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Abstract— The stability and performance of a networked capability of a network to provide different communication
control system (NCS) strongly depends on the communication quality to different network traffic classes. Guaranteed lo
quality, e.g. of the communication time delay. Aiming at = ime delay results in very good control performance, but
performance oriented control over networks in the presence of . . .
piecewise constant time delay, two novel control approaches are rgquwes the provision lofllarge network resources, i.euces
investigated. In the first approach, the time delay is monitored high network cost. Aiming at a trade-off between control
and an appropriate controller is selected. The second approach performance and network cost it is proposed to switch the
is based on the Quality-of-Service communication concept, time delay together with an appropriate controller. Theetim
where the time delay is adjustable and related to the network delay is assumed piecewise constant.

cost. Aiming at an optimal trade-off between network cost . : .

and control performance the controller together with the time As a result, in both conS|dergd approachgs t_he tlmg delay
delay is switched. Both approaches result in a switched system s Well as the controller are switched resulting in a switche
with switched (piecewise constant) delays. Sufficient stability system with switched time delay. Switched (hybrid) systems
conditions for the resulting switched time delay system are are dynamical systems that consist a set of finite subsystems
presented using a piecewise continuous Lyapunov-Razumikhin g g |ogical rule that orchestrates the switchings between

function. A common Lyapunov function is derived for symmet- o .
ric systems. The performance benefits for both approaches are them. The stability of the subsystems themselves is not

demonstrated in nhumerical examp|esl SuffiCient fOI‘ the Stab”lty Of the OVera” SyStem [3], [4]t£
bility with arbitrary switching can be ensured by a common
. INTRODUCTION Lyapunov function which is difficult to construct in general

In the view of affordability, widespread usage and wellThe concept of piecewise continuous Lyapunov functions is
developed infrastructure, communication networks arg vereveloped in [5]-[7]. Alternatively, dwell-time based $uti-
attractive for the signal transmission in control systef8s ing is considered in [8], [9]. All these approaches, howgver
comes, however, at the cost of a no longer ideal signalo not consider time delay. Most prominent approaches in
transmission. Especially, time delay associated with tite d the rich literature on time delay systems, see e.g. [10]-
transmission has a strong influence on the stability and tfig2] and references therein, are Lyapunov-like approaches
performance of the closed loop system, see [1], [2] fobased either on the Razumikhin or the Krasovskii method.
a general overview on control challenges and approach8sitched time delay systems are considered in [13], [14],
for networked control systems (NCS). In the current NCSvhere the common Lyapunov function approach is extended
literature the communication quality is assumed to be giveand in [15] adopting a dwell-time approach. However, a con-
in advance, accordingly stabilizing controllers are desiy stant time delay is considered there. To the best knowledge
In this paper two alternative approaches dealing with thef the authors there are no stability and performance ®esult
time delay problem are proposed. In the first approach withvailable for switched systems with switched time delays.
time delay dependent controller switching, the time defay iMain contribution of this paper is a sufficient condition for
monitored and an appropriate controller is selected onlirge stability of switched systems with switched (piecewise
to ensure good performance. The time delay is assumednstant) delays based on a piecewise continuous Lyapunov
to be piecewise constant. This assumption is reasonabfanction approach and a common Lyapunov approach for
e.g. in Token ring networks, where by the removal or thgymmetric systems. The performance of both considered
addition of a network node the otherwise constant time delagpproaches are studied in numerical examples. Benefits in
decreases/increases in a discontinuous manner, further alerms of improved control performance are shown for the
for route switching in multi-route networks. delay-dependent controller switching approach. An opgtima

In the second approach, the Quality-of-Service (QoS) conrade-off between control performance and network cost is
trol approach, the communication time delay is considereachieved for the QoS control approach using a hybrid optimal
to be adjustable in realtime. This is motivated by the QoSontrol algorithm from [16].
concept from the networking community, which refers to the The remainder of the paper is organized as follows: The

_ _ o . problem definition along with preliminaries on the stabilit
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II. NOTATIONS AND DEFINITIONS In the remainder of this paper we focus on LTI switched

