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ABSTRACT: This paper presents three prediction methods to mitigate the negative effects of time delays in the teleoperation of road
vehicles using a predictive display: I) Clothoid Prediction assumes that the vehicle will continue moving on a clothoidal path; II) Full
Prediction predicts the movement starting from the current vehicle position using a single track model; III) Continuous Prediction also
uses a single track model, but starts calculation from the last predicted state. While Clothoid Prediction is not sufficiently accurate, both
Full Prediction and Clothoid Prediction offer the same accuracy of less than 10 cm lateral deviation. Although Full Prediction is 20 times
slower than Continuous Prediction, it is still about 400 times faster than real time. Since Continuous Prediction requires a very accurate
positioning system for correction and Full Prediction only requires the vehicle’s yaw rate as input signal, the latter is the most suitable
prediction method.
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1. INTRODUCTION

The acceptance of future mobility concepts, such as car sharing,
will depend on the effort required for the user to obtain the
vehicle. A rented car which is automatically delivered to the front
door will definitely increase the acceptance of such concepts. The
teleoperation of road vehicles can solve this task [1]. The vehicle is
then remotely controlled by a person using video images transmitted
via cellular connection. The transmission of video signals and control
data leads to a time delay, which affects the task of vehicle guidance.
Long delays cause delayed perception of traffic situations. They also
lead to unstable control behavior of the remote driver in the vehicle
control, as shown for teleoperated systems [2]. Therefore, it is
important to assist the driver in stable and accurate vehicle guidance.
This is a common problem for remote controlled systems in the
field of robotics. One approach to dealing with variable transmission
time delays in teleoperation involving force feedback is the use
of specially designed wave-variable filters [3]. Another approach
is the use of so called predictive displays or predictor displays to
mitigate the effects of time delay, if no force feedback is required.
Arnold and Braisted [4] were the first to investigate a predictive
display for teleoperation in 1963. The system was intended to be
used for the teleoperation of lunar rovers. In addition to planetary
rovers, research for predictive displays has also been carried out in
the domains of manipulators [5], underwater vehicles [6] and ships
[7]. The effectiveness of predictive displays for the teleoperation of
military vehicles was proven for a simulated scenario [8]. We have
now adapted the idea of predictive displays to mitigate the effect
of time delays in the teleoperation of road vehicles. In contrast to
the above mentioned fields, the operator of remote controlled road
vehicles has to deal with a strongly inhomogeneous environment.
There can be other traffic participants, different types of roads,
road signs and traffic lights. The vehicle will also be operated
at much higher velocities than planetary rovers. In Section 4 we
present three prediction methods that are possibly suitable for the
prediction of road vehicles. In Section 5 we compare the methods
concerning accuracy, computation effort, system requirements and
feasibility. Although the Full Prediction method requires the highest
computation time, it is still a lot faster than real time. With a lateral
prediction error < 3 cm, it is the most accurate method and only
requires the yaw rate of the real vehicle and a few vehicle parameters
for the prediction. The Clothoid Prediction is not suitable because of
its accuracy and its delayed reaction on rapid changes of the steering
wheel rate.

2. MITIGATION

The time delay using a mobile 3G connection can vary from under
100 milliseconds to peaks of over 1 second [9]. This corresponds

to our own measurements. Though 4G networks are expected to
offer lower time delays, they will still vary with the network load.
A variable time delay hinders the operator in adapting to a specific
delay. It also leads to stuttering video images, which reduces the
operator’s immersion. The stuttering images make it hard for the
operator to get a feeling of the current vehicle speed. To get a
smoother image flow, we buffer the images and purposely display
them delayed. We currently assume a total constant delay of about
500 milliseconds. Fig. 1 shows the default control flow for our
system without mitigation. We assume that the transmission delay of
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Figure 1: In the default system setup, the operator control inputs,
the vehicle states and camera images are directly transmitted

