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Abstract— It is well-known that physical robotic assistance to
humans is significantly enhanced by including human behavior
anticipation into robot planning and control. The challenge
arises when the human goal/plan is uncertain or unknown to the
robot. In this paper we propose a novel control scheme which
dynamically selects between a model-based and a model-free
strategy depending on the level of disagreement between the
human and the robot. The disagreement is measured in terms
of the interaction force. A task specific model-based controller
is selected when the human’s motion intention coincides with
the robot’s goal. A model-free control scheme based on the
human force as motion prediction source is selected in case of
disagreement and when the human goal/plan is unknown. The
benefits of this approach are demonstrated in a human user
study on human-robot cooperative object transport through a
2D maze in virtual reality.

I. INTRODUCTION

Physical robotic assistance to humans has a wide diversity

of application scenarios such as mobility assistance or joint

transportation. From human studies it is well-known that

anticipation of the partner’s action is key for successful

joint action [1]. This holds also true for physical robotic

assistance to humans as recent results show: a proactive

anticipatory control is shown to outperform classical reactive

approaches regarding human effort and subjective quality of

assistance [2]. Such control schemes rely either on human

motion prediction models or on pre-planned strategies based

on a previously known common goal. However, the abilities

of a robotic helper exhibiting anticipatory behavior should

not be limited to assisting its partner in a set of tasks where

human motion models, the environment and the desired

goal are previously determined. The human’s goal and the

environment are not typically known in advance. They might

be completely unknown or subject to dynamic changes

producing additional uncertainties. In such cases, a flexible

and helfpul artificial assistant should be able to infer the

most suitable control strategy and even anticipate its partner’s

intentions during unknown situations.

As a proactive physical helper requires predictive capabil-

ities, the field of anticipatory assistance covers a wide spec-

trum of model-based human behavior prediction methods

ranging from simple human motion models to goal-oriented

task-specific preplanned paths. In the simplest case, the

well-known minimum-jerk principle for free-space motion

of human arm movement [3] is used to extrapolate the

human desired short-term motion trajectory and intermediate
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goal [4]. During cooperative manipulation tasks, a poly-

nomial extrapolation becomes more suitable [5]. However,

when a known common goal is available, planning-based

methods estimate a desired path by minimizing the distance

to the goal [6], [7]. Formulating the planning solution as

a feedback law, feedback motion plans [8], [9] provide a

more responsive anticipation during task execution as all

possible paths are computed in advance. While planning-

based approaches produce accurate goal-oriented behavior,

they operate on kinematic level and neglect the task dy-

namics. As an alternative, learning-based approaches can be

utilized to acquire implicit knowledge of the task dynam-

ics [10], [11]. Acquiring human behavior models through

teleoperation [12], [13] or in an incremental fashion dur-

ing interaction [14], [15], the human partner is supported

in an intuitive and human-adapted fashion by reproducing

previously observed motions. Learning techniques provide a

way to increase the robot’s task-solving repertoire through

experience but are only effective when previous task-specific

experiences are available. All the above-mentioned model-

based human motion prediction methods predict successfully

their partner’s behavior but require specific task information

in advance. When human behavior diverges from any of the

possible task specific plans known to the robot, a model-free

anticipation strategy remains an open issue. Consequently,

under human’s plan or environmental uncertainty, a dynamic

selection of the most appropriate strategy between all avail-

able model-based and model-free approaches arises as an

additional problem.

The contribution of this paper is twofold. First, a

model-free assistance scheme relying entirely on sensed

forces is presented, becoming a suitable alternative when no

specific task model coincides with the human intentions. Sec-

ond, a method to select the most promising assistive strategy

following a short-term retrospective evaluation methodology

is presented. The proposed scheme estimates the applicability

of both a model-based and the presented model-free control

schemes based on recent prediction performance. Depending

on the result, a strategy selection scheme decides to either

retain the current assistance model or switch to a recently

more successful strategy. A user study in a 2D virtual

scene shows the applicability and the benefits the proposed

approach in terms of human effort minimization.

