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Abstract
Service robotics has the potential to become a major socio-technological and

industrial achievement. An essential aspect of this technology is the degree of
autonomy featured by the robotic agent, such as its capacity to make informed
decisions. It is clear that isolated robots in unknown environments are highly
dependent on perception to promote their degree of autonomy. This thesis
focuses on visual perception of the geometry and the appearance of the scene.

Visual perception is the process by which visual sensory information about
the environment is received and interpreted. This definition leaves aside the
sort of sensory information used; for example, it does not necessarily mandate
a geometric 3-D model of the scene. It is believed, however, that it is through the
explicit formation of 3-D models that a considerable number of the remaining
challenges on visual perception eventually will be solved.

When devising perception systems for service robotics, the consideration
of cost, size, and weight of the sensors is of primary importance, as are their
flexibility of use and the nature of the information provided. The development
of sensors compliant with all these needs is, however, rare; more often than
not, technical advances in isolated areas focus researchers on high performance,
specialized sensors that may not observe all of the former requirements. Though
promising at first, these systems face severe limitations when deployed in service
robotics applications; hence they will not likely have long term success. In
contrast to these efficient solutions, this thesis advocates effective perception
systems that are inherently consistent with the requirements of service robotics.

This thesis presents the algorithms required for the production of an ef-
fective, multisensory hand-held 3-D modeling system, the DLR 3D-Modeler.
Critically, it is not only the sensors within the perception system that have
to comply with the guidelines, but also the methods required to arrange the
sensors in the first place, and to make them work. In this spirit, lightweight,
flexible, and highly-accurate sensor models, as well as their novel calibration
methods, are presented. In addition, the robust and efficient processing of raw
sensor data that might be compromised is also addressed.

Another contribution, to promote autonomy during its operation, turned
the DLR 3D-Modeler into a worldwide novelty. Due to object self-occlusion,
object size, or limited field of view, it is often impossible to acquire a complete
3-D model in a single measurement step. It is common for 3-D modeling devices
to revert to external tracking systems in order to represent data in a common
reference frame. This option is inconvenient as external systems are the largest
and most expensive part of the system. In this work the DLR 3D-Modeler
is extended to passive visual pose tracking, yielding the first hand-held 3-D
modeling device for close-range applications that localizes itself passively from
its own images in realtime, at a high data rate.

The system is applied to a number of scenarios in robotics and beyond.
This low-cost system pushes traditional 3-D modeling forward to conquer new
frontiers owing to its flexibility, passivity, and accuracy.
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Zusammenfassung
Serviceroboter haben das Potenzial, große Bedeutung im sozialen, techno-

logischen und industriellen Bereich zu erlangen. Ein wesentlicher Aspekt dieser
Technologie ist der Grad an Autonomie, den der robotische Agent besitzt, wie
auch seine Fähigkeit, fundierte Entscheidungen zu treffen. Es ist klar, dass die
Autonomie isolierter Roboter in unbekannten Umgebungen sehr von der Perzep-
tion abhängt. Diese Arbeit beschäftigt sich mit der visuellen Wahrnehmung der
Geometrie und des Aussehens der Szene.

Visuelle Wahrnehmung ist der Prozess, durch den visuelle Information über
die Umgebung erhalten und interpretiert wird. Diese Definition verzichtet auf
die Art der sensoriellen Information. Beispielsweise setzt sie kein 3-D geo-
metrisches Modell der Szene voraus. Es wird jedoch angenommen, dass eine
wesentliche Zahl an Herausforderungen auf dem Gebiet der visuellen Perzeption
schließlich durch die explizite Formulierung von 3-D Modellen gelöst wird.

Bei der Entwicklung von Perzeptionssystemen für Serviceroboter sind Kosten,
Größe und Gewicht der Sensoren genauso wichtig wie ihre vielseitige Anwend-
barkeit und die Art der gelieferten Information. Es werden allerdings kaum
Sensoren entwickelt, die all diesen Anforderungen genügen. Meistens werden
spezialisierte Sensoren verwendet, die aber oft nicht die anderen Anforderungen
erfüllen. Obwohl solche Systeme am Anfang vielversprechend sind, erreichen sie
ihre Grenzen, wenn sie in robotischen Serviceanwendungen eingesetzt werden.
Somit werden sie keinen langfristigen Erfolg haben. Im Gegensatz zu effizien-
ten Lösungen plädiert diese Arbeit für wirksame Wahrnehmungssysteme, die
inhärent zu den Anforderungen der Servicerobotik passen.

Diese Arbeit zeigt die Algorithmen, die zum Bau von wirksamen mul-
tisensoriellen handgeführten 3D-Modellierungssystemen nötig sind, wie dem
DLR 3D-Modellierer. Genau genommen müssen nicht nur die Sensoren in den
Wahrnehmungssystemen den Richtlinien entsprechend, sondern auch die Meth-
oden, die nötig sind, um die Sensoren geeignet anzuordnen und zu betreiben. In
diesem Geist werden vielseitige und hochgenaue Modelle für Leichtbau-Sensoren
präsentiert, zusammen mit ihren Kalibrierungsmethoden. Zusätzlich wird eine
robuste und effiziente Verarbeitung von u. U. gestörten Rohdaten betrachtet.

Ein anderer Beitrag zur Förderung von Autonomie im Betrieb machte den
DLR 3D-Modellierer zu einer weltweiten Neuheit. Wegen Selbstverdeckung,
Objektgröße oder begrenztem Blickwinkel ist es oft nicht möglich, ein 3-D Mo-
dell innerhalb von einem Messschritt zu bekommen. Es ist bei Geräten zur
3-D Modellierung üblich, sich auf externe Trackingsysteme zu beziehen, um die
Daten in einem gemeinsamen Referenzsystem darzustellen. Dies ist insofern un-
praktisch, als externe Systeme die größten und teuersten Teile der Anlage sind.
In dieser Arbeit wird der DLR 3D-Modellierer erweitert, um passiv die sicht-
bare Lage zu verfolgen, wodurch das erste handgeführte 3-D Modellierungsgerät
für den Nahbereich entsteht, das sich selbst passiv und in Echtzeit mit hoher
Datenrate aus den eigenen Bildern lokalisiert.

Das System wird u. a. in einigen Szenarien der Robotik angewendet. Auf-
grund seiner Vielseitigkeit, Passivität und Genauigkeit, schiebt dieses low-cost
System herkömmliche 3-D Modellierung an, neue Gebiete zu erobern.
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1
Introduction

“First he will see the shadows best, next the reflections of men
and other objects in the water, and then the objects themselves;
then he will gaze upon the light of the moon and the stars
and the spangled heaven. Last of all he will be able to see the sun.”

—Plato, The Republic (Book VII, 516-A to 516-C)

Imagine being a prisoner held chained in a cave ever since your childhood.
Your legs and neck are fixed to gaze at a wall, as are the ones of your fellow
prisoners. A fire on your back casts shadows of passing men, objects, and
animals unto that wall. Since you are unaware that they are shadows, you
will certainly take them for reality. It is safe to say that a culture of shadow
projections will develop within the prisoners’ society, e.g. by predicting the size
of the shadows, their chronological order, or their interactions. Whoever claims
that he knows about the real nature of these shadows will surely go unregarded
as distinguished from the fellow prisoners that are expert on shadow projections.

Imagine further that you are freed from your chains and permitted to explore
your surroundings. You would not recognize real objects, for the only objects
that you hold to be real are still the shadows on the wall. Furthermore, you
naturally would be struck blind by a look at the fire, and prefer to gaze back
at the familiar shadows. You are loath to leave the cave. Imagine being forced
to leave the cave, to see the world and to look directly at the sun—your eyes
would burn with searing pain. Of course, after a short time on the surface you
acclimate and learn. You will understand the role of sunlight getting reflected
on objects. Now you are a philosopher and would consider yourself lucky and
your fellow prisoners pitiful. Conversely, the prisoners will find you stupid as
you are no longer accustomed to the darkness—you will be bad at their silly
game of shadows.

The above tale is Plato’s allegory of the cave as regularly narrated in high
school. It is alleged to explain that education ought to be the object of the hu-
man race (the sun is our illumination), and that it is the purpose of philosophers
to achieve the best education and to explain the real world to us.

May I mention my own interpretation? I think that the whole allegory
is pointless if it is only about the superiority of achieving wisdom about the
ultimate truth. An impossibly smart prisoner, for instance, could come up with
the idea that they were being played to only see part of the reality (as humans
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2 CHAPTER 1. INTRODUCTION

generally believe by their exercise of religion). I rather interpret the allegory as
an early allusion to the basics of cybernetics. Cybernetics says that perception
intercedes between reality and ourselves. Feedback helps us to know reality
and obtain wisdom, and even to achieve goals. It furthermore claims that this
allows us to take action1 on our own behavior in order to reinforce the positive
feedback process, i.e., in order to actively enhance feedback. In other words, it
is by the acquisition of better, more explicit evidence on the real world that
the average prisoner will invariably improve their understanding of the world.

A similar trend is presently taking place in computer vision (visual percep-
tion as performed by computers). Visual perception is the process by which
visual sensory information about the environment is received and interpreted.
This definition leaves aside the sort of sensory information used, i.e., it does
not necessarily mandate to reveal the geometric 3-D model of the scene. It is
believed, however, that it is through the explicit formation of 3-D models
that a considerable number of the remaining challenges on visual perception
will be eventually solved. Note that Plato’s allegory plays into our own hands
as he suggests explicit, 3-D geometry for eventual understanding of the world,
as opposed to traditional 2-D projections of it (i.e., 2-D image processing).

In the end, the computerization of perception (i.e., computer vision), as
well as its potential active guidance by a robot itself, ought to bring robots
to markets outside industry, like service robotics and transportation systems
where a high degree of autonomy is desired. Indeed, perception loops (i.e.,
to actively adjust our own behavior to follow a purpose) can be considered
the hallmark of human intelligence, which arguably is what makes us human.
Note that perception loops in humans also extend in time (memories) and also
embrace other humans (social intelligence).

In this thesis I will introduce novel key technologies for the development of
more useful 3-D modeling devices and beyond. In fact, this thesis describes the
main algorithms for the generation of accurate 3-D pointclouds using a novel
3-D modeling device devised at the Institute of Robotics and Mechatronics of
the German Aerospace Center (DLR): the DLR 3D-Modeler.

1.1 Motivation

Scientists strive to maximize the immediate performance improvement in their
particular fields of expertise. This maximum efficiency paradigm achieves
significant improvements in a short period of time and leads to cutting-edge
technologies and highly specialized devices. Ambitious technological goals, how-
ever, like those enabling groundbreaking new industries like service robotics,
invariably call for a wide range of technologies—these often turn out to be
mutually restricting. Furthermore those higher goals may impose fundamental
constraints (in costs, size, weight, performance etc.) that may not be being
observed by the technologies originated following that paradigm in the first
place.

1The term cybernetics comes from the Greek word κυβερνέτες (kubernētēs) for “to steer”
(eventually in Latin “gubernare” and in English “to govern”).
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In contrast to efficiency, the focus of effectiveness is the achievement as
such. Effective research calls for foresight, possibly with the cost of reduced ini-
tial performance, but often resulting in a prolonged development. In this work
I claim that reaching ambitious socio-technological or industrial goals, such as
achieving critical mass in the service robotics industry, definitely requires a dif-
ferent approach to maximum efficiency, namely a purely maximum effectiveness
approach to that goal. I term this the maximum effectiveness paradigm. I
focus on visual perception for service robotics, specifically on the realization of
perception systems in compliance with the maximum effectiveness paradigm.

Visual perception is the process by which visual sensory information about
the environment is received and interpreted, and it is key to achieving truly
autonomous robots. Visual perception does not necessarily reveal a geometric
3-D model of the scene; it is believed, however, that the formation of 3-D
models is essential to solve a considerable number of the remaining challenges
on visual perception. For many years, specialists have pushed diligently forward
on 3-D modeling quality following the maximum efficiency paradigm, which
has proved beneficial in many areas. This, however, critically misled roboticists
into using the very same sensors. For instance, many robotics labs around
the world invested in armies of tiny service robots carrying around massive
laser range scanners. These may deliver accurate, robust data, but are clearly
not the kind of sensors (and they do not provide the sensory information)
that will ultimately push service robotics to overarching success. Furthermore,
these approaches provably diverted research efforts away from more foresighted
approaches. In recent years, research on vision-based, real-time simultaneous
localization and mapping (visual SLAM) using, for example, only one camera,
is a much-anticipated break from previous approaches—despite some initial
loss in accuracy. The latter approach using monocular vision does comply
with the maximum effectiveness paradigm and will be predominantly adopted
throughout this work.

1.2 Problem Statement

Due to its intensive dependency on computer vision, I believe that service
robotics will only achieve critical mass and become widespread if perception
systems are realized following the maximum effectiveness paradigm. The fol-
lowing guidelines apply:

• Holistic design (diversity of data types and sensors)

• Large amounts of information

• Avoidance of moving parts

• Passive operation with respect to (w.r.t.) the environment

• Modularity

• Operation autonomy

• Flexibility
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• Small size

• Light weight

• Low cost

• Low consumption

• High data rate

• “Softwarization” of hardware

The last guideline is inspired by Andreessen’s article in The Wall Street Journal
(Andreessen, 2011). The author addresses the disruptive power of softwariza-
tion, focusing on present industrial developments that, when taken over by soft-
ware, end up experiencing the typical exponential growth of software solutions.
In our case of perception for e.g. service robotics it is not about exponentially
growing the number of sensors (pervasive sensing) but about exponentially de-
creasing the computational cost of processing sensory information—compared
to established hardware solutions that are physically limited to operate at cer-
tain rates. In addition, by decreasing the cost of sensor data computation, we
will be able to process more data.

Due to the fact that the availability of computing power and digital storage
is growing exponentially, while their cost and required power is decreasing, it
follows that virtually any successful substitution of established hardware inter-
faces by software algorithms results in dramatic performance increases and, on
top of that, dispenses with inconvenient hardware.

In addition, the potential paradigm shift into “softwarization” of hardware
would suit robotics applications just fine due to the present shift of software
into multithreaded applications. A massive relocation of hardware efforts into
software would, for instance, allow for natural solutions to the problem of con-
currency that is typical in robotic systems. Multisensory data, potentially at
different data rates, have to be synchronized and fused. In addition, in the
context of 3-D modeling, data potentially have to be reconstructed by stereo
triangulation, meshed and textured online, while performing extensive feature
matching as well as appearance-based recognition, and nonlinear optimizations
can still be conducted in the background, on the same computer.

It is worth noting that the paradigm of “softwarization” of hardware read-
ily supports compliance with other guidelines. Consider the following problem:
Several factors, like object self-occlusion, object size, or limited field of view,
make it impossible for a 3-D modeling system to acquire a complete model
in a single measurement step; this is especially true at close range. Multiple
views (or multiple sensors) are required to subsequently merge data to a single
3-D model. The prevalent approach is to measure the position and orientation
(pose) of the sensor while acquiring range data, thereby registering multiple
views, potentially in realtime. A range of tracking systems, robotic manipu-
lators, passive arms, turntables, coordinate measuring machines (CMMs), or
electromagnetic devices are commonly deployed for this purpose. These op-
tions are inconvenient for three reasons: First, they limit the user’s mobility;
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second, they require accurate synchronization and extrinsic calibration, which
are cumbersome, error-prone processes (Bodenmüller et al., 2007; Strobl and
Hirzinger, 2006), and, what is more, they cannot be rearranged; last, it turns
out that external positioning systems almost always represent the largest and
most expensive part of the 3-D modeling system. In this work I opt for the
“softwarization” of pose tracking systems, presenting the required algorithms
for robust and accurate pose tracking of close-range 3-D modeling devices at
high data rate, by the use of the images captured by their own internal cameras;
cameras are already present in most of these devices after all. In this way, the
three limitations mentioned above are lifted.

Similarly, the “softwarization” paradigm led to unprecedented approaches,
like the removal of optical filters from the cameras of the DLR 3D-Modeler.
By doing so, the detection of laser light projections on images may have been
aggravated, but it renders other tasks possible, like the abovementioned visual
pose tracking of the sensor, live augmentation of 3-D models, or even texturing
of these models.

A further example of “softwarization” is the online meshing algorithm for
real-time representation of the 3-D model (potentially in augmented reality)
by Tim Bodenmüller in (Bodenmüller, 2009). It is by this computationally
expensive task that the user is able to timely finish the scanning procedure
without occupying the expensive scanner for longer periods of time.

Last but not least, a last guideline to realize effective perception systems
is to provide services to the research community, like the standardization and
sharing of useful software as well as the publication of novel ideas, which are
essential for timely and widespread distribution of technologies.

Going back to the abovementioned example on SLAM, the historic use of
laser range scanners did not fulfill any of these criteria. Today, the use of digital
cameras instead of scanners is the most attractive option as they meet all of
the above criteria.

1.3 Selected Approach

Indeed, the abovementioned guidelines led to the development of the DLR 3D-
Modeler:

• Multisensory capability enables holistic sensing thereby reducing costs.
Modular design enables its flexible deployment in varied scenarios.

• The extensive use of digital cameras produces plenty of visual infor-
mation, avoids moving parts, supports light-weight design with a small
footprint, and allows for passive operation w.r.t. the scene. They are af-
fordable and consume less energy, allowing for a very accurate parametriza-
tion of its simple operating model. They can gather a plethora of in-
formation (including radiometric and geometric) within a single, rapid
measurement. In addition, all image-based sensing becomes inherently
calibrated and synchronized.
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• Exact modeling of sensors, together with their accurate parametriza-
tion, yield complete, non-redundant sensor models that will eventually
enable highly accurate measurements.

• Robust operation of the sensors embodies the guideline of “soft-
warization” of sensors—software as the other half of sensors. For instance,
inconvenient laser filters on the camera can be removed by improved image
processing, which allows for additional features like model texturing and:

• accurate, visual (passive) pose tracking estimation, which is the
most flexible option for data registration, providing flexibility and auton-
omy during operation, as well as dramatically driving down the price of
the sensor.

• Development of a congruent software suite that has been (in part)
freely released; I am the main author of the camera calibration toolbox
DLR CalDe and DLR CalLab (Strobl et al., 2005); we also publicated
all novel ideas that we came up with during the development of the
DLR 3D-Modeler.

In the end, we produced a self-contained, hand-guided 3-D modeling system
for close- and medium-range applications that presents advantages when mea-
suring complex objects compared to industrial scanners which are inconvenient
at that. Hand-guided scanners allow for natural scanning of areas similar to
using a spray can. Of course, the sensor has to be of low weight to allow a con-
venient and acceptable guidance by the user, see Fig. 1.1. The motivation for
these types of systems are twofold: for close-range applications themselves, and
as complementary devices for large-scale, extensive 3-D modeling that usually
requires different devices to fulfill complex tasks. Both options call for flexible,
low-priced platforms. This work is a significant step in this direction.

Handhold

Laser Range
    Scanner

Robot interface

Display

Cameras

Line laser
modules

passive or active
Markers

Figure 1.1: The DLR 3D-Modeler and its components.
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The investigations and novelties undertaken within this project are similar
to the recent developments in simultaneous localization and mapping (SLAM) in
many respects. Even though the computational requirements of current SLAM
approaches have increased, the advantages of using cameras instead of laser
range scanners not only provides an unprecedented degree of flexibility and
accuracy but also makes it possible to pursue new objectives like concurrent
image understanding and augmented reality on live image streams.

Due to its flexibility, the DLR 3D-Modeler has been already deployed in
many applications:

• Hand-guided modeling device

• Robot work cell autonomous exploration

• Perception system of the humanoid robot “Justin”

• 3-D modeling from aerial images

• Hazard avoidance camera system (HazCam) for the ExoMars rover of the
European Space Agency (ESA)

• Sensing unit for automated mounting of car wheels (concepts and algo-
rithms)

• Patient registration in medical preoperative planning

• Supporting system for the kinematic calibration of robots

These fields of direct application of the DLR 3D-Modeler will be revisited
in Appendix B together with other indirect applications of individual methods
developed in the context of this thesis.

1.4 State of the Art of 3-D Modeling Systems

1.4.1 A Taxonomy of 3-D Modeling Systems

A plethora of sensors exists that can obtain 3-D geometric information about
the scene. Most options are listed in Table 1.1 with regard to their principles
of operation. Other representations are possible e.g. regarding the sort or the
amount of information delivered, but the division featured in Table 1.1 is more
convenient to my purposes. The design guidelines mentioned in the above
sections rule out both, contact sensors using single-point probes (because of
their physical interaction with the scene and because of their slowness), and
transmissive sensors (because of their spatial constraints, lack of accuracy, and
potential harm to human operators).

During the design of the DLR 3D-Modeler we concentrated on optical, re-
flective methods for accurate geometric and photometric acquisition of surface-
related information. Non-optical reflective methods like sonar and radar may
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active


structured light
active stereo (interferometry)
depth from defocus
laser triangulation
non-scanning LIDAR, ToF

passive


stereopsis
shape-from-X (shading,
motion, focus, etc.)

non-optical
(active)

{
sonar
radar

Table 1.1: Taxonomy of 3-D sensors by operation principle (adapted from (Curless, 1997)).

provide fair range information in an inexpensive way, but they are especially
inaccurate in their bearings information, i.e., in the direction of the measure-
ments. On the other hand, optical sensors typically provide highly accurate
bearings information; the estimated distance to the surface, i.e., its range, can
also be estimated with high accuracy depending on the computational ability of
the implemented method as well as on their valid calibration, cf. (Chen et al.,
2000; Blais, 2004). Passive, optical reflective methods are especially convenient
because they do not actively project light unto the object. Active, optical re-
flective methods, however, tend to be more accurate e.g. when using laser light
because it is very well collimated, which allows it to define small details.

Coded structured light techniques project varying patterns, either by time-
multiplexing, spatial neighborhood coding, or direct coding (Salvi et al., 2004).
The varying patterns readily enable pixel correspondence between a separate
camera featuring a parallax to the beamer and the beamer so that depth infor-
mation can be obtained by triangulation. Overall, this method allows for fair
2.5-D images, i.e., 2-D images including range data for every 2-D coordinate.

Laser triangulation methods, like the laser stripe profiler (or slit scanner),
are widely used because of their simplicity, potential accuracy, and lower cost.
Their immunity to ambient light is poor, however, as the sensor captures a
bigger part of the scene since the object geometry is unknown. For that reason,
narrow-band laser optical filters are regularly placed in front of the camera to
filter out non-laser light.
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Time-of-flight (ToF) cameras operate by measuring the time of flight of in-
frared light or laser light by pulse, frequency, or amplitude modulation. They
are convenient in medium range because their accuracy is relatively constant
over an extended operating range. For close-range applications like 3-D mode-
ling, however, their accuracy is insufficient.

1.4.2 Optical, Reflective 3-D Sensors

The most prominent commercial 3-D modeling systems are indeed within the
family of optical, reflective 3-D sensors:

• The SICK LMS 200 by SICK AG is a 2-D laser range scanner extensively
used in combination with navigation tasks.

• Z+F IMAGER R© by Zoller&Fröhlich GmbH extends data gathering to full
3-D around the sensor, at the cost of dropping real-time capability.

• The Velodyne Lidar
TM

HDL-64E by Velodyne Lidar, Inc. is similar to the
Z+F sensor as it also delivers 3-D data; despite of its higher price and big
size, its high data rate output (5-15 Hz) made it very popular for traffic
challenges like the DARPA grand challenges 2005 and 2007.

• It is worth mentioning the stereo vision solutions of Point Grey Research,
Inc., as they have been extensively used by roboticists and the computer
vision community in general.

• Time-of-Flight (ToF) cameras are non-scanning LIDARs (imaging radars).
They produce depth images at medium range by active, time-of-flight sig-
nal processing. Noteworthy products are by pmdtechnologies GmbH and
the SwissRanger

TM
by CSEM SA.

• The Kinect 3-D sensor by Microsoft Corporation and PrimeSense has been
ground-breaking due to its accurate, high data rate output and its low
price. The sensor capabilities are comparable to the ones of ToF cameras
at much lower cost and with better resolution and precision. The sensor,
however, is limited by its active projection of an infrared pattern so that
outdoor operation is compromised.

• The most widespread type of 3-D sensors for 3-D modeling are laser stripe
profiler units attached to passive robotic manipulators by companies like
FARO Technologies Inc., KREON Technologies, RSI GmbH, Metris NV,
and ShapeGrabber Inc. Their products excel in reconstruction accuracy.
The use or passive arms is, however, inconvenient to manual operation of
the sensor (refer to Chapter 5).

• In industry, static sensors are usually more convenient than moving sen-
sors. Isra Vision AG manufactures static 3-D sensors by multiline triangu-
lation.
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• There has been a trend towards more mobility in recent years. For exam-
ple, laser triangulation heads tracked by attached electromagnetic devices
by Polhemus Inc., as well as visual pose tracking by Creaform Inc. The
latter option is, however, active w.r.t. the scene as it requires adhesive
markers and projects infrared illumination. This type of sensor will be
addressed in more detail in the next section and in Section 5.2.

Commercial and research scanners are largely dedicated to a single task.
They are therefore not convenient for robust, multisensory deployment e.g.
for applied research. Many applications like 3-D modeling, scene understand-
ing, navigation, or exploration usually have conflicting requirements concerning
range, accuracy, acquisition speed, or illumination, so that multisensory devices
are actually required. In addition, the abovementioned commercial sensor sys-
tems neither combine strengths of individual sensors nor are able to evade their
weaknesses by fusion of their data. This idea motivated the integration of
different sensor components into the DLR 3D-Modeler (Suppa et al., 2007).

1.4.3 3-D Modeling Systems that Rely on Registration by Pose
Tracking

It is often impossible to acquire a complete 3-D model in a single measurement
step owing to e.g. object self-occlusion, object size, or limited field of view;
this is especially true at close range. Multiple views (or multiple sensors) are
regularly deployed in order to fuse their 2.5-D images into a registered 3-D
model.

A straightforward option to register range images (2.5-D) is based on their
own geometry. Depending on the acquired scene, however, this option may be
precluded if the surfaces do not feature salient 3-D regions, or in the case of
1-D range data e.g. when using laser stripe profilers.

A widespread alternative for permanent registration of depth images in re-
altime is to externally track the pose of the modeling device so that range data
can be directly represented in a common reference frame, in realtime and ir-
respective of the range data quality (Hilton and Illingworth, 2000). A range
of pose tracking systems, robotic manipulators, turntables, or electromagnetic
devices are commonly used for this purpose. These options are inconvenient for
three reasons: First, they limit the mobility of the user; second, they require
accurate synchronization and extrinsic calibration w.r.t. the range sensor; and
third, they are (by far) the largest and most expensive part of the 3-D modeling
system.

In Section 5.2 the dominant commercial 3-D modeling systems in this con-
cern are reviewed; these systems either use inconvenient external reference sys-
tems, or opt for visual pose tracking relying on active illumination and adhesive
markers on the scene. In that section is a list past research work on passive
visual pose tracking, which did not, however, run in realtime. In (Strobl et al.,
2009a) I appointed the self-referenced DLR 3D-Modeler to amend that vacancy.
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1.5 Contribution of the Thesis

By following the design guidelines in Section 1.2 the approach explained in
Section 1.3 was utilized. Since the state of the art in Section 1.4 has proven
inadequate to my intentions, a number of innovations have contributed to the
research community as well as to internal projects at DLR. This thesis reports
these contributions in four different topics.

The fundamental contributions due to the physical instantiation of the DLR
3D-Modeler are as follows: The variability of the multipurpose sensor head
integrating different sensors is unparalleled both in the research community and
in the commercial market (Suppa et al., 2007). The dual, crosshair laser stripe
profiler premiered in the DLR 3D-Modeler, also standing out due to its lack of
optical filtering of laser light as will be reported in Section 2.2.2. The compact
size and the utmost integration of the mechanical parts and electronics to be
controlled by informatics (i.e., mechatronics) is paragon of the excellence of the
Institute of Robotics and Mechatronics. Its modularity, allowing for flexibly
attaching further sensors (e.g. the inertial measurement unit) and different pose
reference systems has been crucial to the many findings reported in this work
and others. Most of these contributions resulted from teamwork within the
Institute of Robotics and Mechatronics, hence will not be addressed in more
detail in this thesis. A potential commercialization of the DLR 3D-Modeler is
believed to yield the most favorably priced system in the market.

Next I categorize the contributions into four topics:

1.5.1 The Importance of Exact Modeling of Sensors

It is central to successful geometric computer vision to rely on accurate sensor
models. I would like to lay stress on these two contributions within Chapter 2:

• Section 2.2.1 presents in-depth investigations to understand the underly-
ing operational principles of digital cameras in order to substantiate the
choice of compact models of general validity; these have to be specific
to the camera used and will support their successful parametrization in
Section 3.2.

• Section 2.2.2 produces a novel model of the dual, crosshair laser stripe
profiler.

1.5.2 The Importance of Accurate Parametrization

Chapter 3 perhaps contains most contributions within this thesis. The main
objectives of my contributions have been as follows:

1. To choose sound calibration methods. If maximum likelihood estimation
on systems with Gaussian errors is intended, the chosen method has to
optimize parameters by minimizing the actual residual errors if we really
want to achieve highest accuracy.
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2. To choose a calibration method that is simple in order to minimize the
risks of potential mistakes committed by the user.

3. To define how to gather data that are valid to the calibration method
chosen.

These are the novel contributions in Chapter 3:

• In 2006 I introduced a novel method for optimal extrinsic calibration of
cameras (also called hand-eye calibration) in (Strobl and Hirzinger, 2006).
The method is currently being referenced as state-of-the-art. In detail,
the method optimizes the hand-eye and object-base rigid body transfor-
mations by the joint minimization of translational and rotational residual
errors in the kinematic chain of the reference system (e.g. the robotic ma-
nipulator). It is worth noting that translational and rotational errors are
being weighted by a device-specific parameter that can be automatically
estimated during the same optimization. Within the same work, we ad-
ditionally extended the well-known approach in (Horaud and Dornaika,
1995) for better performance (refer to Section 3.3).

• In Section 3.4 I note that the calibration object is rarely being specified as
accurately as really expected by the intrinsic or extrinsic camera calibra-
tion algorithms. I present two novel methods to amend that shortcoming:
The first one was originally introduced in 2008 in (Strobl and Hirzinger,
2008); it models the calibration object by two parameters, viz. its aspect
ratio and its absolute scale, which can be estimated during intrinsic and
extrinsic camera calibration respectively. The second, a more complicated
method, was introduced in 2011 (Strobl and Hirzinger, 2011); it optimizes
the whole geometry of the calibration object during intrinsic and extrin-
sic camera calibrations. Validation experiments demonstrate that these
methods should be preferred to traditional camera calibration unless the
user can provide the dimensions of the calibration object with highest
accuracy.

• In Section 3.5 I introduce another calibration method for intrinsic and
extrinsic calibration of cameras featuring a narrow angular field of view.
It is difficult to obtain the required evidence on perspectivity in the ca-
libration images using these cameras. That evidence is regularly being
used by traditional methods to differentiate between perspectivity effects
(due to the location of the camera) and the scaling of the camera itself.
In the absence of this information, traditional calibration methods are
compromised. In (Strobl et al., 2009b) we devised a method for joint in-
trinsic and extrinsic calibration of this type of camera by sensibly using
the pose readings of the attached pose reference system (e.g. a robotic
manipulator).

• The traditional calibration methods together with all novel methods ad-
dressed above have been implemented in a calibration toolbox called DLR
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CalDe and DLR CalLab (Strobl et al., 2005) that is freely available world-
wide (for academic purposes only). I am main author of DLR CalLab (the
calibration part of the toolbox), and my colleagues Wolfgang Sepp and
Stefan Fuchs developed DLR CalDe (the corner detection software). This
contribution has allegedly been, to date, the most widespread contribution
in the context of this thesis. It is safe to say that it is ranked in the top
three among the freely-available camera calibration toolboxes worldwide.
Beyond learning my lessons on algorithmic and computer programming,
I learned a lot about maintaining a software package for an active com-
munity of users.

• In Section 3.6 I shall present the calibration method of one of the main
sensors within the DLR 3D-Modeler: the laser stripe profiler (LSP). This
novel contribution was originally presented in (Strobl et al., 2004). The
method is based on a prior intrinsic and extrinsic calibration of its com-
ponent camera(s). After that, the pose of the laser plane is estimated by
the novel method. Instead of using precision calibration targets, the me-
thod merely consists in scanning a planar surface of unknown pose. The
procedure is highly unlabored yet yields high accuracy. In Section 3.7 I
present a variant of this method for the laser range scanner (LRS) of the
DLR 3D-Modeler.

• In Section 3.9 I propose a concept for combined calibration of all com-
ponent sensors of the DLR 3D-Modeler w.r.t. different external tracking
systems. The approach has proven very useful for rapid deployment of the
DLR 3D-Modeler as it is much faster than performing separate extrinsic
calibration for all of its sensor components.

The diagram in Fig. 1.2 depicts the functional interaction between the ca-
libration procedures of the main component sensors of the DLR 3D-Modeler.
Starting out on the left-hand side, the intrinsic calibration of the (stereo) camera
solely requires perspectively-distorted images of a checkerboard calibration pat-
tern. If the novel methods in Section 3.4 are used, the dimensions of the corners
on the calibration pattern need not be known with high precision. In the case
of stereo vision, the absolute distance between two corners has to be provided,
unless a subsequent hand-eye calibration is performed. Indeed, hand-eye cali-
bration of the (stereo) camera usually takes place immediately after the intrinsic
calibration stage. For that purpose we use the absolute extrinsics of the former
intrinsic calibration (which are a by-product of that calibration), comparing
them with the rigid body transformations delivered by the pose tracking sys-
tem in question (e.g. a robotic manipulator like the FaroArm Gold, the Kuka
KR 16 or the DLR Lightweight Robot III, or infrared tracking systems like the
ARTtrack2) and minimize the resulting discrepancies. After that, the hand-eye
transformation of the camera w.r.t. the Tool Center Point (TCP) frame ST of
the pose tracking device is used for the calibration of the laser coordinate fra-
mes of both, the laser stripe profiler (LSP), and the laser range scanner (LRS)
in Sections 3.6 and 3.7.
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Figure 1.2: Functional interaction between the calibration procedures.

1.5.3 The Importance of Robust Operation of Sensors

It would be desirable not to ruin the abovementioned precise computations by
careless measurements, including image processing and stereo triangulation. In
Chapter 4 I detail the methods required for robust data processing (mostly
images) that, together with the pose readings of the pose reference system,
result in 3-D pointclouds for further representation.

I mention two contributions:

• Theoretical investigations on the operation range of the component sen-
sors as well as on their expected range estimation accuracies are detailed in
Sections 4.2.5 and 4.2.6 in the case of the stereo camera, in Sections 4.3.4
and 4.3.5 in the case of the LSP, and in Sections 4.4.4 and 4.4.5 in the case
of the LRS. The joint representation of their expected range estimation
accuracies can be seen in Section 4.5.

• In Section 4.3.2 I present a novel, robust approach for the segmentation
of laser stripe projections on images that were not filtered to laser light;
the approach was originally published in (Strobl et al., 2004). The use
of unfiltered images of a laser stripe profiler is rare as it is far easier
to work with filtered images. However, these would preclude us from
performing stereo vision (Section 4.2), visual pose tracking (Chapter 5),
visual texturing and image augmentation (Section 5.4.6) on the very same
cameras. The approach presented in Section 4.3.2 features a cascade of
detection and validation stages delivering the 2-D coordinates of laser
stripe projections with sub-pixel accuracy. This procedure is in line with
the “softwarization” paradigm addressed in Section 1.2, as more complex
computations now allow one to get rid of extra hardware (the optical
filter) that was impeding further use of the images in the first place.
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1.5.4 Accurate, Passive Visual Pose Tracking

Accurate, passive visual pose tracking of the DLR 3D-Modeler in Chapter 5 con-
stitutes a novel contribution in the realm of 3-D modeling devices; it presents
the first hand-held 3-D modeling device for close-range applications that local-
izes itself passively from its own images in realtime, at a high data rate. Ever
since its original publication in (Strobl et al., 2009a), the approach acquired
worldwide renown, as it was rated as a finalist to the best paper award at the
well-known IROS conference in 2009. The approach is intended for the user to
perform customary 3-D modeling as originally presented in (Suppa et al., 2007),
but doing without the external positioning systems like the FaroArm Gold, the
Kuka KR 16, the DLR Lightweight Robot III, or the ARTtrack2 that constrain
the system in size, mobility, and cost. Again, this is clearly in line with the
“softwarization” paradigm introduced in Section 1.2.

The approach is based on high-rate tracking of natural, distinct features in
the images of the main camera of the DLR 3D-Modeler. It is worth noting that
the main difficulty in this context is that 3-D modeling is being performed at
close range, where the displacement of features between frames is bigger than
at long range because translational motions cannot be neglected anymore. In
addition, the calculations involved have to perform in real-time, parallel to all
other DLR 3D-Modeler-related computations like LSP triangulation, stereo vi-
sion, online meshing, and augmented image representation. In general, overall
success can only be achieved by careful engineering of all key processes: re-
lative motion is delivered at high-rate from feature tracking on a monocular
image stream using a novel, robust V-GPS algorithm characterized by its effi-
ciency and accuracy; in turn, feature tracking is based upon an accelerated KLT
feature tracker (Mair et al., 2010b), cast into the Active Matching paradigm
for improved performance at close range, see (Strobl et al., 2011). In order
to detach feature set structure estimation from high-rate tracking at the front-
end, feature-based stereo vision is being frugally triggered (at keyframe instants
only) to compute accurate 3-D feature sets; in case of interrupted pose track-
ing, contingent appearance-based relocalization on SURF features is provided;
finally, potential loop closures are utilized to increase accuracy in motion esti-
mation performing sparse, hybrid bundle adjustment (BA), delivering refined
motion history to the online meshing algorithm for timely display.

