
Performance Oriented Control over Networks
– Switching Controllers and Switched Time Delay –

Sandra Hirche∗, Chih-Chung Chen and Martin Buss

Abstract— The stability and performance of a networked
control system (NCS) strongly depends on the communication
quality, e.g. of the communication time delay. Aiming at
performance oriented control over networks in the presence of
piecewise constant time delay, two novel control approaches are
investigated. In the first approach, the time delay is monitored
and an appropriate controller is selected. The second approach
is based on the Quality-of-Service communication concept,
where the time delay is adjustable and related to the network
cost. Aiming at an optimal trade-off between network cost
and control performance the controller together with the time
delay is switched. Both approaches result in a switched system
with switched (piecewise constant) delays. Sufficient stability
conditions for the resulting switched time delay system are
presented using a piecewise continuous Lyapunov-Razumikhin
function. A common Lyapunov function is derived for linear
time-invariant symmetric subsystems. The performance benefits
for both approaches are demonstrated in numerical examples.

I. I NTRODUCTION

In the view of affordability, widespread usage and well
developed infrastructure, communication networks are very
attractive for the signal transmission in control systems.This
comes, however, at the cost of a no longer ideal signal
transmission. Especially, time delay associated with the data
transmission has a strong influence on the stability and the
performance of the closed loop system, see [1], [2] for
a general overview on control challenges and approaches
for networked control systems (NCS). In the current NCS
literature the communication quality is assumed to be given
in advance, accordingly stabilizing controllers are designed.
In this paper two alternative approaches dealing with the
time delay problem are proposed. In the first approach with
time delay dependent controller switching, the time delay is
monitored and an appropriate controller is selected online
to ensure good performance. The time delay is assumed
to be piecewise constant. This assumption is reasonable,
e.g. in Token ring networks, where by the removal or the
addition of a network node the otherwise constant time delay
decreases/increases in a discontinuous manner, further also
for route switching in multi-route networks.

In the second approach, the Quality-of-Service (QoS) con-
trol approach, the communication time delay is considered
to be adjustable in realtime. This is motivated by the QoS
concept from the networking community, which refers to the
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capability of a network to provide different communication
quality to different network traffic classes. Guaranteed low
time delay results in very good control performance, but
requires the provision of large network resources, i.e. induces
high network cost. Aiming at a trade-off between control
performance and network cost it is proposed to switch the
time delay together with an appropriate controller. The time
delay is assumed piecewise constant.

As a result, in both considered approaches the time delay
as well as the controller are switched resulting in a switched
system with switched time delay. Switched (hybrid) systems
are dynamical systems that consist a set of finite subsystems
and a logical rule that orchestrates the switchings between
them. The stability of the subsystems themselves is not
sufficient for the stability of the overall system [3], [4]. Sta-
bility with arbitrary switching can be ensured by a common
Lyapunov function which is difficult to construct in general.
The concept of piecewise continuous Lyapunov functions is
developed in [5]–[7]. Alternatively, dwell-time based switch-
ing is considered in [8], [9]. All these approaches, however,
do not consider time delay. Most prominent approaches in
the rich literature on time delay systems, see e.g. [10]–
[12] and references therein, are Lyapunov-like approaches
based either on the Razumikhin or the Krasovskii method.
Switched time delay systems are considered in [13], [14],
where the common Lyapunov function approach is extended
and in [15] adopting a dwell-time approach. However, a con-
stant time delay is considered there. To the best knowledge
of the authors there are no stability and performance results
available for switched systems with switched time delays.
Main contribution of this paper is a sufficient condition for
the stability of switched systems with switched (piecewise
constant) delays based on a piecewise continuous Lyapunov
function approach and a common Lyapunov approach for
symmetric systems. The performance of both considered
approaches are studied in numerical examples. Benefits in
terms of improved control performance are shown for the
delay-dependent controller switching approach. An optimal
trade-off between control performance and network cost is
achieved for the QoS control approach using a hybrid optimal
control algorithm from [16].

The remainder of the paper is organized as follows: The
problem definition along with preliminaries on the stability
of switched systems and time delay systems are given in Sec-
tion II. In Section III, the main result on stability of switched
systems with switched time delay is presented, followed
by application examples with performance considerations in
Section IV.



