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Summary

Sustainable forest management in times of changing environmental conditions re-
quires, among other things, detailed knowledge about site ecological conditions.
Only upon this information sustainable decisions could be made today which also
correspond approximately to predicted future climatic conditions, e.g. regarding
planting of tree species or forest management strategies.

Traditional site classification in Germany describes site characteristics (e.g. soil
texture, soil moisture, soil chemical properties, landscape position) by using a
qualitative 3-numerals code. Such site maps have been criticized recently as be-
ing static and not reproducible. In addition, traditional mapping approaches are
very time consuming and expensive. Therefore, the development of dynamic, ho-
mogeneous, area-wide and digital site information system have been initiated in
many forest administrations in Germany.

Aim of this study is to apply methods from the area of digital soil mapping
and species distribution modelling for the assessment and mapping of forest site
characteristics. In the following sections of this study I will present different
application examples of existing methods as well as the development of new ap-
proaches for the spatial prediction of site characteristics. My aim is to present a
set of modelling approaches for the ongoing and future projects on site mapping
in forestry.

This study is a cumulative dissertation, meaning it consists mainly of three publi-
cations which accrue from two research projects at the Bavarian State Institute of
Forestry (KLIP/ - Maps For The Future) and the University of Applied Sciences
Weihenstephan-Triesdorf ( Waldinformationssystem Nordalpen - WINALP).

Two topics constitute the context of my dissertation, namely site classification
and spatial prediction models. The development and the basic concept of both
will be introduced first.

The main part of my dissertation consists of three thematically related articles
that are published in ISI-listed scientific journals. In the first article I present the
development and application of a modelling approach for spatial disaggregation of

complex soil map units, i.e. map units aggregating two or more soil types which
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Summary

may be characterized with differing soil properties. The method has been applied
to the entire area of the 1:25k soil map of Bavaria and validated with more than
2000 sampling locations. The field data results in a prediction accuracy of more
than 70%. The disaggregated soil map illustrates a spatially explicit and with
regards to content refined database for the assessment of site conditions.

In the second and third article I present the application of the species distribution
modelling framework to Ellenberg indicator values in order to estimate the spa-
tial distribution of the effective moisture content and the soil reaction properties.
In both publications I used 1505 vegetation plot records from the Bavarian Alps
to fit different geoadditive regression models for regionalization. The resulting
maps show detailed and diverse spatial pattern of effective soil moisture and soil
reaction. The maps could be regarded as a major improvement regarding input
data for site classification in the Bavarian Alps. For the regionalization of soil
reaction I used a new, multivariate regression approach to model ordinal-scaled
indicator values (proportional-odds model). In contrast to the common practice
in vegetation ecology to model average indicator values the approach predicts the
probability distribution over all nine indicator values. I could show that in areas
with heterogeneous indicator spectra the new approach is a strong improvement
compared to Gaussian regression models.

Subsequent to the summary of these articles I will present three additional studies
which are targeted on the modelling and creation of input data for site classifi-
cation: (1) The official soil map of Bavaria has been used in both projects as
primary source of information on the spatial distribution of soil properties in
Bavaria. To fill existing spatial gaps in the soil map, methods from the area of
digital soil mapping have been applied to extrapolate soil map units. (2) Sub-
sequent to modelling, field validation data have been collected (4500 samples).
The analysis of the validation data has shown that the statistical model error
of the predicted soil map units gives no reliable indication regarding prediction
accuracy. Detailed petrographic information is needed e.g. on slope sediment
layering or alluvial deposits to achieve more accurate predictions. (3) Homoge-
neous terrain units play an important role for the model based delineation of site
classes. By using methods of digital image analysis (image segmentation) I have
delineated multi-scale landscape objects based on digital elevation models and
terrain parameters, which have been used in the Maps For The Future project for
different applications (distribution of sampling locations, spatial disaggregation,
assessment of effective soil moisture).

The described modelling approaches can be used as individual methods for dif-

III



Summary

ferent kinds of applications in soil science and spatial ecology, e.g. the refinement
of a land use map or the prediction of an ordinal-scaled ecological parameters.
However, altogether the methods assembled here provide a set of new approaches
for the development of digital, quantitative, homogeneous, and high resolution

maps of site characteristics of the new generation.
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Zusammenfassung

Nachhaltige Waldbewirtschaftung in Zeiten sich verandernder Umweltbedingun-
gen benotigt - nebst anderen Dingen - raumlich hoch aufgeloste und inhaltsdif-
ferenzierte Informationen tiber Standortbedingungen. Nur auf Grundlage detail-
lierter Karten konnen heute nachhaltige Entscheidung hinsichtlich Baumarten-
wahl, Baumartenzusammensetzung und Waldbewirtschaftung getroffen werden,
die sowohl den derzeitigen als auch den zukiinftigen Umweltbedingungen ent-
sprechen.

Die traditionelle Standortklassifikation in Deutschland beschreibt Standorteigen-
schaften (bspw. Bodentextur, Wasserhaushalt, Bodenchemie, Lage in der Land-
schaft) mit einem qualitativen 3-Ziffern System. Diese Karten wurden in jiingster
Zeit jedoch kritisiert, da sie sich als zu statisch und nicht reproduzierbar erwiesen
haben. Dariiber hinaus ist die Erstellung von Standortskarten sehr zeitaufwendig
und deshalb teuer. Die Entwicklung und Implementierung dynamischer, homo-
gener, landesweiter und digitaler Standortinformationssysteme wird deshalb in
vielen Landesforstverwaltungen in Deutschland vorangetrieben.

Ziel dieser Arbeit soll sein, raumliche Prognosemethoden aus den Bereichen der
digitalen Bodenkartierung und der Habitatmodellierung fiir die Kartierung von
Wald-Standortseigenschaften zu verwenden. In den Kapiteln dieser Arbeit présen-
tiere ich verschiedene Anwendungsbeispiele bestehender Methoden auf neue Frage-
stellungen als auch die Entwicklung neuer Ansétze fiir die rdumliche Prognose
von Standorteigenschaften. Ziel dabei ist es, leicht anwendbare und adaptier-
bare Methoden fiir die aktuellen und zukiinftigen digitalen Standortkartierungs-
Projekte der Forstverwaltung bereit zu stellen.

Die vorliegende Arbeit ist eine kumulative Dissertation, d.h. sie setzt sich haupt-
séchlich aus drei Veroffentlichungen zusammen, die wihrend zwei Forschungspro-
jekten an der Bayerischen Landesanstalt fiir Wald und Forstwirtschaft (KLIP4 -
Karten fir die Zukunft) und der Hochschule Weihenstephan-Triesdorf ( Waldin-
formationssystem Nordalpen - WINALP) entstanden sind.

In der Einleitung der Arbeit werden zunéchst die beiden grundlegenden The-

men eingefiihrt, die den Rahmen meiner Forschungsarbeit darstellen: das Thema



Zusammenftassung

Standortkartierung und raumliche Prognosemethoden. Als Hauptteil meiner
Dissertation finden sich daran anschlieend drei Artikel, die in ISI gelisteten,
wissenschaftlichen Zeitschriften veroffentlicht wurden. In der ersten Publika-
tion beschreibe ich die Entwicklung und Anwendung eines Modells zur raum-
lichen Disaggregierung von Bodenkomplexeinheiten, d.h. Karteneinheiten, die
mehrere Bodentypen mit unterschiedlichen standortlichen Eigenschaften zusam-
men fassen. Die Methode wurde auf die gesamte verfiighare Fliche der Bo-
denkarte im Mafistab 1:25.000 angewendet und an iiber 2000 Punkten im Gelédnde
validiert. Die Gelandedaten ergaben eine Prognosegenauigkeit von iiber 70%. Die
disaggregierte Bodenkarte ist eine rdumlich und bodenkundlich verfeinerte Daten-
grundlage fiir die Abschétzung von Standortbedingungen.

In den verbleibenden zwei Publikationen préasentiere ich die Anwendung von
Habitatmodellen auf Ellenberg Zeigerwertpflanzen. Ziel dabei ist eine rdaum-
lich differenzierte Abschatzung des effektiven Wasserhaushaltes und der Boden-
reaktion zu erhalten. In beiden Publikationen habe ich 1505 Vegetationsauf-
nahmen aus den Bayerischen Alpen mit verschiedenen geoadditiven Regression-
smodellen regionalisiert. Die Ergebniskarten illustrieren raumlich stark differen-
zierte Muster der 0kologischen Feuchte und Bodenreaktion und stellt somit eine
grofle Verbesserung der Datengrundlage fiir Standortkartierungen in den Bay-
erischen Alpen dar. Fiir die Modellierung der Bodenreaktion verwende ich einen
neuen, multivariaten Regressionsansatz, um ordinal-skalierte Zeigerwerte zu re-
gionalisieren. Im Gegensatz zum iiblichen Ansatz in der Vegetationsokologie
schatzt das neue Modell nicht einen mittleren Zeigerwert, sondern die Wahrschein-
lichkeitsverteilung aller neun Zeigerwerte. Ich konnte zeigen, dass in Unter-
suchungsgebieten mit stark heterogenen Zeigerwertspektren dieser Ansatz eine
deutliche Verbesserung im Vergleich zur Mittelwerts-Modellierung darstellt.
Anschlieflend an die Zusammenfassung dieser Veroffentlichungen préasentiere ich
weitere Studien, die darauf abzielen, Eingangsdaten fiir die Standortsklassifizierung
zu modellieren: (1) Die Ubersichtsbodenkarte UBK25 wurde in beiden Forschungs-
projekten als Basisinformation iiber die rdumliche Verbreitung der Boden in
Bayern verwendet. Um Bodendaten in bisher nicht kartierten Bereichen zu er-
halten, habe ich mit Methoden der digitalen Bodenkartierung Karteneinheiten
extrapoliert. (2) AnschlieBend an die Modellierung wurden Validierungsdaten
im Geldnde erhoben (4500 Stichproben). Die Auswertung der Validierungsdaten
zeigt, dass der statistische Modellfehler bei der durchgefithrten Bodenprognose
keine verlassliche Information iiber die Prognosegiite liefert. Petrographische

Informationen z.B. iiber quartare Deckschichten oder alluviale Sedimente sind
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Zusammenftassung

erforderlich, um Bodenkarten verldsslicher zu prognostizieren. (3) Homogene
Geléndeeinheiten spielen fiir die Ableitung von Standortseinheiten eine bedeu-
tende Rolle. Mit Methoden der digitalen Bildverarbeitung (Bildsegmentierung)
habe ich auf Grundlage von digitalen Gelandemodellen und daraus abgeleiteten
Reliefparametern multi-skalige Landschaftsobjekte abgeleitet, die im Laufe des
Maps For The Future Projektes fiir verschiedene Anwendung verwendet wur-
den (stratifizierte rdumliche Stichprobennahme, Bewertung des Bodenwasser-
haushaltes, Disaggregierung der Bodenkarte).

Die dargestellten Methoden sind fiir unterschiedliche Fragestellungen in Boden-
kunde und Okologie anwendbar. Zusammengenommen ergeben sie ein Set an
neuen Methoden fiir die Entwicklung digitaler, quantitativer, homogener und

hoch aufgeloster Standortskarten der neusten Generation.
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Chapter 1.

State of the Art and Objectives

The topmost step, which lies nearest Smaland, is mostly
covered with poor soil and small stones, and no trees except
birches and bird-cherry and spruce which can stand the cold on

the heights, and are satisfied with little can thrive up there. ..

(The Wonderful Adventures of Nils
by Selma Lagerloef)



Chapter 1. State of the Art and Objectives

1.1. Mapping of forest site characteristics - past

and present

1.1.1. The term “forest site”

Why do we have such a fascinating tapestry of forests on Earth? To understand
the diversity and distribution of forests we sooner or later come across the term
“forest site”. There is a diversity of definitions of site, but in a nutshell the term
can be defined as the sum of growth conditions at a location (Pfadenhauer 1997).
The German term “Standort”, which is a terminus technicus in forestry and
agriculture, has this comprehensive definition. Usually, the English term forest
site is narrowed down to mean a description of the physiograhic conditions which
have an influence on the growth of plants, namely soil, topography, and climate
(Arbeitskreis Standortskartierung 2003), even though biotic processes are also
present in soil (mineralization, humus) and climate (micro-climate). Grey (1980)
defined a site as a natural unit, a spatial entity, which can be described, classified,
recorded and mapped but cannot be further subdivided without the loss of some
intrinsic characteristic. Bailey et al. (1978) defined forest site as the function of
the interplay between climate, topography, parent material and vegetation over
a specific time. The term is mainly utilized in agriculture and forestry in the
context of manufacturing resources for crop plants, e.g. timber or arable crops.
Forest site has therefore a strong use-oriented meaning, for example Schulze et al.
(2005) and Nentwig et al. (2012) relate the term to the field of applied ecology.

Beside the term site, other scientific terms also relate to the physiographic envi-
ronment. There is a huge overlap between those terms, yet with different focus.
The term “biotope” literally means an area where life lives (Pfadenhauer 1997).
The concept was introduced initially to define a complex of factors that deter-
mines physical conditions of existence of a species, a “biocenosis”. The difference
to the term site is the strict relation of a biotope (the abiotic environment) to
a specific biocenosis (the biotic community) as the “biotope of a biocenosis”, cf.
Dahl (1908) and Olenin and Ducrotoy (2006). Thus the biotope is considered
as the abiotic part of an ecosystem. Nowadays, the term biotope is mainly used
in nature conservation and environmental planning literature (CORINE 1991;
Kaule 2002; Pfadenhauer 1997). The term “ecosystem” relates to the functional
description of processes and interactions between plants and animals and the
physical-chemical environment. “Ecosystems are thus networks of interrelations

between organisms and their environment in a defined space” (Schulze et al. 2005).
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Ecosystems have no fixed boundaries; instead their parameters are set according
to the scientific, management, or policy question being examined. Depending
upon the purpose of the analysis, a single lake, a watershed, or an entire region

could be considered an ecosystem.

Confusingly, there are some studies in forestry which use the term forest site in-
terchangeably with “forest site quality” and refer to the productivity potential of
a given site (“site productivity”), i.e. an interpretation of the physiographic con-
ditions for timber production (cf. Aertsen et al. 2010; Altun et al. 2008; Carmean
1975; Pokharel and Dech 2011). However, in this thesis I use the term forest site

to refer to the classification and mapping of the physiographic environment.

1.1.2. The classification of forest sites

Because of the importance of the forest site, being the irreplaceable natural re-
source of forestry, the development of different approaches to assess and map site
characteristics has a long history. First approaches for site classifications in Ger-
many date back to 1888 (Roth 1916; Watson 1917). However, the main intention
of these early approaches was to classify “lands into good and poor” or “more
fertile and less fertile ones” (Roth 1916) and the volume of timber produced was
the main measure. “The only final criterion of site quality is the current annual
cubicfoot increment of a fully stocked stand of the species under consideration”
(Bates 1918). Growth height was also used as an index of site quality (Froth-
ingham 1921; Roth 1916; Watson 1917). But also at that time the correlation
of site productivity on the one hand and soil and climate on the other had been
identified as an important parameter. Recognizing the obvious variation in wood
productivity and quality associated with habitat variance made it imperative to
strive for means of evaluating environmental potentials as a guide in forest man-
agement. Subsequent approaches paid increasing attention to the physiographic
environment for site classification following the general principle of sustainable
forest management and became less driven by timber yield and capital invest-
ment criteria (c.f. Carmean 1975; Daubenmire 1976; Kohm and Franklin 1997;
Lindenmayer et al. 2000; Wijewardana 2008).

A direct measurement of driving forces, processes, and interactions of ecosys-
tems such as energy flow, nutrient cycles, light, temperature, water, and physico-
chemical parameters above the field scale is not feasible Schulze et al. (2005).

However, the indirect assessment of site characteristics (German: Standortsmerk-
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mal) based on the observable nature and properties of the physical environment
has been proven as an effective approach (Arbeitskreis Standortskartierung 2003).
The rationale behind that approach is the ecosystem concept (Bailey 2009; Begon
et al. 2006; Nentwig et al. 2012): vegetation and soils are products of climate,
organisms, topography, parent material, and time. Plants and soil, considered
simultaneously, integrate all ecosystem components and reflect ecosystem func-
tioning.

In principal there are two fundamental ways to delineate site classes, i.e. areas
with more or less homogeneous site-ecological conditions, from the physiographic
environment (Ellenberg 1967): First, soil properties, climate or topographical
characteristics can be estimated and their concurrence used to delineate site
classes or second, plants are used as indirect indicators for their site. Reviews
of methods of site classification and site productivity have been provided by El-
lenberg (1967), Bailey et al. (1978), Spurr and Barnes (1980) and Gauer et al.
(2011). The various approaches to forest site classification have stressed either
landform (Wertz and Arnold 1975), soil (Ad-hoc-AG Boden 2005; Soil Survey
Staff 1999), or vegetation (Daubenmire 1976; Pfister and Arno 1980).

Mapping site characteristics based on soil information alone is a special applica-
tion of effective soil classification (Schlichting 1970). A soil classification or map
is not an ecological classification if the relationship of the classes to the vegetation
of the area is unknown (Barnes et al. 1982). Therefore, the mapper has to make
an estimate for the site regarding its suitability for a specific crop. The resulting
maps are therefore restricted to a single crop only. Since the suitability of a site
to grow a certain crop depends also on additional parameters, the classification
of a soil type regarding its site characteristics could vary in space. This classi-
fication scheme is therefore not applicable to an area outside of the area where
it was defined. Therefore, as one group of scientists collaborating on methods of
site evaluation concluded: “Soil mapping was not separately evaluated, because
today purely edaphic data are no longer generally considered sufficient for site
characterization” (Ellenberg 1967).

Site classification methods based on plants and vegetation have been widely used
to classify vegetation types, e.g. purely phyto-sociological approaches following
Braun-Blanquet (1964), or the habitat type approach, which is also known as
mapping of potential natural or climax vegetation (Daubenmire 1976; Frehner
1967; Pfister and Arno 1980; Schonhar 1993).
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1.1.3. Ellenberg Indicator Values

In addition to these two vegetation based site classification methods species indi-
cator values have been used widely in central Europe for the assessment of forest
site characteristics. The occurrence and abundance of different plant species en-
ables ecologists to make statements about the prevailing environmental conditions
- they make visible what is not immediately perceptible without conducting mea-
surements (Diekmann 2003). For the assessment of site characteristics they are
particularly useful because they summarize complex environmental factors (e.g.
groundwater level, soil moisture content, precipitation, humidity, etc.) in one
figure. In addition, plants do not refer to conditions at a specific moment but
represent integrated expressions of the values that may fluctuate in time.

One formalized system of indicator values is that developed by the German Ecolo-
gist Heinz Ellenberg (Ellenberg and Leuschner 2010; Ellenberg et al. 2001), which
is probably the most widely applied approach for site diagnostics (Ewald 2007).
They assigned indicator values to most species occurring in western central Eu-
rope (2726 vascular plant species, also numbers of bryophytes and lichens), with
respect to moisture, soil nitrogen status, soil reaction (acidity/lime content), soil
chloride concentration, light regime, temperature and continentality. The values
were developed mainly on the basis of field experience, and quantification gener-
ally follows a nine-point scale (Diekmann 2003; Schaffers and Sykora 2000). The
indicator values reflect the ecological behavior of species, not their physiological
preferences (Ellenberg et al. 2001).

For a further overview of Ellenberg indicator values see Diekmann (2003), Pfaden-
hauer (1997) and Dierschke (1994).

1.1.4. Site classification at present

Nowadays, most approaches follow a combined approach of site-classification, i.e.
conclusions on site characteristics are drawn from several environmental com-
partments in parallel. This holistic view of the physiographic environment al-
lows delineation of sufficiently ecologically homogeneous site classes (Arbeitskreis
Standortskartierung 2003). The complex gradients of an area are broken down
into site units that recur in the landscape-units that can be distinguished by major
differences in physiography, soils, and vegetation. Each of these three ecosystem
factors provides information for building the classification and mapping the site
units. Physiography often determines micro-climate and water movement, cer-

tain landforms are highly correlated with soil conditions, and major landforms
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or features (aspect, slope position) can be identified from aerial photographs and
digital elevation models. Soil factors, particularly soil moisture, nutrients, and
pH, strongly control plant and animal composition, size, and productivity. Thus,
the three major factors and their interrelationships most clearly distinguish the
local ecosystems (Bailey 2009; Barnes et al. 1982; MacMillan et al. 2007).

1.1.5. Example 1: The biogeoclimatic ecosystem classification
of British Columbia

A widely-recognized approach for holistic site classification is the biogeoclimatic
ecosystem classification (BEC) of British Columbia (Canada) (Barnes et al. 1982;
Pojar et al. 1987). It was initially developed at the University of British Columbia
from 1949 to the 1970s and was systematized by the Ministry of Forests in B.C.
after 1975. Since that time the BEC has been used to estimate current and fu-
ture site potential for sustaining forested ecosystems. The system incorporates
primarily (local) climate, soil, and vegetation data and provides a framework for
resource management, as well as for scientific research (Haeussler 2011; MacMil-
lan et al. 2007; Pojar et al. 1987).

The BEC system is a hierarchical classification scheme. On a large scale broad
biogeoclimatic units based on zonal climate classification were characterised,
whereas on a finer scale biogeoclimatic units or “ecosystems” were disaggregated

in major forest and range sites (site classification).

e Zonal Climate Classification: In the BEC system, regional climate has
been identified as the most important determinant of the nature of terres-
trial ecosystems (Meidinger and Pojar 1991). Therefore, broad geographical
areas, called biogeoclimatic units, were delineated which represent classes
of ecosystems under the influence of the same regional climate. In the BEC
system, there is a hierarchy of biogeoclimatic units, with the biogeoclimatic
subzone being the basic unit characterized by a distinct climax (or near-
climax) plant association. Subzones could be aggregated into zones which
in turn could be aggregated into regions and formations (highest level of
hierarchy), if there are affinities in climatic characteristics, webs of energy
flow and nutrient cycling and typical patterns of vegetation and soil charac-
teristic, prevailing soil-forming processes, and one or more typical, major,
climax species of tree, shrub, herb, and/or moss. In the BEC system 14

biogeoclimatic zones were defined. The subzone could also be divided into
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variants to account for further differences in regional climate and is gener-
ally recognized for areas that are slightly drier, wetter, snowier, warmer, or
colder than other areas in the subzone. Variants can then also be divided
into phases to accommodate the variation in the regional climate, resulting
from local relief. They are also useful in designating significant, extensive
areas of ecosystems that are, for topographic or topoedaphic reasons, atyp-
ical for the regional climate.

In the BEC system, the different climatic units were coded with letters or

numbers. The example

ICH mc 1 a

refers to the coastal (a) phase, of the Nass (1) wvariant , of the Moist Cold

(mc) 'subzone , of the Interior Cedar Hemlock (ICH) [zone .

e Site Classification: In the local and more detailed hierarchical level site
units were delineated within each biogeoclimatic units. These units repre-
sent sites with homogeneous environmental conditions and the same poten-
tial vegetation. The differentiation from a site unit to one another is based
on a range of environmental properties. Beside the potential vegetation,
the BCS use a edatopic grid to evaluate the moisture and nutrient regime
of a site relative to a regional climate (see Table 1.1). Therefore, the aver-
age amount of soil water annually available for evapotranspiration and the
amount of essential soil nutrients that are available to vascular plants over
several years were adopted to nine classes (soil moisture: from "Very Xeric’
to "Hydric’) and five classes (soil nutrients: from "Very Poor’ to "Very Rich’)

respectively.

As for the biogeoclimatic units, there is also hierarchy of units for the local
level (site group > site association > site series > site type), whereas the
site association is conceptually similar to the forest type of several European
classifications (Jahn 1982). Partitioning of site units is possible to create

units with climatic and/or edaphically more consistent units.

Since the implementation of the biogeoclimatic framework for forest manage-
ment in British Columbia in the 1970s and 1980s the method is recognized widely.
The BEC system is a sophisticated approach though flexible and transferable to
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Table 1.1.: Edatopic grid of the BEC system for relative estimation of soil mois-
ture and nutrient regime. The grid is used for differentiate between

site units within the same local climate.

Soil nutrient regime
A B C D E

Very poor poor medium rich very rich

Very Xeric - 0

Xeric - 1

Subxeric - 2

Submesic - 3

Mesic - 4

Subhygric - 5

Soil moisture regime

Hygric - 6

Subhydric - 7

Hydric - 8
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Site Classification

Zonal Classification

-

01 to 06 = Site Units

A to C = Biogeoclimatic Units

Figure 1.1.: Schematic relation between zonal and site classification in the BEC

system (Source: Meidinger and Pojar 1991)

other regions. It is also well documented. There are several examples of site
classification approaches which are based on the BEC system, e.g. in the Yukon
Territory of Canada (Griesbauer and Green 2012), northeast Asia (Krestov et al.
2006; Nakamura et al. 2007), Britain (Pyatt 1995; Quine et al. 2002), USA (Bai-
ley et al. 1994; Hessburg et al. 2000), China (Liu et al. 1998), and Japan (Kojima
1991).

The BEC system itself has been further developed over the years. Main enhence-
ment was the refinement of the maps based on new data (e.g. remote sensing or
high resolution climate data DeLong et al. 2010; Fitterer et al. 2012; Hamann and
Wang 2006) and spatial modelling approaches. MacMillan et al. (2007) predicts
ecological site types with success using knowledge-based routines for automated

polygon extraction and classification (cf. subsection 1.3.1).

1.1.6. Example 2: Site classification in Bavaria

Similar to the BEC system the site classification in Bavaria follows also a two-step
classification approach, see Figure 1.2.

