predict the most probable structure. Obviously, a brute-force sampling of all

possible Si/Sb combinations is computationally unfeasible, especially taking into account

the large number of atoms in the Si(111)-(7 × 7) unit cell, which rises the cost of each

geometry relaxation significantly. Instead, the ideas of ab initio thermodynamics [42]

should be employed to compare the stabilities of clusters of different compositions based

on their chemical potentials. Concomitantly, we will be able to sample the ground-state

geometries for a wide range of compositions. These ideas are scrutinized within the next

Chapter.
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10.1 Relative Stability Problem

Quantitative predictive-quality description of relative stabilities of clusters of different

sizes and compositions is one of the fundamental challenges the cluster community is

currently facing. In general, two approaches are being used to address this problem.

The first approach is based on the evaluation of atomization energies with respect to

different constituent parts of the system, or, alternatively, with respect to other systems

of different sizes. The most widely used formulae were e.g. summarized in the paper by

Torres et al. [143]. For example, to assess relative stabilities of MSin clusters of different

sizes one may use the binding (atomization) energy per atom (Eb):

Eb(MSin) = [n× E(Si) + E(M) − E(MSin)] /(n+ 1) . (10.1)

Or the addition energy of the M impurity to a Sin cluster (EM
add):

EM
add(MSin) = E(Sin) + E(M) − E(MSin) . (10.2)

Or the addition energy of a Si atom to a MSin−1 cluster (ESi
add):

ESi
add(MSin) = E(Sin−1) + E(Si) − E(MSin) . (10.3)

Or, finally, the so-called “second difference of the cluster energy” (∆2E), which computes

the stability of the given cluster with respect to the clusters of adjacent sizes:

∆2E(MSin) = E(Sin+1) + E(Sin−1) − 2 ×E(MSin) . (10.4)

To check if such an approach can be used to compare the relative stabilities of clusters,

we have chosen TiSi16 as a “standard” stable closed-shell cluster, which is well known

to exhibit high abundances in mass spectra [152]. Next, we ran global geometry opti-

mizations for a range of Ti-doped clusters (TiSin, n = 12 − 20), as well as for MSi16

clusters doped with other dopants (M = Sc, Ti, V, Cr). In such a way we can check

how responsive the proposed equations are to both differences in size and the number of

valence electrons of dopants, which influences the “magicity”, and therewith the stability

of the cluster. The resulting total energies of the ground-state structures of the respective

clusters were used to calculate their relative stabilities according to the equations above.

Results are summarized in Table 10.1.

In a graphical form (for TiSin clusters) the relative binding energies are depicted in

Fig. 10.1. As can be seen from Table 10.1 and Figure 10.1, all four binding energy

maxima correspond to the most stable closed-shell TiSi16 cluster (here the most positive

86



10.1 Relative Stability Problem

Cluster Spin state Eb, eV EM
add, eV ESi

add, eV ∆2E, eV

TiSi12 singlet 3.91 5.67 − −
TiSi13 singlet 3.93 6.65 4.30 −0.28

TiSi14 singlet 3.98 6.53 4.57 −0.38

TiSi15 singlet 4.04 7.03 4.96 −0.20

ScSi16 doublet 3.93 5.66 5.03 1.44

TiSi16 singlet 4.10 8.62 5.15 2.54

VSi16 doublet 4.04 7.53 4.17 0.96

CrSi16 singlet 3.89 5.02 2.88 −1.30

TiSi17 singlet 4.02 7.83 2.61 −1.07

TiSi18 singlet 4.00 6.87 3.68 0.19

TiSi19 singlet 3.97 7.16 3.49 −0.61

TiSi20 singlet 3.98 7.11 4.10 −

Table 10.1: Relative stabilities of TiSin and MSi16 clusters, calculated according to eq.
(10.1) − (10.4).

energy corresponds to the largest gain in energy, and therefore maximum stability). The

suggested values correspond to different properties: stability relative to atomization (Eb),

energy gained by adding a dopant atom (EM
add), energy gained by increasing cluster size

(ESi
add), or relative stability with respect to adjacent smaller and larger cages (∆2E).