Throughtout this paper the extensively used notations a“éne delay systems which have the form

g|Ven- ZL’(t) = Algl'( ) + Azll'(t — 7'7;),
o The set ofn component real vectors is defined BY; r,=z(t+0), 0€[-7,0], ©)
R* denotes the set of positive real numbers ghds
the set of subsystems within a switched system. where4;y, A;; € R™*". Itis assumed that there is no jump
« ||-]| denotes the Euclidean norm; For a continuoud the state (state reset) of (3) at the switching instargs, i
function z(t) € [a,b], the norm||-||. is defined by the solutionz(t) is continuous everywhere. A finite number
||z(t)]|e = maxa<i<p ||2(2)]]- of switches is assumed in finite time.

o V(t,z(t)) denotes the family of nonnegative func- In contrastto conventional switched systems, the proposed
tions and its right-hand derivative is defined agontrol structure comprises switching of controllers and
V(t,x(t)) = lima_o,A50 V(ta, x(t+A>> Vta) switching time delays. An analysis method for such systems

o ui, us, w, p, andh are continuous nondecreasmg poshas not been published so far.
itive functions with u U w(s),p(s), h 0
for s > 0 with u;(0) :1 512)(,0)2(: )};(og i’ﬁ( ) hle) > A. Stability of Time Delay Systems

Definition 1: For any dynamics system with a trivial solu- MOSt prominent approaches for the stability analysis of

tion z(¢) = 0 is said to be stable if for ang, € R* and any tme delay systems are thg ITyapunov-Krasovsku approaqh
£ > 0, there exist & = §(ty, ) > 0 such that/|z(t,)|| < & and the Lyapunov—Razum|kh|n approach. Th.e. Krasovsk_n
implies||z(t)|| < e for ty > t. It is said to be asymptotically appﬂ??Ch may provide a necessary.and sufficient stability
stable if it is stable, and for an € R+ and anye > 0, cond|t|qn, the Kras_ovs_kn _fu_nctlonal mcludes the retatde

if there exist as = &(to,) such that||z(ty)|| < § implies ~States, its computation is dlfflcult_. The Razumlkhln_ appma
lim;_.o 2(t) = 0. It is said to be uniformly stable if it S€€ €.9. [12], circumvents the d|ff|c_ult|es by considering t

is stable ands = 6(ty,c) can be chosen independent ofbyapunov functionV' (¢, z(t)) depending on the present state
to € R*. It is said to be uniformly asymptotically stable « x(t) only. Asymptotic stability is guaranteed if the Lyapunov
if it is uniformly stable and there exists &> 0 such that function &V (¢, x(t)), £ > 1, does not exceed

for anyn > 0, there is & = T'(6,n), such that|z(to)|| < ¢

¥% = 4
implies ||z (t)|| < n for t >ty + T. It is said to be globally Vit,a) 9:[1_130] Vit+6,a(t+6)), @
asymptotically stable if it is asymptotically stable ahdan )
be any arbitrarily large finite number. i.e. the largest value of the Lyapunov function over

Remark 1:The stability notations for dynamics systems the past time delay interval—7,0] [11]. A%ssuming a
with time delays are lightly different from the Definition duadratic Lyapunov functiorV/(t,z(t)) = z(t)” Pu(t) the

1. The reason stems from that time delay systems havedglay dependent stability condition can be expressed ds LM

segment of initial condition, i.ex,,. Therefore, for time Consider therefore the LTI time delay system (3) without

delay systems the maxiaml valiie, ||. < 6 is considered SWIChing. _ _
as the initial condition assumption in Definition 1. Corollary 1. [12] The LTI time delay system (3) is
asymptotically stable if there exists a real symmetric mratr

I1l. PROBLEM FORMULATION AND PRELIMINARIES P >0 and real scalars: > 0, a; > 0 such that
A networked control system with synchronously switching M —PAAy —PA?
controllers and delays is considered in this paper; theydela —ATATP  —aP 0 <0, ()
are considered piecewise constant. Comprising hybrid dy- —(AHTP 0 —a1 P
namics as well as delay system dynamics it can be describe T
by a switched delay differential functional of the form ?1 reM = 2 [P(Ar + Ao) + (A1 + Ao) " P| + (a+ a1 P.
Proof: See [12]. [ |