the camera images is ∆t1 and the transmission delay of the control
inputs is ∆t2. Once the operator receives the images that were
captured by the vehicle, the vehicle will have continued to move
on for ∆t1 and will continue to move for ∆t2 while the responded
control inputs are transmitted. To mitigate the effect of the time
delays, we predict the vehicle position for the point in time when
the vehicle will receive the control inputs, before the information is
given to the operator as shown in Fig. 2. For this we have to take the
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Figure 2: In the predictive display system setup, the vehicle states
are predicted and the camera images are enriched by the predicted
vehicle position before they are displayed to the operator

full round trip time (RTT) or delay time td = ∆t1+∆t2 into account
when calculating the predicted position. During this time the vehicle



will have received the control inputs that were previously taken by
the operator. These will affect the movement of the vehicle and
therefore are also considered in the calculation. We then draw the
predicted vehicle position onto the delayed camera images received
from the real vehicle like a third person view in a racing game. Fig.
3 illustrates this by using a 3D chassis model of the vehicle. Since
the effect of the control inputs can instantaneously be seen on the
operator interface, the vehicle control behavior is improved.

Figure 3: The predicted vehicle position is drawn onto the received
camera image.

3. OPERATOR INPUTS

The operator receives the camera images taken from the real vehicle.
Based on the visual information, he then chooses the control inputs.
The inputs are done using a steering wheel and the acceleration and
brake pedals. The desired steering wheel angle is directly transmitted
to the controller inside the vehicle. Test drives showed that it was
rather difficult to hold a specific velocity by using the acceleration
and brake pedals as in a normal vehicle. A normal driver would
instantaneously feel his own body’s acceleration while his vehicle is
accelerating. Using his auditory and visual senses, he would also be
able to roughly sense the vehicle’s velocity. Since the operator lacks
the acceleration of his own body while remotely driving a vehicle,
he is only able to visually sense accelerations with a time delay. This
dead time makes it difficult to close the velocity control loop via the
operator. We therefore close it on the vehicle side by using a local
velocity controller, which is already approved for series-production
vehicles. We now use the pedals to increase and decrease the velocity
demand on the operator side. This velocity is then transmitted to the
vehicle as a reference velocity.

4. PREDICTION METHODS

We developed and investigated the three prediction methods I)
Clothoid Prediction, II) Full Prediction and III) Continuous Predic-
tion. They differ in the required amount of input data, computation
effort, accuracy and feasibility. For the Clothoid Prediction described
in Section 4.1 no information about vehicle dynamics and operator
inputs is necessary. The Full Prediction described in Section 4.2 and
the Continuous Prediction described in Section 4.3 are both based
on a single track vehicle dynamics model. The operator inputs have
an instantaneous effect on the vehicle behavior with both methods.
But they differ in the data that is taken as a starting point for each
prediction calculation.

4.1 Clothoid Prediction
A clothoid is a spline with a constant changing curvature. The
clothoid shape is frequently used in road- and railroad construction
[10] since it ensures a smooth transition between arcs having
different radii. In the clothoid based approach, we assume that the

vehicle will continue moving with a constant velocity and that the
current curvature C0 [m−1] will change along the way by the current
curvature changing rate C1 [m−2]. This method is often used by
driver assistance systems to predict the movement of other vehicles,
such as for the adaptive cruise control in [11]. The curvature
changing rate depends on the steering rate. Since the driver usually
moves the steering wheel without steps in the steering rate, the
curvature will also change without steps. Thus a clothoid is very
well suited to predict a vehicle’s movement. Eq. (2) and Eq. (3) are
based on the formulas in [12] and define the heading angle ψ and a
clothoid in x- and y-coordinates depending on the driven distance l
[m].

C1(l) =
dC0

dl
(1)

ψ(l) = ψ0 + C0l +
1

2
C1l

2 (2)

x(l) = x0 +
∫ l

0
cosψ(τ)dτ

y(l) = y0 +
∫ l

0
sinψ(τ)dτ

(3)

l = v · t (4)

Eq. (2), Eq. (3) and Eq. (4) lead to the x- and y-coordinates and the
heading angle ψ in world coordinates, depending on time t in Eq.
(5) and Eq. (6).