1.6 Outline of the Thesis

This thesis is structured having the principle of causality in mind. Its serial
structure is as follows: In Chapter 1 I introduce the need for an innovative,
multisensory 3-D modeling device that really complies with the “maximum
effectiveness” paradigm. A short outline is delivered concerning the guidelines
that resulted in the development of the DLR 3D-Modeler. In addition, the
market of 3-D sensors has been introduced with regard to their principles of
operation. I pointed at optical, reflective sensors as the more convenient sensor
components to fulfill the task of close-range 3-D modeling. After that, I listed
the main contributions of this thesis.
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Chapter 2 presents the sensor components mounted on the DLR 3D-Modeler,
describing their respective image formation processes. These system models
are essential for valid 3-D reconstruction in Chapter 4 (and perhaps visual
pose tracking in Chapter 5), provided the component sensors have been accu-
rately calibrated as explained in Chapter 3. The latter chapter includes many
novel contributions, as I noticed several wrongdoings when using traditional
calibration methods, for example when disregarding precise information on the
geometry of the calibration target, when using standard methods to calibrate
cameras with narrow angular field of view, when extrinsically calibrating came-
ras w.r.t. noisy pose tracking systems, or when choosing inconvenient methods
for calibrating a laser stripe profiler. In addition, I shall mention the calibration
software DLR CalDe and DLR CalLab that we at DLR freely distribute on the
internet (Strobl et al., 2005).

In Chapter 4 I shall present the required calculations for 3-D reconstruction
out of raw data (e.g. a live image stream). Some sensor components within the
DLR 3D-Modeler are constrained owing to our original intention of gathering
as much information as possible. For instance, the laser stripe profiler may not
be filtered to laser light in order not to preclude concurrent texturing, image
augmentation, stereo vision, and visual pose tracking. It is therefore important
to devise robust processing algorithms that still deliver robust results even
though the source material might be compromised, e.g. specked with spurious
light reflections. These extra calculations are in line with the abovementioned
guideline on “softwarization” for creating more effective sensors. In this chapter
I also report on expected operation ranges as well as on the precision of the
sensors subject to the measurement range.

Passive, visual pose tracking in realtime in Chapter 5 is a novel contribution
in the context of 3-D modeling systems. It allows for accurate pose tracking
in realtime without the need for external positioning systems, which, nearly
without exception, represent the most expensive hardware part of the system.
The method is based on high-rate tracking of natural, distinct features in the
images of the main camera of the DLR 3D-Modeler. The diversity of supporting
algorithms that are required for this application make for a dedicated section
on state of the art, that effectively extends the last Section 1.4. This novel
approach was well received by the computer vision community, being awarded
a best paper finalist award at the IROS conference in 2009.

Even though every chapter features its own experiments that validate par-
ticular methods, in Appendix B I list robotic systems that include (at least)
part of the algorithms developed in the course of this thesis, as well as closely
related methods including one patented method. In addition, the calibration
toolbox DLR CalDe and DLR CalLab is detailed in Section B.3.

Chapter 6 summarizes the contributions of this thesis and I shall mention
open directions for research in the hope that sensors based on this technology
that explicitly form 3-D models will eventually push forward the key techno-
logical area of service robotics in order to achieve critical mass and become
widespread across society.



2
System Modeling

“Everything should be made as simple as possible, but not simpler.”

—Albert Einstein, 1933

2.1 Introduction

Computer vision is largely about inverting the image formation process; conse-
quently, accurate modeling of the perception processes taking place within the
DLR 3D-Modeler plays a central role in this thesis.

Unlike qualitative tasks like 2-D image understanding and art appreciation
by humans, geometric computer vision is a quantitative task that requires a
thorough knowledge of the process of image formation with regard to its in-
ner geometry. Since image formation is a complex process, it can be of course
reflected by an accordingly complex model. In extreme cases, inscrutable de-
vices can be even modeled by a comprehensive mapping of all possible inputs
(e.g. 3-D instances and ambient illumination) onto their corresponding output
projections, which is commonly referred to as a look-up table (LUT) model.
Nonetheless it is only by choosing a compact (i.e., non-redundant) model of
operation that we shall eventually support efficient instantiation from these
models in Chapter 4. In addition, minimal, non-redundant models that reflect
the underlying physical principles of the device are more likely to feature gen-
eral validity compared with extended models overfitted to data. Last but not
least, compact model selection supports its own accurate parametrization (i.e.,
calibration) in Chapter 3.

It is indeed judicious to draw on experts’ work that incorporate all potential
variations of the operating model to increase accuracy. Regrettably, this process
entails risks, like the danger of overparametrization in the choice of the model
(overfitting), or even the risk of following established “dogmas” that, in reality,
only hold subject to the hardware at hand. By way of illustration, researchers
regularly opt for advanced optical distortion models for cameras in the hope that
they will lead to more accurate results as they, of course, do lead to somewhat

17
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smaller residual errors after calibration; more often than not, however, they
lead to parameters that are overfitted to datasets, thus not valid in eventual,
general operation. In (Strobl et al., 2009b) we make the case for tighter models
that ought not to harm more than help.

In this chapter I detail on the operating models required for accurate parametriza-
tion in Chapter 3 as well as efficient operation in Chapters 4 and 5 of all sensors
mounted on the DLR 3D-Modeler.

2.2 The DLR 3D-Modeler Components

The DLR 3D-Modeler is a multipurpose, multisensory platform for geometric
and visual perception (Suppa et al., 2007). It combines complementary sensors
in a compact, generic way, see Fig. 2.1. The main approaches for depth acqui-
sition include stereo vision, structured light, and laser scanning. The sensor
interfaces were unified in order to simplify the inclusion of further sensors. The
sensor principles can be compared, and the best one chosen for a specific task.
Evading and clearing sensor weaknesses can be also accomplished. We aim at
robustness through data fusion. Current applications comprise 3-D modeling,
visual tracking and servoing, exploration, path planning, and object recognition
e.g. as the perception head of the humanoid robot “Justin” (Borst et al., 2009),
see Section B.2.1 within Appendix B.

Handhold

Laser Range
    Scanner

Robot interface

Display

Cameras

Line laser
modules

passive or active
Markers

Figure 2.1: The DLR 3D-Modeler and its components (Fig. 1.1 reprint).

Further highlights are its low weight and power consumption, accurate and
adaptable synchronization of internal and external sensors, on-board computing
power on an embedded Linux operating system (with its own display, buttons,
and a mouse wheel), generic mechanical interfaces, unified communication to
computers via FireWire R©, as well as an extensive, congruent inhouse software
suite. Note the electronic boards inside the DLR 3D-Modeler in Fig. 2.2.
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Figure 2.2: Inner view of the DLR 3D-Modeler and its electronics.

Its principal sensory components are (cf. Fig. 2.1):

• The stereo camera consists of two AVT Marlin F-046C progressive scan
cameras, resolution 780×582, separated 50 mm from each other, featuring
6 mm Sony R© VCL-06S12XM objectives. The base distance and the focal
length were chosen to cover the sensing range from 30 cm up to 2 m,
refer to Section 4.2.5. The implemented stereo algorithm is Semiglobal
Matching (SGM) and it is detailed in Section 4.2.3 and in (Hirschmüller,
2008).

• The DLR Laser Stripe Profiler (LSP) (Strobl et al., 2004; Suppa et al.,
2007) features two laser beams that sequentially project stripes on a sur-
face. The stripes are recorded by the cameras and reconstructed by
triangulation—this is the dual, crosshair operational mode; operation
with only one laser is still possible. The LSP delivers close- to mid-range
data, cf. Section 4.3.4. It is worth noting that the LSP works without op-
tical filters on the cameras, as they would render stereo vision, texturing,
and visual pose tracking in Chapter 5 impossible.

• The DLR Laser Range Scanner (LRS) (Hacker et al., 1997; Kielhöfer,
2003) also operates by laser light triangulation. A visible, weak laser ray
is continuously rotated and its reflection is dynamically recorded by a
position sensitive detector. Because of its robustness and small size, it is
used as a high-definition, short-range sensor. It is worth noting that its
wide scan angle is especially convenient in robotic applications.
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• The AscTec AutoPilot inertial measurement unit (IMU) by Ascending
Technologies GmbH can be optionally attached to the device. Attitude
estimation is on six degrees of freedom (6 DoF) at 1 kHz leveraging three
gyros, three accelerometers, and three magnetometers. It also features on-
board data fusion and a second, idle 60 MHz ARM processor still available
for the user. It only weighs 19.6 g and is size 10×50×50 mm.

• A contact probe can be optionally mounted on the DLR 3D-Modeler, see
Fig. 2.3. Note that the probe is rigid and should only be used in the
case of passive pose tracking systems like the ARTtrack2 or visual pose
tracking as in Chapter 5. In the case of active pose tracking systems like
robotic manipulators, the use of this mechanical probe on rigid objects
is only possible if the manipulator is compliant (probably controlled by
force), e.g. the DLR Lightweight Robot III.

Figure 2.3: Mechanical contact probe mounted on the DLR 3D-Modeler.

In the following sections I shall select convenient operation models for the
abovementioned sensors, along with their mechanical layout with respect to
(w.r.t.) optional external tracking systems like the FaroArm Gold, the ART-
track2, the Kuka KR 16 robotic manipulator, or the DLR Lightweight Robot
III. In addition, I detail on the historical development of the sensors, as model
selection goes hand in hand with their technological progress.
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2.2.1 The Stereo Camera

Description

Cameras are devices for the visual representation of general, 3-D scenes perspec-
tively, i.e., in a similar way as perceived by the human eye. This representation
is in the form of a central projection through the center of projection of the ca-
mera (e.g. a pinhole) onto the planar, 2-D image sensor. Note that by inverting
this image formation process without any prior information of the scene, it is
only possible to infer the direction of view in Euclidean space of the projected
features, but not their depth. Overall, perspective projection can be summed
up by these two principles: Close objects project bigger, and differently distant
objects may project onto the same region, i.e., range gets lost.

A stereo camera is a camera system composed of two or more cameras
(mostly rigidly attached to each other) that is capable of immediate 3-D re-
construction of the scene (including depth) by triangulation using stereo vision
algorithms. Stereo vision (or stereopsis) is a perception process leading to depth
information out from different pespective projections of the scene, from differ-
ent locations. In computer vision it usually concerns two video cameras, even
though monocular cameras are also capable of 3-D reconstruction by stereo vi-
sion using images from different vantage points (of course, delayed in time and
up to similarity, i.e., unscaled). On the understanding of a pointwise treatment
of the scene, stereo vision is capable of full 3-D reconstruction out of the inver-
sion of the image formation processes for every single camera (i.e., out of the
inferred view directions of the projected features for every camera), along with
depth estimation by optimal triangulation. By fusing view directions registered
at different locations, feature triangulation in Euclidean space is possible if the
relative transformation between cameras is known (cf. Section 4.2.2). The first
approach to processing depth images was mechanical, on analog images by Ed-
uard von Orel in 1907. Current analytic approaches focus on digital imaginery
and are processed by computers.

The implemented stereo vision algorithm is the Semiglobal Matching me-
thod (SGM) by Heiko Hirschmüller (Hirschmüller, 2008). A global smoothness
constraint that supports pixelwise matching is used as a cost function. Addi-
tionally, SGM uses a mutual information-based matching cost for compensating
radiometric differences of input images. The algorithm also includes a number
of post-processing steps for refinement. It is currently amongst the top-ranked
in the Middlebury Stereo Vision Page (Scharstein and Szeliski, 2002) and has
been already instantiated on different platforms like CPUs, GPUs and FPGAs.

Digital cameras are widely used in robotics as they are light, affordable, have
a small footprint and consume limited amounts of energy. They furthermore
allow for a very accurate parametrization of a simple, yet accurate operating
model. In addition, cameras gather plenty of radiometric and geometric in-
formation within a single, rapid measuring cycle. Recent growth in computing
power allows for elaborate image processing in customary rates like 25 to 50 Hz.
Furthermore, they are non-contact sensors, thus free-floating, and operate pas-
sively without the need to influence the environment which they measure. They
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also allow for intrinsically synchronized measurements between different image-
based sensing components, e.g. with simultaneous operation of the LSP, stereo
vision, 3-D model texturing, and 6-D visual pose tracking as in Chapter 5.

Digital cameras have also taken over as the preferred sensors for simul-
taneous localization and mapping (SLAM). Laser range finders (LIDARs and
LADARs) had been traditionally used to this end, as they directly measure
surface distances with high precision. Traditional range finders, however, only
scan 2-D stripes of the scene, which limits their use to flat floor scenarios—
still they encounter difficulties with common objects such as tables or shelves.
In addition, laser range finders are larger in size, heavier, and consume more
power compared with passive sensors such as video cameras, and even the sim-
plest range finders are two to three orders of magnitude more expensive than a
camera.

Historical Remarks

Even though the ancient Greeks were aware of many concepts of projective
geometry, they erroneously conceived the eye as an active device emitting ra-
diation. It was the Persian scientist Ibn al-Haytham (Latinized: Alhacen) at
the beginning of the 11th century that crucially identified the eye as a passive
device receiving radiation. This observation allowed him to state the basics of
perspectivity, to give a detailed description of the human eye, and to produce
the reportedly first artificial camera: the camera obscura—out of scientific,
not artistic interest. Artists like Leonardo da Vinci and Albrecht Dürer in
the 15th century as well as the Dutch Masters in the 17th century used a ca-
mera obscura as a drawing aid for correct perspective representation of scenes
(Hockney, 2006). The conceptual pinhole camera instantiated by the camera
obscura consists of an opaque box pinholed in a side. Light from the scene
passes through the pinhole projecting onto the opposite side of the box, both
mirrored and inverted upside-down. Using mirrors, the image can be further
projected onto tracing paper for manual transcriptions that accurately depict
a perspective representation of the scene, see Fig. 2.4.

Figure 2.4: An 18th century artist
drawing with a camera obscura fea-
turing a lens (B) and a mirror (M).
Source: 18th century dictionary il-
lustration.
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In general, the smaller the pinhole is made, the sharper the image results; on
the other hand, however, a tiny pinhole yields to distortion by diffraction and,
furthermore, the resulting images lack of brightness. For this reason, optical
lenses were introduced in order to increase brightness while largely maintaining
sharpness—similar to human eyes. This was proposed by Leonardo in the 15th
century; it was Daniele Barbaro in the 16th century that pioneered the use
of optical lenses in this type of cameras instead of actual pinholes. Optical
lenses were also used in the realm of astronomical telescopes. Their design was
perfected using the law of refraction of Willebrord Snell and René Descartes
at the beginning of the 17th century, as well as the investigations on optical
aberrations in the 19th century by James Clerk Maxwell and Ernst Abbe.

A major contribution for automatic, more veritable perspective represen-
tations is the work of Joseph Nicephore Niepce, Louis Daguerre, and William
Henry Fox Talbot in the early 19th century by the invention of the daguerreo-
type and the negative/positive photographic process, see Fig. 2.5. It is no
coincidence that lens design was subject to substantial improvements for the
years to come, since, especially in this context, the use of optical lenses further
allows for reasonable shutter times.

Figure 2.5: Daguerreotype camera built by Alphones
Giroux in 1839. Note the silvered copper positive
plate (G). Source: WestLicht Photographica Auction
www.westlicht-auction.com.

The last milestone to current state of the art on off-the-shelf cameras has
been the development of electronic sensors (charge-coupled devices (CCD)
or complementary metal-oxide-semiconductor (CMOS) chips, see Fig. 2.6) for
electronic acquisition of images in the second half of the 20th century. In
conjunction with personal computers, they enable an overarching digital process
with acquisition, storage, and image processing becoming fully digital.

Figure 2.6: The CMOS image sensor first mounted on
a Leica M camera. Source: de.leica-camera.com.

www.westlicht-auction.com
de.leica-camera.com
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The Perspectivity Equation

The camera operating model presented here focuses on the geometry of the
camera. I am not carrying out a photometric study, i.e., I will not treat bright-
ness and color of the perceived radiation, but only its location on the chip.
Sharpness is also not considered. This type of camera modeling is common to
geometric computer vision applications and will enable the user to infer in 3-D
Euclidean space from the evidence of 2-D image projections.

It is remarkable that the geometric model of ancient pinhole cameras still
holds for accurately describing the main functioning principle of modern ca-
meras with complex lenses. The pinhole camera model represents perspective
projection, i.e., the mapping of the 3-D world scene onto a 2-D imaging plane,
by rays of light passing through a (conceptual) point called center of projection,
focal point or focus of the camera. The camera reference frame SC is located
at the focal point and its axis Cz is in the direction defined by the point on
the imaging plane of minimum Euclidean distance to the focal point and the
focal point itself, i.e., it is perpendicular to the imaging plane, see Fig. 2.7.
That point on the projection plane is called principal point, and therefore the
axis Cz may be also called principal axis or optical axis. The distance between
the principal point and the the focal point is called focal length f . Any imag-
ing plane distant one distance unit to the focal point (i.e., f = 1) is called a
normalized image plane and is represented by the 2-D normalized image frame
SI. The origin of SI is located at its principal point and its two main axes
are both parallel and in the same direction as Cx and Cy in the camera frame
SC. The direction of the latter axes is not yet being specified as, for reasons of
convenience, it will be related to the actual (digital) sensing plane.
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Figure 2.7: Perspective projection of feature Cp unto the image plane SI.

Using the Thales’ theorem of similar triangles and representing both main
directions on the image frame SI in matricial form, a particular 3-D world
feature p, represented in SC as Cp=[Cx,Cy,Cz]

T, projects onto SI as follows:

Ip =

[
Ix

Iy

]
= (−)

[
Cx/Cz

Cy/Cz

]
, (2.1)

which clearly entails the loss of positioning information in one dimension, viz.
the absolute distance to the image projection. From this it follows that the
location of the 3-D original feature cannot be fully recovered from any finite
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projection Ip. It is worth noting the minus sign representing the inverted image
formation; it is common practice to drop this sign in order to avoid using
inverted images; this is readily done by relocating the (virtual) image frame SI

in front of the focal point, i.e., (Ix, Iy) 7→ (−Ix, −Iy).
More in detail, the pinhole camera model can be derived from the thin lens

camera model in the case of smaller aperture sizes; the thin lens camera model
is in turn a particularization of the more general thick lens camera model. The
latter model includes the effects of thick lenses except for their aberrations,
refer to Section 2.2.1. The reader can find a more detailed description of the
nature of this type of projection in Refs. (Faugeras et al., 2001; Hartley and
Zisserman, 2004; McGlone et al., 2004).

Digital Sensors

The actual imaging plane is currently being instantiated by an electronic, dis-
crete imaging sensor like CCD or CMOS chips. This type of sensors decisively
affect the formation of the digital image through the so-called digitization pro-
cess. This process relates the eventual picture elements (pels) with the orig-
inal, normalized coordinates Ip explained above, depending on the particular
geometry of the sensing elements (sels) of the chip, i.e., their (perhaps non-
rectangular) side sizes sx and sy, as well as its actual location w.r.t. the focal
point. The chip’s location is specified by both, the position of the principal
point as well as its focal length f ; the orientation of the imaging plane is al-
ready defined as it corresponds to Cz, and its in-plane orientation is set for Ix
to correspond with Cx. The 2-D reference frame ideally attached to the sensor
plane is called memory frame SM. I choose to locate it at the upper-left corner
of the digital image (viz. at the center of the upper-left corner pixel), being its

Mx axis parallel and in the same direction as Ix in SI, see Fig. 2.8. The location
of the principal point in SM can then be especified by its coordinates u0 and
v0.
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Figure 2.8: Perspective projection of feature Cp unto the image memory frame SM.

These facts call for an extension of Eq. (2.1) as follows:

Mp =

[
Mx

My

]
=

[
f
/
sx Ix + u0

f
/
sy Iy + v0

]
=

[
f
/
sx

Cx/
Cz + u0

f
/
sy

Cy/
Cz + v0

]
. (2.2)

More in general, skewed imaging sensors are allowed so that Mx and Iy are
not independent anymore even if Mx and Ix still stick parallel to each other.
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For a relative angle λ between Mx and My the former equation extends to:

Mp =

[
Mx

My

]
=

f/sx Ix − f
/
sx Iy cotλ + u0

f
/
sy (sinλ)−1

Iy + v0

 =

=

f/sx Cx/
Cz − f

/
sx

Cy/
Cz cotλ + u0

f
/
sy (sinλ)−1 Cy/

Cz + v0

 . (2.3)

These equations represent a nonlinear relationship between the 3-D point

Cp and its 2-D projection Mp. By using the homogeneous coordinates (̄ ) for
projected features Mp̄, a simpler, linear projective formulation arises:

Mp̄ =

Mx

My
1

 =

f
/
sx −f

/
sx cotλ u0

0 f
/
sy (sinλ)−1 v0

0 0 1


︸ ︷︷ ︸

A(3×3)

Ix

Iy
1

 ∝ A(3×3)

Cx

Cy

Cz

 , (2.4)

where A is the intrinsic matrix composed of the intrinsic parameters that rep-
resent the internal orientation of the camera. It can be also read as an affine
transformation between the normalized image frame SI in Eq. (2.1) and the
memory frame SM. In addition, the homogeneous formulation may factor in
points at infinity, which may be of advantage in computer vision applications.

Since camera parameters f , sx, sy, and λ are entangled in the coefficients
within A, it is not possible to estimate them separately based on external,
image-based measurements alone. However, in order to estimate in 3-D out
from 2-D projections, it is not really necessary to have a through knowledge
of these physical parameters anyway, but only of the composed coefficients.
Consequently we set:

α , f
/
sx (2.5)

β , f
/
sy (sinλ)−1 (2.6)

γ , − f
/
sx cotλ (2.7)

and, as a result:

Mp̄ =

Mx

My
1

 =

α γ u0

0 β v0

0 0 1


︸ ︷︷ ︸
A(3×3)

Ix

Iy
1

 ∝ A(3×3)

Cx

Cy

Cz

 , (2.8)

which is an adequate, general representation of the pinhole camera model—a
simpler algebra at the expense of a straightforward geometric interpretation, see
(Tsai, 1987; Faugeras and Toscani, 1987). It is worth noting that, according
to the interpretation of the skew parameter γ as a skewing of the sels, it is
admittedly very unlikely for this type of distortion to still happen using modern
sensors. Therefore, in general it is not recommended to release this degree of
freedom except when using special cameras (e.g. bellows cameras or camera
systems taking images of perspectively projected images).
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Lens Distortion

The lens is generally the most expensive and least understood part of any
camera. As stated above, projecting rays do not really pass through a single
focal point but through complex lens units—keeping rays close and bundled
but going separate ways, see Fig. 2.9.

Figure 2.9: Cutaway view of an off-
the-shelf digital camera. Its lens
unit is composed of a number of in-
dividually moving lenses. Source:
www.canon.de.

The complex path of light within a lens certainly accounts for deviations
from the straight line projection assumption mentioned above, which is cause
for a number of potential optical aberrations. Here we are concerned with the
monochromatic aberrations that distort the geometrical shape of the whole
image, for example with the Petzval field curvature or with distortion; we are
not concerned with pointwise sharpness issues like spherical aberration, coma,
or astigmatism. It is well known that the Petzval field curvature can be compen-
sated for by a suitable combination of positive and negative lenses and stops1

(Hecht, 1998; Born et al., 1999). Unfortunately, lens designers rarely cope with
distortion, which is most accentuated in cameras with bigger angular fields of
view (AOV). The reason is that all aberrations are factors being concurrently
optimized during lens design and sharpness issues are being considered more
critical than geometric accuracy (Kingslake, 1992; Stroebel, 1999; Born et al.,
1999)—and rightly so. Unlike most of the other aberrations (including the
chromatic ones), the effects of distortion can be readily compensated for by a
posterior computation step called undistortion; consequently, more often than
not lens distortion is being left unattended during the process of lens design.

In the following, the three main geometric lens distortion effects are be-
ing addressed. Even though lens distortion declaredly stems from the fact
that the pinhole camera model is not exact, we still intend formulations of
lens distortion that extend the former pinhole camera model without replac-
ing it. The reason behind is the strength and efficiency of the linear pro-
jective formulation of the pinhole camera model that must be retained. In

1 Aperture stops are circular, perforated discs that limit the incoming light to its central
pinhole; they are regularly used between or within lenses in order to contain the effects of
different types of aberrations.

www.canon.de
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detail, we aim at a pre-processing stage undist(·) for image undistortion, i.e.,
undist(·) : (Ixd, Iyd) 7→ (Ixu, Iyu), so that subsequent perspective reprojection
of these virtual (nonobservable), undistorted projections using the standard
pinhole camera model in Eq. (2.1) perfectly matches with the actual imaging
directions in SC. To recap:

[
Cx/Cz

Cy/Cz

]
=

[
Ixu

Iyu

]
= undist

([
Ixd

Iyd

]) /
Mp̄u =

Mxu

Myu

1

 = A(3×3)

Ixu

Iyu

1

 .

(2.9)

This pre-processing stage will often make use of mathematical models of the
underlying physical principles of lens distortion, even though phenomenological
approaches to lens undistortion could also suffice.

It is worth noting that the following, conventional models for undistortion
only depend on view directions and not on projection distances. It is conven-
tionally accepted that the pinhole camera model is only valid beyond very close
distances of approximately 30 times the focal length (Luhmann et al., 2006;
Magill, 1955; Brown, 1966; Fryer; Duane C. Brown, 1986); undistortion mo-
dels should at least match this operating range. Furthermore, I consider lens
distortion as a constant effect because focal length is a constant parameter in
most computer vision applications. In the case of camera systems with varying
magnification (i.e., zoom), I refer the reader to (Magill, 1955).

The following lens distortion models address all potential lens distortions
of most camera systems with regular angular field of view (i.e., at most 120◦).
The first of them is related with the imperfect design of the lens unit, whereas
the two last distortion models concern improper lens and camera assembly.

• Radial distortion, Seidel distortion or barrel or pincushion distortion is
the last of the Seidel aberrations and causes a radial displacement δr of
projections w.r.t. the center of distortion. In the absence of other kinds of
deviations like improper assembly of the lens unit, the center of distortion
ought to coincide with the principal point of projection. Radial distortion
is due to varying camera magnification (i.e., different focal length) in
relation to the angular distance of the projecting ray to the optical axis—
irrespective of its angle around the optical axis (therefore, it is also called
symmetric distortion). Since the effect is responsible for actually straight
lines being rendered curved (except for lines that pass through the center
of radial distortion), it is sometimes also called curvilinear distortion.

In detail, the divergent magnifications in the case of oblique light pencils
traversing the lens are direct consequence either of the use of thick lenses
or of the use of aperture stops in systems of thin lenses, see Fig. 2.10. De-
pending on the position of these stops (and not on their aperture sizes2),

2 Indeed, at very small apertures of the diaphragm, distortion is the only noticeable aberra-
tion (Conrady, 1958). This observation is currently being used to treat presbyophia in elderly
patients, implanting rings on their eyes to increase sharpness based on the principle of sharper
projection by smaller apertures, e.g. using the KAMRA InlaysTM system.
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the magnification varies from radially displacing projections towards the
center of radial distortion (barrel distortion, δr < 0) to displacing the
projections away from it (pincushion distortion, δr > 0), cf. Fig. 2.10.
Complex lenses may very well present both barrel and pincushion distor-
tions. In order to minimize this effect, lens designers have to plant the
stops between or within lenses (Jenkins and White, 1976; Hecht, 1998).

Stop Image plane Undistorted projection

Barrel distortion

Pincushion distortion

Stop

Stop

Lens

Figure 2.10: Placing stops limits the effects of different types of aberrations. Stops within
the lens reduce lens distortion effects improving the depth of field. Stop discs outside the lens
produce either barrel or pincushion lens distortion.

Taking into account Snell’s law of refraction as well as the geometry of the
camera (including the potential use of stops), radial distortion is expected
to grow as the cube of the distance of the normalized projection Ipu to
the principal point if we use a third-order Taylor expansion of the sine
function in the law of refraction of Snell. This is the so-called cubic law
of the distortion—refer to Conrady’s study on extra-axial projections in
(Conrady, 1958, 1960). The normalized projections Ipu are determined
using the pinhole camera model in Eq. (2.9), or rather the theorem of
Lagrange.3 The addition of higher-order decomposition terms to Snell’s

3 The theorem of Lagrange determines the linear magnification of the image of a small
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refraction law yields the following analytic expression for radial distortion:

δr(ρ) = k1ρ
3 + k2ρ

5 + k3ρ
7 +O(ρ9) (2.10)

where ρ is the radial distance from the center of radial distortion to the
expected, normalized projections Ipu, i.e., ρ=

√
Ix2

u + Iy2
u, and k1, k2, k3

are the coefficients of radial distortion. The Cartesian representation of
Eq. (2.10) depends on the in-plane angular position ϑ= arctan( Iyu

/
Ixu)

of the feature in the reference frame SI as follows:

δrx = δr cosϑ = δr Ixu
/
ρ = Ixu (k1ρ

2 + k2ρ
4 + k3ρ

6 +O(ρ8)) (2.11)

δry = δr sinϑ = δr Iyu
/
ρ = Iyu (k1ρ

2 + k2ρ
4 + k3ρ

6 +O(ρ8)) (2.12)

that can be directly added to the normalized projections Ipu in order to
get the distorted, normalized projections Ipdradial

:

Ipdradial
=

[
Ixu + δrx

Iyu + δry

]
=

[
Ixu (1 + k1ρ

2 + k2ρ
4 + k3ρ

6 +O(ρ8))

Iyu (1 + k1ρ
2 + k2ρ

4 + k3ρ
6 +O(ρ8))

]
. (2.13)

This is the so-called u→ d (undistorted-to-distorted) formulation that
is conform to physical refraction laws. This formulation enables direct
calculation of distorted projections out from the ideal, undistorted ones.
Unfortunately, in computer vision applications it is the opposite calcula-
tions that we are regularly interested in (d→u), and a direct analytical
inversion of this formulation is not easily possible. However, an iterative
solution for the estimation of undistorted reprojections out of actually
tracked (̃ ), distorted ones Mp̃dradial

can be implemented by repeated dis-
tortion of some initial, undistorted projections, updating them until their
distorted counterparts match the actually tracked distorted projections

Mp̃dradial
in the first place, see Alg. 1. The fastest option is to use the

actually tracked, distorted projections themselves as initial (undistorted)
values for the first iteration. Alternatively, an extensive look-up table
(LUT) can be calculated in advance. As an exception, the simplifying
case of third-degree distortion (i.e., k1∈R, ki=0 ∀i∈N, i > 1) allows di-
rect undistortion using the Cardan method, see (Devernay and Faugeras,
1995). The formulation can be also approximated for rapid undistortion,
see Refs. (Melen, 1994; Heikkilä and Silvén, 1997; Heikkilä, 2000; Wei and
De Ma, 1994; Mallon and Whelan, 2004).

It is worth mentioning that, in the literature, many authors use similar
formulae to directly undistort actual, distorted image projections Mp̃d,
instead of distorting normalized projections Ipu (i.e., u→d). I call this
inverted approach distorted-to-undistorted formulation (d→u), see Refs.
(Tsai, 1987; Willson and Shafer, 1994; Stein, 1993, 1997; Wei and De Ma,
1994; Devernay and Faugeras, 1995; Zhang, 1996; Prescott and McLean,
1997; Heikkilä, 2000; Devernay and Faugeras, 2001; El Melegy and Farag,
2003; Sagawa et al., 2005; Tamaki, 2005). The authors directly compute

object produced by the refraction of paraxial rays at a spherical surface (Conrady, 1958).
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Algorithm 1 Iterative algorithm for undistortion of feature projections.
Note that a faster implementation is possible using analytical Jacobians of the
reprojection equations, refer to the documentation in (Strobl et al., 2005).

Require: Actual (distorted) feature projections Mp̃dradial
, intrinsic matrix A

and distortion parameters {k1, k2, . . .}.

Mp̂u , Mp̃dradial
{initialization using distorted projections}

Set desired precision P (e.g. to 0.01 pixels).

repeat[
utemp

vtemp

]
= Mp̂u −

[
u0

v0

]
Iv̂u = vtemp

/
β

Iûu = (utemp − γ Iv̂u)
/
α

Mp̂dradial
= Mp̂u +

[
k1 utemp

(
Iûu

2 + Iv̂u
2
)

+ k2 utemp

(
Iûu

2 + Iv̂u
2
)2

+ . . .

k1 vtemp

(
Iûu

2 + Iv̂u
2
)

+ k2 vtemp

(
Iûu

2 + Iv̂u
2
)2

+ . . .

]
E = Mp̂dradial

− Mp̃dradial
{distortion error}

Mp̂u = Mp̂u −E {update undistorted projections}

until norm(E) < P {four iterations should suffice}

return Mp̂dradial
.

the radial distance ρ out from distorted image projections Mp̃d, which
enables direct undistortion of projections without the need for an itera-
tive process like Alg. 1 or an LUT. The approach is incorrect on a strict,
physical ground, but my own simulations show that it may also deliver ac-
curate results—provided that the camera calibration process also follows
the d→u formulation. It is worth noting that, on all tested cameras, the
physically-conform u→d formulation did actually deliver more accurate
results, cf. (Strobl and Hirzinger, 2008).

The presented formulation based on Snell’s refraction law is the custom-
ary model representation. However, other phenomenological models exist:
polynomial terms were used by Ebner and others in (Ebner, 1976; Konecny
and Lehmann, 1985), and a similar approach using a bicubic model was
introduced by Kilpelä in (Kilpelä, 1980). In (Faugeras and Toscani, 1987)
the authors correct distortion using bilinear transformations in image
patches. Fitzgibbon and Brauer-Burchardt et al. introduced the division
model for catadioptric systems in (Fitzgibbon, 2001; Brauer-Burchardt
and Voss, 2001), also used by Barreto in (Barreto, 2006). After that,
Perwass and Sommer extended it into the inversion model, see (Perwass
and Sommer, 2006). In (Claus and Fitzgibbon, 2005) the authors present
a model based on a rational function. Devernay and Faugeras propose
the field of view (FOV) model (mainly for fish-eye lenses) in (Devernay
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and Faugeras, 2001). Qiu and De Ma employ a non-parametric model,
see (Qiu and Ma, 1995), and Ma et al. present a further polynomial dis-
tortion model in (Ma et al., 2003; Ma et al., 2003). Last, it is worth
mentioning the non-phenomenological approach in (Wang et al., 2008)
where the authors develop the abovementioned formulation u→d taking
geometrical inaccuracies into account.

• The decentering distortion model aims at compensating for potentially
erroneous assembly of lenses within a lens unit concerning their centering
accuracy to each other as well as w.r.t. the imaging frame, i.e., whether
all components are strictly collinear to each other. Different from radial
distortion where deviations only show radial components, this type of
distortion features both, radial and tangential components.

The original formulation seems to have been originally delivered by Con-
rady in (Conrady, 1919, 1958, 1960) and further explained by his son-
in-law Kingslake in (Kingslake, 1992); it was also used in (Brown, 1966,
1971; Weng et al., 1992) and beyond. Decentering distortion contains
radial and tangential components as follows:

δdr = 3(j1ρ
2 + j2ρ

4 + · · · ) sin(ϑ− ϑ0) (2.14)

δdt = (j1ρ
2 + j2ρ

4 + · · · ) cos(ϑ− ϑ0) (2.15)

where ϑ= arctan( Iyu
/
Ixu) is, again, the in-plane angular position of the

feature in the reference frame SI, and ϑ0 sets the angular direction of
maximum tangential decentering distortion, see Fig. 2.11.

y

xI

I

Axis of min. tangential distortion

Axis of max. tangential
                      distortion

Figure 2.11: Angular directions of maximum and minimum tangential distortions and their
effects (dashed curves).

In Cartesian representation we have:[
δdx

δdy

]
=

[
cosϑ − sinϑ
sinϑ cosϑ

] [
δdr

δdt

]
, (2.16)
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where, letting p1 =−j1 sinϑ0 and p2 =j1 cosϑ0, we substitute Eqs. (2.14)
and (2.15) in Eq. (2.16) and, releasing j1, we have:

δdx = p1 (3 Ix
2
u + Iy

2
u) + 2 p2 Ixu Iyu +O

(
(Ixu, Iyu)4

)
, (2.17)

δdy = 2 p1 Ixu Iyu + p2(Ix
2
u + 3 Iy

2
u) +O

(
(Ixu, Iyu)4

)
. (2.18)

If the further DoF j2 is required, letting p3 =−j2 sinϑ0 and p4 =j2 cosϑ0,
the former equations extend to:

δdx = p1 (3 Ix
2
u + Iy

2
u) + 2 p2 Ixu Iyu

+ ρ2
(
p3 (3 Ix

2
u + Iy

2
u ) + 2 p4 Ixu Iyu

)
+O

(
(Ixu, Iyu)6

)
, (2.19)

δdy = 2 p1 Ixu Iyu + p2(Ix
2
u + 3 Iy

2
u)

+ ρ2
(

2 p3 Ixu Iyu + p4 (Ix
2
u + 3 Iy

2
u )
)

+O
(
(Ixu, Iyu)6

)
. (2.20)

It is worth noting that in Eqs. (2.17) and (2.18) both parameters p1 and
p2 stem from j1 and ϑ0 and have to be estimated independently of each
other; the situation is different in Eqs. (2.19) and (2.20) where p3 and p4

are correlated since p4 = (p3 p2)
/
p1.

