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Abstract— The stability and performance of a networked capability of a network to provide different communication
control system (NCS) strongly depends on the communication quality to different network traffic classes. Guaranteed lo
quality, e.g. of the communication time delay. Aiming at = ime delay results in very good control performance, but
performance oriented control over networks in the presence of . . .
piecewise constant time delay, two novel control approaches are rgquwes the provision lofllarge network resources, i.euces
investigated. In the first approach, the time delay is monitored high network cost. Aiming at a trade-off between control
and an appropriate controller is selected. The second approach performance and network cost it is proposed to switch the
is based on the Quality-of-Service communication concept, time delay together with an appropriate controller. Theetim
where the time delay is adjustable and related to the network delay is assumed piecewise constant.

cost. Aiming at an optimal trade-off between network cost . . .

and control performance the controller together with the time As a result, in both conS|dergd approachgs t_he tlmg delay
delay is switched. Both approaches result in a switched system s Well as the controller are switched resulting in a switche
with switched (piecewise constant) delays. Sufficient stability system with switched time delay. Switched (hybrid) systems
conditions for the resulting switched time delay system are are dynamical systems that consist a set of finite subsystems
presented using a piecewise continuous Lyapunov-Razumikhin g g |ogical rule that orchestrates the switchings between

function. A common Lyapunov function is derived for linear s .
time-invariant symmetric subsystems. The performance benefits them. The stability of the subsystems themselves is not

for both approaches are demonstrated in numerical examples. Sufficient for the stability of the overall system [3], [4]teS
bility with arbitrary switching can be ensured by a common

Lyapunov function which is difficult to construct in general

In the view of affordability, widespread usage and wellThe concept of piecewise continuous Lyapunov functions is
developed infrastructure, communication networks arg vereveloped in [5]-[7]. Alternatively, dwell-time based $uti-
attractive for the signal transmission in control syste8s ing is considered in [8], [9]. All these approaches, howgver
comes, however, at the cost of a no longer ideal signalo not consider time delay. Most prominent approaches in
transmission. Especially, time delay associated with tite d the rich literature on time delay systems, see e.g. [10]-
transmission has a strong influence on the stability and tig2] and references therein, are Lyapunov-like approaches
performance of the closed loop system, see [1], [2] fobased either on the Razumikhin or the Krasovskii method.
a general overview on control challenges and approach8sitched time delay systems are considered in [13], [14],
for networked control systems (NCS). In the current NCSvhere the common Lyapunov function approach is extended
literature the communication quality is assumed to be giveand in [15] adopting a dwell-time approach. However, a con-
in advance, accordingly stabilizing controllers are desty stant time delay is considered there. To the best knowledge
In this paper two alternative approaches dealing with thef the authors there are no stability and performance ®esult
time delay problem are proposed. In the first approach withvailable for switched systems with switched time delays.
time delay dependent controller switching, the time defay iMain contribution of this paper is a sufficient condition for
monitored and an appropriate controller is selected onlirge stability of switched systems with switched (piecewise
to ensure good performance. The time delay is assumednstant) delays based on a piecewise continuous Lyapunov
to be piecewise constant. This assumption is reasonabfanction approach and a common Lyapunov approach for
e.g. in Token ring networks, where by the removal or thgymmetric systems. The performance of both considered
addition of a network node the otherwise constant time delagpproaches are studied in numerical examples. Benefits in
decreases/increases in a discontinuous manner, further alerms of improved control performance are shown for the
for route switching in multi-route networks. delay-dependent controller switching approach. An optima

In the second approach, the Quality-of-Service (QoS) conrade-off between control performance and network cost is
trol approach, the communication time delay is considereachieved for the QoS control approach using a hybrid optimal
to be adjustable in realtime. This is motivated by the QoSontrol algorithm from [16].
concept from the networking community, which refers to the The remainder of the paper is organized as follows: The

_ _ o . problem definition along with preliminaries on the stabilit
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I. INTRODUCTION