ψ(t) = ψ0 + C0vt+
1

2
C1v

2t2 (5)

x(t) = x0 +
∫ t

0
cos(ψ0 + C0vτ + 1

2
C1v

2τ2)dτ

y(t) = y0 +
∫ t

0
sin(ψ0 + C0vτ + 1

2
C1v

2τ2)dτ
(6)

We obtain the current curvature C0,c using the current yaw rate ψ̇c
and velocity vc according to Eq. (7) and the current curvature change
rate C1,c according to Eq. (8). The subindex c is used to indicate
states that correspond to the current vehicle state at the point in time
tc, the last received states were measured.

C0,c =
ψ̇c
vc

(7)

C1,c =
C0,c − C0,c−1

vc · (tc − tc−1)
(8)

To predict the position in world coordinates, x0 and y0 could be set
according to the current vehicle position and ψ0 can be set to the
current vehicle heading angle. But since the calculated clothoid will
always be drawn on the video image, the predicted states should be
calculated in the vehicle coordinate system. So the initial position
x0 and y0 and heading angle ψ0 can always be set to zero. The
integrals in Eq. (6) are numerically solved with a discrete step size of
∆t = 0.01 s. This step size will also be used for the other prediction
methods. The predicted time span td is equal to the round trip time
or the overall time delay. Time tp = tc + td is the predicted point
in time when the operator inputs will reach the vehicle. This leads
to the final equations used for one prediction calculation of ψp, xp
and yp Eq. (9) and Eq. (10).

ψp = C0,cvctd +
1

2
C1,cv

2
c t

2
d (9)

xp =
∑td
τ=0 ∆t · cos(C0,cvτ + 1

2
C1,cv

2τ2)

yp =
∑td
τ=0 ∆t · sin(C0,cvτ + 1

2
C1,cv

2τ2)
(10)

The required parameters, vehicle signals and operator inputs for the
Clothoid Prediction are summarized in Table 1.

The prediction is calculated totally based on the current move-
ment. Thus no information about vehicle parameters, such as the
cornering stiffness, vehicle mass or the center of gravity is required.
The predicted movement will also be independent of the operator
inputs. Although the independence from inputs is an advantage in
terms of calculation effort, it is also one of the main drawbacks of
this method. Since the inputs do not directly affect the predicted
position, there will still be a delay until the operator recognizes the



results of his actions. There is therefore no advantage in terms of
control-loop stability. One variation could be to predict the velocity
according to the velocity demand inputs of the operator. If this
velocity was used, the clothoid length would resemble the driven
distances. It would therefore support the operator in the longitudinal
control of the vehicle.

Table 1 Requirements for the Clothoid Prediction

signals operator
parameters from vehicle inputs

ψ̇ v (optional)
v

4.2 Full Prediction
The Full Prediction method uses a single track vehicle dynamics
model as described in [13] and [14]. The single track model is
suitable for lateral accelerations of up to 4 ms−2 on dry surfaces
[15]. This is within the range of accelerations that will typically oc-
cur during teleoperated driving in city scenarios. Another limitation
is the validity only for constant velocities. Thus we consider the
velocity to be constant for each calculation step. The small angle
approximation is often used for the side slip angle β, as well as
for the steering angle δ, to linearize the model [13]. Since the full
steering range is necessary, there will be steering angles of up to
about 30 ◦. When approximating a cos 30 ◦ to 1, the error would
be about 13 %, for tan 30 ◦ it would still be 10 %. So we only
approximate the trigonometric expressions for β. Eq. (13) and Eq.
(14) show how the side slip angle β and the yaw rate ψ̇ can be
calculated based on [13]. The required parameters for the simulation
model are the vehicle mass m, the inertia θ, the distances of the front
and rear axle to the center of gravity lf and lr and the cornering
stiffness of front and rear tires cα,f and cα,r .

αf (t) = δ(t) − arctan

(
β(t) + lf

ψ̇(t)

v(t)

)
(11)

αr(t) = arctan

(
lr
ψ̇(t)

v(t)
− β(t)

)
(12)

β(t) = β0 +

∫ t

0

cα,fαf (τ) cos δ + cα,rαr(τ)

mv(τ)
− ψ̇(τ)dτ (13)

ψ̇(t) = ψ̇0 +

∫ t

0

cα,fαf (τ)lf cos δ − cα,rαr(τ)lr
θ

dτ (14)

Since the single track model is not suited for low velocities, a simple
geometric model as shown in Eq. (15) and Eq. (16) calculates β and
ψ̇ for velocities smaller than 2 meters per second.