II. PROBLEM FORMULATION AND PRELIMINARIES

A networked control system with synchronously switching
controllers and delays is considered in this paper; the delays
are considered piecewise constant. Comprising hybrid dy-
namics as well as delay system dynamics it can be described
by a switched delay differential functional of the form

ẋ = fσ(xt), xt0 = φ. (1)

where σ : [0,∞) → I is a piecewise continuous switch-
ing signal takes value on the finite setI := {1, . . . , N},
xt = x(t + θ), θ ∈ [−τσ, 0] indicates the dependence of
the state derivative on the past states,x ∈ R

n, and
τσ ∈ R

+ represents the piecewise constant time delay.
The initial condition is given by the continuous trajec-
tory xt0 = φ = x(t0 + θ), θ ∈ [−τσ(t0), 0]. Note that with-
out switching, i.e.σ(t) constant, the classical delay differen-
tial functional modeling time delay systems [12] is recovered.
With zero time delayτi = 0 for all i ∈ I, (1) represents the
switched system model in the notation of [17]. It is assumed
that there is no jump in the state (state reset) at the switching
instants, the solutionx(t) is continuous everywhere. The time
between any two switches is assumed larger than zero, i.e.
there is a finite number of switches in finite time. Later in this
paper we consider switched systems where each subsystem
in (1) is represented by a linear time-invariant (LTI) time
delay system of the form

ẋ(t) = Ai0x(t) + Ai1x(t − τi), i ∈ I, (2)

whereAi0, Ai1 ∈ R
n×n.

In contrast to conventional switched systems, the proposed
control structure comprises switching of controllers and
switching time delays. An analysis method for such systems
has not been published so far.

A. Stability of Time Delay Systems

Most prominent approaches for the stability analysis of
time delay systems are the Lyapunov-Krasovskii approach
and the Lyapunov-Razumikhin approach. The Krasovskii
approach may provide a necessary and sufficient stability
condition, the Krasovskii functional includes the retarded
states, its computation is difficult. The Razumikhin approach,
see e.g. [12], circumvents the difficulties by considering the
Lyapunov functionV (x(t)) depending on the present state
x(t) only. Asymptotic stability is guaranteed if the Lyapunov
function ξV (x(t)), ξ > 1, does not exceed

V̄ (xt) = sup
θ∈[−τ,0]

V (x(t + θ)), (3)

i.e. the largest value of the Lyapunov function over the
past time delay interval[−τ, 0] [11]. The time argument
is dropped in the following if non-ambiguous. Assuming
a quadratic Lyapunov functionV (x) = xT Px the delay-
dependent stability condition can be expressed as LMI.
Consider therefore the LTI time delay system (2) without
switching.

Corollary 1: [12] The LTI time delay system (2) is
asymptotically stable if there exists a real symmetric matrix
P > 0 and real scalarsα > 0, α1 > 0 such that





M −PA1A0 −PA2
1

−AT
1 AT

0 P −αP 0
−(A2

1)
T P 0 −α1P



 < 0, (4)

whereM = 1
τ
[P (A1 + A0) + (A1 + A0)

T P ] + (α + α1)P .
Proof: See [12].

B. Stability of Switched Systems

It is well known that switching between stable subsystems
may result in instability of the switched system [3], [4].
Let Vi denote the Lyapunov function associated with sub-
systemi. An important method for the stability analysis of
switched systems is based on the construction of a common
Lyapunov functionV (x) = Vi(x) for all i ∈ I. Its existence
guarantees stability for arbitrary switching sequences. How-
ever, a common Lyapunov function is generally difficult to
find, typically they are found analytically only for certain
system classes, such as linear systems with commutingA-
matrices [18].

An alternative method to analyze the stability of switched
systems is by a piecewise continuous Lyapunov function [5]–
[7]. A (piecewise) continuous Lyapunov functionVi is asso-
ciated to each subsystemi, where in generalVi(x) 6= Vj(x)
holds if i 6= j. While the Lyapunov functionVi decreases
when ith subsystem is active, it could however increase
when subsystemi is inactive. The concept of piecewise
continuous function is to restrictVi at any two consecu-
tive instantstk > tj with σ(tj) = σ(tk) = i, andσ(ts) 6= i

for tj < ts < tk

Vi(x(tk)) − Vi(x(tj)) ≤ −h(||x(tj)||), ∀i ∈ I, (5)

whereh(·) is a positive continuous function withh(0) = 0,
i.e. asymptotical stability of the switched systems is guar-
anteed if the sequence of Lyapunov function values at the
switching instants for each subsystem decreases.