T = o T, Tt, Ty s 1 . .
foto (71 7o) @) B. Stability of Switched Systems

whereo(t) is a piecewise continuous switching signal takes
value on the setP :={1,...,N} with o(t) =14, i € P
for somet € [t;,tiy1), x € R™; 7,0 € R* represents the
piecewise constant time delay, angd € R" specifies the
initial condition of (1) having the form

It is well known that switching between stable subsystems
may result in instability of the switched system [3], [4].
Let V; denote the Lyapunov function associated with sub-
systemi. An important method for the stability analysis of
switched systems is based on the construction of a common

= a(t+0), 0 € [~To(),0]. ) Lyapunov functiqrﬂ/(ax) = V?-(x) for qll i€ P. lts existence

guarantees stability for arbitrary switching sequencesyH

Note that without switching, i.ec(¢) constant, the classi- ever, a common Lyapunov function is generally difficult to
cal delay differential functional modeling time delay sysind, typically they are found analytically only for certain
tems [12] is recovered. With zero time delay,) = 0, (1) system classes, such as linear systems with commuting
represents the switched system model in the notation of [1#hatrices [18].



An alternative method to analyze the stability of switched At the time instantt; the execution enters subsystem 2,
systems is by a piecewise continuous Lyapunov function [Slwhere ¢, >ty + supy; o3(7) — 71 is required for the
[7]. A (piecewise) continuous Lyapunov functidf is asso- proper definition of the initial condition for subsystem
ciated to each subsystemwhere in generaV;(z) # V;(x) 2. As there is no jump in the states at the switching
holds if i # j. While the Lyapunov functiori/; decreases instant by assumption, the initial condition for subsystem
whenith subsystem is active, it could however increase whed is given by z;,, = z(t; +6) with 6 € [-7,0]. By
subsystemi is inactive. The concept of piecewise continuougiii) using the same arguments as above, the associated
function is to restrictl; at consecutive instantg > t; such  Lyapunov functionVs(t, z(t)) < Va(ty, me, )Vt i ta >t >t
that where ¢t marks the switching instant from subsystem

, A ) _ , . 2 back into subsystem 1. With|z,, ||. <1 there is

Vila(te)) = Vila(t;)) < h(ll@)l), vi e P, (6) a e such that0<e; < uz_l(ul?“@)l)u and using the
whereh(-) is a positive continuous function with(0) = 0. same arguments as abovec(t)|| < ea Vt:ty >t > ti.
By requiring the sequence of Lyapunov function values tégain, ||z(¢)]| =0 as {3 — oo holds. Further,
decreasing at the switching instants for each subsystetwy (iv) Vi(to,zs,) < Vi(to, e,) — h(||2e,|]e) < uiler),
asymptotical stability of the switched systems is then guahence ||z:,|| < ;. With the same arguments it can be
anteed. shown that Va(t3,z¢,) < ui(e2) Where t; marks the
switching instant from subsystem 1 to subsystem 2.

IV. STABILITY OF SWITCHED TIME DELAY SYSTEMS In fact, at each switching instartt the Lyapunov func-

In this section sufficient conditions for the stability oftjon Vg(t])(tj»l'tj) is bounded byu;(s2) and therefore is
switched systems with switching time delay are presentefimited by az > 0, z = lim; o0 Vo’(tj)(tj7xtj)- As a result
The concept of piecewise continuous Lyapunov functions i®r each subsysteni and any two consecutive switching
extended, a common Lyapunov function is derived for thénstantst, > ¢;, o(ty) = o(t;) = 4, by (iv) it follows,
special class of symmetric systems. _ _
0= lim ‘/i(tk,l‘tk) — hm Vvi(tj,l‘tj)

A. Piecewise Continuous Lyapunov Function by Razumikhin koo I
Approach < jlifgo[—h(|\$tj|\c)] <0.

Consider_ the switched time delay system given by_ (3’.)'[ implies lim;_. ||x¢,||c = 0 for eachi, and thus leads

The following theorem extends the classical Razumikhig . (i + ) —0 for 0 e [—7,0] which complet

. . . . . t—o00 (3] pletes
theorem [11] to switched systems with piecewise contmumhs,l e proof. -
time delays stating a sufficient condition for stability. ) ) .