Il. PROBLEM FORMULATION AND PRELIMINARIES Corollary 1:  [12] The LTI time delay system (2) is

. ... asymptotically stable if there exists a real symmetric matr
A networked control system with synchronously swnchlngP > 0 and real scalars > 0, a; > 0 such that

controllers and delays is considered in this paper; theydela

are considered piecewise constant. Comprising hybrid dy- M —PA1Ay —PA?
namics as well as delay system dynamics it can be described —ATATP —aP 0 <0, 4)
by a switched delay differential functional of the form —(AHTP 0 —a, P
i = fo(z), @y =0 (1) whereM = LIP(A; + Ag) + (A1 + Ag)TP] + (a4 a1) P.
Proof: See [12]. [ |

where ¢ : [0,00) — Z is a piecewise continuous switch- . )

ing signal takes value on the finite s&t:={1,...,N}, B. Stability of Snitched Systems

xy =x(t+0), 0 € [-7,,0] indicates the dependence of Itis well known that switching between stable subsystems
the state derivative on the past statesec R", and may result in instability of the switched system [3], [4].
7. € RT represents the piecewise constant time delayet V; denote the Lyapunov function associated with sub-
The initial condition is given by the continuous trajec-systemi. An important method for the stability analysis of
tory x4, = ¢ = x(to +0), 0 € [~7,(,),0]. Note that with-  switched systems is based on the construction of a common
out switching, i.es(t) constant, the classical delay differen-Lyapunov functionV (z) = V;(x) for all i € Z. Its existence
tial functional modeling time delay systems [12] is rec@ger guarantees stability for arbitrary switching sequencesyH
With zero time delayr; = 0 for all i € Z, (1) represents the ever, a common Lyapunov function is generally difficult to
switched system model in the notation of [17]. It is assumefind, typically they are found analytically only for certain
that there is no jump in the state (state reset) at the swigchi system classes, such as linear systems with commuting
instants, the solutiom(t) is continuous everywhere. The time matrices [18].

between any two switches is assumed larger than zero, i.e.An alternative method to analyze the stability of switched
there is a finite number of switches in finite time. Later irsthi systems is by a piecewise continuous Lyapunov function [5]—-
paper we consider switched systems where each subsystg A (piecewise) continuous Lyapunov functidf is asso-

in (1) is represented by a linear time-invariant (LTI) timeciated to each subsysteinwhere in generaV;(z) # V;(z)

delay system of the form holds if i # j. While the Lyapunov functiori/; decreases
] ) when ith subsystem is active, it could however increase
#(t) = Ax(t) + Azt —m), i€, ) when subsystem is inactive. The concept of piecewise

continuous function is to restrict; at any two consecu-

where A;g, A;1 € RV, o . . .
In contrast to conventional switched systems, the proposiﬁftmf?mﬁt’z > t; with o(t;) = o(tx) =1, ando(t;) # i
7 s k

control structure comprises switching of controllers an
switching time delays. An analysis method for such systems  Vi(z(tx)) — Vi(z(t;)) < —h(||z(t;)|]), Vi€ Z, (5)

has not been published so far. whereh(-) is a positive continuous function with(0) = 0,

A. Sability of Time Delay Systems i.e. asymptotical stability of the switched systems is guar
' anteed if the sequence of Lyapunov function values at the

Most prominent approaches for the stability analysis odwitching instants for each subsystem decreases.
time delay systems are the Lyapunov-Krasovskii approach

and the Lyapunov-Razumikhin approach. The Krasovskii Ill. STABILITY OF SWITCHED TIME DELAY SYSTEMS

approach may provide a necessary and sufficient stability | thjs section sufficient conditions for the stability of
condition, the Krasovskii functional includes the retatde gyjtched systems with switching time delay are presented.
states, its computation is difficult. The Razumikhin apploa The concept of piecewise continuous Lyapunov functions is
see e.g. [12], circumvents the difficulties by considering t extended, a common Lyapunov function is derived for the
z(t) only. Asymptotic stability is guaranteed if the Lyapunov

function £V (z(t)), € > 1, does not exceed A. Piecewise Continuous Lyapunov Function by Razumikhin