The remainder of this paper is organized as follows: After

we confine our problem in the next section, Section III

describes our overall approach. Detailed explanations of our

proposed assistive control schemes are given in Section IV.

The experimental evaluation of our approach is described in



Section VI.

Notation: Bold symbols denote vectors. A multivariate

normal distribution centered at u with covariance matrix Σ
is denoted N (u,Σ). The 2 × 2 and 4 × 4 identity matrices

are denoted I2 and I4, respectively.

II. PROBLEM STATEMENT

The task considered in this work consists of the physically

coupled movement of a human and a robot from an initial to

a final configuration. However, instead of assuming cooper-

ation towards a common goal known to both partners [16],

[17], we additionally consider the possibility that the human

diverges from the robot’s assumed final configuration or path

to the goal. No information on the desired trajectory of the

human or the robot is provided to the partner other than

through haptic interaction.

Depending on the application, the interaction between

partners can be through an object, as in cooperative trans-

portation, or in direct contact, as, e.g. in movement assistance

tasks. For the sake of simplicity, here we consider the

latter case, i.e. a common interaction point placed at the

robot’s end-effector. In order to provide the robot with a

compliant reactive behavior allowing an intuitive reaction to

the human force input, we implement an admittance-type

control scheme. A proactive behavior aiming for human

effort minimization is achieved adding an additional external

force input to the admittance control. The system dynamics

are therefore given by

Mrẍ+Drẋ = uh + ur , (1)

with rendered inertia Mr and rendered viscous friction Dr,

uh the applied force by the human, ur the assistive control

input of the robot, and ξ =
(

x ẋ
)T

the state of the system,

where x denotes the position of the robot’s end effector.

We further assume that the proactive robot contribution is

calculated based on a task model λ in terms of the desired

path, that, as stated in the problem conditions, can be close

to the human intentions, incomplete, partially or completely

wrong, i.e. we account for this possibility of divergence from

the human side. The goal of this work is the synthesis of

the anticipatory robot’s proactive contribution ur taking into

account that the human may aim for a different goal or path

than the active task model λ.

III. GENERAL APPROACH

From the problem setting, two different cases can be

intuitively identified depending on the task model λ’s sim-

ilarity to the human intentions: a) when λ coincides with

the human plan, or, in contrast b) the human’s intended goal

or path differs from λ. This binary case separation suggests

the situation-dependent application of two different control

schemes. On one side, an model-based control scheme re-

lying on the task model’s predictions performs satisfactorily

when both partners have a similar plan (case a)). On the

other, interpreting the human force as an indicator for the de-

sired movement direction, a model-free control scheme based

on the currently observed human control input is preferred
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Fig. 1. General control scheme. The strategy selection switches between
a model-based control scheme and a model-free control scheme depending
on their performance in terms of human effort minimization.

when the human goal is unknown (case b)). Note, that an

intermediate strategy between both cases is not considered

as a useful solution since merging different goals can lead

to undesired or even potentially unsafe configurations.

We consequently propose a strategy selection approach

that switches between the model-based and the model-free

control based on their performance in terms of human effort

minimization, as shown in Fig. 1. The resulting scheme

supports the human partner in case of correct anticipation

of the human’s higher-level intention and also in unexpected

situations.

IV. ASSISTIVE CONTROL SCHEMES

In this section we propose two different strategies for mo-

tion generation in physical robotic assistance that implement

feasible control schemes among which may be chosen.

An ideal robotic helper reduces the human partner’s

force contribution to 0 by perfectly anticipating the human’s

motion intention. However, a robotic anticipation can only

approximate the human intended motion. This approximation

based on human behavior prediction may disagree with the

real human intentions requiring a corrective force from the

human side. Due to the impossibility to observe the human’s

real intentions in advance, we consequently model this input

as process noise in the system dynamics, being normally

distributed, i.e., uh = ǫ = N (u0,Σuh
). The process noise ǫ

can be also interpreted as the level of disagreement with the

human partner.