The decentering distortion model has a close connection to the former
radial distortion model: I already mentioned that radial distortion is de-
fined w.r.t. the principal point of the camera in SI. However, the attentive
reader may have noticed that radial distortion of the lens unit and the
principal point of the camera are essentially isolated entities that, subject
to the accuracy of the assembly process, may actually differ to each other.
As a consequence, in the presence of radial distortion, the estimated lo-
cation of the principal point primarily locates the origin of this distortion
(Weng et al., 1992; Willson and Shafer, 1994), so that the actual princi-
pal point is shifted. Any deviation from the actual projective principal
point implies a different orientation and translation of the imaging sensor
(Tsai, 1987). These effects are usually small and can be neglected. How-
ever, some cameras really require a decoupling of both, the actual origin
of radial distortion and the projective principal point; in (Stein, 1993) the
author describes how decentering distortion in its first DoF (Eqs. (2.17)
and (2.18)) is equivalent to releasing the center of radial distortion. In-
deed, in many experiments I did came upon this effect: Extremely cheap
cameras like webcams, which components have not been assembled with
the required accuracy, may indeed benefit from the release of the center
of radial distortion by expecting decentering distortion. As far as my ex-
perience goes, this only concerns extremely cheap, low-end cameras; the
user should then consider this distortion model during calibration in Sec-
tion 3.2. As a matter of fact, this seems the only context in which explicit
modeling of decentering distortion seems justified.
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• Thin prism distortion also arises from imperfect lens assembly of the
component lenses of lens units or of its sensing frame. An example is
tilting of lens components or the sensing image frame. This distortion
has been traditionally modeled in the literature by a thin prism effect
both, with radial and tangential components, see (Brown, 1966):

δtr = (i1 ρ
2 + i2 ρ

4 + · · · ) sin(ϑ− ϑ1) (2.21)

δtt = (i1 ρ
2 + i2 ρ

4 + · · · ) cos(ϑ− ϑ1) (2.22)

where ϑ= arctan( Iyu
/
Ixu) is, again, the in-plane angular position of the

feature in the reference frame SI, and ϑ1 sets the angular direction of
maximum tangential thin prism distortion.

In Cartesian representation and letting s1 =−i1 sinϑ1 and s2 = i1 cosϑ1

we have:[
δtx

δty

]
=

[
cosϑ − sinϑ
sinϑ cosϑ

] [
δtr

δtt

]
=

[
s1 (Ix

2
u + Iy

2
u) +O

(
(Ixu, Iyu)4

)
s2 (Ix

2
u + Iy

2
u) +O

(
(Ixu, Iyu)4

)] .
(2.23)

This distortion model is not being required in modern cameras.

Radial, decentering, and thin prism distortion models may be added to-
gether. For instance, in the case of one DoF for each of the models, we have:

δx = δrx + δdx + δtx = k1 Ixu(Ix
2
u + Iy

2
u)

+ p1 (3 Ix
2
u + Iy

2
u) + 2 p2 Ixu Iyu

+ s1 (Ix
2
u + Iy

2
u) (2.24)

δy = δry + δdy + δty = k1 Iyu(Ix
2
u + Iy

2
u)

+ 2 p1 Ixu Iyu + p2(Ix
2
u + 3 Iy

2
u)

+ s2 (Ix
2
u + Iy

2
u) (2.25)

or, in a more compact way, letting g1 =s1+p1, g2 =s2+p2, g3 =2 p1 and g4 =2 p2:

δx = (g1 + g3) Ixu
2 + g4 Ixu Iyu + g1 Iyu

2 + k1 Ixu (Ix
2
u + Iy

2
u) (2.26)

δy = g2 Ixu
2 + g3 Ixu Iyu + (g2 + g4) Iyu

2 + k1 Iyu (Ix
2
u + Iy

2
u) (2.27)

with the result that [
Ixd

Iyd

]
=

[
Ixu + δx (Ixu, Iyu)

Iyu + δy (Ixu, Iyu)

]
, (2.28)

which can be also used in the context of the undistortion function undist(·) in
Eq. (2.9), together with the actual projections Ip̃d, i.e.,

Mp̄u =

Mx̃u

Mỹu

1

 =

α γ u0

0 β v0

0 0 1

Ixu

Iyu

1

 =

α γ u0

0 β v0

0 0 1

[undist (Ip̃d)
1

]
(2.29)
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to obtain implicit, normalized projections {Ix̂u, Iŷu} that, in turn, allow us to
infer 3-D directions in Euclidean space in SC.

Note that a general statement on the number of DoF required for accurate
modeling of lens distortion is not possible, as camera systems are highly diverse.
It is mostly during camera calibration that the user can assess the significance
of the released parameters for any particular camera, see Section 3.2. The only
valid general statement is that the smaller the AOV (i.e., the bigger the ratio
focal length to size of the imaging sensor), the less effect radial distortion has
in the image.

These distortion parameters are then considered part of the interior orien-
tation of the camera, i.e., included in the intrinsic parameters.

It is worth noting that, even though the actual image is distorted, this does
not mean that the user needs to undistort the whole image in advance of image
processing e.g. in Chapter 4. Much on the contrary, undistortion (and image
warping in general) would falsify noise models (due to averaging) and introduce
further errors like aliasing; therefore, image processing on the original, distorted
footage is preferable (except in special cases e.g. when straight lines have to be
found in an efficient way).

Extrinsic Geometry

Until now the camera operation has been modeled w.r.t. the Euclidean camera
frame of the camera SC, see Eq. (2.8). However, that reference frame lies within
the camera (more specifically, at the frontal area of the lens unit); results on
that reference frame are not always useful. In general, world coordinates in
the world frame S0 are preferred, which have to be transformed into camera
coordinates in SC. We can generalize Eq. (2.8) in world coordinates as follows:

Mp̄u =

Mxu

Myu

1

 ∝
α γ u0

0 β v0

0 0 1


︸ ︷︷ ︸
A(3×3)

Cx

Cy

Cz

 = A(3×3) CT
0
(3×4)︸ ︷︷ ︸

P (3×4)


0x

0y

0z
1

 = P (3×4) 0p̄ ,

(2.30)
where CT

0
(3×4) = [R t ] is the rigid body transformation between the camera

frame SC and the world frame S0. The resulting matrix P (3×4) is called per-
spective projection matrix; it consists of the camera intrinsic matrix A and the
transformation CT

0
(3×4).

On occasions, the transformation CT
0
(3×4) is neither useful nor easy to com-

pute. For instance, cameras are usually mounted on robots to be able to actively
control the camera’s field of view (FOV). In this case, it is possible to deter-
mine the transformation CT

0
(3×4) with the help of intermediate transformations

related to the manipulator readings as follows:

CT
0
(3×4) = CT

T
(3×4) TT̃

B
BT

0 , (2.31)

where TT̃
B

is the homogeneous (size 4×4) transformation matrix between the
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tool center point (TCP) reference frame ST of the robot and its base reference
frame SB. Its value is measured (̃ ) in the form of the manipulator’s readings.
Furthermore, CT

T
(3×4) and BT

0 are static transformations, so-called eye-hand
and base-to-world transformations, which can be estimated from images, see
Section 3.3. Altogether:

Mp̄u =

Mxu

Myu

1

 ∝ A(3×3) CT
T
(3×4) TT̃

B
BT

0︸ ︷︷ ︸
P (3×4)


0x

0y

0z
1

 = P (3×4) 0p̄ . (2.32)

In contrast to the intrinsic parameters (composed of the the intrinsic matrix
A and the lens distortion parameters), these unknown transformations CT

T and

BT
0 are called extrinsic parameters as they represent the external orientation

of the camera, i.e., the pose of SC w.r.t. external frames.

2.2.2 The DLR Laser Stripe Profiler

Description

The DLR Laser Stripe Profiler (LSP) consists of one or two laser beams gen-
erating planes of laser light together with one or two video cameras (Strobl
et al., 2004; Suppa et al., 2007). Its fundamental principle of range sensing
is optical laser light triangulation as illustrated in Fig. 2.12: The laser beam
spreads through a cylindrical lens to a laser plane, illuminating a stripe on a
surface, and the video camera records its reflection. From this projection, the
LSP effectively delivers a contour of depths over the emitted laser plane by tri-
angulation, i.e., intersecting the laser plane with the rays of sight corresponding
to the laser stripe projections in SI. Of course, the pose of the plane w.r.t. the
camera as well as the intrinsic parameters of the camera are required for valid
triangulation, refer to Section 3.6.

CCD
Camera

Laser
Stripe

Laser Plane

Figure 2.12: The Laser Stripe Profiler at an older version of the DLR 3D-Modeler.
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Perhaps the best description of its operational principle is that of the LSP
acting as a modified stereo camera as explained in the last section, with the
exception that one of the cameras has become active, being substituted by
a laser plane generator. By doing this, the correspondence problem between
features in both cameras is alleviated as it is easier and more robust to search
for laser projections rather than to look for feature similarity—this is especially
so if the camera is filtered to laser light wavelength. It is worth noting that
the LSP mounted on the DLR 3D-Modeler works without optical filters on the
cameras, as they would make concurrent stereo vision, texturing, or visual pose
tracking as in Chapter 5 impossible.

On the other hand, the LSP is fundamentally limited to 2-D geometric
information about the scene, i.e., range data spread in 1-D only, whereas stereo
cameras produce dense, 3-D geometric information. In the ideal case, the LSP
delivers a contour of depths corresponding to the projection of the laser plane
onto the scene. It is therefore necessary to sweep the sensor across the scene to
gather 3-D information, registering the gathered stripes in 3-D e.g. by means
of pose tracking of the camera.

It is worth noting that the laser power can be regulated, with a maximum
allowed power of 5 mW. The LSP is registered laser safety class 2M that cannot
harm the user’s eyes except in cases of prolonged stare directly at the laser beam
(t > 0.25 s). In addition, laser beams are triggered in a pulsed mode so that
they are only active during shutter time of their respective cameras—thereby
minimizing their effective irradiation.

Because of its precision, robustness, the extended operating range (cf. Sec-
tion 4.3.4), and the speed of acquisition, the LSP is widely used within the DLR
3D-Modeler as a high definition, short- to middle-range sensor.

Description—Dual, Crosshair LSP

It is usually said that scanning with this type of sensor is virtually like spray
can painting; this is especially so if the sensor is being hand-held by the user.
However, this is not completely true, as the user does not have the freedom to
horizontally move in the direction of the laser stripe while scanning, but only
to sweep up and down the sensor. What is more, while automatically scanning
with a robotic manipulator, this fact constraints the robot motion and entails
the waste of one of its valuable DoF.

In order to get rid of this constraint, a second laser beam has been integrated
that illuminates perpendicularly to the former stripe (from here crosshair), see
Fig. 2.13 and the conference paper to this novel contribution (Suppa et al.,
2007). Due to construction-related constraints, both laser beams have to be
closely placed, which entails an inconvenient reduction of the basis distances
between each laser plane and the main camera—compromising accuracy at
that. It comes handy that the DLR 3D-Modeler features a second camera; we
decide then to use both cameras sequentially, each one performing single LSP
with its farthest laser plane, so that basis distances remain long. We call this
configuration the dual, crosshair LSP.
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Laser Stripe Profiler

Stereo camera

FireWire
connection

IMU

Laser-Range Scanner

Figure 2.13: The crosshair LSP within the DLR 3D-Modeler.

This novel crosshair configuration yields the following advantages:

1. One DoF in motion planning during scanning is released w.r.t. the tradi-
tional LSP.

2. The amount of surface-related information gained in any motion direction
increases, cf. Fig. 2.14.

3. Since both single LSPs may be triggered in a complementary way, it is
possible to duplicate sensing rate provided each camera can still work at
highest speed (limiting their shutter time).

This novel development in 2004 was the first laser stripe profiler of its sort;
paralelly, Creaform Inc. developed the HandyScan 3D—commercially available
in 2005 following the same paradigm.

Triangulation between Laser and Camera

The simple triangulation process of the LSP is depicted in Fig. 2.12. The
hybrid triangulation process is analogous but with pulsed laser planes of the
crosshair LSP, each operating in simple triangulation process with its more
distant camera, see Fig. 2.13.

In this section I detail the laser plane model and the simple triangulation
process using the camera model already presented in Section 2.2.1, the camera
calibration method in Section 3.2, as well as the laser calibration process in
Section 3.6. I shall provide the mathematical formulation required to compute
3-D coordinates of projected lased stripes in the camera reference frame SC or
in the TCP reference frame ST.
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Since LSP measurements essentially originate from images, I make use of
the whole formulae in the last Section 2.2.1. As I shall mention in Section 3.6,
it is convenient to implicitly exploit the latter model in order to keep its model
simple so that its calibration process is subject to as less degrees of freedom as
possible. I adopt Eq. (2.32) aiming at 3-D results Tp in the TCP frame ST of
the DLR 3D-Modeler as follows:

Mp̄u =

Mxu

Myu

1

 ∝ A(3×3) CT
T
(3×4)︸ ︷︷ ︸

P (3×4)


Tx

Ty

Tz
1

 = P (3×4) Tp̄ . (2.33)

Note that the undistorted, virtual projections Mpu have to be calculated out
from actual, distorted projections Mpd in a previons stage of undistortion as
explained in Eq. (2.9), Section 2.2.1.
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Figure 2.14: This graph shows, in polar coordinates, the surface area scanned at constant
speed and range w.r.t. the object, in every scanning direction. The single LSP does not yield
any information when sweeping it horizontally (see 0◦ and 180◦ in the graph), whereas the
dual crosshair LSP gains a rather constant amount of information irrespective of the scanning
direction (flower-like contours). Furthermore, as the stripe is being obliquely projected in
the images, the FOV increases in size: (normal) refers to a crosshair LSP with laser planes
featuring the same opening angle as in the case of a single LSP, whereas (big) refers to a
crosshair LSP with wider opening angles corresponding to the diagonal projection of laser
stripes on the images.
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More in detail, the perspective projection matrix P (3×4) is composed of
intrinsic and extrinsic camera parameters as follows:

P (3×4) = A(3×3) CT
T
(3×4) =

α γ u0

0 β v0

0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 =

=

αr11+γr21+u0r31 αr12+γr22+u0r32 αr13+γr23+u0r33 αtx+γty+u0tz
βr21+v0r31 βr22+v0r32 βr23+v0r33 βty+v0tz

r31 r32 r33 tz


=

 qT1 q14

qT2 q24

qT3 q34

 . (2.34)

This system of equations is underdetermined for finding Tp as it is only
possible to obtain the direction of projection ‖Cp‖. It is by the intersection of
that direction with the laser plane that the matrix of the system of equations
really gets full rank.
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Figure 2.15: 3-D reconstruction at the LSP of the DLR 3D-Modeler.

In Fig. 2.15 the single triangulation process of the LSP is depicted. From
that figure it is clear that the only remaining geometry to be described is the
pose of the laser plane w.r.t. the camera reference frame SC. The laser plane
originates in a single laser beam that is spread out by passing through a cylin-
drical lens. Both, the laser illuminant and the camera, are rigidly fixed w.r.t.
the TCP frame ST, hence we have the fixed geometrical relationship:[

Tn
T

Td
]

Tp̄ = 0 , Td>0 , (2.35)

called Hessian normal form of the plane in the TCP reference frame ST, that
defines the laser plane points in relation to the pose of the laser plane w.r.t.
the camera frame SC: Tn is the normal vector to the laser plane in ST and

Td is the distance on that vector between the origin of ST and the laser plane.
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These parameters feature 3 DoF (two for the orientation of Tn and one for the
distance Td) and are determined during the calibration stage in Section 3.6.
The laser plane must not meet the optical center of its respective camera.

Only now we are in a position to solve for Tp by joining Eqs. (2.33) and
(2.35) as follows:

Mxu
(2.33)

=
qT1 Tp̂+ q14

qT3 Tp̂+ q34
≡

(
qT1 − qT3 Mxu

)
Tp̂ = q34 Mxu − q14

Myu
(2.33)

=
qT2 Tp̂+ q24

qT3 Tp̂+ q34
≡

(
qT2 − qT3 Myu

)
Tp̂ = q34 Myu − q24

Tn
T

Tp̂+ Td
(2.35)

= 0 ≡ Tn
T

Tp̂ = −Td


, (2.36)

which represent a linear system of equations in the form FTp̂ = b. In all
practical cases the system’s solution reads

Tp̂ = F−1b . (2.37)

Extrinsic Geometry

The triangulation equations in the last section are conceived in general terms
relating a laser plane with its TCP reference frame ST or its camera frame SC.
However, as mentioned above, there exist two laser planes and two cameras
and their results have to be correctly registered to each other. Further, the
TCP of the DLR 3D-Modeler may correspond to different external tracking
systems like the infrared tracking system ARTtrack2, robotic manipulators—
either passive like the FaroArm Gold or active like the Kuka KR 16, or even
by purely vision-based pose tracking as in Chapter 5. To that effect, Eq. (2.33)
has to be adjusted accordingly for both laser units of the crosshair LSP at the
DLR 3D-Modeler as follows:

Mleft
p̄u =

Mleft
xu

Mleft
yu

1

 ∝ Aleft Cleft
TT

(3×4)︸ ︷︷ ︸
Pleft


Txleft

Tyleft

Tzleft

1

 = Pleft Tp̄left , (2.38)

Mright
p̄u =

Mright
xu

Mright
yu

1

 ∝ Aleft Cright
TT

(3×4)︸ ︷︷ ︸
Pright


Txright

Tyright

Tzright

1

 = Pright Tp̄right , (2.39)

where Cright
TT = Cright

TCleft
Cleft

TT; Cright
TCleft results from the stereo camera

calibration, see Section 3.2. It holds:

Pleft =Aleft Cleft
TT

(3×4) =

 lq
T
1 lq14

lq
T
2 lq24

lq
T
3 lq34

 , (2.40)

Pright =Aright Cright
TT

(3×4) =

 rq
T
1 rq14

rq
T
2 rq24

rq
T
3 rq34

 . (2.41)
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Instead of using Eq. (2.35), Eqs. (2.38) and (2.39) now meet the following laser
planes: [

Tn
T
right Tdright

]
Tp̄left = 0 and (2.42)[

Tn
T
left Tdleft

]
Tp̄right = 0 , (2.43)

respectively, where p{left,right} are points seen with the {left,right} camera, and
n{right,left} and d{right,left} are laser plane parameters of the {right,left} plane.
Remember that projections obtained using the left camera relate to the right
laser plane and vice versa. In the end, these lead to the following systems of
equations:

Mleft
xu

(2.38)
=

lq
T
1 Tp̂left + lq14

lq
T
3 Tp̂left + lq34

≡
(

lq
T
1 −lq

T
3 Mleft

xu

)
Tp̂left = lq34 Mleft

xu−lq14

Mleft
yu

(2.38)
=

lq
T
2 Tp̂left + lq24

lq
T
3 Tp̂left + lq34

≡
(

lq
T
2 −lq

T
3 Mleft

yu

)
Tp̂left = lq34 Mleft

yu−lq24

Tn
T
right Tp̂left + Tdright

(2.42)
= 0 ≡ Tn

T
right Tp̂left = −Tdright


(2.44)

Mright
xu

(2.39)
=

rq
T
1 Tp̂right + rq14

rqT3 Tp̂right + rq34
≡
(

rq
T
1 −rq

T
3 Mright

xu

)
Tp̂right = rq34 Mright

xu−rq14

Mright
yu

(2.39)
=

rq
T
2 Tp̂right + rq24

rqT3 Tp̂right + rq34
≡
(

rq
T
2 −rq

T
3 Mright

yu

)
Tp̂right = rq34 Mright

yu−rq24

Tn
T
left Tp̂right + Tdleft

(2.43)
= 0 ≡ Tn

T
left Tp̂right = −Tdleft


(2.45)

which yield both solutions

Tp̂left = F−1
leftbleft and Tp̂right = F−1

rightbright (2.46)

on the same reference frame ST.

It is precisely in the TCP reference frame ST where absolute pose in-
formation is available. Subject to the reference system used, the results in
Eqs. (2.44) and (2.45) can be transformed to the world frame S0 directly, i.e.,

0
¯̂p = 0T

T
T

¯̂p or through the base reference frame SB of a robot manipulator,
i.e., 0

¯̂p = 0T
B

BT
T

T
¯̂p.

Using visual pose tracking as in Chapter 5 represents a special case: Both,
the perspective projection matrices and the plane equations, have to be sim-
plified as the common TCP reference frame ST is rendered superfluous. In the
end, it comes down to identifying ST with e.g. SCleft

, i.e., Cleft
TT = I(4×4),

in Eqs. (2.38), (2.39), (2.42) and (2.43), with the result that the systems of
equations (2.44) and (2.45) now yield data in the camera reference frame SCleft

.
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2.2.3 The DLR Laser Range Scanner

Description

The DLR Laser Range Scanner (LRS) is a sensor similar to the LSP as it also
operates by laser light triangulation (Hacker et al., 1997; Kielhöfer, 2003), see
Fig. 2.16.

Figure 2.16: The DLR Laser Range Scanner.

Instead of generating a laser plane, however, the LRS emits a weak, pulsed
laser ray originated from a laser diode focused by a highly refracting microlens.
The single ray is continuously rotated to generate a planar area of singular
laser projections, i.e., the axis of rotation of the laser ray is perpendicular to
it, see Fig. 2.17. During its rotation, a number of measurements of pulsed laser
projections are being taken, obtaining in the end a 1-D countour of ranges to
the surface of the scene as in the case of the LSP.

Still, some differences between the LRS and the LSP are to be mentioned:

1. In the case of the LRS, any range contour can be subdivided into single
measurements (pulsed laser spots) that are being taken sequentially. This
was not the case for the LSP where the whole contour projection was im-
aged by the camera instantly. Consequently, in the case of the LRS it is
possible to directly infer on the laser ray direction for every single mea-
sured reflection, whereas in the case of the LSP it is only possible to infer
on the view direction from the camera, as the laser beam origin remains
unknown. This difference is nonrelevant in most applications, except for
autonomous environment exploration: Note that positive measurements
on a known ray direction are not only useful to infer on the scene’s sur-
face, but also to infer on void area between the laser beam origin and the
detected surface. In the case of the LRS, that direction can be precisely
controlled if the sensor has been previously calibrated, see Section 3.7.
In the case of the LSP, however, range directions in SC depend on the
(unknown) scene, hence cannot be specified in advance and directly used
for purposive, autonomous exploration.
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Figure 2.17: Principle of operation of the DLR Laser Range Scanner.

2. As an undesirable side effect of laser beam rotation at contant speed, all
sequential, single measurements are being taken at different times. Precise
synchronization and time interpolation is required in order to be able to
accurately fuse data with e.g. movable external positioning systems.

3. A further undesirable side effect of its rotatory motion is, of course, the
presence of (rapidly) moving parts in the sensor head.

4. In order to record laser reflections from a rotating laser ray, it is conve-
nient for the laser projection detector to move along with the rotating
laser beam. Since it is difficult to rotate a camera at this speed and, at
the same time, keep the sensor size small, it was decided to use an elec-
tronic position sensitive device (PSD) instead of a camera (Hacker et al.,
1997). This device can be filtered to only detect laser light at 670 nm
frequency and allows for the production of a self-contained device. In
addition, the PSD is controlled jointly with the laser beam power to over-
come varying reflection characteristics of the surface: The emitted laser
power is dynamically adapted to the intensity of the reflected signal fol-
lowing a logarithmic scale, for every single measurement spot. In this
way, the LRS achieves high robustness against varying surface materials.
However, the big drawback of the inclusion of a PSD instead of using
an external camera is the extended calibration requirements: First, an
internal method for PSD calibration has to be devised similar to regular
camera calibration in Section 3.2. Second, it is now necessary to obtain
the precise coordinates of the local reference frame SLRS to be able to
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register LRS data. Remember that, in the case of the LSP, the camera
center can be used to locate the sensor instead, so that only the laser
plane location w.r.t. the camera is required, i.e., 3 DoF; now, the exter-
nal calibration of the LRS also requires its position, i.e., 6 DoF are to be
estimated altogether, see Section 3.7.

5. In order to keep the size of the sensor small and lower its power require-
ments, the sensor’s basis distance between the virtual laser plane and the
PSD is kept small and the laser light power is also low. Hence, the sen-
sor is limited to close-range applications up to 20 cm. The LRS is size
75×32×44 mm.

6. Its wide scan angle (cf. Fig. 2.17) is especially convenient in robotic appli-
cations like autonomous exploration (Suppa, 2008; Kriegel et al., 2012).

Geometry

In this work I leave the intrinsic calibration and operation of the LRS aside and
refer the reader to the original work in (Hacker et al., 1997; Kielhöfer, 2003).
The valid output of the intrinsic operation of the LRS is a series of measured
(̃ ) ranges d̃ along with their corresponding acquisition angle φ̃ and time t̃. I
avoid the use of subscripts for the sake of clarity. We can easily reconstruct the
measured Euclidean coordinates using the cylindrical range sensor description
in (Bodenmüller, 2009) as follows:

LRSp =

LRSx

LRSy

LRSz

= LRSR
Rotor
y

(
φ̃
)0

0

d̃

=

 cos φ̃ 0 sin φ̃
0 1 0

− sin φ̃ 0 cos φ̃

0
0

d̃

 . (2.47)

Range data d̃ is in the Rotorz axis of the rotor; the rotor rotates around its own

Rotory axis that is coincident with the axis LRSy of the stator reference frame
SLRS as in the rotation matrix LRSR

Rotor
y . The reference frames are depicted

in the following Fig. 2.18.

Because of its precision, the robust data acquisition capabilities and its
small size, the LRS is used within the DLR 3D-Modeler as a high definition,
short-range sensor.

Extrinsic Geometry

As in the case of the LSP, the LRS is fundamentally limited to 2-D geometric
information about the scene, i.e., range data spread in 1-D only. In the ideal
case, the LRS delivers a contour of depths according to the laser projections onto
the scene. In order to gather 3-D information of the scene, it is still necessary
to sweep the sensor across the scene, registering the gathered laser projections
in 3-D by means of external pose tracking systems like the ARTtrack2, the
FaroArm Gold or the Kuka KR 16. Therefore, the global representation of
LRS data in the world reference frame S0 usually requires intermediate frames
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zRotor

zLRS

yLRSyRotor

SLRS

Figure 2.18: The reference frame of the LRS SLRS and the reference frame of the rotor SRotor
share the position of their origin as well as their axis y.

like the TCP frame of the robotic manipulator ST and the base reference frame
of the same manipulator SB as follows:

0p̄ =


0x

0y

0z
1

= 0T
B

BT̃
T

TT
LRS
(3×4) LRSR

Rotor
y

(
φ̃
) 0

0

d̃LRS

 , (2.48)

where 0T
B and BT

T are the homogeneous transformation matrices between
S0 and SB, and SB and ST, respectively. These matrices are usually being
estimated in the context of the extrinsic calibration of attached cameras, tracked
by the external reference system in position and orientation, see Section 3.3.

TT
LRS
(3×4) is the transformation matrix between ST and SLRS; it is size 3 × 4

and will be estimated using the novel extrinsic calibration process detailed in
Section 3.7.

2.2.4 The Inertial Measurement Unit

Description

Inertial measurement units (IMUs) are enclosed electronic devices that yield 6-D
motion estimation in a passive, self-contained way. To that end, IMUs com-
bine gyroscopes that measure rotational speed and accelerometers that measure
linear accelerations, and sometimes magnetometers as well. The usual con-
figuration includes three gyroscopes and three accelerometers in orthonormal
arrangement in order to independently measure their three respective DoF in
orientation and translation, respectively. Since in this context motion estima-
tion regularly builds upon last motion estimates, the IMU can be considered
a dead reckoning sensor. However, in most applications the gravity vector is
being used as an absolute measurement in order to partially constrain motion
estimation.
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Perhaps the most inconvenient drawback of using an IMU is the fact that
gyroscopes and accelerometers deliver higher order pose tracking information,
i.e., their derivatives angular speed and linear acceleration. These values have
to be integrated in time so that pose estimation inevitably drifts. What is
more, variable biases (drifts) and static offsets in gyroscope readings have to be
accounted for. In the case of the accelerometers, zero-mean noise is dominant,
which also accounts for strong drifts in translation estimation after repeated
integration. In addition, orientation errors directly impact translational esti-
mations. Further errors like misalignment and nonorthogonality of the sensor
components, asymmetric scale factors and nonlinearity errors can also occur.
External difficulties are its synchronization and geometric calibration w.r.t. ex-
ternal devices.

In recent years inertial sensors are being deployed as a complementary sen-
sor to cameras. Indeed, IMUs perfectly complement off-the-shelf cameras both
in measuring rate and in temporal precision: On the one hand, regular cameras
take, say 25 images per second and estimations from their images are, in princi-
ple, equally accurate all the time, i.e., they are absolute measurements. On the
other hand, IMUs yield data at kHz rates and their pose tracking readings are
far more accurate when they lie close together in time rather than when they lie
far apart since, as mentioned above, they provide relative measurements. These
inconsistencies can be used to compensate each other sensor, aiming at more
robust estimations.

This can be done either by fusing final pose outcomes from both sensors
(either stochastically or just in time), or directly for one sensor to support pose
estimation within the other sensor’s estimation process. The latter approach is
employed in this work: I opt for the unidirectional support of visual processing
by the IMU, refer to Section 5.4.2. IMU data that are close in time are used
to support image processing (in the images where they coincide in time). I are
not using visual measurements to support IMU-based pose tracking.

The DLR 3D-Modeler can be extended by a rigidly attached IMU, the Asc-
Tec AutoPilot by Ascending Technologies GmbH. Attitude estimation is on six
DoF at 1 kHz leveraging three gyros, three accelerometers, and three magne-
tometers. The IMU performs on-board data fusion and features a second, idle
60 MHz ARM processor available for the user. It only weighs 19.6 g and is size
10×50×50 mm.

Geometry

In this section I do not cope with internal geometry of the IMU nor with their
drifts in rotation rate and their integration. The reason is that I shall not use
inertial data in the long run, but intertwined between image frames, i.e., within
40 ms, where drifts can be neglected. The geometrical drifts in the reference
frame of the IMU SIMU are already being compensated for internally within the
AscTec AutoPilot, on a regular basis.
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Indeed, in Section 5.4.2 I shall only make use of differential rotations in pitch
angle (∆̃P ), in yaw angle (∆̃Y ) and in roll angle (∆̃R), integrated over 40 ms.
These values can be easily put together to produce the differential rotation
matrixR i−1,i between imaging instants i−1 and i in advance of image processing
as follows:

R i−1,i
IMU = R i−1,i

roll R i−1,i
yaw R i−1,i

pitch =

cr cy −sr cp + cr sy sp sr sp + cr sy cp
sr cy cr cp + sr sy sp −cr sp + sr sy cp
−sy cy sp cy cp


(2.49)

where

sp = sin ∆̃P cp = cos ∆̃P

sy = sin ∆̃Y cy = cos ∆̃Y

sr = sin ∆̃R cr = cos ∆̃R .

Extrinsic Geometry

Accurate motion information in SIMU is, however, not useful for direct insertion
in e.g. visual pose tracking algorithms as in Chapter 5. In order to be able to
represent the readings of the IMU in the camera reference frame SC, the rigid
body transformation between both frames SIMU and SC has to be estimated
(see Section 3.8). Since I only make use of the rotational rates of the IMU, this
relationship boils down to:

CR
i−1,i
IMU = CR̂

T
TR̂

IMUR i−1,i
IMU = CR̂

T
TR̂

IMUR i−1,i
roll R i−1,i

yaw R i−1,i
pitch , (2.50)

where CR̂
T stems from the extrinsic calibration of the stereo camera in Sec-

tion 3.3 and TR̂
IMU is the required transformation between SIMU and ST, refer

to Section 3.8.

2.3 Absolute Pose Tracking Systems

2.3.1 Description

In general, it is not possible for a 3-D modeling device to acquire a complete
model at one single measurement step due to its limited field of operation,
object self-occlusion, or object size—this particularly holds for close-range 3-D
modeling systems. The 3-D geometrical information gathered from a single
vantage point is limited, so that multiple views (or multiple sensors) are required
in order to subsequently merge data to a single 3-D model (Chen et al., 2000).

Merging range data (also referred to as 2.5-D data) can be performed fol-
lowing either of these oppositional approaches: On the one hand, 2.5-D data
can be acquired freely from arbitrary unknown positions, and after that merged
to a single 3-D model by software registration. On the other hand, parallel po-
sition and orientation (pose) tracking of the 3-D sensor makes it possible to
directly represent results in the world frame S0, in realtime. The DLR 3D-
Modeler realizes the second approach. For this purpose, tracking systems like
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the infrared optical tracking system ARTtrack2, redundant robotic manipula-
tors like the Kuka KR 16 or the DLR Lightweight Robot III, or passive arms
like the FaroArm Gold, turntables, CMMs or electromagnetic devices are com-
monly used. The original DLR 3D-Modeler in (Suppa et al., 2007) realized the
second approach. I tracked the pose of the DLR 3D-Modeler by fixing it to
the end-effector of a FaroArm Gold featuring 7 passive joints or, alternatively,
utilized the ARTtrack2 infrared optical tracking system or the Kuka KR 16
robotic manipulator. In reality, pose tracking refers here to the TCP of the
tracking system—every other sensor system has to be calibrated w.r.t. it, refer
to Section 3.3.

The abovementioned options are, however, extremely limiting for the fol-
lowing reasons:

1. They limit the user’s mobility, thus the usability of the sensor. Even in-
frared tracking systems restrict motion, especially in two rotational DoF.
In the case of robotic manipulators, some of them feature a 7th DoF for
improved autonomy; however, their usability as part of a 3-D modeling
system remains very low.

2. The final performance of the whole system will strongly depend on accu-
rate synchronization and extrinsic hand-eye calibration, which are cum-
bersome, error-prone processes (Strobl and Hirzinger, 2006; Bodenmüller
et al., 2007). What is more, the hand-eye attachment cannot be rear-
ranged without an additional extrinsic recalibration of the sensor.

3. It turns out that every external positioning system mentioned above rep-
resents the largest and most expensive part of any 3-D modeling system.

In Chapter 5 I present novel algorithms for image-based motion estimation
from the images of the stereo camera presented in Section 2.2.1. This approach
overcomes all of the abovementioned limitations.

2.3.2 Geometry

In this section I present a general model for any of the tracking system men-
tioned above, without going into detail on their own principles of operation.

With the exception of visual pose tracking in Chapter 5, all tracking systems
feature their own reference frames between which pose readings are delivered;
these frames are completely independent of the 3-D modeling device. In order
for the latter to take advantage of pose tracking information, it has to be
rigidly attached to one of that reference frames. Since robotics is a dominant
application area for the DLR 3D-Modeler, we refer to the reference frame where
our device is rigidly attached to (where pose tracking information is available) as
the tool center point (TCP) reference frame ST. The particularity of the visual
tracking system in Chapter 5 is that ST,SC, i.e., the camera reference frame
SC directly acts as a reference frame for pose tracking. Furthermore, every
tracking system delivers motion estimation w.r.t. its own fixed reference frame,
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called base reference frame SB (in the case of visual pose tracking, SB,SC at
the initial tracking instant). In general it holds:

CT
0 = CT

T
TT̃

B
BT

0 , (2.51)

where S0 represents the world reference frame, and the homogeneous transfor-

mation matrix TT̃
B

directly stems from the output of the pose tracking system
at a particular instant. The transformations CT

T and BT
0 are called extrinsic

transformations; they are required to transform motion readings into the ca-
mera frame SC. Note that these transformations can be estimated out of visual
data as explained in Section 3.3.

2.4 Summary

In this chapter I described the underlying operational principles of all sensors
potentially involved in the task of 3-D modeling using the DLR 3D-Modeler.
I also laid out their mathematical models for accurate parametrization in the
next chapter 3 as well as utilization in chapters 4 and 5 and Appendix B.

I started out motivating the search for accurate, compact sensor models of
general validity. In addition, these models have to observe the requirement for
eventual, accurate parametrization in Chapter 3. After that, I listed the rele-
vant components of the DLR 3D-Modeler. Since video cameras are the central
sensor of this thesis, I elaborate in great detail on the perspective model of
cameras, their historic development, and finally state the projective formula-
tion that is going to be extensively used in the next chapters. It follows the
modeling of the operational principle of the DLR Laser Stripe Profiler (LSP)
as it is closely related to the operation of cameras; the LSP is perhaps the
dominant range sensor of the DLR 3D-Modeler. In particular, I introduce the
novel development of the dual, crosshair LSP. Following the LSP, I introduce
the DLR Laser Range Scanner (LRS) as it shares the operational principle of
the LSP, but it is independent of the stereo camera. An additional, modular
inertial measurement unit (IMU) can be also used to support image processing
in Chapter 5. Alternatively, the user must revert to absolute pose tracking
systems, which conclude this chapter.
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Accurate Parametrization of System Models

“Be precise. A lack of precision is dangerous when the margin of error is small.”

—Donald Rumsfeld, WSJ, 2001

3.1 Introduction

In line with last chapter’s motivation, it is clear that geometric computer vision
is a quantitative task that heavily relies on accurate measurements. Accurate
measurements, in turn, rely on accurate parametrization of the operating mo-
dels listed in Chapter 2, i.e., the accurate calibration of the sensor components.

Sensor calibration is a complex task as many aspects have to be conside-
red at the same time. Consequently, it is a dangerous process where, more
often than not, researchers commit smaller errors that mislead them to wrong
parametrizations. It goes without saying that erroneously calibrated sensors
severely compromise both, the development of novel algorithms based on their
data as well as their eventual performance. In a nutshell, a correct method
has to be chosen and valid data has to be collected for it. Additionally, a
helpful calibration software should enable the user to choose the correct sensor
model (avoiding unnecessary DoF, see Chapter 2) during calibration.