Nevertheless, they all indicate that TiSi16 is the most stable cluster both relative to

Ti-doped clusters of other sizes, and to MSi16 clusters with other dopants.
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Figure 10.1: Relative stabilities of TiSin clusters, calculated according to eq. (10.1) −
(10.4).
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However, such an approach has its obvious limitations. For example, it is impossible

to deduce from these data whether certain cluster sizes are not preferable at all. It is also

impossible to extrapolate these data to other cluster sizes and/or compositions. Thus

the predictive capabilities of the binding energy idea is rather limited. To improve this,

another possible approach to solve the relative stability problem needs to be applied, and

we propose the ab initio thermodynamics framework.

10.2 Ab initio Thermodynamics Approach: Basic Idea

Within the ab initio thermodynamics idea [42, 124, 125, 214, 215] the central quantity is

the Gibbs free energy per particle, which, in case of an infinite homogeneous system, is

equivalent to the chemical potential µ. If the homogeneous system is viewed as a reser-

voir, the chemical potential gives the cost at which this reservoir provides particles. For

example, such a description is suitable for surface-gas interactions, where infinite homo-

geneous parts of the system (i.e. bulk and surrounding gas phase) can be represented as

such reservoirs. In such a fashion, information on structure and energetics from standard

DFT calculations can be used to calculate the thermodynamic potential functions, which

thus provides a possibility to determine relative stabilities of different configurations by

constructing corresponding phase diagrams [123].

This approach has been successfully used for the prediction of thermodynamically

stable and metastable structures for bulk semiconductors [42, 125] and surface oxides [217,

218, 219]. Recently it has also been extended to gas-phase clusters in the environment

of O2 and CO [220, 221]. However, in the two latter works only the chemical potentials

of the gas-phase O2 and CO molecules has been taken into account. Thus, to the best

of our knowledge, no attempt of translating the ab initio thermodynamics ideas to the

composition of the cluster itself has been performed so far.

The simplest possible idea of how to assess the stability of a given cluster is to in-

troduce the dependence of the Gibbs free energy of formation ∆Gform of e.g. the MSin
cluster on the chemical potential of its constituent Si atoms (∆µSi):

∆Gform = E(MSin) −E(M) − n× E(Si) − n× ∆µSi , (10.5)

where ∆µSi is an unknown variable chemical potential difference between the Si atom

in the formed cluster and in the Si atoms source. Here, we get a linear dependence

of ∆Gform on ∆µSi, and we can analyze the differences in the steepness of the lines

corresponding to different cluster sizes: lines that fall lowest in the graph over a range

of ∆µSi correspond to thermodynamically preferred sizes for this range of ∆µSi. As a

suitable chemical potential reference point, −4.57 eV can be chosen, which corresponds

to the energy difference between the Si atom in Si bulk and an individual Si atom:

E(Si bulk, per atom) − E(Si atom), i.e. the energy cost of removing one Si atom from
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Figure 10.2: Relative stabilities of TiSin clusters, calculated within the ab initio thermo-
dynamics framework according to eq. (10.5).

the bulk. Such choice of reference point can be justified by taking into account that the

prevalent experimental method of producing clusters is laser vaporization from the Si

surface [222].

Let’s plot the lines for TiSin (n = 12 − 20). Here, according to eq. (10.5), a more

negative ∆G indicates a more stable state of the system. From Fig. 10.2 one can see

that, in full agreement with the experimental abundances [152], TiSi16 is indeed thermo-

dynamically preferred within the range of ∆µSi around −4 eV. TiSi15 is identified as the

second most stable cluster size in the relevant range of Si chemical potentials, which also

agrees well with experimental data [25].

Analysis of the vibrational contribution to the free energy shows that including the

vibrational term to the chemical potential doesn’t change the overall picture drastically.

We calculate the vibrational contribution as follows:

µZPE = EZPE + µvibr =
∑

i

{
NA

h̄υi

2
+RT ln

[
1 − exp

(
−hυi

kBT

)]}
, (10.6)

where υi are vibrational modes, NA is Avogadro’s constant, and R is a universal gas con-

stant. The first term (EZPE) arises from the zero-point vibrations (giving a contribution

of the order of +0.6 eV at 298 K for TiSin clusters) and the second term corresponds

to the free energy contributions of all vibrational modes (∼ −0.4 eV, 298 K). In total

this gives an average of ∼ +0.2 eV, which shifts all lines in the spectrum more or less

systematically to less negative ∆G (due to larger positive ZPE term). Obviously, the

relative positions of the lines do not change. For higher temperatures, the contribution of
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Figure 10.3: Relative stabilities of CuSin+ clusters, calculated within the ab initio ther-
modynamics framework according to eq. (10.5).

the second term should increase, giving an overall shift of the graph to the other direction

(to more negative ∆G).