III. STABILITY OF SWITCHED TIME DELAY SYSTEMS

In this section sufficient conditions for the stability of
switched systems with switching time delay are presented.
The concept of piecewise continuous Lyapunov functions is
extended, a common Lyapunov function is derived for the
special class of symmetric systems.

A. Piecewise Continuous Lyapunov Function by Razumikhin
Approach

Consider the switched time delay system given
by (1). The following theorem extends the classical
Razumikhin theorem [11] to switched systems
with piecewise continuous time delays stating a
sufficient condition for stability. Therefore define
u1, u2, w, p, and hi as continuous nondecreasing
positive functions u1(s), u2(s), w(s), p(s), hi(s) > 0
for s > 0 with u1(0) = u2(0) = hi(0) = 0,
u2 strictly increasing, lims→∞ u1(s) = ∞. By



V̇i(x(t)) = lim∆→0,∆>0
Vi(x(t+∆))−Vi(x(t))

∆ the
right-hand derivative of Vi(x(t)) is denoted,
and ||xt|| = supθ∈[−τσ(t),0]

||x(t + θ)||.

Theorem 1: The switched time delay system (1) is glob-
ally uniformly asymptotically stable if there exists a contin-
uously differentiable positive definite functionVi for each
subsystemi ∈ I such that for any initial conditionxt0 = φ

and anyt0
(i) Vi(0) = 0, Vi(x) > 0 for x ∈ R

n\{0},
(ii) u1(||x||) ≤ Vi(x) ≤ u2(||x||),
(iii) V̇i(x) ≤ −w(||x||) if Vi(x(t + θ)) ≤ p(Vi(x(t))) for

the time interval where subsystemi is active
t ∈ [tj , tj+1), θ ∈ [−τi, 0],

(iv) V̄i(xtj+1
) − V̄i(xtj

) ≤ −hi(||xtj
||) for all i ∈ I and

all consecutive switching instantstj+1 > tj for which
σ(tj+1) = σ(tj) = i.

Sketch of Proof: First note, that conditions (i)-(iii) repre-
sent the classical Razumikhin conditions: Without switch-
ing tj = t0, tj+1 → ∞, each subsystemi ∈ {1, 2, . . . , N}
is globally uniformly asymptotically stable [12]. Without
loss of generality assume the switched time delay system is
initialized with subsystemi = 1 at t0. For any givenε1 > 0,
let 0 < δ0 < u−1

2 (u1(ε0)). Then for anyt0 and any initial
condition ||xt0 || < δ0 the state remains bounded||xt|| < ε0

for t > t0, see [12] for more details. Assume, that at the time
instant t2 the execution enters subsystem 2. As there is no
jump in the states at the switching instant by assumption, the
initial condition for subsystem2 is given byxt1 = x(t1 + θ)
with θ ∈ [−τ2, 0]1. Using the same arguments as above,
with ||xt1 || < ε0 there is aε1 such thatε0 < u−1

2 (u1(ε1))
such that||xt|| < ε1 for t > t1. Considern ≤ N consec-
utive switchings with distinct values ofσ. With the same
arguments as above for all possible permutations and for
any initial condition ||xt0 || < δ, for all t0, there exist a
ε > 0 such that||xtn

|| ≤ ε. In the case that any subsystemi
becomes re-activated, condition (iv) guarantees that the state
trajectory stays within theε-ball. The switched system is
uniformly stable.

For asymptotic stability, observe that there exists a
subsystem with an associated infinite sequence of switching
times ti,1, ti,2, · · · such thatσ(ti,1) = σ(ti,2) = . . . = i ∈ I
(excluding the trivial case of finite switchings). Due
to (iv) the measure V̄i(x(ti,1)), V̄i(x(ti,2)), . . . is
decreasing and positive, there exists az ≥ 0 such
that z = limj→∞ V̄i(x(ti,j)). As a result for any two
consecutive switching instantsti,j+1 > ti,j , by (iv) it
follows,

0 = lim
j→∞

V̄i(xti,j+1
) − lim

j→∞

V̄i(xti,j
)

≤ lim
j→∞

[−hi(||xti,j
||)] ≤ 0.

