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Lower Bounds on the Infima in Some
Optimization Problems
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Abstract—We consider three � optimization problems: system inver-
sion, model matching with probably unstable plant, and full information
control. A common theme in numerical solution of these problems is that
the infimal� performance among solutions has to be approximated be-
fore a suboptimal solution can be found. Recently, a sequence of lower
bounds that converges monotonously towards the exact infimum has been
established for the system inversion problem. The goal of this technical note
is twofold. First, we show that except for some rare cases these lower bounds
converge at least root-exponentially fast, i.e., we establish the good-natured-
ness of this approximation method. Second, we show how the approxima-
tion method can be extended such that also arbitrarily good lower bounds
on the infima in the model matching problem and the full information con-
trol problem can be obtained.

Index Terms—Finite sections, full information control, gap metric, in-
fima, model matching, system inversion, Toeplitz operators.

NOMENCLATURE

: natural numbers (including zero); : integers; : real numbers;
: complex numbers; � ��

���; �� �� � � ��� � ��;
����: real part; ���: complex � 	 � matrices; � �� ���; � 

������� � ����� 
 � � � 
 ������������ � �������: singular
values of � � ���; ��� �� �������: spectral norm; �	
���:
determinant; �� : transpose; ��: conjugate transpose; ����: rational
� 	 � matrices; ���� �� 	����
���	��� ����: infinity norm of � �
����; 	����
�� ������ ����: normal rank; ����� �� � �������:
para-hermitian; � � �� ���������: para-pseudoinverse (requires
full row normal rank); �
���

� : rational � 	 � matrices without poles
in � 
 ��� 
 �; ������: dimension of a vector space � ; �	�

 � �
�� �: Banach space of vector sequences � � ������ � � with
���


�
�� �

�	� �
�
��� � �; ���	�

 	�
�
 � � ����: Banach space of

linear operators 
 � 	�
 � 	�
 with finite operator norm �
��� ��
��
	�� �			 	� �
��� ; 
�: Moore-Penrose pseudoinverse of 
 �
��	�

 	�
�; �	��
 �: kernel/null space; ����: Landau symbol;

I. INTRODUCTION

We consider three common 
� optimization problems: system in-
version, model matching with unstable plant, and full information con-
trol. Numerical solutions for these problems are well-known. See, e.g.,
[1]–[6]. All numerical approaches have in common that only subop-
timal solutions are computed, i.e., given some � � �, a solution with
performance measure lower than � is sought. Of course, � should be
chosen small but still admissible (i.e., the solution set has to be non-
empty). The usual way to obtain a good � are so-called �-iterations.
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There, a test to check whether some � is admissible or not is designed,
and then bisection is used to get an approximation of the infimum over
all admissible �, say, ����. Of course, initial lower and upper bounds
on ���� are required to start the bisection procedure. Usually, the lower
bound is simply chosen to be zero. However, improved lower bounds
can help to increase precision or to decrease the necessary number of
iterations in the �-iteration, respectively. The goal of this technical note
is to derive such bounds. Our contributions are the following.

We first analyze a recently proposed approximation method for the
infimum in the system inversion problem [7]. The method consists in a
sequence of finite eigenvalue problems of increasing dimension, where
each eigenvalue problem gives a lower bound on the exact infimum.
It was found in [7] that the lower bounds converge monotonously to-
wards the exact infimum. However, the usefulness of these bounds de-
pends crucially on the speed of convergence. The first contribution of
this technical note is to provide estimates on the speed with which the
bounds converge. We show that the convergence is at least root-expo-
nential in most cases. The second contribution is to show that the infima
in the model matching and full information control problems can be re-
duced to infima in system inversion problems, i.e., we extend both the
approximation method for the infimum and the results on its speed of
convergence to these two problems.

The technical note is structured as follows. In Section II we review
some results on the finite section method and on the sequence of lower
bounds in the system inversion problem that has been recently estab-
lished in [7]. Then, we derive our estimates on the speed of convergence
of these lower bounds in Section III. Connections to the infima in model
matching and full information control are given in the Sections IV and
V. Finally, we give a numerical example in Section VI and close the
technical note with a conclusion (Section VII).