B Approach
V(z,) = sup Vi(z(t+6)), (3)

be[—r,0] Consider the switched time delay system given

by (1). The following theorem extends the classical
i.e. the largest value of the Lyapunov function over th@azumikhin theorem [11] to switched systems
past time delay interval—7,0] [11]. The time argument with piecewise continuous time delays stating a
is dropped in the following if non-ambiguous. Assumingsufficient condition for stability. Therefore define
a quadratic Lyapunov functioV () = 2™ Pz the delay- 4, w,, w, p, and h; as continuous nondecreasing
dependent stability condition can be expressed as LMpositive  functions — ui(s), uz(s), w(s), p(s), hi(s) > 0
Consider therefore the LTI time delay system (2) withoufor $>0 with u1(0) = uz(0) = hi(0) =0,

switching. ug  strictly  increasing, limg .. ui(s) =o00. By



Vi(2(t)) = lima_o,a5o L) ZVilr(h) the Remark 1. If h;(s) >0 for s>0 in (iv), then the
right-hand  derivative  of V;(z(¢)) is denoted, switched time delay system is stable.

and [[z¢|| = supge(_,, , o [l2(t + 0)]|. Remark 2: Without the restriction to the time interval of
activity ¢ € [t;,t;41), conditions (i)-(iii) represent the classic
Razumikhin theorem ensuring global uniform asymptotie sta
bility [12] for subsystem without switching. They guarantee
the measuré’;(z;) of the states to decrease during the time
subsystemi is active. Condition (iv) ensures the sequence of

Theorem 1. The switched time delay system (1) is glob-
ally uniformly asymptotically stable if there exists a cont
uously differentiable positive definite functiovi; for each
subsystem € 7 such that for any initial condition;, = ¢

angl anyto . the state measurg to decrease at consecutive switching in-
(i) Vi(0) =0, Vi(z) >0 for = € R"\{0}, stants for each subsystem similar to (5). Accordingly, iseca
(i) wi([[z]]) < Vi(z) < ua(|lz]]), of a time delay system without switching, i#(t) = const.,

(iii) Vi(z) = _wl(HxH) it Vi(z(t+0)) < P(Vi(fﬂ_(t))) f_Or Theorem 1 reduces to the original Razumikhin theorem [12]
the time interval where subsystem is active (condition (iv) then follows from (iii) and is no longer

_ te[tj,tj1), 0 € [-7:,0], needed). For zero time delay, and replacing conditions (i)-

(V) Vi(we,,.) = Vilwy) < ~hi(|lz,|]) for all i € 7 and iy by standard Lyapunov stability conditions, the resul
all consecutive switching instantg.., > ¢; for which  from [7] on the stability of switched systems with piecewise
o(tji1) = olt;) =i continuous Lyapunov functions is recovered. For constant

Sketch of Proof: First note, that conditions (i)-(iii) repre- tjme delay, i.e,(, = const., a similar result as in [19] is
sent the classical Razumikhin conditions: Without switchychieved.

ing t; = ty, tj41 — oo, each subsysteme {1,2,...,N}

is globally uniformly asymptotically stable [12]. Without B. Common Lyapunov Function for Symmetric Systems

loss of generality assume the switched time delay system is|n this subsection, we restrict ourself to the class of LTI
initialized with subsysten = 1 att,. For any givere; >0,  switched time delay systems (2) with symmetric system
let 0 < dp < u;l(ul(so)). Then for anyty and any initial matricesA;o = AL and A;; = A7 for all i € Z.

condition ||z, || < dy the state remains boundéd:, || < o Proposition 1: The system (2) with symmetric system
for ¢ > to, see [12] for more details. Assume, that at the timgnatrices is asymptotically stable for arbitrargwitching
instantt, the execution enters subsystem 2. As there is ngaquences if for each subsystéthere exist a real symmetric

jump in the states at the switching instant by assumptian, thnatrix P, > 0 and real scalara;, > 0, a;; > 0 such that
initial condition for subsyster is given byx;, = x(t1 + )