With regard to choosing a valid calibration method, two aspects have to be
considered: First, whether the method is sound (e.g. how to fit the sensor model
operation to actual calibration data); at best, the chosen method should mini-
mize the actual errors in the system model for the sake of statistical optimality.
Many calibration methods end up computing a solution to the parametrization
problem in the most straightforward—perhaps efficient—way, e.g. linear least
squares solutions instead of nonlinear optimizations; the adoption of this type
of methods invariably involves a loss of accuracy. Second, whether the method
is convenient or entails severe costs like expensive calibration objects, inappro-
priate models, or the requirement for very precise external measurements. The
best bet is to choose a calibration method that both, delivers highest accuracy
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and does so in a flexible way, i.e., imposing as less restrictions as possible in
order to avoid human mistakes otherwise bound to occur. These conception
rules will lead the novel developments in the present chapter.

With regard to acquiring valid data, the limitation is rarely physical (e.g.
cameras with smaller AOV or limited focal depth, inaccurate external pose
readings, etc.), but rather consequence of the lack of understanding by the user
of the underlying principles of the optimization problem (for instance, the con-
ditioning of the optimization problem). Admittedly, on occasions these errors
could be avoided by more readable documentation of the proposed algorithms.
These limitations do not only concern inadequate sensor measurements but also
inaccurate metadata required by the optimization method. To cite an example
of inadequate measurements: In the context of camera calibration, note the
predominant use of central projections of the calibration object that do not fill
the whole image frame, or rather note the widespread use of images orthogonal
to a planar calibration object. A prevalent example of inaccurate metadata
concerns standard camera calibration without accurate previous measurement
of the actual dimensions—or even the planarity—of the calibration object. I
shall address these limitations in Section 3.2.

A last topic addressed in this chapter is the design of a sensible concept for
combined calibration or recalibration of all component sensors of the system
w.r.t. external pose tracking systems, i.e., of a “system calibration” concept
in Section 3.9. In the case of the DLR 3D-Modeler, most sensors depend on
each other and a frugal, synergistic approach to calibrate the whole system is
required.

I would like to further stress the significance of an accurate parametrization
of system models, i.e., of sensor calibration. Note that this may be considered
a further instance of the present technological paradigm of the “softwarization”
of hardware, as meticulous calibration (i.e., intensive optimization) of simple
models really make for a better sensor.

3.2 Intrinsic (Stereo) Camera Calibration

3.2.1 Introduction

Camera calibration is the process of estimating the parameters of a camera
model that is capable of adequately reflecting the underlying operational prin-
ciple of the actual camera. This is usually accomplished by comparing its ex-
pected, model-based operation with the actually collected data, followed by a
sensible minimization of the resulting discrepancies. The parameterized model
will enable the user to infer in 3-D Euclidean space from the evidence of the
2-D information in the image projections.
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Accurately calibrated cameras are prerequisite to most vision-based algo-
rithms. However, researchers still find it challenging to achieve the required
accuracy in particular areas like stereo vision (Section 4.2) or SLAM (see Chap-
ter 5). Ever since the advent of high-resolution, stereo vision algorithms are
demanding higher accuracy in calibration (i.e., more accurate epipolar geome-
try, cf. Section 4.2.2) to keep computational costs in practical terms; SLAM puts
similar requirements on calibration accuracy, mainly to reduce dead reckoning
drift, improving overall performance.

In this work I proceed on the assumption that the camera cannot intrinsi-
cally change during operation, but only extrinsically in its pose w.r.t. the scene.
It is therefore possible for the user to estimate its parameters in advance of re-
gular operation. Moreover, since cameras record their environment in a passive
way, it makes sense to set conditions on the scene structure during calibration in
order to support both robustness and accuracy. These conditions may concern
inserting a priori knowledge of the metric structure of the scene (e.g. a cali-
bration object) in order to both, maximize the amount of data for calibration
as well as to improve the estimations of expected projections. As mentioned
above, it is by comparing these estimations with the actual projections that the
optimal parameters will be eventually delivered.

The following guidelines apply when designing a scene with a priori knowl-
edge used for calibration:

• The more diverse the scene is (e.g. a general 3-D scene), the more inde-
pendent evidence for the calibration will be.

• The more accurate knowledge of the scene exists, the more accurate pre-
dictions of the camera operation will be.

Unfortunately, these points imply a trade-off since optimal conditions (e.g.
general, precisely known scenes) suggest elaborated and expensive calibration
setups, which are cumbersome for general computer vision applications. On
the other hand, less advantageous but convenient conditions, such as mere
point correspondences, are not sufficient for accurate camera calibration; that
approach pertains to the family of self-calibration, which are usually less reliable
than standard camera calibration, see (Triggs, 1998; Liebowitz and Zisserman,
1999; Remondino and Fraser, 2006; Civera et al., 2009).

But for all that, research on camera calibration for computer vision has ar-
rived at a point where most of its components have become standard practice:
The perspective projection model (pinhole camera model), see (Faugeras and
Luong, 2004) and Section 2.2.1; the radial and tangential lens distortion mo-
dels, see (Weng et al., 1992) and Section 2.2.1; the imaging noise assumption
(Matthies and Shafer, 1987; Sun and Cooperstock, 2006); feature detection al-
gorithms (Mallon and Whelan, 2007); the planar calibration object (Tsai, 1987);
and even the estimation algorithms (Zhang, 2000; Sturm and Maybank, 1999)
meet the demands of the computer vision community. In the next section I
summarize the most significant contributions that led us to this point.
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3.2.2 State of the Art

Until the mid eigthies there only was photogrammetric work. It mainly re-
lied on full-scale nonlinear optimizations for elaborate projection models and
calibration objects, see (Brown, 1971; Faig, 1975). Since photogrammetry is
about accurately measuring objects by photographies, they went to consider-
able length into elaborate calibration procedures. This was not suitable for
computer vision applications since first, their hardware requirements (includ-
ing computational) were too high and, second, the complexity of their camera
models exceeded the required for solid-state imaging devices, see Section 2.2.1.
The work by Abdel-Aziz and Karara paved the way for computer vision applica-
tions; their direct linear transformation (DLT) basically finds solutions to linear
equations using the basic camera model of collinearity (Abdel Aziz and Karara,
1971). However, since ignoring lens distortion is mostly unacceptable (refer to
Section 2.2.1), Tsai in the mid eigthies introduced a calibration method with
a more complete camera model instead (Tsai, 1987). He was able to simplify
the formulation by using the radial alignment constraint, which reduces the
dimensionality of the problem and allows its decomposition in two independent
stages—at the risk of a loss of radial geometric information when the lens dis-
tortion is small. Severe scene restrictions still apply: The procedure requires
either 3-D calibration objects or accurately shifting a planar calibration plate,
i.e., a 2.5-D scene. Similar methods were proposed in (Weng et al., 1992) and
(Faugeras and Toscani, 1987). The former method employed an extensive lens
distortion model; therefore, it relies on an iterative coupling of local, nonlinear
optimizations.

A major contribution towards simplicity in camera calibration was simul-
taneously made in the late nineties by Zhang (Zhang, 2000) and Sturm and
Maybank (Sturm and Maybank, 1999). The suitability of their algorithm in
computer vision applications made both, their algorithmic and the used mo-
dels, current standard practice. They presented a closed-form solution by linear
least squares techniques for the initialization of a nonlinear optimization. Most
importantly, they relax conditions on the scene allowing for freely moving a pre-
cisely known planar calibration pattern for collecting data—compared to 3-D
or 2.5-D objects before. In short, it recovers the intrinsic camera parameters
from readily obtained object-to-camera homographies using both, the pinhole
camera model and rigid body motion constraints. Indeed, the perspective pro-
jection of a planar, known pattern suffices to differentiate between the pose of
the calibration pattern and the scaling characteristics of the camera: Whereas
the latter merely scales the image, the pose of the pattern dictates the per-
spective distortion of the projected pattern. The approach represented a step
towards self-calibration since no implicit 3-D information was required anymore,
but only in 2-D. Malm and Heyden extended this formulation in the case of
stereo camera systems by the addition of further rigid body motion constraints
(Malm and Heyden, 2001). In turn, Strobl and Hirzinger extended the same
formulation in the case of inaccurate (or unknown) planar calibration patterns,
see (Strobl and Hirzinger, 2008, 2011).
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3.2.3 The Standard Method by Zhang, Sturm, and Maybank

The standard method by Zhang, Sturm, and Maybank essentially differentiates
from earlier methods like the method of Tsai regarding the set of parameters
to be estimated: Whereas the Tsai method is merely about estimating the
parameters of the camera itself, Zhang, Sturm, and Maybank extend the set
of unknown parameters to the poses of the camera w.r.t. the known planar
pattern. At first sight, a gratuitous extension of the set of unknown parameters
to parameters that are not really required in the first place seems inadequate, as
the estimation of the camera parameters will necessarily become less precise. At
second sight, however, the method relieves the user of the accurate measurement
of the 3-D scene structure, or rather of the pose of the 2-D structure w.r.t. the
camera; more often than not, these inconvenient measurements are accompanied
with human errors and mistakes, which decrease accuracy to a higher extent
than the new approach.

The new method merely requires taking images of a known, planar cali-
bration object from N different vantage points.1 The discrepancies between
expected and actually detected projections are minimized to refine some initial
values for both, the intrinsic parameters and the camera motion. If the camera
is constituent part of an eye-in-hand system, the images for extrinsic hand-eye
transformation can be collected at the same time, along with N pose readings
of the end-effector at the imaging moments, see Section 3.3 and Fig. 3.1.

End-Effector

Camera

     Base of the
     manipulator

Object/World

Figure 3.1: Stereo camera mounted at the top of the DLR Light-Weight Robot 3.

1 Multiple vantage points are not always required for camera calibration, but they facilitate
intrinsic initialization and allow for hand-eye calibration (Section 3.3). In addition, the central
limit theorem states that, when the amount of independent and identically distributed (i.i.d.)
data grows, error distributions tend to Gaussianity, which, in turn, facilitates optimal estima-
tion by maximum likelihood estimation (especially in the case of the hand-eye calibration, see
(Strobl and Hirzinger, 2006)). In fact, at least 8 vantage points are repeatedly suggested in
the literature, cf. (Tsai, 1987; Triggs, 1998; Zhang, 2000; Sturm and Maybank, 1999; Strobl
and Hirzinger, 2006).
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As mentioned above, the dimensions of the planar calibration object have
to be measured—this condition will be lifted in part in Section 3.4. In order to
simplify this process, a repetitive pattern is commonly used, so that few measu-
rement of the pattern are required if an accurate pattern model is provided. The
most widespread planar pattern is a checherboard pattern.2 The square corners
are then perspectively projected by the camera onto 2-D images in SI that stack
up into the discrete memory array SM, consistently with the discretized pinhole
camera model in Section 2.2.1. Subsequently, the corners are detected and lo-
cated in the images with sub-pixel accuracy (e.g. using DLR CalDe within the
calibraton toolbox DLR CalDe and DLR CalLab (Strobl et al., 2005)); feature
location errors usually spread according to 2-D i.i.d. zero-mean Gaussian dis-
tributions; it is a tacit assumption that these errors actually encompass both,
the pinhole camera model simplification error as well as the discretization er-
ror. Control points projections should spread all over the images in order to
both, best condition the system equations, and to deliver a valid estimate of
the distortion model parameters in the first place.

Initial Solution by Linear Least Squares

The main contribution of the standard calibration method in (Zhang, 2000;
Sturm and Maybank, 1999) concerns the rapid calculation of reasonable initial
values for both, the intrinsic camera parameters and the camera poses (also
known as absolute extrinsics).

First, the visible control points or corners 0p̄i = [0xi 0yi 0zi 1]T, ∀i on the
calibration plate are detected and localized in the image memory frame SM at

instant n ∈ {1, ..., N}. These distorted, measured (̃ ) projections Mp̃
{n, i}
d are

to be compared with the expected, undistorted projections Mp̂
{n, i}
u , which are

estimated (̂ ) through Euclidean decomposition of the perspective projection
matrix P as follows:

Mp̄u =

Mxu

Myu

1

 ∝ A(3×3) CT
0
(3×4)︸ ︷︷ ︸

P (3×4)

0p̄ =

α γ u0

0 β v0

0 0 1

 [r1 r2 t
]

︸ ︷︷ ︸
H (3×3)

0x

0y
1

 . (3.1)

Here I drop subscripts n and i for the sake of clarity. Note that this equation
differs from the general one in Eq. (3.5.3) in the absence of the third DoF
in the position of the control points, i.e., 0z , 0, so that r3 disappears as it
becomes irrelevant. This is, of course, because the calibration plate is flat. It
is also this fact that allows us to simplify to a linear projective transformation
H=[h1 h2 h3](3×3), which equals the homography between the calibration plane
and the virtual, undistorted image. In projective geometry, homogeneous plane
coordinates are transformed following a linear projective transformation called
homography. Since the planar sensor of the camera and the planar target
are approximately related by a projective transformation, N homographies Ĥn

2 Checkerboard patterns have been repeatedly appointed as most convenient in terms of
potential accuracy in corners detection (Mallon and Whelan, 2007; Strobl et al., 2005).
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between image projections Mp̃
{n, i}
d and pattern features 0pi can be estimated

(̂ ) from at least four (three out of four non-collinear) correspondences i, for

every image n, so that Mp̃
{n, i}
d ∝Ĥn0pi, ∀n ∈ {1, . . . , N}, i ∈ {1, . . . ,M}, see

Appendix A. Of course, an exact homography is only possible w.r.t. undistorted
projections Mp̂

{n, i}
u , but then undistortion parameters are not yet known until

the end of the next optimization stage; therefore, distorted projections are used
as a valid approximation.

We aim at the pinhole camera model represented by its intrinsic matrix
A, which together with one of the N rigid body transformations between the
camera frame and the object frame CT

0
n= [r1 r2 r3 t ], project 3-D coordinates

as in Eq. (3.1). For planar targets we have Ĥ ∝A [r1 r2 t]. Since r1 and r2

are orthonormal, we use the orthonormality restrictions3 r1 · r2 =0, r1 · r1 =1,
and r2 · r2 = 1, i.e., CR

0∈SO(3), and sorting the scale out:

(A−1h1)T ·(A−1h2) = 0
(A−1h1)T ·(A−1h1)
−(A−1h2)T ·(A−1h2) = 0

}
⇔ hT

1 ω∞ h2 = 0

hT
1 ω∞ h1 = hT

2 ω∞ h2

}
(3.2)

with the so-called absolute conic ω∞=A−TA−1. These two equations hold for
every N images, leading to 2N constraints for e.g. 5 intrinsic unknowns. In this
particular case of 5 intrinsic unknowns, the system of equations can be solved
for using a linear least squares criterion if at least three different views are
available, i.e., N ≥ 3. Still, it is readily possible to do with less images if the
number of unknowns is sensibly reduced, e.g. α,β, γ=0, and {u0, v0} located
at the middle of the image memory frame imply that a sole image is required for
intrinsic calibration. It is worth noting that the solution only depends on the
orientation of the plane and not on its distance or scale, i.e., the formulation
works both on Euclidean and similarity geometries, see (Faugeras and Luong,
2004) and Section 3.4.

If a stereo configuration exists (i.e., NC additional cameras rigidly attached
to the main one), it is convenient to unify their absolute extrinsics to the
absolute extrinsics of the main camera, see (Malm and Heyden, 2001). The
rigid body constraint4

CcT
0
n=CcT

C
CT

0
n holds for every additional camera Cc,

c∈{1, 2, ..., NC} so that h1 =sc/s cH∞ ch1 and h2 =sc/s cH∞ ch2 hold for every
N images and NC additional cameras; from these equations, the infinite ho-
mographies cH∞=ACR

Cc
cA
−1 can be estimated. These result in the following

constraints that hold for their intrinsic matrices: ω∞= cH
T
∞ cω∞ cH∞. These

six linear constraints may additionally stack up in the system of 2N linear
equations (3.2) for NC cameras.

3The geometrically inclined reader may prefer the interpretation concerning constraints
on the critical points of each calibration plane by the intersection of the lines at infinity
of the respective planes with the absolute conic (at the plane in infinity). This projective
interpretation belongs together with a complexification of the homogeneous Euclidean vector
space, refer to (Faugeras and Luong, 2004; Zhang, 2000; Sturm and Maybank, 1999).

4 The camera-to-camera transformation CcT
C can be considered as an intrinsic parameter

of a more abstract camera system concerning stereo cameras.
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After determining the intrinsic matrix, the absolute extrinsics for every
image n are readily computed from homographies as follows: r1 =1/sA

−1h1,
r2 =1/sA

−1h2, r3 =r1×r2, t=1/sA
−1h3, and s= ||A−1h1||= ||A−1h2||.

Unfortunately, lens distortion spoils the neat linear projective formulation
of the perspective camera. Although it is possible to separately estimate its
distortion parameters with a linear least squares criterion, this only works in
alternation with the former intrinsic estimation (Zhang, 2000; Sánchez et al.,
2006). For accurate estimation, however, it is still necessary to perform a
subsequent nonlinear optimization process, which can be as well initialized with
the above described estimations. If the above initialization values lie within a
broad convergence region in the parameter space, this nonlinear optimization
will eventually be exclusive responsible for the final precision of the calibration
process.

Final Solution by Nonlinear Optimization

On the basis of the maximum likelihood criterion, optimal calibration param-
eters will be obtained by sensibly minimizing the discrepancies of erroneous
measurements w.r.t. the parameterized camera model. In our case, it is the

detected projections Mp̃
{n, i}
d of the control points in the images that are erro-

neous, viz. following an i.i.d. zero-mean Gaussian error distribution. It follows
the optimal parameters estimation that minimizes the sum of squared predic-
tion errors in the control points projections:

Ω̂? = arg min
Ω̂

N∑
n=1

∑
i

∥∥∥Mp̃
{n, i}
d − Mp̂

{n, i}
d

(
Ω̂, Υ(0pi)

)∥∥∥2
, (3.3)

where Mp̂
{n, i}
d are expected, distorted projections in SM of the control points

0pi. These projections depend on both, the calibration parameters Ω to be esti-
mated (i.e., the intrinsic matrix A, the distortion parameters k={k1, k2, . . .},
and absolute extrinsic parameters as by-products) and on the system model
Υ including the camera and lens distortion models as well as the calibration
object model, e.g. 0pi.

In the case of a stereo camera system, the optimization can be readily
extended as follows:

Ω̂
stereo

? = arg min
Ω̂

stereo

C∑
c=1

N∑
n=1

M∑
i=1

∥∥∥ cMp̃{n, i}d − c
Mp̂
{n, i}
d

(
Ω̂

stereo
, Υ(0pi)

)∥∥∥2
, (3.4)

where the stereo calibration parameters Ω̂
stereo

include the intrinsic parameters
of further cameras (Ac, kc) and their rigid, relative transformations CcT

C w.r.t.
the main reference camera in SC.
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It is worth noting a variation of this method where lens distortion is be-
ing calibrated in advance, irrespective of the other intrinsic parameters of the
camera. Indeed, lens distortion solely relies on the lens unit and not on the
camera scaling parameters. Therefore, lens distortion can and should be esti-
mated separately from regular intrinsic camera calibration. The predominant
method is called plumb line method (or “straight lines have to be straight”); it
consists in adjusting the distortion parameters so that they bend straight the
distorted projections of actual lines in the scene, since it then corresponds to a
linear projective transformation in homogeneous coordinates; refer to (Brown,
1971; Fryer; Duane C. Brown, 1986; Stein, 1993; Fryer et al., 1994; Prescott
and McLean, 1997; Devernay and Faugeras, 2001; Kang, 2001; El Melegy and
Farag, 2003). An alternative method is self-calibration as in (Civera et al.,
2009). Note that partial imaging of the calibration object can lead to inac-
curacy in the estimation of the origin of lens distortion (Malm and Heyden,
2001).

3.2.4 Summary

In this section 3.2 I introduced the standard camera calibration method cur-
rently used in computer vision vision applications (Zhang, 2000; Sturm and
Maybank, 1999).

Starting out, I revisit the historic formation of the standard calibration
method out of more complex calibration methods that required precision lab-
oratory equipment and time consuming measurements (inadequate in our con-
text). The standard method by Zhang, Sturm, and Maybank excels in its ease
of use that, in turn, averts human or measurement mistakes that were otherwise
bound to occur when using any of the former methods.

In a nutshell, the method requires images from a known, planar calibra-
tion object; unlike when using traditional approaches, it is not necessary to
measure the pose of the calibration object w.r.t. the camera when taking cali-
bration images. A first, ballpark solution is estimated by linear least squares
methods using both, the 2-D homography between projected features in the
image frame SI and known features in the object frame S0, as well as the rigid
body motion constraints taking place during acquisition, see Eqs. (3.2). The
initial solution hereby obtained is part of the bootstrap routine of a nonlinear
optimization in Eq. (3.3) that considers the appropriate camera model as pre-
sented in Section 2.2.1. In the case of stereo cameras, Eq. (3.4) extends the
former optimization taking the relative transformation between the cameras
into account.
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3.3 Extrinsic Camera Calibration

3.3.1 Introduction

Extrinsic camera calibration is the process of estimating the parameters that
define the position and orientation (pose) of the (stereo) camera frame SC

w.r.t. some other reference frame external to the camera. The most widespread
example are eye-in-hand systems where the camera (eye) is rigidly attached to
the end-effector of an active robotic manipulator (hand) like the Kuka KR 16 or
the DLR Lightweight Robot III (the pose of the TCP frame ST w.r.t. their base
frame SB is operated), or the passive arm FaroArm Gold (the pose of the arm
is reached by hand), see Fig. 3.2; in this case, the rigid body transformation

TT
C between the TCP frame ST and the camera frame SC is to be estimated

(also called hand-eye transformation), refer to Section 2.3.

SB S0

SC

ST

T C
T

T 0
B

TCPCamera

Base

Object/
World

Figure 3.2: Rigid body transformation involved in the hand-eye calibration of a stereo camera
mounted at the top of the DLR Light-Weight Robot 3.

In most applications there is a strong need for an accurate hand-eye cali-
bration of the pose of SC w.r.t. ST. The reasons are mostly twofold:

a) to map sensor-centered measurements into the robot frame SB or the
world frame S0, or

b) to allow for an accurate prediction of the pose of the sensor SC on the
basis of the robot arm motion.

In fact, these are often complementary aspects of the same problem.
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3.3.2 State of the Art

There are two main approaches to estimate TT
C when performing hand-eye

calibration on the basis of both, the pose of the TCP frame ST w.r.t. the robot
base frame SB BT

T and the pose of SC w.r.t. the world/object frame S0 0T
C:

A. Move the hand and observe/perceive the motion of the eye or
AX =XB, where A is the robot TCP motion T1T

T2, B the induced camera
motion C1T

C2, and X is the hand-eye transformation TT
C to be determined.

This is the classical approach. Early solutions regard the rotational part of
this equation decoupled from the translational one, yielding uncomplex and
fast formulations. These are, however, error-prone as rotation estimation errors
propagate to the translational part. Seminal articles propose least squares
fitting of rotation, then translation, using the angle-axis representation (Shiu
and Ahmad, 1989), and similar closed-form solutions in (Tsai and Lenz, 1989).
The work in (Zhuang and Roth, 1991) simplified the formulation introducing
quaternions for the estimation of the rotational part, in the same way as (Chou
and Kamel, 1991), who make use of the singular value decomposition (SVD).
Chen, for the first time, does not decouple rotational and translational terms
by using the screw theory (Chen, 1991).

The work in (Wang, 1992) compares (Shiu and Ahmad, 1989) and (Tsai and
Lenz, 1989), detecting a slight advantage for the latter. In (Zhuang and Shiu,
1993) the authors apply nonlinear optimization for both parts, minimizing a
similar expression to Frobenius norms of homogeneous matrices of transforma-
tion errors. They additionally offer the possibility to disregard camera orienta-
tion for the estimation of the hand-eye transformation. A similar approach was
presented in (Fassi and Legnani, 2005) and a nonlinear optimization in (Park
and Martin, 1994), but again in the detached formulation. The work in (Lu
and Chou, 1995) introduces the eight-space formulation based on quaternions,
linearly optimizing both parts at the same time using the SVD. The work in
(Horaud and Dornaika, 1995) nonlinearly optimizes both, the rotational (for-
mulated with quaternions) and the translational parts, at the same time and
with equal weights. Wei, Arbter, and Hirzinger in (Wei et al., 1998) nonlinearly
minimize algebraic distances performing simultaneous hand-eye and camera ca-
libration. Daniilidis in (Daniilidis, 1999) introduces the dual quaternions—an
algebraic representation of the screw theory to describe motions; these enable
the author to find a fast joint solution for rotation and translation within linear
formulation, again based on the SVD. The work in (Bayro–Corrochano et al.,
2000) also produces a linear solution of the coupled problem using the SVD,
by the use of motors within the geometric algebra framework. Finally, Andreff
et al. in (Andreff et al., 2001) do the job properly, employing this particular
formulation for X-from-motion applications—cf. with the last consideration in
Section 3.3.3. They get rid of the nonlinear orthogonality constraint in SO(3)5

by increasing the dimensionality of the rotational part, finally formulating the
problem as a single homogeneous linear system.

5SO(3) is the Special Orthogonal group of 3×3 matrices or rotation group for 3-D space.
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B. Simultaneous estimation of the hand-eye transformation and the
pose of the robot in the world or AX = ZB, where A is the pose of
the camera frame SC w.r.t. S0 0T

C, B the pose of the robot TCP ST w.r.t.
SB BT

T, and X and Z are the eye-hand and world-base transformations to be
determined, i.e., CT

T and 0T
B, respectively. To the best of my knowledge it

was Wang in (Wang, 1992) who first submitted this formulation explicitly for
hand-eye calibration. Surprisingly, none of the other approaches refer to him in
this respect.6 Zhuang et al. in (Zhuang et al., 1994) apply quaternions in order
to get a simple linear solution of the rotational part by the use of the SVD.
Rémy et al. in (Rémy et al., 1997) nonlinearly optimize both parts by mini-
mizing reprojected 3-D Euclidean error distances in S0. Dornaika and Horaud
in (Dornaika and Horaud, 1998) solve the rotational problem linearly using
quaternions, and they also nonlinearly optimize both parts by minimization
of Frobenius norms (with equal weights for all components) and two penalty
functions—see Section 3.3.4. Other approaches integrate the hand-eye cali-
bration with the intrinsic camera calibration and minimize the RMS of the
reprojection errors in the image frame SI (Zhuang et al., 1995; Malm, 2003).

The optimization criteria for both approaches are often sub-optimal and,
regrettably, no attention has been paid to proper parametrization of the compo-
nents of the optimization formulae. Since the purpose of model-based7 calibra-
tion is the accurate parametrization of the system model, maximum-accuracy,
optimal calibration is only achieved when minimizing model fitting errors with
regard to the actually erroneous elements. Here I propose a metric on the group
of rigid transformations SE(3) for this purpose.

Moreover, with the exception of (Rémy et al., 1997), a thorough comparison
of these very different approaches is missing. Here I show the most accurate
algorithms along with a novel one—for both common approaches—and justify
their use in relation to the nature of the problem.

3.3.3 Problem Description

Let BT
T be the homogeneous transformation relating the pose of the base frame

SB to the pose of the TCP frame ST. BT
T results from the calibrated forward

kinematic model of the robot, the encoder readings of every joint, and possibly
its control parameters. Let again 0T

C be the homogeneous transformation re-
lating the pose of the object/world frame S0 to the pose of the camera frame SC

(regardless of whether we use monocular or stereo vision). 0T
C stems from the

absolute extrinsic parameters of the camera calibration process in Section 3.2,
refer to (Zhang, 2000).

6Admittedly, the main contribution in (Wang, 1992) was the comparison of the algorithms
in (Shiu and Ahmad, 1989) and (Tsai and Lenz, 1989). At the same time, however, he
produced this second family of solutions. Wang himself criticizes his class A calibration
procedure as it yields biased results unless an error-free 0T

B is specified. He actually fails
to realize the necessity of estimating 0T

B at the same time in order to avoid measurement
innacuracies or mistakes; he uses ad hoc external measurements instead.

7Approaches that do not rely on a physical model of the system may actually perform on
ocassions better if they are purposefully calibrated. I therefore add the adjective model-based
to most procedures in this work.
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Two unknown transformations TT
C and 0T

B remain to be estimated. The
latter does not require frequent recalibration, since manipulators are not usually
shifted. On the contrary, the rigid pose of the camera frame SC w.r.t. the TCP
frame ST has to be calibrated more often, since camera(s) may be removed
or rotated. These transformations should not be measured by hand since the
different frames are located inside the manipulator or the sensor.

In order to uniquely determine TT
C (and perhaps 0T

B), at least n = 3
stations (i.e., robot configurations) are required (Tsai and Lenz, 1989; Chen,
1991)—specifically two motions with nonparallel rotation axes.

Solution #1: AX=ZB

Next the direct formulation of the predictive parametric model described in the
last section will be mathematically detailed. It enables us to predict values
(e.g. BT

T) on the basis of a parametric representation of the world (e.g. CT
T).

These predictions, jointly with actual measurements, make it possible to refine
optimally on this parametric representation of the world in Section 3.3.4.

This first formulation directly states the rigid transformations involved in
the loop camera-TCP-base-world-camera:

0T
C

CT
T = 0T

B
BT

T 

SC

CT
T

−→ ST

0TC
x ↗

x
BT

T

S0
0TB

−→ SB ,

(3.5)

which avoids further modeling (e.g. perspective projection as in Section 2.2.1 or
detailed kinematic joint/link information). It introduces a significant constraint
in order to ensure that both, CT

T and 0T
B, are consistent with the actual

system. The equation is usually decomposed into its rotational and translational
parts:

0R
C

CR
T = 0R

B
BR

T

0R
C

Ct
T + 0t

C = 0R
B

Bt
T + 0t

B

}
, (3.6)

where R and t are the rotational and translational components of the homoge-
neous transformation matrices T , respectively.

The solution to this problem has been historically calculated in different
ways (Wang, 1992; Zhuang et al., 1994; Rémy et al., 1997; Dornaika and Horaud,
1998).

Solution #2: AX=XB

Due to the fact that CT
T is more often required than 0T

B, most approaches
eliminate the latter by writing Eq. (3.5) at two different instants i and j yielding
the well-known hand-eye formulation:

CiT
Cj

CT
T = CT

T
TiT

Tj 

0T

Cj CT
T, (0TB)−−−−−→ BT

Tj

Ci
TCj

x ↗
x

Ti
TTj

0T
Ci CT

T, (0TB)−−−−−→ BT
Ti

(3.7)

or
CiR

Cj
CR

T = CR
T

TiR
Tj

CiR
Cj

Ct
T + Cit

Cj = CR
T

Tit
Tj + Ct

T

}
, (3.8)
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first formulated in (Shiu and Ahmad, 1989; Tsai and Lenz, 1989). This problem
was geometrically analyzed in (Fassi and Legnani, 2005). When writing CiT

Cj =

CT
T

TiT
Tj

TT
C, it becomes clear that CiT

Cj and TiT
Tj are the same rigid body

transformation assessed in different reference frames.

The solution has been also calculated in different ways: (Shiu and Ahmad,
1989; Tsai and Lenz, 1989; Zhuang and Roth, 1991; Chou and Kamel, 1991;
Chen, 1991; Wang, 1992; Zhuang and Shiu, 1993; Fassi and Legnani, 2005; Park
and Martin, 1994; Lu and Chou, 1995; Horaud and Dornaika, 1995; Wei et al.,
1998; Daniilidis, 1999; Bayro–Corrochano et al., 2000; Andreff et al., 2001). If
necessary, the dual equation 0iT

0j
0T

B = 0T
B

BiT
Bj (where S0 moves w.r.t. SC

and SB w.r.t. ST) enables the estimation of 0T
B.

Choice of formulation

The above equations do not hold exactly in the case of noise and N>3 stations
due to the erroneous rigid body transformations BT

Ti and 0T
Ci for Solution #1

or TiT
Tj and CiT

Cj for Solution #2. The proper optimal way of accurately
estimating TT

C and 0T
B is thus optimally correcting these erroneous measu-

rements at every station i / i∈N1, i≤N , depending on both, their geometric
error models and the predictions/estimations from the formulae.

The Maximum Likelihood method (ML) selects the model (e.g. TT
C) where

the probability of the observed data (e.g. BT
Ti) is highest or, in other words,

where its incompatibility with the model is minimized. A typical cost function
for Gaussian error distributions is the sum of covariance-weighted squared pre-
dictions of these errors. Then, the resulting model parameters have zero bias,
lowest variance, and maximum probability if flat prior (MacKay, 2003).

In the next section a metric for rigid body transformation errors is pre-
sented. Experiments using the real systems FaroArm Gold and ARTtrack2
suggest zero-mean Gaussian distributions8 if this error metric is applied to the
transformation BT

T, see Section 3.3.5. Naturally, these errors are much larger
than the ones in 0T

C; hence the errors in 0T
C should not be considered (Tsai

and Lenz, 1989). These experiments make it clear that, for this particular
eye-in-hand framework, it is possible to optimally correct BT

Ti by minimizing
a sum of covariance-weighted squared prediction errors in the context of the
AX=ZB formulation in order to optimally estimate TT

C and BT
0.

In the case of the AX =XB formulation, the abovementioned consider-
ations do not hold in the context of eye-in-hand systems using e.g. robotic
manipulators, thus the proposed method is not optimal anymore; the reason
for this is that TiT

Tj and CiT
Cj do not necessarily show Gaussian errors in this

metric, but rather nonlinear functions of them. In the case of pose-from-motion
problems where the camera motion is being estimated from its own images as
in Chapter 5 or (Andreff et al., 2001), however, the motion CiT

Cj may actually
produce Gaussian errors in this metric (viz. much larger than the ones in TiT

Tj

so that the latter can be ignored). More research in this direction is required.

8Of course, the metric in translation error (in squared form) shows a χ2 distribution.
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3.3.4 Minimizing Residual Errors on SE(3)

In this section a novel distance metric on the Euclidean group of rigid body
motions SE(3) is presented. Elements in this group are represented as a couple
{R, t} where R ∈ SO(3)

/
R ∈ R3×3 : RTR = I, det(R) = 1 and t ∈ R3. The

problem of finding a metric for SE(3) can be presented in terms of a real
valued objective function O : (SO(3)× R3)→R which measures the suitability
of the unknowns to fit the data. This metric will make it possible to optimally
solve the hand-eye calibration problem.

Many choices exist in the literature for a metric in the context of the hand-
eye calibration problem, but none directly refers to the actually erroneous trans-
formations BT

Ti and 0T
Ci, hence they do not allow for optimal estimation fol-

lowing the ML criteria. In the following I present some significant approaches
that will be also addressed within the simulations and experiments in Sec-
tion 3.3.5.

a) The residuals in linear optimization methods are highly diverse: angles,
rotation matrix elements, quaternion distances, etc., as well as nonlinear
algebraic transformations of them.

b) A relevant metric is presented in (Horaud and Dornaika, 1995). The
authors optimize nonlinearly for CT

T in the context of the AX =XB
formulation as follows:

{q, t}? = arg min
q,t

(OH) = arg min
q,t

(
f(q, t) + λ(1− q ∗ q̄)2

)
(3.9)

with

f(q, t) = λ1

N−1∑
i=1

∥∥v′i − q ∗ vi ∗ q̄ ∥∥2
+

λ2

N−1∑
i=1

∥∥q ∗ Tit
Ti+1∗ q̄ −

(
CiR

Ci+1− I
)
t− Cit

Ci+1
∥∥2

, (3.10)

using weights λ1 = λ2 = 1 and λ= 2 ·106. The latter factor λ guarantees
the consistency of the quaternion vector q representing CR

T. vi and v′i
are the eigenvectors associated with the unitary eigenvalues of TiR

Ti+1

and CiR
Ci+1, respectively. The objective function OH has the form of

a sum of squares of nonlinear functions and can be minimized e.g. using
the Levenberg-Marquardt algorithm. This method considerably improved
accuracy w.r.t. to earlier work.

c) The same authors, now in (Dornaika and Horaud, 1998), apply a different
metric for the AX=ZB formulation:{

TT
C, 0T

B
}?

= arg min
TT

C, 0TB
(OD) = arg min

TT
C, 0TB

(
f
(

TT
C, 0T

B
)

+

λ3

∥∥
TR

C
CR

T− I
∥∥2

+ λ4

∥∥
0R

B
BR

0− I
∥∥2
)

(3.11)
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with

f
(

TT
C, 0T

B
)

= λ1

N∑
i=1

∥∥
0R

C
CR

T − 0R
B

BR
T
∥∥2

+

λ2

N∑
i=1

∥∥
0R

C
Ct

T + 0t
C − 0R

B
Bt

T − 0t
B
∥∥2

, (3.12)

again with weights λ1 =λ2 =1 and λ3 =λ4 =106. This time, the objective
function OD minimizes the Frobenius norm of a residual rotation matrix.

d) Daniilidis in (Daniilidis, 1999) presents a unified and fast way of formu-
lating the AX = XB problem using dual-quaternions, which are the
algebraic counterparts of screws and are valid for both, rotational and
translational components. His method aims at avoiding the abovemen-
tioned weighting problem by using the compact formulation ǎ = q̌ b̌ ¯̌q,
which can be solved linearly using the SVD.

Note the absence of any weighting criteria between positional and orienta-
tional residuals—sometimes even the weighting factor is missing; in my view,
the sensible choice of these factors is essential to purposefully aim at optimal,
total estimators. In addition, parametrization criteria have a strong influence in
the abovementioned methods: the scaling of variables (i.e., the choice of units
relating meaningfully to the problem structure) and, more generally, matrix
preconditioning (the choice of the linear combinations of parameters to use)
are crucial for convergence and, unfortunately, play an unexpected role in the
weighting issue (Hartley, 1997).