We finally note that all problems and results in this technical note
are stated in discrete-time. Continuous-time problems can be treated
by using the well-known bilinear transform approach [6].

II. PRELIMINARIES

A. Finite Sections of Block Toeplitz Operators

In this subsection, we recall a recent result on the finite sec-
tions of block Toeplitz operators. Let � � � ��� denote
a continuous function with Fourier coefficients ������ , i.e.,
�� ��

��

���
������������������. Then, 	 � �����	 �

�
�� denotes

the block Toeplitz operator with symbol �. This operator maps any

 � �
���� � ��� to the output � � ������ � 	
 � ��� given
by the infinite matrix equation

��
��
��
...

�

�� ��� ��� � � �

�� �� ���
. . .

�� �� ��
. . .

...
. . .

. . .
. . .


�

�

�
...

�

The 
 th finite section �
 � �� of the Toeplitz operator 	 is the finite
block Toeplitz matrix

�	
 ��

�� ��� � � � ��
��

�� ��
. . .

...
...

. . .
. . . ���

�
�� � � � �� ��

� 
��
�� (1)

The following recent result gives a lower bound on the speed of con-
vergence with which a certain singular value of the finite section �	

converges if � is square and 
 grows to infinity.

Theorem 1 ([8, Th. 7.3+p. 274]).: Let � � � ��� be ra-
tional such that 	
��������
 �� � for all � � � � ��, and let �� ��

	���
�� �
	 � � 	���
�� �

	 �. Then, there is a � � � such that
� �� ����	 �

	 	
��
��

	 	 �
	 	

��
��
� satisfies


�� �� �� ��
	

 �
 �

�����
�

 �	 �� � � 	 	 	����

� ��




	 ����������

(2)

It is currently unknown if the estimates in Theorem 1 are tight [9, p.
151]. However, note that there are cases where the convergence in (2)
is only quadratic. See, e.g., Example 6.16 in [9].

B. Finite Section Method for the Infimum in System Inversion

In this subsection, we recall a recent result on the infimum in the
system inversion problem. The system inversion problem is the fol-
lowing. Given some � � �
���

� we want to find a right inverse
� � �
���

� , i.e., �� � � , with (close to) infimal norm. The numer-
ical solution of this problem has been established in [1], [2]. In both
papers, it consists of two steps where the first step is the (approximate)
solution of the following problem.

Problem 1 (Infimum in
� System Inversion): What is the value of

��
����� � �� ��� 	�	� � � � �
���
� 	 �� � � � ��� �

The following recent result shows how the finite section method, which
was introduced in the previous subsection, can be used to obtain arbi-
trarily good lower bounds on ��
��� in Problem 1.

Theorem 2 ([7, Th. 7]+[2, Th. 5.2]).: Let � � �
���
� , � �  .

Then, the reciprocals of the smallest singular values of the finite sec-
tions ��
 converge monotonically increasing towards the solution of
Problem 1 as 
 grows to infinity, i.e.

�

��	� ���� �
�

�

��	� ���� �
� � � �

�
�

��	� ���
�
� ��
����� ��
 ��
� (3)

Let us give some remarks on the actual numerical computation of
the bounds.

Remark 1 (Fourier Coefficients): Note that if � � �
���
�

and � �!� � " � #�!� � $���% is a state space realization
(i.e., $	%	#	" are constant matrices of suitable dimensions) then
the Fourier coefficients of � are ��� � ����, �� � " and
�� � #$���%, � � � [10, §2.7].