β(t) = arctan

(
tan δ · lr
lf + lr

)
(15)

ψ̇(t) =
v(t) · δ(t)√

lf · lr +
(lf+lr)2

tan2 δ(t)

(16)

The heading angle and position can be calculated according to Eq.
(17).

ψ(t) = ψ0 +
∫ t

0
ψ̇(τ)dτ

x(t) = x0 +
∫ t

0
v(τ) · cos(ψ(τ) + β(τ))dτ

y(t) = y0 +
∫ t

0
v(τ) · sin(ψ(τ) + β(τ))dτ

(17)

The starting point for each prediction calculation is the vehicle state
that was last received along with the video image. The subindex c
will be used to indicate states that correspond to the current vehicle
state at the time tc, the last received states were measured. Since
the prediction calculation starts from the current position, and we
want to know the predicted position relative to the current position
or video image, the starting position x0, y0 and yaw angle ψ0 can
be set to zero. The current yaw rate ψ̇c and optionally the current

side slip angle βc are transmitted from the vehicle. The side slip
angle is difficult to measure with standard sensors inside a vehicle.
We therefore included the option to use the measured angle, since it
is available in the simulation. If the angle is not measured, we use
the last predicted βp(tc) for the current time tc as the initial state.
The integrals in Eq. (17) are numerically solved with a discrete step
size of ∆t = 0.01 s. This step size will also be used for the other
prediction methods. The predicted time span td is equal to the round
trip time or the overall time delay. Time tp = tc+td is the predicted
point in time when the operator inputs will reach the vehicle. This
leads to the final equations used for one prediction calculation Eq.
(18) and Eq. (19).

ψ(t) =
∑t
τ=0 ∆t · ψ̇(τ)

ψp = ψ(tp)
(18)

xp =
∑td
τ=0 ∆t · v(τ) · cos(ψ(τ) + β(τ))

yp =
∑td
τ=0 ∆t · v(τ) · sin(ψ(τ) + β(τ))

(19)

The velocity v for each calculation step is set to the corresponding
operator input velocity. The steering angle δ is set according to the
operator input steering wheel angle. The single prediction calculation
starts at tc and calculates for td until the predicted states at tp are
achieved, as pictured in Fig. 4. This will take 50 cycles with a step
size of ∆t = 0.01 s to predict a delay of td = 0.5 s. The whole
calculation process is repeated each time a new position should be
shown. With a video frame rate of 25 frames per second and a
prediction time of td = 0.5 s, 25 · 50 = 1250 calculation cycles per
second will be necessary. With this method the operator inputs have
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Figure 4: The Full Prediction method calculates the whole prediction
time in advance for each prediction calculation.

an immediate effect on the predicted position, which eliminates the
time delay and therefore improves control stability. The requirements
on sensor data are low, since only the yaw rate and optionally the side
slip angle have to be measured on the vehicle. Since the prediction
depends on the vehicle parameters, these have to be evaluated for
each predicted vehicle. The required parameters, vehicle signals and
operator inputs for the Full Prediction are summarized in Table 2.

Table 2 Requirements for the Full Prediction

signals operator
parameters from vehicle inputs

m ψ̇c v
θ βC (optional) δ
lf
lr
cα,f
cα,r
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Figure 5: The Continuous Prediction method adjusts the stored
prediction with the received real vehicle states.

4.3 Continuous Prediction

The Continuous Prediction method is similar to the Full Prediction
method. It also uses the nonlinear single track model described in
4.2. The main difference is in the data that is used as a starting point
for each prediction calculation. While the Full Prediction method
uses the current vehicle states and calculates the whole prediction
time in advance, the Continuous Prediction uses the last calculated
prediction at tp − ∆t as a basis for the next prediction calculation
at tp according to Eq. (20). With a step size ∆t = 0.01 s, this only
requires one calculation step every 0.01 seconds to achieve the full
prediction time td. Thus the model is running in real time.