I next describe a sound objective function O based on an error metric on
SE(3). For the first time it addresses the following objectives:

1. To optimally reduce actual system errors,

2. to allow for a natural weighting of the rotational and translational com-
ponents, and

3. for the algorithm to be able to autonomously adjust the latter weighting
factors.

In addition, the proposed metric sorts well with both, the AX=XB and the
AX=ZB formulations.

Metric for rotation error

Any rigid body transformation can be modeled as a rotation in SO(3) by an
angle θ about an axis p through the origin, followed by a translation t in R3.
Rotation can thus be represented by three independent parameters: the rotation
angle θ and two angles {α, β} defining the axis of rotation p.

Actual residual error rotations such as the rotational residual at ST

∆TR̃=TR̃
B

BR̂
T

, (3.13)
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where BR̃
T

is measured (e.g. from joint encoders) and BR̂
T

is estimated by e.g.
Eq. (3.5), usually present small angles θ. Experiments9 show arbitrary (ran-
domly distributed) axes of rotation for these residual rotations in most tracking
systems. Hence the axes of rotation of residual rotations are disregarded. The
following rotational error metric is proposed:

Orot
i = ∆Tθi = ± arccos

(
trace(∆TR̃i)− 1

2

)
= ∆Bθi . (3.14)

This scalar, geometrically-defined metric10 in SO(3) gauges the actual resid-
ual rotation error and is frame-invariant, i.e., ∆Tθi = ∆Bθi. In (Wang, 1992)

the similar metric Orot′
i =N (BR̃

Ti
, BR̂

Ti
)=2 sin(|∆Tθi|/2) is introduced for as-

sessment of the accuracy of the calibration; its geometrical interpretation was
the Euclidean distance between head ends of rotated unit vectors.

Metric for translation error

The natural metric of translation in Euclidean space is the Euclidean distance.
In the context of rigid body motions, the Euclidean distance is not, however,
frame-invariant, as

Ti t̃=Bt̂
Ti− Bt̃

Ti 6= Bĩt=Ti t̂
B− Ti t̃

B ⇔ {∆Tθi=∆Bθi>0} ,{∥∥
Ti t̃
∥∥ >0 ∨

∥∥
Bi t̃
∥∥ >0

}
. (3.15)

In addition, it is difficult to choose the reference frame that actually shows the
most significant translation errors, as this depends on the pose tracking system
used. In absence of further model information, I therefore choose not to use a
single Euclidean residual distance as a metric for translation error; the equitable
balance between these two symmetrical Euclidean distances is chosen instead:

Otra
i = (

∥∥
Ti t̃
∥∥+

∥∥
Bĩt
∥∥ ) / 2 . (3.16)

Combination of both metrics

As stated above, the ML method estimates the optimal model (e.g. TT
C) by

means of the minimization of the sum of covariance-weighted squared prediction
errors with zero-mean Gaussian error distributions. Hence the total transfor-
mation error cost function results in:

Oi =
(Orot

i )2

?σ2
rot

+
(Otra

i )2

?σ2
tra

, (3.17)

9Experiments on pose accuracy for both, the FaroArm Gold and the ARTtrack2 system,
were performed by comparing their readings with the absolute extrinsics obtained from stereo
camera calibration.

10The trace of a rotation matrix R is independent of the coordinate system used (as long
as it is orthonormal). Hence it matches the sum of the eigenvalues of R, that is 1+(cos θ+
i sin θ)+(cos θ−i sin θ)=1+2 cos θ ⇒ θ=± arccos((r11 + r22 + r33 − 1)/2).
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where ?σ2
rot and ?σ2

tra are the 2nd central moments of the independent Gaussian
probability density functions (pdfs) in rotation and translation error, respec-
tively. Eventually e.g. in the case of the AX=ZB formulation:

{
TT

C, BT
0
}?

= arg min
TTC,BT 0

(
N∑
i=1

(Orot
i )2

?σ2
rot

+
(Otra

i )2

?σ2
tra

)

= arg min
TTC,BT 0

(
N∑
i=1

(Orot
i )2 +

(Otra
i )2

(?σtra/?σrot)2

)
, (3.18)

where ?σtra/
?σrot is the position/orientation precision ratio, which is now the

only required weighting parameter for optimal estimation. Numerical optimiza-
tions are to be used to find the solutions.

Automatic, optimal weighting

The sigma values above refer to the actual precision characteristics of the par-
ticular pose tracking system being used. Even though these parameters could
be determined by experiments, in this section I bring forward a more conve-
nient approach that estimates the abovementioned ratio based exclusively on
the same data used for calibration. This is a further appealing virtue of the
metrics presented above.

It is well known that the mean square rotational and translational residuals
tend to their actual 2nd central moments when N→∞, i.e., for optimal values
of {TTC, BT

0}? it holds

N∑
i=1

(?Orot
i )2/N →?σ2

rot and (3.19)

N∑
i=1

(?Otra
i )2/N →?σ2

tra . (3.20)

Fortunately, non-optimal but approximated model parameters {TTC, BT
0} re-

sulting from an optimization with arbitrary prior weightings (e.g. a unitary
position/orientation precision ratio) yield improved weighting parameters, so
that it also holds that

σ2
rot =

N∑
i=1

(Orot
i )2/N  ?σ2

rot and (3.21)

σ2
tra =

N∑
i=1

(Otra
i )2/N  ?σ2

tra . (3.22)

Both, simulations and experiments, suggest that this process always converges
to the optimal position/orientation precision ratio if the approximated sigma
values σrot and σtra are updated with the optimized rotational and translational
residuals after every optimization; after about 3 iterations the results become
optimal, refer to Fig. 3.3. The camera calibration toolbox DLR CalDe and DLR
CalLab in (Strobl et al., 2005) implements this algorithm.
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Figure 3.3: Position/orientation precision ratio adaption: For any initial ratio chosen (axis
of abscissas), an optimization following Eq. (3.18) produces residuals that can be used to,
in turn, update the precision ratio (axis of ordinates). The optimal precision ratio will be
reached after three iterations.

3.3.5 Simulations and Experiments

Simulations

Simulations were conducted to compare both solutions AX=ZB and AX=
XB applying the proposed metric, as well as five other representative methods.
Simulations facilitate the comparison of estimated and actual values, as—unlike
in experiments—actual values are known. In particular, these simulations com-
pare nonlinear minimization on SE(3) as proposed in the last section (from
now on “SE” for AX=ZB and “se” for AX=XB) with the five well-known
methods briefly presented in the last section: linear least squares solution in
rotation (“li”), nonlinear minimization (Horaud and Dornaika, 1995) (“nl”),
and dual-quaternion (Daniilidis, 1999) (“dq”) approaches for AX=XB; linear
least squares solution in rotation (“LI”) and nonlinear minimization of Frobe-
nius norms (Dornaika and Horaud, 1998) (“FN”) approaches for AX=ZB.

On the one hand, most of these methods lack of a convenient rotation/trans-
lation weighting policy. On the other hand, the novel metric proposed here is
able to perform weighting automatically. I take advantage of this situation and
study some of these methods in relation to their weighting parameters and, in
the case of the method in (Horaud and Dornaika, 1995), I introduce a novel
weighting policy in order to boost performance: It simply aims at bringing
both, translational (Euclidean distances) and rotational (quaternion distances)
errors, to the the same order of magnitude.

The simulation is conducted as follows: 9 camera stations were generated at
each altitude 0z of 25 and 45 cm w.r.t. S0 with both 0x and 0y ∈ {−30, 0, 30}
cm, i.e., n= 18 stations altogether are used for calibration. All stations focus
on the origin of S0. Since the simulation results are presented statistically,
this series was randomly repeated 100 times in the form of a Monte Carlo
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simulation. Nominal, arbitrary—but realistic—values for the unknown trans-
formations TT

C and BT
0 are generated for every calibration attempt, being

the only restriction as follows:
∥∥

Tt
C
∥∥ =

∥∥
Bt

0
∥∥ = 30 cm. These enable the

calculation of the actual BT
Ti transformations. In turn, random errors provide

BT̃
T
. The Monte Carlo simulations for the methods nl, FN, SE, and se were

repeated 21 times with different weighting factors. The average results assess
accuracy and error minimization performance.

As previously stated in Section 3.3.3, the robot arm pose measurement BT̃
T

is expected to be the main source of perturbation. Here two different noisy
models are simulated: noise model #1 applies for general, time-independent
inaccurate pose data, and noise model #2 to general time-independent inac-
curate motion data—which is time-dependent inaccurate pose data since it
implies growing pose innacuracy over time. It will be shown that the lat-
ter are best dealt using the AX = XB formulation, whereas the former
are best dealt using the AX = ZB formulation. In particular, measure-
ment noise was included for the noise model #1 in orientation11 with ∆TR̃ and

∆BR̃, having rotation angles θ granted to be unbiased, with Gaussian pdfs with
σθ=0.15 ◦. The axes of rotation p of these rotation matrices are uniformly dis-
tributed, i.e., α∈ [−90◦, 90◦) with pdf(α)=180−1 [◦]−1 and β∈ [−90◦, 90◦) with
pdf(β) ∝ arcsin(β/90) [◦]−1. In position, the Euclidean residual distances Tt̃
and Bt̃ also present real Gaussian pdfs with σt=0.35 mm, and their directions

are again uniformly distributed. For noise model #2 I use TiR̃
∆Tj

=TjR̃
Ti

TiR̂
Tj

and Ti t̃
∆Tj = Ti t̂

Tj− Ti t̃
Tj.

Robustness analyses in the presence of varying noise levels were also per-
formed. The conclusions are in conformity with prior works: for common appli-
cations the superiority of an algorithm does not critically depend on the level
of noise. Consequently, these studies are not reported here.

Accuracy analysis with synthetic data
Next both accuracy and precision12 in the estimation of TT

C and BT
0 are

examined in relation to the chosen method, the error model, and the weighting
parameters.

Primarily the simulations reflect the operation of the Maximum Likelihood
(ML) method as stated in Section 3.3.3: Error standard deviations are much
larger than biases—at least 10 times. In addition, under mild regularity condi-
tions on the measurement distributions, the posterior distributions of the ML
estimates converge asymptotically in probability to Gaussians. Therefore the
accuracy analyses performed here focus on the 2nd central moments of the
estimation errors.

Figs. 3.4 and 3.5 show the standard deviations in position and orientation
estimation for TT

C and 0T
B. The figures totally differ in the fact that in Fig. 3.4

the AX =ZB approaches (upper case) show better performance, whereas in

11Note that this error model does not completely correspond to the metric proposed in
Section 3.3.4. Here rotational errors appear both in ST and SB.

12Accuracy refers to the agreement of estimations and actual values, whereas precision refers
to the repeatability of estimations.
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Figure 3.4: Standard deviations of the parameter errors with noise model #1. Optimal values
regarding weighting are marked with ’*’.
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regarding weighting are marked with ’*’.
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Fig. 3.5 (TT
C) the AX =XB approaches (lower case) do. In particular, for

both approaches the methods developed here (SE and se) show highest precision.
In addition, proper weighting proves crucial to optimal estimation—this applies
with novelty to the method nl in (Horaud and Dornaika, 1995) as well as to
both methods presented here (SE and se). Note that without this weighting
policy but with λ1 = λ2 = 1 (i.e., ratio = 100) the nl method would perform
even worse. Besides, the results with noise model #2 in the right-hand side
of Fig. 3.5 do not show relevant findings, since for this model neither of the
solutions is optimal for the estimation of 0T

B.
Although parametrization and conditioning have been taken into account,

in the simulations the dual-quaternion approach does not work any better than
the linear estimation methods do. Perhaps, this fast method can be useful in
the context of X-from-motion problems, see (Schmidt et al., 2005).

Model matching analysis with synthetic calibration data
Figs. 3.6 and 3.7 show the 2nd central moments of the error metrics presented

in Section 3.3.4 for the very same simulations. They help to understand that:

• linear solutions minimizing rotational errors (li) represent only one poten-
tial extreme solution for the hand-eye calibration problem,

• it is critical for optimal calibration to be able to find a proper weighting,

• approaches for the solution AX=XB perform poorly with noise model
#1 because the error reduction that they get in TiT

Tj is lower than the
error reduction the approaches for the solution AX=ZB can get in BT

Ti

(the opposite applies when using noise model #2).

Experiments

In this section the performance of the different algorithms in real systems is
demonstrated. The pose of ST w.r.t. SB stems from the output of the ART-
track2 system. 0T

C is in turn provided by a stereo camera calibraton algorithm
derived from the monocular one in (Zhang, 2000), using DLR CalDe and DLR
CalLab (Strobl et al., 2005). Experiments aim at verifying correct operation of
the methods in real systems. As in the simulations above, estimation accuracy
would be evidence of correct operation. Unfortunately, calibration accuracy
can not be directly assessed as ground-truth information is missing in experi-
ments. It is possible, however, to indirectly evaluate calibration performance by
verifying the cabability of the system model to match the calibration output,
as the results that best fit the model stem from an optimal calibration process
(MacKay, 2003). For instance, testing the ability to predict BT

T on the basis
of 0T

C and the optimal solutions ?
TT̂

C and ?
BT̂

0 in several verification stations;
these experiments are presented last in this section. Alternatively, it is still
possible to indirectly evaluate calibration performance by using task-dependent
metrics.13

13For instance, you may evaluate the ability to predict camera poses, or image projections,
using only measurement data. These practices are, however, undesirable since the assessments
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Figure 3.6: Standard deviations of different error metrics with noise model #1. Optimal values
regarding weighting are marked with ’*’.
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Figure 3.7: Standard deviations of different error metrics with noise model #2. Optimal values
regarding weighting are marked with ’*’.
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Model matching analysis with real calibration data
Following on from the last section, I next observe the model matching capa-

bility of different calibration algorithms on real experiments in order to relate
them to their virtual counterparts in the simulations section. Again, the 2nd
central moments of the metrics presented in Section 3.3.4 are shown in Fig. 3.8
for an experiment consisting of 10 stations. Results resemble to a great extent
Fig. 3.6, in a slightly different order of magnitude.14 This suggests that the sys-
tem presents noise model #1. In this case, the simulations section points to the
method SE (minimization on SE(3) within AX =ZB) in order to optimally
estimate TT

C and BT
0.
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Figure 3.8: Standard deviations of different error metrics in a real hand-eye calibration. Op-
timal values regarding weighting are marked with ’*’.

will incorporate task-dependent requirements. For instance, for a very long link TT
C, the

accuracy of camera pose estimation would be strongly influenced by the TCP orientation error.
In this case orientation error minimization algorithms would be preferred—which certainly do
not parameterize the system model properly as explained in Section 3.3.4.

14An important attribute of the automatic weighting method exposed in Section 3.3.4 is its
independency of the order of magnitude of the system’s noise—the only required parameter
being a ratio of the precisions in the system.
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Model matching analysis with real verification data
The latter results do not suffice to indirectly evaluate model-based calibration

performance, since the calibration process purposefully forced these particular
data to comply with the parameterized model. To correctly verify the predictive
capability of Eq. (3.5) in a general case, I acquired data external to the calibra-
tion process in the form of 27 additional TCP stations and their corresponding
camera pose estimations. Table 3.1 presents the 2nd central moments of the
metrics in Section 3.3.4 for 27 verification stations with noisy BT

T. In the upper
table the calibration results TT̂

C and BT̂
0 from the last section have been used.

It is good news that the verification stations still present low discrepancies be-
tween measurements and predictions. In the lower table the calibration results
of an extensive (-t) hand-eye calibration with 37 stations were used. The latter
show better results, as expected. This is due to the few stations used for the
former calibration15 as well as to remaining modeling errors (e.g. in camera pose
estimation). The proposed SE-t approach is the least affected in this concern.
Apart from that, all results confirm superior performance for the SE estimation
approach.

Table 3.1: 2nd central moments of the metrics presented in Section 3.3.4 during 27 verification

stations with noisy base-to-TCP transformations BTT. In the upper table the calibration

results TT̂C and BT̂ 0 obtained in the last section (i.e., using 10 stations for calibration) have

been used. In the lower table the calibration results TT̂C and BT̂ 0 of a more comprehensive
calibration including the latter 10 stations as well as the 27 verification stations (i.e., 37
stations in total) have been used.

TT̂
C and BT̂

0 from previous calibration (10 stations)

AX=ZB AX=XB

SE FN LI se nl dq li

σθ 0.210 0.213 0.213 0.227 0.239 0.516 0.270 [◦]

σt 1.343 1.388 1.386 2.401 2.597 3.735 1.969 [mm]

TT̂
C and BT̂

0 from comprehensive calibration (37 stations)

AX=ZB AX=XB

SE-t FN-t LI-t se-t nl-t dq-t li-t

σθ 0.199 0.200 0.200 0.215 0.216 0.341 0.241 [◦]

σt 1.171 1.217 1.216 1.463 1.390 2.424 1.549 [mm]

15Optimal estimation provides unbiased results only for numerous erroneous data. Here the
common number of 10 stations is used.
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3.3.6 Summary

In this section 3.3 I presented a calibration method for eye-in-hand systems
that estimates both, the hand-eye transformation TT

C as well as the robot-
to-world transformation BT

0. Eye-in-hand systems attaching cameras at the
end-effectors of robotic manipulators are the most common approach currently
used to promote their autonomy.

Starting out, I distinguish between the two common solutions of the hand-
eye calibration problem: the AX =ZB and the AX =XB formulations. I
furthermore categorize relevant literature in this respect.

Different from traditional approaches that minimize residuals irrespective
of their physical meaning, the proposed optimization takes place in terms of a
parametrization of a realistic stochastic model. In order to perform optimally
in the context of the Maximum Likelihood method, a metric on the group
of the rigid transformations SE(3) together with an experimentally validated
error model are proposed for nonlinear optimization. The translational and
rotational components of the residuals are weighted with the particular preci-
sion characteristics of the manipulator. This metric allows for automatically
adapting its weights to the precision characteristics of the system. The novel
metric works well with both common formulations AX=XB and AX=ZB,
and makes use of them in accordance with the nature of the problem.

A performance comparison w.r.t. the most representative, traditional ap-
proaches has proven favorable to the presented method. Additionally, a novel
weighting policy for the well-known approach in (Horaud and Dornaika, 1995)
has been produced.

This section was adapted from the original publication in (Strobl and Hirzinger,
2006).
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3.4 Caveat #1: The Accuracy of the Calibration
Object

3.4.1 Introduction

As mentioned in Section 3.2.1, most models related with camera calibration
are widely accepted in the computer vision community and it does not seem
necessary to question their suitability anymore. However, it is apparent that
there still exists one potential error source that has not yet been addressed,
namely the allegedly known positions of the control points in the calibration
object; on the one hand, the accurate knowledge of these corners supports ca-
libration accuracy, but on the other hand it can very easily feed incorrect data
into the estimation. In fact, it is often the case that the pattern on the cali-
bration plate is inaccurately imprinted. Off-the-shelf printers especially fail in
scaling the pattern, which independently (and regularly) occurs in its two main
perpendicular directions—skew patterns rarely occur. It is standard practice to
carry out subsequent 2-D measurements of the positions of the control points
in order to cope with this problem, which is difficult to perform by hand with
high accuracy.16

What is more, on a number of occasions the user will not even be measuring
the pattern printout; even worse, they may crumple it up or just wrinkle it and
fold it to warehouse and use it again in the future. It goes without saying that,
if the pattern does not lie flattened on the table, the whole calibration object
model is lifted.

In order to cope with the former error concerning badly scaled calibration
patterns, I present a novel method that rescales the pattern back to ground
truth with only two parameters. For this purpose, the scaling factor κ and the
aspect ratio ν are introduced for the parameterization of the calibration pattern.

In order to cope with the latter error concerning patterns imperfections
beyond homogeneous scaling, I present an additional novel approach that con-
currently optimizes the whole scene structure in a compact, accurate way.

3.4.2 State of the Art in Calibration by Scene Structure Esti-
mation

In the early years of computer vision, camera calibration was a cumbersome pro-
cess. 3-D knowledge of the scene structure was a hard requirement (Faugeras
and Toscani, 1987; Faugeras, 1993; Tsai, 1986) and high quality targets were
difficult to achieve. In contrast to this, the possibility to estimate the scene
structure also exists, as a by-product, along with regular camera calibration.
In fact, this was the most important trend in camera calibration since the
inclusion of distortion models. Tsai strikes this new path by two calibration
methods, where the pose of the target (either 3-D or a planar, accurately shifted
target) w.r.t. the camera is being estimated (Tsai, 1986, 1987). The most signif-
icant contribution, however, was simultaneously presented in the late nineties

16 Conventional rulers are accurate to say 1 mm markers (Sun and Cooperstock, 2006).
The reader is invited to check different rulers against each other.
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by Zhang, Sturm and Maybank (Zhang, 2000; Sturm and Maybank, 1999).
Their approach allows free motion of a precisely known planar calibration tar-
get. Their formulation obtains an approximate solution for both, the target
pose and the camera parameters, from the readily obtained object-to-camera
homographies (Appendix A), by means of rigid body motion constraints. The
approach is flexible and accurate enough to become standard practice to this
day. This is not because extensive 3-D knowledge of the scene directly com-
promises calibration accuracy—the contrary is true, but because its flexibility
and simplicity prevent damage to calibration owing to human inaccuracies and
mistakes (Sun and Cooperstock, 2006; Strobl and Hirzinger, 2008).

It is pertinent to address this trend towards camera-to-target pose estima-
tion in the context of scene structure estimation, even though they do not yet
include the geometry of the calibration target into the optimization. From the
camera’s point of view, the scene structure is equally determined by both, the
target’s geometry and its relative pose w.r.t. the camera. In other words, the 6
DoF of the target’s pose combine with local target geometry to form the actual
scene structure that eventually projects unto the camera. This trend therefore
provides a clear indication to additionally estimate the target’s geometry.

In fact, a few authors already made an attempt at this. Since manufacturing
accurate 3-D calibration targets is more laborious than manufacturing planar
ones, the approach was first taken in 3-D by Lavest et al. (Lavest et al., 1998).
Even though their results seem convincing, the method did not become popular,
probably because it is formulated in 3-D and, from 1999 on, researchers largely
opted for planar calibration targets.

Planar calibration objects do indeed provide convenient ground truth for
camera calibration for different reasons: First, they are easy to manufacture,
use, and store; second, they are naturally well adapted to the calibration of
lens distortion since they can easily fill whole images; third and most impor-
tantly, high geometrical accuracy can be (cheaply) achieved. However, that
is unfortunately not the case for the 2-D pattern imprinted on it. Regular
printers dramatically lack of accuracy and it is therefore standard practice to
gauge the pattern by hand, which is in turn prone to errors because of the use
of inaccurate or inappropriate rulers, or even the indolent commitment of the
user.

We were the first to deal with structure estimation in 2-D (Strobl and
Hirzinger, 2008). We noticed that off-the-shelf printers systematically cause
errors both, in global scale and in aspect ratio of the printed pattern. The
pattern is then minimally modeled by these two parameters, which can be si-
multaneously estimated during intrinsic and hand-eye calibrations, respectively.
I am presenting that method in the next section.

Albarelli et al. go one step further (Albarelli et al., 2010); they observe
anisotropic error distribution in reprojected object coordinates after calibra-
tion, which leads them to believe that significant, systematic pattern errors
are actually pervasive—however small. In addition, the considerable reduction
in residual reprojection errors reached after full camera and scene structure
optimization further strengthens their position, that slightest pattern correc-
tions really imply a significant accuracy improvement in camera calibration.
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Even though their initial rationale is wrong (anisotropic error distributions are
actually expected after nonlinear reprojection of isotropic image noise), their
approach is undoubtedly convenient, at least when major inaccuracies in the
calibration target occur.

Although the algorithms in (Lavest et al., 1998) and (Albarelli et al., 2010)
are indeed very similar (incidentally, the latter fail to cite the former), their
conveyed messages differ. While Lavest et al. claim that, by using their me-
thod, small inaccuracies will not get to harm camera calibration, Albarelli et al.
on the other hand affirm that, by target geometry optimization, the user will
even be able to come by accuracy levels that are otherwise virtually impossible
to achieve at moderate cost. Whatever message they convey, the two main
differences in their methods are: First, Albarelli et al. assume planar patterns
and have the opportunity to make use of the following convenient algorithms
(Zhang, 2000; Sturm and Maybank, 1999; Strobl and Hirzinger, 2008), whereas
Lavest et al. require 3-D calibration targets and a laborious initialization step.
Second, Lavest et al. seem to directly include all 3-D geometry of the target
into the optimization, for several images, without further ado; Albarelli et al.
on the contrary are forced to construct an iterative algorithm that decouples
geometric estimation of the target from intrinsic parameters estimation. In
(Strobl and Hirzinger, 2011) the authors rework this last detail, delivering a
tight parametrization of the full scene structure that will be presented below.

3.4.3 Estimating Aspect Ratio and Absolute Scale of the Planar
Calibration Object

In the above lines the dangers arising from the requirement of accurate knowl-
edge of the scene structure are discussed. If the latter requirements are lifted,
optimal estimation by sensible minimization of reprojection discrepancies must
be re-engineered. In this section, the standard formulation for camera calibra-
tion in Section 3.2 will be adapted to this new paradigm—while still taking
advantage of a priori knowledge of both, its planarity and the regularity of its
pattern. I claim that highest accuracy camera calibration is still possible by this
means. This would be a significant contribution in order to avoid commonplace
mistakes and therefore increase calibration accuracy.

I propose a parameterization for the grid pattern of the planar calibration
object by two parameters only: the scaling factor κ and the aspect ratio ν,
see Fig. 3.9. This is a convenient parameterization not only because it very
closely corresponds to the actual limitations of conventional printing equipment,
but also because the effects of these parameters on the calibration process can
be clearly differentiated: whereas an erroneous aspect ratio ν does affect the
estimation of the intrinsic parameters, an erroneous scaling factor κ still allows
optimal intrinsic calibration; it only affects (in range) the absolute extrinsics of
each camera. Furthermore, they are a tight object model representation that
makes it still possible for the calibration process to take advantage of accurate
knowledge of the scene in the form of the high planarity and regularity of the
imprinted pattern. The new method concerns the simultaneous estimation of
these parameters during camera calibration.
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End-Effector

Camera

Base of the
manipulator

Object/World

ν κ x.   .

   κ y   .

Figure 3.9: Stereo camera mounted at the top of the DLR Light-Weight Robot 3. Note the
scaling of the calibration plate by the aspect ratio ν and the absolute scale κ.

I build upon the standard planar approach in Section 3.2 as well as the
hand-eye calibration approach presented in Section 3.3. First, the intrinsic
parameters are roughly estimated with linear least squares techniques. Second,
the complete set of parameters of the camera model is refined by nonlinear
optimization. Third, the extrinsic parameters are also roughly estimated. Last,
the extrinsics are refined by nonlinear optimization.

The modified initial, intrinsic closed-form solution

Like most optimization processes that are formulated as residual minimization
problems, camera calibration is vulnerable to local solutions. The current stan-
dard for its initialization stems from Refs. (Zhang, 2000; Sturm and Maybank,
1999) and has been explained in Section 3.2.3.

In the presence of badly scaled patterns, however, the actual Euclidean
coordinates of the control points 0pi are no longer known, but only the erro-
neously scaled ones 0p̌i. Therefore, the solution of the system of Eqs. (3.2)
may now lead strongly biased results. That is because the decomposition of the
calculated homographies Ĥ (so that m̂∝Ĥ [0x̌ 0y̌ 1]T) has changed. Now:

Ĥ∝

α γ u0

0 β v0

0 0 1

[r1 r2 t
]κν 0 0

0 κ 0
0 0 1

 such that
r1 · r2 = 0
r1 · r1 = 1
r2 · r2 = 1

}
(3.23)

∀ ν, κ ∈R / ν, κ 6=0. It follows:

(A−1h1)T ·(A−1h2) = 0
1/ν2 · (A−1h1)T ·(A−1h1)
−(A−1h2)T ·(A−1h2) = 0

}
⇔ hT

1 ω∞ h2 = 0

hT
1 ω∞ h1 = ν2 · hT

2 ω∞ h2

}
, (3.24)
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cf. Eq. (3.2). The introduction of one further unknown parameter (the aspect
ratio ν) does away with the former linear formulation in part. Although ν
could be otherwise calculated as it is unique for N images, we do not need to
bother about it since intrinsic calibration is not about estimating the value of
ν, but about estimating the value of the intrinsic parameters only. It is possi-
ble to orthogonalize both r1 and r2 (i.e., hT

1 ω∞ h2 = 0) without normalizing
them (i.e., without forcing hT

1 ω∞ h1 = ν2 · hT
2 ω∞ h2) thereby resulting in N

constraints for 5 intrinsic unknowns, and there still are more equations than
unknowns after all. In addition, the stereo constraints introduced in (Malm
and Heyden, 2001) still hold in this case—unmodified. This formulation is now
closer to the actual intrinsic and absolute extrinsic values than the traditional
one in the ubiquitous case of erroneous knowledge of the aspect ratio ν.

However, I recommend to decrease the number of unknowns in this first
estimation. It is a pointless effort to aim at success in accurately estimating
very sensitive parameters, such as the skew parameter γ or the principal point
[u0, v0], prior to the estimation of the lens distortion. It is advisable to include
some prior knowledge of the parameters in the following form: γ=0 and [u0, v0]
be located at the image center. The remaining parameters to be estimated are
the scale factors α and β—along with the absolute extrinsics of the camera. It
is more likely that the estimations resulting from this method fall in the con-
vergence region required for successful nonlinear optimization, rather than the
numerous former parameters afflicted with biases. Alternatively, the iterative
method in (Sánchez et al., 2006) can be also used with the omission of the
normalization constraint. Nonetheless it is fair to say that the traditional ap-
proach does also mostly fall in the convergence region of the eventual nonlinear
optimization stage.

After determining the intrinsic matrix A, the absolute extrinsics for every
image n can be computed from Eq. (3.23). If we introduce the parameter s as
the proportionality parameter between both terms of the equation, it follows:
r1 =ν/sκA

−1h1, r2 =1/sκA
−1h2, r3 =r1×r2, t=1/sκA

−1h3, sκ= ||A−1h1||, and we
can even estimate the aspect ratio ν= ||A−1h1||

/
||A−1h2||. Again, these object-

to-camera absolute extrinsics (as well as the camera-to-camera translations in
the case of stereo) may be incorrectly scaled (in range) if the assumed scaling
factor κ is far from reality; this also holds after nonlinear optimization of the
intrinsic parameters. It is only the potential extrinsic calibration that will be
able to correct them. However, the intrinsic parameters remain unaffected as
they can be estimated irrespective of the scaling factor κ—recall Eqs. (3.24).

These initial values pave the way for a nonlinear optimization of the intrinsic
parameters in the spirit of Eq. (3.3) and subsequent extrinsic calibration—the
only difference being the additional unknown parameters aspect ratio ν and
scaling factor κ. In this context, I next present two different methods that solve
for the intrinsic and extrinsic unknowns in the form of a nonlinear optimization.
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Method #1: estimating the aspect ratio ν from the minimization of
reprojection errors; estimating the scaling factor κ from the mini-
mization of extrinsic transformation errors

Since an erroneous aspect ratio ν implies systematic errors between estimated
p̂ and actually projected p̃ control points in the image, the assumption on the
Gaussian distribution of the error metric is violated which prevents (unbiased)
optimal estimation of the intrinsic parameters. In addition to that, simulations
show that released intrinsic parameters cannot completely compensate for these
systematic errors if multiple images from different vantage points are taken.
From these observations it follows that first, only the correct aspect ratio value ν
truly minimizes reprojection errors after nonlinear optimization (see Fig. 3.13),
and second, the aspect ratio ν can be estimated at the same time along with the
other intrinsic and absolute extrinsic parameters. In this way, the erroneous
data to minimize during the optimization process is, again, the projections

Mp̃
{n, i}
d of the control points in the images. The following minimization provides

now the optimal intrinsic parameters:

Ω̂
s

? = arg min
Ω̂

s

N∑
n=1

∑
i

∥∥∥Mp̃
{n, i}
d − Mp̂

{n, i}
d

(
Ω̂

s
(ν̂), Υ(0p̌i)

)∥∥∥2
. (3.25)

In contrast to Eq. (3.3), the optimization vector of calibration parameters Ωs

includes now the aspect ratio ν that, in turn, together with the erroneous
object model in the vector of system models Υ, eventually generates 0p̂i =
[κ·ν ·0x̌i κ·0y̌i 0 1]T.

If a subsequent hand-eye calibration is required, it has to be considered
the above mentioned fact that the optimally (?) estimated absolute extrinsics
?
CT̂

0
n may strongly differ from the actual ones. The transformation errors in the

rotational and translational metrics within SE(3) do not present the required
unbiased Gaussian distributions anymore, and the optimal estimation process
becomes strongly corrupted, cf. (Strobl and Hirzinger, 2006). Therefore, the
hand-eye calibration algorithm has to be modified in order to estimate the
scaling factor κ in which the intrinsic calibration was actually performed. In
doing so, the absolute extrinsics (and, in the case of stereo cameras, also the
camera-to-camera transformations) have to be scaled accordingly. Since the
released extrinsic parameters cannot compensate for erroneous scales/ranges
in all the absolute extrinsics at the same time, the simultaneous estimation of
the hand-eye transformation and the scaling factor κ for multiple images tends
to restore the error distribution to its reputed unbiased Gaussian nature, and,
as a consequence, the extrinsic calibration along with it to optimal (unbiased)
operation:{

?
TT̂

C, ?BT̂
0, κ̂?

}
= arg min

TT̂C,BT̂ 0, κ̂

N∑
n=1

On
(

Φ(?CT̂
0
n, κ̂), BT̃

T, . . .
)

(3.26)

where the function Φ scales the estimated absolute extrinsics CT̂
0
? in range

according to the estimated scaling factor κ̂. The reader is invited to compare
Eq. (3.26) with the original Eq. (3.18) in Section 3.3.
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Method #2: estimating both, aspect ratio ν and scaling factor κ, by
minimizing extrinsic transformation errors

Alternatively, and only if a subsequent hand-eye calibration has to be per-
formed, it is also possible to estimate the aspect ratio ν, and again the scaling
factor κ, by minimizing the extrinsic transformation errors, see Section 3.3.
As mentioned above, any intrinsic calibration with incorrect aspect ratio ν
will yield erroneous parameters, thus erroneous absolute extrinsics—not only
in their range w.r.t. the calibration object. This will necessarily compromise
hand-eye calibration even if it also estimates κ; therefore, once again, only the
correct value for the aspect ratio ν will make it to truly minimize the extrinsic
residuals:{

?
TT̂

C
n ,

?
BT̂

0, κ̂?, ν̂?

}
= arg min

BT̂C,BT̂ 0, κ̂, ν̂

N∑
n=1

On
(

Φ(?CT̂
0
n, κ̂), BT̃

T
n , . . .

)
(3.27)

with

?
CT̂

0 ∈ arg min
Ω̂

N∑
n=1

∑
i

∥∥∥Mp̃
{n, i}
d − Mp̂

{n, i}
d

(
Ω̂, Υs(ν̂, 0p̌i)

)∥∥∥2
, (3.28)

where ν is not included in the optimization vector of the intrinsic estimation Ω
anymore, but in the new vector of system models Υs. This method is computa-
tionally more expensive since a complete optimization for ?

CT̂
0
n is taking place

for every single extrinsic iteration. Its main motivation are systems where the
positioning accuracy is very high, the errors in the chosen metrics in SE(3) are
close to Gaussian, and the imaging errors are neither small nor Gaussian (e.g.
with very low resolution cameras or oddly distorted images). In this case, a fea-
sible solution can be obtained as follows: A first solution by Method #1 serves
as a good initialization for Method #2. In this way, Method #2 performs a very
restricted local search on ν over both, the traditional intrinsic optimization in
Eq. (3.3) and the subsequent extrinsic optimization in Eq. (3.26).
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Simulations and Experiments

Simulations
Simulations were conducted in order to illustrate the fundamental weaknesses

of the traditional calibration methods and to put the novel methods presented
in the last section to the proof. Ground truth data was adopted from the
intrinsic and extrinsic results of the real, monocular camera calibration in the
below experiments section (left-hand side data in Fig. 3.10) as well as assumed
pattern dimensions. Note that I am using monocular data since the perspective
projection equations are in this case worse conditioned than in the case of stereo.
In short, the ideal image projections and robot motions were calculated, and
noisy image and positioning data was generated on them. Next, the effects of
errors in the assumed pattern dimensions and noise levels are studied.

Figure 3.10: Fifteen images used for calibration with the AVT Marlin camera (left, 780×
580 pixels) and the TyphoonTM EasyCam camera (right, 640×480 pixels). The extrinsic poses
were taken by a Kuka KR 16. The pattern is size A2.

Simulation #1: Effects of erroneous pattern dimensions
In this section the errors in the estimation of the parameters of the camera

model after traditional calibrations with inaccurate knowledge of both pattern
parameters ν and κ of 1% (i.e., from 0.99 to 1.01) is shown—ground truth reads
ν=κ=1. Afterwards, the performance of the calibrated camera is assessed.

Noisy visual data was generated over the ideal image projections with σx =
σy = 0.15 pixels. For the extrinsic calibration, random noisy transformations

0T̃
T were generated from N ideal absolute extrinsics along with the ground

truth hand-eye transformation. The noise was added to the ideal pose of the
end-effector of the robot as follows: The angles θ of the angle-axis representation
{θ,p} of the added noise follow a zero-mean Gaussian distribution with σθ =
0.05◦ and their axes p are uniformly distributed, i.e., their azimut and elevation
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angles φ and ψ are φ∈ [−90◦, 90◦) according to the probability density function
pdf(φ) = 180−1 [◦]−1 and ψ ∈ [−90◦, 90◦) with pdf(ψ)∝ arcsin(ψ/90) [◦]−1. The
translation errors t also follow a zero-mean Gaussian distribution in range with
σt=0.25 mm and their directions are, again, uniformly distributed.