Remark 2 (Numerical Accuracy): Suppose that some singular value
decomposition (SVD) algorithm has been used to compute approxima-
tions ���	���

�

� of the ��	���

�

� such that the approximation errors


���	���
�

�� ��	���

�

 �
 are upper bounded by &����
���

�

�, where

&�� denotes the machine precision. (This is the usual behavior [11].)
Also assume that the condition number ���	��� �� ��
����� �	�	�
is finite and ���	�� � � &���� . Then, one can show that the asymp-
totic approximation error ��� ���
�� 
�����	���

�

����
����� �
 is upper

bounded by &���
�

����� � � ���	�� ����� &�����	�� ��. We note that

the accuracy of our method may be further improved if a Jacobi-type
SVD algorithm is used [11], [12].

Remark 3 (Gap Metric): Problem 1 arises in the computation of the
so-called gap metric [13, Rem. 1], which measures how close a feed-
back loop is to loosing stability. Various authors have researched �-it-
erations that solve this problem. See, e.g., [13], [14] and the references
therein.

III. SPEED OF CONVERGENCE OF THE FINITE SECTION METHOD FOR

THE INFIMUM IN SYSTEM INVERSION

In this section, we analyze the approximation method for the system
inversion infimum ��
��� that was given in Theorem 2. The method has
several nice properties:

1) The approximations are simple to compute.
2) Each approximation is a lower bound on the exact value.
3) The lower bounds are monotonously increasing in the size of the

finite sections.
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4) Asymptotically, the approximations are of high numerical pre-
cision if the inversion problem itself is not ill-conditioned (i.e.,
�������� ����� is not too large; cf. Remark 2).

However, in the end usefulness of the method crucially depends on the
speed of convergence in (3) because slow convergence would make
good approximations of the infimum too expensive. The goal of this
section is to provide estimates on the speed of convergence. We prove
that except for some rare cases convergence is at least root-exponential.
In other words, we establish the fact that the approximation method in
Theorem 2 is good-natured.

Our main tool in the derivation of the convergence order will be The-
orem 1. Two major difficulties prevent direct application of Theorem
1. The first difficulty is that � is not square as required by Theorem
1, but this can be mitigated by considering � � ��� instead of � .
The second and more severe difficulty is, to quote [8, p. 292], that “the
condition � � � � ���

�� is difficult to verify”.1 Therefore, we have to
analyze when this condition is true. The following lemma will be the
key to this analysis.

Lemma 1: Let � � �����
� have full row normal rank and

Fourier coefficients ������ . Furthermore, introduce the input ob-
servability matrix �	 �� �� �� � �� � � � � �
 �

� � �
������, where
� denotes the McMillan degree of � . Then, the para-pseudoin-
verse � � � ��������� satisfies � � � �����

� if and only if
�������� � � � and �	
���	 � 	 �.

Proof: “
”: Suppose � � � �����
� . Obviously then �������� � �

�. Now, let � � ��� denote a reduced outer-coinner factorization,
i.e., �� � �����

� , ����� � �����
� and ����� � 	 [15]. Then,

� � � ��� �
��, which shows that ��� � � �� � �����

� . Since
also �� � �����

� , we see that the inner factor �� has to be a con-
stant matrix. Let us set 
� �� �� and choose another scalar matrix

� such that 
 �� �
�� 


�
� �
� � ��� is unitary. Then, we have

� � �� ���������
 and thus ��
�� � �������� for all � � by
Parseval’s relation. This shows

�	
���	 � � �	
� ���
	 � � �	
� �
��

	 �

� �	
�

��

�
� � � � 
��

�



�������� � � � ��������
	 ��

“
”: On the other hand, suppose that �������� � � � and
�	
���	 � 	 �. Bring in a minimal state-space realiza-
tion � �
� � � 
 ��
	 � �����, where � � 
�
. The
Cayley-Hamilton Theorem (cf., e.g., [10, Th. 2.1]) lets us write �
 �
��	 
 ��� 
 � � � 
 �
���


�� for some scalars ��� � � � � �
�� � .
Thus, �
�� � ��
� � ����
�����
� � �
�
����


��� �


��� ���� is a linear combination of the ��� � � � � �
. One can iterate

this argument, which shows that in fact all �� with � � � are linear
combinations of the ��� � � � � �
. Thus

�	
� ��� �� �
�
� �

�
� � � ��� � �	
� ��� �� � � � �

�

 ��

� �	
���	 � 	 ��

Therefore, a unitary matrix 
 � �
�� 

�
� �
� � ��� exists such that


���
�
� � �� � �� � � �� � �������� is satisfied. We define � �� �
�� ,

which is an element of�����
� because � � �����

� and
� �
���.