. P A A P A2
with 6 € [-7,0]1. Using the same arguments as above, J;/‘[%OT Pididio —Pidy
with ||z, || < o there is as; such thateg < uy ' (uy(e1)) _ﬁéofggpi —aioP; 0 <0, (6)
such that||z;|| < e for ¢ > t;. Considern < N consec- (A7)" P 0 —an b

utive switchings with distinct values af. With the same whereM; o = L[P;(Ai + Ai) + (Aio + Ai)T Bi] + (vio +
arguments as above for all possible permutations and fQJ;I)PZ,_ ‘

any initial condition ||z, || < 4, for all #o, there exist a geetch Proof: The LMI (6) ensures the asymptotic stability
¢ > 0 such that|z,, || < . In the case that any subsystém of each subsystemusing the delay-dependent Razumikhin

becomes re-activated, condition (iv) guarantees thatttite s approach and the Lyapunov functiéi(z) = z” Pjz. Since
trajectory stays within the-ball. The switched system is p. < symmetric, there exists &' = UZ such that
K3 L] 1 K3 3

uniformly stable.

For asymptotic stability, observe that there exists a Ul PU; = S0 = diag{x1, - Xin}»
subsystem with an associated infinite sequence of switchi N . i —
Gmest, 1 tin, - SUCh thatr(tsy) = o(tia) — ... =i € T Qﬁe;}él’yj. >W0é jh;/el, ...,n. Pre- and post-multiply (6) by
(excluding the trivial case of finite switchings). Due * v - o -
to (v) the measure Vi(x(t;1)),Vi(z(ti2)),... is Mo SioAanAin  TioAZ
decreasing and positive, there exists a>0 such —AGAL S0 —aiDip 0 <0, (7)
that z = lim;_, V;(z(t;;)). As a result for any two (A2)T%, 0 0 -1 0
consecutive switching instants; ;.1 >t ;, by (iv) it

where /L'O = UzTAloUZ, /L'l = UzTAﬂUZ, Mi,O =

follows, B B %[Ei,o(z‘iio + /L'l) + (Aio + Ail)TEi,O] + (o + ;1) %5 0.
0= jlijélo Vit ;01) —jliﬂolc Vi(wy, ;) Pre- and post-multiply (7) by and take transpose the
< Tim [~h(|[z,, )] < 0. resulting matrix, it leads to
T M; TioAndio  TipA%
It implies lim; . ||z, ;|| = 0 for eachi, and thus leads _A%ﬁflzi—g —0@'021»_& 0 <0, (8)
to limy o z(t 4+ 0) = 0 for 6 € [—7;,0]. [ ] (A?I)Tzi_,oi 0 *041-12;01

lFor the sound definition of the initial condition for subsys- 2By settingg = x(to + 0), 0 € [— max;{r;}, 0] the initial condition is
tem2, t1 > to + maxyy oy (7;) — 71 is required. well-defined for arbitrary switching.



where MZ."O = %[Z;&([lio + An) + (A + Ail)TEijol] + controller is selected depending on the current networle tim

(cvio + a;1)X; 3. Using0 < \; 1 < 1 which satisfies delay. In the second approach, the combined control of the
’ . plant and the network QoS is considered with the goal
Aiaxi1+ (1= Xi)x; =1 of good control performance and efficient use of network

to A1 X (7)+(1— ;1) x(8), and using the symmetry of,,  'esources. Main difference between these approaches in the
and 4;,, we obtain view of switched time delay systems is the generation of the

switching signalo(t): It is generated from the time delay

V2 A A A2 R X .
_’1%71 TipAindp XAy monitoring in the time delay dependent controller selectio
_450’%112@1 —QioXi1 0 <0, approach, and from the optimization of a cost function
(A3)" Zia 0 — Qi1 X1 depending on the system state and the network cost in the
WhereZm = diag{/\i,lxq;_yl + (1 — >\11,1)Xi_,11, ey Ailei,n + QOS control approach.
-1 —_ i \ - v - |/ . — .
(I = X)X, t = diagil, Xiz2, ..., Xin} > 0 @nd Miq1 = A Network Time Delay Dependent Controller Selection