It implies limj→∞ ||xti,j
|| = 0 for each i, and thus leads

to limt→∞ x(t + θ) = 0 for θ ∈ [−τi, 0].

1For the sound definition of the initial condition for subsys-
tem 2, t1 > t0 + max{1,2}(τi) − τ1 is required.

Remark 1: If hi(s) ≥ 0 for s > 0 in (iv), then the
switched time delay system is stable.

Remark 2: Without the restriction to the time interval of
activity t ∈ [tj , tj+1), conditions (i)-(iii) represent the classic
Razumikhin theorem ensuring global uniform asymptotic sta-
bility [12] for subsystemi without switching. They guarantee
the measurēVi(xt) of the states to decrease during the time
subsystemi is active. Condition (iv) ensures the sequence of
the state measurēVi to decrease at consecutive switching in-
stants for each subsystem similar to (5). Accordingly, in case
of a time delay system without switching, i.e.σ(t) = const.,
Theorem 1 reduces to the original Razumikhin theorem [12]
(condition (iv) then follows from (iii) and is no longer
needed). For zero time delay, and replacing conditions (i)-
(iii) by standard Lyapunov stability conditions, the result
from [7] on the stability of switched systems with piecewise
continuous Lyapunov functions is recovered. For constant
time delay, i.e.τσ(t) = const., a similar result as in [19] is
achieved.

B. Common Lyapunov Function for Symmetric Systems

In this subsection, we restrict ourself to the class of LTI
switched time delay systems (2) with symmetric system
matricesAi0 = AT

i0 andAi1 = AT
i1 for all i ∈ I.

Proposition 1: The system (2) with symmetric system
matrices is asymptotically stable for arbitrary2 switching
sequences if for each subsystemi there exist a real symmetric
matrix Pi > 0 and real scalarsαi0 > 0, αi1 > 0 such that





Mi,0 −PiAi1Ai0 −PiA
2
i1

−AT
i0A

T
i1Pi −αi0Pi 0

(A2
i1)

T Pi 0 −αi1Pi



 < 0, (6)

whereMi,0 = 1
τi

[Pi(Ai0 +Ai1)+ (Ai0 +Ai1)
T Pi]+ (αi0 +

αi1)Pi.
Sketch Proof: The LMI (6) ensures the asymptotic stability
of each subsystemi using the delay-dependent Razumikhin
approach and the Lyapunov functionV (x) = xT Pix. Since
Pi > 0, symmetric, there exists aU−1

i = UT
i such that

UT
i PiUi = Σi,0 = diag{χi,1, . . . , χi,n},

whereχi,j > 0, j = 1, . . . , n. Pre- and post-multiply (6) by
UT

i andUi, we have




M̄i,0 Σi,0Āi1Āi0 Σi,0Ā
2
i1

−ĀT
i0Ā

T
i1Σi,0 −αi0Σi,0 0

(Ā2
i1)

T Σi,0 0 −αi1Σi,0



 < 0, (7)

where Āi0 = UT
i Ai0Ui, Āi1 = UT

i Ai1Ui, M̄i,0 =
1
τi

[Σi,0(Āi0 + Āi1) + (Āi0 + Āi1)
T Σi,0] + (αi0 + αi1)Σi,0.

Pre- and post-multiply (7) byΣ−1
i,0 and take transpose the

resulting matrix, it leads to




M̄
′

i,0 Σ−1
i,0 Āi1Āi0 Σ−1

i,0 Ā2
i1

−ĀT
i0Ā

T
i1Σ

−1
i,0 −αi0Σ

−1
i,0 0

(Ā2
i1)

T Σ−1
i,0 0 −αi1Σ

−1
i,0



 < 0, (8)

2By settingφ = x(t0 + θ), θ ∈ [−maxi{τi}, 0] the initial condition is
well-defined for arbitrary switching.



whereM̄
′

i,0 = 1
τi

[Σ−1
i,0 (Āi0 + Āi1) + (Āi0 + Āi1)