Very similar agreement between the experimental mass-spectrometry data [23] and our

calculated results (cf. Fig. 10.3) is also observed for cationic CuSin+ clusters. As observed

in the experiment [23], CuSi10
+ is the preferred cluster size. Both CuSi7+ and CuSi9+

appear as second and third most stable structures, respectively, within a certain range of

chemical potentials (around −4.10 eV). These results confirm that the method works for

both neutral and cationic clusters, and is valid for clusters with different dopants.

10.3 Towards the True Thermodynamics

The above described method thus illustrates the fundamental possibility of employing

the concept of chemical potential of constituent atoms for the assessment of relative

stabilities of clusters. The main problem of the method, however, is the fact that the

chemical potential is not computed explicitly, which leaves the precise range of relevant

∆µSi to understand a given experiment unknown. The total free energy of the given

cluster is composed of electronic, vibrational (see eq. (4.24)), translational (eq. (4.13))

and rotational (eq. (4.20)) free energy contributions (there are no internal rotations in
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the clusters under consideration):

G(T, p) = G(electr.) +
∑

i

{
NA

h̄υi

2
+RT ln

[
1 − exp

(
−hυi

kBT

)]}

−RT ln

(
(2πkBTm)3/2

h3
· kBT

p

)
− RT ln


8π2

σ

(
2πkBT

h2

)3/2

· (IAIBIC)1/2


 ,

(10.7)

with the first term of the vibrational free energy accounting for zero-point vibrations.

The translational, rotational and vibrational contributions are easily calculated from

the structural data (globally optimized ground-state geometry of the cluster) and the

calculated vibrational spectrum according to eq. (10.7). The G(electr.) term is then

equal to the calculated total energy of the cluster. From this, the chemical potential

of the Si atom in the given cluster can be calculated by definition as the “cost” of the

particle, i.e. as the increment of the free energy over the increment of the number of

particles:

µSi =
∂G

∂nSi

≈ G(MSin) −G(MSin−1)

1
(10.8)

where MSin is a given cluster size. Let’s calculate these values for a set of TiSin (n =

12 − 20) clusters (for T = 298 K, p = 1 atm) and compare them to the energies of an

individual Si atom and Si atom in Si bulk (see Table 10.2).

Cluster
G(el.),
105 eV

G(tr.),
eV

G(rot.),
eV

G(vibr.),
eV

µSi, eV
∆µatom,

eV
∆µbulk,

eV

TiSi12 -1.1793 -0.5011 -0.3673 0.2315 − − −
TiSi13 -1.2582 -0.5038 -0.3671 0.2100 -7891.9037 4.32 -0.25

TiSi14 -1.3371 -0.5064 -0.3705 0.2442 -7892.1273 4.55 -0.02

TiSi15 -1.4161 -0.5087 -0.3735 0.2441 -7892.5422 4.96 0.39

TiSi16 -1.4950 -0.5110 -0.3761 0.1881 -7892.7931 5.21 0.64

TiSi17 -1.5739 -0.5131 -0.3825 0.2243 -7890.1676 2.59 -1.98

TiSi18 -1.6528 -0.5151 -0.3875 0.2246 -7891.2730 3.69 -0.88

TiSi19 -1.7317 -0.5170 -0.3923 0.2558 -7891.0513 3.47 -1.10

TiSi20 -1.8106 -0.5188 -0.3966 0.3215 -7891.6231 4.04 -0.53

Table 10.2: Calculated chemical potentials of Si atoms in TiSinclusters.

As can be seen from Table 10.2, Si atoms in TiSi16 indeed have the most negative

chemical potential, which indicates stability of the cluster. The difference between the

chemical potentials of a Si atom in the cluster and an individual Si atom (see the ∆µatom

column in the Table 10.2) are very close to values of the addition energy of Si atom

to a MSin−1 obtained through the eq. (10.3). The comparison with the bulk atoms
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is, however, more interesting. While similarly indicating that the TiSi16 cluster is the

most stable one, the ∆µbulk column of Table 10.2 clearly shows that only TiSi16 and

TiSi15 should be stable at all with respect to the bulk Si, which agrees very well with

experimental mass-spectra [25, 152].

Similar results have also been obtained for CuSin+ (n = 6 − 14) clusters (see Table

10.3).