Theorem 1:A switched time delay system (3) is asymp- Reémark 2:Theorem 1 applies to switched time delay
totically stable if there exists a continuously differemtie  SyStems with any finite number of subsystemsh() > 0
positive definite functiorV; for each subsystetme P, active [OF s >0 in (iv), then the switched time delay system is

in the time intervalt € [t;,¢,.1), such that stable.

(i) Vi(t,0) =0, Vi(t,z(t)) > 0 for z € R"\{0}, Remark 3:Without the restriction to the time interval of
(i) w(||z(®)]]) < Vi(t,z(t)) < us(||z()]]), activity ¢ € [t;,t;11), conditions (i)-(iii) basically represent
(i) Vi(t,z(t)) < —w(||z(t)]]), whenever the classic Razumikhin theorem ensuring asymptotic stabil

Vit +0,2(t + 0)) < p(Vi(t,z(t))) with 6 € [—7;,0], ity [12] for subsystem: without switching. They guaran-

t €[t tisr), tee the measur&;(t,z,) of the states to decrease during
(v) Vi(te,ar,) — Vit m) < —h(||z,||e), ty >t the time subsystem is active. If each of the subsystems

are consecutive switching instants for whichiS asymptotically stable according to the Razumikhin ap-

o(ty) = o(t;) = i. proach, then those conditions are automatically satisfied.

Sketch of Proof:For the sake of simplicity, the switched Condition (iv) ensures the sequence of the state measure to
time delay system (3) is assumed to contain twé&l€crease atconsecutive switching instants for each siaipsys
subsystems i@ = fi(z, 2y, 71) and i = fo(z, 24, 7). similar to (6). Accordingly, in case of a time delay system
The switched time delay system starts, without loss dfithout switching, i.eo(t) = const.,, Theorem 1 reduces to
generality, with subsystem 1 a§. For any givens; > 0, the original Razumikhin theorem [11] (condition (iv) then
let 0<d; <uy'(ui(e1)). Then for any t, and any follows from (iii) and is no longer needed). If the time
given initial condition z,, = x(to + 0) with 0 € [—71,0] delay is §et Fo zero, i.e,(;) = 0, then the standard swn_qhed
where ||z, ||c < 01 it is Vi(te,xy,) < ua(61) < ui(e) System is given and the result from [7] on the stability of
by (i). The subsystems are asymptotically stableSWitched systems is recovered. For constant time delay, i.e
with (i) using standard techniques as e.g. from [12o(;) = const, a similar result as in [19] is achieved.

it can be shown that Vi(¢,z(t)) < Vi(to,xt,),
hence Vi(t,z(t)) <wui(e1) Vt:t;3 >t >ty, where ¢
marks the switching instant from subsystem 1 to IN this subsection, we restrict ourself to a class of LTI

subsystem 2. By (ii) it follows|x(t)|| < ey Vt : t1 >t > to. switched time delay systems of the form (3) with symmetric
In fact, ||z(t)|| — 0 ast; — oc. system matrices!;o = A%, and A;; = AJ] for all i € P.

B. Common Lyapunov Function for Symmetric Systems



Proposition 1: The system (3) with symmetric systemFrom comparison with (7) it follows that each subsys-
matrices is asymptotically stable for arbitrary switchingem ¢ satisfies (7) with the Lyapunov functiow(t, z(t)) =
sequences if for each subsystéethere exist a real symmetric 27« representing the common Lyapunov function. Since

matrix P; > 0 and real scalarg;g > 0, a;; > 0 such that

M; o —PiAinAyn —PA%
_A;J;)AZ;Pz —a;0 b5 0 <0, (7)
(A7) P 0 —an P

whereM; o = .,.%[Pi(AiO + A1)+ (Ao + Ail)TPi] + (a0 +
ail)Pi-

Sketch of Proof: The LMI (7) ensures the asymp-

totic stability of each subsystem using the delay-

dependent Razumikhin approach and the Lyapunov function

V(t,z(t)) = 2T (t)P;x(t). Since P; >0, symmetric, there
exists aU; ' = U} such that
Ul PU; = S0 = diag{x;1, - Xin}»