T Σ−1
i,0 ] +

(αi0 + αi1)Σ
−1
i,0 . Using 0 < λi,1 < 1 which satisfies

λi,1χi,1 + (1 − λi,1)χ
−1
i,1 = 1

to λi,1× (7)+(1−λi,1)×(8), and using the symmetry ofAi0

andAi1, we obtain




M̄i,1 Σi,1Āi1Āi0 Σi,1Ā
2
i1

−ĀT
i0Ā

T
i1Σi,1 −αi0Σi,1 0

(Ā2
i1)

T Σi,1 0 −αi1Σi,1



 < 0,

whereΣi,1 = diag{λi,1χi,1 + (1 − λi,1)χ
−1
i,1 , . . . , λi,1χi,n +

(1 − λi,1)χ
−1
i,n} = diag{1, χ̄i,2, . . . , χ̄i,n} > 0 and M̄i,1 =

1
τi

[Σi,1(Āi0 + Āi1) + (Āi0 + Āi1)
T Σi,1] + (αi0 + αi1)Σi,1.

In the same way for0 < λi,2 < 1, we can derive
Σi,2 = diag{1, 1, χ̄i,2, . . . , χ̄i,n} > 0. Repeating the proce-
dure, we obtainΣi,n = I and (6) becomes




2
τi

(Āi0 + Āi1) + (αi0 + αi1)I −Āi1Āi0 Ā2
i1

−ĀT
i0Ā

T
i1 −αi0I 0

(Ā2
i1)

T 0 −αi1I



 < 0,

Pre- and post-multiply (III-B) byUi andUT
i , we have





2
τi

(Ai0 + Ai1) + (αi0 + αi1)I −Ai1Ai0 A2
i1

−AT
i0A

T
i1 −αi0I 0

(A2
i1)

T 0 −αi1I



 < 0,

From comparison with (6) it follows that each subsystemi

satisfies (6) with the Lyapunov functionV (x) = xT x

representing the common Lyapunov function. Note, that due
to the switching time delay, the measureV̄i(xtk

) 6= V̄j(xtk
)

for i 6= j is discontinuous at the switching instants in general.
For instance if the subsystem dynamics switches attk from i

to j with τi > τj , then V̄i(xtk
) ≥ V̄j(xtk

), and vice versa.
Due to the common Lyapunov function and its continuity,
and the time between any two switches larger than zero, con-
dition (iv) of Theorem 1 is satisfied for arbitrary switching
sequences. The values̄Vi(xtk

) at the switching instantstk
form a strictly decreasing sequence for eachi ∈ I. The
conditions (i)-(iii) of Theorem 1 are satisfied for each subsys-
tem i by assumption (6). Thus by application of Theorem 1,
for an arbitrary switching sequencelimt→∞ ||xt|| = 0.

Remark 3: The symmetric requirement of system matrices
in (2) can be generalized to systems with matrices satisfying

TAi0 = AT
i0T, TAi1 = AT

i1T

for some transformation matrixT > 0 of appropriate dimen-
sion.

Remark 4: The result is an extension to [18] where a
common Lyapunov function for symmetric LTI systems
without time delay is derived, and to [20] where the time
delay is assumed constant.

IV. TOWARDS PERFORMANCEORIENTED CONTROL

In this section, the potential benefits of the switched time
delay systems approach with respect to performance are
explored in two novel control approaches for NCS. Aiming
at improved control performance, in the first approach the

controller is selected depending on the current network time
delay. In the second approach, the combined control of the
plant and the network QoS is considered with the goal
of good control performance and efficient use of network
resources. Main difference between these approaches in the
view of switched time delay systems is the generation of the
switching signalσ(t): It is generated from the time delay
monitoring in the time delay dependent controller selection
approach, and from the optimization of a cost function
depending on the system state and the network cost in the
QoS control approach.

A. Network Time Delay Dependent Controller Selection

With the goal of improving control performance the ap-
propriate controller is selected depending on the time delay.
The control system consists of the plant, the communication
network, a bank of controllers, and a decision maker, as il-
lustrated in Figure 1. The coomunication network introduces
a piecewise constant time delay taking valuesτi, i ∈ I. Each
controller i is designed by a delay-dependent approach, e.g.
corollary 1, to stabilize the plant for the associated time delay
value τi. The decision maker monitors the time delay and
chooses the appropriate controller from the controller bank.

τn

Controller 1 τ1

Controller n

Decision maker

network

Delay monitor

Plant

Fig. 1. Control architecture for NCS with network time delay dependent
controller selection as a switched time delay system.