The basic framework is a regional stratification of Bavaria following ecological
and physiographic aspects. So called growth areas ("Wuchsgebiete’) are identified
on the basis of climate, geology, and vegetation. These growth areas are fairly

heterogeneous and are, therefore, subdivided into growth districts to account for

10
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Climate Vegetation Soil and terrain
Step 1: Mean or sum of rainfall
. . . Terrain and substrate
regional site temperature, and Regional forest
. characteristics
characteris- growing season
tics define
regional
ecological growth district within growth area
units
Step 2: local l i
ite ch Terrain, texture, soil
site char- Indicator values,
. moisture, trophic level,
acteristics potential vegetation ) _
within a organic carbon, soil type
regional scale

define local Site unit (Standorteinheit)
ecological

site units

Figure 1.2.: Two-step site classification approach of Bavaria. (c.f. Arbeitskreis
Standortskartierung 2003, modified)

11
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local climate conditions ("Wuchsbezirke’), see Figure 1.3 and B.1. Therefore, a
Wuchsbezirk represents regional physiographic units with similar climatic and ge-
ological conditions and a specific regional potential vegetation (c.f. Walentowski
et al. 2001).

In the second, local step, these regional units were subdivided following ecolog-
ical criteria to delineate homogeneous site classes (’Standortseinheiten’), being
the basic site-ecological entity. These criteria were (c.f. Arbeitskreis Standort-
skartierung 2003)

1. Geological substrate/parent material: This parameter is the primary
mapping criteria at the local scale. The differentiation is carried out taking
soil texture, parent material, layering and structure into account. In addi-
tion, soil physical and chemical properties of the site were also considered
following the German guideline for soil mapping (Ad-hoc-AG Boden 2005)

and thereby soil temperature and aeration were also taken into account.

2. Soil moisture (influenced by topography): The assessment of soil
moisture for sites without additional water input (e.g. inferflow, groundwa-
ter) is carried out using a semi-quantitative method. The determining factor
is the duration, in which soil water is available for assimilation without ad-
ditional rainfall assuming an uptake of 3’%’;. Based on this assessment,
sites were classified on a relative scale within the growth-area.

Sites with a temporary or permanent surplus of water were treated sepa-
rately. Relevant criteria are the origin (stagnating surface water or ground-

water) and the duration of the surplus and also the slope position.

3. Terrain characteristics and landforms: Evaluating site conditions at a
detailed local scale, terrain characteristics and landforms play an important
role, mainly because of their influence on the flow of water, soil erosion
and the accumulation and spatial distribution of nutrients. In areas with
strong relief, elevation, slope and aspect could become the most important

parameters for site classification.

4. Vegetation: Indicator values of plant species and also the potential vege-
tation of a site represent easy and quick assessment tools for soil moisture,
temperature, aeration, and nutrition and are therefore integrated in the site

classification system.

12
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/\/ Wuchsgebietsgrenze
/. Wuchsbezirksgrenze
#*. 7 Tellwuchshezirksgrenze

1.1

Figure 1.3.: Growth areas (Wuchsgebiete) and growth districts ( Wuchsbezirke)
of Bavaria. These physiographic areas represent the first step of
the Bavarian site classification system (Source: Walentowski et al.
2001).

13
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5. Local site-specifics: Here, additional information regarding important
site characteristics, which were not covered so far, were addressed: trophic
level, clay content, impermeable soil horizon, content of calcium carbonate,

slope position, or organic carbon content.

Single site units were coded and mapped using three numerals. The first nu-

meral indicates the geologic substrate, the second is an expression of the trophic
level and local specifics and the third numeral defines the soil moisture condi-
tions, see Table 1.2. On top of the site class, local site-specifics were indicated
with symbols or hachures.
Figure 1.4 illustrates a recent example of a Bavarian site map from the forestry
district of Kehlheim (belonging to the state-owned company Bayerische Staats-
forsten). The map shows the growth district Westliches Niederbayerisches Ter-
tiarhigelland within the growth area Tertidres Higelland (Wuchsgebiet 12) and
is mapped with the typical scale of 1:10.000

In addition, a comprehensive silvicultural guide, the so called Operat, is pre-
pared to accompany the site map of each state, city, or private forest. FEach
site unit is described in detail, and the potential productivity of each species or

species mixture is given in a color coded table (Baumarteneignungtabelle).

14
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5096—

STANDORTSKARTE

far das |
FORSTAMT ‘
KELHEIM

Distr.: XIX., XX., XXVI. |
Stand: 2002
MaBstab 1 : 10000

WG 12 Tertidres Htigelland
TB 12.9/1 Westliches Niederbayerisches
Tertidrhiigelland

SANDE UND SANDIGE LEHME, TEILWEISE AUCH
MIT GERINGEN ANTEILEN AN ERBSKIESEN

101 II] MaBig trockene (lehmig-kiesige) Sande;
Tertidr

Ziemlich frische (lehmige) Sande;
103 Tertidr, Gransandstein

Ziemlich frische (glimmerreiche), lehmige
123 Sande und sandige Lehme;

Tertidir, Gridnsandstein

[TTT| Ziemlich frische (schluffige) Sande dber

163 &%@ (tonigem) verdichtetem Sand:
Tertidr, Gransandstein
MaBig wechselfeuchte (schiuffigs) Sande
aber (tonigem) verdichtetern Sand;
Tertidr, Grinsandstein
Wechssifeuchte (schiuffige) Sande aber
(tonigem) verdichtetem Sand;
Tertiar, Gransandstein

Feuchte (und nasse) Sande;
Tertiar, Flufisand

LEHME, SANDIGE. LEHME, TERTIARLEHME

Ziemlich frische (schwach kisshattige),
sandige Lehme

Frische, schluffig-sandige Lehme,

2T, tongrandig

Frische, schluffig-tonige, sandige (schwach
Kieshaltige) Lehme mit frelem Kalk

im Oberboden

Masig (schwach kieshattige),
sandige Lehme, z.T. tongrindig

Bachmuilerde

Feuchte Lehme, (Oxy)Giey

Nasse Lehme, (NaB)Gley

Ziemlich frische Feinlehme tber

i (Fli )
Frische Feiniehme mil freiem Kaik
im Unterboden
Frische, tiefgrindige Fein- (oder Schiuff-)
lehme
MéBig wechselfeuchte Fein- (oder Schluff-)
lehme

Wechselfeuchte (Schiuff)lehme

KALKVERWITTERUNGSLEHME

- Mafiig frische und ziemlich frische
442 Kalkverwitterungslehme

443 u Ziemtich frische Kalkverwitterungslehme
TONE

sos [Q Wechseireuchte Tons

539 D Feuchte Tone (in Muldenlagen, humusreich)
SCHICHTBODEN UBER KALKVERWITTERUNGSLEHM

751

MéBig trockene und méBig frische
i aber Kalkverwi

MaBig frische und ziemlich frische (sandige) |
(sandig-steinige) Schiufflehme aber Kalk-
e 2 —

Figure 1.4.: Example site map of Bavaria based on the three-numerals-code.
The cutout is from the mapsheet of Kehlheim (scale 1:10.000, Cour-
tesy of Bayerische Staatsforsten, Mr. Kay Miiller)
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1.2. Spatial Prediction of Ecological Parameters

Coming from these well-tried and traditional approaches, which were applied
worldwide for the assessment and mapping of the spatial distribution of site, soil,
and vegetation characteristics, the transition to the digital arena entailed funda-
mental changes also to mapping techniques. The explosion in information and
computation technology in combination with vast amounts of data and the tools
to work with it enable protagonists in all fields of ecology and environmental sci-
ences to facilitate environmental management in an unexpected dimension: the
quantitative characterization of the nature and property of the human environ-
ment.

Soil and vegetation databases at all spatial scales were generated and became
available through the world-wide-web. To get an understanding of these large
stores of data powerful and flexible statistical models, data-mining and machine
learning methods have been developed (cf. Hastie et al. 2009) and made acces-
sible e.g. through the R language and environment for statistical computing (R
Core Team 2013). In addition, the increasing power of tools such as geographic
information systems (GIS), GPS, remote and proximal sensors and data sources
such as those provided by digital elevation models (DEMs) are suggesting new
ways forward (Boettinger et al. 2010; McBratney et al. 2003; Mulder et al. 2011;
Viscarra-Rossel et al. 2010).

On the other hand, there is an increasing need to use local measurements to
assess change at landscape, regional and global scale, and to conduct a sustain-
able management of the environment. In the last three decades the development
and application of spatial prediction models has become a research area with fast
growing popularity. In principal, spatial prediction models can be described as
the application of a statistical model to a set of digital data (observational data
of a parameter of interest and environmental variables thought to influence the
spatial distribution thereof) to predict a continuous or most probable categorical
environmental attribute in space. Statistical models could be any kind of method
available, ranging from classical linear least square regression or generalized linear
model (GLM, McCullagh and Nelder 1989) to semi-parametric generalized addi-
tive models (GAM, Hastie and Tibshirani 1990), non-parametric algorithms from
the area of machine-learning (tree-based methods, ensemble techniques like bag-
ging or boosting, artificial neural networks, or support vector machines, Breiman
1996, 2001b; Breiman et al. 1984; Elith et al. 2008; Hastie et al. 2009; Scholkopf

17
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and Smola 2002) or any kind of geostatistics (kriging, regression kriging, Hengl
et al. 2007; Webster and Oliver 2007). Data could be any type of data used
in a geographic information system (GIS) like point (e.g. sampling location,
weather station), line (e.g. street or river network) or polygon (e.g. soil map,
physiographic or administrative area) data as well as raster data (e.g. climate
maps, remote sensing data). In addition, different types of non-spatial data like
databases, description of vegetation plots or laboratory analysis of soil profiles

can be used.

The basic and also simple assumption behind predictive modelling in envi-
ronmental sciences is the same as that behind statistical modelling in general,
namely that the spatial distribution of an environmental parameter can be re-
lated to a set of different readily available, spatially exhaustive ancillary data. For
example, the spatial distribution of soil properties at landscape scale is largely
influenced by topography that produces gradients in moisture, energy and nu-
trients across the landscape (Dobos and Hengl 2009; McKenzie and Ryan 1999;
Moore et al. 1993), the presence or absence of a tree species is largely influenced
by different climatic variables or variables characterizing the habitat (Elith and
Leathwick 2009; Franklin 2010; Guisan and Thuiller 2005) or the vulnerability
of groundwater with regard to pesticide leaching is largely controlled by parame-
ters influencing pesticide behavior in the environment like water flux, soil organic
matter content and compound properties (Tiktak et al. 2006).

Thus in principle, spatial prediction is characterized by two steps. First, a sta-
tistical model has to be fitted based on a representative sample of the parameter
of interest. This step also includes model validation. Second, to predict the pa-
rameter of interest at unobserved locations, the model has to be applied to the

GIS layers of predictor variables.

Most environmental parameters develop progressively over time through a pro-
cess of change called ecological succession (for vegetation) or soil development
(for soil). However, statistical models could - in a strict sense - only be applied
to parameters which are in a condition of ’dynamic equilibrium’, ’steady state’
or 'climax ecosystem’ (Elith and Leathwick 2009). Meidinger and Pojar (1991)
defines this condition as ’a stable, permanent occupant of the landscape, self-
perpetuating unless disturbed by outside forces or modifying factors. The living
components (...) are in equilibrium with the prevailing factors of the physical

environment, and the member species are in dynamic balance with one another’.

18
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For instance, wrong conclusions could be drawn when modeling the habitat of a
species or the spatial distribution of a soil parameter in an area with a strong
history of disturbance like wind throw, flooding, fires, insect outbreak, strong soil
erosion or landslides. Especially in forests, which are strongly influenced by hu-
mans, anthropogenic disturbances such as planting of exotic tree species or forest

clearing should also be considered.

1.2.1. Digital Soil Mapping

Soil, being mostly an inert environmental compartment at human time scales,
is a good example of a steady state variable!. Spatial modelling approaches for
soils and soil attributes, known as digital soil mapping or predictive soil map-
ping, date back to the 1960s (cf. the review of early soil modelling approaches in
McBratney et al. 2003). Since then, the research area of digital soil mapping has
been developed, which has been defined as the creation and population of spatial
soil information by the use of field and laboratory observational methods coupled
with spatial and non-spatial soil inference systems (Carre et al. 2007; McBratney
et al. 2003; Scull et al. 2003)

In principal, digital soil mapping has its roots in the famous state-factor approach
of Jenny (1941), which relates soil development to climate, organisms (including
humans), relief, parent material and time. A recent study of Florinsky (2012)
showed that the central idea of the soil-forming factors was defined as early as
1886 by Vasily Dokuchaev. This mechanistic model has been used by innumer-
able surveyors all over the world as a qualitative list for understanding the factors
that may be important for producing the soil pattern within a region (McBrat-
ney et al. 2003; Yaloon 1975). In addition to these state factor-based approaches,
purely spatial approaches have been used extensively to interpolate between soil
observation locations - mainly geostatistics and related methods.

McBratney et al. (2003) reviewed existing digital soil mapping studies and pro-
posed a generalized and formalized approach based on the state-factors approach

as soil spatial prediction function:

LOf course there are many proesses in soils which are highly dynamic in time and space, e.g.
soil hydrological processes. However, regarding processes influencing soil development soil

could be refer as a steady state variable
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Sa f<87 c7 07 T7p7 a7 n)
Sc = f(svca 0, Tapaaan)
with

S, : soil attribute;
S, : soil class;
s : soil, other properties of the soil at a point;
¢ : climate, climatic properties of the environment at a point;
o : organisms, vegetation or fauna or human activity;
r : topography, landscape attributes;
p : parent material, lithology;
a : age, the time factor

n : space, spatial position.

Discussions of state-of-the-art digital soil mapping applications at different ex-
tents, geographic settings, and model resolutions were provided by Lagacherie
et al. (2007), Hartemink and McBratney (2008), Grunwald (2009), and Boettinger
et al. (2010). Current research areas have been developed in several directions,
e.g. the prediction of soil properties and classes at different spatial (from field
and coarse landscape to even global scale, cf. the establishment of the Global-
SoilMap.net consortium which aims to deliver a new digital soil map of the world
at fine resolution (Hartemink et al. 2010; Sanchez et al. 2009)) and temporal
scales, the incorporation of remote and soil sensor technology (which is however
restricted to application mainly outside of forests), the incorporation of legacy
soil data, soil sampling, as well as calibration and validation of soil prediction

models.

1.2.2. Species Distribution Modelling

Based on the same spatial modelling principles as for digital soil mapping, the
modeling of species distribution in space and time is another important appli-
cation area of spatial prediction models. “Species distribution models” (SDM)
or, when restricting the application the the spatial distribution of vegetation,
“predictive vegetation mapping” have been used to characterize the fundamental

(potential) or realized (actual) niche of a species, called niche models (Elith and
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Soil Map

Climate

Topography

Figure 1.5.: In digital soil mapping quantitative relationships between soil prop-
erties or soil map units and environmental attributes were fitted in
a data-driven model approach to predict soil information into non-

mapped areas

21



Chapter 1. State of the Art and Objectives

Species
actual
distribution

Biotic _
Interactions,
Disturbance -

Fundamental
niche

Light (PAR) Heat Sum

— - A
i {
Precipitation - Radiation Temperature
irati regime regime
— v s

R

- T e e
Geology \, Topography /

Figure 1.6.: Conceptual model of SDM: Environmental factors controlling the
primary environmental regimes circumscribing the fundamental

species niche (Source: Franklin 2010).

Leathwick 2009). SDMs are also referred to as habitat suitability models, describ-
ing the suitability of habitat to support a species and to predict the probability
of species presence at a location (Franklin 2010).

Application areas of SDMs are manifold. The aim is to understand the relation-
ship between a species and its abiotic and biotic environment based on observa-
tions for the purpose of ecological inference, or to test ecological or biogeograph-
ical hypotheses about species distributions and ranges. See for a comprehensive
overview of theory and practice of SDMs Elith and Leathwick (2009); Guisan and
Thuiller (2005); Peterson et al. (2011).
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1.3. Both approaches: Spatial prediction methods

for the assessment of site-ecological conditions

1.3.1. Challenges and opportunities of site classification

The similarity between the traditional approach to map site characteristics (sec-
tion 1.1) and computer-based spatial prediction techniques (section 1.2) is obvi-
ous. Both approaches aim to delineate site characteristics by analyzing the ob-
servable environment - either outdoors or in the digital representation. Therefore,
it is unsurprising that in the last years both approaches have been increasingly
combined to complement each other. Spatial prediction techniques have become
increasingly accepted by environmental resource managers and also by authori-
ties and state institutes (Carre et al. 2007).

McBratney et al. (2003) and Carre et al. (2007) specify advantages of spatial pre-
diction methods compared to traditional approaches, such as costs, consistency
and documentation, the possibility to update when new data become available

and the capability of deriving uncertainties for predicted outcomes.

As illustrated in subsection 1.2.1 and 1.2.2 the availability of new and high-
resolution environmental GIS data, the development of spatial prediction methods
and the fast growing application of these techniques have entailed fundamental
changes to natural resource management in soil science and ecology. Unsurpris-
ingly, resource management in forest science in terms of site classification and
site mapping has now also entered in a period of transition. Therefore, forest site

classification is currently challenged for several reasons.

e (Classical mapping approaches are very time consuming and expensive which

results in slow progress in times of decreasing public funds.

e From a scientific point of view, the most significant problem of these ap-
proaches is their lack of reproducibility. Site characteristics are derived in-
directly by the interpretation of the observable nature around the surveyor
(cf. section 1.1). In addition, the system is based on a qualitative and or-
dinal schematisation of sites (cf. Table 1.2). The consequences thereof are
site maps which are not comparable, e.g. the class “frisch” does not have a
consistent meaning throughout Bavaria. Site classes have a non-stationary
meaning and are to a certain extent subjective. On the one hand, this

was the intention of the developers of the mapping approach (hierarchical
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structure of the system), on the other hand, this makes the map static and
inflexible. Large scale analyses across borders of maps or growth districts
are therefore biased.

The refinement and adaptation of the system to new applications is not
possible based on the qualitative descriptions of sites, although this is an
important topic in forestry at the moment due to changing environmental

conditions.

e In addition, Haeussler (2011) points out that there is an ongoing replace-
ment of the generation of specialists well-trained in this classical approaches
in government, academia, and the private sector. The teaching of field work
and field mapping techniques is also today an important part in the educa-
tion of young environmental scientists, but in addition the teaching of GIS

modelling is nowadays also a relevant topic in Universities.

Recent studies illustrate the enhancements of site classification systems such

as the BEC system of British Columbia (cf. subsection 1.1.5) by means of inte-
gration of spatial prediction methods (Haeussler 2011). MacMillan et al. (2007)
present a hybrid of automated, semi-automated and manual procedures that de-
velop and apply heuristic, rule-based conceptual models of ecological-landform
and soil-landform relationships in a manner similar to the digital soil mapping
approach (SCORPAN; cf. subsection 1.2.1). The innovation regarding site classi-
fication in MacMillan et al. (2007) is the attempt to directly translate the official
filed guide to forest site identification and interpretation into a GIS-based frame-
work. The rationale for the enhancement of the BEC system was to increase
the rate of production of ecological maps by adopting an automated predictive
ecosystem mapping approach, but also to reduce costs and to improve consistency
and replicabililty.
An additional study to enhance the BEC system in British Columbia, but at
a broader spatial scale, has been presented by Fitterer et al. (2012). They use
remote sensing data as well as terrain indices to delineate homogeneous ecosys-
tem units at the larger scale, i.e. the Biogeoclimatic Units in the BEC system
or the growth district in the Bavarian classification approach. Their motivation
to update and modify the boundaries of the biogeoclimatic polygons of the BEC
system is to mitigate the shift between (former) mapped ecosystems and cur-
rent conditions due the ongoing loss of habitats and environmental degradation
resulting from anthropogenic activities and changing environmental conditions
(Hamann and Wang 2006).
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The challenges which motivated MacMillan et al. (2007) and Fitterer et al. (2012)
to conduct their studies are also present in Germany. Many different research ac-
tivities in the area of forest site mapping demonstrate that the current challenges
to site mapping and the possible improvement of site mapping through the appli-
cation of spatial prediction techniques have been recognized by decision-makers.
For example, in Bavaria two research projects have been initiated to support
forest managers with decision support systems which draw on a wide set of site
information for the maintenance of forests in the 215 century.

The research project KLIP 4 - Maps for the future has been initiated at the
Bavarian state institute of forestry LWF in 2008 to develop an area-wide, com-
prehensive, and homogeneous digital site information system (Standortinforma-
tionssystem) for the Bavarian forest administration (Beck et al. 2012). The aim
is to provide maps of soil properties as well as suitability maps for different tree
species for current and future climate conditions for forest managers. The ap-
proach was to combine existing soil maps and soil profile information as well as
extensive field data with GIS modelling and spatial prediction methods. The
KLIPj - Maps for the future was successfully completed at the end of 2012. The
new site information system will be implemented in 2013 in the online web-GIS
plattform BayWIS (Bayerisches Waldinformationssystem).

The second example from Bavaria is the project Waldinformationssystem Nordalpen
WINALP. Within this project a new approach has been developed to systemati-
cally assess the distribution of forest types in the Bavarian Alps (Reger and Ewald
2011). The approach is called the TRM-model (temperature-reaction-moisture
model) and combines traditional site classification approaches (e.g. code with
three numerals) with spatial prediction methods applied to site-ecological parame-
ters (Reger et al. 2014). The resulting map is provided to forest managers through
an online web-GIS application - http://arcgisserver.hswt.de/winalp/.

Also in other federal states of Germany similar projects are ongoing to support for-
est managers (Asche and Schulz 2004; Beck et al. 2012; Gauer 2010; Walentowski
and Bergmeier 2009; Zirlewagen and Wilpert 2011) - cf. the recent symposium
on modelling based site classification approaches in German ferdaral states - link

to the presentations.

The methods and studies for this thesis have been developed in the course of

these two research projects.
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1.3.2. Research objectives and outline of the study

Based on the ongoing development of new mapping techniques in environmental
sciences the research objective of this study is to develop and apply spatial pre-
diction techniques for the assessment of forest site characteristics. The intention
of this work is to introduce different new modelling approaches for site mapping
in order to support ongoing and future forest management in Bavaria with a
toolbox of mapping techniques. It is not the intention to replace the well-tried
and established mapping approaches, but to illustrate different ways on how to
include computational and geospatial technology in the assessment of forest site
characteristics. The aim is to improve site mapping in order to facilitate forest

management in several directions:
e from a qualitative to a more quantitative description of site characteristics
e to make site assessment more reproducible

e to make descriptions of site characteristics more dynamic, i.e. the opportu-

nity to easily update maps when new data become available

e the capability of deriving uncertainties for predicted outcomes thus allowing

the tracking of error propagation through the whole process

e to make site mapping more consistent across borders of growth districts and

growth areas (Carre et al. 2007)

e to make site mapping more cost-effective

The main part of the thesis consists of three peer-reviewed articles published
in ISI-listed scientific journals. In those publications new methods to enhance
site mapping by means of spatial prediction methods are presented. Summaries
of the published studies are presented in chapter 2 and the full papers can be
found in Appendix A.

The publications address the following topics:

1. Spatial disaggregation of complex soil mapping units
Traditional soil maps very often serve as data sources for site mapping.
However, in many soil maps different soil types were combined in single
complex map units which are characterized with different site characteris-
tics. In this publication, a method is presented to disaggregate such complex

map units.
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2. Spatial prediction of Ellenberg indicator values
Characterizing forest sites based on Ellenberg indicator values is a widely
used approach in site classification. These values are available in many veg-
etation databases. The aim of this publication was to determine whether
spatial prediction methods could be applied to regionalize Ellenberg indi-

cator value and thereby generate maps of site characteristics.

3. Multivariate prediction of Ellenberg indicator spectra
Usually, single plant species are aggregated to an averaged indicator value of
a vegetation plot. However, compared to the range and shape of a indicator
spectrum of a plot this could lead to a loss of information when applying
statistical modelling. In the last part of this study a Proportional Odds
model has been applied to Ellenberg soil reaction values in order to predict

the spatial distribution instead of an average value.

In addition to this main part of my thesis, different application examples and
method developments for spatial modelling of site characteristics are presented
in chapter 3. The results of these studies have been used in the KLIP4 and
WINALP projects either as input for modelling of site characteristics (Haring
et al. 2012; Osenstetter et al. 2013; Reger et al. 2014) or to facilitate traditional
site classification in the field (Osenstetter et al. 2013). Thus it‘s all about the
application of spatial prediction methods to create input data for site
ecological mapping.

Digital soil mapping based on the SCORPAN approach has been used to ex-
trapolate soil map units into areas where no soil maps were available during the
KLIP4 and WINALP projects. In addition to statistical validation of the predic-
tion models, digital soil maps were validated with extensive field measurements.
These data have been used to analyze the options and limits of digital soil map-
ping approaches in Bavaria.

Besides digital soil mapping, digital terrain analysis and image segmentation al-
gorithms have been used to delineate homogeneous terrain objects. Following a
hierarchical structure of disaggregating the landscape into more homogeneous ar-
eas, this concept follows the same idea as traditional site classification approaches
(cf. the zonal climate classification in the BEC system - subsection 1.1.5 or the
regional stratification in growth area and growth district in Bavaria - subsec-
tion 1.1.6).
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... but on the middle step there is better soil, and it does not
lie bound down under such severe cold, either. This one can
see at a glance, since the trees are both higher and of finer
quality.

There you'll find maple and oak and linden and weeping-birch

and hazel trees growing, but no cone-trees to speak of. ..