%[21,1(1410 + Ain) + (Ao + A1) TS 1] + (o + @i1)Ti 1
In the same way for0 < X;2 < 1, we can derive
Y0 =diag(1,1, Xi2,-..,Xin} > 0. Repeating the proce-
dure, we obtain:; , = I and (6) becomes

With the goal of improving control performance the ap-
propriate controller is selected depending on the timeydela
The control system consists of the plant, the communication
network, a bank of controllers, and a decision maker, as il-

Z(Aio + Ain) + (qio + o)l —Andyp A3 lustrated in Figure 1. The coomunication network introduce
*4%14?1 —aiol 0 <0, a piecewise constant time delay taking valags € Z. Each
(Ax)7" 0 —ainl controlleri is designed by a delay-dependent approach, e.g.

corollary 1, to stabilize the plant for the associated tirakay

- - i - ) T
Pre- and post-multiply (III-B) by; and U;", we have value ;. The decision maker monitors the time delay and

representing the common Lyapunov function. Note, that due
to the switching time delay, the measurgx,, ) # V;(z,)

for ¢ # j is discontinuous at the switching instants in general. Controllern —o— &= Tn
For instance if the subsystem dynamics switcheg &tom i Lngwgk J
to j with 7, > 7;, thenV;(xy,) > V;(z4,), and vice versa.
Due to the common Lyapunov function and its continuityFig. 1. Control architecture for NCS with network time delagpendent
and the time between any two switches larger than zero, coffntroller selection as a switched time delay system.

dition (iv) of Theorem 1 is satisfied for arbitrary switching o ) )
sequences. The valud$(z,, ) at the switching instants; In.mo_st relevant appllcauons_, the time dellay in the com-
form a strictly decreasing sequence for eack Z. The mumca_tlon netwo_r.k changes in an unpredictable manner.
conditions (i)-(iii) of Theorem 1 are satisfied for each gisbs Accordingly, stability has to be guaranteed for arbitrary
temi by assumption (6). Thus by application of Theorem 1§W|tch|ng sequences. For the special class of symmetric

for an arbitrary switching sequenden, .. ||z;|| = 0. system matrices stability is guaranteed by Proposition 1.
The stabilizing controller switching signal can be geredat

from the time delay monitoring only, i.er(t) = o(7;(t)).
"rhe time delay and the controller are assumed to switch
TAy = ALT, TAy = ALT synchronously.

The control performance benefit is studied in the following
simulation example with symmetric system matrices.

Example 1. Consider a communication network where the

Remark 4: The result IS an extension t(_) [18] where Aime delay switches between two possible values, the high
common Lyapunov function for symmetric LTI SyStemStime delayr, — 250 ms, and the low time delay, — 100 ms.

Withou_t time delay is derived, and 1o [20] where the time'I'he switched time delay system (2) is given with symmetric
delay is assumed constant. system matrices by

T%(Am + An) + (o +an)]  —AjpAn A3 chooses the appropriate controller from the controllerkban
—A%Aa —Oéiol 0 < 0,
2\T . Delay monitor
(A“) 0 il Decision maker
From comparison with (6) it follows that each subsystem - n
satisfies (6) with the Lyapunov functioW (z) = 27z - Controller 1 —e-Y + = Ty 7> Plant
; ‘ :

Remark 3: The symmetric requirement of system matrice
in (2) can be generalized to systems with matrices satigfyi

for some transformation matrik > 0 of appropriate dimen-
sion.