In most relevant applications, the time delay in the com-
munication network changes in an unpredictable manner.
Accordingly, stability has to be guaranteed for arbitrary
switching sequences. For the special class of symmetric
system matrices stability is guaranteed by Proposition 1.
The stabilizing controller switching signal can be generated
from the time delay monitoring only, i.e.σ(t) = σ(τi(t)).
The time delay and the controller are assumed to switch
synchronously.

The control performance benefit is studied in the following
simulation example with symmetric system matrices.

Example 1: Consider a communication network where the
time delay switches between two possible values, the high
time delayτ1 = 250 ms, and the low time delayτ2 = 100 ms.
The switched time delay system (2) is given with symmetric
system matrices by

A10 = A20 =

[

−1 −1
−1 0

]

, Ai1 = ki

[

−1 0
0 −1

]

,

whereA10 = AT
10 = A20 = AT

20 is the unstable second or-
der plant, Ai1 represents the state feedback gain matrix
with a pre-defined symmetric structure for simplicity. The



gains ki are determined by iteratively solving (4) with
α10 = α11 = 1, α20 = α21 = 2 using the MATLAB LMI
toolbox. The gainsk1 = 1.79 and k2 = 3.01 represent the
highest gains where the LMI (4) is still feasible. The corre-
sponding positive definite matrices are

P1 =

[

1.757 −0.6888
−0.6888 2.446

]

, P2 =

[

0.6258 −0.1375
−0.1375 0.7652

]

.

With the controller gaink1 designed for the high time
delayτ1, the system is stabilized also for low time delayτ2,
a feasible solution of (4) exists with

P∗ =

[

0.2776 −0.1788
−0.1788 0.4564

]

.

According to Proposition 1 the system is stable for
arbitrarily switching time delay, for both cases, with the
constant controllerk1 designed for the worst case (highest)
time delay, and with synchronously switching controller. In
simulations the control performance for these two cases
is compared. The network initially provides a low time
delay communicationτ2. The subsequent change of the time
delay is depicted in Figure 2(a). The initial condition for
the state is given byxT

0 = [0, 1], −τ2 < θ < 0. The system
trajectories are computed using thedde23 solver from
MATLAB. Without adaption of the controller to a change in
network time delay, i.e. the worst case controllerk1, the state
trajectories show a rather slow convergence towards zero, see
dashed line in Figure 2(b),(c). The trajectory stays withina
ball around the origin of radius||x|| = 0.1 aftert0.1 = 1.15 s.
With synchronously switching controller the state trajectories
converge faster to the origin, witht0.1 = 0.59 s. Clearly, there
is performance benefit from using the controller switching
approach with piecewise constant time delays.

Remark 5: For the general class of non-symmetric sys-
tems according to Theorem 1 the decision maker needs
to monitor the evolution of the Lyapunov functions of the
subsystems additionally to the time delay. The switching
signal has to be generated as a function of the time delay
and the Lyapunov function valueσ(t) = σ(τi(t), V̄i(t)). If all
subsystems are asymptotically stable then only condition (iv)
of Theorem 1 has to be evaluated, see Remark 2. There
may, however, exist time delay switching instants where
the evolution of the Lyapunov function does not allow the
switching of the controller. How the stability of the system
can still be guaranteed is subject of future research. For non-
symmetric systems, it is furthermore desirable to replace the
Lyapunov function condition by a condition which is easier
to check, e.g. by a dwell-time condition.

Remark 6: Note that in the considered system (2), con-
troller an plant are lumped into a single delay differential
functional assuming no state jumps, and the initial condi-
tion xt for each time delay subsystem to be well defined
after switchings. However, this assumption is no longer true
in a real NCS application due to the spatial separation of
controller and plant as the following shows. Consider the
plantẋ = f(x, u(t − τi)) and the proportional state feedback
controller u(t) = Kix(t). Controller and time delay are

0  1  2  3  4  5  [s]

τ1

τ2

(a)

0 1 2 3 4 5 [s]
−0.2

−0.1

0

0 1 2 3 4 5 [s]

0

0.5

1
non−switching controller 
switching controller

x1

x2

(b)

(c)

Fig. 2. Time delay evolution (a) and state trajectories with time delay
dependent controller selection (solid) and without, usingthe worst case
controllerk1 designed for time delayτ1 (dashed).

switched at time instanttq to Kj and τj , respectively. If
τi > τj , then there is an overlap in the control signalu

arriving delayed at the plant over a time intervalτi − τj .
Accordingly, if τi < τj , the control signal remains undefined
for the time intervalτj − τi. The definition of the control
signal over this time interval represents a degree of freedom
during the design. It has an influence on the evolution of the
Lyapunov function. A deeper analysis of this case is beyond
the scope of this paper.