(The Wonderful Adventures of Nils
by Selma Lagerloef)
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2.1. Publication 1:

Spatial disaggregation of complex soil map units

Published as:

Haring, T., Dietz, E., Osenstetter, S., Koschitzki, T. & Schroder, B. (2012)
Spatial disaggregation of complex soil map units: A decision-tree based approach
in Bavarian forest soils. Geoderma, 185-186: 37-47.

Own contribution to the publication:

e development of the method
e implementation of the method in a modelling and GIS environment

e primary responsibility for writing the article and accompany the publication

process

Summary

Forest site classification relies beside field work frequently on available soil maps,
because these are often the only information about soils in an area of interest.
However, depending on the map scale or the detail of the map legend soil map-
ping units rarely comprise single soil types, but usually consist of a combination
of a dominant soil with minor associated soils. When the various soils of a soil
mapping unit occur in a recognizable geographical pattern in defined proportions
they constitute complex soil map units. However, aggregating soil types with dif-
ferent site characteristics into one map unit could be too imprecise for site-specific
forest management or land evaluation.

The publication introduces an approach to disaggregate complex soil map units
into more homogeneous map sub-units containing only one soil type. The overall
goal of the study was the refinement on the official 1:25.000 soil map of Bavaria to
make it more useful for site-classification within the Maps-for-the-future project.
The method follows the traditional top-down approach in soil mapping and site
classification to divide an existing map unit in more homogeneous sub-units. By

using spatial prediction models we could draw new boundaries inside the map
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polygons to represent a single soil type and no longer a mixture of several soil
types.

The basic idea for the method is the functional relationship between soil types
and topographic position as formulated in the concept of the catena. We use a
comprehensive soil profile database (9924 soil profiles) and topographic attributes
derived from a 10m digital elevation model as input data for modelling. We apply
random forest models for the classification of soil types based on the hypothesis
that soil types could be discriminated based on their "topographic fingerprint’. We
grouped all complex map units with the same combination of soil types together.
Each of these groups of map units were modeled separately to apply comparably
simple but class-specific models for the delineation of sub-areas.

To account for uncertainty in the models and in the data we identify map sub-
units only above a defined threshold of 70% predicted probabilities. In areas
where the probability is below this threshold we assign the area as “indifferent”
because the model only makes unspecific classification in these cases. The results
show a significant spatial refinement of the original soil polygons.

In addition to the statistical validation of each model we initiated a field cam-
paign to collect independent validation data. Validation of our predictions was
estimated based on 1812 independent soil profiles and gave an overall accuracy
of 70%. Map units, in which shallow soils were grouped together with deep soils
could be separated best. Also Histosols could be predicted successful. The high-
est error rates were found in map units in which Gleysoils were grouped together
with deep soils or Anthrosols. To check for validity of the results the black box
random forest model has been illuminated by calculating the variable importance
for each predictor variable and plotting response surfaces. The results corrobo-
rate our hypothesis defined above.

The refined soil map is a clear improvement regarding the ability to classify
forest sites. It has been used within the Maps-for-the-future project to assess

site-characteristics by assigning representative soil profiles.
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2.2. Publication 2:
Predicting Ellenbergs soil moisture indicator value

in the Bavarian Alps using additive georegression

Published as:

Haring, T., Reger, B., Ewald, J., Hothorn, T. & Schroder, B. (2013) Predict-
ing Ellenberg’s soil moisture indicator value in the Bavarian Alps using additive

georegression. Applied Vegetation Science, 16: 110 - 121.

Own contribution to the publication:

co-development of the concept

preparation of the data

execution of mboost modelling and application to GIS data

primary responsibility for writing the article and accompany the publication

process

Summary

Soil hydrology is one of the major ecological driving forces for site characteris-
tics. Therefore, detailed knowledge of the spatial variation thereof is essential for
sustainable and site-specific ecosystem management. In contrast to current ap-
proaches in spatially-distributed hydrological modelling to quantify spatial vari-
ations in soil water availability, in this publication we present a new approach
for spatial modelling, which focuses more on ecologically effective hydrological
conditions than on the simulation of the temporal change in soil water content.

The approach in this study is based on vegetation data, namely Ellenberg indi-
cator values for moisture (EIV). EIV have been used as response variable in a
sophisticated statistical modelling framework. We used mean soil moisture values
as found on 1505 forest plots from the database WINALPecobase and extrapo-
late these values based on topographic, climatic and soil variables to the area

of the Bavarian Alps. We adopted methods developed in species distribution
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modelling to regionalize EIV. We use the additive georegression framework for
spatial prediction of EIV with the R-library mboost, which is a feasible way to
consider environmental effects, spatial autocorrelation, predictor interactions and
non-stationarity simultaneously in our data. The framework is much more flexible
than established statistical and machine-learning models in species distribution
modelling. We estimated five different mboost models reflecting different model
structures on 50 bootstrap samples in each case.

Median R? values calculated on independent test samples ranged from 0.28 to
0.45. Our results show a significant influence of interactions and non- stationar-
ity in addition to environmental covariates. Unweighted mean indicator values
can be modelled better than abundance-weighted values, and the consideration of
bryophytes did not improve model performance. Partial response curves indicate
meaningful dependencies between moisture indicator values and environmental
covariates. However, mean indicator values <4.5 and >6.0 could not be modelled
correctly, since they were poorly represented in our calibration sample. The final
map represents high-resolution information of site hydrological conditions.

We can conclude that EIV offer an effect-oriented alternative to physically-based
hydrological models to predict water-related site conditions, even at landscape
scale. The presented approach is applicable to all kinds of EIV. Therefore, it
is a significant step toward a new generation of models of forest site types and
potential natural vegetation. The predicted map of soil moisture EIV has been
used in the WINALP project to generate a map of potential natural vegetation
(Reger et al. 2014).
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2.3. Publication 3:
Regionalising indicator values for soil reaction in the
Bavarian Alps - from averages to multivariate

spectra

Published as:

Haring, T., Reger, B., Ewald, J., Hothorn, T. & Schroder, B. (2014) Region-
alising indicator values for soil reaction in the Bavarian Alps - from averages to
multivariate spectra. Folia Geobotanica, doi:10.1007/s12224-013-9157-1.

Own contribution to the publication:

co-development of the concept

preparation of the data

execution of mboost modelling and application to GIS data

primary responsibility for writing the article and accompany the publication

process

Summary

Besides temperature and moisture, soil reaction is the third pillar in forest site
classification (cf. section 1.1). In this study we present an approach to pro-
duce maps of Ellenberg values for soil reaction (R-value) in the Bavarian Alps.
Eleven meaningful environmental predictors covering GIS-derived information on
climatic, topographic and soil conditions were used to predict R-values. As de-
pendent variables, EIV for soil reaction were derived from plot records in the
vegetation database WINALPecobase. We used an additive georegression model,
which combines complex prediction models and the increased prediction accuracy
of a boosting algorithm. In addition to environmental predictors we included spa-
tial effects into the model in order to account for spatial autocorrelation.

In contrast to my second paper (modelling of Ellenberg soil moisture values, cf.
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section 2.2), in this study I was particularly interested in the usefulness of aver-
aged R-values for spatial prediction. EIV spectra are often skewed, uniform or
even bimodal, which leads to misleading estimates of site-ecological conditions
when applying Gaussian regression models. We apply two different models to
analyse the influence of averaging indicator spectra: (1) a geo-additive regression
model which estimates mean R-values (the "classical" approach) and (2) as an
alternative a proportional-odds-model predicting species indicator values, which,
instead of the average indicator value, estimates the probability distribution over
the range of R-values 1 to 9 for a given set of environmental gradients. We hy-
pothesize that we should get a more realistic estimate of site-ecological conditions
by using a multivariate regression model. By using the mboost regression frame-
work we are able to estimate a mean indicator value (Gaussian regression model)
as well as an ordinal value distribution (proportional-odds-model) with the same
set of vegetation data and environmental predictors.

We found meaningful dependencies between the R-value and our predictors. Both
models produced the same spatial pattern of predictions. Spatial effects had an
impact only in the first model. The main drawback of mean R-values is the
oversimplification of complex conditions of soil reaction which is entailed in the
averaging and regression to mean values. Therefore, regionalised average indi-
cator values provide only limited information on site-ecological characteristics.
Model 1 failed to predict the range and shapes of original indicator spectra pre-
cisely. In contrast, the second model provided a more sophisticated picture of soil
reaction. To make the multivariate output of model 2 comparable to the output
of model 1, we propose to plot the distribution in a three dimensional color-space.
In addition, comparison of both models based on a multivariate linear regression
model result in a R? of 0.93. The proportional-odds-model is a promising ap-
proach also for other indicator values and different regions as well as for other
ordinal-scaled ecological parameters.

The predicted map of soil reaction EIV has been used in the WINALP project

to generate a map of potential natural vegetation (Reger et al. 2014).
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Additional studies: Creating input

data for site classification

... but the very lowest step is the best of all. It is covered with
good rich soil; and, where it lies and bathes in the sea, it
hasn't the slightest feeling of the Smaland chill.

Beeches and chestnut and walnut trees thrive down here; and

they grow so big that they tower above the church-roofs. ..

(The Wonderful Adventures of Nils
by Selma Lagerloef)
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The following sections present additional application examples and method de-
velopments for spatial modelling of site characteristics which have been developed
and applied in the KLIP4 and WINALP projects. The results of these studies
have been used either as input for subsequent modelling of site characteristics
(Haring et al. 2012; Osenstetter et al. 2013; Reger et al. 2014) or to facilitate
traditional site classification in the field (Osenstetter et al. 2013).

3.1. Spatial prediction of soil mapping units

Site-classification and mapping at regional and landscape scale always depends
- in addition to climatic data - on soil data. However, the availability of small-
scale soil maps in Bavaria is as fragmentary as in many other European countries
(Jones et al. 2005). There are huge areas where no soil maps were available.

However, when mapping site characteristics, especially when applying modelling
based mapping approaches, a homogeneous and coherent soil database is neces-
sary. Therefore, digital soil mapping as described in subsection 1.2.1 has been
applied to predict soil map units of the official soil map UBK25 (Ubersichtsbo-
denkarte) for areas which were not mapped so far. The areas of Bavaria which
have to be predicted are widely scattered and comprise heterogeneous physio-
graphic conditions. In addition, high-resolution geological maps, which serve as
one of the main environmental predictors, were also not available for all predic-
tion areas. Therefore, the unmapped area is subdivided into 16 prediction areas

(see Figure 3.1).

The UBK25 is mapped with a scale of 1:25.000 and covers' 64 071 km? which
is about 80% of the Bavarian State territory. The map contains more than 700
different map units and follows the official German guideline for soil mapping (Ad-
hoc-AG Boden 2005). Soil mapping in Germany follows the concept of substrate-
systematic mapping, which means that every soil map unit contains information
about the soil type and its parent material (geologic substrate).

As environmental predictors for digital soil mapping the following parameters

have been selected:

e where available, the geological map with a scale of 1:25,000. In the remain-

ing area the 1:200,000 geological map.

Tt should be mentioned that soil mapping in Bavaria is an ongoing task. Since the beginning
of KLIP4 the coverage of the UBK has increased considerably. However, the status of the
UBK25 at the beginning of the project was the starting point for further project planning.
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Figure 3.1.: The coverage of the 1:25.000 soil map of Bavaria (Ubersichtsbo-
denkarte, light blue map sheets, at the beginning of KLLIP4) and
16 different prediction areas to fill the gaps in the soil map. The
delineation of the prediction areas is based on the environmental
conditions of the area, data availability and data quality (Source:

Bavarian Environmental Agency, Bavarian Topographical Survey).
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e a 10m digital elevation model was re-sampled to 20m to align the cell size
to the map resolution (Héring et al. 2009). From this DEM a set of terrain

attributes were delineated.

e climatic variables such as mean annual temperature and mean annual pre-
cipitation (Hera et al. 2012).

Prediction of soil map units was performed with random forest (Breiman 2001a).
Random forest is an ensemble method in which many different classification trees
are combined to produce a more stable and accurate classification compared to
a single decision tree (Bauer and Kohavi 1999; Breiman 1996; Dietterich 2000).
Each tree is built on a bootstrap sample of the given data. To form the ensem-
ble, the different trees are combined using bagging (bootstrap aggregating). The
resulting forest is a random forest because at each split only a random subset of
the candidate predictors is considered for the binary partition (Elith and Graham
2009). This de-correlates the trees, improves the variance reduction and finally
leads to more accurate predictions (Biihlmann and Yu 2002; Strobl et al. 2009).
The predictions of each single tree are combined using a majority vote to get a
final ensemble prediction. In recent years, random forests have been widely used
in digital soil mapping (e.g. Haring et al. 2012; Liess et al. 2012; Roecker et al.
2010; Stum et al. 2010; Wiesmeier et al. 2011).

Validation of the random forest models was performed using the out-of-bag er-
ror. The predictive performance of the model is calculated on those observations
which were not included in the learning sample for a specific decision tree, i.e.
those observations which were not part of the bootstrap sample of the original
data set. Using those out-of-bag observations, we have independent test samples
for computing the prediction accuracy. It could be shown that the out-of-bag

error is a conservative estimate (Strobl et al. 2009).

Model calibration and validation was conducted with already available map
sheets of the UBK25. Spatial prediction of soil maps is only feasible for areas
with similar physiographic conditions as in the area used for the model calibration
(training area). Thus substantial areas of Bavaria could not be predicted with
digital soil mapping techniques due to the lack of suitable training areas (cf.
Figure 3.1).

In order to get reliable predictions, an independent area for model calibration as
well as for model validation is needed. Therefore, the available UBK map sheets

have to be divided into two subareas: training area and validation area. In both
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Figure 3.2.: Sampling of environmental variables (Source: Bavarian Topograph-

ical Survey).

areas an independent sample of the soil mapping units and the environmental
predictors has to be drawn by collecting all values at a certain location from the
stack of maps (Figure 3.2)

An example of a predicted soil map is shown in Figure 3.3. The mapped area

is located between Fissen, Kaufbeuren and the Walchensee in southern Bavaria.
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Figure 3.3.: Digital soil map around the foothills of the Bavarian Alps. The map

contains soil mapping units of the UBK25. Model calibration and

validation was conducted with available map sheets of the UBK25:

black encircled areas indicate the training area, red encircled area

The remaining area indicates the

indicates the validation area.

predicted soil map.
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3.2. Validation of digital soil maps and field

measurements

Similar to conventional soil maps, digital soil maps contain errors. McBratney
et al. (2003) refer two reasons for that: (i) local variation of soils at whatever
spatial resolution, which is especially the case for nominal map units (cf. Haring
et al. 2012) and (ii) the uncertainties of the environmental layers of predictor
variables can propagate errors. Therefore, the estimation of quality of digital soil

maps is an integral part of each modelling area.

The quality estimation based on statistical validation measures such as the
classification accuracy of a classification model or the R? of a regression model
are self-evident. Their calculation is very straightforward and mostly they were
already computed by default by the statistical software. Analysis within the
KLIP4 project however have shown that an independent validation of predicted
maps with field validation data is necessary, primarily for quality estimation of
the map produced (Brus et al. 2011), but also to gain “user acceptance” where
the user has little experience of modelling based mapping approaches. Quality
estimation based on statistical validation alone could be misleading. This could

be shown with a review of statistical model error with field validation data.

3.2.1. Confronting statistical validation with field validation
data

Central Franconia was subdivided into four different modelling areas due to het-
erogeneous environmental conditions as well as data availability (cf. Figure 3.1).
After the creation of digital soil maps, soil experts went out in the forests to
collect in total 4500 soil samples. The spatial distribution of all validation points
is illustrated in Figure 3.4.

The four modelling areas were not only very different with regard to environ-
mental conditions, but also with regard to the complexity of the soil prediction
model. The number of different soil map units as well as the number of geological

map units is illustrated in Figure 3.2.1.

IThis section is based on
Haring, T. & Schroder, B. (2010) A review of model-error in digital soil mapping: Con-
fronting statistical soil landscape models with large-scale field validation data. Geophysical
Research Abstracts, 12, EGU2010-12757
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Figure 3.4.: Validation points in central Franconia. The colors indicate four

different modelling areas.

n soil units n geological units geology binarized?
Mittelfranken 92 37 X
Weissenburg 50 25 X
Uffenheim 63 19
Fuerth 56 15

e Mittelfranken is the most complex model in this analysis. The model
comprises a large number of soil units as well as geologic map units. Due
to the large number of geological units, the parameter was binarized?. The

map scale of the geological map is 1:200.000.

e Weissenburg is the only area where high-resolution geologic maps were

available. The model has an intermediate complexity.

2For technical reasons, the maximum number of values within a nominal predictor is 32
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e Uffenheim also uses mid-resolution geologic map. The parameter was not

binarized.

e Fuerth is characterized by homogeneous geological conditions.

During the validation process different parameters had to be estimated by the
soil expert in the field. The substrate based soil classification allows the validation
of the predicted soil map units in different dimensions. The overall validation
parameter is the exact text in the map legend for a map unit. However other
further parameters were also requested: (1) Is the soil type predicted correctly?
(2) Is the geologic substrate correct? (3) Is the geologic stratigraphic unit correct?
and (4) Is the number of horizontal strata correct?

Using these different parameters a comprehensive review of the statistical model

error as well as the map extrapolation could be carried out.

How reliable is the statistical model error?

First, I analyzed the reliabiliy of statistical model error, i.e. the proportion of
correctly predicted map units by the model. In this case this is the out-of-bag
error of the random forest model. This value was plotted against the misclassifi-
cation error calculated with the field validation data. The misclassification error
of the field data was calculated as the proportion of correctly predicted map units
within the field data. Thus the reliability of the statistical error could be checked.
The out-of-bag error is calculated for each soil map unit separately, which means
we know which map units could be discriminated well by the model and which
not. The question is, can map units with a low model error be predicted more
successfully than those with a high model error?

The misclassification rate of the field validation data was also calculated for each
map unit separately. The number of correctly predicted samples for a specific
map unit was divided by the total number of validation samples for the same

map unit. The scatter plot of both error values is illustrated in Figure 3.5.

For each modelling area a separate plot was created. The misclassification
rate calculated on field validation data is displayed on the x-axis (field error),
the out-of-bag error of the random forest model on the y-axis. The size of the
bubbles indicates the number of validation points for a map unit, i.e. the larger
the bubble the more validation points for a map unit were available. The color of
the bubbles indicates the number of training samples available for model fitting.

In all four plots the bubbles show a widely scattered pattern and by no means
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the number of training samples available for model fitting, the size
of the bubble indicates the number of validation points for a map

unit.
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a correlation between model error and field error. There are map units with a
very low model error but still a high misclassification rate in the field. On the
other hand, there are also map units which could be discriminated only poorly
in the model but show a low field error. In addition, the number of samples used
for model fitting as well as the number of validation points show no correlation
with the error values. It can be concluded that the statistical model error gives
only a very poor indication of the actual prediction accuracy and is therefore not

recommendable as a single quality measure for digital soil mapping.

Which predictions are fine - which are not?

To analyze which parameter of the legend text of a map unit could be predicted
successfully, bar charts indicating the relative frequency of true and false pre-
dictions of single map units in the field data have been created (Figure 3.6 to
Figure 3.8). The plots have been grouped according to the four modelling areas
to see whether the model complexity and data quality have an impact on model
performance.

Figure 3.6 indicates the true and false prediction of the legend text (Is soil type as
well as geologic material as well as horizontal layering correct?). The plot shows
a scattered pattern over all map units and also over all modelling areas. The best
results were achieved for Weissenburg, but overall the performance of the models
is not satisfactory, as seen also in Figure 3.5.

The overall picture in Figure 3.7 becomes more greener, which means the pre-
diction accuracy becomes better when considering only the soil type, regardless
the geologic substrate on which the soil type has developed.

The best results could be achieved in Figure 3.8, where only the geological
stratigraphy is considered. Clearly the mapping of map units to the same geologic

stratigraphy could be done successfully.

Some conclusions

What are the reasons for these findings? Figure 3.9 shows the geological strati-
graphic system for the Triassic and Jurassic eras, which is the main geological
characteristic in the modelling areas. The soil map legend has a hierarchical
structure which is oriented in the geologic stratigraphic system. Furthermore,
map units of geological maps in Germany adhere strictly to the stratigraphic
system. However, soil map units representing the combination of soil type and

geological substrate, the so-called Bodenform, e.g. cambisol on sandy-loamy ma-
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Figure 3.8.: Relative frequency of true and false predictions of geologic stratig-

raphy for several map units in all four modelling areas.

terial of the Burgsandstein or on clayey to silty material of the Blasensandstein,
are more detailed than purely geological maps. This is also indicated by the block
diagram in the center of Figure 3.9, which shows a high petrographical diversity
within one stratigraphic unit (different sandstones or clays within one group of
soil map units).

We could see that soil map units could be predicted successfully to the correct
stratigraphy (Figure 3.8), for example soil map units 420a to 430b within the
area of Blasen-, Coburg- and the Burgsandstein. This could be achieved by us-
ing geologic maps as predictor variables. Soil types could also be predicted with
success (Figure 3.7), which could be explained mainly by the strong correlation
of some soil types with topographic parameters. The influence of topography on
the spatial distribution of soil types at field to landscape scale was first formu-
lated in the catena concept of Milne (1935). This relationship has been used in
numerous digital soil mapping studies (Behrens et al. 2010; Deumlich et al. 2010;
McBratney et al. 2003; Méller et al. 2008) and serve as the hypothesis of the
method presented in Héring et al. (2012).

By analyzing the distribution of different soil types over a set of topographic gra-
dients a specific "topographic fingerprint" of each soil type could be derived. This
is shown in Figure 3.10 in which 7887 soil samples were analyzed regarding their
topographic location and soil type. The analysis was restricted to eight soil types

which could be found frequently in Bavaria (Braunerde, Pelosol, Vega, Gley-
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Braunerde, Podsol-Braunerde, Pseudogley, Pseudogley-Braunerde). The plots
show significant differences in the appearance of these soil types on topographic
gradients.

However, the analysis of the 7887 soil types confirms the findings of Figure 3.5
and 3.6. Neither official geological maps nor topographical information contain
sufficient information to discriminate between Bodenformen, i.e. to discriminate
between similar soil types within a stratigraphic unit having different petrographic
conditions (sandy, silty, loamy, clayey). There is no difference between the three
different texture classes for one soil type in Figure 3.10.

To conclude: the combination of topographic attributes with geological maps
illustrate sufficient predictor combination to predict soil types as well as strati-
graphic units. However, detailed petrographic information is needed on slope
sediment layering or alluvial deposits, but these data were rarely available.
Based on these findings the predicted digital soil maps have been tested against
the field validation data. In order to use reliable digital soil maps within the
KLIP4 and WINALP projects we manually adjusted the predicted map units
regarding their geological substrates. Predicted map units which were correct re-
garding soil type and stratigraphy but with the wrong stratigraphy were adjusted

according to the informatiom from the field data.
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Figure 3.9.: The organization of map legend follows the geological stratigra-

phy (i.e. geological time steps). Petrographic information is not

included in the geological map.
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3.3. Delineation of homogeneous terrain objects

3.3.1. Landscape segmentation

Considering site characteristics at landscape scale, terrain characteristics and
landforms play an important role, mainly because of their influence on the flow
of water, soil erosion and accumulation and spatial distribution of nutrients. In
areas with strong relief, elevation, slope and aspect could become the most im-
portant parameters for site classification (Hengl and MacMillan 2009).

Topography is functionally related to the characteristics, processes, and spatial
arrangement of soils (Huggett and Cheesman 2002; Moore et al. 1991). This
finding dates back to the beginnings of soil science as Hilgard (1921) and Jenny
(1941) recognized different factors (including topography) influencing soil forma-
tion. However, topography as being a continuous gradient is an abstract term
to handle. Mapping site-characteristics considering a site-classification system
therefore benefits from using discrete landscape objects with boundaries delin-
eated from multivariate topographic gradients. Moreover, and especially in hi-
erarchically organized and stepwise site-classification systems such as in Bavaria
(site-units within growth districts, growth districts within growth areas, growth
areas within Bavaria, cf. Figure 1.2), the delineation of homogeneous and discrete
terrain objects perpetuates the philosophy of disaggregating nature into more and

more uniform entities with regard to site characteristics.

The main concept behind the method in this section is to divide an area of
interest into terrain segments or units that can be used subsequently as strata
for mapping or modelling purposes, e.g. sampling. These segments should be
as homogeneous as possible in terms of the environmental attributes used for
segmentation in order to create tangible terrain objects with characteristic, rec-
ognizable shapes, e.g. uniform slopes, fluvial terraces, or floodplains (MacMillan
and Shary 2009). The delineation of landform elements is a central task in terrain
analysis and geomorphometry (Hengl and Reuter 2009). Several authors use the
term segmentation for geomorphometric analysis however with different meanings
(Dragut and Blaschke 2006; Martin and Timmer 2006; Minar and Evans 2008;
Moller et al. 2008; Pennock 2003; Pennock and Corre 2001; Stepinski and Bagaria

2009). Here we use segmentation in the sense of the application of methods from

2This section is based on
Héring, T. & Schroder, B. (2010) Sampling Optimization using Image Segmentation. Pro-
ceedings of the 4 International Workshop on Digital Soil Mapping, 24.-26.05.2010, Rome.
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the field of digital image analysis (Dragut and Blaschke 2006).