IV. TOWARDS PERFORMANCEORIENTED CONTROL Ayg = Ay = {j —01} /P [—01 _OJ 7

In this section, the potential benefits of the switched time
delay systems approach with respect to performance amhere A,y = A, = Ayy = AL, is the unstable second or-
explored in two novel control approaches for NCS. Aimingder plant, A;; represents the state feedback gain matrix
at improved control performance, in the first approach theith a pre-defined symmetric structure for simplicity. The



T1

gains k; are determined by iteratively solving (4) with
ag =11 =1, agg =91 =2 USing the MATLAB LMl

toolbox. The gainst; = 1.79 and ks = 3.01 represent the T2
highest gains where the LMI (4) is still feasible. The corre- @)
sponding positive definite matrices are

po_ [ 1757 —06888] L, _ [0.6258 —0.1375 ob e
17 1-0.6888 2446 |72 |-0.1375  0.7652 | x W !
With the controller gaink; designed for the high time o1 “1 : !

|
delay Ty, the system is stabilized also for low time delay - :
a feasible solution of (4) exists with 0 1

P — [ 0.2776 0.1788} .

é 3 4 5 ts]
(b)

- — —non-switching controller
— switching controller

—0.1788  0.4564

According to Proposition 1 the system is stable for
arbitrarily switching time delay, for both cases, with the
constant controllek; designed for the worst case (highest)
time delay, and with synchronously switching controller. | 2 3 2 5[]
simulations the control performance for these two cases (c)
is compared. The network initially provides a low timefig. 2. Time delay evolution (a) and state trajectories withet delay
delay communication,. The subsequent change of the timedependent controller selection (solid) and without, usihg worst case
delay is depicted in Figure 2(a). The initial condition forcontrollerk: designed for time delay, (dashed).
the state is given by = [0,1], —m» < § < 0. The system
trajectories are computed using tliele23 solver from
MATLAB. Without adaption of the controller to a change in > ; )
network time delay, i.e. the worst case controligrthe state 7¢ > 7j» then there is an overlap in the control signal
trajectories show a rather slow convergence towards zeeo, &/1Ving delayed at the plant over a time interval— ;.
dashed line in Figure 2(b),(c). The trajectory stays within Accordln_gly, |f 7; < 74, the control S|g.ne.1I. remains undefined
ball around the origin of raditiéz|| = 0.1 afterto , = 1.15s. fqr the time |.nte.rvaIT.j — 7;. The definition of the control
With synchronously switching controller the state trajeits S92l over this time interval represents a degree of freedo
converge faster to the origin, with , — 0.59's. Clearly, there during the de5|gn. It has an mfluenge on thgz evolut'lon of the
is performance benefit from using the controller switchin yapunov functl_on. A deeper analysis of this case is beyond
approach with piecewise constant time delays. he scope of this paper.

Remark 5: For the general class of non-symmetric sys- Remark 7: Markovian jump systems (MJS) with mode-
tems according to Theorem 1 the decision maker nee§§Pendent ime delays [21] represent an alternative approa
to monitor the evolution of the Lyapunov functions of the/Or the controller switching depending on piecewise canista
subsystems additionally to the time delay. The switchin§Me delay. Main difference is that the design of such cdntro
signal has to be generated as a function of the time del®yStem relies on the knowledge of the probabilistic traosit
and the Lyapunov function valug(t) = o (r;(t), V;(t)). If all rates_ of the time delay values, whlle in the propo;ed approac
subsystems are asymptotically stable then only condition ( the time delay vaIue; are monitored. A comparison of both
of Theorem 1 has to be evaluated, see Remark 2. ThefBProaches are subject to further research.
may, however, exist time delay switching instants where
the evolution of the Lyapunov function does not allow theB- Quality-of-Service Control

switching of the controller. How the stability of the system Quality-of-Service (QoS) refers to the capability of a net-
can still be guaranteed is subject of future research. For noyork to provide different communication quality to differte
symmetric systems, it is furthermore desirable to replaee t network traffic. In fact, it allows the adjustment, hence the
Lyapunov function condition by a condition which is easielzontrol of the communication quality. In the current IPv6
to check, e.g. by a dwell-time condition. a finite number of data classes is already implemented.