Remark 7: Markovian jump systems (MJS) with mode-
dependent time delays [21] represent an alternative approach
for the controller switching depending on piecewise constant
time delay. Main difference is that the design of such control
system relies on the knowledge of the probabilistic transition
rates of the time delay values, while in the proposed approach
the time delay values are monitored. A comparison of both
approaches are subject to further research.

B. Quality-of-Service Control

Quality-of-Service (QoS) refers to the capability of a net-
work to provide different communication quality to different
network traffic. In fact, it allows the adjustment, hence the
control of the communication quality. In the current IPv6
a finite number of data classes is already implemented.
Guaranteed high communication quality, e.g. low time delay,
requires the provision of large network resources, i.e. induces
high network cost. Considering the finite resources of a
network it is desirable that every application only consumes
as much of them as required to guarantee a certain level of
performance. Inspired by the QoS concept a novel control
concept is proposed here aiming at the conjoint control of
the control system itself and indirectly of the the network
resources.
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Fig. 3. Control architecture for NCS with QoS control as a switched time
delay system.

The basic control architecture is similar to the previous
application as illustrated in Fig.3. The finite number of
possible time delay values is assumed to be known. For each
time delay valueτi a stabilizing controlleri is designed using
a delay-dependent approach. The decision maker chooses
the appropriate time delay-controller pair. Main difference
to the delay-dependent controller selection approach is the
generation of the switching signal, i.e. the switching logic in
the decision maker.

The goal here is to balance control performance versus
network cost. For good control performance, generally, a low
time delay connection is desirable, however high network
cost are induced then. The cost-performance trade-off can be
formulated as an optimization problem with the goal to find
the optimal switching signalσ(t). As control performance
measure here the time integral over a quadratic function of
the states is considered. The network cost are assumed to
be time-based, i.e. increase with connection usage time. The
resulting optimization problem can be stated as follows

min
σ(t)

J =

∫

∞

0

xT (t)Q(t)x(t) + ησ(t) dt (9)

whereQ(t) is a weighting matrix of appropriate dimension
and ησ(t) = η(τσ(t)) represents the network cost associated
with a certain time delay. The solution to this optimization
problem is generally difficult to find as it is hybrid, non-
convex in general and contains delay differential equations. It
is beyond the scope of this paper to provide a deeper analysis.
Hybrid optimal control for systems without time delay is
investigated e.g. [16], [22]. In this work the two-stage-
procedure proposed in [16] is adapted to solve the hybrid
optimal control problem with piecewise constant time delay
numerically over a finite horizon. Numberk and sequence of
switchings{(t1, σ(t1)), · · · , (tk, σ(tk))} are fixed a priori,
in the second stage the switching times are optimized.
An alternative hybrid optimal control approach is proposed
in [22], however, without considering time delay. For sym-
metric systems Proposition 1 applies straightforwardly, i.e.
the solutionσ∗(t) of the optimization problem stabilizes
the switched time delay system and guarantees a balanced
trade-off between control performance and network cost.
For non-symmetric systems additionally the condition (iv)of
Theorem 1 has to be satisfied for stability, conditions (i)-(iii)
are satisfied by the stability of each subsystem, see Remark 2.
Accordingly, the optimization problem (9) has to be solved
subject to the constraint (iv) of Theorem 1. The resulting
solutionσ∗(t) stabilizes the switched time delay system, and

achieves the desired trade-off.
The benefits of QoS control are studied in the following

simulation example with non-symmetric system matrices. A
comparison between the QoS control approach and non-
switching approaches is performed with respect to control
performance and network cost.