Simulation #1: 1) Erroneous estimation of parameters
Figs. 3.11 and 3.12 show erroneously estimated camera parameters in relation

to the assumed values for the parameters ν and κ. Fig. 3.11 (a) shows significant
drifts in the intrinsic parameters of the camera model in relation to the assumed
aspect ratio (irrespective of κ). Fig. 3.12 does the same for the resulting absolute
extrinsics. The results with ν 6= 1 will of course also imply erroneous extrinsic
calibration. Even if ν = 1 there still exists the possibility that an erroneous
scaling factor κ 6= 1 yielded badly scaled absolute extrinsics (in range), even
though the intrinsic parameters were optimally estimated. Fig. 3.11 (b) shows
the error in the estimation of the hand-eye transformation in this last case.
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Figure 3.11: Percent of error in the intrinsic parameters (a) and translation error in the hand-
eye transformation (b) in relation to the pattern scaling parameters assumed for traditional
calibration. The actual parameters are ν=1 and κ=1.
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Simulation #1: 2) Performance after erroneous calibration
Of course, the abovementioned erroneous camera calibration sharply dete-

riorates performance. In Fig. 3.13 the root mean square error (RMS) of the
intrinsic reprojection errors between expected and actually imaged projections
of the real calibration object for all images are shown. The expected projec-
tions are obtained using the intrinsic parameters from traditional calibrations
with ν̃ ∈ [0.99, 1.01], with ground truth absolute extrinsics. For optimal cali-
bration (ν= 1) the projection error is expectedly minimal and identical to the
“virtual” residual after calibration (0.21 pixels RMS). On the contrary, for tra-
ditional calibrations with ν 6= 1 the error scales up (approximately linearly) to
e.g. 0.4 pixels RMS for ν=0.9975 (0.25 % aspect ratio error, i.e., only 0.75 mm
discrepancy between the x and y lengths when measuring a 30×30 cm section
of the pattern as a whole). In addition, the “virtual” residuals after calibra-
tion with ν̃ ∈ [0.99, 1.01] are depicted; these reflect the operation of Eq. (3.25)
relative to the assumed aspect ratio ν, where erroneous absolute extrinsics try
their hardest to compensate for erroneous intrinsic parameters.

If extrinsic calibration follows the intrinsic one, Section 3.4.3 showed that
the extrinsic estimation may also become inaccurate, and naturally the eventual
performance will get worse as well. The set of curves on the right-hand side
in Fig. 3.13 show the projection errors where the actual noisy readings of the
manipulator 0T̃

T
n , along with the traditionally estimated hand-eye transforma-

tions TT̂
C with ν̃∈ [1.00, 1.01] and κ̃∈ [0.99, 1.01], take the place of the former

absolute extrinsics. For the ground truth parameters (ν=κ=1) the error scales
up to 0.65 pixels RMS. The (small) noise in the manipulator readings accounts
for this increment. Slightly erroneous pattern parameters skyrocket this error.
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calibration. The actual parameters: ν=1, κ=1. Note the different axes.
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It is worth noting that, in this last case and in the case of traditional hand-
eye calibration, it clearly exists a fundamental uncertainty region where it is
not possible for the user to assess calibration accuracy, since it is subject to the
absolute accuracy of the ruler at hand. For incorrect aspect ratio ν̃ this is not
clearly defined, since relative dimensions can be determined with high precision
even when using inaccurate rulers.

Simulation #2: Convergence of the novel estimation methods under
noise

Simulations were conducted with variable noise levels in the control points
projections detected in the images, as well as in positioning accuracy of the
robotic manipulator. Fig. 3.14 shows “virtual” residuals after traditional in-
trinsic calibrations with different image noise levels σ{u,v}∈ [0.1, 1.0] pixels and
assumed aspect ratios ν̃ ∈ [0.99, 1.01], as percentage w.r.t. the optimal results
when ν = 1. The residuals reflect the operation of Eq. (3.25). The minimum
residual is unequivocal for the optimal solution ν = 1 and shows that, in this
context, the erroneous intrinsic and absolute extrinsic parameters cannot com-
pletely compensate for erroneous knowledge of the aspect ratio of the calibration
pattern (refer to Section 3.4.3). This result is basis for the intrinsic optimization
in Eq. (3.25) of Method #1, since it clearly shows the existence of an unique,
unbiased minimum for the optimization. Similar results are achieved for the
extrinsic calibration with codetermination of the scaling factor in Eq. (3.26),
as well as for the optimizations of Method #2. In general, the methods do not
only converge for the initial parameters shown in these simulations, but for sig-
nificantly worse ones; aspect ratio and scaling factor errors of up to only ±1 %
were used in this section in order to visualize the absence of biases in the final
estimations.
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Experiments

In this section the performance of the algorithms in real systems is studied in
order to validate both, models and algorithms. Since the validity of the tradi-
tional camera calibration methods is out of the question, here only the novelty
concerning the codetermination of the pattern scaling parameters ν and κ is
evaluated. Fortunately, and in contrast to the case of intrinsic parameter es-
timation, it is possible to directly assess the accuracy in the determination of
these pattern parameters, since they can also be directly measured. If the de-
termination is accurate, the estimation of the further parameters is necessarily
the equivalent of the well-established traditional calibration methods, which
consequently validates the novel methods in this work for the systems in test.

With the idea of validating in a wide range of systems, two different (mono-
cular) cameras were used: On the one hand, an accurate progressive scan AVT
Marlin camera with a SVGA 1/2” Sony CCD chip and a Sony VCL-06S12XM
6 mm objective worth $1,500 altogether; on the other an off-the-shelf VGA
1/4” CMOS 4-6 mm TyphoonTM EasyCam webcam worth $15. Both cameras
are rigidly attached to the end-effector of a precise robot manipulator Kuka KR
16 and take pictures of a precisely imprinted A2-sized checkerboard calibration
plate, see Fig. 3.10.

Initially, ground truth data was obtained by visually measuring an extended
patch of the checkerboard pattern with a metallic precision ruler—it was as-
sumed that the checkerboard pattern regularly spreads in x and y directions.
Specifically, the lengths dx and dy of the segments defined by 28 and 19 squares
the size of ux×uy (ux≈uy≈2 cm) were measured, and the optimal parameters
ν?=κ?=1 were assigned to them. After that, Methods #1 and #2 were used to
estimate the correcting parameters ν̂ and κ̂ against potentially erroneous pat-
tern data, which in turn lead to the estimated lengths d̂x and d̂y. The results
in Table 3.2 show a formidable consistency of the estimated and measured di-
mensions, even though the algorithms were initialized with dramatically wrong
dimensions like ux =3 cm and uy =1 cm.

Table 3.2: Calibration results using Methods #1 and #2 w.r.t. traditional calibration.

κ ν dx dy RMSint

Precision ruler 1.00000 1.00000 559.6 379.0 —

AVT Marlin
Method #1 0.99906 1.00096 559.59 378.63 0.1735

Method #2 0.99936 0.99910 559.34 379.55 0.1737

TyphoonTM Method #1 0.99967 1.00056 559.47 378.78 0.6452

EasyCam Method #2 1.00081 0.99780 558.82 379.31 0.6453

[mm] [mm] [pixels]
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These values are more accurate than the ones any user is able to obtain with
the sole aid of a regular ruler over a smaller patch of the pattern. To be precise,
the upper and lower lengths dx of the measured patch on the actual pattern
differ as much as 0.3 mm; here the mean value of 559.6 mm has been used. In
addition to that, all measurements on the actual pattern were the result of
an interpolation between results using two different metallic precision rulers,
which differ in length about 0.3 mm over their whole length of 1 m. Therfore,
the above results come by the highest measurable accuracy that the authors
were able to achieve.

Concerning the computational cost of the approaches, Method #1 hardly
affects the costs, especially if the parameters are reasonably close to the true
values. Method #1 increases the lengths of the optimization vectors in only
one parameter each, being them usually the size of 5 + 2 + (6 ·N) parameters
intrinsically, and 6 · 2 extrinsically. In contrast, Method #2 does significantly
increase costs, since it implies an iterative process of numerical optimizations.
However, it is clear that computational cost is a quite immaterial issue for
traditional calibration.

In this work the Levenberg-Marquardt optimization method was used both,
for the intrinsic and the extrinsic calibrations.

Discussion

In general systems, where the Gaussian image noise assumption largely holds,
optimal intrinsic camera calibration is only attained if the aspect ratio of the
pattern is perfectly known. Since this never holds outside of simulation scenar-
ios, the user should opt for one of the two methods mentioned above if he or
she is not able to determine the aspect ratio of the imprinted pattern with an
accuracy of say one part in a thousand (i.e., 0.3 mm in a 30×30 cm patch). As
to which method to use, the fact that the projection residuals in the images are
mostly numerous and small, and conversely the camera vantage points fewer
(typically 10 to 15) and their positioning errors of arbitrary size (depending
on the system), suggests that the former errors distributions show much more
a Gaussian nature than the latter ones. Therefore, Method #1 should usually
perform more accurately than Method #2 for the codetermination of the aspect
ratio ν. As regards the extrinsic calibration, the user should also opt for one
of these methods if he or she is not able to determine the absolute size of the
plate with an accuracy of say one part in a thousand (i.e., 0.3 mm accuracy in
30 cm), which actually is very often the case.
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3.4.4 Estimating the Full Structure of the Scene

In this section I present a novel approach that performs optimal, maximum
likelihood camera calibration as in the last section, but now in the presence
of a more drastic deformation of the pattern on the calibration object. As
mentioned above, it is often the case that the user will not measure the pattern
printout, or he or she will even be crumpling it up or wrinkling it, folding it
to warehouse and use it again in the future. It goes without saying that, if the
pattern does not lie flattened on the table, the whole calibration object model
is lifted.

In order to cope with these errors, an approach that concurrently opti-
mizes the whole scene structure in a compact, accurate way is constructed. In
detail, the formulation extends the camera extrinsic parameters into a tight
parametrization of the whole scene structure. When considering together the
target’s geometry and its relative pose w.r.t. the camera, they form together
the scene structure. A parametrization of the scene structure using both, a
rigid body transformation with 6 DoF and 3 · M Euclidean coordinates for
all M feature points in 3-D is clearly overparameterized, cannot be estimated
unambiguously, and will not converge during nonlinear optimization. A tight
parametrization is achieved e.g. by merely releasing 3 ·M Euclidean coordi-
nates. However, it is sensible to take advantage of the relative transformation

CT
0
n between the reference frame of the calibration object S0 and the camera

frame frame SC, because the local geometry model will then still hold, un-
modified, from a different vantage point, which is convenient for multi-view
optimization. However, in this case the local geometry model of the calibration
target ought to be restricted to 3 ·M − 6 parameters. The authors in (Lavest
et al., 1998) do not mention this issue, which may have been another reason for
the limited popularity of their approach. In (Albarelli et al., 2010) the authors
encounter this problem; they deal with it by strictly decoupling target geom-
etry and camera parameters estimation in an iterative way. While the latter
approach should work, it is not necessary to detach scene structure estimation
from intrinsic optimization if a tight parametrization is used. The perspective
distortion captured by images ought to be sufficient to distinguish between ca-
mera magnification (i.e., focal length) and the structure of the scene (i.e., the
geometry of the calibration target and N poses CT

0, up to scale) during opti-
mization by multi-view calibration. Furthermore, their rescaling step back to
original absolute scale is superfluous, as correct monocular intrinsic calibration
is possible irrespective of absolute scale (Strobl and Hirzinger, 2008).

In this section I present a calibration method that completely releases tar-
get geometry and performs jointly with intrinsic parameters estimation. The
approach is similar to the standard calibration methods in (Zhang, 2000; Sturm
and Maybank, 1999; Strobl and Hirzinger, 2008). Expected, model-based opera-
tion is compared with actual projections; after that, the resulting discrepancies
are minimized by tuning parameters in the projection model. In this work the
main modification w.r.t. standard methods will be the tight release of the tar-
get’s geometry during the final nonlinear optimization. Critically, requirements
on the calibration target are now drastically lifted so that unmeasured patterns
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(e.g., a checkerboard printed on paper using off-the-shelf printers) can be used,
even on an uneven surface. The only requirement now is that the pattern re-
mains static during calibration—unless it is rigid material. If stereo camera
calibration is intended, a sole scale parameter (e.g., absolute distance between
two arbitrary corner features) is required. A potential hand-eye calibration in
turn waives this last requirement.

Initial Solution

It is of paramount importance for accurate camera calibration to precisely and
robustly detect calibration target features on the images. In fact, Lavest et
al. argue that, by following this paradigm of concurrent target geometry esti-
mation, the calibration results will no longer depend on the (lack of) accuracy
of the pattern, but mainly on the accuracy of feature detection (Lavest et al.,
1998). Planar checkerboard patterns are certainly convenient in terms of (sub-
pixel) localization accuracy of their corners (Mallon and Whelan, 2007; Strobl
et al., 2005), thus my method is conceived for (not restricted to) this type of
data.

Like most optimization processes that are formulated as residual minimiza-
tion problems, camera calibration is vulnerable to local solutions. The current
standard for its initialization stems from (Zhang, 2000; Sturm and Maybank,
1999) and has been explained in Section 3.2.3. In Section 3.4.3 I modified the
traditional formulation in case of imprinted patterns with unknown aspect ratio
and absolute scale. The solution produced hereby is irrespective both, of the
absolute scale and of the aspect ratio of the planar pattern, and it suffices to
bootstrap nonlinear optimization.

Since optical distortion has not yet been compensated for during the initial-
ization method in Section 3.4.3, the user may insert a nonlinear optimization
in order to support eventual convergence. At this point, the user may choose
between the traditional approach in Section 3.2.3 and the novel approach in
Section 3.4.3, where the pattern aspect ratio is being estimated.

However, if the expected (prior to printing) pattern dimensions are provided
and off-the-shelf printers are used, experiments show that this whole step can
be readily skipped.

Simultaneous intrinsic camera calibration and full scene structure
estimation

As stated above, it is often sensible to fully release scene structure, extending
optimization parameters to the target’s geometry. Three recent approaches
were reviewed that are either erroneous, incomplete, or needlessly complex.
Here I bring forward a novel target parametrization that is perfect complement
to the N relative transformations CT

0
n, to jointly model full scene structure.

Target geometry is a parameter to reprojection in Eq. (3.3), but it is not
part of the optimization parameters Ω. The blunt inclusion of M 3-D tar-
get points is suggested in (Lavest et al., 1998). Unfortunately, this leads to
overparametrization when coupled with the N unknown transformations CT̂

0
n
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(3 ·M+6 DoF at every station n) and estimations change uncontrollably during
optimization, which precludes absolute convergence. To obtain a tight repre-
sentation, 6 DoF have to be subtracted from the geometric model of the target
(now 3·M−6 DoF) to overall 3·M DoF at every station n—and scene structure
is uniquely defined. However, since intrinsic camera calibration is possible irre-
spective of the absolute scale of the scene, a further DoF has to be subtracted.
In Fig. 3.15 the 7 DoF that are excluded from optimization are depicted; they
involve three corner features—their choice is arbitrary as long as they are non-
collinear. Feature p1 =[0 0 0]T is fixed to be pattern origin since else it couples
with the translational part of CT

0
n. Two other fixed points are p2 = [d 0 0]T

and p3 = [x3 y3 0]T. y2,0, z2,0, and z3,0 fix the target orientation so that it
will not get coupled with the orientation in CT̂

0
n during estimation. x2,d fixes

the absolute pattern scale to an arbitrary value. In spite of these constraints,
the target geometry is still released up to its absolute scale—which cannot be
estimated during intrinsic calibration after all.

The new optimization parameters Ω+ include x3, y3, and pi ∀i ∈ {4, . . . ,M},
i.e., 3 · (M − 3) + 2 variables:

Ω̂
+

? = arg min
Ω̂

+

N∑
n=1

M∑
i=1

∥∥∥Mp̃
{n, i}
d − Mp̂

{n, i}
d

(
Ω̂

+
, d
)∥∥∥2

. (3.29)

In doing so, we cast the former Eq. (3.3) into a much harder optimization
task as the parameters vector length skyrockets from e.g. 5 + 2 + 6 · N to
5 + 2 + 6 ·N + 3 · (M −3) + 2, where M�N . Being the residuals vector already
long (up to 2 ·M · N), the required Jacobian matrix increases exponentially
in size. Even though computing efficiency is uncritical in camera calibration, I
recommend providing Jacobian sparsity patterns to this optimization. The use
of analytical Jacobians is here, however, discouraged as residuals are in distorted
image space, Jacobians are hard to get, and it is too costly to perform variable
substitution on them in the first place.

p    = [0 0 0]1
T

p    = [d 0 0]2
T

p    = [x   y  0]3
T

3 3

TC
0

Figure 3.15: Pattern features p1, p2 and p3 that will be (in part) fixed during joint intrinsic
and full scene structure optimization.
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Extension #1: Stereo camera calibration

A natural extension of this work is in the case of stereo cameras:

Ω̂
⊕
? = arg min

Ω̂
⊕

C∑
c=1

N∑
n=1

M∑
i=1

∥∥∥ cMp̃{n, i}d − c
Mp̂
{n, i}
d

(
Ω̂
⊕
, d
)∥∥∥2

. (3.30)

Compared to Ω+, the optimization parameters Ω⊕ additionally include the
intrinsic parameters of further cameras (Ac, kc) and their rigid, relative trans-
formations CcT

C w.r.t. the main reference camera in SC, cf. Eq. (3.4). If two
cameras are used, the length of the residuals vector amounts to up to 2·2·M ·N ,
and the length of the parameters vector to, e.g., (5+2)·2+6+6·N+3·(M−3)+2.
It is worth noting that, if the stereo camera is to be calibrated to correct metric
scale, the value of d is not arbitrary anymore; the user has to provide a valid
distance d between two (arbitrary) features on the pattern of the calibration
object.

Extension #2: Hand-eye calibration

Hand-eye calibration is the process of estimating the rigid body transformation

TT
C relating the end-effector frame of e.g. a robot manipulator (hand, ST)

to the reference camera frame (eye, SC) mounted on it, refer to Section 3.3.
Similar to stereo calibration, the standard hand-eye calibration requires cor-
rect metric scale. Since more often than not hand-eye calibration is decoupled
from intrinsic camera calibration, the hand-eye calibration method presented
in Section 3.4.3, Method #1, still holds. In a nutshell: The discrepancies (On)
between expected and measured transformations are minimized, see Eq. (3.26)
together with Eq. (3.18) in Section 3.3. Expected eye locations ?CT̂

0
n stem from

intrinsic calibration (they are called absolute extrinsics and are a by-product
of intrinsic camera calibration); measured transformations BT̃

T
n stem from the

noisy motion readings of the manipulator. Note that here the absolute scale d
can be simultaneously estimated during optimization. Following the notation
in Sections 3.3 and 3.4.3:

{
?
TT̂

C, ?BT̂
0, d̂?

}
= arg min

TT̂C,BT̂ 0, d̂

N∑
n=1

On
(

Φ(?CT̂
0
n, d̂), BT̃

T, . . .
)

(3.31)

where the function Φ scales the transformations ?
CT̂

0
n in range—according to

the scaling factor d̂ being estimated. If this method is used, the user does not
even need to provide a valid distance d for stereo calibration; in the case of
stereo cameras, he or she only needs to rescale potential transformations ?

Cc
T̂C

back to correct metric scale using d̂?.
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Experiments

In this section the results of the above method are analyzed, both on calibration
data and in independent validation experiments. After that I shall discuss on
the utility of the presented approach.

A stereo camera was used consisting of two progressive scan AVT Mar-
lin cameras with SVGA 1/2” Sony CCD chips and Sony VCL-06S12XM 6 mm
objectives; experiments show that a radial distortion model using only two pa-
rameters (3rd and 5th degree) suffice to model the optics’ geometric distortion.
Stereo base distance is approximately 5 cm.

Two calibration targets are used: On the one hand a precision pattern size
A3 printed on a metallic plate; on the other hand a printed A3 sheet of paper
with the same checkerboard pattern of 14× 20 = 280 corner features. The dis-
tance between features is approx. 2 cm. The paper pattern was folded previous
to calibration to affect its planarity, thus represents a worst-case scenario, see
Fig. 3.16. In both cases, the calibration consists of 12 tilted images at three
different heights w.r.t. the calibration pattern (20, 40 and 80 cm). Of course,
not all corner points are seen in every image.

At this point it is worth mentioning the reason for taking additional images
at different heights, since usually 4 or 8 images suffice for camera calibration: It
is critical to optical distortion estimation to fill in images with features, so that
distortion can be correctly estimated in the image corners (Strobl et al., 2005).
Naturally, some features in the image corners might be imaged only once. Using
my novel method, those lone features are now totally released in 3-D to match
their actual image projections, thus will not enforce correct distortion model
parametrization. To avoid lone features, I additionally take distant images.

Figure 3.16: Wrinkled paper calibration target size A3.



3.4. CAVEAT #1: ACCURACY OF THE CALIBRATION OBJECT 95

Calibration starts out by accurately detecting and locating corners in the
images using DLR CalDe (Strobl et al., 2005), with sub-pixel accuracy. Since
calibration will also estimate the target’s geometry, it is not necessary to pro-
vide accurate pattern dimensions—experiments in (Strobl and Hirzinger, 2008)
showed strong convergence in a similar scenario. However, the metallic plate
was initially meant to deliver ground-truth geometry, or rather to show the po-
tential precision in target geometry estimation, thus I do adopt accurate pattern
dimensions in that case (actual square size is 19.985×19.950 mm).

The optimization method in Eqs. (3.29) and (3.30) was implemented in
MATLAB R©; the lsqnonlin() Levenberg-Marquardt optimization function is
used, viz. in its large-scale variant. I choose to provide Jacobian patterns for
its sparse numerical implementation to keep computational costs low.

Joint optimization of camera and scene
Next I show the resulting camera parameters and scene structure as well as

the residuals after calibration both in image and in 3-D target coordinates.

Using an accurate, planar metallic target: Planar calibration targets
imprinted on metallic plates provide both structural stability and high planarity.
This is a best-case scenario to camera calibration, thus less profit is expected
from concurrent scene structure estimation.

In fact, both monocular and stereo joint intrinsic and full scene structure
estimations deliver almost identical camera parameters w.r.t. the standard ap-
proaches, cf. Tables 3.4 and 3.3. The reason is the very slight optimization
of the pattern structure achieved, see Fig. 3.19, in the region of a tenth of
a millimeter. The target optimization is mainly in its 2-D imprinted pattern
because, apparently, it is still subject to inaccurate printing errors similar to
off-the-shelf paper printers, see Fig. 3.18 (a). Fig. 3.19 (a) shows a planarity
correction in the order of a tenth over 200 mm—a very slight bending of the
plate.

A remarkable result is, however, the significant reduction both in image
and object reprojection residuals, see Figs. 3.17 and 3.18. Image reprojection
residual errors are measured by their Root Mean Square error (RMS). Never-
theless, these reductions result from calibration-related minimizations and their
potential effects in final accuracy still have to be experimentally verified, see
the results below.

Table 3.3: Estimated intrinsic parameters after standard (Std.) and simultaneous scene struc-
ture and monocular calibration (Full), using a precision target.

Lα Lβ Lu0 Lv0 Lk1 Lk2 RMS

Std. 724.58 723.93 372.44 272.17 −0.1960 0.0994 0.151

Full 724.50 723.69 371.92 271.08 −0.1955 0.0975 0.063
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Table 3.4: Estimated intrinsic parameters after standard (Std.) and simultaneous scene struc-
ture and stereo calibration (Full) for both cameras of the stereo camera, using a precision
target. Bottom: Resulting RMS reprojection error for both cameras after standard (Std.) and
novel (Full) calibration.

Left camera

Lα Lβ Lu0 Lv0 Lk1 Lk2 RMS

Std. 724.79 724.12 372.42 272.34 −0.1963 0.0995 0.155

Full 724.32 724.35 372.20 271.22 −0.1973 0.0993 0.078

Right camera

Rα Rβ Ru0 Rv0 Rk1 Rk2 RMS

Std. 728.31 728.01 391.73 270.35 −0.1962 0.1008 0.173

Full 727.85 728.40 391.55 269.23 −0.1982 0.1033 0.077

Both cameras

RMS

Std. 0.165

Full 0.077
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Figure 3.17: Magnified (100×) image reprojection errors for all 12 left cali-
bration images after std. camera calibration (a) and after full estimation (b),
using a precision pattern. RMS error reduces from 0.151 to 0.063 pixels.
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Figure 3.18: Perpendicular projection of magnified (100×) object reprojection errors for all
12 left calibration images after standard camera calibration (a) and after full estimation (b),
using a metallic precision pattern.
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Figure 3.19: Corrected feature positions ∆z (height), ∆y and ∆x (in 2-D) after joint intrinsic
and full scene structure estimation on the precision target. Corrections are consistent after
monocular and stereo approaches.
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Using an unknown, wrinkled paper target: Checkerboard patterns on
paper using off-the-shelf printers are the most convenient calibration targets
that still guarantee accuracy and repeatability in detection and localization of
their corner projections, through several images.17 Indeed, printed patterns are
the most used calibration targets worldwide (Mallon and Whelan, 2007; Strobl
et al., 2005). Researchers struggle to stick them on planar surfaces and, more
often than not, to measure up their dimensions. Eventually they get humid and
bumpy and need to be replaced.

For reasons of space I am addressing a worst-case scenario where the pattern
is not being measured after printing. I assume corner distances of 2 cm as in
the original PostScript R© file. On top of that, the paper target has a folding
mark in the middle so that it is clearly non-planar, see Fig. 3.16.

Standard camera calibration cannot deliver accurate results over this pat-
tern, see Tables 3.6 and 3.5. The image reprojection residuals after calibration
in Fig. 3.20 (a) are very high, owing to strong systematic errors in the object
model, see Fig. 3.21 (a). The proposed methods do compensate for these ob-
ject model errors, see Figs. 3.20 (b) and 3.21 (b), so that the intrinsic camera
parameters virtually match former results in Tables 3.4 and 3.3.18 The ob-
ject model optimization performed during calibration is depicted in Fig. 3.22.
The results correspond with the expected deformation showing unevenness of
approximately 6 mm.

A further drawback of using the standard method with this type of patterns
is that measuring its dimensions is difficult, as the pattern is delicate and easy
to deform. By using the novel method this step is rendered superfluous. In
the case of stereo calibration, the input of a single absolute distance between
two arbitrary pattern corners suffices, cf. Eq. (3.30). If hand-eye calibration is
additionally performed, the user can spare this last measurement.

Table 3.5: Intrinsics after standard (Std.) and simultaneous scene structure and monocular
calibration (Full), using an unknown, wrinkled paper.

Lα Lβ Lu0 Lv0 Lk1 Lk2 RMS

Std. 718.65 723.05 370.78 268.53 −0.2518 0.1721 2.105

Full 724.35 723.58 372.18 270.90 −0.1943 0.0946 0.069

17The only more convenient calibration target is unstructured scenery (self-calibration),
which does not, however, guarantee accurate and robust feature detection and localization.

18 In the case of stereo calibration, residuals do not quite reach the levels of the metallic
pattern, cf. Tables 3.4 and 3.6; if the paper was not folded but directly put on a table after
printing, results do match exactly, irrespective of natural paper bending. The difference can
be explained either by noisy detection of pattern features due to local shadows, or by stagnant
convergence of the nonlinear optimization. Either way, the validity of the parametrization is
not stated by the calibration RMS but by independent validation experiments as in the next
section.
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Table 3.6: Estimated intrinsic parameters after standard (Std.) and simultaneous scene struc-
ture and stereo calibration (Full) for both cameras of the stereo camera, using an unknown,
wrinkled paper target. Bottom: Resulting RMS reprojection error for both cameras after
standard (Std.) and novel (Full) calibration.

Left camera

Lα Lβ Lu0 Lv0 Lk1 Lk2 RMS

Std. 718.99 724.10 362.60 268.97 −0.2534 0.1706 2.180

Full 724.71 724.07 372.53 270.87 −0.1968 0.0971 0.111

Right camera

Rα Rβ Ru0 Rv0 Rk1 Rk2 RMS

Std. 719.64 724.71 393.26 271.03 −0.2050 0.0840 2.084

Full 728.18 728.08 391.74 268.89 −0.1981 0.1013 0.115

Both cameras

RMS

Std. 2.133

Full 0.113
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Figure 3.20: Magnified (10×) image reprojection errors for all 12 left calibration images after
std. camera calibration (a) and after full estimation (b), using a wrinkled paper pattern. RMS
error reduces from 2.105 to 0.069 pixels.
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Figure 3.21: Perpendicular projection of magnified (10×) object reprojection errors for all
12 left calibration images after standard camera calibration (a) and after full estimation (b),
using a wrinkled paper pattern.
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Figure 3.22: Corrected feature positions ∆z (height), ∆y and ∆x (in 2-D) after joint intrinsic
and full scene structure estimation on the paper target. Corrections are consistent after
monocular and stereo approaches.
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Accuracy evaluation

Next I show stereo triangulation results on image data independent from
calibration data; these results will be used to check calibration methods against
each other. I replicate the validation experiment in (Albarelli et al., 2010),
which measures the distance d between two rigid points in 3-D space, refer to
Fig. 3.23. The camera continuously moves in the direction of its optical axis.
In order to reach optimal feature localization accuracy, I take two particular
corner features in a checkerboard pattern that is standing perpendicular to the
camera motion.

dist.

Triangulation error Consistency of the distance
between features w.r.t. range

Figure 3.23: Validation by stereo vision: I measure the Euclidean distance d between two
features for different camera-to-feature ranges.

The features are located approximately d = 22 cm apart from each other.
The measured distance d is, however, irrelevant to my analysis as it ultimately
depends on the accuracy when measuring the pattern scale by hand during ca-
libration, which is naturally limited. A valid hint for calibration accuracy is,
however, the consistency of the distance estimation at different triangulation
ranges (Albarelli et al., 2010). Fig. 3.24 (a) shows that, both with and without
full scene structure estimation, the metallic plate-based stereo camera calibra-
tion delivers near-constant estimations that drift half a millimeter (out of 220
mm) from 0.3 to 1 m range. Paper target-based calibration causes a major
drift of 2 mm unless full structure estimation is performed—then results again
match the former.

Flawless stereo triangulation is of course impeded by inaccurate feature
detection and imperfect camera calibration—i.e., estimated ray directions will
not intersect. I choose the 3-D point i in the middle of the segment of minimum
distance between the left (camera L) and the right (camera R) stereo rays Ll
and Rr as the triangulation result for a particular feature, see the detail at the
right-hand side of Fig. 3.23. Mathematically, it can be represented as follows:

Li = L Ll+
N

2
Ln = R

(
LR̂

R

? Rr
)

+ Lt̂
R− N

2
Ln

/
Ln = Ll× LR̂

R

? Rr, L ∈ R, N ∈ R, R ∈ R . (3.32)
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Figure 3.24: Validation by stereo: (a) Distance d between rigid points and (b) mean value of
the triangulation error, w.r.t. camera range.

Eq. (3.32) forms a linear system of 3 equations and 3 unknowns L, N and R
that is solved by LU factorization. Similar to the consistency in distance estima-
tion in Fig. 3.24 (a), the minimum distance N between stereo reprojection rays
here also indicates calibration accuracy. Fig. 3.24 (b) shows its mean value for
both corner points w.r.t. camera range. For the metallic plate-based calibration,
stereo triangulation is performed with half a tenth of a millimeter triangulation
error at any distance tested. Scene structure estimation does slightly improve
consistency (9.9% error decrease). Results are clearer for the paper target-based
calibration, where triangulation errors increase to four tenths of a millimeter
at far range if the standard calibration method is used. If scene structure esti-
mation was performed, error levels shrink again to half a tenth of a millimeter
(72% error decrease), exactly as when using the metallic plate.19

It is worth noting that it is the estimated (̂ ) extrinsic rigid transforma-

tion between cameras LT̂
R

that is mainly responsible for the results presented
here. Unlike in the experiment presented in Ref. (Albarelli et al., 2010), in this
work the stereo transformation fully results from the full structure estimation
paradigm introduced above. Furthermore the examined range extends to 1 m.

I have also compared both, the standard and the proposed method, us-
ing dense stereo vision methods. Fig. 3.25 shows a carafe (viz. its disparity
reconstruction) as seen by the humanoid robot “Justin” (Borst et al., 2009)
using its stereo camera head (the DLR 3D-Modeler) and the SGM stereo vision
algorithm (Hirschmüller, 2008). The novel method presented in this section
allows for more complete results, particularly in untextured edges parallel to
the epipolar line.

19 More specifically: 7.8% worse than after full scene structure estimation using the metallic
plate, but then 3.4% better than standard calibration using the precision metallic pattern.
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Precision plate, before Precision plate, after

Figure 3.25: Validation by dense stereo vision (Hirschmüller, 2008): Standard stereo camera
calibration using a metallic precision plate delivers worse results (left) than when releasing
its pattern structure following the novel method presented in this section (right)—even if the
calibration pattern of the metallic precision plate had been very accurately measured before.

Discussion

At first the above results make for somewhat of a disappointment. If camera
calibration is dutifully performed, less extra accuracy is attained by simulta-
neous estimation of full scene structure.20 All things considered, however, it is
very difficult for most users to produce an exact calibration target and, on top
of that, it comes at no cost to calibration accuracy to perform simultaneous
intrinsic and full scene structure estimation as long as two slight limitations are
observed: First, to avoid gathering features in image corners with exclusive sup-
port; additional images are encouraged where the pattern is fully captured.21

Second, the calibration target has to remain static unless it is rigid material; it
is the camera and not the calibration target that should be shifted for grabbing
images.

The experiments above show that simultaneous intrinsic and full scene struc-
ture estimation should be performed in any situation where the calibration
target is expected to be nearly planar. Apart from delivering results at least
as accurate as from a flawless standard implementation, the method deskills

20The authors in (Albarelli et al., 2010) observe that, using their method on an accurate
planar target, scene structure is optimized prior to camera parameters since this minimizes
residuals faster—they cannot provide an explanation for that. My read of this phenomenon
is that, since it is only scene structure optimization that minimizes residual errors, camera
parameters do not significantly change. Standard, least squares optimization with abundant,
redundant data already compensated for the former structure inaccuracies, thereby delivering
optimal, accurate intrinsic parameters in the first place.

21 For that matter, it is widespread to only take this type of images during camera calibration
anyway; incidentally, this is a harmful habit to accurate calibration.
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the calibration procedure, thus prevents damage from pattern inaccuracies and
human mistakes. This is especially true in the case of printed paper patterns
or bigger targets (e.g. patterns projected by an overhead projector), which are
difficult to measure accurately. In view of the blatant similarity to bundle
adjustment—gold standard for structure from motion approaches, the current
methods have the potential to be considered gold standard for pinhole camera
calibration using planar targets.

3.4.5 Summary

In this section 3.4 I identified and addressed the problem of widespread inac-
curate knowledge of the 3-D geometry of the pattern imprinted on calibration
targets; this type of patterns are being predominantly used in the context of
camera calibration. I note that highly accurate knowledge of the dimensions
of the calibration pattern rarely exists, and furthermore that this violation has
negative effects on the proper estimation of the camera parameters.

Chessboard calibration patters are employed because the alleged homogene-
ity of their geometric structure allows for the user to extrapolate measured co-
ordinates still with high accuracy. The fact that off-the-shelf printers lack of
accuracy when scaling the pattern in both its main directions goes, however,
more often than not unnoticed. In addition, calibration patterns on paper may
provide a bumpy structure that is not in accordance with the standard camera
calibration method in Section 3.2, as users may fail to flatten the pattern on a
flat surface. What is more, a frightening large number of users skip over the
necessary step of accurately measuring the homogeneous chessboard pattern. I
show that these facts are the cause of significant calibration errors that will not
allow for useful computer vision algorithms as intended.

I also noticed the non-availability of appropriate methods in the literature
that address this topic. Still, an overview of the literature on camera calibra-
tion presents a tendency to decrease the complexity of the calibration object,
motivated by the fact that this deskills the calibration procedure. I elaborate
on this motivation and suggest that, in fact, this trend is appropriate, as less
complex objects prevent damage to the calibration due to metric inaccuracies.
Yet I take the matter further, easing requirements of knowledge of the metric
dimensions of the calibration pattern.

In the following, I presented two methods that intend to increase camera
calibration accuracy irrespective of the cooperation of the user, i.e., even in the
case of indolent users that do not pay attention to the validity of the calibration
object model. Incidentally, during final experiments I find out that the proposed
methods deliver higher accuracy even for meticulous users that do take the prior
step to accurately measure the imprinted pattern. As illustrated in Fig. 3.26, I
intend to bring all users to accuracy levels typical of meticulous users.



3.4. CAVEAT #1: ACCURACY OF THE CALIBRATION OBJECT 105

First, I bring forward a preliminary approach that accounts for printing
errors of off-the-shelf printers. It turns out that there exists a simple param-
eterization of the checkerboard pattern composed of its aspect ratio and its
absolute scale that, on the one hand, corresponds to the actual inaccuracies
resulting from regular printing equipment, and on the other allows for optimal
intrinsic and extrinsic calibration irrespective of their actual values. It becomes
clear that accurate intrinsic calibration is possible irrespective of the absolute
scale of the scene; more importantly, the aspect ratio of the calibration pat-
tern can be optimized at the same time during intrinsic camera calibration.
Consequently, in Eq. (3.25) I extend the formulation of the standard approach
in Section 3.2 with the aspect ratio of the pattern, and in Eq. (3.26) I do so
with the hand-eye calibration in Section 3.3. The algorithm was originalally
presented in (Strobl and Hirzinger, 2008), outperforming conventional methods
that require accurate knowledge of the pattern dimensions.