ψ(tp) = ψ(tp − ∆t) + ∆t · ψ̇(tp)
x(tp) = x(tp − ∆t) + ∆t · v(tp) cos(ψ(tp) + β(tp))
y(tp) = y(tp − ∆t) + ∆t · v(tp) sin(ψ(tp) + β(tp))

(20)

If the model did not precisely resemble the real vehicle and there
was no input from the real vehicle states, the predicted position
and heading angle in the world coordinate system would soon drift
away. Thus the model needs to be updated with the received real
vehicle states. For this purpose we store the predicted states in
memory. Every time the real vehicle state is received it is compared
to the previously predicted state for the corresponding point in time.
Depending on the differences, all predicted states after this point in
time are adjusted according to Eq. (21) as illustrated in Fig. 5 for a
difference in the heading angle.

∆ψ = ψc − psip(tc)
for each t from tc to tp :
xp(t) = cos(∆ψ) · xp(t) − sin(∆ψ) · yp(t)
yp(t) = sin(∆ψ) · xp(t) + cos(∆ψ) · yp(t)

∆x = xc − xp(tc)
∆y = yc − yp(tc)
for each t from tc to tp :
xp(t) = xp(t) + ∆x
yp(t) = yp(t) + ∆y

(21)

Since the position is predicted in a world coordinate system as
opposed to the position relative to the vehicle in the Full Prediction
method, the position (xc,yc) and yaw angle ψ of the real vehicle in
world coordinates need to be known in addition to the current yaw
rate ψ̇, which is also necessary for the Full Prediction. The required
parameters, vehicle signals and operator inputs for the Continuous
Prediction are summarized in Table 3.

Table 3 Requirements for the Full Prediction

signals operator
parameters from vehicle inputs

m ψ̇c v
θ ψc δ
lf xc
lr yc
cα,f
cα,r

5. EVALUATION

5.1 Reference System
To evaluate the accuracy, feasibility and execution time of the three
presented prediction methods, we used the TESIS DYNAware DYNA4
2.2.6 simulation framework as a reference system. This is based on
MathWorks R© MATLAB/Simulink, so that we could easily integrate
the prediction algorithms as a Simulink model subsystem. The real
vehicle is here represented by the DYNA4 vehicle dynamics model.
It uses the veDYNA chassis model, which is the “high-precision
model for the three-dimensional vehicle motion. It consists of a
detailed multi-body system for vehicle body, elastically mounted
bodies, suspension and steering system” [16]. The wheel system is
represented by the TM-Easy wheel system which “includes tire slip,
tire deflection and vertical tire dynamics.” [16]. Since the model is
different from the single track model used for the prediction and
it more accurately resembles the real vehicle behavior, it is well
suited as a reference system. The reference speed and steering wheel
angle are directly used as operator inputs for the prediction models.
Before they are fed to the DYNA4 model, they are delayed by 500
milliseconds. The prediction models then automatically receive the
delayed vehicle states. To be able to compare the predicted signals
with the DYNA4 signals, we in turn delay the predicted signals by
500 milliseconds, so that the time stamps match in the recorded
results, as pictured in Fig. 6.

Reference
Velocity
Steering

Wheel Angle

Prediction
Model

Delay
500 ms

Comparison
Predicted

States
Delay

500 ms
DYNA4
Model

Figure 6: The operator inputs are delayed before they are fed to the
DYNA4 reference model. The predicted states are delayed after the
computation to be able to compare them to the reference model by
using the same simulation time stamps.

5.2 Reference Scenario
In the reference scenario, the vehicle accelerates to a specific
reference velocity on flat ground with a homogeneous surface. The
steering wheel then follows a sine curve with a frequency of 0.4 s−1

and a fixed amplitude as illustrated in Fig. 7.

5.3 Comparison of Performance
The major part of the model execution time is used by the DYNA4
reference model. The model execution time will vary on different
platforms and can be greatly reduced if the Simulink model is
compiled. Thus it is not feasible to evaluate the different prediction
methods by their absolute execution times. Therefore we also com-
pare the execution times in relation to the fastest prediction method.
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Figure 7: The reference scenario for the evaluation of the prediction
methods. The vehicle accelerates to a given velocity before the
steering wheel follows a sine curve.