The assumption �������� � �� implies that there exists a� � �����
�

such that�� � �
�
�
�	� ���

� �� ���������
� � �
�� � 	� .
Thus, ��� � 
�� � �����

� . Now, note that with �� �� 
� we
have obtained a reduced outer-coinner factorization of � with constant
inner factor. Thus, ��� � �����

� , and in particular � � � ��� �
�� �

�����
� .

With Lemma 1 in place, we can now establish the upper bounds on
the speed of convergence for the approximation method in Theorem 2.

1We have adapted the notation in this quote.

Theorem 3: Let � � �����
� have a right inverse in �����

� and
denote the Fourier coefficients of � by ������ . Furthermore, in-
troduce the input observability matrix �	 �� �� �� � �� � � � � �
 �

� �
�
������, where� is the McMillan degree of� . Then, �	
���	 � �

�, and the lower bounds ���
�	
��

	
�� on the solution �������� � of Problem

1 in Theorem 2 satisfy

�
��
�	
 �	� � �

��
����� � �

����

�
��� if �	
���	 � � �

� �
�
�

� if �	
���	 � � �

for some � � �. Moreover, if �	
���	 � � �, we have �������� � �
������	�	���

��
�	
�� �
��.

Proof: We start with some preparations. First, we prepare the
use of Theorem 1. Let us define ������ �� � ������������. We have
����������� �� � for all � 	 � � �� because the right invertibility of
� (i.e., �������� � � �) implies that ������ � � ������ �����

�
is in-

vertible for all � 	 � � ��. Similarly, we have ������� �
� � � �

because [9, Prop. 1.3] shows that � � 		 � 	
�
	 and the

right invertibility of 	 implies that 	
�
	 is invertible. (Note that

the right invertibility also is a consequence of [9, Prop. 1.3]. We have
	 � � 	� � 	 for any � � �����

� with �� � 	 , and
such � exists by assumption.) We see that �� � ������� �

� � 

������� �

� �� ���� ���� �
� � � � because � � ��. Thus, � sat-

isfies the assumptions in Theorem 1, and the singular value in (2) be-
comes �� ����

�
�� � ����

�
� � � ��	
��

�
��. Next, we consider the

finite sections ��� given in (1). The Fourier coefficients ������ of
� can be given directly in terms of the Fourier coefficients of � , i.e.,
�� �� �

��� ���
�
��� for � � � and �� �� ���� for � � �.

When we compare the block entries of ��� � ����� �������������� with
those of �	���	��

�
�� ����� ��������������, which are given by ���� �

�
����� ���

�
�������, we see that

��� � �	� �	�
�
� �	

� �	
�

�
� � �� � �� (4)

where �	
� �� �������������������
��������� is a ���� block Hankel

matrix. Finally, note that

� � ��
 �
�

��

��
� �

�
��

��

���� �
� �

�
��

��

���		 �
� �

	

��

��

����� ��� �������
� �������� �

��

(5)

and

� � ��� ���� �� �����
� �������

�
� ������

��

�
� �� ���� �

��

�
� �� ����

� �

We are now finished with the preparations. In the following, let us dis-
tinguish two cases.