wherey; ; >0, j =1,...,n. Pre- and post-multiply (7) by
Ul andU;, we have

_ ‘]\ZLO Siodndin  TioA}
_4;1(;A31 Zi,(} —amZi,o 0 < 07 (8)
(A2)7%5 0 —ai1%i0

where Ajg = Ul AU, An = UTAqU, Mo =
%[Zi,o(Aio + Ain) + (Aio + A1) TS5 0] + (o + @i1)Zi0-

each subsystem possesses a common Lyapunov function
V(t,z(t)), the switching of subsystems implies change of

V(t,z). For any consecutive switchings > ¢; of subsys-
tem 4, by the continuity of Lyapunov function it implies

(13)

Ve, wr,) = V(tg,2e,) < —h(|lzg ),

whereh(-) is defined as in Theorem 1. The same arguement
as in Theorem 1, (13) follows

0= lim V(t, 2 ) — lim V(tj,actj)
k—o00 j—o00
< tim [~h(]lz, ] < 0.

It implies lim; .. ||z¢;[| =0 for eachi and proves the
asymptotic stability for arbitrary switching sequencess

Remark 4: The symmetric requirement of system matrices
in (3) can be generalized to systems with matrices satigfyin
TAy = ALT, TAy = ALT (14)
for some transformation matrik > 0 of appropriate dimen-
sion.
Remark 5:The result is an extension to [18] where a

Pre- and post-multiply (8) by:;, , and take transpose the common Lyapunov function for symmetric LTI systems

resulting matrix, it leads to

M; SioAndn T A%
—.@3;[152%5 —a;0%7g 0 <0, (9

(A5)7E5, 0 —an ¥,
where M; , = 2250 (Aio + An) + (Aio + Ain)TS; 0] +

(ctio + 1), Using0 < ;1 < 1 which satisfies

Xiaxin + (1 — Ai,l)Xi_,l =1

to A; 1 x (8)+(1—A;1)x(9), and using the symmetry of;
and A;;, we obtain

Miq Sindindio  Ti1A}
—ADATY 1 —aioTia 0 <0, (10)

(A2)7%i4 0 —1251
WhEresS, , = diagh, i + (1~ Aus) e Ao +

(1 — /\@1))(2-_’2} = diag{l, Xi,25 - - - 7)21',71} > 0 and Mi,l =
%[&,1(/11‘0 + Ain) + (Ao + Ai) TS5 1] + (o + 1) i1
In the same way for0 < X;» < 1, we can derive
Y, 2 =diag{1,1,x:2,...,Xin} > 0. Repeating the proce-
dure, we obtair; , = I and (7) becomes

T%(/L'o + Ail) + (o + o)1 —Aj1 Ao /Lzl
/ —A%/_Xa —Oéiol 0 < 0,
(A?l)T 0 —()é“I
(11)
Pre- and post-multiply (11) by/; andU}’, we have
.,.%(Aio + Ai) + (o + i)l —AnAi Afl
—A%A%q —Oéiol 0 < 0,
(A" 0 —ay1 1

12)

without time delay is derived, and to [20] where the time
delay is assumed constant.

V. TOWARDS PERFORMANCEORIENTED CONTROL

In this section, the potential benefits of the switched time
delay systems approach with respect to performance are
explored in two novel control approaches for NCS. Aiming
at improved control performance, in the first approach the
controller is selected depending on the current networle tim
delay. In the second approach, the combined control of the
plant and the network QoS is considered with the goal
of good control performance and efficient use of network
resources. Main difference between these approaches in the
view of switched time delay systems is the generation of
the switching signalo(t): It is generated from the time
delay monitoring in the time delay dependent controller
selection approach, and from some cost function depending
on the system state and the network cost in the QoS control
approach.