3.3.2. Object-based image analysis

Image segmentation was developed to identify objects of interest in digital images,
such as remote sensing data or medical images. The advantage of using image
analysis for landscape analysis compared to per-pixel analyses is the consideration
of spatial connection of individual pixels (Evans et al. 2009). It is possible to take
into account the sizes, shapes and relevant positions of real-world image objects
like terrain elements or landscape patterns across a stack of several environmental
gradients (Blaschke and Strobl 2001). These gradients in geomorphometry were
first provided by digital elevation models as the fundamental source of informa-
tion and parameters like primary and secondary terrain attributes extracted from
them. Besides these, remote sensing images and discrete environmental informa-
tion like geological maps can be used for geomorphometric analysis. Although
image segmentation is not new, the idea to create objects based on topological
and shape information for landscape modeling is not common, although there
are promising results in several recently published studies (Burnett and Blaschke
2003; Dragut and Blaschke 2006; Dragut et al. 2009; Moller et al. 2012, 2008)
There are different segmentation methods like histogram-based methods, edge
detection, watershed segmentation or graph partitioning methods (Shapiro and
Stockman 2001). Here, a multi-resolution image segmentation algorithm as in-
troduced by Baatz and Schape (2000) was used, which is implemented in the
commercial software environment eCognition. The algorithm is a bottom-up
region-merging technique starting with each pixel forming one image object and
merging adjacent objects in a pairwise fashion to larger objects in subsequent
steps if a specific criterion, called degree of fitting, is matched. The degree of
fitting is a measure of homogeneity of a single image object. Beyond the mul-
tivariate feature space the size, smoothness, compactness, and shape of image
objects are considered. Thus one can modify several parameters to get suitable
segmentation results for a certain image data stack and a considered application.
A detailed description of the algorithm can be found in Baatz and Schape (2000)
and Benz et al. (2004).

The image analysis within eCognition follows a hierarchical network. It succes-
sively creates image objects on different spatial scales. The objects can be linked
together resulting in a topological structure of image objects within different hi-

erarchical levels.
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Figure 3.11.: Landscape segmentation using object oriented image analysis fol-
lows the idea of a hierarchically structured landscape. Beginning
with individual pixels the information is aggregated into image
objects. Depending on different adjustments considering the de-
gree of homogeneity, size, smoothness, compactness, and shape,
the approach generates more or less homogeneous image objects
at different spatial scales (coinciding with hierarchical levels). The
arrangement in different levels constitutes a topological network:
each image object in level n belongs to a super-object in level
(n-1), is connected to adjacent image objects on the same level
n, and each image object in level n contains sub-objects in level
(n+1) (cf. Burnett and Blaschke 2003).
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This follows concepts of hierarchically structured landscapes in which large spa-
tial units (super-objects) arise from the significant alteration of landscape-related
attributes and the arrangement of small-scale landscape objects within hierarchi-
cal super-objects (Steinhardt and Volk 2003; Urban et al. 1987; Wu and David
2002). In the example in Figure 3.11, first an area of interest is partitioned in
large-scale topographic regions like floodplains, mountainous regions, and glacial
deposits (super-object, Level 1) which are then refined in successive steps into

finer landscape objects until a desired terrain decomposition is achieved (Level 2,
Level 3,...).

3.3.3. Application example: Spatial sampling

In order to understand trends and patterns in natural resource management and
environmental sciences we often need to draw inferences from samples to entire
populations. Samples therefore play an important role in gaining understanding
of our environment. They were needed as inputs for modeling as well as for vali-
dation of the model output.

Based on the disaggregated landscape in homogeneous terrain objects, I devel-
oped a sampling method to distribute sampling locations in an area of interest
(Haring and Schroder 2010b). These locations have been used for a large-scale
field validation campaign in order to estimate the prediction accuracy of digital
soil maps (cf. Héring et al. 2012; Héaring and Schroder 2010a). The method has
also been used to distribute “sampling” locations on an available soil map to
generate a training dataset for spatial prediction models for digital soil mapping
(Haring and Schroder 2010b).

Bearing the importance of topography on soil development in mind, a sample
should be representative for all combinations of soil type and terrain objects
which occur within the study area, i.e. a range of different environmental gra-
dients should be represented. In addition, the distribution of sampling locations
should be well-balanced over the study area. The sampling method based on
terrain objects aims at considering both the spatially-balanced distribution in
geographic space and the well-balanced distribution in the multivariate feature
space.

Using terrain objects as strata to distribute sampling locations has been proven to
be very flexible. The method is an iterative sampling procedure. This means that
one can incorporate several environmental variables either in a stepwise fashion or
simultaneously to delineate homogeneous environmental units. Secondly, because

the method is iterative and considers multivariate environmental gradients very
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flexibly, it can take into account different spatial scales. In a first iteration, the
study area is divided into comparatively coarse-grained environmental units, e.g.
fluvial plains or mountain areas. Then these units are subsequently subdivided so
that the scale of examination becomes finer with each iteration step. In addition,
the sampling method does not need to consider any specific preconditions such
as the shape of the study area or the known form of the trend or the spatial
structure of the residuals. Lastly, the method is able to treat different subareas
differently, so one can sample subareas with higher sampling densities (i.e., num-

ber of sampling points per unit area) than others.

3.3.4. Application example: Geomorphographic map of
Bavaria

In the Maps for the future project a map of geomorphographic units has been

prepared based on the application of image segmentation to terrain attributes (cf.

Koschitzki et al. 2011). The map has been used as modelling input for the spatial

disaggregation of complex soil map unit as introduced in Héring et al. (2012).
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Figure 3.12.: Density plots for slope (column 1) and SAGA Wetness Index (col-
umn 2) for sampling based on image segmentation (SegBS), sim-
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shadow indicates the underlying population (entire grid). The
third column shows the single segments for every particular sam-
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Chapter 4.

Concluding summary

"You must tell me if the humans are doing anything for the
forest," said the fox.
"Yes, you may be sure they are!" said Karr. "They are working

as hard as they can."

(The Wonderful Adventures of Nils
by Selma Lagerloef)
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Forest ecosystems are very likely to be influenced by climate change (Engel-
brecht 2012; Kelloméki and Leinonen 2005; Maracchi et al. 2005). The impact
of changing climate conditions on forest will be manifold, so that forest scien-
tists additionally use the term site change besides the term climate change (cf.
Bolte et al. 2010). Climate change will affect especially areas that are highly vul-
nerable to changing environmental conditions, like mountainous regions (Loarie
et al. 2009; Parry et al. 2007). The adaptation of today‘s forest to future cli-
mate conditions is therefore an important concern for forest science (Bolte et al.
2009, 2010; Canadell and Raupach 2008; Engelbrecht 2012; Spittlehouse 2005).
But also beyond forest science this adaptation is an important concern, e.g. to
mitigate global climate change (cf. Canadell and Raupach 2008; Chazdon 2008).
Forest management therefore requires, among other things, detailed information
on site ecological conditions to adapt forests to future conditions in a sustainable
way (Seidl et al. 2011).

The major objective of this thesis was to develop spatial prediction methods
derived in the field of digital soil mapping and species distribution modelling for
forest site classification, particularly focusing on Bavarian forest sites. All meth-
ods and examples in this thesis result from research in two strongly application-
oriented projects within the Bavarian forest administration (Beck et al. 2012;
Reger and Ewald 2011). Spatial prediction methods have been used for the as-
sessment and mapping of forest site characteristics in Bavaria (Falk and Mellert
2011; Reger et al. 2014, 2011), but also elsewhere (DeLong et al. 2010; Herbst et al.
2012; Jansen et al. 2002; MacMillan et al. 2007; Peters et al. 2011; Schwiérzel et al.
2009, 2011; Zirlewagen and Wilpert 2011). Environmental resources management
has arrived in the digital world, not only at Universities and research institutes
but also in the daily work of authorities (Asche and Schulz 2004; Beck et al. 2012;
Gauer 2010; Zirlewagen and Wilpert 2011). Spatial prediction methods are now
widely used across different terrestrial realms (e.g. soil attributes, vegetation, or
animals), but also freshwater, and marine realms (Elith and Leathwick 2009).
However, there are still some areas of critical discussion in the literature, e.g. the
use of spatial modelling for extrapolation of species distribution into future or
past climates or to new and unsampled geographic areas, as well as to gain eco-
logical understanding (De Marco et al. 2008; Dormann 2007; Elith and Leathwick
2009; Guisan et al. 2007; Midgley et al. 2006). Nevertheless, information technol-
ogy and computational power in combination with soil and vegetation databases

at all spatial scales and the increasing power of tools such as GIS, GPS, remote
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and proximal sensing helps also ecologists, forest, and soil scientists in forest site
classification (Jansen et al. 2002; Schwérzel et al. 2011).

The development and science of early forest site classification at the beginning
of the last century and two exemplary holistic site classification systems, the
biogeoclimatic ecosystem classification of British Columbia and the site classifi-
cation in Bavaria, have been described in the state of the art section of this study
(section 1.1). These traditional approaches constitute the basic principle of site-
classification until today. However, it has been explained that these approaches
are rather qualitative frameworks to classify site ecological conditions. The con-
sequent implementation of these frameworks in maps, which was identified as
the heart of classification (Barnes et al. 1982), is rare or at least remains in the
qualitative implementation of rule-sets in a GIS (Clare and Ray 2001; Skidmore
et al. 1991).

The urgent need for quantitative and high-resolution site information on the one
hand and the possible improvement of site classification along with computer-
based spatial prediction techniques (section 1.2) on the other lead to challenges
for traditional forest site classification. To face these challenges the research ob-
jective of this study was to develop and apply spatial prediction techniques for
the assessment of forest site characteristics. The intention of this thesis was to in-
troduce different new modelling approaches for site mapping in order to support
ongoing and future forest management in Bavaria with a toolbox of mapping
techniques. It was not the intention to replace the well-tried and established
mapping approaches, but to illustrate different ways in which to include compu-
tational and geospatial technology in the assessment of forest site characteristics.
The aim was to improve site mapping and move towards a new generation of site

classification.

Whereas the purpose of traditional site classification was the assessment and
illustration of site characteristics, the new generation will not be pure site maps
any more. The application oriented world requires answers for specific questions,
e.g. the suitability of a site for planting tree species today and in the future,
the possibility to use heavy vehicles, the vulnerability regarding pest infestation,
or biomass utilization. Different and heterogeneous sources of information have
to be considered for a complex representation of the environment (cf. Dobos and
Hengl 2009). Therefore, open and dynamic information systems are nowadays the
preferred method (Haeussler 2011). The opportunity now exists to use geospatial

technology for grouping assemblages of site data. Newly developed statistical
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frameworks facilitate the transparent characterization of site units while mini-
mizing the need for subjective decisions (Holt et al. 2013). Thereby it is not
all about the creation of new data, but often also to reuse, improve, or update
existing site data (cf. examples from different fields of ecology at all spatial scales
in Fitterer et al. 2012; Franzle et al. 2006; Haring et al. 2012; Holt et al. 2013;
Kempen et al. 2009).

Following strictly the methodological framework developed in the realm of dig-
ital soil mapping and species distribution modelling, which form the methodolog-
ical starting point for my thesis, the modelling approaches presented here are
based on statistics. It could be shown that each different method offers a valu-
able improvement for site mapping approaches and the implementations in the
projects Maps for the future and WINALP have demonstrated their real-world
feasibility. However, two alternatives to purely statistical approaches for spa-
tially distributed modelling of site characteristics have been presented. Herbst
et al. (2012), Mosimann et al. (2011), and Mosimann and Herbst (2013) present
an approach to combine statistical modelling with an empirical-knowledge based
approach to assess forest soil properties in northern Switzerland. They define
different rule-sets of empirically derived relationships between terrain character-
istics and soil properties and apply these relationships to a statistical modelling
framework. Within the WINALP project a similar approach was chosen to model
forest types of special sites like raised bogs, fens, karstic plateaus, and alluvial
forests. Reger et al. (2014) applied empirically derived rule-sets to spatially mod-
elled input data. The third approach to model site characteristics, mainly to
assess soil hydrological conditions, is the combination of process based hydrolog-
ical models with statistical models. Schultze et al. (2005) and Falk et al. (2008)
describe the approach of the Bavarian state institute of forestry to model and re-
gionalize the soil water available for tree species (transpiration difference). They
modelled numerous combinations of site conditions with the hydrologic model
LWEF-Brook 90 to determine the transpiration difference Ty, ¢, the difference be-
tween potential and actual transpiration. After running the process model they
use a linear multiple regression model to regionalize Ty;¢. Later on, within the
KLIPj project, boosted regression trees have been used for regionalization (Os-
enstetter et al. 2013). Similar to Falk et al. (2008), Falk et al. (2011) present a
concept to estimate the soil oxygen deficiency. Similarly, Schwérzel et al. (2009)
present an approach from Saxony by combining LWF-Brook 90 with GIS data to

to simulate the daily water fluxes and soil moisture status. Peters et al. (2011)
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apply fuzzy inference systems to regionalize LWF Brook 90 results.

All these approaches have their pros and cons and have to be regarded as differ-
ent opportunities for spatial modelling of forest sites. Empirical and rule-based
approaches have a benefit in their ability to integrate local expert knowledge into
the modelling framework. Spatial prediction results can be modified by hand if
necessary. In addition, these approaches are more comprehensible than purely
data-driven modelling and thereby in some cases more acceptable because they
consist of understandable decision rules. On the other hand, due to their detailed
adaptation to local conditions which results in only limited generalization of the
model, expert and rule-set based approaches are difficult to transfer to other study
areas. Approaches which integrate process based hydrological modelling are the
most complex ones. They can be used to address very specific questions regarding
site characteristics (eg. moisture deficiency for Norway spruce during vegetation
period, water logging that persists for a certain length of time). However, because
of their specificity it may be difficult to find spatially explicit data to extrapo-
late from point to the area of interest. Hydrological models like LWF-Brook 90
require detailed and varied data for calibration, which are not always available
for the entire study area. Moreover, the more complex the parameter of inter-
est, the more difficult it is to validate the model after extrapolation. Statistical
modelling approaches, as presented in this thesis, offer a comparatively easy way
for spatially distributed modelling, even though the statistical model itself can
be very complex and even a black box model. Modelling results are reproducible
and comprehensive though not simple, cf. the different model effects in Héring
et al. (2013). However, the quality of statistical modelling results rely mostly
on the quality of input data. The application of advanced statistical models to
GIS data and the integration of such approaches to site information systems has
become very straightforward. This is mainly due to recent developments in the
availability of free and open-source modelling tools and the growing GIS capa-
bilities of these tools, e.g. the R modelling language (R Core Team 2013), which
has been used throughout this thesis.

The site-information system of the WINALP project could be regarded as an
exemplary implementation of a modern and holistic approach for the assessment
of site characteristics. The system is based on different types and sources of
environmental information, ranging from a substantial amount of field data on

vegetation, soil and geomorphology, existing digital maps on geology, topography;,

61



Chapter 4. Concluding summary

Auen- und Sumpfwilder

FTi j [ Es 128 - submontaner Erlen-Eschenwald
2128+ [ Es 114s - Komplex der submontanen Auenwalder
[ Es 224s - Komplex der bis hocht

[ Es 229s - Grauerlen-Sumpfwald
jogr B Wei 2225 - Komplex der Wildbachaue
Oy f! 2125 - Montane Bergmischwalder
212 [ FTB 212 - montaner, maBig trockener Carbonat-Bergmischwald
FTB @ FTB 213 - montaner, maBig frischer Carbonat-Bergmischwald
E [ FTB 224 - montaner, frischer, basenreicher Silikat-Bergmischwald
[ FTB 225 - montaner, betont frischer, basenreicher Silikat-Bergmischwald
I FTB 234 - montaner, frischer, stark saurer Silikat-Bergmischwald
[ FTB 212s - Komplex der sub- bis hochmontanen, sonnseitigen Felshange
[ FTB 213s - Komplex der sub- bis hochmontanen, schattseitigen Felshange
1 [ FTB 223s - Komplex der sub- bis hochmontanen Karstplateaus
( “1 [ FTB 2245 - Komplex der sub- bis hochmontanen Mergelsteilhange

N
| Relief Kllma
m s tomseratur Vegetatons-
60 90 fl 9 mm] [c]F 3(: de [°C]
2000 3500 10 "
3 1800 3250 16
ani g . 8
[ FTB 213 - montaner, maBig frischer Carbonat-Bergmischwald g 15600 3% . 14
1400 2500 12
Wasserhaushalt (z.B. 3 — méBig frisch) Expos'lwt'lwon[ 1 1200 2250 4 10
Basenhaushalt (z.B. 1 — kalkreich) W, NE 1000 %ggg 2 Z
Warmehaushalt (z.B. 2 — montan) ww e 800 1 ggg o 4
natirlich v je Baumarten (z.B. FTB — Fichte - Tanne - Buche) 600 1000 -2 2
400 750 -4 0
Baumartkombination Wirmehaushal haushalt | Wasserhaushalt* Boden Carbonat
- - vt gruppen [%] merkmale
Ah - Ahornmischwald 1 - submontan 1 - kalkreich 1 - trocken Hangschutte _ Mergelgestein m“neme“ {cm Bodentiefe]
Bu - Buchenreicher Bergmischwald 2 - montan 2 - basenreich | 2 - méBig trocken | | kalk. Hartkalke, 2T 4 0
Es - Eschenreicher Auen- und Feuchtwald | 3 - hochmontan 3 - sauer 3 - méBig frisch Hangschutte ko,‘g\ome,a( 10 . 10
Fi - Fichtenwald 4 - subalpin 4 - frisch 'F"E’QE" 98 20 20
FT - Nadelholzreicher Bergmischwald 5 - hochsubalpin 5 - sehr frisch emmordnen kunglnmem 30 30
FTB - Fichten-Tannen-Buchenwald 8- feucht Hartdolomite AvvcBoden 40 40
Kie - Kiefernwald _ 9- nass 50 50
b"f‘r 'MLg:)s:Icaelndgebusch W20 40 g0 w0 10 60 60
Ta - Fichten-Tannenwald B i
Wei - Weidengebiisch Wald-Bingelkraut
Zir - Larchen-Zirbenwald = Carbonat-Bergmischwald ~ Sanikel
— — - - der Alpen Griiner Alpendost
* Der Wasserhaushalt wird in enger Anlehnung an den Dreizifferncode 3 . Ubergange Wald-Veilchen
i i £ mfr Wirme was aupﬂzaumanen
dgs F!achlandes als Zahl zwischen 1 und 9 verschliisselt. ) g BRI 220 F R 27 by BT
Die Ziffern 6 (wechseltrocken) und 7 (schwach wechselfeucht) werden nicht verwendet. : d P FIB2I3FIB213FTB213  apenbaumarten
f Bul13 Ta238  Bah, BUI, Es, Eib
stark basen- Kalk-
saver reich reich FIB 2125, FTB 2135,  Mebe, Kie, Vobe, L3,
Basenhaushalt Ah 2135, Fi 2235 SalWei, B, As

Figure 4.1.: Example of the intermediate-scale map of potential natural forest
vegetation of the Bavarian Alps, scale 1:25,000 with the example of
FTB 213 - Montane mixed mountain forest on submesic calcareous
soils (Source: (Reger and Ewald 2011)).

soils, and climate to advanced spatial modelling applications, as well as expert
knowlegde. These data have been prepared to fit into the well-tried qualitative
site classification code (Reger and Ewald 2011), cf. Figure 4.1.

My two studies on regionalizing Ellenberg indicator values in section 2.2 and
section 2.3 could contribute directly to this site information system. Spatial
prediction methods have been used in addition to soil reaction (Haring et al.
2014) and soil moisture (Haring et al. 2013), as well as for temperature (Reger
et al. 2011). All three parameters have been used as data input for the three-
dimensional temperature-reaction-moisture system (TRM model) introduced by
Reger et al. (2014). These three ecological factors enable the establishment of a
three-dimensional "site cube', in which a forest type can be defined as homoge-
neous ecological unit. Field validation at 6358 validation sites results in a total
accuracy of the modelled forest types of about 71%.

The map of potential natural forest vegetation can be freely accessed via an on-

line webgis application (http://arcgisserver.hswt.de/winalp) and may be of
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practical use in forestry as it can serve as planning instrument in the regional con-
text. The intermediate spatial resolution of 1:25,000, however, remains a limiting
factor for local application. For a detailed management of mountain forests, how-
ever, human expertise is still needed. The map will further support research that
aims to outline areas potentially sensitive to climate change or highly relevant for

nature conservation.
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Detailed knowledge on the spatial distribution of soils is crucial for environmental monitoring, management,
and modeling. However soil maps with a finite number of discrete soil map units are often the only available
information about soils. Depending on the map scale or the detailing of the map legend this information
could be too imprecise. We present a method for the spatial disaggregation of map units, namely the refine-
ment of complex soil map units in which two or more soil types are aggregated. Our aim is to draw new
boundaries inside the map polygons to represent a single soil type and no longer a mixture of several soil
types. The basic idea for our method is the functional relationship between soil types and topographic posi-
tion as formulated in the concept of the catena. We use a comprehensive soil profile database and topograph-
ic attributes derived from a 10 m digital elevation model as input data for the classification of soil types with
random forest models. We grouped all complex map units which have the same combination of soil types.
Each group of map units is modeled separately. For prediction of the soil types we stratified the soil map
into these groups and apply a specific random forest model only to the associated map units. In order to
get reliable results we define a threshold for the predicted probabilities at 0.7 to assign a specific soil type.
In areas where the probability is below 0.7 for every possible soil type we assign a new class “indifferent” be-
cause the model only makes unspecific classification there. Our results show a significant spatial refinement
of the original soil polygons. Validation of our predictions was estimated on 1812 independent soil profiles
which were collected subsequent to prediction in the field. Field validation gave an overall accuracy of
70%. Map units, in which shallow soils were grouped together with deep soils could be separated best. Also
histosols could be predicted successful. Highest error rate were found in map units, in which Gleysoils
were grouped together with deep soils or Anthrosols. To check for validity of our results we open the black
box random forest model by calculating the variable importance for each predictor variable and plotting re-
sponse surfaces. We found good confirmations of our hypotheses, that topography has a significant influence
on the spatial arrangement of soil types and that these relationships can be used for disaggregation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Knowledge on the spatial distribution of soils and soil attributes is
crucial for many tasks in environmental management, monitoring,
and modeling. In forestry, for instance, high-resolution spatial infor-
mation on soils is required in order to conduct sustainable manage-
ment of forests which concerns the site-specific environmental
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conditions in relation to species-specific requirements (e.g. Falk and
Mellert, 2011; Thwaites and Slater, 2000). Up to now, soil maps
representing categorical soil units in finite number of map entities
were the most common source of spatial soil information in environ-
mental authorities (Hartemink et al., 2010). In order to allot soil prop-
erties to the soil map, it is common to assign several representative
soil profile data to the different map units (Ad-hoc-AG Boden, 2005;
Legros, 2006; Soil Atlas of Europe, 2005). Soil properties can then be
derived from soil polygon maps by calculating area-weighted or
non-weighted averages across the different soil profiles in each map
unit.

Discretizing soils into several soil units is a challenge for the map-
per, since the spatial distribution of soils and their associated proper-
ties can change significantly within short distances and due to the
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continuous nature of soil (Heuvelink and Webster, 2001; Webster
and Becket, 1968). In nature soils do not occur as discrete bodies
with sharp boundaries (Odgers et al., 2011a). Therefore, mapping
soils as categorical map units can be criticized from an ontological
point of view because it contradicts this situation (e.g. Burrough and
Frank, 1995). Nevertheless, it has been proven to be practical and effec-
tive, because it allows for structuring our knowledge by classification
(Legros, 2006; Webster and Becket, 1968). A common approach in soil
mapping is the aggregation of several soil types with different soil prop-
erties into one single complex soil map unit depending on the specific
mapping scale on the one hand and the small scale heterogeneity of
soils across the landscape on the other (Ad-hoc-AG Boden, 2005; IUSS
Working Group WRB, 2010; Soil Atlas of Europe, 2005).

The aim of this study is to present an approach for disaggregating
complex soil map units. Even though the construction of complex
map units is comprehensible from a mapper's point of view, it poses
a question regarding site-specific forest management or land evalua-
tion where aggregated soil map units may cause problems. To assign
soil physical or soil chemical properties to map units, usually several
representative soil profiles have to be selected from an existing soil
data base or by analyzing soil material in the laboratory obtained
from a soil pit. If there are different soil types combined in one com-
plex map unit, it may cause unrealistic results when calculating areal
weighted or non-weighted means. As an example consider following
map unit (in which the originally German soil types were translated
into the international WRB system):

Soil complex with small scale variation of Stagnosols and Leptosols.
Very to extremely blocky-stony, sandy-loamy periglacial detritus of
amphibolites, diorites, and gabbros.

Stagnosols are characterized by periodically stagnating surface
water leading to mottled color pattern or bleaching due to anaerobic
conditions. They develop on a wide variety of unconsolidated mate-
rials and can be found in flat or gently sloping terrain positions
(IUSS Working Group WRB, 2007). In contrast, Leptosols are very
shallow soils and extremely gravelly and/or stony. They can be
found on exposed landscape positions with strongly dissected topog-
raphy (IUSS Working Group WRB, 2007). Clearly, the properties of
those two soil types are very different, e.g. with respect to their suit-
ability for planting tree species or to their vulnerability regarding
windfall. A typical Stagnosol belonging to this map unit has an avail-
able water capacity (AWC) of 167 mm/m?, an impermeable layer at a
depth of 35 cm and a fraction of coarse fragments of 21%. In contrast,
a typical Leptosol in the same map unit has an AWC of 45 mm/m?, no
impermeable layer and a fraction of coarse fragments of 76%. Clearly
this causes problems in calculating the mean values for these attri-
butes from e.g. ten Stagnosols and seven Leptosols, as the resulting
calculated mean will express neither the characteristic properties of
Stagnosols nor Leptosols correctly.