The first case is �	
���	 � � �. We then have � � � � ���
�� be-

cause Lemma 1 implies �������� � � �� ���. Application of Theorem
1 shows that there exists some � � � such that �� � ��	
��

�
��� �

����

�
� �. Since

�
���
� �

��
����� �

�� ���� ��

	 �
�
�	
 �	�

���	
 �	� �	�
� ���

	 �
�
�	
 ��

�
� �

we obtain ��� ���	
��
	
��� � ����


�
��. It remains to show that also

������ � ���
�	
��

	
��� � ����


�
��. Define �� �� ���	
��

	
� � 
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�����������
�
������. Then, ������ �� � 	���� � 
 and there

exists �� � such that ���� � �� for all � � ��. Hence

� �� � ������ ��� ��� �� � ������ ���

��� �� � ������ ���

������ ��� � �

� ����� ��� � �

for all � � ��.
In the second case, ��
���� � � �, Theorem 1 only gives

���
�	�� but Lemma 1 implies 
������� � � �� ��� �
�������	����

��
����� ����. Note that 
������� � � � implies

��
����� � �, thus ��
���� � � �, and it must hold
��
���� � � �. Hence, ��
���� � � � cannot occur.

IV. FINITE SECTION METHOD FOR THE

INFIMUM IN MODEL MATCHING

We have already observed that numerical solution of the system
inversion problem requires computation of the infimal norm among
all right inverses. Something similar can be observed in the model-
matching problem that we will consider in this section. Let us give an
exact problem statement. The model matching problem is to

�
� 
 � �	� ��
� ���� ����� ��
 � �	
��

�

�
� �� ��
�� �� ������ ��� �
���� (6)

where � � �
�� and � � �
�� are arbitrary proper rational ma-
trices. Numerical solution of the model matching problem decomposes
into two subproblems [3], [4]. We are interested in the first subproblem,
which is the computation of the following infimal norm.

Problem 2 (Infimum in	� Model Matching): What is the value of


��
��� ����� �� �
� �� ��
�� � 
 � �	� ��

� �

� ��
 � �	
��
� 
 ��� �

The goal of this section is to show how the computation of the model
matching infimum 
��

��� in Problem 2 can be reduced to computation
of a system inversion infimum as in Problem 1. This will enable us to
use the approximation method in Theorem 2 in order to obtain arbi-
trarily good lower bounds on 
��

��� given in Problem 2.
Next, we have to discuss some technicalities. Let us assume that �

has full column normal rank and no zeros on the unit circle 
�
 � �.
Then, we can compute the generalized inner-outer factorization (cf.,
e.g., [15], [16])

����
����



�

���� ����

� 

(7)

i.e., � � �	
	

� ��	

� �
� , ��� � � , and ��� �

�	
	� 
� ��	� 
� �
� . Without loss of generality we can assume that

every unstable pole of � is a pole of the factorized function, i.e.

�
��
 � �� � � �		� 
� ���
� � ���

	�	
������ ����������

��� ���
	�	

������������� (8)

(The construction of a suitable factorization is discussed in the Ap-
pendix.) Our first auxiliary result characterizes the stabilizing parame-
ters in Problem 2 in terms of the outer factor �.

Lemma 2 (Stabilizing Parameters): We consider Problem 2. As-
sume that � has full column normal rank and no zeros on the unit
circle 
�
 � �, and introduce a generalized inner-outer factorization
(7) that satisfies (8). Let �� � �	� 
� ��� denote the first �� and
�� � �

	� 
� ��� the last �� columns of �. Then,


 � �	� ��
� � � ��
 � �	
��

�

� 
 � �	� ��
� � �� ���
 � �		� 
� ���

� � (9)

Proof: Let us denote the right-hand side of (7) by � , and intro-
duce the family of auxiliary systems 
� �� �� 
� �

�
, where 
 �

�	� ��
� . We also introduce the sets

� �� 
 � �	� ��
� � �
� � �	

	

� ���
�

and

� �� 
 � �	� ��
� � �
� � �	

	� 
� ���
� �

Then, the claim (9) is equivalent to � � �. Before we show the latter,
note that the definition of a pole implies that a proper rational matrix
� � �
��

� satisfies � � �	
��
� if and only if ���	�	 ������ �

� for all 
��
 � �. See, e.g., [6, Def. 3.13].
“� � �”: Assume that �
� � �	

	

� ���
� for some


 � �	� ��
� , and denote the columns of 
� by ��� � � � � �� .