As the system is implemented in discrete time, we

discretize the system from (1) with a sampling time in-

terval ∆t yielding a discretized plant dynamics in the

form ξk+1 = Aξk +Buk given by
(

xk+1

vk+1

)

= A

(

xk

vk

)

+B(urk + ǫk) , (2)

where xk, vk and urk are the discrete time position, velocity

and robot control input at time k and

A =

(

1 ∆t

0 1−M−1
r Dr∆t

)

B =

(

0 0
0 M−1

r ∆t

)

.



In our implementation the process noise characteristics are

continuously reestimated as the first and second order mo-

ments of uh over the past W observed samples.

Considering this plant dynamics, two assistive control

schemes with different human desired state trajectory ξd and

process noise models ǫ are designed. On one side a model-

based assistance relies on the task model’s λ predictions

and assumes that the deviations coming from the human

side are not diverging from λ’s predictions, i.e. the human’s

goal coincides with the model’s description. On the other

side, a model-free control assumes that the human diverges

from any known task models discarding their predictions.

The human desired state trajectory is then estimated based

only on the human’s control input. As shown in [18], [19],

a risk-sensitive optimization arises as a suitable choice for

the synthesis of the robotic contribution in this problem set-

ting. Standard optimization methods neglect the variablility

induced by human unexpected behavior represented by the

process noise. However, a risk-sensitive optimization directly

considers this variability consequently adapting the robotic

gains while tracking the desired state trajectory ξd.

A. Model-based control scheme

The model-based scheme assumes that the the behavior

represented by the task model λ coincides with the human

motion intention and therefore follows the predictions given

by λ, i.e. ξd = ξ̂λ. As both partners agree in the path to

follow, any disturbances from the human side represented by

the process noise ǫ are not diverging from the actual goal.

Deviations are assumed to be produced by small prediction

errors but no clear divergence is considered. Consequently,

in this case the process noise is interpreted as unbiased,

i.e. ǫ = N (0,Σuh
).

B. Model-free control scheme

A model-free control scheme assumes different intended

goals between the human and the task model. During phys-

ical interaction, this can be detected based on the measured

interaction force, where a continuous level of human force

input indicates a disagreement to the current motion. In

order to represent this divergence, a biased process noise is

considered, i.e. ǫ = N (u0,Σuh
). Due to the disagreement

assumption, the task model prediction is consequently dis-

carded and the human desired trajectory is estimated based

on the process noise bias. In this case, the dynamics are given

by

ξk+1 = Aξk +B(urk + u0k + ǫk) . (3)

Applying the system dynamics for the observed bias, the

model-free prediction of the desired state trajectory ξd = ξ̂c
is given by

ξ̂ck+1 = Aξk +Bu0k. (4)

Capturing the effect of the observed bias u0 in the desired

trajectory, the process noise is again expressed as unbiased.

The model-free control considers the bias estimation as the

human desired trajectory, i.e. ξd = ξ̂c.

C. Risk-sensitive solution

Given a desired trajectory based on human behavior pre-

diction ξd and the plant dynamics from (2), the solution for

this problem from an optimality point of view is designed by

penalizing the distance to the desired trajectory. Due to the

continuous reestimation of the process noise characteristics,

a model-predictive control scheme is adopted as the problem

parameters change. As a consequence, the optimal solution is

constantly recalculated. A quadratic cost function at sample

time k for this problem takes the form

Jk =

k+T
∑

i=k

‖(ξdi − ξi)‖
2
Q + ‖uri‖

2
R , (5)

where T is the time horizon, ‖x‖2Q stands for the quadratic

form xTQx and Q and R are weighting factors that allow a

trade-off between control cost and tracking error minimiza-

tion.