Cluster
G(el.),
105 eV

G(tr.),
eV

G(rot.),
eV

G(vibr.),
eV

µSi, eV
∆µatom,

eV
∆µbulk,

eV

CuSi+6 -0.9237 -0.5089 -0.3567 0.0288 − − −
CuSi+7 -1.0026 -0.5133 -0.3694 0.1179 -7892.1970 4.62 0.05

CuSi+8 -1.0816 -0.5173 -0.3728 0.1093 -7891.0104 3.43 -1.14

CuSi+9 -1.1605 -0.5209 -0.3785 0.1143 -7892.0195 4.44 -0.13

CuSi+
10 -1.2394 -0.5242 -0.3863 0.1115 -7892.4281 4.85 0.28

CuSi+11 -1.3183 -0.5272 -0.3912 0.1504 -7890.7122 3.13 -1.44

CuSi+12 -1.3972 -0.5300 -0.3980 0.1406 -7891.7884 4.21 -0.36

CuSi+13 -1.4761 -0.5326 -0.4001 0.1621 -7891.5548 3.97 -0.60

CuSi+14 -1.5551 -0.5351 -0.4049 0.2295 -7891.7458 4.14 -0.41

Table 10.3: Calculated chemical potentials of Si atoms in CuSin+ clusters.

As can be seen from the Table 10.3, CuSi10
+ is the most stable cluster, which agrees

well with the experimental results [23]. At the same time, only in case of CuSi7+ and

CuSi9+ clusters Si atoms come close in energy to a Si atom in Si bulk, which also agrees

nicely with experimental mass-spectra depicting three major peaks indicating the highest

abundances for CuSi10
+, CuSi7+ and CuSi9+, respectively [23].

10.4 Conclusions to Chapter 10

First results indicate that a thermodynamics-based approach allows to reproduce mass-

spectra abundances of clusters of different sizes rather well. However, there are still several

challenging questions left to be answered. First of all, the mixture of clusters produced in

the laser vaporization source might be in a non-equilibrium state. Second, there is still no

way to extrapolate the results to clusters of other sizes, due to a non-linear dependence

of µSi on the cluster size. Since these questions go beyond the scope of this thesis, we

emphasize the importance and potential applicability of an ab initio thermodynamics

approach to assess the cluster stabilities, and outline this as an perspective outlook, with

the goal of pursuing these investigations in our future work.
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The results obtained within this work clearly indicate the unique position of silicon clus-

ters among the family of potential building block candidates to be used for novel engi-

neered nano-scale material design. Despite the common belief in simple electron counting

rules [27, 143, 152] and a formal charge transfer picture [16, 140, 141, 142], endohedrally

doped Si cage-like clusters are shown to be stabilized through complex dopant-cage in-

teraction, mediated via hybridized metal-Si states (Chapter 5). This, on the one hand,

offers more flexibility in obtaining stable endohedrally doped systems, not only limited

to the ones with “magic” number of electrons, while, on the other hand, simultaneously

suggesting the possibility of conserving the atomic character of the dopant by minimizing

the dopant-cage interaction. For instance, such minimization can be achieved by hydro-

gen termination of the sp3-caused dangling bonds of the cage Si atoms [155, 156]. In this

line of thinking, Chapter 6 illustrated the possibility of conserving the high spin states

of individual transition metal dopant atoms, with stabilization of the structure achieved

by delocalization of dopant 4s electrons, instead of hybridization of its unpaired valence

d-electrons. Intriguingly, this method not only protects the cluster from the reactive envi-

ronment, but already suggests a route to polymerization of such hydrogenated clusters by

varying the number of non-terminated Si dangling bonds, thus transforming the individ-

ual gas-phase clusters into appealing building blocks for novel cluster-assembled materials

[9]. Chapter 7 reveals that, in contrast to the known clathrate-type facet sharing, such

hydrogenated Si cage building blocks show a predisposition to aggregation through double

Si-Si bridge bonds. This yields a toolbox of monomers with different number of double

“docking sites”, which allows building thermodynamically stable network architectures of

any morphology. These properties differentiate Si cage-like clusters from their “conven-

tional” carbon fullerene counterparts, for which, due to preferable sp2 hybridization, the

controlled formation of a given number of bonding sites appears to be improbable. More-

over, such Si-based building blocks for cluster-assembled materials may possess unique

magnetic properties, as was illustrated in Chapter 8, confirming the exciting perspective

of tuning the total number of unpaired electrons in the system by encapsulating a range

of different dopants (starting from single atoms with different spin states, through highly

magnetic dimers, and eventually up to more complex dopant aggregates) into a suitably

sized hydrogenated silicon cage.