To measure all execution times with the same boundary conditions,
we integrated all three methods into a single model. Steering wheel
and velocity inputs are given according to the scenario outlined
in Section 5.2. We then used the Simulink Profiler to find out
the absolute execution time for each prediction subsystem when
the model was evaluated in the Simulink mode. Table 4 shows
the measured time for each prediction method and a proportion in
relation to the fastest method, the Clothoid Prediction. The time

Table 4 Absolute execution times and proportional execution times
relative to the fastest of the three prediction methods.

Absolute
Method Time [s] Percentage [%]

Full Prediction 115.89 218.50
Continuous Prediction 6.08 11.47
Clothoid Prediction 0.53 1.00

required by the Continuous Prediction is about 11 times that of the
Clothoid Prediction. The Full Prediction is another 19 times slower.
This is about what we expected, since the Continuous Prediction
only has to calculate 50 cycles as opposed to the 1250 cycles,
the full prediction method needs to predict 500 milliseconds. To
get a rough understanding of how fast the models would run as
a compiled model without the Simulink Profiler we also built one
model for each method and evaluated it as a compiled executable
in the Rapid Accelerator mode. For comparison we also evaluated
the models in the normal (Simulink) mode. The execution times
were measured using the MATLAB tic-toc command on an
Intel R© i5-2520M CPU with 2.5 GHz. To avoid statistical errors,
all models were evaluated in sequence, which was repeated for
ten times. The execution times were calculated by taking the mean
value of execution cycles 2 to 10. To mitigate the influence of the
initialization time the models were simulated for 20 000 simulation
seconds (Rapic Accelerator) and 200 simulation seconds (normal),
as well as for just 0.01 simulation seconds, for both targets. Table
5 shows the required execution time to run the prediction model
for one second with a prediction time of td = 0.5 s, while a new
prediction is calculated every 0.01 simulation seconds. The real time
factor indicates how fast the model is running compared to real
time. Even the slowest method, Full Prediction, runs about ten times
faster than real time in normal mode. In Rapid Accelerator mode
it is even about 400 times faster than real time. This indicates that
the computation effort should not be an issue when selecting the
best prediction method. It would even be possible to increase the

prediction accuracy by reducing the prediction step size ∆t from
0.01 s to 0.001 s.

Table 5 Mean execution time per simulation time and real time
factor

Simulink Rapid Accelerator
exec. time/ real time exec. time/ real time

Method sim. time factor sim. time factor

Full Pred. 1.03·10−1 9.7 2.39·10−3 419.1
Continuous Pred. 7.22·10−3 138.5 3.19·10−4 3135.0
Clothoid Pred. 6.57·10−3 152.3 2.59·10−4 3856.1

5.4 Comparison of Accuracy
To evaluate the accuracy of the prediction methods, we used the
scenario described in Section 5.2 with velocities of 10, 15, 20, 25,
30, 35, 40, 45 and 50 km/h and steering wheel angles of 90 ◦,
180 ◦, 270 ◦, 360 ◦ and 450 ◦. The Full Prediction method was
evaluated using the optional side slip angle βc from the reference
model as the initial state instead of the last predicted angle βp(tc).
By using the last predicted angle, the results were identical to the
results of the Continuous Prediction, since the same parameters
and input values would be used. Table 6 shows the maximum
deviation of the predicted position from the actually driven path
of the DYNA4 reference model and the lateral acceleration for
each prediction method and scenario input for all variations with a
maximum lateral acceleration < 4 m/s2. The least deviations occur

Table 6 Maximum lateral deviations for all reference scenarios
with a maximum lateral acceleration < 4 m/s2 sorted by

maximum lateral acceleration.

st. max. ∆s ∆s ∆s
wheel lateral Full Cont. Cloth.

ang. velocity accel. Pred. Pred. Pred.