Scale issues in soil science either with respect to transforming soil
information to finer scales (downscaling, disaggregation) or to coars-
er scales (upscaling, aggregation) have been addressed in literature
(Carre et al., 2008; Heuvelink and Pebesma, 1999; Odgers et al.,
2011a, 2011b; Panagos et al., 2011). According to Cheng (2008),
downscaling is the process of estimating values for smaller scales
without observation of the values available in surrounding locations.
Soil distribution at one scale is therefore used to estimate the distri-
bution at another scale.

In order to transform soil information to another scale, spatial pre-
diction techniques have been applied in digital soil mapping litera-
ture (Grunwald, 2010). Beside some theoretical considerations for
aggregation and disaggregation of soil information, McBratney
(1998) proposed three approaches for disaggregation of polygon
soil maps: transfer functions, fractal analysis, and pycnophylactic
splines. De Bruin et al. (1999) used stepwise image interpretation

and inductive learning to formalize soil-landscape relationships. Ter-
rain objects, which were delineated from aerial photographs, were
connected with location-specific soil sample data. Bui and Moran
(2001) apply decision trees for disaggregation and extrapolation of
fluvial facies units into unmapped areas.

In areas where no soil profiles were available and no detailed in-
formation on where in the landscape a specific soil type of a complex
map unit is located, several studies proposed clustering methods for
spatial predictions. Bui and Moran (2001) use k-means clustering to
classify soils with Landsat MSS bands, slope position and relief as pre-
dictor variables. Yang et al. (2011) used fuzzy clustering to quantify
soil-landscape relationships on a 1:20.000 soil map in Canada. The
extracted knowledge was used for refined soil mapping using the
Soil Land Inference Model SoLIM. Similarly, Smith et al. (2010) disag-
gregated soil maps in the Canadian province of British Columbia using
terrain attributes, landform classes, and ecological subzones as pre-
dictor variables for fuzzy classification rules.

However, in cases where representative soil profiles as training
data were available, supervised classification is an alternative method
for spatial prediction. The benefit from supervised classification is its
ability to estimate prediction accuracy and the identification of clearly
described map units or subunits. Thereby it is possible to follow the
traditional top-down approach in soil mapping to divide an existing
map unit in more homogeneous sub-units and leave the former
boundaries of map polygons unchanged. This is in contrast to the
aforementioned studies which result in completely disaggregated
soil maps.

However, there are situations in which dissolving is not intended.
Kempen et al. (2009) presented an approach to update the existing
1:50.000 Dutch soil map. This was motivated due to an area-wide
transformation of peat soils to other soil types.

Similar to Kempen et al. (2009), we do not alter the boundaries of
soil polygons in our study. Even though polygons of soil maps cannot
be viewed as 100% correct, soil maps serve as a basis for several appli-
cations. We aim to disaggregate not the entire mapped area, but only
complex map units. Therefore, the existing methods are not useful for
our purpose.

Moreover, regarding the number of different classes it is unfeasi-
ble to estimate one model for our entire study area. If the number
of classes becomes very high—as in our case 104 groups of map
units—one model needs to be either very complex or it is not able
to discriminate between all single classes (cf. Bui and Moran, 2001;
Kempen et al., 2009). Therefore, we developed an approach applying
comparably simple but class-specific models for the delineation of
sub-areas. Almost all studies in which categorical map units were dis-
aggregated considered a smaller number of classes (i.e. less than 10
classes: Behrens et al., 2010; Brus et al., 2008; Sun et al., 2011; 10 to
20 classes: Debella-Gilo and Etzelmiiller, 2009; Hengl et al., 2007;
Kempen et al., 2009; Moonjun et al., 2010; more than 20 classes:
Grinand et al., 2008; Smith et al, 2010; Stum et al, 2010). Only
Smith et al. (2010) predicted more than 100 classes, however not in
a single model but with knowledge-based fuzzy classification rules
for every class separately.

Because many map units do not occur on the entire map but only
on small subareas a stratification of the study-area to get parsimoni-
ous models is also favorable in our case.

In Bavaria, traditional soil maps were the main source of soil infor-
mation. Even though 9924 soil profiles are available in Bavaria for
modeling purposes, it was not possible to generate soil maps using
classical spatial interpolation techniques. In many cases, several sam-
pling points were located on representative landscape positions with-
in few hundreds of meters on a catena. Therefore, we encountered a
high density of profiles in some areas, whereas in others the sampling
is rather sparse. Moreover, soil properties data are available only for a
small subset of the sample (e.g. soil chemical properties are available
for only 11% of the profiles). For the majority of samples, we only got
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information on the soil type, coordinates, succession of soil horizons,
and texture. To generate high-resolution soil data we needed to strike
a new path.

In this study, we present a method to disaggregate soil map units,
especially suitable for complex map units in which two or more dif-
ferent soil types were combined. Thereby we follow the traditional
top-down approach in soil mapping to divide an existing map unit
in more homogeneous sub-units. We use decision tree-based models
to quantify the relationship between soil types and topography and
use these models to predict the single soil types within the complex
map unit.

2. Materials and methods
2.1. Study area

The study area is the forest area of the German federal state Bavar-
ia in the south-east of Germany which is covered by the 1:25.000 soil
map (Figure 1). Bavaria has an area of ca. 70 550 km? and is charac-
terized by diverse physical-geographic conditions. It measures ap-
proximately 366 km in N-S direction and 352 km in E-W direction
and has a long altitudinal gradient from Kehl am Main (102 m asl)
to Germany's highest mountain in the south (Zugspitze 2962 m asl).
The climate is cool humid with a mean annual temperature decreas-
ing from 10.3 °C at lower elevations to —4 °C at the summits and an-
nual precipitation ranging from 483 mm up to 2800 mm. Due to a
high geological diversity (from crystalline basement rocks, volcanic
rocks, different triassic sedimentary rock, large areas of limestones,
tertiary molasse to quaternary fluvial, glacial, and aeolian deposits),
Bavaria is also characterized by a rich mosaic of soil types.

2.2. Soil profile database

We established a soil profile database as our main information
about soil types for statistical modeling. Our aim was to merge all
soil profiles within forests which were available in the forest and en-
vironmental administration in the state of Bavaria, inside as well as
outside of the mapped area (Figure 2). Since our focus lies on the for-
est area, we only took soil profiles into account which were located in
forests.

We ended up with 9924 soil profiles consisting of 93 different soil
types according to the German soil classification system. When using
the terms soil type and complex soil map unit, we refer to the German
soil classification system (Ad-hoc-AG Boden, 2005). A soil type is
characterized by a specific sequence of soil horizons influenced by
soil forming processes. Every soil map unit contains information
about the soil type and its parent material. A soil type in the German
soil classification system is similar to the reference soil groups in the
World Reference Base for Soil Resources (IUSS Working Group WRB,
2007). In cases in which there are two or more soil types associated
into one single map unit, we use the term complex soil map unit. With-
in the WRB system, there is a similar approach for the description of
complex units (IUSS Working Group WRB, 2010). Throughout this
paper, the German soil types were translated into WRB names. All
profiles were attributed with geographic coordinates to join the
points with topographic observations.

2.3. Soil map

We used the official soil map of Bavaria (Bavarian Environment
Agency, Ubersichtsbodenkarte UBK25, http://www.Ifu.bayern.de). It is

- complex soil map unit

non-complex soil map unit

r /] Bavaria

0 25 50 100 Kilometers

1,000 Kilometers
L 1 1 1 1 1 1 1 |

Fig. 1. Complex and non-complex soil map units of the study-area and location in Germany and Europe.
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Fig. 2. Distribution of 9924 soil profiles located in forested areas.

mapped with a scale of 1:25.000 and covers 64 071 km? which is
about 80% of the Bavarian State territory (south-east Germany,
Figure 1). The map contains more than 700 different map units, i.e.
a clearly defined entity in the map legend, from which more than
450 are complex map units containing more than one single soil
type. It accounts for the official German guideline for soil mapping
(Ad-hoc-AG Boden, 2005). Soil mapping in Germany follows the con-
cept of substrate-systematic mapping, which means that every soil
map unit contains information about the soil type and its parent
material.

2.4. Topographic covariates

We use a digital elevation model (DEM) with a cell size of 10 m as
basis for the delineation of topographic attributes. It was constructed
using airborne laser-scan data by the Bavarian Topographical Survey
and has a vertical accuracy of 0.3 m and a positional accuracy of ap-
proximately 1 m. Errors and anthropogenic elements like roads or
settlements in the DEM were eliminated by the topographical survey
before terrain attributes were derived.

We derived a set of 23 terrain attributes. Besides classical local ter-
rain attributes calculated with a 3 x 3 moving window (e.g. slope gra-
dient, curvatures), we derived complex secondary terrain attributes
(Pike et al., 2009; Wilson and Gallant, 2000). In addition, we used dif-
ferent window sizes (8 x 8, 15x 15) to analyze the effect of scales and
spatial context (Grinand et al., 2008; Smith et al., 2006). To select the
most important variables and to remove highly correlated variables,
we applied the feature selection method ReliefF (Kira and Rendell,
1992; results not shown). ReliefF measures the usefulness of terrain
attributes based on their ability to distinguish between very similar
soil profiles belonging to different soil types. We found a high impor-
tance of secondary terrain attributes. Slope gradient (calculated on a
3x3 window) was the only important local terrain attribute. Finally,
we got seven topographic attributes which were used for modeling
(Table 1). All terrain parameter were calculated in SAGA-GIS (Saga
Development Team, 2011).
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Table 1
Terrain attributes used as topographic covariates for statistical modeling. All parame-
ters were calculated in SAGA-GIS.

Definition

SAGA Wetness Index, implemented in SAGA GIS
(Bohner et al., 2002)
vertical distance to channel network
Indicates flat areas with high flow accumulation
and low relative elevation
(1+ slope gradient) * (1 - twi) *
(1 + relative height)
Indicates areas with high flow accumulation
and low relative elevation
(1 4+ relative height) * (1 - twi)
mass balance index Indicates areas of erosion and deposition

(mbi) (Moller et al., 2008)
(plan-curvature + profile-curvature) *
(1 +slope)
according to Zevenbergen and Thorne (1987)
The higher the relative vertical distance to the
mid slope in valley or crest directions the
higher this value. (Bohner and Antonic, 2009)
|2 * normalized.height - 1|

Terrain attribute

Topographical wetness
index (twi)

relative height (hut)

floodplain index (fpi)

modified floodplain
index (fpi2)

Slope gradient
mid-slope position

2.5. Data preparation

First, all georeferenced soil profiles were attributed with the seven
topographic attributes in order to establish a dataset for subsequent
modeling. We interpolate our profiles with the terrain parameter
using the bilinear interpolation method. Due to the fact that the coor-
dinates of our soil profiles were mainly measured with GPS, we had to
deal with a certain degree of spatial uncertainty, because the forest
canopy blocks and reflects the satellite signal causing multipath ef-
fects and signal losses that lower the accuracy (Mauro et al., 2011).
Smoothing values by interpolation attenuates this problem.

Secondly, we grouped the 250 complex soil map units that needed
to be disaggregated, according to their soil types. In cases in which
two or more map units had the same combination of soil types,
they were grouped together, e.g. Calcaric Cambisols and Umbric Lep-
tosols developed on dolomite on the one hand and on limestone on
the other. Finally, we got 104 different groups of map units with the
same combination of soil types. 89 groups consist of only two differ-
ent soil types, the remaining 15 groups consist of three different soil
types. The number of profiles which were assigned to the 104 groups
ranged from 35 to 2668 (median =339.0, mean =638.4).

2.6. Soil landscape relationship

Topography is one of the elementary soil forming factors. The in-
fluence of relief on the spatial distribution of soils especially on field
to landscape scale was first formulated in the catena concept
(Milne, 1935). Numerous studies in soil landscape modeling and dig-
ital soil mapping used topographic attributes as spatial covariates
(see for an overview Behrens et al., 2010; Deumlich et al., 2010;
McBratney et al., 2003; Moller et al., 2008). Our method relies on
these relationships. We hypothesize that it is possible to separate dif-
ferent soil types within a complex map unit by quantifying the func-
tional relationship between soil type and topography by means of
statistical modeling. We expect that we can derive a specific topo-
graphic fingerprint for each soil type by investigating the distribu-
tions of several topographic attributes for different soil types
respectively. If the fingerprint of a specific soil type is different from
that of an accompanying soil type, we are able to draw new bound-
aries inside a soil map polygon.

Fig. 3 shows boxplots of the aforementioned Stagnosols and Lep-
tosols for three topographic attributes.



T. Hiring et al. / Geoderma 185-186 (2012) 37-47 41

topographical wetness index

slope gradient

floodplain index

o © —_— T —_— T
— O - 1 o 1
! - 1 | 1
1 1 i ' A '
[Ts) ! ! |
| ] | - 1
I g > | |
0 i o ' ]
< — 1 Il o
o I T '
1 O' - Il : 1
- 1 1
] : ! ]
© | | o0 _| 1 |
™ _— o | PR E— o _ P
o T T i T T T T
Stagnosols Leptosols Stagnosols Leptosols Stagnosols Leptosols

Fig. 3. Boxplots of topographical wetness index, slope gradient, and floodplain index for Stagnosols and Leptosols of our soil profile database. The values for the topographic attri-
butes were transformed. The soil types show a significant difference regarding topographical gradients. We use these differences to classify the soil types with random forest.

The plots show significant differences in the appearance of these
soil types on topographic gradients. These differences can be used
for classification by decision tree-based classification models.

There are several complex map units in our soil map in which
other parameters than topography might have a significant influence
on the spatial arrangement of and the differentiation between differ-
ent soil types like geological, chemical, or hydrological conditions. For
example a map unit containing different cambisols developed on ter-
tiary marl or sandstones or a map unit containing calcaric and dystric
Gleysols is much more influenced by geology than by topography.
Different geologic conditions may also be reflected by topography,
but not at all times. In order to produce meaningful results, we select-
ed only those complex map units that can be separated with topo-
graphical information according to our expert-knowledge. From the
450 existing complex map units, we selected 250 units for spatial dis-
aggregation with our approach presented here. The area of these 250
complex units is 14776 km?, which is 23% of the entire soil map. Re-
duced to the forested area, these 250 map units cover 6150 km? (i.e.
30% of the soil map under forest).

2.7. Statistical modeling

Classification of our soil types was performed with random forest
(Breiman, 2001). Random forest is an ensemble method in which
many different classification trees are combined to produce a more
stable and accurate classification compared to a single decision tree
(Bauer and Kohavi, 1999; Breiman, 1996; Dietterich, 2000). Each
tree is built on a bootstrap sample of the given data. To form the en-
semble, the different trees are combined using bagging (bootstrap ag-
gregating). The resulting “forest” is a “random” forest because at each
split only a random subset of the candidate predictors is considered
for the binary partition (Elith and Graham, 2009). This de-correlates
the trees, improves the variance reduction and finally leads to more
accurate predictions (Biihlmann and Yu, 2002; Strobl et al., 2009).
The predictions of each single tree are combined using a majority
vote to get a final ensemble prediction. In recent years, random for-
ests have been widely used in digital soil mapping (e.g. Roecker
et al,, 2010; Stum et al., 2010).

Widely used decision trees like Breiman et al.'s CART (1984) or
Quinlan's C5 (http://www.rulequest.com/, 1993) were built on recur-
sive partitioning and impurity reduction. Entropy measures, like the
Gini Index or the Shannon Index, are used to quantify the impurity
in each node (Hastie et al., 2009; Strobl et al., 2009). When working
with environmental data and in particular topographical data as cov-
ariates for statistical modeling, we always have to concern multicolli-
nearity (Graham, 2003; Hengl and MacMillan, 2009). Strobl et al.
(2007, 2008) showed that CART-based random forest implementa-
tions (like the R-package randomForest, Liaw and Wiener, 2002) are
biased when predictor variables are correlated or measured on

different scales. Therefore, we used a random forest implementation
applying conditional inference trees as base learners, which has been
proven to be unbiased (Hothorn et al., 2006; Strobl et al., 2010). The
splitting in recursive partitioning in conditional inference trees is
based on significance tests of independence between any of the predic-
tors and the response. Such a framework is implemented with the func-
tions ctree() and cforest() in the package party in R (Hothorn et al,,
2006; Miiller et al., 2009; R Development Core Team, 2010).

Typically, predictions of classification models like random forest
are response classes. The predictions are made on a majority vote
using the predicted probabilities for the present soil types, i.e. the
class with the highest probability is assigned (Strobl et al., 2009).
We do not use the predicted classes in our study, but an estimate of
the conditional class probabilities. We defined a probability threshold
at P> 0.7 to allow for unspecified classifications in the model assign-
ing a specific soil type in the prediction only if its probability exceeds
0.7. All areas with a maximum probability for any soil type below 0.7
were classified as “indifferent”.

Validation of the random forest models was performed using the
out-of-bag error. The predictive performance of the model is calculat-
ed on those observations which were not included in the learning
sample for a specific decision tree, i.e. those observations which
were not part of the bootstrap sample of the original data set. Using
those out-of-bag observations, we have independent test samples
for computing the prediction accuracy. It could be shown that the
out-of-bag error is a conservative estimate (Strobl et al., 2009).

In order to detect the dependencies between predictor and depen-
dent variables and to select the relevant predictors, one can calculate
variable importance measures. The extraction of important predictors
is calculated on the permutation accuracy importance measure. This
measure is estimated by randomly permuting the values of a particu-
lar variable. By comparing the prediction accuracy before and after
permuting a variable we get a measure of variable importance. For
plausibility check in this study we use the permutation importance
in the party package because it is a reliable measure even in cases
with correlated predictors (Strobl et al., 2010).

Since there are some soil types in our profile database which were
very frequent (such as Cambisols, Gleysols, or Luvisols) and others
that are rather scarce (e.g. Histosols or soil types with stagnic proper-
ties), we often had the problem of extremely unbalanced datasets for
modeling. So at least one of the soil types constituted only a very
small minority of the data which may cause a limited classification
performance (Japkowicz and Stephen, 2002). Therefore, we imple-
mented an if-then condition in our modeling framework: if the num-
ber of observations for one soil type in our database is greater than a
proportion of 2:1 to the number of profiles of the other soil type in the
grouped map unit, then we take a random sample of the former to en-
force a proportion of 2:1. The proportion of 2:1 is a compromise be-
tween having a more balanced dataset on the one hand and using
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Table 2
Classification accuracy for unbalanced and balanced dataset.

Full data Reduced data
Map unit ST1! ST2 n ST1? n ST2 Acc® P14 TP2 n ST1 n ST2 Acc TP1 TP2
70 BB® RQ® 2000 35 0.998 1 0 75 35 0.7 0.9 0.26
3 BB BB/CF’ 2000 155 0.93 0.99 0.03 310 155 0.77 0.85 0.61
92 Ssé GG® 741 113 09 0.97 0.41 226 113 0.83 0.93 0.62
103 SS FF'0 741 85 0.95 0.98 0.67 170 85 091 0.94 0.85

Tsoil type1, 2 number of observations for soil type 1, > Accuracy (correctly classified instances),  TP1 = true positive (fraction of soil type 1, that is actually classified as soil type 1), °

Cambisol, ® Anthrosol, 7 Calcaric Cambisol, ® Stagnosol, ° Gleysol, '° Leptosols.

sufficient samples on the other (Japkowicz and Stephen, 2002). The
influence of an unbalanced dataset on model performance is pre-
sented in Table 2.

Even though the overall model performance calculated on the en-
tire data for the unbalanced dataset is better than for the reduced
dataset, the problem lies in the ability of the model to discriminate
between the two soil types. The evaluation of the different classes
separately is performed with true positive measure (TP). TP is the
fraction of a predicted class which is actually this class. Fitting a

A

group of map units

select specific soil
profiles from db

cforest() model

model validation

predicition on
specific map units

SR |

model on a highly unbalanced dataset which only predicts the over-
represented class one gets a high classification accuracy but TP=0
for the under-represented class (see map unit 70 in Table 2).

The entire modeling framework is illustrated in Fig. 4.

2.8. Field validation

In addition to the statistical model evaluation using the out-of-bag
error, we estimated model performance in addition on field validation

Fig. 4. lllustration of our modeling framework for spatial disaggregation of complex soil map units. We disaggregate only those map units which can be separated with terrain in-
formation. The map units were grouped according to their combination of soil types. For classification of soil types we select specific soil samples from a profile database. Statistical
modeling is performed with random forest. Model validation is estimated with the out-of-bag error (A). The soil map (B) will be stratified for prediction. We predict soil types only
in those areas that belong to a specific group of complex map units (C, D). To generate the final map we merge the single disaggregated parts to one soil map (E).
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data as suggested by Brus et al. (2011). Subsequent to modeling, soil ex-
perts described augered soil profiles on defined locations. The distribu-
tion of sampling locations followed a stratified random sampling
design. First, the study area was subdivided based on an official physio-
graphic classification of Bavaria (Wittmann, 1991). Within these areas,
sampling locations were randomly distributed over the entire predicted
area. In sum we got 1820 validation points.

We grouped the validation data according to the occurrence of soil
types in different map units to investigate which soil types could be
separated successfully.

3. Results and discussion
3.1. Statistical Modeling

Random forest models are estimated for each of the 104 grouped
map units. We calculated 500 trees in every random forest model
(the “ntree” argument in cforest). Random forest models with 1000
trees did not improve the performance (results not shown). The
models were stable mostly with less than 200 trees. The number of
randomly selected variables as candidates at each split (the “mtry” ar-
gument in cforest) was three as recommended by Hastie et al. (2009)
(mtry = square root of number of predictor variable).

43

The statistical validation of the models based on the out-of-bag
error showed misclassification rates ranging from 0.09 to 0.55 with
a median of 0.31. Compared to other digital-soil-class-mapping stud-
ies this are quite good results (cf., e.g., Hengl et al., 2007; Kempen
et al.,, 2009; Lemercier et al., 2012; Stum et al., 2010).

3.2. Prediction

After fitting the 104 random forest models, we applied these
models on the corresponding regions of the soil map in order to pre-
dict the occurrence probability of each soil type that is present in the
map unit.

Fig. 5 shows six examples of the final disaggregated soil map. Finally,
57% of the area have been predicted as a specific soil type (p>0.7),
whereas 43% have been predicted as ‘indifferent’.

3.3. External validation

Estimation of model performance on 1820 field validation points
gave an overall accuracy of 70% (1246 correct classified, 540 incorrect,
8 not usable due to erroneous profile descriptions).

The predictive performance depended on the number of available
profiles.
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Fig. 5. Six cutouts of our resulting disaggregated soil map. The polygons of the original soil map were shown in solid black lines. Map units which were not considered during down-
scaling (non-complex map units) were colored in white. Areas which were classified as indifferent (predicted probability for every soil type<0.7) were hatched.
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In Fig. 6 we plot the accuracy calculated on the field validation data
over the number of profiles for a given group of map units. We plot only
those groups of map units which have more than 15 validation points in
order to have reliable accuracy values. Accuracy increases roughly with
the number of calibration data. If the number of data points exceeds
350, this correlation disappears and the accuracy values becomes
more scattered. However, accuracy values always exceed 0.7. There
are two outliers in the plot. One with an accuracy of 0.44 and 1184 cal-
ibration profiles which is a map unit in which Stagnosols and Cambisols
with stagnic properties were grouped. And a second outlier with an ac-
curacy of 0.5 and 447 calibration profiles, which is a map units in which
Gleysols, deep soils and Stagnosols were grouped. Obviously, these two
groups of soil types are too similar regarding their topographical prop-
erties that they couldn't be separated well.

These findings are very promising and confirm our approach. It
seems that even better results are possible, if more profiles are available.

Fig. 7 shows a fluctuation plot, which is a graphical representation
of contingency table. The extent of a graph is proportional to count.
On the right hand side of the plot the numbers of correct and incor-
rect predicted validation points are listed.

12 out of 14 groups have more true predictions than false predic-
tions. For these 12 groups, we can conclude that separation between
groups of soil types is possible, however with different success, be-
cause prediction accuracy differs between the groups. Groups with
better reliability are those in which soils are highly influenced by to-
pographic characteristics, which was also reported by Debella-Gilo
and Etzelmiiller (2009). A high proportion of true predictions can
be found in groups which differ in the profile depth (deep soils vs.
shallow soil, initial soils vs. shallow soils) due to the strong depen-
dency of profile depth and terrain position. Also Histosols could be
predicted very successfully, since there is a strong influence of
water availability on their development which is in turn mainly con-
trolled by topography. Our results confirm findings of Seibert et al.
(2007) in Swedish forest soils, who could show a strong dependency
of Histosols with topography.
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Fig. 6. Classification accuracy calculated on field-validation data plotted over the num-
ber of profiles used for training. There is a relationship between model performance
and the number of profiles available for calibration. If the number of data points ex-
ceeds 350 this correlation disappears and the accuracy values becomes more scattered.
However, accuracy values always exceed 0.7.
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Fig. 7. Fluctuation plot of true and false predicted groups of map units. Numbers on the
right hand side indicates the count of true and false. The size of the figures is propor-
tional to the count of true and false which is displayed on the right hand side.

Except from Histosols and Stagnosols map units containing Gley-
sols could be separated the worst. Mainly because those map units
are located in flat valley bottoms where no variability in terrain exists.
Therefore, discrimination based on terrain attributes becomes ex-
tremely difficult. Similar to Histosols, the discrimination of Gleysols
vs. Stagnosols is strongly influenced by the availability of groundwa-
ter and surface water respectively, which depends on topography and
could therefore be executed successfully.