Then, ���	�	 �� ����
���� � � for all � � �� � � � � ��
and 
��
 � �. The minimality assumption (8) implies that also
���	�	 ������
���� � � for all � � �� � � � � �� and 
��
 � �,
which in turn shows that

���
	�	

����� ������ � � � �� ����� � ���
	�	

�����
�� ��

for all 
��
 � �. Thus, �
� � �	
	� 
� ���
� .

“� � �”: Assume that �� � ��
 � �	
��
� for some 
 �

�	� ��
� . Then, �
� � ��� 
���
� � �	

	

� ���
� because

� � �	
	

����	

� �
� and �
� � �	

	

� ���
� .

The main result of this section is as follows.
Theorem 4: Let � � �
�� and � � �
�� denote proper ra-

tional matrices and assume that � has full column normal rank and
no zeros on the unit circle 
�
 � �. Then, we can find a generalized
inner-outer factorization (7) that satisfies the minimality assumption
(8). Furthermore, the solution of Problem 2 is given by


��
��� ����� � 
����� ���� 
�����

�
� �� (10)

Proof: Let, like in the proof of Lemma 2,� denote the right-hand
side of (7) and set 
� �� �� 
� �

�
for any 
 � �	� ��

� . We also
partition � � ��� ��� where �� � �

	� 
� ��� . Then, we have

�� ��
��� � ��
��
�
� � �

� ��� 
���
�

�

�
� �

� ��� ���
�
�
� � �

for all 
 � �	� ��
� because � is inner. Lemma 2 shows that (9) is

satisfied. Thus


��
��� �����

�

� �
�
��	
 ��
���	


�� ��
���

� �
�
��	
 �� 
� ��	


������
�
�
��� �

Now, let �

� � �	

� �	� 
� �
� denote the first �� rows and �


� �

�	
� �	� 
� �
� the last �� rows of���, respectively, and note that we

have

�� ���
 � 
 � �	� ��
� ��� ���
 � �		� 
� ���

�

� � � �		� 
� ���
� � �


� � � �

because, for any 
 � �	� ��
� , we have

�

�

�

�

��� �� � �
� 



 �
� �


� ��� ���
� � � � 


and, for any � � �	
	� 
� ���
� with �


� � � � , the parameter

 �� �


� � � �	� ��
� satisfies

�



�

�

�

�

�

� � � � ��� ���
�



�
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Thus

���
���� �� �� ����

��� �������

� ���
���� �� ���

������

V. FINITE SECTION METHOD FOR THE INFIMUM

IN FULL INFORMATION CONTROL

In this section, we make an observation similar to the previous sec-
tion. We observe that also the numerical solution of the full information
control problem decomposes into two steps where the first step is the
computation of some infimal norm, and that the computation of this
infimal norm can be reduced to the computation of some system in-
version infimum. Let us start with a statement of the full information
control problem. Consider the state space system

� �
���� 	
 � ����
 ������
 ���	��



��
 � ����
 ������
 ���	��

�� � 
 (11)

where ���
 � �, 
��
 � � , ���
 � � , and 	��
 � � for all
� � . The �
��
 ��
 �
��
 �� are complex matrices of suitable
dimensions. We want to find an internally stabilizing controller

� �

����� 	
 � ������
 �������


�������


	��
 � ������
 �������
 �������


�� � 


where ����
 � � and the �� 
 ���
 ���
 �� 
 ���
 ��� are
again complex matrices of suitable dimensions, such that the transfer
function

�	
�

 � ��� ������
 � �� ������ ���� �

� 
� � ������� ����

��� ��

��
�� ������

���

of the resulting closed-loop system

����
�
 �

���� 	
 � ��������
���
 ���������


���� ������
���


����� 	
 � ������
 �������
 �������



��
 � �� ������
���
 ���������


���� ������
���


�� � 


has (close to) infimal norm [5], [6]. Here, internal stability means that
���
 � 
 and ����
 � 
 for all ��

 � � and ���

 � � if
���
 � 
 for all � � .