90 ◦ 10 km/h 0.72 m/s2 0.007 m 0.007 m 0.053 m

90 ◦ 15 km/h 1.01 m/s2 0.008 m 0.009 m 0.068 m

90 ◦ 20 km/h 1.42 m/s2 0.011 m 0.012 m 0.076 m

180 ◦ 10 km/h 1.42 m/s2 0.014 m 0.014 m 0.106 m

90 ◦ 25 km/h 1.89 m/s2 0.015 m 0.018 m 0.094 m

180 ◦ 15 km/h 2.01 m/s2 0.015 m 0.017 m 0.136 m

270 ◦ 10 km/h 2.13 m/s2 0.021 m 0.022 m 0.159 m

90 ◦ 30 km/h 2.45 m/s2 0.021 m 0.026 m 0.113 m

180 ◦ 20 km/h 2.82 m/s2 0.021 m 0.024 m 0.154 m

360 ◦ 10 km/h 2.83 m/s2 0.028 m 0.029 m 0.217 m

270 ◦ 15 km/h 3.03 m/s2 0.023 m 0.025 m 0.207 m

90 ◦ 35 km/h 3.05 m/s2 0.028 m 0.036 m 0.130 m

450 ◦ 10 km/h 3.53 m/s2 0.036 m 0.036 m 0.278 m

90 ◦ 40 km/h 3.68 m/s2 0.036 m 0.047 m 0.147 m

180 ◦ 25 km/h 3.75 m/s2 0.030 m 0.036 m 0.187 m

for the lowest velocity (10 km/h) and steering wheel angle (90 ◦),
since the predicted position is not far away from the current position
and lateral accelerations are low. The Full Prediction is the most
accurate one with just 0.71 cm deviation followed by the Continuous
Prediction with 0.72 cm and the Clothoid Prediction with 5.3 cm.
While the deviations of Full Prediction and Continuous Prediction
are probably much lower than the operator could distinguish in the
camera image, the Clothoid Prediction is still in good range. The
deviations for the variation where the highest lateral acceleration
< 4 m/s2 is reached, which is at 3.75 m/s2 with 25 km/h and
180 ◦ are as low as 3.0 cm and 3.6 cm for the Full Prediction and
Continuous Prediction. The deviation for the Clothoid Prediction,
with 18.7 cm is already in an unacceptable range. Here the operator
might have already left the road unintentionally. The driven path
of the reference model and the predicted paths for this variation are
shown in Fig. 8. The corresponding deviations for the three methods
are shown in Fig. 9. On average the deviation of the Continuous
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reference vehicle. The predicted path of the Clothoid Prediction
shows significant differences. The change of the steering wheel angle
at about 39 meters only shows an effect in the prediction after the
time delay was overcome at about 42 meters.
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Figure 9: Lateral deviations for the scenario with a velocity of
25 km/h and a steering wheel angle of 180 ◦. The maximum
deviations of the Continuous Prediction are only slightly higher than
those of the Full Prediction. The Clothoid Prediction deviations are
significantly higher, especially after great changes of the steering
wheel angle.

Prediction is only 1.16 times and the Clothoid Prediction is 4.25
times as high as the deviation of the Full Prediction. In terms
of accuracy the Clothoid Prediction is not suitable to achieve a
safe prediction in all scenarios. The Full Prediction and Continuous
Prediction are both accurate enough to fulfill the requirements.

5.5 Comparison of Feasibility
The requirements for the Clothoid Prediction are low. No informa-
tion about the vehicle parameters is necessary, the inputs do not
have to be logged and the only required signals from the vehicle
are velocity and yaw rate. These are both easy to measure and are
already measured in current series-production vehicles. Computation
is very fast and accuracy is good for constant steering wheel
change rates. The Clothoid Prediction always has problems with
the prediction when the curvature change rate is changing quickly

as at the beginning and the maximums of the steering wheel’s sine
curve, as shown in Fig. 10. The maximum deviation always occurred
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Figure 10: The lateral deviation of the Clothoid Prediction and the
steering wheel angle for the scenario with a velocity of 25 km/h
and a maximum steering wheel angle of 180 ◦.

about 0.5 s after the steering wheel rate has changed. This is because
only then do the operator inputs have an effect on the vehicle itself.
Since the dead time until the predicted vehicle is moving is too
high, the operator will move the steering wheel even more and will
therefore overreact. So stability of the vehicle control loop will not
be improved.