With the introduction of a threshold at P> 0.7 for the prediction of
soil types we are able to generate results with high accuracy as shown
with the field validation data. On the other hand, 43% of the predicted
area classified as “indifferent” is not optimal for our purpose. To capture
this problem we might reduce the threshold and thereby minimize the
indifferent area. The threshold can be reduced until the indifferent class
disappears completely and prediction is made on the highest class prob-
ability (P> 0.5). Prediction in such a way is done in many studies (e.g.
Behrens et al., 2010; Debella-Gilo and Etzelmiiller, 2009; Grinand
et al.,, 2008). However, prediction performance has then to be estimated
in more detail on additional validation data which were not available at
the moment. Response surface plots (Figure 8) indicate less accurate
predictions at smaller probabilities.

3.4. Plausibility check
Finally we calculated the variable importance for each predictor

variable in all 104 random forest models and visualized response sur-
faces for every soil type of the models. This procedure provides
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Fig. 8. Variable importance plot (top), response surfaces (middle), and exemplary cutout of the soil map for two randomly selected groups of soil units. In the response surface plots
the probability of a specific soil type is plotted over the two most important predictor variables in the model. Coloring of the response surfaces indicates our probability thresholds
(P>0.7,0.7>P>0.3, P<0.3). The area of the response surface between the thresholds indicates unspecified predictions (“indifferent”). The plots were used to validate our models.
We checked if soil types are located where we expected them following our expert knowledge. The plots confirm our expectations, e.g. shallow Leptosols in exposed position where
erosion occur (group 103), Anthrosols at footslopes where soil material is accumulated, and Gleysols in area with low vertical distance to channels (group 58). “fpi” =flood plain
index; “fpi2” = modified flood plain index; “hut” =relative height; “twi” = topographic wetness index; “mbi” = mass balance index. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

reasonable insights on how the soil types depend on the topographic
attributes, which were the relevant attributes in the model, and
where specific thresholds can be found. Response surface plots are
an effective tool to display model behavior and thresholds in more
than one dimension (Elith and Graham, 2009; Lintz et al., 2011).

During this procedure we also checked whether our soil units
were predicted in those landscape positions where expert knowledge
would expect them. For example, a map unit consisting of Cambisols
and Leptosols we would expect to find Leptosols with shallow soil
depth on exposed positions with high slope angle and mass balance
index where erosion occur. Cambisols, on the other hand, should be
located in flat areas with a low mass balance index, i.e. those areas
where the development of Cambisols is not disturbed by erosion
processes

Fig. 8 shows the variable importance, response surfaces for the
two most important variables in the model, as well as an exemplary

cutout of the soil map for that particular group for two specific groups
of soil units.

All plots reveal meaningful dependencies between soil types and
topography. In group 103, Stagnosols and Leptosols were aggregated.
The plots show a high importance of flood plain index (fpi) and slope
gradient (see Figure 3). The remaining parameters have only margin-
al influence on the model. The response surfaces show high probabil-
ity for Leptosols for high value of flood plain index and slope gradient,
i.e. exposed terrain positions such as steep backslopes. Stagnosols are
influenced mainly by the flood plain index. Slope gradient has no ef-
fect on Stagnosols in group 103. These dependencies can also be iden-
tified in the map cutout.

Gleysols and Anthrosols, which were aggregated in group 58,
could be discriminated mostly by the vertical distance above a chan-
nel (hut), the midslope position, and slope gradient. Anthrosols can
be found at footslopes where eroded material is accumulated (high
midslope). On the other hand, Gleysols have their highest probability
in areas with low vertical distances to channels. In the map cutout,
Gleysols were located in the flat and inner areas of the original map
polygon. Anthrosols could be found at the bottom of slope gradients
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Fig. 9. The overall variable importance estimated over all 104 random forest models. We counted how often a predictor variable is one of the two most and the two least important

predictors in all models.

where colluvium has been deposited. The area between these two
landscape positions is classified as indifferent.

3.5. Global variable importance

Lastly we evaluated the variable importance of all predictor vari-
ables over all 104 random forests. Therefore, we counted how often
a variable is one of the two most important predictors in a model
and how often a variable is one of the two least important predictors.
These frequencies are plotted in Fig. 9.

The plots show patterns which complements one another. Flood
plain index (fpi), slope gradient, relative height (hut), and modified
flood plain index (fpi2) are frequently one of the two most important
predictors in a random forest. Midslope position and mass balance
index (mbi) are only selected nine and eleven times respectively as
one of the two most important predictors in all models. However,
these two predictors are very frequently one of the two least impor-
tant predictors and the remaining five are all less than 20 times part
of this group. We found no preference of using either local parameter
(slope gradient, mass balance index) or regional parameters (all the
remaining) as important variable. This suggests that both small
scale variations as well as landscape scale patterns provide important
information in our approach.

4. Conclusions

High-resolution spatial information of soils and soil properties are
essential for many application areas in environmental sciences. Soil
maps provide the main information on soils. We demonstrate a meth-
od for the spatial disaggregation of existing soil maps for providing
soil information on higher resolution. Our focus lies on soil map
units in which two or more different soil types were aggregated
into one map unit.

We found a significant influence of topography on the spatial ar-
rangement of soil types. By comparing different soil types we found
a characteristic topographical fingerprint for each soil type. These to-
pographical differences were quantified with unbiased random forest
models.

Future work will focus on the selection and assignment of soil pro-
file data with representative soil physical and soil chemical properties
to the disaggregated and thereby newly generated map units. Soil
property maps will be generated by calculating mean values for
each map unit. In those areas, in which the models predict the new
“indifferent class”, a mean value of the former entire map units is
assigned, as it was before disaggregation.
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Predicting Ellenberg’s soil moisture indicator value in
the Bavarian Alps using additive georegression

Tim Haring, Birgit Reger, Jorg Ewald, Torsten Hothorn & Boris Schréder

Abstract

Questions: Can forest site characteristics be used to predict Ellenberg indicator
values for soil moisture? Which is the best averaged mean value for modelling?
Does the distribution of soil moisture depend on spatial information?

Location: Bavarian Alps, Germany.

Methods: We used topographic, climatic and edaphic variables to model the
mean soil moisture value as found on 1505 forest plots from the database
WINALPecobase. All predictor variables were taken from area-wide geodata
layers so that the model can be applied to some 250 000 ha of forest in the target
region. We adopted methods developed in species distribution modelling to
regionalize Ellenberg indicator values. Therefore, we use the additive georegres-
sion framework for spatial prediction of Ellenberg values with the R-library
mboost, which is a feasible way to consider environmental effects, spatial auto-
correlation, predictor interactions and non-stationarity simultaneously in our
data. The framework is much more flexible than established statistical and
machine-learning models in species distribution modelling. We estimated five
different mboost models reflecting different model structures on 50 bootstrap
samples in each case.

Results: Median R? values calculated on independent test samples ranged from
0.28 to 0.45. Our results show a significant influence of interactions and non-
stationarity in addition to environmental covariates. Unweighted mean indica-
tor values can be modelled better than abundance-weighted values, and the
consideration of bryophytes did not improve model performance. Partial
response curves indicate meaningful dependencies between moisture indicator
values and environmental covariates. However, mean indicator values <4.5 and
>6.0 could not be modelled correctly, since they were poorly represented in our
calibration sample. The final map represents high-resolution information of site
hydrological conditions.

Conclusions: Indicator values offer an effect-oriented alternative to physically-
based hydrological models to predict water-related site conditions, even at
landscape scale. The presented approach is applicable to all kinds of Ellenberg
indicator values. Therefore, it is a significant step towards a new generation of
models of forest site types and potential natural vegetation.

management. However, realistic estimates of temporal and
spatial patterns of soil moisture are challenging, in particu-

Soil hydrological conditions represent an essential ecologi-
cal gradient controlling plant species composition and dis-
tribution. A deficit in soil moisture is often the most
important stress factor for vegetation. Therefore, detailed
knowledge on the spatial variation of hydrological condi-
tions is essential for sustainable and site-specific ecosystem

lar in complex terrain where increased diversity in topo-
graphic, land use, soil and climate conditions results in
large variations in soil water availability (Jasper et al.
2006). Generally, physical-based hydrological models are
used to quantity these variations. A multitude of ditferent
approaches and models has been developed in the last
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decades (cf. Lane 1998; Praskievicz & Chang 2009 for an
overview). To quantify and visualize the spatial variations
of soil hydrological conditions several studies aim to link
geographic information systems (GIS) with process-based
models, e.g. WaSim-ETH (Jasper et al. 2006), the SVAT
model PROMET with a modified version of TOPMODEL
(Ludwig & Mauser 2000), BROOK90 (Schwarzel et al.
2009) or others (Fitz et al. 1996; Aspinall & Pearson 2000;
Schroder et al. 2008).

Although being conceptionally different, all of the above
models have in common simulation of the temporal
change in soil water content. Their main intention is not to
predict spatially explicit patterns of soil moisture, but to
dynamically quantify the water balance of river basins. In
addition, hydrological models usually operate at the scale
of a specific river catchment and are therefore spatially
restricted. Moreover, they need a wide set of calibration
data, which are seldom available for larger study areas.
These characteristics make process-based hydrological
models impractical for site-specific ecosystem manage-
ment, especially if the area of interest covers more than
one catchment and if the required data are not available.

In this study, we present a new approach for spatial
modelling of ecologically effective hydrological conditions
based on vegetation data. We use Ellenberg indicator val-
ues for moisture as the response variable in a sophisticated
statistical modelling framework. Indicator values have
been widely used in vegetation science, forestry and land-
scape ecology as proxies for environmental conditions
(Diekmann 2003). Each indicator species in the Central
European flora is assigned an ordinal value on a nine-point
scale (Ellenberg et al. 2001). Indicator values of sample
plots are calculated by (weighted or non-weighted) aver-
aging moisture values for all species, thus assigning the plot
to a relative position on the hydrological gradient. Other
indicator values are available, e.g. for light (L), soil reac-
tion/pH (R) and nutrients (N). Applications range from
comparison of environmental conditions between sites to
the analysis of temporal changes in environmental condi-
tions (cf. Diekmann 2003). Thus, indicator values are
usually used to draw conclusions from plant species com-
position on the site conditions prevailing on a plot.

Regression of indicator values against measured envi-
ronmental variables is a common method of assessing the
quality of indication (Schaffers & Sykora 2000; Wamelink
et al. 2002; Diekmann 2003; Ewald 2003), and species
response curves of individual species have been used to
refine the indicator value system (Wamelink et al. 2005).
In both cases, indicator values serve to replace costly on-
site measurements: indicator values serve to estimate soil
conditions in plot locations.

Predicting indicator values from spatial environmental
data has a fundamentally different purpose. Here, indicator
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values that have been sampled in plots are projected onto
larger landscapes based on coarser geodata describing
relief, climate and soils, i.e. the best combination of envi-
ronmental predictors serves to extrapolate maps of the bio-
tic response. So far, spatial modelling of indicator values
has rarely been based on advanced statistical approaches,
whereas the latter have been widely applied in species dis-
tribution modelling (SDM, Elith et al. 2006; Franklin
2010). Due to restricted availability of environmental pre-
dictors, studies predicting indicator values have covered
only small study areas and/or specific habitats, e.g. mires.
Thus, Schmidtlein & Sassin (2004) and Schmidtlein (2005)
extrapolated indicator values for soil moisture, soil pH and
soil fertility from 46 point observations to an area of about
2.5 km? using airborne hyperspectral images with partial
least squares regression. Feldmeyer-Christe et al. (2007)
and Ecker et al. (2008, 2010) performed several studies on
mires in Switzerland using topographic and remote sensing
data to model mean indicator values calibrated against veg-
etation plots.

To our knowledge, the study of Reger et al. (2011) is the
only one to model indicator values on a larger landscape
with more heterogeneous environmental conditions. They
mapped the effects of temperature and radiation on forest
vegetation, expressed as indicator values for temperature,
in forests of the Bavarian Alps using multiple linear regres-
sion with climatic and topographic predictors. In this study
we extend the approach of Reger et al. (2011) to model
moisture values in the Bavarian Alps. We consider mois-
ture as a far more complex gradient than temperature for
two reasons: (1) it involves a much larger set of environ-
mental covariates of relief, climate and soil and their inter-
actions, and (2) it is influenced by different, but
overlapping, physiological constraints like shade, drought
and waterlogging (Niinemets & Valladares 2006). Thus,
modelling moisture values requires a more flexible model-
ling framework such as additive georegression performed
with the R library mboost (R Foundation for Statistical
Computing, Vienna, AT). By doing so, we are able to pre-
dict the site-specific vegetation response to moisture condi-
tions at the landscape scale and produce a map of
Ellenberg mean moisture values.

In the last decades, considerable progress has been made
in the development of statistical models especially for appli-
cation in SDM (Guisan & Zimmermann 2000; Elith et al.
2006; Hastie et al. 2009). In SDM, the distribution of one
or several species is related to environmental conditions by
applying advanced statistics or machine learning tech-
niques. Since model parameters are estimated from obser-
vation data, the quality of SDM depends on the quality,
grain, and extent of the data (Guisan et al. 2007; Graham
et al. 2008). Besides good data, the statistical approach
must deal with the complex nature of environmental data.
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Hothorn et al. (2010) developed the boosting-based addi-
tive georegression model framework, which has been
shown to be an optimal modelling technique for environ-
mental studies because it is the first approach to deal with
all possible complexities of SDM at the same time: nonlin-
ear relationships and interactions between predictors, spa-
tial autocorrelation and non-stationarity (Hothorn et al.
2011; Schmid et al. 2011).

In this study, we used this statistical framework to pre-
dict indicator values for moisture at high resolution and
large extent. Combined with comparable regionalizations
of temperature (Reger et al. 2011) and soil nutrient status,
the moisture parameter will serve to map forest types with
equal site conditions and potential natural vegetation
(B. Reger, T. Haring & J. Ewald, Submitted).

Methods
Study area

The study area comprises the Bavarian Alps, a mountain
range in Southern Germany with an area of ca. 4600 km?
(Fig. 1). The mountain range is characterized by a long
altitudinal gradient, from the Saalach valley (470 m a.s.l.)
to Germany’s highest mountain (Zugspitze 2962 m a.s.l.).
The climate is cool humid, with mean annual temperature
decreasing from 9 °C at lower elevations to —4 °C at the
summits and annual precipitation ranging from 1175 up to
2800 mm. Due to geological diversity, the Bavarian Alps
are characterized by a rich mosaic of soil types. Thus, lime-
stones give rise to lithic as well as rendzic leptosols, histo-
sols and terrae fuscae, whereas cambisols, stagnosols and
gleyosols are widespread on sandstone, mudstone and
marl (classification according to IUSS Working Group
WRB 2007).

Predictor variables

We used climatic, edaphic and topographic data as predic-
tor variables for statistical modelling (Table 1). The predic-
tor variables were selected for their potential relevance to
model soil moisture.

Information on climate conditions was derived from
monthly climate maps of Bavaria with a spatial resolution
of 50 m (Hera et al. 2012). Climate maps were spatial
interpolations based on daily measurements from 82 cli-
mate stations for the period 1971 to 2000 obtained from
the German Meteorological Service (DWD), of which 14
were located in the Bavarian Alps. Monthly temperature
and precipitation maps were used to calculate mean tem-
perature and precipitation in the vegetation period (May—
September).

We used the official soil map of Bavaria (Bavarian Envi-
ronment Agency, ‘Ubersichtsbodenkarte’ UBK25, http://
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www.lfu.bayern.de), with a map scale of 1:25 000, to
derive information on soil properties. As the soil map does
not cover the entire study area, we used the concept of digi-
tal soil mapping to fill the gaps (McBratney et al. 2003;
Haring Accepted). In digital soil mapping, statistical models
are used to quantify functional relationships between the
spatial distribution of soils and different environmental
predictors, such as geology and topography. These models
can be used to predict soil map units in areas where no soil
map is available. Accuracy estimates with independent val-
idation data of the predicted soil maps in our study area
range between 50% and 80% correctly classified instances.
In addition to the statistical validation, an extensive field
campaign revealed the same mean accuracy from ground-
truth data (Haring & Schroder 2010). By combining the tra-
ditionally mapped soil map of the Bavarian Environment
Agency (LfU) and the predicted soil map, we obtained a
homogeneous soil map for the entire study area.

Information on soil physical or soil hydrological proper-
ties were attached to the soil map by assigning data of rep-
resentative soil profiles to every single soil map unit. Soil
attributes of interest for this study are saturated soil
hydraulic conductivity, depth of a slowly permeable hori-
zon, available water capacity and air capacity.

Terrain characteristics were obtained by calculating
different topographic attributes (Hengl & Reuter 2009;
Table 1) from a digital surface model (DSM) of the Bavar-
ian Topographical Survey with a resolution of 10 m. The
DSM is based on airborne laser scan measurements using a
LiDAR system. Errors and anthropogenic elements such as
roads or settlements in the DSM were eliminated to obtain
a digital elevation model before calculating topographic
attributes.

Following Ewald (2009) we transformed aspect to an
ecologically meaningful variable on a scale from —1 (ther-
mally least favoured, NNW-exposed slopes, approximately
22.5°) to 1 (thermally most favoured, SSE-exposed slopes,
approximately 202.5°).

Response variables

Hydrological site conditions were tested against the
response of forest vegetation composition towards mois-
ture, as summarized by Ellenberg indicator values for
moisture given in Ellenberg et al. (2001) for all vascular
plants and bryophytes. Ellenberg indicator values for mois-
ture are part of an expert system, which ranks all Central
European plant species according to empirical knowledge
on an ordinal nine-point scale (Table 2).

The indicator values were assigned to 904 vascular
plants and 238 bryophytes recorded in 1505 georeferenced
vegetation plots (Fig. 1) from the database WINALPeco-
base (Reger et al. in press). The database is an ecological
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Fig. 1. Location of the 1505 vegetation plots of the database WINALPecobase within the study area (Reger et al. In press). Data source: Digital elevation

model from the Bavarian Surveying Administration (LVG).

repository for forest vegetation with a concomitant soil
profile description in the Bavarian Alps. The sampling was
conducted in a combined systematic and stratified design
in order to ensure representative, multivariate, spatially
balanced data recording. Vegetation plots were organized
in transects of five samples each. Starting positions of the
transects were chosen from the grid of the second National

Table 1. Description of the climate, edaphic and topographic variables
derived from climate maps, soil maps and digital elevation models.

Predictor variable Min Mean (£SD) Max
Climate variables
Mean temperature 7.68 11.68 (1.45) 15.59
in the growing season
(May-September) (°C)
Mean precipitation in the 586 958 (132) 1398
growing season
(May-September) (°C)
Topographic variables
Aspect (modified) —1 —0.07 (0.68) 1
Slope (°) 0.15 25.11 (14.1) 65.05
Flood plain index 0.38 1.54(0.55) 2.55
Vertical distance to 0 49.06 (155.6) 639.37
channel network
Mid-slope position 0 0.52(0.28) 1
Topographic wetness 2.09 5.65(2.34) 20.77
Index
Plan curvature 0 0.036 (0.0083) 0.077
Profile curvature 0 0.021 (0.0099) 0.037
Soil variables
Available water 54.6 128.2(73.7) 600
capacity (mm)
Hydraulic conductivity 2.87 31.67 (19.3) 108.68
(cm-d™
Aeration capacity (mm) 17.19 78.79 (32.7) 250
Depth of an 16 127 (25.8) NA

impermeable layer (cm)
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Forest Inventory (NFI 2, Bundeswaldinventur) in Germany,
with points spaced 4 x 4 km or 2 x 2 km in two sub-
regions. Each NFI position consists of four coordinate
points with a distance of 150 m, of which at least one is
located in a forest stand. The first vegetation plot was ran-
domly selected out of one to four possible coordinate points
of the NFI 2 square. The selected plot was the starting point
of a contour line of ca. 2-km length. The contour line was
field-inspected by a joint team consisting of a vegetation
and a soil expert and classified into ecologically homoge-
neous segments according to the forest type classification
of Ewald & Binner (2007). Four additional plots were
placed to represent the different site types present along
the line. Plot locations were chosen in mature stands with
tree layer composition and structure corresponding as clo-
sely as possible to the natural vegetation of the forest types.

In plots of 14 x 14 m, all soil-dwelling vascular plants,
epigeic bryophytes and lichen species and their cover (six-
point scale simplified after Braun-Blanquet 1964) were
recorded, with woody species separated into four vertical
vegetation layers.

Following common practice (Schaffers & Sykora 2000;
Diekmann 2003), Ellenberg values of all species in the plot
were averaged by calculating (1) log-abundance weighted
averages of indicator values for soil moisture based on
vascular plants and bryophytes; (2) log-abundance
weighted averages of indicator values for soil moisture
based on vascular plants; (3) unweighted averages of indi-
cator values for soil moisture based on vascular plants and
bryophytes; and (4) unweighted averages of indicator val-
ues for moisture based on vascular plants. The four vari-
ants of average indicator values for moisture were highly
correlated (ranging between r = 0.92 and r = 0.97) and
were used as alternative response variables in our analyses
(cf. Reger et al. 2011).
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Table 2. Definition of Ellenberg indicator values for moisture.

Ellenberg Description

value

1 Indicator of strong drought, viable under frequent
desiccation and restricted to dry sites

2 Transitional between 1 and 3

3 Absent from moist soils

4 Transitional between 3 and 5

5 Indicator of mesic conditions, optimum on soils of
intermediate moisture, neither on wet nor on
droughted soils

Transitional between 5 and 7

7 Indicator of moist conditions, optimum on moist soils
without permanent waterlogging

8 Transitional between 7 and 9

9 Indicator of wetness, ecological optimum under frequent

waterlogging and poor aeration

Statistical modelling

According to Hothorn et al. (2011) complexities in envi-
ronmental data can be classified into three groups: (1)
nonlinear relationships and interactions between predic-
tors, (2) spatial autocorrelation, and (3) non-stationarity.
Spatial autocorrelation addresses the small-scale variability
of observations, i.e. observations that are close in space are
more similar to each other than the corresponding envi-
ronmental conditions would suggest (Legendre 1993).
Spatial non-stationarity describes relationships that are not
constant across space (Miller & Hanham 2011), meaning
that the influence of, e.g. slope on the Ellenberg moisture
value is not global but may vary across our study area. All
three issues can have an influence on the statistical model
if they are present in the data, and thus might lead to
biased estimates of model parameters (Dormann et al.
2007) and misleading conclusions on site ecological char-
acteristics. The modelling framework applied here allows
for inclusion of terms dealing with all three issues simulta-
neously by decomposing the predictor into several compo-
nents (cf. Hothorn et al. 2011). As response variable, we
used the weighted and non-weighted mean soil moisture
values calculated on vascular plants or on vascular plant in
addition to bryophytes as dependent variables, which are
on a continuous scale and fit the model by optimizing the
squared error loss.

In order to represent all significant effects in the final
model, i.e. environmental covariates, spatial etfects, inter-
actions and non-stationarity, we fitted four separate
regression models to check each effect. In each model, spe-
cific model components were included. In the first model,
we only used all environmental covariates listed in Table 1
(covar), assuming that the regression effects are constant in
space. In order to consider non-linear relationships
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between moisture values and the environmental predic-
tors, we used smoothing splines as base-learners. To
account for spatial dependency between neighbouring
plots, we included a smooth two-dimensional surface
function that quantifies spatial effects in the second model
(covarspatial) in addition to the environmental predictors.
A P-spline tensor product surface depending on the geo-
graphic coordinates of the vegetation plots was included as
separate base-learner (see Kneib et al. 2008). The third
model used decision trees instead of smoothing splines as
base-learners (tree) and is equal to the well-established
boosted regression tree model (Elith et al. 2008). With the
tree model we checked for interactions between predictor
variables. To allow for non-stationarity of the environmen-
tal variables, we included additionally spatially varying
effects for every variable in the fourth model (vary).
Table 3 gives an overview of the structure of the different
models.

Our final model, which is used for prediction, combined
all significant model components into one model. In order
to keep the model as parsimonious as possible, we applied
a variable selection procedure called stability selection, as
proposed in Meinshausen & Biithlmann (2010). This proce-
dure is also included in the mboost package and has the
advantage of improving the intrinsic variable selection
properties of boosting, independent of specific assump-
tions, as well as being comprehensible for the user.

Validations of the regression models were conducted by
bootstrap sampling of the 1505 plots. Two-thirds of the
data were used as calibration data and one-third for valida-
tion. Using the calibration data, we fitted the regression
models and calculated the R* between observed and pre-
dicted mean moisture values of the validation data set. In
order to obtain stable results, we repeated this procedure
50 times.

Statistical modelling was carried out with the mboost
package (v. 2.0-11) for R (version 2.13.2; R Foundation for
Statistical Computing). Spatial prediction was made with
the R package raster (v. 1.8-39). Terrain analysis was con-
ducted with SAGA GIS (v. 2.0.7).

Table 3. Model structure, i.e. model components and base-learner, in all
five models used in our study.

Model Model components Base-learner
structure
Environmental  Spatial ~ Non-stationary — Spline  Tree
effects effects  effects
covar X X
covarspatial ~ x X X
tree X X
vary X X X X
final X X X X
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Results

We first investigated the prediction accuracy of the five
different models, i.e. the ability of the models to predict
moisture values for independent validation data. Fig-
ure 2 shows R? values of the 50 replicates for each of
the five regression models and for all four response val-
ues. The plots were grouped according to the model
structures. Colours of the boxplots indicate the four
mean moisture values. Figure 2 illustrates three different
findings.