In conclusion, the work thus systematically assessed the possibility of using Si clusters

in the growing field of nano-material science by carefully investigating the nature of chem-

ical bonding within the building blocks and suggesting novel ways of building aggregates

with engineered properties. On a conceptual level this work underscores the necessity

of basing nanoscale materials design through predictive-quality theory on a systematic

unbiased exploration of the vast configurational space with global optimization meth-
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ods such as basin-hopping [36], as opposed to simple comparisons of chemically intuitive

candidate structures.

However, as is true for any extensive scientific investigation, here we also raise new

questions to be answered in future projects. The central problem of any cluster investiga-

tion is to move from the study of isolated, individual metal-doped Si clusters towards the

properties of such clusters in a non-trivial environment, i.e. under the influence of other

bonding partners (clusters, extended surfaces). Specifically targeted within this theme is

the formation of aggregates as first step towards bulk cluster-assembled materials on the

one hand, and the stabilization of doped Si cages at Si or/and graphene surfaces on the

other hand.

With our work we have already taken a first step towards aggregates formed of sev-

eral endohedral Si cages. At the concomitantly increased system sizes and complexity

extensive configurational sampling becomes ever the more important to arrive at reliable

conclusions concerning the preferred geometric structures adopted. However, in its classic

formulation global geometry optimization samples for a fixed number of species, i.e. it

only identifies the optimum structure for a defined composition. One avenue to overcome

this limitation is to extend the configurational sampling to a grand-canonical ensem-

ble within the ab initio thermodynamics [123] framework, the idea of which was already

touched upon in Chapter 10. In addition to the regular trial moves that merely change the

geometric position of atoms, this would allow for particle insertion or deletion moves, or

even “alchemical” moves changing the chemical species. The target function to minimize

would then no longer be the total energy, but instead the Gibbs free energy as evaluated

within ab initio thermodynamics. For given chemical potentials such simulations would

then ideally converge automatically towards the optimal cluster size/composition.

Another important question here that is of big relevance for real-life synthetic pros-

pects of cluster-assembled materials is how stable the building blocks, intermediates and

the final aggregates themselves are in reaction solution. Suitable solvents might include

those used for synthesis of organosilicon clusters [223, 224], such as toluene or tetrahy-

drofuran. For this, simulation of the environment e.g. within an implicit solvation model

[225, 226, 227] is needed.

As an obvious alternative route to make the intriguing materials properties of metal-

doped Si clusters available in applications, investigation of their stabilization at extended

surfaces is furthermore necessary. Experimentally this can be realized through deposition

of pre-formed cages or through silicide formation at the surface, which was outlined in

Chapter 9. The central question here is a balanced cage-surface interaction that is strong

enough to lead to a desired fixation of the cage, but not too strong to jeopardize its

geometric integrity. Obviously, this also calls in a first step for a dedicated exploration

of the configurational space to identify which structures result as most stable. The addi-

tional computational challenge here is the increased cost of global geometry optimizations
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incurred by the necessity to explicitly model the extended surface. Therefore, the pos-

sibility of pre-screenings at lower levels of theory should be taken into account. This

comprises, for instance, the detailed validation of the reliability of tight-binding DFT

[47, 48] and of semi-empirical potentials [228, 229].

Another potentially interesting question for future investigations is how the interplay

between adsorption of simple gas-phase molecules and doping may be employed to fine-

tune the function of silicon clusters. The main objective here is to use the obtained

detailed geometric, energetic and electronic structure data to establish a trend under-

standing of stable adsorbate/dopant combinations with interesting materials properties.