Remark 6: Note that in the considered system (2), conGuaranteed high communication quality, e.g. low time delay
troller an plant are lumped into a single delay differentiatequires the provision of large network resources, i.euded
functional assuming no state jumps, and the initial condhigh network cost. Considering the finite resources of a
tion z; for each time delay subsystem to be well definesetwork it is desirable that every application only conseme
after switchings. However, this assumption is no longee truas much of them as required to guarantee a certain level of
in a real NCS application due to the spatial separation gferformance. Inspired by the QoS concept a novel control
controller and plant as the following shows. Consider theoncept is proposed here aiming at the conjoint control of
planti = f(x,u(t — 7;)) and the proportional state feedbackthe control system itself and indirectly of the the network
controller u(t) = K;x(t). Controller and time delay are resources.

switched at time instant, to K, and 7;, respectively. If



network cost . .
Decision maker achieves the desired trade-off.

Ty The benefits of QoS control are studied in the following
I
|
|

Y

- Controller 1 —o—Y-e—=| 7, Plant simulation example with non-symmetric system matrices. A
| comparison between the QoS control approach and non-

. | switching approaches is performed with respect to control

Controllern |—&— o= Tn performance and network cost.

‘\ QoS network / Example 2: Consider a QoS communication network

with two different traffic classes, with a time delay

Fig. 3. Control architecture for NCS with QoS control as atehéd time  Of 71 = 250 ms and » = 100 ms, respectively. The cor-

delay system. responding network cost are given by(r)=1s"

and n(m2) = 3s71, i.e. higher cost for lower time delay.

The basic control architecture is similar to the previou X - )
application as illustrated in Fig.3. The finite number of N Unstable unsymmetric plant is considered, the controlle
fructure is pre-defined as in Example 1

possible time delay values is assumed to be known. For eat

time delay value; a stabilizing controllei is designed using 1 -1 -1 0

a delay-dependent approach. The decision maker chooses Ao = Az = L 0 } A = ki [ 0 J )

the appropriate time delay-controller pair. Main diffecen i

to the delay-dependent controller selection approachds ti/ith 410 = A2 the plant in (2), andA;; the controllers.

generation of the switching signal, i.e. the switching togi ' "€ feedback gainsy; are designed in the same way

the decision maker. as in Example 1, i.e. by determining the largest value
The goal here is to balance control performance versié1ere the LMI (4) is still feasible withv,p = az =1 and

network cost. For good control performance, generallyya lo®11 = @21 = 2 through iteratively solving (4). The result is

time delay connection is desirable, however high networkOMPuted tok; =1.58, k» = 2.93 with the corresponding

cost are induced then. The cost-performance trade-off ean BOSitive definite matrices

formulated as an optimization problem with the goal to find 24.35 —12.18 10.53 —5.281

the optimal switching signab(t). As control performance “1 — {—12.18 24.35 } P = {—5.281 10.53 } ‘

measure here the time integral over a quadratic function of o ) )

the states is considered. The network cost are assumed tgN€ Optimization problem (9) is solved numerically

be time-based, i.e. increase with connection usage time. THIth @(¢) = I. Following the approach in [16] the number

resulting optimization problem can be stated as follows of switchesk = 2 is fixed prior to optimization. The initial
mode is defined to be(0) =1, i.e. initially controller &,

min J = /xT(t)Q(t)x(t) + Mo (1) Ot (9) with time delayr; is active. The is order of the switchings
o(®) /0 is fixed as{(t1,2),(t2,1))}, meaning that switching into
whereQ(t) is a weighting matrix of appropriate dimensionsubsystem 2 takes place at=t;. The initial condition
andn, ) = n(75()) represents the network cost associated
with a certain time delay. The solution to this optimization
problem is generally difficult to find as it is hybrid, non-
convex in general and contains delay differential equatittn

is beyond the scope of this paper to provide a deeper analysis
Hybrid optimal control for systems without time delay is (@)
investigated e.g. [16], [22]. In this work the two-stage-
procedure proposed in [16] is adapted to solve the hybrid |

optimal control problem with piecewise constant time delay 0\% -
numerically over a finite horizon. Numbérand sequence of N
switchings{(t1,0(t1)), -+, (tx,o(tr))} are fixed a priori, 03l 1

in the second stage the switching times are optimized. - i i i ‘
An alternative hybrid optimal control approach is proposed 0 0581 > 4 508l
in [22], however, without considering time delay. For sym-