Example 2: Consider a QoS communication network
with two different traffic classes, with a time delay
of τ1 = 250 ms and τ2 = 100 ms, respectively. The cor-
responding network cost are given byη(τ1) = 1 s−1

and η(τ2) = 3 s−1, i.e. higher cost for lower time delay.
An unstable unsymmetric plant is considered, the controller
structure is pre-defined as in Example 1

A10 = A20 =

[

1 −1
1 0

]

, Ai1 = ki

[

−1 0
0 −1

]

,

with A10 = A20 the plant in (2), andAi1 the controllers.
The feedback gainski are designed in the same way
as in Example 1, i.e. by determining the largest value
where the LMI (4) is still feasible withα10 = α20 = 1 and
α11 = α21 = 2 through iteratively solving (4). The result is
computed tok1 = 1.58, k2 = 2.93 with the corresponding
positive definite matrices

P1 =

[

24.35 −12.18
−12.18 24.35

]

, P2 =

[

10.53 −5.281
−5.281 10.53

]

.

The optimization problem (9) is solved numerically
with Q(t) = I. Following the approach in [16] the number
of switchesk = 2 is fixed prior to optimization. The initial
mode is defined to beσ(0) = 1, i.e. initially controller k1

with time delayτ1 is active. The is order of the switchings
is fixed as{(t1, 2), (t2, 1))}, meaning that switching into
subsystem 2 takes place att = t1. The initial condition

0  0.58 1  2  3  4  5  [s]

τ1

τ2

(a)

0 0.58 1 2 3 4 5 [s]

−0.3

0

0 0.58 1 2 3 4 5 [s]

0

0.5

1
QoS
low
high

(b)

(c)

x1

x2

Fig. 4. Time delay evolution (a) and state trajectories for QoS controlled
NCS (solid), i.e. the switched time delay system; for comparison the
state trajectories for controllerk1 with high time delayτ1 (dashed), and
controllerk2 with low time delayτ2 (dash-dotted).



TABLE I

CONTROL PERFORMANCE AND INDUCED NETWORK COST.

t0.1 [s] Network cost [units]
QoS control 0.66 6.15
controller 1/τ1 only 1.58 5
controller 2/τ2 only 0.63 15

for the state is given byxT
0 = [0, 1], −τ1 < θ < 0. The

optimization problem is solved off-line for a time horizon
of 5 s using thefminsearch algorithm from the MATLAB
optimization toolbox and thedde23 solver resulting in the
switching timest1 = 0 s andt2 = 0.58 s, respectively. The
first switch is degenerated, it redefines the initial mode to
controller 2/τ2. Hence there is only one switch between the
subsystems, the overall switched system is stable due to
the stability of the subsystems. In Figure 4 the evolution
of the time delay and the state trajectories are presented
for the QoS controlled system, as well as for the standard
approach with high or low time delay only, i.e. without
switching. The trajectories of the QoS controlled system stay
within the ball of radius||x|| = 0.1 after t0.1 = 0.66 s, close
to the unswitched system with low delay communication
(+4.6%), see Table I. However, with QoS control the low
delay connection is active for 0.58 s only, the network cost
are 60% less than for the unswitched system with low delay.
As desired, a trade-off between control performance and
network cost is achieved.

Open problems that will be addressed in future research
includes the following: The optimization of the switching
instants is currently performed off-line. An implementable
online optimization algorithm that computes the next switch-
ing instants under the stability constraint (iv) of Theorem1is
desirable.

In summary, the proposed delay-dependent controller se-
lection approach as well as the QoS control concept seem
very promising for future NCS applications.

V. CONCLUSION

Motivated by novel control approaches for networked
control systems (NCS) this paper presents a first approach
towards switched time delay systems with piecewise constant
time delay and gives sufficient stability conditions. For a
switched system with time delay subsystems a piecewise
Lyapunov function is constructed using the Razumikhin
approach. Asymptotic stability is guaranteed by a strictly
decreasing sequence of the values of a measure for the
retarded states. For the restricted class of symmetric systems
a common Lyapunov function is derived ensuring asymptotic
stability for arbitrary switching sequences. The benefits of
the switched time delay system approach for the performance
is demonstrated in two novel control approaches for NCS. In
the first approach the time delay is monitored and an appro-
priate controller is selected. The second approach targetsthe
conjoint control of system controller and network QoS, i.e.
time delay, such that an optimal trade-off between network
resource usage and control performance is achieved. Both
approaches are very promising for future NCS.
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