Ultimately, despite the wealth of newly arising questions, the here presented ap-

proaches for novel material construction can be applied to a broad range of systems, not

limited to silicon clusters. This, for instance, includes systematic unbiased configura-

tional sampling of the system composition, careful study of the chemical bonding within

the structure, with a specific focus on the dopant-host interaction, which can be tuned

and configured to meet the needs of the material design, and a comprehensive description

of the ways to obtain unique magnetic and optical properties of the constructed mate-

rial. This work thus provides important insights into theoretical material design, and,

hopefully, will stimulate further investigations in the field.
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A Basis Sets used in FHI-aims

H Si Cr Sb

minimal 1s1 [Ne] + 3s23p2 [Ar] + 4s23d4 [Kr] + 5s24d105p3

tier 1 H(2s, 2.1) H(3d, 4.2) H(4f , 9.6) H(3d, 3.5)

H(2p, 3.5) H(2p, 1.4) H(3d, 3.1) Sb2+(5p)

H(4f , 6.2) Cr2+(4p) H(4f , 6.8)

Si2+(3s) H(5g, 13.6) Sb2+(5s)

Cr2+(4s)

tier 2 H(1s, 0.85) H(3d, 9.0) H(4f , 6.8) H(5g, 9.8)

H(2p, 3.7) H(5g, 9.4) H(4d, 14.4) H(4f , 19.2)

H(2s, 1.2) H(4p, 4.0) H(6h, 19.2) H(6h, 13.6)

H(3d, 7.0) H(1s, 0.65) Cr2+(3d) H(4d, 4.5)

H(4f , 14.8) H(4f , 4.6)

H(5g, 10.4) H(5p, 7.0)

H(1s, 0.6) H(3s, 2.7)

H(3p, 3.5)

tier 3 H(4f , 11.2) Si2+(3d) H(6h, 15.6) H(6p, 7.8)

H(3p, 4.8) H(3s, 2.6) H(3d, 7.4) H(5g, 8.6)

H(4d, 9.0) H(4f , 8.4) H(4p, 18.4) H(6h, 11.6)

H(3s, 3.2) H(3d, 3.4) H(5g, 16.4) H(5f , 16.4)

H(3p, 7.8) H(4s, 3.9) H(5d, 8.4)

H(4f , 28.8) H(1s, 0.7)

. . . . . . . . . . . .

Table A.1: Radial basis functions used in FHI-aims for several example atoms (H as s-
element, Si as p-element, Cr as d-metal, and Sb as p-metal). H(nl, z) denotes a hydrogen-
like basis function for the bare Coulomb potential z/r, including its radial and angular
momentum quantum numbers n and l. X2+ denotes a radial function of a doubly positive
free ion of species X.
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B Low-lying Isomers of Selected Clusters

VSi16
+

Isomer number Spin state
Relative energy,
eV

Picture

1 singlet 0.00

2 singlet 1.00

3 singlet 1.05

4 singlet 1.11

5 singlet 1.15

Table B.1: VSi16
+ low-lying isomers.
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Appendix

CrSi16H16

Isomer number Spin state
Relative energy,
eV

Picture

1 singlet 0.00

2 singlet 1.50

3 singlet 1.55

4 singlet 1.66

cage septet 2.14

Table B.2: CrSi16H16 low-lying isomers.
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B Low-lying Isomers of Selected Clusters

CrSi20H20

Isomer number Spin state
Relative energy,
eV

Picture

1 septet 0.00

2 singlet 2.05

3 singlet 2.69

4 singlet 4.81

5 singlet 5.16

Table B.3: CrSi20H20 low-lying isomers.
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Appendix

CrSi20H18

Isomer number Spin state
Relative energy,
eV

Picture

1 singlet 0.00

2 singlet 1.95

3 singlet 2.00

4 singlet 2.14

5 singlet 2.23

Table B.4: CrSi20H18 monomer low-lying isomers.
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B Low-lying Isomers of Selected Clusters

(CrSi20H18)2

Isomer number Spin state
Relative energy,
eV

Picture

1 singlet 0.00

2 singlet 6.63

3 singlet 6.95

4 singlet 9.15

5 singlet 10.23

Table B.5: (CrSi20H18)2 dimer low-lying isomers.
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Appendix

CrMn+@CrSi24H24

Isomer number Spin state
Relative energy,
eV

Picture

1 11-tet 0.00

2 singlet 0.80

3 singlet 4.29

4 singlet 4.54

5 singlet 4.82

Table B.6: CrMn+@CrSi24H24 low-lying isomers.
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B Low-lying Isomers of Selected Clusters

(CrMn+)2@CrSi28H28

Isomer number Spin state
Relative energy,
eV

Picture

1 19-tet 0.00

2 singlet 0.75

3 singlet 1.11

4 singlet 4.00

5 singlet 4.42

Table B.7: (CrMn+)2@CrSi28H28 low-lying isomers.
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