A. Network Time Delay Dependent Controller Selection

With the goal of improving control performance the ap-
propriate controller is selected depending on the timeydela
The control system consists of the plant, the communication
network that introduces a piecewise constant time delay
taking valuesr;, i € P, a bank of controllers and a decision
maker, as illustrated in Figure 1. Each controflés designed
by a delay-dependent approach, e.g. corollary 1, to stabili
the plant for the associated time delay vatyeThe decision
maker monitors the time delay and chooses the appropriate
controller from the controller bank.
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Fig. 1. Control architecture for NCS with network time delagpeéndent N [ [
controller selection as a switched time delay system. 0.2 o ‘ ‘ 1 ‘ i j
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In most relevant applications, the time delay in the com-
munication network changes in an unpredictable manner.
Accordingly, stability has to be guaranteed for arbitrary
switching sequences. For the special class of symmetric
system matrices stability is guaranteed by Proposition 1.

- — —non-switching controller
— switching controller

The stabilizing controller switching signal can be geredat 2 3 4 5[s]

from the time delay monitoring only, i.er(t) = o(7:(t)). ©

The time delay and the controller are assumed to SWIthQg. 2. Time delay evolution (a) and state trajectories withet delay
synchronously. dependent controller selection (solid) and without, usihg worst case

The control performance benefit is studied in the followingontrollerk; designed for time delay; (dashed).
simulation example with symmetric system matrices.

Example 1:Consider a communication network where thq ajectories are computed using thile23 solver from

t!me ((j:iellay switches betw(;aehn tIWO poss:jblia values, the hi ATLAB. Without adaption of the controller to a change in
E'rrr?e e.ayhn d: .250 Z]SI’ and the ovxgurpe .e ap .:hloo ms. .network time delay, i.e. the worst case controllerthe state
e switc &c time delay system (3) is given wit Symm'atr"l:rajec:tories show a rather slow convergence towards zeeo, s
system matrices by dashed line in Figure 2(b),(c). The trajectory stays within
Ao A {—1 —1} A = ke [—1 0 } ball around the origin of radiugz|| = 0.1 aftertg; = 1.15s.
Ww=a20=0_1 o> MMl —1|° With synchronously switching controller the state trageiets
T . converge faster to the origin, with ; = 0.59 s. Clearly, there
where Ao = Ajy = Az = Ay is the unstable second or- j5 nertormance benefit from using the controller switching
der plant, A;; represents the state feedback gain mat”épproach with piecewise constant time delays.
with a pre-defined symmetric structure. The gaigsare .
determined by iteratively solving (5) withyo — ayy = 1, Remark 6:.For the general class of no'n'-symmetrlc sys-
(o0 = ap — 2 using the MATLAB LMI toolbox. The ©MS according to Theorem 1 the decision maker needs
to monitor the evolution of the Lyapunov functions of the
subsystems additionally to the time delay. The switching
signal has to be generated as a function of the time delay
and the Lyapunov function valug(t) = o (7;(t), V;(t)). If all
P = { L.757 05888] Py — [ 0.6258 0-1375} ~ subsystems are asymptotically stable then only conditign (
—0.6888  2.446 |’ —0.1375  0.7652 of Theorem 1 has to be evaluated, see Remark 3. There

With the controller gaink; designed for the high time May, however, exist time delay switching instants where
delay, the system is stabilized also for low time delay the evolution of the Lyapunov function does not allow the

gainsk; = 1.79 and ky = 3.01 represent the highest gains
where the LMI (5) is still feasible. The corresponding
positive definite matrices are

a feasible solution of (5) exists with switching of the controller. How the stability of the system
can still be guaranteed is subject of future research. For no

p _ [ 0.2776 01788} . symmetric systems, it is furthermore desirable to replaee t

T [-0.1788  0.4564 Lyapunov function condition by a condition which is easier

According to Proposition 1 the system is stable fof0 check, e.g. by a dwell-time condition.
arbitrarily switching time delay, for both cases, with the Remark 7:Note that in the considered system (3), con-
constant controllek; designed for the worst case (highestltroller an plant are lumped into a single delay differential
time delay, and with synchronously switching controller. | functional assuming no state jumps, and the initial condi-
simulations the control performance for these two casd®n z; for each time delay subsystem to be well defined
is compared. The network initially provides a low timeafter switchings. However, this assumption is no longee tru
delay communication,. The subsequent change of the timen a real NCS application due to the spatial separation of
delay is depicted in Figure 2(a). The initial condition forcontroller and plant as the following shows. Consider the
the state is given byl = [0,1], -2 < 6 < 0. The system planti = f(x,u(t — 7;)) and the proportional state feedback



controller u(t) = K;z(t). Controller and time delay are The goal here is to balance control performance versus
switched at time instant, to K, and 7;, respectively. If network cost. For good control performance, generallywa lo