First, there are interactions between the predictors as
well as spatially varying effects present in the data. The
covar model, which neither accounts for spatial autocorre-
lation nor interactions, nor non-stationarity, exhibits the
worst performance. Since the R? of the covarspatial model is
only negligibly better than the covar model, we can con-
clude that there are no effects of spatial autocorrelation in
our data. However, interactions are present, because the
tree model shows a significantly better fit. Moreover, spa-
tially varying effects of the environmental variables seem
also to be present in the data that cannot be modelled by
the tree model. Therefore, the vary model outperforms the
tree model. Our combined final model has the highest R
values. Best results were achieved for unweighted mean
values calculated on vascular plants alone. We found a sig-
nificant influence of interaction effects as well as non-sta-
tionary effects.

Although the five model approaches differ in the magni-
tude of their R? the overall pattern of the boxplots
between these five groups remains. In all five model
approaches unweighted mean moisture values can be bet-
ter modelled than weighted values. Finally, the consider-
ation of bryophytes does not improve model performance.

Additive georegression of soil moisture indicator values

Considering the unweighted values, the R* values are even
higher for vascular plants compared to vascular plants plus
bryophytes.

The final model, with unweighted mean moisture
values calculated only for vascular plants as dependent
variable, was used for predicting a map of regionalized
Ellenberg indicator values. In this final model, topo-
graphic, climate and soil parameters are used as predictor
variables. The applied variable selection procedure reduced
the model effects to nine significant variables. The remain-
ing less- or non-informative variables are not considered.
Partial contributions of all selected environmental vari-
ables are given in Fig. 3. All selected non-stationary effects
are shown in Appendix S1; the resulting map is presented
in Fig. 4.

Response curves (Fig. 3) indicate meaningful depen-
dencies between Ellenberg’s moisture values and environ-
mental covariates. Light grey lines correspond to partial
contributions of the 50 bootstrap samples. Mid-slope posi-
tion between 0.3 and 0.7, i.e. footslope positions where soil
water is accumulated, has a positive effect on moisture val-
ues. Areas with lower precipitation and higher tempera-
tures were modelled as sites with lower indicator values.
Warmer and drier SSW-exposed slopes (aspect = 1) have a
negative effect on moisture conditions, in contrast to the
positive effect of NNE-exposed slopes (aspect = —1).
Increasing plan curvature values, i.e. exposed topographic
positions with increasing convexity like ridges, have a neg-
ative effect on moisture values. Floodplains (small values
for flood plain index) tend to have higher moisture values.
Increasing flood plain index has a negative effect. Steep
slopes have a strongly negative effect on moisture condi-
tions. Positive effects were also present in soils with avail-

Covar Covarsp Tree

Vary

0.50

0.45+

0.40
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R? - validation data
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Fig. 2. The R? values of 50 replicates grouped according to five different mboost models (covar, covarspatial, tree, vary, final). Shading of the boxplots
indicates the four different mean moisture values. Our final model, which includes environmental covariates, interaction terms (by means of decision trees)
and spatially varying model components performs best. Unweighted mean moisture values give better results compared to weighted values. The

consideration of bryophytes does not improve model performance.
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Fig. 3. Response curves for the 50 replicates of the final mboost model with unweighted mean values of vascular plants as response values. The black line
indicates the mean response of the 50 bootstrap samples. Higher magnitudes of the coefficients indicate higher importance for modelling moisture values.

able water capacity exceeding 115 mm and hydraulic con-
ductivity >46 mm-d~'. Concerning the magnitude of the
marginal effects, slope, plan curvature, flood plain index
and temperature had the highest impact in our final
model.

In addition to the environmental model components,
spatially varying model effects have a significant effect
on soil moisture distribution. Appendix S1 shows these
effects, in which blue shading represents areas where
the corresponding covariates have a positive effect,
whereas red shading represents areas where the impact
is negative. All maps show high spatial variability, indi-
cating that the soil moisture—environment relationship is
dependent on the absolute location in space. Most rela-
tionships coincide with physiography (mid-altitudinal
ranges in the N part, high altitudes in the S; cf. Fig. 4).
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Only aspect shows a strong gradient in E-W direction.
The probability of high moisture values is higher in the
W part of the study area compared to areas with the
same exposure in the E, i.e. slopes exposed to the N are
moister in the W part of the study area than in the E
(assuming all other environmental conditions as con-
stant). Relative elevation has a slight positive effect in
high-altitude areas, as well as plan and profile curvature.
However, the effects of both curvature covariates are
much higher. Small-scale topographic variations play an
important role of soil moisture conditions in mountain-
ous regions, where exposed ridges and water-accumulat-
ing valleys can alternate within a short distance.
Precipitation reveals a strong, spatially varying pattern;
however, the magnitude of effect is much less compared
to the other covariates.
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Fig. 4. Predicted mean moisture value (unweighted mean of vascular plants) for the Bavarian Alps. The prediction is made on a 10-m grid and is displayed

draped over a hillshade (© Elevation data: Bavarian Topographical Survey).

The resulting map (Fig. 4) shows high variability across
different topographic and edaphic conditions. Areas with S
and SW exposure, where potential insolation is high,
slopes steep and ridges exposed, are modelled as drier
areas.

Figure 5 shows the predicted mean moisture values
plotted against the observed values for the calibration and
validation data. The plot indicates a promising correlation
for indicator values between 4.5 and 6.0. However, predic-
tion accuracy decreases for extremely dry and extremely
wet areas, which are under- or overestimated. This may be
due to a weak sample for these sections of the gradient.
Mean moisture for vascular plants has a 5% quantile of
4.64 and a 95% quantile of 6.06 in our data set.

Discussion

Forest ecosystems are very likely to be influenced by cli-
mate change (Kelloméki & Leinonen 2005; Maracchi et al.
2005), especially in areas that are highly vulnerable to
changing environmental conditions, like mountainous
regions (Parry et al. 2007). Future forest management
therefore requires, among other things, detailed informa-
tion on site ecological conditions to adapt forests to future
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conditions in a sustainable way (Seidl et al. 2011). Various
approaches to assess and classify climate and soil condi-
tions are available (Barnes et al. 1982; Pojar et al. 1987;
Wilson et al. 2001); however, these approaches are rather
qualitative frameworks to classify site ecological condi-
tions. The consequent implementation of these frame-
works in maps, which was identified as the ‘heart of
(Barnes et al. 1982), is rare or at least
remains in the qualitative implementation of rule-sets in a
GIS (Clare & Ray 2001).

Predictive vegetation mapping (Franklin 1995) or, more
generally, SDM, provide methods to generate quantitative
and reproducible maps of site conditions. The spatial distri-

classification”

bution of soil moisture conditions in the Bavarian Alps
could be successfully predicted across space by combining
statistical models with spatially explicit data in a GIS envi-
ronment. However, our results point to the need for a
modelling framework that accounts not only for the
species—environment relationship, as in the majority of
currently available models (Franklin 2010). Small-scale
(spatial autocorrelation) and large-scale (non-stationarity)
influences of spatial dependencies have proven to be
essential components of species—environment relation-
ships (Foody 2004; Miller & Hanham 2011).
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Fig. 5. Predicted mean moisture values plotted against observed values.
Grey points are calibration data, black points are independent validation
data. The R? of validation data is equal to calibration data, showing a good
fit to the data.

Figure 2 reveals that best results can be achieved
when combining environmental covariates with spa-
tially varying model effects and interaction terms. In the
traditional statistical framework for vegetation model-
ling, vegetation response is related to a set of environ-
mental predictors without considering any spatial
information or dependencies. Nevertheless, there are
spatial patterns that can be explained by predictor
variables in models, like precipitation, temperature and
elevation, which can exhibit a high spatial dependency
(Miller et al. 2007). However, our results show a clear
improvement of model performance when considering
spatial information. This implies that not all spatial
dependencies of our response could be modelled with
environmental predictors alone. One commonly noted
feature is that biogeographic patterns appear to vary as a
function of space on ditferent scales (Foody 2004; Miller
& Hanham 2011). In the feature selection algorithm
applied to the final model selected — besides environ-
mental variables in a tree as base-learner — only three
variables (mid-slope position, available water capacity,
hydraulic conductivity) are included as spline functions
(comparable to the traditional GAM) in the model,
whereas five variables were selected as being non-sta-
tionary, i.e. spatially varying effects (precipitation,
aspect, plan curvature, profile curvature, vertical dis-
tance to channel network; cf. Appendix S1).

Untreated spatial information might not only lead to
lower model performance (Foody 2004; Hothorn et al.

T. Héring et al.

2011) but also to biased estimates (Legendre & Legendre
1998; Lennon 2000). Therefore, applying models in SDM,
which accounts for spatial dependencies, like mboost, has
provided an important enhancement (Lichstein et al. 2002;
Foody 2004; Hothorn et al. 2011; Miller & Hanham 2011).

Our models achieved only slightly higher levels of
explained variance than the simple linear regression mod-
els used by Ewald (2003, 2009). Although in the same
region, both of these studies were based on a different data
set, vegetation plots and soil profiles than used in the pres-
ent study. The first study used available soil water capacity;
while the second used a more complex predictor variable
that logically combined water storage and topographical
position. Strikingly, soil variables appeared much more
important than in our study. This could be explained by
the fact that we had only extremely coarse soil information
available, derived from sample profiles representing entire
mapping units. The quality of prediction in our model
depends mostly on topographic and climatic variables and
their interactions and local weighting, while the rather
general soil information makes a minor contribution (cf.
magnitude of partial contribution in Fig. 3). Taking this
into account, our study demonstrates the considerable pre-
dictive power of the mboost model, especially for spatial
predictions. However, detailed data sets as used in Ewald
(2003, 2009) are not useful for our purpose because they
are only available for sampling locations. Spatial prediction
studies require environmental variables that are available
as spatial GIS layers.

As already shown by Reger et al. (2011) for temperature
indicator values, unweighted moisture values can be mod-
elled slightly better with environmental predictors than
log abundance-weighted indicator values. The fact that
qualitative (presence/absence) information outperforms
quantitative data indicates that variation in abundance is
partly caused by unmeasured predictors such as distur-
bance, browsing pressure and successional status (Ewald
2008). Moreover, recording cover is more prone to errors
than species identification (Wilson 2011).

The non-significant contribution of bryophytes to indi-
cators based on Ellenberg values of vascular plants has also
been reported in Ewald (2009) and Reger et al. (2011) for
the Bavarian Alps. Ewald (2009) suggested two reasons for
this: (1) bryophytes may respond to environmental vari-
ables not commonly measured (e.g. air humidity), and (2)
their indicator values may be partly mis-calibrated. We
therefore used vascular plant-based indicator values.

Conclusion and outlook

Our modelling approach has two remarkable properties: it
finds optimal parameters and interaction terms among a
typical set of physiographic predictors by regressing them
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onto the moisture-specific component in plant composi-
tion. We show that this is possible even at landscape scale
in a study area with an extent >4500 km?, thus offering an
effect-oriented alternative to climatological, hydrological
and physiological models. It makes the best of those predic-
tors that are available for broad-scale regionalization in
GIS and, in the face of the obvious weaknesses of soil
predictors, achieves remarkable levels of prediction. The
mapping of ecological gradients is a significant step towards
a new generation of models for forest site types and poten-
tial natural vegetation.
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produced the same spatial pattern of predictions. Spatial effects had an impact only in
the first model. The main drawback of mean R-values is the oversimplification of
complex conditions of soil reaction, which is entailed by averaging and regression to
mean values. Therefore, regionalized average indicator values provide only limited
information on site-ecological characteristics. Model 1 failed to predict the range and
shapes of original indicator spectra precisely. In contrast, the second model provided
a more sophisticated picture of soil reaction. To make the multivariate output of
model 2 comparable to that of model 1, we propose to plot the distribution in a three-
dimensional color-space. In addition, comparison of both models based on a multiple
linear regression model resulted in a R* of 0.93. The proportional odds model is a
promising approach also for other indicator values and different regions as well as for
other ordinal-scaled ecological parameters.

Keywords Boosting - Geo-additive regression - Proportional odds model - Spatial effect -
Species distribution modeling

Introduction

Indicator values of plant species (Ellenberg et al. 2001) have widely been used in the
assessment of site-ecological conditions (Hawkes et al. 1997; Diekmann 2003). They
were assigned to plant species along a nine-point ordinal scale according to their
estimated ecological optima on different environmental gradients (Kéfer and Witte
2004). The possibility of a fast classification of a site by visual interpretation of plant
species composition makes indicator values an attractive tool for ecologists as well as an
easy-to-use assessment compared to time-consuming analysis of soil properties in the lab
(Diekmann 2003).

By analyzing a set of different indicator values, e.g., for soil moisture, soil reaction,
and temperature, one is able to classify sites into groups of similar environmental
conditions (Reger et al. 2014, this issue). Using sophisticated methods from the field
of species distribution modeling (cf. Elith and Leathwick 2009; Franklin 2010) maps of
Ellenberg values providing detailed information on site characteristics can be produced
(Reger et al. 2011; Héring et al. 2013) and these could be used for practical ecosystem
management and further analysis. Reger et al. (2014, this issue) present a TRM-model
(temperature-reaction-moisture) of potential natural forest vegetation in the Bavarian
Alps by combining different Ellenberg indicator values.

Studies using indicator values as data input are based on vegetation plot record
(relevé) databases. Plant species observations were aggregated to an average indicator
value of a vegetation plot. Even though this approach has been criticized because it is
mathematically incorrect for ordinal values, it is common practice in vegetation ecology
to calculate average values (Diekmann 2003; Kéfer and Witte 2004). Average indicator
values are said to reflect the site conditions better than the indicator values of individual
species, because the occurrence of a species in a relevé may deviate from its optimum
due to ecological tolerance (Kowarik and Seidling 1989; Kifer and Witte 2004). The
calculation of averages weighted by the logarithm of species abundance has been
recommended (Bocker et al. 1983; Kowarik and Seidling 1989; Schaffers and Sykora
2000; Kifer and Witte 2004). However, Reger et al. (2011) and Haring et al. (2013)

@ Springer
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obtained better modeling results with unweighted mean values for predictive vegetation
mapping compared to weighted averages.

Like all kinds of Gaussian regression models, calculating average indicator values
and using statistical methods that estimate the conditional mean value, requires an
approximately Gaussian distribution of indicator values. Otherwise, this approach
will lead to wrong ecological estimates. However, this is not always the case (Ewald
2007). Besides unimodal Gaussian distributions, indicator spectra of the vegetation
plot records from the Bavarian Alps provided by the WINALPecobase (GIVD-code
EU-D-003, Dengler et al. 2011; Reger et al. 2012) are often skewed, uniform or even
bimodal (cf. Fig. S1 in Electronic Supplementary Material).

Calculating mean indicator values on such data as well as modeling them based on a set
of environmental predictors may yield misleading estimates of site-ecological conditions.

In this study, we propose a proportional odds model as an alternative approach to
predict species indicator values, which, instead of the average indicator value, estimates
the probability distribution over the range of indicator values for a given set of
environmental gradients. We hypothesize that using a multivariate regression model
provides a more realistic estimate of site-ecological conditions. We want to analyze
whether spatial predictions of mean reaction values with a Gaussian regression model
differ from predictions of actual distributions of indicator values. Using the mboost
regression framework (Hothorn et al. 2011) we can estimate a mean indicator value
(Gaussian regression model) as well as an ordinal value distribution (proportional odds
model) with the same set of vegetation data and environmental predictors.

Materials and Methods
Study Area

The study area comprises the Bavarian Alps, a high mountain range in Southern
Germany with an area of ca. 4,600 km? (Fig. 1). The mountain range is characterized
by a long altitudinal gradient from the Saalach valley (470 m a.s.l.) to Germany’s
highest mountain (Zugspitze 2,962 m a.s.l.). The climate is cool and humid with
mean annual temperature decreasing from 9°C at lower elevations to —4°C at the
summits and annual precipitation ranging from 1,175 mm up to 2,800 mm. Due to
geological diversity, the Bavarian Alps are characterized by a rich mosaic of soil
types. Thus, limestones give rise to lithic as well as rendzic leptosols, histosols and
terrae fuscae, whereas cambisols, stagnosols and gleyosols are widespread on
sandstone, mudstone and marl (classification according to WRB 2007).

Vegetation Data

Our study was performed using vegetation plot records from the WINALPecobase
(Reger et al. 2012). This database consists of 1,505 vegetation plot descriptions
located in the Bavarian Alps, which were collected in 2009 (Fig. 1). Ellenberg
indicator values were assigned to 904 vascular plants and 238 bryophytes. In sum,
WINALPecobase consist of 57,186 individual plant records. The database is an
ecological repository for forest vegetation with concomitant soil profile descriptions.
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Fig. 1 Study area and location of the 1,505 vegetation plots. The sketch map indicates the location of the
study area in the south of Germany

Detailed description of the database, vegetation analysis, and sampling design can be
found in Reger et al. (2012).

To test our hypothesis, we focus on Ellenberg value for soil reaction (R-value),
because it has a more heterogeneous distribution over its range compared to other
indicators in our database. These indicator values are part of an expert system that ranks
all Central European plant species according to empirical knowledge on an ordinal nine-
point scale. The diverse geological environment in the study area gives rise to a broad
range of R-values (1 to 9) and to corresponding heterogeneous vegetation patterns.

Following common practice (Schaffers and Sykora 2000; Kifer and Witte 2004),
Ellenberg values of all species in the plot were averaged by calculating log-abundance
weighted or unweighted averages of indicator values for soil reaction based on vascular
plants only or based additionally on bryophytes. The four variants of average indicator
values for reaction were highly correlated (ranging between ¥=0.94 and =0.98). Therefore,
we restrict our analysis to the unweighted mean value calculated on vascular plants only,
because this average value showed best modeling results in previous studies based on
WINALPecobase (cf. Reger et al. 2011; Héring et al. 2013). Average R values range from
1.6 to 8.2 (mean = 5.91, median = 6.1, standard deviation = 0.98, cf. Figs. 1 and 10a).

Predictor Variables

We used eleven spatially explicit predictor variables reflecting meaningful ecological
information to predict R-values, which are summarized in Table 1.

Most predictors were soil chemical parameters such as pH value (CaCl,), cation
exchange capacity, depth of decalcification, and storage of carbon and nitrogen. In
addition, the fraction of sand in the top 1 m is used as a soil parameter. All soil
parameters were extracted from a 1 : 25,000 soil map and a soil profile database. The
soil map consists of 201 different soil map units to which representative soil profiles
with analytically derived soil attributes were assigned. Therefore, the GIS layers of soil
properties consist of discrete map entities and not of interpolated continuous surfaces.
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Table 1 Summary statistics of predictor variables

Variable [unit] Min Median Max Standard deviation
Temperature [°C] 7.68 11.76 15.59 1.45
Slope gradient [°] 0.15 25.96 65.05 11.09
Convergence Index 48.95 99.28 165.50 20.05
Topographical Wetness Index 5.10 8.10 15.50 1.72
pH (topsoil) 2.92 6.27 7.62 1.39
pH (humus) 3.30 4.17 4.80 0.36
Depth of decalcification [cm] 0.00 21.00 250.00 47.61
Sand fraction [%)] 0.00 34.60 73.17 13.40
Cation exchange capacity [kmol ha™'] 81.78 477.55 2002.38 271.59
Carbon storage [t ha'] 30.00 31.96 38.87 1.52
Nitrogen storage [t ha™'] 1.20 1.30 1.70 0.08

Mean temperature in the vegetation period (May to September) was used as a
climatic parameter. It was derived from monthly climate maps of Bavaria with a
spatial resolution of 50 m (Hera et al. 2012).

Three terrain parameters were derived from a digital elevation model (DEM) of the
Bavarian Topographical Survey with a resolution of 10 m: 1) The slope summarizes
the influence of gravitational processes. It was calculated according to Zevenbergen
and Thorne (1987). 2) To account for interactions between soil reaction and soil
moisture (Pakeman et al. 2008), we used the topographical wetness index (according
to Bohner et al. 2002) as a measure for soil moisture conditions. 3) As an approxi-
mation of the small-scale variability of the terrain we use the convergence index,
which gives a measure of how flow in a cell diverges or converges.

This set of predictor variables was assigned to the 1,505 vegetation plots for model
calibration and validation.

Statistical Modeling

Due to the complex nature of ecological data, including nonlinear relationships,
nonstationarity, temporal or spatial autocorrelation, and non-normal errors, ecologists
generally apply flexible modeling approaches to address these complexities. Machine
learning algorithms have become very attractive in predictive vegetation mapping
(Franklin 2010), because they achieve higher prediction accuracies compared to
standard regression models (Elith et al. 2008). They also incorporate methods to
address overfitting and variable selection. However, their drawback is the lack of
interpretability. Machine learning methods, like ensemble tree methods, are mostly
black-box models, in which the predictor-response dependencies are hard to detect.
We apply a recently developed modeling technique called mboost (model-based
boosting, Hothorn et al. 2010) that combines two modeling approaches: Complex pre-
diction models for fitting additive or linear models that preserve the easy interpretability of
predictor-response relationship, and also the increased prediction accuracy of a
component-wise functional gradient descent boosting algorithm to estimate the model
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parameters (Maloney et al. 2011). The method has shown promising results for ecological
modeling (Hothorn et al. 2011; Schmid et al. 2011; Héring et al. 2013).

This study aims to analyze the differences in the spatial prediction of an average
R-value (model 1) to a multivariate prediction of the probability distribution (model
2). The first model follows the conventional approach of modeling indicator values.
We apply a boosted geo-additive regression model given by

E<Y|X,Sl,S2) :fl<x1) + ... +ﬁ] (xq) +ﬂ‘patial<S1752)

where Y denotes the averaged R-values on each of the 1,505 vegetation plots; x;,...x, are
the explanatory variables, f;(x;)+...1f;(x,) are smooth functions of continuous covariates
such as slope gradient or topsoil pH value, fg,aia (51, 52) 1s a spatial effect defined upon
the x- and y-coordinates (s, 5»). In mboost, smooth functions were defined as P-spline
functions, which can model the (possibly non-linear) response of mean R-values to
environmental predictors. The model was fitted by minimizing the squared error risk
that leads to the conditional mean of a numeric response. The spatial effect was added to
the model to account for unobserved heterogeneity at the sampling localizations and
thereby the spatial correlation in the data (Kneib et al. 2009).

Model 2 has been adopted from Schmid et al. (2011), who analyzed the influence
of watershed characteristics on stream biological conditions. Therefore, they present
an mboost model for regressing an ordinally scaled index of biotic integrity, IBI, on
watershed-specific explanatory variables. The model is based on the proportional
odds model for ordinal outcomes and is therefore appropriate for modeling ordinal
species indicator values (McCullagh 1980). For each location in the study-area (i.e.,
every raster cell) with a specific combination of predictor variables, the model
estimates a set of threshold values for the nine R-values. It is given by

P(Y <jlx,s1,82) = logit™" (0; + fi (x1) + . .. + 15 (x;) + fipatiar (51,52))

where Y is the Ellenberg R-value with j=1,...8 ordered categories, 6, estimates the
discrete distribution, which is adjusted on the logit scale through f.

A detailed description of the model can be found in Schmid et al. (2011). In
contrast to model 1, here we do not use averaged R-values as response, but every
single plant species with an assigned R-value in WINALPecobase. Thereby, the
number of data points for modeling increases to 44,017.

Statistical modeling was carried out with the mboost package (version 2.1-1, Hothormn
et al. 2010) for R (version 2.14.0). Spatial predictions were made with the R-package
raster (1.9-55). Terrain analysis was conducted with SAGA GIS (version 2.0.8).

Model Validation

Model validation was conducted based on random sampling of the 1,505 vegetation
plots. For model 1 we used two-thirds of the data as calibration data and one-third as
an independent validation dataset.

Estimation of model performance of model 2 is less straightforward than the well-
known R? value of model 1, because model 2 is more complex due to its multivariate
output. We also create two subsamples of the data. Samples were chosen based on

@ Springer



Regionalizing Indicator Values for Soil Reaction

vegetation plots. For model calibration we use vegetation records belonging to two-
third of the available vegetation plots. All vegetation records belonging to the
remaining one-third vegetation plots were used for model validation.

Validation of model 2 is based on the model risk. The risk is calculated as the negative
out-of-sample log likelihood of the proportional odds model. Typically, boosting is
stopped before convergence to avoid overfitting the data and improve prediction
accuracy (early stopping strategy, cf. Hastie et al. 2009). We used a ten-fold cross-
validation to choose the best number of boosting iterations, i.e., the iteration with the
lowest empirical risk. In mboost this is defined as the mstop parameter.

Comparison of Spatial Predictions

Because of the multivariate output of model 2, comparing the spatial patterns of soil
reaction extracted by the two models is complicated. We propose different alternatives to
solve this problem.

First, the spatial pattern of both predicted maps can be compared qualitatively and
visually. However, the visual comparison of a single map of predicted mean R-values of
model 1 with a set of nine different maps of predicted probabilities of model 2 is
unhandy. Therefore, we aggregate the stack of predicted R-values of model 2 to a single
map by using a RGB (red-green-blue) composite as used in remote sensing for multi-
spectral data (cf. Hengl et al. 2007 for an example of a RGB soil map). All nine maps of
predicted probabilities for R1,...,R9 were transferred into a 3D-color space to get a
single RGB map that illustrates the properties of the probability distribution. Therefore,
the predicted probabilities have to be aggregated into three values. To account for the
left-skewed distribution of the R-value (Fig. 10), we do not use the obvious aggregation
of R=1+2+3, G=4+5+6 and B=7+8+9, but in a modified fashion: R =1+2+3+4,
G = 5+6 and B = 7+8+9. Using this RGB map, a direct visual, yet still qualitative
comparison with the map of predicted mean R-values of model 1 is achieved.