The minimization of the expectation E [Jk] of the cost

function for the dynamics (2) leads to a feedback solution

that provides optimal tracking. However, the influence of the

process noise ǫ is not considered, i.e. the human’s unexpected

behavior represented by the process noise’s covariance does

not influence the tracking gains.

In contrast, a risk-sensitive controller directly considers the

process noise in the dynamics, adapting the tracking gains

depending on a risk-sensitivity parameter θ. In this case the

optimal solution is calculated minimizing the exponential

cost function given by

γ(θ) = −2θ−1 lnE[exp
− 1

2
θJk ] , (6)

where θ defines the optimization’s risk-sensitivity. If θ = 0
the controller is risk-neutral and the process noise has no

influence on the optimization. For θ < 0 and θ > 0 the

controller becomes risk-averse and risk-seeking, respectively.

The solution to this problem leads to a feedback control

law in the form

urk = −Ki(ξdi − ξi) . (7)

where Ki is the feedback matrix given by a modified form

of the Ricatti recursion [20]

Ki = −R−1B′(BR−1B′ + θΣuhk +Π−1

i+1
)−1A ,

and

Πi = Qi +A′(BR−1B′ + θΣuhk +Π−1

i+1
)−1A ,

with ΠT = QT . Note that due to the model-predictive control

scheme, the optimization is solved at each time step k for

the updated plant dynamics but only the first step i = k of

the optimization’s horizon is applied.

The risk-sensitive solution considers the process noise

level ǫ influence in the feedback matrix Ki and therefore

adapts the robot control gains depending on the disagreement

level with the human partner. The risk-sensitive parameter θ

determines how the process noise is interpreted. For θ < 0
the process noise influence is seen in a pessimistic way as



if it were leading the state in the wrong direction, i.e. under

unexpected human behavior variability, the gains increase

and the robot becomes stiffer. In contrast, for θ < 0
it is seen as positive influence, i.e. the human variability

reduces the gains and the robot becomes less stiff and more

compliant adopting a more passive role. See [19] for a

detailed explanation of the risk-sensitive solution for assistive

robotic assistants.

V. DYNAMIC STRATEGY SELECTION

As already mentioned in the previous section, the principle

that governs the control design in this paper is the minimiza-

tion of the human force contribution during the interaction,

which is related to the motion prediction accuracy. A higher

prediction accuracy results in a diminished required and

applied human force contribution, uh, because it allows the

robot to contribute a larger share ur of the required total

force input u to achieve the desired state trajectory ξd.

This motivates us to develop a strategy selector that aims at

optimizing the prediction accuracy. By evaluating the models

in their short-term retrospective behavior over the window

length H , we obtain an estimate for the instantaneous future

prediction error. The measure αi used here to evaluate the

prediction accuracy for the control scheme i ∈ {λ, c} is

defined in the mean squared error sense, i.e.

αik =
1

H

k
∑

j=k−H+1

‖ξj − ξ̂ij‖
2, (8)

where both the model-based and the model-free control

strategy simultaneously provide predictions ξ̂λ/c of the hu-

man desired trajectory. Assuming the prediction error to be

stationary within the interval H , αik defined in (8) serves

as a good estimate for the mean squared error of the future

prediction based on past observations until time step k, i.e.

E

[

‖ξk+1 − ξ̂ik+1
‖2|k

]

≈ αik, i ∈ {λ, c}, (9)

where E [x|k] is the conditional expectation of x conditioned

on known data until k. Due to the fact that higher prediction

accuracy reduces the human force E[uh] and having the

estimates for the current prediction accuracy given by (9),

we select the applied control scheme uri used in the next

time step k + 1 according to the measure αik by

i = argmin
j∈{λ,c}

αjk.

When choosing a value for the window length H , it can be

seen that a trade-off needs to be found between the sensitivity

to noise and the ability for fast adaptation to changes of the

human behavior. A small value for the window length leads

to a greater sensitivity with respect to noise, whereas a large

value of H may violate the stationarity assumption needed

to assert (9).