As noted above does numerical solution of this problem decompose
into two subproblems [5], [6]. The first of these two subproblems is as
follows.

Problem 3 (Infimum in�� Full Information Control): What is the
value of

�
��

����
 �� ��� �� ����� �

�

� ���������� �����������	 
 ��	
�
The goal of this section is to reduce the computation of ���
�� in Problem
3 to the computation of a system inversion infimum as in Problem 1.
This will enable us to use the approximation method in Theorem 2 in
order to obtain arbitrarily good lower bounds on ���
��.

The main result of this section is the following.
Theorem 5: We consider the plant � given in (11) and introduce

two proper rational matrices, ��

 �� �� � ��
� � �
���� and
��

 �� �� � ��
� � �
����. Assume that �� � 
� ��� has full
rank for all 


 � 	, and that � has full column normal rank and
no zeros on the unit circle 


 � 	. Then, we can find a generalized

inner-outer factorization (7) such that that the minimality assumption
(8) is satisfied. Furthermore, the solution to Problem 3 is given by

�
��

����
 � ���
�� ���� 
����
� � 	� (12)

Proof: In the following, we show ���
����
 � ���

�� ��
�
. The

claim then follows directly from Theorem 4. Our assumption that ���

� ��� has full rank in 


 � 	 ensures that we can find a matrix �
such that the eigenvalues of � � ��� are contained in 


 � 	 [6,
Th. 3.2]. We define two proper rational matrices ���

 �� �� � �� �
���
��� ���
���� where � � �	
 �	. The proof of Lemma 1 in
[17] shows that ���
����
 � ���


�� ���
 ��
. A dual version of Lemma
2.5 in [18] finally shows that ���


�� ���
 ��
 � ���

�� ��
�
.

Remark 4 (Non-iterative Computation of ���
��): Non-iterative algo-
rithms that compute the infimum ���
�� exist for certain special cases of
the full information control problem [19], [20]. These algorithms are
guaranteed to work only if the normal ranks of � and �� � � coincide
[20, Cor. 5]. In the setting of Theorem 5, this condition may or may not
be fulfilled.

VI. NUMERICAL EXAMPLE

Finally, we present a numerical example. The MATLAB2 source
code used for the generation of this example is available via IEEE
Xplore (http://ieeexplore.ieee.org) as additional multimedia content to
this technical note. We consider the model matching problem with plant

���

 ��

 � ��
��	 ��	 �	�	


	 ���	 ��
	���

	 ���	 ��		�	

	 ���	 ��
	���


	 ���	 ��
	���

	 ���	 ��
	���

�	 ��	 �	��

	 ���	 ��
	���

�

The infimum in this problem is ���

�� ��
�
 �

�
�.3 We want to

approximate ���

�� ��
�
. Theorem 4 shows that ���


�� ��
�
 �

���
�����
� 


� � 	, where we have obtained

��
� �

 �� �	 
�����



� 
����
� � 
���
�
� � 
���
 � 
�	���


� � 	�	
�
� � 
��	��
� 
�	���

�
�
	�	�
� � 
���  
� � 
���	�
� 
�
 � 	


� � 	�	
�
� � 
��	��
 � 
�	���

by solving (7). Furthermore, Theorem 2 shows that we can approximate

���
�����
� 
 by its lower bounds �����!

�

� 
��. Theorem 3 predicts that
the approximation error

�
��

�� ��
�
� ���� !

�

�

��

� 	

�����
� � �

��

�� ��

� � ���� !
�

�

��

decreases at least root-exponentially because the input observability
matrix

�
�

� 
����
 �
�	� � 
�	�

 
�	���

�
�
	�� �
��
� �
���	� 
�
	�


�

has full rank � � 	. Fig. 1 depicts the approximation error


�� � �����!
�

� 

��

� 	
 for increasing� (red curve). Indeed, we
can even observe exponentially fast convergence until the asymptotic

2MATLAB is a registered trademark of The Mathworks, Inc. in Natick, MA.
See http://www.mathworks.com. We used version 7.11 of MATLAB with ver-
sion 9.0 of the Control System Toolbox and version 3.5 of the Robust Control
Toolbox.