We then received feedback from the scientific community in (Albarelli et al.,
2010). Albarelli et al. note that significant, systematic pattern errors are
pervasive in calibration object patterns; regrettably, they fail to deliver an
optimal formulation to cope with that errors. In this section I revisited the
alternative that we proposed in (Strobl and Hirzinger, 2011); it optimizes the
full structure of the calibration object in a minimal way and does indeed lead
to better results than using either the standard or the preliminary approach
above. Simulations as well as experiments confirm this last claim.

It is worth noting that, as a by-product and in line with one of the main
topics of this thesis, I provide a more convenient, flexible algorithm that deskills
the camera calibration process leading to more effective perception systems,
refer to Section 1.1.
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Figure 3.26: By virtue of my experience with users of the calibration toolbox DLR CalDe and
DLR CalLab (Strobl et al., 2005), I picture the frequency of calibration attempts regarding
the rigor of the user when providing the calibration object model to the calibration algorithm.
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3.5 Caveat #2: Cameras with Narrow Angular Field
of View

3.5.1 Introduction

I furthermore consider the issue of calibrating a camera with narrow angular
field of view (AOV) using the standard camera calibration method in Sec-
tion 3.2. Many applications in robotics and beyond make use of cameras with
narrow AOV; these cameras either show a long focal length (e.g. laparoscopic
cameras or satellite cameras for docking maneuvers from distant rendezvous,
refer to Section B.2.3 within Appendix B) or cameras that are limited in their
field of view by application-specific obstacles (e.g. a car wheel in the context of
vision-based car wheel mounting in assembly lines, refer to Section B.2.6 within
Appendix B).

Perspective distortion in images is direct consequence of the use of pinhole
model-like cameras, see Section 2.2.1. Camera calibration as in Section 3.2
regularly uses the perspectivity distortion captured in the calibration images
to discern camera range and focal length. Camera range is sole responsible for
the perspective distortion shown in the images, whereas focal length merely
scales the whole image homogeneously. Regrettably, the narrower the AOV,
the more difficult it is to show perspective distortion in the calibration images,
see Fig. 3.27, hence standard camera calibration gets badly conditioned.

(b)

78 cm 6 cm

(a)

45 cm 5 cm

Figure 3.27: Camera projection of the corners of chessboard calibration patterns distant 32
cm, (a) perpendicular to the principal axis of the camera, and (b) distant 41 cm and tilted
37◦ w.r.t. the principal axis of the camera. Projections are shown for two different scaling
parameters α=β=482 (86◦×65◦) and α=β=4820 (9.5◦×7◦). Radial lens distortion is fixed
to a realistic value of k1 =0.155, and image size is 780×580. Of course, the sizes of the object
pattern differ for each projection. Corresponding points within each image are linked together
in order to show the very significant evidence on perspective distortion from oblique views
(b). The residuals in (a) are sole consequence of the static, radial lens distortion. At the top
both projections are separately depicted; in addition, two illustrations show the mentioned
vantage points with cameras mounted at the DLR Light-Weight Robot 3.
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From this, I propose an alternative method that compensates for the loss
in perspectivity by utilizing the pose readings of a robotic manipulator like
the Kuka KR 16 or the tracking system ARTtrack2. The proposed method
facilitates accurate pose estimation by nonlinear optimization, minimizing re-
projection errors and errors in the manipulator transformations at the same
time, similar to the hand-eye calibration method in Section 3.3. Accurate pose
estimation in turn enables accurate parametrization of a perspective camera.

3.5.2 State of the Art

The foundation pillars for standard, perspective camera calibration are:

a) appropriate definition of the camera and calibration object model,

b) successful initial estimation of its parameters,

c) availability of enough evidence on perspective distortion,

d) and finally the proper estimation of the scene structure.

Whenever one of these pillars is shaking, the accuracy of standard camera
calibration is compromised.

It is remarkable that the geometric model of ancient pinhole cameras still
holds for accurately describing the main functioning principle of a number of
modern cameras (a). An approach for accurate, simple parameter initialization
within this model (b) was proposed in (Zhang, 2000; Sturm and Maybank,
1999); this approach proved extremely useful, thus most successful. Strobl and
Hirzinger noted in (Strobl and Hirzinger, 2008, 2011) a predominant error source
for correct scene structure estimation (d) and brought forward an alternative
formulation. Now I focus on a critical aspect concerning the remaining pillar:
the requirement for satisfactory evidence on perspective distortion, in particular
in relation to the limited angular field of view (AOV) of some cameras.

Perspective distortion is direct consequence of the use of pinhole model-like
cameras. It describes the mapping of a 3-D scene onto its 2-D image and can be
roughly summed up by these two circumstances: close objects project bigger,
and differently distant objects may project onto the same region—i.e., range
gets lost. These circumstances are regularly used for camera calibration since
they help to discriminate between the Euclidean structure of both the scene
and the camera, and the camera magnifying characteristics themselves. The
images in Fig. 3.27 show different perspective distortion effects on images of a
planar pattern in relation to both the external orientation of the camera—(a)
against (b)—and different magnifying characteristics of its perspective camera
model—within each figure.

In this respect, I address the issue of calibrating a camera with very limited
AOV. It is difficult to gather enough evidence on perspective distortion with
that type of cameras, thus calibration accuracy gets compromised. Even though
the particularities of wide AOV have been often addressed (Brandt and Kan-
nala, 2006), to the best of my knowledge the issue in this paper has been left
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largely untreated in computer vision—apart from changing into affine camera
approximations.22 According to my experience on maintaining the camera ca-
libration toolbox DLR CalDe and DLR CalLab (Strobl et al., 2005), there is
less concern among the users about applying regular camera calibration me-
thods for camera systems with extremely narrow AOV.23 Of course, there exist
photogrammetric approaches to deal with this problem since it occurs very fre-
quently in that field; these methods and their required equipments (e.g. optical
collimators) are, however, rarely available outside photogrammetric labs.

What makes it all the worse are the numerous applications of narrow AOV
cameras, and what is more that these applications are mostly justified precisely
by the high accuracy that they are supposed to provide. A collection of ex-
amples: long focal length cameras for feedback control of robotic manipulators
in industry (e.g. laser beam welding), high-accuracy positioning by gazing at
landmarks in structured environments (Davison, 1999), foveal vision e.g. for
anthropomorphic research (F. Seara et al., 2003), manufacturing inspection in
intricate cavities, etc. In practice, it is largely only possible with this type of
cameras to further increase the already high accuracy of current robotic ma-
nipulators.

3.5.3 The Role of the Focal Length in the Pinhole Camera Mo-
del

The pinhole camera model is the main part of the projection model of most ca-
meras in computer vision applications. It represents the perspective projection
taking place when mapping the 3-D world scene onto the 2-D imaging plane
by rays of light passing through a (conceptual) point, the camera focal point
or focus. In reality, the imaging plane is usually instantiated by an electronic
imaging sensor like charge-coupled devices (CCD) or CMOS chips, and the fo-
cus of the camera is located at the aperture center of the frontal lens. Further
potential parts of the camera model are the digitization process, the lens dis-
tortion model, or the extrinsic rigid body transformation from the camera to
an external point, see Section 2.2.1.

The geometrical mapping of 3-D points 0p in the world/object reference
frame S0 onto their projections Mp̄u in the memory plane SM has been already
formulated mathematically in Eq. (3.5.3) as follows:

Mp̄u =

Mxu

Myu

1

 ∝
α γ u0

0 β v0

0 0 1


︸ ︷︷ ︸
A(3×3)

Cx

Cy

Cz

 = A(3×3) CT
0
(3×4)︸ ︷︷ ︸

P (3×4)


0x

0y

0z
1

 = P (3×4) 0p̄ ,

22 Affine camera models are tolerable approximations of perspective projection cameras
when the AOV and the relative variation of depth are small. Their models are linear (instead
of merely linear projective in the case of perspective models), thus allow for linear algebra
solutions (instead of nonlinear solutions). In addition, affine camera calibration is better
conditioned for narrow AOV. Still, affine camera models are very limiting approximations
(Hartley and Zisserman, 2004; Faugeras et al., 2001; Christy and Horaud, 1996).

23 Bad relative positioning choices between camera and calibration plate is reportedly the
other most common reason for erroneous camera calibration (Strobl et al., 2005).
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where P is the perspective projection matrix, which consists of the camera
intrinsic matrix A and the rigid body transformation CT

0 from the camera
frame SC to the object/world frame S0 at a particular imaging instant (time
and point-related indexes have been omitted for the sake of clarity). The matrix
A is in turn composed of the scaling parameters α and β, which are directly
proportional to the focal length, the skew parameter γ, which represents slight
skewness in the image plane coordinates, as well as the 2-D coordinates u0 and
v0, which locate the principal point in the image frame. The principal point is
supposed to be its closest point to the focal point—usually it is not (Willson
and Shafer, 1994).

This is the generally established formulation but other formulations exist as
well. In the past, the model was much more related to actual camera parameters
like the sizes of the picture elements in different directions, or to the focal
length (Tsai, 1987; Faugeras and Toscani, 1987). However, this does not pay
off for both calibration and utilization of regular cameras, and all-encompassing
parameters like α or β are currently preferred (Bouguet, 2002; Strobl et al.,
2005). Nonetheless, the user should bear in mind both their origin and nature.

The focal length is one of the main camera parameters that have to be taken
into account either in reconstruction, in order to extract information from the
image projection, or in acquisition, to determine both scene and camera relative
poses so that the user eventually obtains the desired image projection. In reality,
focal length defines the perpendicular distance between the focal point and
the image frame; for instance, the angular area of the projected scene reduces
when the focal length increases (paradoxically this is what we get to call image
amplification), which is due to the limited size of the sensor chip.

But strictly speaking, in the perspective distortion issue it is all about the
pose of the camera w.r.t. the scene, since it primarily defines the potential
perspective distortion that we can expect from the whole scene—whereas the
focal length relates to the AOV by narrowing or broadening it (thus determining
the absolute scale of the projection) but without modifying its appearance.
When one speaks of decreasing the perspective distortion by increasing the
focal length what actually occurs is either that the projected scene reduced to a
small section of the original one, without moving the camera nor the potential
perspective distortion, or that the camera departed from the scene and the
focal length had to be increased in order the same part of the original scene
to remain on camera—losing some perspective distortion all this way. In this
second case, increasing the focal length is just a by-product of the action of
moving the camera since else the imaging chip would get a huge viewing area,
wasting most of its valuable pixels for void space.24

24 Since A. Hitchcock’s Vertigo, filmmakers make an extensive use of this effect to provoke
a disquieting sensation, or the character’s reassessment of a situation.
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In the next sections both, the performance of camera-based estimations like
feature-based pose estimation, as well as the performance of standard camera
calibration, are to be discussed in relation to the AOV of the camera. The
simulation results mentioned in the next sections are strongly based on real
data—therefore the seemingly arbitrary choice of coordinates. In all simula-
tions, the poses of the camera w.r.t. the scene remain constant for every set of
images; this allows for fair comparisons regarding precision in pose estimation.
The focal length (and the size of the pattern) of course do vary. It is useful
to first clarify the relationship between AOV and the focal length, which is a
nonlinear one, see Fig. 3.28 (a).

In general, of course, the longer or shorter the focal length, the smaller or
bigger the AOV, respectively. The reduction of AOV in a couple of degrees
when it is already small, however, does take much bigger an increase in focal
length than it would take if the AOV were bigger. This is inconvenient e.g.
if it is required to represent simulation data w.r.t. the AOV (as we do here
for more natural and general reading), since uniformly distributed sampling
in focal length implies highly non-uniform distributions in AOV. This issue
is easily handled by uniformly distributing on the inverse of the focal length,
which almost linearly corresponds to the AOV, see Fig. 3.28 (b). In this work
all simulations are going to be performed on this distribution—yet represented
in AOV.

For the rest, customary camera parameters are used. It is worth mentioning
that the resolution is invariably set to moderate 780×580 pixels—this value is
relevant only in direct conjunction with the scaling parameters and the image
processing noise, which follows an homogeneous, 2-D zero-mean Gaussian dis-
tribution with standard deviation σ{x,y}= 0.4 pixels. This potentially maps to
many actual camera systems.
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Figure 3.28: (a) Relation of the AOV with the scaling parameter α = β, and (b) with its
inverse. Typical values for radial distortion have been considered.
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3.5.4 Erroneous Camera Model Utilization and Parametriza-
tion

One of the main points of this work is to assess the accuracy that we can really,
finally expect from vision-based algorithms in general. On the way to the final
application, the accuracy becomes compromised in several steps. It is indicated
to separately study these error sources in this section.

The following sequence of events is responsible for inaccurate vision-based
estimation in most computer vision applications that require calibrated came-
ras. Starting out from the calibration process: In the beginning was only image
processing noise when detecting features in images for calibration. Through
calibration we may get a parameterized camera model, but its values are erro-
neous to some extent, and what is more, even the model is only approximated.
Eventually, in final camera operation, both the erroneously estimated camera
model and additional image processing noise jointly affect the accuracy of the
final estimation adversely.

Reconstruction / Pose estimation

Image noise Calibration Erroneous parameters

Image noise Operation

Section 3.5.4-A.

Section 3.5.4-B.

Section 3.5.4-C.

Next the operation from noisy image processing (A.) is studied. Then I also
consider erroneous calibration from noisy image processing (B.). On the basis
of these latter results, I will extend the former initial results on noisy operation
taking also camera model parametrization errors into account (C.).

A. Image-based pose estimation from noisy image processing
In this section I present ordinary results on camera pose estimation from

known scenery on the pretentious assumption that both, the camera parametriza-
tion and its model, are totally accurate. The scenery corresponds to a perfectly
known planar chessboard pattern as used for camera calibration. The pro-
jections of the pattern are affected by homogeneous Gaussian noise as above
mentioned. The pose estimation algorithm is an optimal nonlinear optimization
process that minimizes the sum of squared reprojection errors of the calibration
pattern—the process is optimal provided that the estimation is initialized on
the convex area of the absolute minimum. This frugal example is in preparation
for more complex ones in the following.
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In Fig. 3.29 the pose estimation precision for different AOVs is shown; the
camera is at a fixed distance and perpendicular view to the plate. The curves
result from 7 AOV points, uniformly sampled on the inverse scaling parame-
ter space (or inverse focal length space). The data stem from a Monte Carlo
simulation consisting of 1000 pose estimation optimizations repeated with in-
dependent image noise, for each AOV. The images in Fig. 3.27 (a) correspond
to the horizontal extremes in Fig. 3.29, i.e., with the widest and the narrowest
AOVs.

The figure shows a considerable worsening of both, positioning and orien-
tation estimation precision, for small AOVs—even though the camera model
still holds perfectly. It was mentioned in Section 3.5.3 that it is the camera
pose that is responsible for perspective distortion in the images. Since planar
structure points from perpendicular images present similar distances, their im-
ages provide less variation in perspective distortion w.r.t. the camera pose (cf.
Fig. 3.27 (a)), which comes near by affine projection and ambiguities like the
Necker reversal. Therefore, pose estimation becomes bad conditioned. It is only
due to both, the known structure and the known camera scaling (focal length),
that at least the estimation of the range (absolute distance) is good conditioned
(see z in Fig. 3.29).
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Figure 3.29: Accuracy (90% error margin) in position and orientation estimations w.r.t. the
AOV, with camera range 32 cm and perpendicular view to the planar object. The estimation
biases are insignificant.

It is interesting to compare this simulation with the results when the camera
is tilted w.r.t. the calibration plate (Figs. 3.30 and 3.27 (b)). The perspective
distortion due to an inclination of 37◦ is more pronounced because different
ranges appear and differently distant parts project in different sizes, which
makes the relative pose estimation better conditioned. This is so heavily pro-
nounced that the accuracy becomes virtually independent of the actual focal
length. Furthermore, the known scaling parameter of the camera along with
the known structure of the pattern allow for accurate range estimation, thus
absolute pose estimation.

Hence it is alarming news that perpendicular views to planar objects are most
common both in final applications as well as during camera calibration.
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Figure 3.30: Positioning and orientation accuracy (90% error margin) w.r.t. the AOV, with ca-
mera range 41 cm and tilted 37◦ w.r.t. the perpendicular of the planar object. The estimation
biases are insignificant.

These results still represent the minimum errors that the user should expect.
Image processing errors rarely spread homogeneously in the image nor are clear
of outliers, and neither the pinhole camera model nor its parametrization com-
pletely hold but in simulations. It is also worth mentioning that, on occasions,
camera parametrization inaccuracies are implicitly assumed within the imaging
noise in normal operation (Lorch et al., 2002).

B. Erroneous camera model parametrization
Camera calibration is the process of estimating the parameters of a camera

model that is capable of adequately reflecting the operation of the actual camera
at hand, refer to Section 3.2. This section applies the most common algorithms
in computer vision for camera calibration for different AOVs (Bouguet, 2002;
Strobl et al., 2005). Noteworthy details are the following: The used camera
parametrization follows Ref. (Zhang, 2000), and the parameters initialization
is also performed by the algorithms detailed in Refs. (Zhang, 2000; Sturm and
Maybank, 1999). The algorithm requires a perfectly known calibration plate
(Strobl and Hirzinger, 2008, 2011) which confines the user to close- to mid-
range imaging. In a nutshell: The camera calibration process boils down to
optimally estimating the pinhole camera parameters (mainly the focal length)
by numerically minimizing image reprojection errors for several object views.
In intrinsic camera calibration, several views are required mainly for the pa-
rameters initialization stage, see (Zhang, 2000; Sturm and Maybank, 1999). In
extrinsic camera calibration, at least three views (specifically two rotation mo-
tions with nonparallel rotation axes) are required, see Section 3.3 and (Strobl
and Hirzinger, 2006). In addition, the central limit theorem requests a suffi-
ciently large amount of data—so does statistical optimality.

Both, the principal point location and the distortion parameters, are set to
fixed, realistic values and are not being estimated. This is because potential
variation of these parameters directly implies a motion of the camera frame;25

25 The translation of the principal point in a pinhole camera model primarily implies shifting
the origin of lens distortion (Weng et al., 1992; Willson and Shafer, 1994), secondarily a
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in turn, a motion of the camera frame SC implies drifts in the remaining in-
trinsic parameters—including the focal length. This interplay would cover up
the intrinsic weakness that I want to show in this section concerning the in-
terdependence of the focal length estimation and the estimation of the camera
poses in the presence of noisy image data and limited AOV. This adoption
fixing distortion parameters is realistic since they can—and on occasions even
should—be estimated in advance of pinhole camera model calibration (Dever-
nay and Faugeras, 2001). Furthermore, lens distortion is scarcely noticeable in
narrow AOV camera systems, cf. Fig. 3.27 (a). In addition to this, the ground-
truth camera model used in this study also lacks of skewness, and the relative
projection scaling α/β is enforced to unity (i.e., α,β). In this way, the only
remaining camera parameter is the focal length, which is the central parameter
of the pinhole camera model after all. These measures support the results on
calibration accuracy presented here since they make this study a best case sce-
nario for camera calibration, where fundamental weaknesses for general models
are to be clearly identified.

Next the statistical results from 150 intrinsic calibrations for each of the 7
different focal lengths/AOVs are presented. For each calibration, image noise
is independently generated for 12 convenient, different calibration images. In
Fig. 3.31 the focal length estimation results (in the form of the scaling parame-
ter) are compared to ground-truth. It can be seen that the estimation accuracy
of the focal length strongly depends on the AOV of the camera; it worsens for
narrow AOVs.
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Figure 3.31: Scaling parameter estimation error (90% error margin) w.r.t. the actual scaling
parameter α after 150 standard camera calibrations for each AOV.

Similar to the simulation above, the camera poses are also unknown and have
to be estimated. In Figs. 3.32 and 3.33 the accuracies of these extrinsic estima-
tions are depicted w.r.t. ground-truth for the two same images treated above,
perpendicular and tilted (which are included in the 12 images used for calibra-
tion). The positioning accuracy (in this case its range, i.e.,

√
Cx2+Cy2+Cz2)

worsens for narrower AOVs, similar to the above results in Fig. 3.29. However,
in the case of tilted views, the results are very different since now they also suf-

rotation of the camera frame SC, and third a slight displacement of SC (Tsai, 1987).
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fer from positioning inaccuracy, cf. Figs. 3.30 and 3.32. This was expected since
the (erroneous) focal length is responsible for the absolute scaling of images,
refer to Section 3.5.3.
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Figure 3.32: Range estimation error (90% error margin) after 150 standard camera calibrations
for each AOV (for the images with and without inclination).

In general, two reasons account for the inaccurate estimation of the scaling
parameter: On the one hand, a reduction of the AOV (without relocating the
camera) implies that a smaller area of the scene will be seen, and therefore that
there will be less evidence for accurate estimation—notwithstanding some more
precision in the 2-D measurements. As I mentioned in Section 3.5.3, this is not
because of any change in the potential perspectivity of the scene, but because
of the limited size of the imaging chip. However, the comparison above made it
clear that individual tilted images still contain perspectivity evidence for very
accurate camera pose estimation. Exactly the same in camera calibration, it
is the perspective distortion that differentiates camera range from focal length,
and therefore one would expect that camera calibration does a better job in
the estimation of the camera pose of tilted images, cf. Fig. 3.32. On the other
hand, during the camera calibration process the intrinsic camera parameters
are continously being shared between all calibration images. Erroneous pose
estimation by certain images (e.g. the perpendicular ones, see Fig. 3.29) will
spread to images with sufficient perspectivity information simply because they
share the focal length parameter. This point intensifies my conflict with per-
pendicular images mentioned above, even though perpendicular images may be
useful for reliable lens distortion estimation.

Fig. 3.33 shows that the accuracy of estimation of the camera orientation is
not affected by concurrent estimation of the focal length (cf. with Figs. 3.29 and
3.30). Fig. 3.34 shows extreme correlation between range and focal length es-
timations and no correlation between orientation and focal length estimations.
This is because the projective effects of camera rotations and focal length adap-
tion are clearly differentiated.

The results in Figs. 3.32 and 3.33 could also help to define a threshold
for the proper definition of a potential, subsequent hand-eye calibration as in
Section 3.3.
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Figure 3.33: Orientation estimation error (90% error margin) after 150 standard camera
calibrations for each AOV (for the images with and without inclin.).
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and orientation estimation errors for a typical calibration image.

But for all that, it is often not sensible to validate results in relation to the
estimation accuracy of particular parameters (for example, one may expect less
accuracy in long-range pose estimation than in short-range, which is perfectly
normal). In the next subsection the consequences of this issue in final camera
operation will be shown.

C. Image-based estimation from noisy image processing and erro-
neous models

After each calibration process it is convenient to be able to properly assess
the calibration results. The most common practice is to mention the RMS er-
ror in reprojection after intrinsic calibration. Whereas this is acceptable for
regular cameras with reasonable AOV, proper camera and object models, and
valid image processing and optimization processes, this practice is intrinsically
wrong. This is because during optimization it is explicitly rewarded to mini-
mize precisely that RMS error at expenses of the model parametrization. Two
evils come on scene: erroneous camera parameters and wrongful reprojection
residuals, thus wrongful assessment.
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Figure 3.35: Residual reprojection RMS error after standard calibration and further erroneous
reprojection, for each AOV.

In order to assess the model parametrization of the last section in final
operation, the following simulation was performed: For each of the calibration
results from the last section (i.e., 150 intrinsic calibrations for each of the 7
different AOVs), again 250 sets of simulated noisy points were generated for
all images, on the ground-truth projections at the ground-truth camera poses.
Only in this way the real parametrization errors emerge—as opposed to the
residuals after calibration—since the estimated camera poses are not a valid
outcome of the calibration process. For perfect model parametrization, this

RMS reprojection error should average the Gaussian image noise
√
σ2

x+σ2
y =

0.56 pixels, but Fig. 3.35 shows that this only happens for wide AOVs; for
narrow AOV the residuals fairly surpass that level.

Fig. 3.35 also shows the accuracy results when the 5 images with vantage
angles between the principal axis of the camera and the perpendicular to the
calibration plate lower than 15◦ are omitted from all calibrations. The remain-
ing 7 images do yield slightly more accurate results. However, it is inconvenient
to further omit tilted images since image processing performs worse with strong
perspective distortion. In general, it is very difficult to further improve in this
way.

A comparison between these results and the ones in Section 3.5.4-A. could
bring light into the question of whether and when is it really appropriate to
consider the calibration errors as an extra level of imaging noise during final
camera operation.
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3.5.5 Proposed Calibration Method: Joint Intrinsic and Hand-
Eye Estimations

Inspired by photogrammetric procedures but recasting them in the typical com-
puter vision scenario of robotics, I propose a calibration method that amends
the deficiencies shown in the last section; I propose the use of pose readings
of e.g. a robotic manipulator in order to support the intrinsic calibration of
a camera, being the camera mounted on its end-effector. The method should
be used in the case of images showing lack of perspectivity, i.e., narrow AOV
cameras, constrained camera placements (e.g. a deficient number of tilted im-
ages), or with visually impaired cameras like endoscopes. In addition, by doing
so the processes of intrinsic and extrinsic camera calibration merge and former
intrinsic inaccuracies do not harm the latter, potential extrinsic (hand-eye) ca-
libration anymore.

The pose readings of the kinematic chain of the manipulator are represented
by the rigid body motions BT̃

T
i between the base of the manipulator SB and

its end-effector (TCP) ST in different instants i / i∈N1, i≤N . Along with the
fixed (yet unknown) object-to-base 0T

B and hand-eye TT
C transformations,

they define the pose of the camera SC in S0: 0T̂
C
i = 0T̂

B
BT̃

T
i TT̂

C. The idea
suggests itself to directly include these extrinsic transformations in place of the
unknown poses of the camera, performing a common minimization of reprojec-
tion errors for estimation of the camera parameters as in Eqs. (3.3) and (3.4).
Even though this may result in lower RMS error after calibration, simulations
as in Section 3.5.4-C. show that this approach worsens the accuracy in the esti-
mations, see Fig. 3.36. Similar to the motivation of earlier work in (Strobl and
Hirzinger, 2006), I understand that optimal stochastic estimation by residuals
minimization can only be achieved if all significant error sources are minimized
(viz. according to their statistical distributions). By the inclusion of manipula-
tor readings that are naturally noisy, substantial deviations appear, and these
deviations are of similar effect than image noise.

An approach to optimal hand-eye calibration on noisy manipulator readings
was previously presented in (Strobl and Hirzinger, 2006) and Section 3.3; it
consists in a minimization of transformation errors of a robotic manipulator.
Translational and rotational errors (Otra and Orot) are considered separately,
but are minimized at the same time in relation to the precision characteristics
of the pose tracking system. Here I extend this formulation for simultaneous
intrinsic and extrinsic camera calibration by including reprojection errors in
the minimization; furthermore, the algorithm is able to automatically adapt its
weighting factors ?σx|y, ?σrot, and ?σtra according to the precision characteristics
of the system iteratively, see Section 3.3.4. The extended optimization problem
now reads:

{
TT

C, BT
0, α
}?

= arg min
TTC,BT 0, α

(
N∑
i=1

(Oim
i )2

?σ2
x|y

+
(Orot

i )2

?σ2
rot

+
(Otra

i )2

?σ2
tra

)
(3.33)

where Oim
i =

∑ni
p=1(ip∆

2
x+i

p∆
2
y) accumulates the ni square reprojection residuals

∆2
x+∆2

y in image i.
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Figure 3.36: Residual reprojection RMS error after calibration and further erroneous repro-
jection for intrinsic calibration supported by the robotic manipulator. The standard intrinsic
calibration results of Fig. 3.35 are overlaid.

Next the analogous simulation to Section 3.5.4-C. is performed. In addition,
noisy manipulator poses were generated over ground-truth manipulator poses
inspired by real calibration scenarios. The error was added to the pose of the
end-effector26 as follows: The angles θ of the angle-axis representation {θ,p}
of the added rotational errors follow a zero-mean Gaussian distribution with
σθ = 0.1◦ and their axes p are uniformly distributed, i.e., their azimuth and
elevation angles φ and ψ are φ∈ [−90◦, 90◦) according to the probability density
function pdf(φ) = 180−1 [◦]−1 and ψ ∈ [−90◦, 90◦) with pdf(ψ)∝ sin(ψ/90) [◦]−1.
The translational errors t also follow a zero-mean Gaussian distribution in range
with σt=0.5 mm and the directions are again uniformly distributed. These
relative precision levels are conservative and are readily surpassed by most
commercial robotic manipulators.

In Fig. 3.36 the results of the intrinsic calibration aided by the robotic
manipulator (constrained pose) are superimposed on the former results of the
standard intrinsic approach in Fig. 3.35 (unconstrained pose). The proposed
constrained approach is insensitive to the narrowness of the AOV
but reaches slightly worse intrinsic accuracy than optimal due to the noise
in the manipulator readings. This very low error level seems preferable to
the dangers of using affine camera models. The figure also shows the level of
narrowness at which this method should be preferred to standard perspective
camera calibration (∼ 25◦). For bigger AOV this positioning aid should not
be used. The figure also shows the accuracy reached by minimizing only RMS
reprojection errors, i.e., not considering errors in the manipulator readings; the
algorithm performs even worse than standard intrinsic camera calibration at
these positioning accuracy levels.

26 Translational residual errors at the end-effector ST are more realistic than at the base SB
because of the rigid base of manipulators; note that, for generality, the minimization algorithm
assumes translational errors both at SB and at ST. Orientational errors in SB and in ST are,
of course, equivalent.
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3.5.6 Summary

This section 3.5 considers the issue of camera calibration for computer vision
applications with the particularity of narrow angular fields of view. I reveal de-
ficiencies not in the validity of the pinhole camera model, but in the ability of
standard camera calibration algorithms to accurately parameterize it. Narrow
angular fields of view make it difficult to obtain the required evidence on per-
spectivity in images; this compromises algorithms that rely on this evidence and
furthermore consider several images at the same time, like camera calibration.

I start out with an overview on camera calibration for computer vision ap-
plications. This justifies clearly why there is need to address this problem.
Crucially, a significant number of major application areas are listed. Next, I
descriptively explain the roles of focal length and camera pose for the achieve-
ment of perspectivity richness in images. I also demonstrate the consequences
of critical evidence on perspectivity for exemplary computer vision applications
as well as for standard camera calibration, and I lay emphasis on the detrimen-
tal effects for image-based estimation of images taken perpendicular to planar
objects.

Since perspective distortion is primarily defined by the pose of the camera,
it will be difficult for any algorithm to accurately discern pose on the basis of
insufficient evidence on perspectivity; the same holds for pose and focal length
estimation, i.e., standard camera calibration. For this reason I propose an al-
ternative method that uses positioning information from a robotic manipulator
in order to support intrinsic camera calibration. Experiments show that the
direct insertion of this extrinsic information in the optimization problem, still
by minimizing reprojection residuals only, does not support intrinsic camera
calibration but compromises it. This is due to the naturally noisy readings of
the robotic manipulator. I introduce a novel method that optimizes the intrin-
sic and extrinsic parameters by the minimization of a hybrid residual term; it
consists of translational and rotational errors in the kinematic transformation
of the robot as well as image reprojection errors. This method extends my
former work on accurate hand-eye calibration in (Strobl and Hirzinger, 2006).

Concluding, accuracy assessments compare this formulation with current
intrinsic camera calibration approaches, and prove its better performance for
narrow angular fields of view.

This section was adapted from the original publication in (Strobl et al.,
2009b).
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3.6 Calibration of the DLR Laser Stripe Profiler

3.6.1 Introduction

As introduced in Section 2.2.2, the DLR Laser Stripe Profiler (LSP) is a hy-
brid sensor halfway between the stereo camera introduced in Section 2.2.1 and
the pure range sensor DLR Laser Range Scanner (LRS) in Section 2.2.3. As
explained in Section 2.2.2, I opt to explicitly keep the camera model in Sec-
tion 2.2.1 within the model of the LSP; this detailed layout of the geometry
of the sensor will help us to increase accuracy during calibration as well as to
simplify operation in Section 4.3.

As a consequence of the abovementioned, the calibration of the LSP bases
on the calibration of the stereo camera as explained in Section 3.2—the latter
calibration remains, however, unaltered as it is not influenced by the results of
the LSP calibration. Having the stereo camera accurately calibrated, the only
remaining parameters to fully parameterize the LSP model in Eq. (2.36) is the
pose of the laser plane w.r.t. the camera reference frame SC in Eq. (2.35), which
solely features 3 DoF.

3.6.2 State of the Art

This type of structured light sensors have been historically calibrated using
precision calibration targets, or rather the precise positioning of these targets
w.r.t. the imaging camera (Chen and Kak, 1987; Khadraoui et al., 1996; DePiero
and Trivedi, 1996; Reid, 1996). If the scene structure is precisely known, it is
easy to identify these world points with their projected counterpart points on
the image, and then, out of these correspondences, reconstruct the relative pose
of the laser plane. Nonetheless, it is expensive to build such reference artifacts
and, what is more, potential errors committed during their construction cannot
be eventually considered neither in the LSP calibration results nor in eventual
measurement error estimations. Similar limitations apply in the case of precisely
tracked calibration targets (in pose).

Other approaches rely on known features within calibration objects (McIvor,
1999; Wang et al., 2001); the calibration object has to be shifted w.r.t. the sensor
(McIvor, 2002). Neither fiducial marks because of their problematic perspective
projection, nor corner features because these are a chronic problem for trian-
gulation based on structured light projectors (Curless and Levoy, 1995), seem
to be appropriate for a calibration stage. The use of laser peak-detection algo-
rithms to calculate illuminated coordinates is more convenient (Trucco et al.,
1998). Alternatively, other approaches use stereo vision for locating the stripes
in the scene (Taylor et al., 2002); these may not suffer from the abovementioned
problems, but they do strongly rely on the accuracy of both camera calibrations
and their relative calibration obtained in advance.

One option in order to avoid very precise calibration objects and calibration
methods is to include a calibration refining method after an inaccurate attempt
of the former methods. Jokinen in (Jokinen, 1999) brings forward a formulation
to refine inaccurate calibrations by matching multiple 3-D profile maps.
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Another option to avoid expensive and inconvenient calibration procedures
is to devise a novel calibration algorithm that works without precise calibration
objects or precise pose tracking in the first place. Inspired by the self-calibration
method in (Jokinen, 1999), in (Strobl et al., 2004) I proposed a novel method
for laser plane self-calibration based on the assessment of the deformations due
to miscalibration of the laser plane. The proposed method allows for rapid,
accurate calibration of the laser plane on the sole basis of an unknown, planar
surface.

3.6.3 Laser Plane Calibration

Laser plane calibration is the process of determining the relative pose of the
laser plane w.r.t. SC (or ST). Eventual operation of the LSP in Section 4.3
is extremely sensitive to miscalibration leading to misalignments and warpage
effects in scanned surfaces.

I propose a novel method for laser plane self-calibration based on the as-
sessment of the deformations the miscalibration leads to. In (Jokinen, 1999),
Jokinen’s calibration approach focuses on matching maps, searching for shape
correspondences—the method is based on previous research in registration al-
gorithms. Here I propose a method that focuses on correcting the resulting
maps, rather than on matching them, reaching in this way a much simpler and
swifter formulation. Moreover, this method does not require any complicated
calibration target but a planar surface.

When locating the laser plane, i.e., estimating the parameters Tn and Td of
the Hessian normal form of the plane in Eq. (2.35), there are three independent
DoF to be identified. Here the spherical-polar coordinates in SC are used for
orientation: the angles roll Cα and pitch Cβ, and there is the minimum distance

Cd between the laser plane and SC. I bring these three parameters together
in CΩ = {Cα, Cβ, Cd}. For any roughly estimated (̂ ) laser plane pose CΩ̂,
estimation errors Cεα, Cεβ, and Cεd occur. These errors eventually cause defor-
mations in the estimated surface for every scanning motion of the hand-guided
DLR 3D-Modeler. These deformations range from simple scaling errors (typi-
cally when having high Cεd ) to convex/concave, warped deformations (typically
when having high Cεβ, cf. Fig. 3.37), or even irregularly warped results (both
with high Cεα and with a mixture of them all).

The proposed self-calibration method is as follows: The reconstruction pro-
cess in Section 4.3 runs with some a priori laser plane calibration parameters

CΩ̂initial, which have been roughly estimated in advance. The proposed method
exploits the distortions caused in the reconstruction process when scanning sur-
faces. As calibration surface I use a plane of unknown pose, both in order to
avoid the construction of a complex calibration target and due to the fact that a
plane has the geometrical shape that can be straightened out in the easiest way.