Finally, it should be noted that the proposed selection

strategy can also be applied to the more general case for N

control schemes with 1 ≤ i ≤ N , when several model-based

schemes are available.

Fig. 2. Cooperative transport of a virtual object through a maze in 2D

Start

Goal

Fig. 3. Example task: Moving a point mass object from start to goal
position through a maze

VI. EXPERIMENTAL EVALUATION

The proposed control and strategy selection schemes are

evaluated in a human-robot cooperative setup in virtual

reality. A user study evaluates different assistive control

strategies for a simple task consisting of jointly carrying

a virtual object from an initial position until a final goal

through different possible paths in a 2D maze.

A. Experimental Setup

The virtual-reality interface consists of a two degrees-of-

freedom (anteroposterior and mediolateral plane of the user

standing in front) linear-actuated device (ThrustTube) with

a free-spinning handle (superoinferior direction of the user)

at the grasp point. The control algorithm is implemented in

Matlab’s Simulink Coder and executed on Linux Preempt/RT

at a sampling rate of 1 kHz. Attached to the handle is a

force/torque sensor (JR3), which measures the human force

input. The virtual scene is visually represented on a display

placed on top of the interface, see Fig. 2. The displayed task



Fig. 4. Spatial distribution of the strategy selection scheme for all
participants for the partially known model condition (v): red dots indicate
where the model-based strategy was selected.

Fig. 5. Spatial distribution of the strategy selection scheme for all
participants for the partially known model condition (v): blue dots indicate
where the model-free strategy was selected.

to transport a virtual object is visually represented by a filled

red circle and the target position in the upper left corner of

the maze (blue dot). Collisions with the virtual walls should

be avoided. The process noise ǫk from (2) is calculated as

the first and second order moments of uh considering a

window over the last W observed samples. Table I exhibits

the constants used to parameterize the experiment.

B. Quantitative Measures

We evaluate the following criteria in order to rate the

performance of the proposed approaches:

• Mean completion time Tmean is a task-related per-

formance measure and serves as an indicator of the

increase of efficiency to accomplish a task through

interaction.

• Mean absolute human force input 1

t

∫ t

0
‖uh‖ dτ .

• Mean energy contributed by the human as measure of

Partial feedback plan

Unknown path

Fig. 6. Feedback motion plan computed with SNG method. The hue
indicates the direction towards the goal.

Constant Equation Value

Simulated object mass m (1) 100 kg · I2

Simulated viscous friction ν (1) 400
Ns
m · I2

Process noise window size W (2) 0.7 s
Optimization’s time horizon T (5) 0.1 s

Tracking error weighting Q (5) 10
8I4

Control cost weighting R (5) I4
Filter window length H (8) 25 ms

TABLE I

CONTROL PARAMETERS USED IN 2-DOF EXPERIMENT

effort E =
∫ t

0
uh

Tv dτ is an indicator for the capability

of the robotic assistant to take over the overall work load

to complete the task.

• Number of collisions with the virtual environment

serves as a measure for safety and controllability during

task execution.

C. Experimental Design

We conducted a small pilot study in the presented VR sce-

nario to evaluate the performance of our proposed approach.

Twelve non-paid participants (age mean: 27.5, std: 2.7)

were instructed to move a virtual object through the simple

maze used above from a starting configuration to a final

configuration through the scene without colliding with the

virtual obstacles visually and haptically displayed.

A total of 6 different conditions were evaluated depending

on the controllers used and the paths chosen to solve the

maze

(i) No active assistance, i.e. ur = 0 following always the

same path.

(ii) Model-free control scheme with risk-seeking optimiza-

tion, i.e. θ = 10−5, following always the same path.

(iii) Model-based control scheme with risk-seeking opti-

mization, i.e. θ = 10−5, following always the same

path.
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Fig. 7. Mean and standard deviation evolution of quantitative parameters over trials

(iv) Dynamic strategy selection scheme between controllers

(ii) and (iii), following always the same path.