To quantify the accordance of both predictions, we fitted a multiple linear regres-
sion, in which the predictions of model 1 (average R-value) act as dependent, the
output of model 2 as predictor variables (P(R=1), P(R=2),...,P(R=9)).

Results
Model Validation

Model validation for model 1 is based on the R*. We used the calibration data (two-
thirds of the entire dataset) to fit the regression model and calculated an R between
observed and predicted mean R-value of the validation data set. Figure 2 shows the
predicted mean Ellenberg value for soil reaction plotted against the observed values
for the calibration and validation data.

We get a R* of 0.42 on the independent validation data. The plot indicates
promising correlation for indicator values between five and eight. However, values
smaller than 5 were overestimated with the model.

Validation of model 2 is based on the negative out-of-sample log likelihood of the
proportional odds model. The development of model risk over the number of boosting
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Fig. 2 Predicted vs observed mean Ellenberg indicator values for soil reaction with the Gaussian model
(model 1). Calibration data consist of 1,019 vegetation plots of the WINALPecobase, validation data are the
remaining 1/3 of all plots (471 plots)

iterations for model 2 is illustrated in Fig. S2 in Electronic Supplementary Material. The
model shows the best fit with 2,500 boosting iterations. If more boosting iterations are
performed, the model risk increases again, which is an indication of overfitting.

Response Curves

Partial dependency plots (Fig. 3) show the relationship between mean R-value
(“Gaussian”) and R-value spectrum (“PropOdds”) respectively and the predictors.
The response curves look quite similar for both models with only minor differences.

Spatial Effect

Spatial effects, which were included in the models in addition to the environmental
covariates, are illustrated in Fig. 4. In both models the effects are significant. We can
conclude that there are spatial variations in the depicted relationships that could not
be explained by the predictor variables.

Prediction

Model 1 as well as model 2 were used to generate maps of predicted mean R-value
(model 1) and probabilities for R-value 1 to 9 (model 2). Prediction was made on 10-
m raster data that were available for the entire study area (Figs. 5 and 6).

The resulting maps show a detailed and diverse spatial pattern of soil reaction in
our study area. Compared to the soil attribute maps, which serve as the only area-
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Fig. 3 Partial response curves of all environmental covariates for both models. Model 1 indicates the
Gaussian regression model, and model 2 indicates the proportional odds model. The higher the partial
contribution, the stronger the impact is on the predicted R-values

wide source of information on soil reaction up to now, our resulting maps show a
tremendous improvement with a much higher spatial resolution.

Compa

rison of Models

The comparison of both models was done in different ways, both qualitative-visual as
well as quantitative. The main interest is to analyze whether the spatial pattern of soil
reaction in both maps differs or not, e.g., if sites with high values for mean soil
reaction have high probabilities for calcareous R-values and vice versa.
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Fig. 4 Marginal spatial effect for Gaussian regression model (model 1; a) and proportional odds model
(model 2; b). Color indicates the contribution of the spatial effect to the model. Positive values indicate
higher R-values, negative contribution indicate lower R-values

First, we draw 1,000 randomly selected raster cells in our study area and plot the
cumulative sum of the probability distribution of model 2 (Fig. 5), i.e., in each case
the probability distribution of a specific raster cell in all nine maps in Fig. 6. With this
curve we can visualize the shape and the range of the probability distribution. The
curves are located between the two extreme values: The upper curve indicates a more
right-skewed distribution and the lower curve indicates a left-skewed distribution. If
the distribution tends to be uniform, the curve becomes linear.

To compare the predictions of both models, we map the predicted mean R-value at
a specific raster cell with colors to the plot. The color gradient between the different
lines closely follows the shape of the distribution — from light green in the upper part
to blue in the lower. We can see many blue lines with steep slope from R-value 6 to 7
and even more from 7 to 8, i.e., raster cells with a left-skewed distribution, which can
be found in calcareous areas, as well as many lines in light green with a steep slope
from R-value 1 to 2 or 3 to 4. We can conclude that the spatial pattern of predictions
of both models is very similar. This was also indicated by the same shape of the
partial response curves (Fig. 3).

Nevertheless, there are indeed some deviations from this pattern. Blue lines in the
upper part or light-green lines in the lower indicate differences in predicted soil
reaction conditions.
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Fig. 5 Map of predicted mean R-values with Gaussian regression model (model 1) on a 10-m grid.
Because the study area is a small strip in E-W direction, the map was divided in two parts (indicated with
the small sketch map)

Although the spatial pattern is very similar, the predicted ranges of R- and mean R-
values differ considerably, as also noted above.

For a visual comparison of the spatial predictions on both models we transferred
the multivariate output of model 2 into a RGB map (Fig. 8).

As in Fig. 5 also the RGB map shows a diverse pattern of Ellenberg reaction value in
the Bavarian Alps. Moreover, the pattern looks quite similar reflecting the large-scale
(geological and geomorphological conditions) as well as the fine-scale spatial distribution.
Therefore, as discussed above, we can conclude that the spatial pattern of predicted
Ellenberg values for soil reaction of model 1 and model 2 are in high accordance.
However, the big difference is the multivariate characteristic of the RGB map. Large
areas in the map are displayed in a mixture of red, green and blue value (colors somewhere
inside the RGB triangle), meaning that the probability distribution covers a wider range.
There is a higher information depth in RGB map compared to the map of mean R-values
in Fig. 5 even though the nine probabilities were aggregated to three values.

To get a quantitative estimate of the agreement of both predictions we fit a multiple
linear regression model that explains the variance of average R-values with the
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Fig. 6 Maps of predicted probabilities for R value 1 to 9. Probabilities were calculated with the
proportional odds model (model 2)

predicted probability distribution of model 2. The model was estimated using every
raster cell of the study area (>2.5 million) to get the most realistic estimate of
correlation. The regression model shows a R* of 0.93.

The tight correlation between regionalized averaged R values and predicted R
spectra indicates that the information of averaged R values is actually contained in the
spectra. Similarly, Ewald (2007) showed that the average indicator value for nutrients
(N) corresponded to the first principal component in an ordination of the spectra,
whereas the second component represented the modality of the spectrum. While
bimodal N value spectra represent ecosystem dynamics, bimodal R spectra are
characteristic of cold temperate coniferous forests on calcareous bedrock with ex-
tremely steep vertical pH gradients and high lateral variation in pH (Ewald 1999).

While to date such complex patterns had to be inspected in individual field plots,
modeling proportional odds allows projecting them into the landscape.

Discussion

We get promising correlation for model 1 with a R* of 0.42 on the independent
validation data. However, we found the best fit only for indicator values between five
and eight. However, values smaller than 5 were overestimated with the model. This
may be due to a small sample of low R-values (10 %-quantile of mean R-value = 4.5
in our dataset). Because our dataset is a representative sample of the study area, areas
with low R-values have a limited extent mainly in the northwestern and northern part
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Fig. 7 Cumulative sum of the probability distribution of model 2 of 1,000 randomly selected raster cells.
Coloring of the plot indicates predicted mean R-values, i.e., each line represents one raster cell. The x-axis
indicates Ellenberg R-values, and y-axis indicates the cumulative probability for R-values

of the study area. Most of the study area is located in the sample range of 4.5 to 7.5
for mean R-value (cf. Fig. 2), where we can assume to get sound predictions.

The relationships between predictor variables and dependent variables depicted in
partial dependency plots (Fig. 3) reflect the ecological processes that determine the
spatial distribution of soil reaction. Lower temperatures in the vegetation period have
a negative influence on R-values. With increasing temperature the partial effect
becomes positive. In colder areas, which also have a short vegetation period, miner-
alization of organic matter is inhibited, thus favoring duff accumulation and leaching
of topsoil. Obviously, there is a strong influence of topographical characteristics on
the (mean) R-value, because the magnitude of the partial response curves for slope
gradient, topographical wetness index and convergence index is higher compared to
the soil parameters. Slope gradient has the highest range of partial effects. In areas
with slope gradients up to 25° the effect is negative in both models. If slope gradient
becomes higher, the partial effect increases linearly. There is a strong relation between
soil reaction and gravitational processes like soil erosion and rock fall, especially in
mountainous regions, because mineral soil acidification is counteracted by
morphodynamics. Steep slopes also inhibit accumulation of thick acidic duff layers
(Bochter 1984). This is also indicated by the positive response to topographical
wetness index where high values have a positive effect on R-values. High values of

@ Springer



T. Héring et al.

W R?-RB.ARS-RB

Fig. 8 Red-green-blue map of predicted probabilities for Ellenberg value R1,...,R9 calculated with model
2 (proportional odds model)

topographical wetness index indicate areas where surface water and eroded soil
material accumulates. This soil material consists mainly of fine topsoil and humus
which is rich in base cations. Areas with high values for convergence index, i.e.,
exposed landscape positions like ridges, have lower R-values whereas lower values
have a positive effect, which is also an indication of mass balance.

The relationship between pH of humus layer and topsoil, and R-value is obvious
because the R-value is an approximation of soil reaction: The higher the pH value the
more positive its influence. Consequently, the influence of pH humus layer is only
negative or zero because the value ranges only up to 4.8. However, the relationship
appears to be curvilinear, which was also reported by Schaffers and Sykora (2000).
They argue that this is probably caused by the narrow pH tolerances of species with
high pH. The relationship between depth of decalcification and R-value is also clear,
because carbonate buffers soils at high pH. However, the partial dependence of cation
exchange capacity is somewhat contradictory to soil chemical processes, because its
effect becomes negative with increasing value even though cation exchange capacity
and soil pH are positively correlated. This could be due to the coarse resolution of the
soil map.
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The marginal spatial effects for both models illustrated in Fig. 4 show similar
spatial patterns with a gradient from north to south. Petrographic and geomorpholog-
ical conditions in the study area can clearly be distinguished, e.g., the limestone rocks
in the southern part or the Flysch facies in the north and the molasse basins in the
west. However, apart from this similarity there are large differences in the maps.
Bearing the high similarity of the response curves in mind (Fig. 3) this is of particular
importance. The spatial effect for model 1 is positive in the central and eastern part of
the study area, the northern and western part is negative. The effect for model 2 is
nearly the opposite. Highest values can be found in the north and west whereas low
values are localized in the south and east. However, here the effect in the entire study
area is positive. Regarding the magnitude of the effect there is also a large difference.
For model 1 the effect ranges from —0.75 to 1.16, but for model 2 only from 0.016 to
0.078.

The spatial effect of model 1 follows an expected spatial pattern. Mean R-values
tend to be higher in areas with limestone whereas in areas with flysch (marginal area
at northern boundary) or molasse (western part) sandstones R-value tends to be lower.
Because of this and because of the high magnitude of the effect we conclude that the
spatial effect is of high importance for model 1, which is not the case for the
proportional odds model.

To have a closer look at this topic, we calculated R* values for model 1 with and
without the spatial effect f;,4q (51, 52) (cf. section Statistical Modeling). We fit the
models and calculated the R* on the independent validation data (one third of the
entire dataset). To get a stable result we repeated this procedure 50 times. Figure 9
illustrates the importance of the spatial effect for model 1. The mean difference
between R* of model 1 with spatial effect and model 1 without spatial effect is
0.05. There is a none-negligible unexplained deviance in model 1 when modeling
mean R-value without spatial effect. Environmental variables could not explain
averaged mean R-value as detailed as model 2 could for the ordinal outcome.

The influence of spatial information in species distribution modeling has been
discussed widely because biogeographical patterns appear to vary as a function of space
on different scales (Foody 2004; Graham et al. 2008; Hothorn et al. 2011; Miller and
Hanham 2011). Untreated spatial information may not only lead to a lower model
performance (Foody 2004; Hothorn et al. 2011) but also to biased estimates
(Legendre and Legendre 1998; Lennon 2000; Kiihn 2007). Therefore, applying ap-
proaches accounting for spatial dependencies — such as mboost — has become an
important enhancement in statistical ecology (Lichstein et al. 2002; Foody 2004;
Dormann et al. 2007; Miller et al. 2007; Hothorn et al. 2011; Miller and Hanham 2011).

The difference in Fig. 9 may reflect missing predictors (Schmid et al. 2011).
However, because the difference is not present in the proportional odds model, it
more likely reflects problems inherit in averaging indicator values. Useful informa-
tion on site-ecological characteristics may get lost by averaging R-values within a
vegetation plot. The shape and range of the R-values on a vegetation plot reflect a
more sophisticated picture of vegetation response than an averaged value. Diekmann
(2003) points out that sample plots should be as homogeneous as possible when
calculating average indicator values otherwise the results may be misleading or even
nonsensical. Especially for Ellenberg’s R-value for soil reaction this may lead to
problems in our study area. Similar to Diekmann (2003), who refers to heterogeneous
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Fig. 9 R’ values of 50 bootstrap samples of Gaussian regression model (model 1) with and without spatial
effect. There is a significant contribution of the spatial effect to model 1. The box indicates the median
(solid black line) and the 0.25 and 0.75 quantile, the whiskers indicates the min and max value of the
distribution

indicator spectra in Fennoscandian pine forests, we study a large area with an acid
humus layer on limestone bedrock where often a mixture of basiphilous and
acidicolous species occur, which leads to wide and heterogeneous spectra (Ewald
1999; Ketterer and Ewald 1999).

Here, we found a clear benefit of the proportional odds model over model 1.
Model 2 can exploit information about the range and shape of indicator spectra and
explain these spectra with a set of environmental predictors precisely. Thereby we get
a more detailed description of site-ecological conditions.

The resulting maps of predicted Ellenberg values for soil reaction in Figs. 5 and 6
show a detailed and diverse spatial pattern of soil reaction in our study area.
Compared to the soil attribute maps that serve as the only area-wide source of
information on soil reaction up to now, our resulting maps show a tremendous
improvement with a much higher spatial resolution

Comparing the range and the shape of the predicted values with the mean R-values
in the calibration dataset in Fig. 10, differences can be observed. Compared to the
vegetation plots in WINALPecobase (Fig. 10, subplot a, range 1.6 to 8.2), the map’s
range of predicted mean R-values are contracted to a range from 3.7 to 8.1. Extreme
values at the maximum and even more at the minimum could not be predicted well.
Also the shape of the histograms reveals differences. Whereas the differences in
shape results from the rich diversity of environmental conditions in our study area
compared to the sample dataset, the absence of extreme values in the prediction raise
concerns when using the map to draw conclusions on site-ecological characteristics.
Using Gaussian regression models, which estimates the conditional mean value of the
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the entire study area (b). Spectrum of R-values of all 44017 indicator species in the WINALPecobase (c)
(Reger et al. 2012)

response, to estimate average indicator values leads to twofold convergence on the
mean value and thereby to a reduction of the former value range — first in the
calculation of the average indicator value (cf. Diekmann 2003) and second in the
model itself. In Fig. 10 also the original distribution of R-values in the vegetation
database (c) is illustrated (see also Ellenberg indicator value spectra of 36 randomly
selected vegetation plots of WINALPecobase (Fig. S1 in Electronic Supplementary
Material)). The twofold convergence in distributions when modeling average
R-values can be tracked from subplot ¢) over a) to b).

The prediction of model 2 calculates the probability of a raster cell to contain
indicator species with R-value from 1 to 9. These probabilities are plotted in Fig. 6.
Compared to a single averaged value in Fig. 10 the prediction of the proportional
odds model reveals a more sophisticated picture of site-ecological characteristics
because we get information on the range and shape of the probability distribution
for each raster cell.
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Conclusions

The preparation of spatially explicit and high-resolution information on site-
ecological characteristics is crucial for sustainable management of ecosystems facing
changing environmental conditions. Forest ecosystems are very likely to be
influenced by climate change (Kelloméki and Leinonen 2005; Maracchi et al.
2005), especially in areas highly vulnerable to changing environmental conditions
like mountainous regions (Parry et al. 2007). Ellenberg indicator values have proven
to be an easy-to-use and helpful tool to achieve this purpose (Diekmann 2003). The
application of statistical models to predict indicator values can be seen as a “new
generation” of site classification and mapping (Reger et al. 2014, this issue). These
sophisticated models can only be applied to large georeferenced vegetation databases
(Ewald 2003; Guisan et al. 2007), where plots can be intersected with spatially
explicit environmental data to calibrate models that then serve to produce maps based
on area-wide predictors. The benefit from joining vegetation and geophysical data in
one information system is mutual: vegetation can be much better modeled, whereas
geophysical variables can be parameterized against a meaningful biological response.
Representing the major physiological factors acting on plant growth, ecological
indicator values present an obvious link between vegetation and environment.

We applied geo-additive regression models to predict Ellenberg indicator values
for soil reaction on a 10 m-grid in the Bavarian Alps. The resulting maps seem very
promising to support forest management in the Bavarian Alps in the future (cf. Reger
et al. 2014, this issue). We analyzed, whether averaged indicator values are adequate
to predict site conditions precisely. We found quite good results when predicting
mean R-values. The map is a convenient tool for practical use and can easily be used
for further analysis or modeling. The TRM-model (7emperature, Reaction, Moisture)
of potential natural forest vegetation in mountain forests of Reger et al. (2014, this
issue) is one example. However, users have to be careful when using predicted
average R-values to draw conclusions on soil pH values, base saturation (Seidling
and Rohner 1993) or calcium content (Schaffers and Sykora 2000). We found a
strong convergence to the mean value in comparison to the original range and shape
of indicator spectra. Therefore, very high as well as very low mean R-values could
not be predicted well. In addition, we found a strong influence of a spatial effect in
our model 1. A large proportion of deviance could not be explained by environmental
predictors. We conclude that averaging indicator values in areas with heterogeneous
conditions regarding soil reaction like our study area could lead to biased estimates.
On the vast majority of our vegetation plots we did not find bell-shapes spectra but
more complex distributions. Averaging indicator values is therefore an oversimplifi-
cation of the complex condition — and wrong although common practice.

To account for this issue, we present an alternative approach to predict indicator
values. A proportional odds model was introduced to estimate the probabilities for all
nine R-values, which means we get a multivariate prediction on every raster cell. To
our knowledge this is the first approach to model and predict a spectrum of indicator
values instead of an averaged value. By predicting a probability distribution over R-
value 1 to 9 we get a much more sophisticated impression of soil reaction conditions.
In contrast to model 1 (mean R-value) the range of the indicator spectrum was not
reduced and also high and low R-values were predicted with high probabilities.
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With our study we could show only one example of the application of the
proportional odds model. However, a variety of different application areas in vege-
tation science or ecology in general are possible (e.g., Schmid et al. 2011). Thus,
besides the Ellenberg value for soil reaction other indicator values exhibiting complex
spectra (e.g., Ewald 2007) could be modeled more precisely with this approach. In
addition, there are a lot of problems in ecology that deal with ordinal data, e.g., site
and soil classification (Schaetzl et al. 2012) or measurements of biological entities in
classes which are, e.g., “shorter”, “darker” or “more abundant” than others (Guisan
and Harrell 2000).

However, the main drawback of the prediction of model 2 is that it is less easy to
use compared to the single map of mean R-values. To prevent the use of the
proportional odds model only to restricted and more sophisticated scientific applica-
tions we propose to plot the multivariate output in 3d color space by calculating a
RGB composite. Similar to the predicted map of model 1, this map is a handy and
helpful tool for practitioners and decision makers. In contrast to model 1, the
predicted map of model 2 reflects more detail by taking the entire range and
distribution of the R-values into account and is therefore an advantageous tool for
forest managers as well as for predictive modelling.
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Appendix 2: Development of the negative out-of-sample log likelihood (model risk) over
the number of boosting iterations for model 2. The model was restricted
to 2500 boosting iterations.
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Appendix B. Legend to the map of the Bavarian growth areas and growth districts

Wuchsgebiet Wuchsbezirk Teilwuchsbezirk
1 Untermainebene 1 Untermainebene 11
2 Spessart-Odenwald 1 Grundgebirgsspessart 21
2 Buntsandsteinspessart 1 Hochspessart 2211
2 Nordspessart 2212
3 Mainspessart 2213
3 Bayerischer Odenwald 23
3 Rhén 1 Vorrhén 31
1 Saale- und Sinn-Vorrhén 3.1
2 Ostliche Vorrhon 3.1/2
2 Hohe Rhén 3.2
4 Frankische Platte 1 Nérdliche Frankische Platte 4.1
1 Nordliche Gipskeuperplatte und Grabfeld 411
2 Sudliche Frankische Platte 4.2
1 Stdliche Gipskeuperplatte 4.211
2 Kitzinger Sandgebiet 4.2/2
5 Frankischer Keuper und Albvorland 1 HaRberge 5.1
2 Steigerwald 52
1 Stdlicher Steigerwald 5.2/1
3 Frankenhdhe 5.3
1 Rangau-Hochflache 5.3/
4 Itz-Baunach-Hugelland 5.4
5 Nérdliche Keuperabdachung 55
1 Regnitzsenke 5.5/1
6 Sudliche Keuperabdachung 5.6
1 Rezat-Rednitzsenke 5.6/1
7 Nordliches Albvorland 57
8 Stdliches Albvorland 5.8
9 Ries 59
6 Frankenalb und Oberpfilzer Jura 1 Nérdliche Frankenalb und Nérdlicher Oberpfalzer Jura 6.1
2 Sudliche Frankenalb und Siidlicher Oberpfélzer Jura 6.2
1 Ingolstadter Donaualb 6.2/1
3 Schwabische Riesalb 6.3
1 Egaualb 6.3/1
4 Oberfrankisches Braunjuragebiet 6.4
5 Oberpfalzer Jurarand 6.5
7 Fréankisches Triashiigelland 1 Bruchschollenland 71
2 Obermainhtigelland 72
3 Stedtlinger Gebiet 73
8F Fi irge und 1F 8.1
2 Miinchberger Sattel 8.2
3 Fichtelgebirge 8.3
4 Brand-Neusorger Becken 8.4
5 Steinwald 8.5
6 Bayerisches Vogtland 8.6
7 Selb-Wunsiedler Bucht 8.7
9 Oberpfilzer Becken- und Hiigelland 1 Oberpfélzer Becken- und Hugelland 9.1
1 Hessenreuther Wald 9.11
10 Oberpfilzer Wald 1 Mitterteicher Basaltgebiet 10.1
2 Waldsassener Schiefergebiet und Wiesauer Senke 1 Waldsassener Schiefergebiet 10.2/1
2 Wiesauer Senke 10.2/2
3 Vorderer Oberpfélzer Wald 10.3
4 Innerer Oberpfalzer Wald 10.4
5 Cham-Further Senke 10.5
11 Bayerischer Wald 1 Westlicher Vorderer Bayerischer Wald 1.1
1 Vorwaldrand 1111
2 Ostlicher Vorderer Bayerischer Wald 11.2
1 Lallinger Winkel 11.211
2 lizvorland 11.2/2
3 Innerer Bayerischer Wald 1.3
12 Tertidres Hiigelland 1 Donauried 121
2 Ingolstadter Donauniederung 1 Donauau 12.211
2 Donaumoos 12.2/2
3 Ostbayerische Donauniederung 1 Donauau 12.31
2 Gauland 12.3/2
4 Unteres Lechtal 12.4
5 Unteres Isartal 12.5
6 Unteres Inntal 12.6
7 Mittelschwébisches Schotterriedel- und Hugelland 12.7
1 Biburger Higelland 12.711
2 lllerau 12.712
3 Donauschwabisches Hiigelland 12.7/3
8 Oberbayerisches Tertiarhiigelland 12.8
1 Aindlinger Terrassentreppe 12.8/1
9 Niederbayerisches Tertidrhtigelland 1 i i isches Tel 12.91
2 Ostliches Ni isches Tertiért 12.9/2
3 Neuburger Wald 12.9/3
13 ébi yerische 1 Lechfeld 13.1
und Altmorénenlandschaft 2 Minchner Schotterebene 1 Stdliche Miinchner Schotterebene 13.2/1
2 Nérdliche Miinchner Schotterebene 13.2/12
3 Moose und Auen nérdlich Miinchens 13.2/3
3 Mihldorfer und Ottinger Schotterfelder 13.3
4 Vorallgau 13.4
5 Landsberger Altmorane 13.5
6 Isener Altmoréne und Hochterrasse 13.6
7 Trostberger Altmoréne und Hochterrasse 13.7
14 bi yerische 4ne und 1 Bayerische Bodenseelandschaft 14.1
Molassevorberge 2 Westallgauer Hugelland 14.2
3 Schwébische Jungmorane und Molassevorberge 14.3
4 Oberbayerische Jungmoréne und Molassevorberge 1 Westliche kalkalpine Jungmoréne 14.4/1
2 Inn-Jungmoréne 14.4/2
3 Ostliche kalkalpine Jungmoréne 14.4/3
15 Bayerische Alpen 1 Kirnacher Molassebergland 15.1
2 Aligéuer Molassevoralpen 15.2
3 Allgéuer Flysch- und Helvetikumvoralpen 156.3
4 Oberbayerische Flysch-Voralpen 1 Ammergauer Flyschberge 15.4/1
2 Tegernseer Flyschberge 15.4/2
3 Teisendorfer Flyschberge 15.4/3
5 Mittlere Bayerische Kalkalpen 15.5
6 Chiemgauer Alpen und Saalforstamt St.Martin 15.6
7 Aligauer Hochalpen 15.7
8 Karwendel und Wettersteinmassiv 15.8
9 Berchtesgadener Hochalpen u. Saalforstamt St. Martin 15.9
1 Leoganger Schieferberge 15.9/1

Figure B.1.: Legend to the map of the Bavarian growth areas and growth dis-
tricts (Source: Walentowski et al. 2001)
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