The Continuous Prediction is fast and accuracy is sufficiently
good. For this method, as well as for the Full Prediction, the vehicle
parameters have to be known to ensure an accurate prediction. In
contrast to the Clothoid Prediction, the operator inputs have a direct
effect on the predicted vehicle. The vehicle rather moves a little bit
more than the real vehicle, which will lead the operator to decrease
the input. This will have a slight damping effect and will therefore
improve the control stability even more. The demand for accurate
position signals of the real vehicle is a requirement that will be
very difficult to fulfill for series-production vehicles. Current GPS
systems only have a positioning accuracy of 7.8 meters 95 % of
the time [17]. Systems which will give a position with the required
accuracy of a few centimeters will need a local GPS base station and
are very expensive. The positioning error will decrease the accuracy
of the prediction.

The Full Prediction offers the same advantages as the Continous
Prediction and, if the side slip angle can be measured on the vehicle,
an even better accuracy. Although the computation effort is a lot
higher, it is still by far low enough to be run in real time. The
required parameters are the same but the yaw angle and vehicle
position do not have to be measured. This is a big advantage
compared to the Continuous Prediction. The only required signal
is the vehicle’s yaw rate, which is easy to measure.

Table 7 summarizes the feasibility of the three prediction methods
in terms of accuracy, execution time, required parameters, required
vehicle signals and control stability. Since the Full Prediction
offers the best accuracy and the required vehicle parameters can
be obtained, it is the best choice.

6. OUTLOOK

The accuracy of the Full Prediction and Continuous Prediction
method highly depends on correct parameterization of the prediction
model. If the vehicle mass, tire pressure or even environmental con-
ditions change, the vehicle will have a different dynamic behavior.
It was surely possible to adjust the prediction model to the real
vehicle dynamics on the fly, for example by using Kalman filters.



Table 7 Overall comparison of the three prediction methods in
terms of accuracy, execution time, required parameters, required

vehicle signals and control stability

Full Continuous Clothoid
Criterion Prediction Prediction Prediction

accuracy ++ ++ −
execution time ++ ++ ++
required parameters − − ++
required signals + −− +
control stability ++ ++ 0

But it is more feasible to find the best fitting parameters on the
vehicle side, because there will be many more sample points and
measured signals available than on the operator side. This is also
part of the research fields at the Institute of Automotive Technology
and was published in [18]. Then we will only have to transmit the
newly adjusted parameters to the operator. In this paper we focused
on the prediction of the controlled vehicle. To have a reasonable
prediction, other traffic participants will also have to be taken into
account, which will be a focus of future research. The results that
were obtained in the simulation will now be tested in conjunction
with a real vehicle. While it will be easy to compare recorded vehicle
states with the corresponding predictions, it will also be interesting
as to how exact the operator will be able to actually steer the vehicle
with a time delay using one of the prediction methods.

7. CONCLUSION

By using a suitable prediction model, time delays in the control loop
of the teleoperated driving can be mitigated. The Full Prediction
method and the Continuous Prediction method could both fulfill this
task in terms of accuracy, execution time, required parameters and
control stability. Since the requirements on the vehicle signals for the
Continuous Prediction can only be fulfilled with special equipment,
the Full Prediction will be the best choice. The Clothoid Prediction
is not suitable because of its lower accuracy and its delayed reaction
to rapid changes of the steering wheel rate.

8. ACKNOWLEDGMENT

The work was conducted by basic funding of the Institute of
Automotive Technology of the Technische Universität München.
Thanks are also due to the TESIS DYNAware GmbH for providing
us with their simulation framework DYNA4.

9. REFERENCES

[1] Diermeyer, F., Gnatzig, S., Chucholowski, F., Tang, T., and
Lienkamp, M., “Der Mensch als Sensor - Der Weg zum
teleoperierten Fahren,” in AAET, 2011.

[2] Pongrac, H., “Gestaltung und Evaluation von virtuellen
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