(v) Dynamic strategy selection scheme between controllers

(ii) and (iii), following the opposite path with incom-

plete task model λ.

Each participant repeated each condition 5 times. The

underlying task model λ is given by a feedback motion plan

towards the goal.

A feedback motion planning algorithm generates a feed-

back function K(x) for all accessible positions x. The

sampling-based neighborhood graph (SNG) [21] is a very

comprehensible method, efficiently covering the accessible

region with the feedback function that indicates the direction

towards the goal. Therefore, the entire configuration space is

randomly clustered into overlapping circles (or hyperballs

in higher dimensions), and Dijkstras algorithm is applied

to plan on the connected graph from the circle containing

the initial configuration to the circle containing the final

configuration. Finding the shortest path within circles is

straightforward. The feedback motion plan for our experi-

ment is depicted in Fig. 6. The hue of the colors encodes the

direction to the goal. Note, that the lower path is excluded

in the feedback plan to render an incomplete task model λ.

D. Experimental Results

The quantitative results of the experiment are depicted in

Fig. 7 for all considered conditions. The condition of no

assistance (i) has longer completion times and significantly

higher mean force and mean absolute power while the mean

number of collisions remains on average. While the model-

based condition (iii) and the complete strategy selection

condition (iv) have similar mean completion times, the mean

force and the mean absolute power are higher for condi-

tion (iv) as the trial numbers increase, but the mean number

of collisions is lower. The model-based condition (iii) has

a fixed model and can not adapt its behavior between trials

while the complete strategy selection condition (iv) switches

from the model-based to the model-free scheme in order

to accommodate for higher velocities. Although the path

to follow is only partially known, it is remarkable that the



incomplete strategy selection condition (v) performs always

close to the complete strategy selection condition (iv) for all

quantitative measures. At the same time and w.r.t. the model-

free scheme (iii), the mean completion time is shorter and

the the effort needed lower.

The spatial distribution of the dynamic strategy selection

results for the incomplete model case (v) is presented in

Fig. 5 and Fig. 4. Figure 5 shows that the model-free control

scheme is primarily selected in the unknown area of the map,

where the model-based approach has no prior knowledge,

and during motion along straight lines, where the model-

based approach does not adapt its velocity profile to different

execution speeds. The model-based strategy is primarily

selected during corner turns, where predictions purely based

on the human control input are not successful, see Fig. 4. It

is also remarkable that any potentially undesired switching

effect (jerk) in the system dynamics was not noticeable for

the participants due to the rendered compliance in the linear-

actuated device.

The results indicate that our proposed strategy selection

scheme combines the advantages of model-based control in

case of a suitable task model and the advantages of our

proposed model-free control scheme when the task model

is far from human motion intention. Model-based control

leads to higher execution speed as the trajectory prediction

and assistance is accurate not only along straight lines but

also during turns. While achieving a similar level of velocity,

the proposed dynamic strategy selection scheme requires a

significantly lower effort induced by the human partner, an

indicator for the efficiency of the strategy.

VII. CONCLUSIONS

In this paper we propose a novel control approach for

physical robotic assistance to humans applicable in partially

known tasks and environmental conditions. A strategy selec-

tion scheme dynamically chooses the most suitable control

method upon an model-based and model-free assistance.

When applied with incomplete or incorrect task knowledge,

the dynamic strategy selection scheme automatically selects

a model-free scheme to maintain a comfortable level of

support to the human. As a result, the advantages of both

alternative methods are combined providing better assistance

by successfully reducing human effort, as shown by our

evaluation in a user study.

The implementation of the proposed approach in a 6D

scenario together with the exploitation of the presented

dynamic strategy selection scheme with multiple control

strategies as well as a larger experiment including more

participants and more complex tasks are the matter of our

future work.
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