T1

T2

metric systems Proposition 1 applies straightforwardly, i —Qos

the solutiono*(t) of the optimization problem stabilizes :7’7:3Wh

the switched time delay system and guarantees a balance: g

trade-off between control performance and network cost. -

For non-symmetric systems additionally the condition ¢f/) ‘ ‘ ;
3 4 5[s]

Theorem 1 has to be satisfied for stability, conditionsii)-( ©
are satisfied by the stability of each subsystem, see Remark 2 4 Time del \uton (a) and _ s fos@ontrolled
: A ig. 4. Time delay evolution (a) and state trajectories fo ntrolle
ACC,Ordmgly’ the optlml-zathn problem (9) has to be SOlv_e({lCS (solid), i.e. the switched time delay system; for comparisioe
subject to the constraint (iv) of Theorem 1. The resultingtate trajectories for controlige; with high time delayr; (dashed), and

solutiono*(t) stabilizes the switched time delay system, andontrollerk; with low time delayr> (dash-dotted).
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[ [ to.1 [S] | Network cost [units]]

QoS control 0.66 6.15
controller 1/ only 1.58 5
controller 2/ only 0.63 15

for the state is given byrl =[0,1], -1 <6 < 0. The
optimization problem is solved off-line for a time horizon
of 5s using thd m nsear ch algorithm from the MATLAB
optimization toolbox and thede23 solver resulting in the
switching timest; = 0s andt, = 0.58s, respectively. The [2
first switch is degenerated, it redefines the initial mode to
controller 2f». Hence there is only one switch between the[3]
subsystems, the overall switched system is stable due
the stability of the subsystems. In Figure 4 the evolution
of the time delay and the state trajectories are presented
for the QoS controlled system, as well as for the standardp!
approach with high or low time delay only, i.e. without
switching. The trajectories of the QoS controlled systeay st
within the ball of radiug|z|| = 0.1 afterto; = 0.66 s, close
to the unswitched system with low delay communication
(+4.6%), see Table I. However, with QoS control the low [7]
delay connection is active for 0.58 s only, the network cost
are 60% less than for the unswitched system with low delayjg;
As desired, a trade-off between control performance and
network cost is achieved. 9
Open problems that will be addressed in future researcI[1
includes the following: The optimization of the switching
instants is currently performed off-line. An implementabl
online optimization algorithm that computes the next shvitc
ing instants under the stability constraint (iv) of Theorgis
desirable.

(1]

(6]

[10]

[11]

[12]

In summary, the proposed delay-dependent controller se-

lection approach as well as the QoS control concept sedf!
very promising for future NCS applications.

V. CONCLUSION [14]

Motivated by novel control approaches for networked
control systems (NCS) this paper presents a first approach
towards switched time delay systems with piecewise cohst
time delay and gives sufficient stability conditions. For a
switched system with time delay subsystems a piecewi$t]
Lyapunov function is constructed using the Razumikhin
approach. Asymptotic stability is guaranteed by a strictly
decreasing sequence of the values of a measure for thél
retarded states. For the restricted class of symmetriessst
a common Lyapunov function is derived ensuring asymptotic
stability for arbitrary switching sequences. The benefits di1°]
the switched time delay system approach for the performance
is demonstrated in two novel control approaches for NCS. Inoj
the first approach the time delay is monitored and an appro-
priate controller is selected. The second approach tatigets
conjoint control of system controller and network QoS, i.ep1]
time delay, such that an optimal trade-off between network
resource usage and control performance is achieved. BJfR
approaches are very promising for future NCS.
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