3The plant has been obtained by application of a bilinear transform to the
continuous-time plant in [3, Ex. 7.1]. As this does not change the infimum,
� ����� equals the infimum given in [3, Ex. 7.1]
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Fig. 1. Numerical example.

error bound in Remark 2(applied to��
� ) is hit.4 In this example, the error

bound in Remark 2 is approximately����� (dashed line). It is interesting
to compare this result to standard �-iteration algorithms. A comparison
of the Theorems 4 and 5 shows that we can equivalently consider the
model matching problem as a full information control problem. We
have applied MATLAB’s ������� routine, configured to use a linear
matrix inequality method, as well as MATLAB’s������ routine, which
implements a Riccati-based approach, to the equivalent full information
control problem [3, Eq. (7.24)] in order to obtain two other estimates on
���
��� �����. The errors in the obtained estimates are approximately

� � ���� and � � �����, respectively. See Fig. 1 (blue and green line).
We note that our method is much more precise. This is not surprising as
standard �-iterations have well-known numerical problems [21], [22].

VII. CONCLUSION

In this technical note, we have extended an approach to compute
arbitrarily good lower bounds on the infimum in the �� system in-
version problem to the �� model matching problem and the �� full
information control problem, respectively. Thus, we have derived an
unified approach to obtain lower bounds on the infima in all three prob-
lems. The bounds can e.g. be used to initialize �-iterations or also for
direct approximation of the infima. The effectiveness of our approach
was established by showing that the bounds converge at least root-ex-
ponentially in most cases. A numerical example illustrated the fast con-
vergence and possible gains in numerical accuracy when compared to
standard �-iteration algorithms.

APPENDIX

GENERALIZED INNER-OUTER FACTORIZATION THAT SATISFIES (8)

We show that a suitable factorization can be found from Theorem
2 in [15]. Our assumption that � has full column normal rank and
no zeros on the unit circle ��� � � ensures that the right hand side
of (7), which we will denote by � , satisfies the assumption [15, (1)].
Let ��� � �� � 	���� � 
����, ���� � 
���� � ����� denote a
stabilizable and detectable (i.e., 	�� � 	 

 and 	�� � 	� 
� 
 have
full rank in ��� � �) state-space realization of � . Then, we can apply
[15, Th. 2] to this realization. The resulting outer factor given in [15,
Th. 2] has the state-space realization ����� �� � 	����� � 
����,
����� � ��������������, where� and� are matrices which re-
sult from the solution of a Riccati system. Since it is not stated explicitly

4Note that the error bound is not completely exact because finite precision ef-
fects arising in the computation of the generalized inner-outer factorization have
slightly changed the infimum.

in [15, Th. 2], let us point out that� is invertible due to our assumption
on����, and that the inverse of the transfer function of the outer factor,
which is given by ������ � ��� � ���� � 	 � 
����
���

(cf. [6, Lem. 3.15]), satisfies ��� � ��
�� �� ���� �� �
� because

by construction all eigenvalues of 	 � 
� are contained inside the
open unit disc ��� � � (cf. [6, Lem. 3.35]). Now, assume that � �
�����

� is given by ���� � �

��� �����
�� on ��� � � and that

��
��� 	� �������	 �
 for some ���� � �. Remember that the re-
alization of� is detectable. Thus, there exists a constant matrix� such
that all eigenvalues of 	��
 are contained in ��� � � [6, Th. 21.4].
Therewith, we have ������ � 	�����
������	
�����������
����
 because 
���� ������� ���� � � for all � � . Equivalently,
we can write���� � ����	��
���	�
������� ���
����
in the �-domain, where ���� �� �

��� �����
�� is the �-transform

of ������
��

. This shows ��
��� 	����	 � 
. But then, also
��
��� 	��������	 � ��
��� 	 � �������������	 � 
,
where ����� �� �

��� ������
��, because ���� � ����� for all

� � by construction.
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