7; > 7;, then there is an overlap in the control signal time delay connection is desirable, however high network
arriving delayed at the plant over a time interval— ;.  cost are induced then. The cost-performance trade-off ean b
Accordingly, if 7; < 7;, the control signal remains undefinedformulated as an optimization problem with the goal to find
for the time intervalr; — 7;. The definition of the control the optimal switching signat(¢). As control performance
signal over this time interval represents a degree of freedomeasure here the time integral over a quadratic function of
during the design. It has an influence on the evolution of thihe states is considered. The network cost are assumed to
Lyapunov function. A deeper analysis of this case is beyontke time-based, i.e. increase with connection usage time. Th

the scope of this paper. resulting optimization problem can be stated as follows
Remark 8:Markovian jump systems (MJS) with mode- ) <
dependent time delays [21] represent an alternative approa min J= /033 (B)Q)x(t) + no(r) At (15)

for the controller switching depending on piecewise camtsta _ o _ _ _ )
time delay. Main difference is that the design of such cdntrdVhereQ(t) is a weighting matrix of appropriate dimension
system relies on the knowledge of the probabilistic trémsit @70 () = 71(7o()) represents the network cost associated
rates of the time delay values, while in the proposed approatith @ certain time delay. The solution to this optimization
the time delay values are monitored. A thorough analysiroblem is generally difficult to find as it is hybrid, non-
and comparison of both approaches are subject to furth€Pnvex in general and contains delay differential equation

research. It is beyond the scope of this paper to provide a deeper
analysis. In this work the two-stage-procedure proposed
B. Quality-of-Service Control in [16] is applied to solve the optimization problem nu-

merically over a finite horizon. Numbér and sequence of
Quality-of-Service (QoS) refers to the capability of a Netswitchings {(t1, o (t1)),- - - , (tx, o(t))} are fixed a priori,
work to provide different communication quality to diffete jn the second stage the switching times are optimized.
network traffic. In fact, it allows the adjustment, hence the\n aiternative hybrid optimal control approach is proposed
control of the communication quality. In the current IPvGj [22], however, without considering time delay. For sym-
a finite number of data classes is already implementeghetric systems Proposition 1 applies straightforwardly, i
Guaranteed high communication quality, e.g. low time delayne solution o*(t) of the optimization problem stabilizes
requires the provision of large network resources, i.euteS8 the switched time delay system and guarantees a balanced
high network cost. Considering the finite resources of gade-off between control performance and network cost.
network it is desirable that every application only conssmegq, non-symmetric systems additionally the condition (f/)
as much of them as required to guarantee a certain level pheorem 1 has to be satisfied for stability, conditionsi{i)-(
performance. Inspired by the QoS concept a novel contrgke satisfied by the stability of each subsystem, see Remark 3
concept is proposed here aiming at the conjoint control gfccordingly, the optimization problem (15) has to be solved
the control system itself and indirectly of the the networlgubject to the constraint (iv) of Theorem 1. The resulting
resources. solutiono*(t) stabilizes the switched time delay system, and
achieves the desired trade-off.

network cost . . . .
Decision maker The benefits of QoS control are studied in the following
) simulation example with non-symmetric system matrices. A
[
\
\

> Plant comparison between the QoS control approach and non-

switching approaches is performed with respect to control

‘ performance and network cost.

Controllern |—@~ e—»= T, Example 2:Consider a QoS communication network

QoS network with two different traffic classes, with a time delay

of 71 =250 ms andr; = 100 ms, respectively. The cor-

Fig. 3. Control architecture for NCS with QoS control as atshed time  responding network cost are given by(r) =1s"!

delay system. and 7(m,) = 3s!, i.e. higher cost for lower time delay.
An unstable unsymmetric plant is considered, the controlle

The basic control architecture is similar to the previoustructure is pre-defined as in Example 1

application as illustrated in Fig.3. The finite number of 1 1 0

possible time delay values is assumed to be known. For each Ay = Ayg = L 0 } , A =k [ 0 _J ,

time delay value; a stabilizing controllei is designed using

a delay-dependent approach. The decision maker chooseth Ay = Asg the plant in (3), andA;; the controllers.

the appropriate time delay-controller pair. Main diffecen The feedback gains:; are designed in the same way

to the delay-dependent controller selection approaches tlas in Example 1, i.e. by determining the largest value

generation of the switching signal, i.e. the switching toigi  where the LMI (5) is still feasible withv;g = asg = 1 and

the decision maker. a11 = ag1 = 2 through iteratively solving (5). The result is

|
= Controller 1 T o= 71
[




TABLE |

computed tok, = 1.58, k; = 2.93 with the corresponding CONTROL PERFORMANCE AND INDUCED NETWORK COST

positive definite matrices

24.35 —12.18 10.53  —5.281 | [ fo.1 [ST | Network cost [units]]
Pr=|"1918 2435 |27 | 5281 1053 | QoS control 0.66 6.15
controller 1/ only 1.58 5
The optimization problem (15) is solved numerically controller 2f» only | 0.63 15

with Q(t) = I. Following the approach in [16] the number
of switchesk = 2 is fixed prior to optimization. The initial
mode is defined to be(0) = 1, i.e. initially controller k, future research includes the following: The optimizatidnh o
with time delayr; is active. The is order of the switchings the switching instants is currently performed off-line. An
is fixed as{(t1,2), (t2,1))}, meaning that switching into implementable online optimization algorithm is desirable
subsystem 2 takes place at=t;. The initial condition that computes the next switching instants under the stbili
for the state is given byr! =[0,1], =, < 6 < 0. The constraint (iv) of Theorem 1. Further, synchronous switghi
optimization problem is solved off-line for a time horizon©f the controller and the time delay might be challenging in
of 5 using the ni nsear ch algorithm from the MATLAB  real applications; the effect of non-synchronized switghi
optimization toolbox and thelde23 solver resulting in the Needs to be investigated.
switching timest; = 0s andt; = 0.58 s, respectively. The  In summary, the proposed delay-dependent controller se-
first switch is degenerated, it redefines the initial mode ttection approach as well as the QoS control concept seem
controller 2f~. Hence there is only one switch between thevery promising for future NCS applications.
subsystems, the overall switched system is stable due to
the stability of the subsystems. In Figure 4 the evolution
of the time delay and the state trajectories are presentedMotivated by novel control approaches for networked
for the QoS controlled system, as well as for the standabntrol systems (NCS) this paper presents a first approach
approach with high or low time delay only, i.e. withouttowards switched time delay systems with piecewise cohstan
switching. The trajectories of the QoS controlled systeay st time delay and gives sufficient stability conditions. For a
within the ball of radiug|z|| = 0.1 aftertg; = 0.66s, close switched system with linear time invariant time delay sub-
to the unswitched system with low delay communicatiorsystems a piecewise Lyapunov function is constructed using
(+4.6%), see Table I. However, with QoS control the lowthe Razumikhin approach. Asymptotic stability is guaradte
delay connection is active for 0.58s only, the network codty a strictly decreasing sequence of the values of a measure
are 60% less than for the unswitched system with low delafor the retarded states. For the restricted class of synunetr
As desired, a trade-off between control performance argystems a common Lyapunov function is derived ensuring
network cost is achieved. asymptotic stability for arbitrary switching sequenceseT

A number of open problems that will be addressed itvenefits of the switched time delay system approach for the
performance is demonstrated in two novel control appraache
for NCS. In the first approach the time delay is monitored and
an appropriate controller is selected. The second approach
targets the conjoint control of system controller and nekwo
QoS, i.e. time delay, such that an optimal trade-off between
(a) network resource usage and control performance is achieved

Both approaches are very promising for future NCS.

VI. CONCLUSION
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