In the process, all N measured (̃ ) sensor poses 0T̃
Ti

, ∀i∈N1, i≤N , are stored

in Υ, and two image points nearby the ends of every stripes Mp
{left,right}
i are

stored in Φ for every image i. Both, poses Υ and image projections Φ, yield 2N

3-D points 0p̂
{left,right}
i in the world frame S0 that also depend on the pose CΩ̂
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of the laser plane w.r.t. SC following Eq. (2.37). The reconstructed pointcloud
shows unevenness when scanning from very different points of view. Subse-

quently, the best fitting calibration target plane for these points 0p̂
{left,right}
i is

estimated in closed form by Singular Value Decomposition (SVD) because it is
an overdetermined problem. The calibration plane can be parameterized by its
normal vector 0n̂∠ w.r.t. the origin of S0 as well as its minimum distance 0d̂∠
to it. Finally, optimal (?) laser plane parameters CΩ̂? are estimated off-line by
optimization: the goal is to minimize the mean squared distance σ2

∠ of every

3-D reconstructed point 0p̂
{left,right}
i to the best fitting calibration plane. This

can be mathematically expressed as:

CΩ̂? = arg min
CΩ̂

σ2
∠

(
Υ, Φ, CΩ̂

)
, (3.34)

σ2
∠ =

2N∑
i=1

(
0d̂∠ − 0n̂

T
∠ 0p̂

{left,right}
i

)2
. (3.35)

The Nelder-Mead Simplex method for numerical optimization was chosen
(Nelder and Mead, 1965). To recapitulate, the laser plane parameters CΩ̂ are
adapted in such a way that, in the end, the scanned surface becomes as flat as
possible, see Fig. 3.37.
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Figure 3.37: Reconstruction consequences of miscalibration of the laser pitch orientation.
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Fig. 3.38 shows the 2-D cost matrix representing, in the ordinate axis, the
achieved flatness σ2

∠ of the reconstructed plane, and in the abscissas axes dif-
ferent laser plane orientations Cα and Cβ (the third parameter of CΩ, the
minimum distance Cd of the laser plane w.r.t. ST, has been fixed to its opti-
mum value Cdc for the sake of clarity). Indeed, CΩc ={Cαc, Cβc, Cdc} are the
actual laser pose parameters. The figure shows the robustness of the method
for any reasonable CΩ̂initial, provided the laser plane intersects the image rays
in the camera view direction. It is worth noting that for distances Cd̂ 6=Cdc the
optimal orientation parameters Cα̂? and Cβ̂? do vary slightly from the actual
ones Cαc and Cβc (particularly Cβ̂?). This is due to the fact that a variation
in Cβ̂? compensates for an erroneous Cd̂ e.g. when scanning with constant ori-
entation and distance of the profiler w.r.t. the calibration plane. Owing to the
very different poses made during the calibration process, this does not yield
any problem for the optimization algorithm, and this compensation mechanism
does not get the flatness (lower σ2

∠) that the actual parameters do.
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Figure 3.38: Flatness deviation of the reconstructed plane with Cd=Cdc.

3.6.4 Experiments

In order to show the importance of the accuracy of the laser plane calibration
process, as well as to get an idea of the actual precision after calibrating the
laser plane with the method presented in Section 3.6.3, I next present an ty-
pical scanning result that clearly shows reconstruction errors by miscalibrated
systems.

Fig. 3.39 shows two pointclouds focused orthogonally to one of the corners
of a small cardboard box. Each pointcloud consists of three scans over the card-
board box: the first time the cardbox was scanned orthogonally to its top (1),
the second time orthogonally to a side (2), and the third time orthogonally to
the corner edge and in the direction of the bisector of the angle formed between
these two sides (3). This particular procedure facilitates the assessment of the
reconstruction errors if represented orthogonally to the corner of the cardbox.
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Fig. 3.39 (a) shows the profile under correct calibration results following the
calibration procedure in Section 3.6.3. The profiler exhibits a precision in sub-
millimeter domain. Fig. 3.39 (b) shows the effect of slightly modified laser plane
parameters to the latter—the laser plane pose has been given erroneously with
εβ = 1◦. Misalignments and warpage appear for this small calibration error.
This result gives an idea of both, the achieved calibration accuracy and its
precision.

(a) (b)

7 
cm

(2)

(3) (1)

Figure 3.39: Two sides of a cardboard box scanned with optimized (a) and slightly erroneous
(b) laser plane calibration parameters CΩ.

3.6.5 Summary

In this section 3.6 I propose a novel calibration method for the DLR Laser Stripe
Profiler (LSP). The proposed method takes place after regular intrinsic and
extrinsic calibration of the stereo camera of the DLR 3D-Modeler as explained
in Sections 3.2 and 3.3. Consequently, only 3 DoF of the pose of the laser plane
w.r.t. the stereo camera remain to be estimated.

Instead of using precision calibration targets of precise positioning of the
calibration target and the laser plane, I opt for a self-calibration approach that
proceeds by correcting deformations caused by miscalibration of the laser plane.
The chosen calibration object is a planar surface of unknown pose. The proce-
dure is highly unlabored and yields very accurate results: it consists in scanning
the planar surface with adequate scan motions and refining the parameters of
the laser plane by flattening the resulting 3-D pointcloud representing the cali-
bration plane.

This section was adapted from the original publication in (Strobl et al.,
2004).
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3.7 Calibration of the DLR Laser Range Scanner

3.7.1 Introduction

As stated in Section 2.2.3, the DLR Laser Range Scanner (LRS) sensor is sim-
ilar to the above-addressed LSP sensor. On second sight, however, the sensor
features particularities that affect both, their calibration process as well as the
geometric information that eventually will be obtained during operation in Sec-
tion 4.4.

In this work I leave the intrinsic calibration of the inner components of the
LRS aside; in this respect the reader can refer to original work in (Hacker et al.,
1997; Kielhöfer, 2003).

3.7.2 Calibration of the Origin of the Rotatory Laser Beam

In line with the rationale in the last section 3.6.3, I categorically refuse to
use precision targets for the extrinsic calibration of the LRS. In (Suppa and
Hirzinger, 2004) the authors use a small sphere of known radius to calibrate
the LRS; even though the method did deliver accurate results, it was decided
to implement a novel method inspired by the above method in Section 3.6.3 for
the sake of convenience.

The same calibration procedure explained in the last section holds: a planar
surface is scanned with adequate scan motions and the model parameters of
the LRS are refined by flattening the resulting 3-D pointcloud representing the
calibration plane. A crucial difference is, however, the number of parameters
required to parameterize the model of the LRS. As explained in Section 3.6.3,
the calibration of the LSP was supported by the previous calibration of the
stereo camera in Section 3.2. As a consequence, the reference frame for the
LSP model could be fixed at the camera reference frame, i.e., SLSP , SC, so
that the sole remaining parameters to be estimated are the 3 DoF of the pose
of the laser plane w.r.t. SC. In the case of the LRS, however, the stereo camera
does not form part of the range sensor and cannot be used. Instead, the LRS
features its own reference frame SLRS, see Fig. 3.40. Consequently, 6 DoF of
the pose of the LRS (instead of 3 DoF previously) have to be estimated out of
the very same calibration data as in Section 3.6.3.

As a consequence of the abovementioned extension of sensor parameters to
be estimated during optimization, the success of the calibration procedure of
the LRS becomes more sensitive to the completeness of the dataset than in the
case of the LSP. In the case of complete datasets deaturing all distinct motions
explained in Section 3.6.3, the original optimization equations in Eqs. (3.34)
and (3.35) can be directly adopted. The 6 DoF of the optimal (?) pose LRSΩ̂?=

TT̂
LRS of the LRS w.r.t. the TCP reference frame ST is estimated as follows:

LRSΩ̂? = arg min
LRSΩ̂

σ2
∠

(
Υ, Ψ, LRSΩ̂

)
(3.36)

where

σ2
∠ =

2N∑
i=1

(
0d̂∠ − 0n̂

T
∠ 0p̂

{left,right}
i

)2
. (3.37)
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Figure 3.40: The reference frame of the LRS SLRS and the reference frame of the TCP ST.

The 3-D data 0p̂
{left,right}
i stem from 3-D range measurements LRSp̃

{left,right}
i in

the LRS reference frame SLRS, viz. two measurements within every ith measu-

rement cycle, along with the rigid body transformations 0T̃
T

and TT̂
LRS

so that

0p̂
{left,right}
i =0T̃

T
TT̂

LRS
LRSp̃

{left,right}
i . The parameter Ψ in Eq. (3.36) comprises

all these local range measurements LRSp̃
{left,right}
i ∀i∈N1, i≤N . The parameter

Υ gathers all N measured (̃ ) sensor poses 0T̃
Ti , ∀i∈N1, i≤N . σ∠ represents

the mean squaared fistance of every 3-D reconstructed point 0p̂
{left,right}
i to the

best fitting calibration plane.

In cases of incomplete datasets where one or more required motions could
not be performed, the optimization might not be well-defined due to the higher
number of DoF to be estimated. The following optimization constraints the
problem promoting its robustness:

LRSΩ̂? = arg min
LRSΩ̂

σ2
⊥

(
Υ, Ψ, LRSΩ̂

)
(3.38)

where

σ2
⊥ =

2N∑
i=1

(
0d̂⊥ − 0z

T
0p̂
{left,right}
i

)2
. (3.39)

Here it is not the flatness of the resulting pointcloud that is being minimized
but σ⊥ represents the height variation in 0z of the resulting pointcloud, i.e., the
former pointcloud flatness σ∠ when 0n̂∠,0z. This is on the condition that the
calibration target is horizontal w.r.t. S0, which now conveys precise extrinsic
information of the calibration scene. This fact is, however, easy to achieve as
the user can readily make sure that the calibration target is level in S0.
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3.7.3 Summary

In this section 3.7 I present a novel method for calibration of the DLR Laser
Range Scanner (LRS) that was introduced in order to simplify the calibration
procedure compared to the former method in (Suppa and Hirzinger, 2004). The
proposed method is in line with Section 3.6 but has been adapted in accordance
with the nature of the problem:

• Unlike in the case of the LSP, the stereo camera does not take part of
the LRS sensor. Consequently, the location of the LRS reference frame
SLRS (3 DoF) has to be estimated along with the orientation of the LRS
(3 Dof). The total number of 6 DoF compromises optimal estimation
if the dataset is deficient. The modification of the residual function in
Eqs. (3.37) and (3.39) provides a more robust formulation to this end.

• The LRS provides full 3-D range measurements instead of mere 2-D di-
rections in the case of the uncalibrated LSP. Consequently, local measure-

ments LRSp̃
{left,right}
i do not require laser plane triangulation on estimated

laser plane parameters, which in turn further robustifies my approach.

The proposed self-calibration method proceeds by correcting deformations
caused by miscalibration of the 6 DoF pose of the LRS. The chosen calibration
object is a planar surface of unknown pose; if Eqs. (3.38) and (3.39) are used,
the planar surface has to be leveled w.r.t. the 0x−0y plane of S0. The procedure
is highly unlabored and yields very accurate results: it consists in scanning the
planar surface with adequate scan motions and refining the pose parameters of
the LRS by flattening the resulting 3-D pointcloud representing the calibration
plane.
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3.8 Calibration of the Inertial Measurement Unit

The inertial measurement unit (IMU) is a complex sensor with numerous com-
ponents, viz. linear accelerometers, gyroscopes, and magnetometers—refer to
Section 2.2.4.

The intrinsic calibration of the geometry of IMUs is normally performed
at the manufacturing company. Additionally, a valid model of their biases and
noises is provided. More often than not IMUs are packaged with electronics that
autonomously compensate for that biases e.g. on the basis of the magnetometer
readings. In our case, the DLR 3D-Modeler features the AscTec AutoPilot IMU;
its manufacturer Ascending Technologies GmbH already provided an accurate
intrinsic calibration as well as electronic compensation of intrinsic biases.

The only remaining parameters for direct usage of the IMU readings are
the extrinsic pose of the IMU reference frame SIMU w.r.t. the TCP reference
frame ST. As explained in Section 2.2.4, visual pose tracking in Chapter 5 will
only make use of differential rotational readings of the IMU, so that the only
required transformation is the relative orientation CR

IMU betwenn SIMU and
SC. Luckily, it is easy to rigidly mount the IMU aligned w.r.t. the TCP frame
ST so that

TR̂
IMU = I(3) ⇒ CR̂

IMU = CR̂
T (3.40)

holds and can be eventually substituted in Eq. (2.50).
It is worth noting that the fact that the pose tracking algorithm following

Section 5.4.2 does not require any translational readings of the IMU is hugely
useful to decrease the calibration complexity of the whole DLR 3D-Modeler
and avoid human calibration mistakes at that, as explained in Section 1.5.2. A
parallel investigation by my colleagues in (Fleps et al., 2011) clearly illustrates
the inconvenience of the translational extrinsic calibration of IMUs.
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3.9 Extrinsic Recalibration of Sensor Components

The statement in this section is perhaps an obvious one to the attentive reader.
It is, however, an extremely useful one in the context of the calibration of
the component sensors of the DLR 3D-Modeler, hence may I lay stress on the
following.

In Section 2.3 a series of pose tracking devices has been listed. Some pose
tracking devices are more convenient to particular applications than others.
In the end, the optimal pose tracking device to be attached to the DLR 3D-
Modeler largely becomes an application-dependent decision. Being the DLR
3D-Modeler a device with a multitude of sensors, the estimated (̂ ) transfor-
mations of all these sensors w.r.t. the TCP of the chosen tracking system (e.g.

TT̂
C, TT̂

LSP, TT̂
LRS, TT̂

IMU, etc.) are all required for dutiful representation
of 3-D data e.g. in the world reference frame S0.

It is worth noting that, if the sensor components of the DLR 3D-Modeler
were already extrinsically calibrated w.r.t. a particular pose tracking device
#1, the following transformations T1T̂

C, T1T̂
LSP, T1T̂

LRS, and T1T̂
IMU w.r.t.

its TCP frame ST1 are indeed accurately known; it then holds:

0p1 = 0T̃
T1

T1T̂
C

Cp1

0p2 = 0T̃
T1

T1T̂
LSP

LSPp2

0p3 = 0T̃
T1

T1T̂
LRS

LRSp3

0p4 = 0T̃
T1

T1T̂
IMU

IMUp4 (3.41)

where 0T̃
T1 are pose readings from the acquainted pose tracking device #1 and

Cp1, LSPp2, LRSp3, and IMUp4 are local range data in their respective reference
frames, in homogeneous (̄ ) coordinates.

In the case of a new pose tracking device #2 with TCP reference frame ST2

that was not calibrated w.r.t. the sensor components of the DLR 3D-Modeler,
it similarly holds:

0p1 = 0T̃
T2

T2T̂
C

Cp1

0p2 = 0T̃
T2

T2T̂
LSP

LSPp2

0p3 = 0T̃
T2

T2T̂
LRS

LRSp3

0p4 = 0T̃
T2

T2T̂
IMU

IMUp4 (3.42)

where T2T̂
C, T2T̂

LSP, T2T̂
LRS, and T2T̂

IMU are unknown rigid body transfor-
mations still to be estimated, see Fig. 3.41.

Note, however, that

T2T̂
C = T2T̂

T1
T1T̂

C

T2T̂
LSP = T2T̂

T1
T1T̂

LSP

T2T̂
LRS = T2T̂

T1
T1T̂

LRS

T2T̂
IMU = T2T̂

T1
T1T̂

IMU (3.43)
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Figure 3.41: The rigid body transformations between the sensor reference frames SC, SLSP
and SLRS and the original TCP reference frame ST1 were known; now a second reference
frame ST2 fixed to the Kuka KR 16 is used so that all former reference frames have to be
referenced to it.

because the component sensors are rigidly attached to each other, thus the laws
of rigid body motion hold. Consequently:

0p1 = 0T̃
T2

T2T̂
T1

T1T̂
C

Cp1

0p2 = 0T̃
T2

T2T̂
T1

T1T̂
LSP

LSPp2

0p3 = 0T̃
T2

T2T̂
T1

T1T̂
LRS

LRSp3

0p4 = 0T̃
T2

T2T̂
T1

T1T̂
IMU

IMUp4 (3.44)

where the only unknown transformation is T2T̂
T1. It is easy and fast to es-

timate the latter transformation e.g. out of a sole additional extrinsic camera
calibration w.r.t. the newer pose tracking device #2, i.e., w.r.t. the reference
frame ST2, leading to T2T̂

C (refer to Section 3.3). Eventually:

T2T̂
T1 = T2T̂

C
(

T1T̂
C
)−1

(3.45)
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and all transformations on the left-hand side in Eqs. (3.43) can be recalculated
by homogeneous matrix multiplication.

It is worth noting that, if it is the camera that is being recalibrated w.r.t.
the pose tracking device #2, it is crucial to fix the intrinsic parameters of the
camera to the former ones during the intrinsic camera calibration step required
for eventual hand-eye calibration. In the contrary, the principal point of the
camera may shift, which translates into a different camera reference frame SC,
refer to (Tsai, 1987), so that the above Eqs. (3.43) do not hold anymore.

This approach is, of course, much faster than performing separate extrinsic
calibration for all sensor components of the DLR 3D-Modeler when mounting
it on a newer pose tracking device.

3.10 Summary

Based upon the sensor models presented in the last chapter 2 and in line with
the good practice guidelines in chapter 1, in this chapter 3 I presented a number
of novel methods to accurately and easily calibrate all sensor components of the
DLR 3D-Modeler.

Starting out, I motivate the development of accurate and yet simple ca-
libration methods. First, sound methods are required that minimize actual
residual errors according with the system models for the sake of statistical opti-
mality. Second, the user ought to choose an appropriate sensor model in order
to avoid overparametrization—the calibration method can support the user at
that. Third, a simple calibration method that reduces requirements e.g. on the
calibration object should be preferred as it avoids human mistakes otherwise
bound to occur. Last, great care should be taken to provide valid calibration
data that contain enough evidence for the calibration method to be able to infer
the correct parametrization.

In Section 3.2 I cope with the intrinsic calibration of the main sensor of
the DLR 3D-Modeler: the stereo camera. Digital cameras are the principal
perception systems in many areas like computer vision for robotic applications,
hence convenient models and methods already exist that indeed should be used.
Most academic users, however, find it difficult to obtain adequate software that
implements these methods. For this reason I developed the calibration software
DLR CalLab that implements the abovementioned methods (among others)
and is freely distributed among academia. The software is main part of the
well-known calibration toolbox DLR CalDe and DLR CalLab; the interested
reader can find its documentation in Appendix C.

Most camera measurements have to be represented in general reference sys-
tems beyond the camera reference frame SC e.g. for robots to steer for measured
items (the most significant exception being visual servoing). When transferring
local data in SC into the world reference frame S0 e.g. by using a robotic manip-
ulator, the static pose of the camera w.r.t. the end-effector (or tool center point)
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of the manipulator CT
T is required. External camera calibration or hand-eye

calibration aims precisely at that transformation. When implementing former
hand-eye calibration methods, however, I astonished at their lack of statistical
soundness when identifying the appropriate residuals for optimization by non-
linear minimization. Hence I devised a novel hand-eye calibration method that
minimizes Euclidean transformation errors of the robotic manipulator for sta-
tistically optimal estimation, decoupling this process from the former intrinsic
camera calibration method, see Section 3.3. Ever since its original presenta-
tion in (Strobl and Hirzinger, 2006), the method very much became standard
in academia and industry and it has been included in the calibration toolbox
DLR CalDe and DLR CalLab (Strobl et al., 2005).

Besides, I identified two major shortcomings of both, the standard ca-
mera calibration method presented in (Zhang, 2000; Sturm and Maybank, 1999)
as well as of my own method for hand-eye calibration in Section 3.3. On the
one hand, both methods demand accurate geometrical knowledge of the cali-
bration object (viz. a planar, precision checkerboard target). In Section 3.4
I note that it is very difficult for off-the-shelf printers to achieve the required
accuracy and that most users fail to accurately measure the resulting patterns
by hand. I provide two alternative methods that yield optimal parametrization
of the camera and of its pose w.r.t. an external pose tracking system irrespec-
tive of the actual dimensions of the calibration target (Strobl and Hirzinger,
2008, 2011). On the other hand, I became aware of the unsuitability of the
standard methods for intrinsic and extrinsic camera calibration in the case of
cameras with narrow angular field of view; consequently, in Section 3.5 I bring
forward an alternative method merging standard camera calibration in (Zhang,
2000; Sturm and Maybank, 1999) with standard hand-eye extrinsic calibration
in (Strobl and Hirzinger, 2006), which improves calibration performance in the
case of cameras featuring narrow angular field of view.

In Section 3.6 I address the calibration of the light stripe profiler (LSP) of
the DLR 3D-Modeler. Again, calibration methods relying on precision, complex
hardware are avoided by devising a novel method that leverages the prior,
accurate intrinsic and extrinsic calibrations of the stereo camera of the DLR
3D-Modeler (Strobl et al., 2004). As a consequence, only 3 DoF are left for
calibration, viz. the pose of the laser plane w.r.t. the stereo camera reference
frame SC. This self-calibration approach proceeds by correcting deformations
when scanning a planar surface of unknown pose caused by miscalibration of
the laser plane.

A variant of the last method is presented in Section 3.7 for the calibration
of the laser range scanner (LRS) of the DLR 3D-Modeler. I note that the
optimization problem is harder than in the case of the LSP because the origin of
the LRS is not known in advance (in the case of the LSP its origin is coincident
with the origin of SC). For this reason the calibration by optimization is more
sensitive to the completeness of the datasets for calibration. In the case that
the user is restricted when gathering calibration data, I propose an alternative
residual function that robustifies the solution at the expense of the former
unnecessity to determine the pose of the calibration plane.
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Figure 3.42: Functional interaction between the calibration procedures (Fig. 1.2 reprint).

Fig. 3.42 is a reprint of Fig. 1.2 showing the functional interactions between
the abovementioned calibration procedures.

In Section 3.8 I shortly notice that in this work I am not concerned with
a complex calibration of the inertial measurement unit (IMU) in its posi-
tion but only in its orientation as, in Section 5.4.2, I shall relax requirements
precisely in order to keep the complexity of the whole calibration procedure for
the DLR 3D-Modeler in practical terms.

Finally in Section 3.9 I draw the reader’s attention to the possibility for
rapid extrinsic recalibration of all sensor components of the DLR 3D-
Modeler by one-time extrinsic calibration for the calibrated stereo camera.



4
Robust Operation of Sensors

“It’s hardware that makes a machine fast.

It’s software that makes a fast machine slow.”

—Craig Bruce, 1990

4.1 Introduction

Modern sensors are constituted by software and hardware in equal proportions.
It is by software (e.g. image processing and algebraic calculations) that accurate
range data can be eventually delivered. In turn, the basis for correct range sens-
ing is appropriate sensor modeling (Chapter 2) and accurate parametrization of
these models (Chapter 3). Still, the computation of range data has to be correct
in order to preserve the utility of the former models and their parametrizations.
In this chapter 4 the required computations for the component sensors of the
DLR 3D-Modeler will be presented—perhaps with the exception of the virtual
pose sensor that will be separately presented in the following chapter 5.

In detail, in this chapter I will mainly address the three main sensor com-
ponents of the DLR 3D-Modeler. First, depth computation by stereo vision
will be shortly explained—the fundamental implementation of depth range es-
timation stems from Heiko Hirschmüller and is detailed in (Hirschmüller, 2008).
Second, I address depth computation by structured light using the laser stripe
profiler in (Strobl et al., 2004); in detail, robust image processing serves data
to the triangulation methods in Eqs. (2.36) and (2.37). Third, I explain how
to register and filter depth values from the laser range scanner, and I elaborate
on their convenient allocation for further processing.

Moreover, final depth computation will allow us to determine the precision
of the range estimations as well as the field of view of the different sensors.
As explained in Section 2.2, the characteristics of the sensor will be eventually
compared in order to choose the optimal sensor for a specific task or rather to
evade or clear sensor weaknesses increasing robustness of the overall approach
at that.

135
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In the end, depth computation will allow a variety of applications in the
context of 3-D scanning that will be shortly listed in Section 4.6 as well as in
Appendix B.

4.2 The Stereo Camera

4.2.1 Introduction

In Section 2.2.1 the inner geometry of single and stereo cameras have been
presented in detail. By rigidly joining two cameras to each other, a novel realm
of geometric dependencies between both images and the 3-D scene emerges.
In the end, a range image of the scene can be generated (i.e., a 2.5-D image),
provided the stereo camera is calibrated as in Section 3.2. In this section I shall,
first, describe these relationships in mathematical terms and, second, present
the current dense stereo vision algorithm at use at the DLR 3D-Modeler.

4.2.2 The Geometry of Two Views

The geometry of two views, i.e., the geometry of stereo vision, is also called
epipolar geometry. It lays down the constraints that apply when searching
for correspondences between their component cameras and it is central to re-
construct projections into their original 3-D locations using stereo vision algo-
rithms.

The search for projection correspondences starts out from detected features
on the image of the main camera. As illustrated in Fig. 4.1, that projection
necessarily corresponds to a 3-D point contained in its 1-D projection ray to
the main focal point. If the 3-D point is being imaged by the second camera,
its projection ray has to intersect the focal point of the second camera as well.
The collection of all possible projection rays unto the second camera from all
potential ranges of the original 3-D point w.r.t. the first camera clearly consti-
tutes a plane that contains both focal points as well as the original projection
ray. This plane is called the epipolar plane, and its intersection with the image
plane of the second camera is called the epipolar line of the original projection
and will be useful for correspondence search.

Note that the intersection of the line joining both focal points will be always
contained in all possible epipolar planes, i.e., in the pencil of potential epipolar
planes; these two points are, of course, static, and they are called epipoles.

Since the inner geometry of the stereo camera is precisely known by using the
methods presented in Section 3.2, it ought to be possible to estimate the epipolar
line corresponding with any original projection (if it exists), thus constraining
the search for valid correspondences on the second image plane to a linear region
(to be more precise, to a segment).
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Figure 4.1: Epipolar geometry of two views.

In the presence of lens distortion, however, any projected line (that does
not contain the principal point) will be inevitably curved; this is inconvenient
for computational correspondence search algorithms. As a consequence, prior
undistortion of the image is usually performed. In addition, general, oblique
lines are not optimal for computational correspondence search algorithms. Ide-
ally the orientation of the epipolar line for correspondence search ought to be
horizontal or vertical. The good news is that, in the absence of lens distortion,
planar transformations under perspective projection are linear in homogeneous
coordinates (cf. Section 2.2.1) so that images can be easily warped to their
ideal stereo configuration where both camera frames are on the same plane and
orientation so that epipolar lines horizontally correspond with their original
projections in the main camera frame, see Fig. 4.2. This step is called rectifi-
cation and allows for more efficient image processing when searching for stereo
correspondences (Trucco and Verri, 1998).
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Figure 4.2: Reprojection of original projections unto rectified image frames.
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It is clear that, at infinity, feature projections coincide in both projections.
In the case of closer points, however, an horizontal mismatch between both
images’ projections appears that is inversely proportional to the absolute dis-
tance R (range) of the feature w.r.t. the stereo camera. This distance is called
disparity D and is directly proportional to the focal length f as well as to the
baseline between cameras B as follows:

D = f
B

R
. (4.1)

Since f and B are constant parameters and only R varies, disparity results
can be considered as raw output of stereo vision reconstruction algorithms e.g.
representing them on the original image frame. On occasions, these images can
be further processed to Euclidean depths (2.5-D images) taking the intrinsic
parameters of the cameras into account.

4.2.3 The Semiglobal Matching Algorithm

The Semiglobal Matching (SGM) stereo vision method by Heiko Hirschmüller
computes disparity images in a dense way—as opposed to sparse, feature-based
methods as in Section 5.4.1. Dense methods allow for advanced 3-D reasoning
as well as 3-D modeling, hence the method suits the DLR 3D-Modeler.

At higher baseline distance or closer range to the scene, radiometric differ-
ences on input stereo images appear. A pixelwise, mutual information (MI)-
based matching cost has been introduced to adjust these differences along with
smoothness constraints. Still, SGM is highly sensitive to the accuracy of the
camera calibration process in Section 3.2.

Since this method is not part of my work within this thesis, I refer the reader
to (Hirschmüller, 2008) for further information.

4.2.4 Data Representation

It is of central importance for efficient 3-D data representation and eventual
treatment to comply with one of the pre-defined range data representation
types. These data instances are delivered at high rate, i.e., normally at the
camera’s rate e.g. 25 Hz. In the context of the DLR 3D-Modeler four types of
data instances are supported:

• Cartesian type: A 2-D array of ranges that are orthogonal to the sensing
plane and sequentially registered in an equally spaced 2-D sensor grid.

• Perspective type: A 2-D array of ranges that complies with the perspective
model presented in Section 2.2.1 on the basis of a normalized, rectified
pinhole camera model, i.e., α, β, γ, 0, u0, v0, 0, and in the absence
of optical distortion; all ranges are sequentially registered in an equally
spaced, projective 2-D sensor grid.

• Cylindrical type: Ranges are registered in 2 DoF, viz. a single rotatory
axis and its origin is translated on the same axis, on equally spaced dis-
tances and angles.
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• Spherical type: Ranges are registered in 2 DoF, viz. two rotatory axis with
fixed origin. The array of ranges is distributed in the two equally-spaced
angles.

In the case of the stereo camera (and especially if image rectification has
been previously performed), the natural representation of range data is the
perspective one. First, the size and the resolution of the normalized sensor
grid is defined with the parameters Nrows (number of equally spaced rows),
Ncols (number of equally spaced columns), uinitial (initial value of u), vinitial

(initial value of v), ∆u (distance between adjacent columns), and ∆v (distance
between adjacent rows). By doing so, the explicit 2-D coordinates of single
range instances are silent as they can be sequentially computed from the above
values as follows:

ui =uinitial + i ·∆u ∀i∈N0, i<Nrows , (4.2)

vj = vinitial + j ·∆u ∀j∈N0, j<Ncols . (4.3)

Apart from the metadata mentioned above, the only data being streamed are
Nrows ·Ncols real values

d̃n ∀n∈N0, n<(Nrows ·Ncols) (4.4)

corresponding to the measured (̃ ) Euclidean depth of the triangulated features,
in row-major order. These are usually supplied in the form of a large, real vector
size Nrows ·Ncols.

From these data the local, 3-D position of all range data in SC can be rapidly
computed as follows:

Cpn =

d̃n · uid̃n · vj
d̃n

 . (4.5)

In addition, the 6 DoF of the tracked pose of the stereo camera SC w.r.t.
some world coordinate frame S0 can be delivered for every dense depth image.
In the end:

0pn = 0T̃
C

3×4

d̃n · uid̃n · vj
d̃n

 . (4.6)

4.2.5 Operating Range

Because of its wide scope sensing range and the (low) speed of acquisition
(a typical runtime of 1 to 2 seconds for dense 2.5-D range images on typical
scenarios), stereo vision on the DLR 3D-Modeler is deployed as a middle- to
far-range sensor. The stereo baseline of 5 cm (see Section 2.2) has been chosen
for a typical operating range between 30 cm and 2 m. Since the sensor yields
less range accuracy than the LRS or the LSP, it is best suited for exploration
or obstacle avoidance scenarios. Still, in controlled environments—e.g. for the
humanoid robot “Justin” in (Borst et al., 2009), precise scene recognition for
on-table manipulation can be also achieved.
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4.2.6 Range Estimation Accuracy

A Monte Carlo simulation of feature-based stereo vision triangulation at a ty-
pical depth of 25 cm is represented in Fig. 4.3. We can see that the potential
accuracy in this case is millimetric in range, which would suffice for 3-D mode-
ling. Stereo vision by SGM does not, however, operate on punctual features but
in a dense manner that, unfortunately, is prone to invalid solutions especially
at contours or repetitive patterns.
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Figure 4.3: Monte Carlo analysis on the expected confidence in feature-based stereo vision. A
feature located at {24.9, 0, 300} mm w.r.t. the left camera (basis distance between cameras

50.1 mm) is erroneously detected in both images (top, 1000 samples) with
√
σ2

u + σ2
v = 0.25

pixels. The triangulation results show a bias of +0.004 mm in range (z), and a standard
deviation σz of 0.6 mm. In x and y: σx =σy =0.05 mm.

The general formula for range precision bases on Eq. (4.1) above. The
estimation of range R depends on two constant parameters (focal length f
and stereo baseline B) as well as on an inaccurate parameter owing to image
processing: the disparity D. Under the conservative assumption of a standard
deviation σD = 1 pixels and according to the perturbation theory in (Haralick,
1998; Matthies, 1992), we can infer the error characteristics in reconstructed
3-D coordinates from the image processing noise by error propagation. We first
compute the partial derivative

∂R

∂D
= −fB

D2
(4.7)

that can be easily linearized; after linear covariance computation we obtain:

σR =
∂R

∂D
σD , (4.8)

substituting Eq. (4.1) into the last equation:

σR =
fB

D2
σD , (4.9)

or, in other words
σR =

R2

fB
σD . (4.10)

In the case of the DLR 3D-Modeler featuring a stereo baseline B=50 mm and
focal length f = 750 pixels, Fig. 4.4 shows the expected precision in range R.
Note that this noise level matches experimental results in Section 3.4.4.
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Figure 4.4: Expected range precision w.r.t. the triangulation range.

4.3 DLR Laser Stripe Profiler

4.3.1 Introduction

In Section 2.2.2 the geometry of the DLR laser stripe profiler (LSP) has been
addressed. In addition, the triangulation formulae for the crosshair, dual LSP
have been presented as they were needed for laser plane self-calibration in Sec-
tion 3.6.

In this section I present the required algorithms that will feed in data to the
triangulation solution in Eq. (2.46). The concerned image processing methods
are dominated by the difficulty that we chose during conception of the DLR
3D-Modeler in the first place: Neither of the cameras mounted on the DLR
3D-Modeler can be filtered to laser light in order to simplify the detection of
laser projections by image processing methods. As mentioned in Sections 1.5
and 2.2.2, filtered cameras would prevent multisensory operation of the DLR
3D-Modeler e.g. when using stereo vision in Section 4.2, texturing of 3-D models
in Section 5.4.6, or pose tracking from images in Chapter 5. This decision is in
contrast with most 3-D modeling systems based on laser stripe profiling, refer to
Section 1.4. On the other hand, however, image processing is now much harder
than in the case of the latter methods, requiring much more robust operation
than before. The novel image processing approach presented here was originally
introduced in (Strobl et al., 2004).

In addition, the convenient representation of its output data as well as the
operating range of the LSP and experiments on its range precision are also
being addressed.

4.3.2 Robust Image Processing

In this section the laser plane projections Mp̃i = [Mx̃i,Mỹi] are to be delivered
out of raw, unfiltered footage as in Fig. 4.5. These results—along with the
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calibration results from Sections 3.2 and 3.6—will be fed in the triangulation
Eqs. (2.36), (2.44) and (2.45).

Figure 4.5: Unfiltered, raw image as input to the stripe segmentation algorithm.

In order to widen the range of objects that can be scanned, the image pro-
cessing algorithms presented in this sections do not have any a priori knowledge
about the final shape of the laser outlines. Admittedly, this fact may yield er-
roneous results. For instance, in the case of specular reflections or red light
sources, a simple segmentation algorithm would erroneously detect them as po-
tential laser projections. Consequently, different measures must be introduced
in orders to reduce these type of failures to a minimum. To make matters
worse, the cameras on the DLR 3D-Modeler do not have any optical filter to
laser light.

To start with, the camera settings ought to be considered. For instance, in
the case of older CCD interlaced cameras, I choose to process only the even
fields of the images in order to avoid both, desyncronizations and radiometric
distortions (Kamberova, 1997). Of course, the camera focus and its aperture
have to be chosen appropriately to get sharp, bright images—bright images are
inconvenient for laser stripe segmentation but then they are a requirement for
online texturing or visual pose tracking in Chapter 5. In addition, in order to
maximize both, the range of view and the range precision of the LSP, camera
and laser have to be arranged in such a way that the projected stripes become
approximately horizontal, see Fig. 4.5. In the case of the dual, crosshair LSP,
a crossed layout has to be chosen, refer to Section 2.2.2.

The implemented approach presented next is based on four image processing
stages. The approach is as follows: image I is processed column by column. For
each column C, different laser stripes may be detected after Stage #1. Stages #2
and #3 validate the original results and, in the affirmative, Stage #4 estimates
the pth center point of the stripe Mp̃p.
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Stage #1: Detection of the edges of laser stripes

To start with, the upper and lower edges of the laser stripe are to be detected.
To this end I choose a variant of the Sobel filter (gradient operator); it ap-
proximates absolute gradient magnitudes at each image point Mp and filters
potential noise. First, the red component of the image I is extracted. Second,
the convolution of the Sobel kernel unto the resulting image emphasizes the
horizontal edges of the laser stripe owing to the tight focusing and brightness
of laser light, see Fig. 4.6.

Figure 4.6: Result of the convolution of the Sobel kernel unto the original image Fig. 4.5.

On the basis of the resulting image, upper (brighter) and lower (darker)
edges of potential stripes are selected at every column C. Note that, subject
to the structure of the scene, several stripes can be projected on the very same
column C. The detection of edges is performed by setting appropriate upper and
lower brightness thresholds to the image in Fig. 4.6, as brightness correspond
to absolute vertical derivatives of the original image in Fig. 4.5. In Fig. 4.7 the
detected edges are overlayed on the original image for optimal threshold levels.
In Fig. 4.7 I show other results with non-optimal threshold levels.

Stage #2: Color validation

The potential stripes detected in Fig. 4.7 can contain e.g. white stripes as white
is also strong on its red image channel. To validate the detected stripe, the color
values among adjacent edges are evaluated. For this purpose, a Look-Up Table
(LUT) of image colors was previously generated; the LUT will be used to decide
whether a color value belongs to the background colorsubspace or to the laser
stripe one. The LUT was generated prior to the scanning process as follows: a
series of pictures Ii are taken from the natural scene without laser projection.
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Figure 4.7: Detected edges after convolution of the Sobel kernel unto the original image Fig. 4.5
for optimal threshold levels.

Figure 4.8: Detected edges after convolution of the Sobel kernel unto the original image Fig. 4.5
for non-optimal threshold levels.
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Here Ii={c0, c1, . . . , cJ} where cj =(R,G,B)∈ [0, 31][0, 63][0, 31] are the color
values of every pixel j, ∀j ∈N1, j≤ J ; J is the number of pixels in the image,
e.g. J=780×580. All perceived color values are stored online in a preliminary
background LUT

bcstemp (R,G,B)=

{
1 if ∃ i : (R,G,B) ∈ Ii ∪ R=0
0 if else

. (4.11)

The indices of bcstemp that are set match up then with background (including
objects) color values. However, this assertion may not be reciprocal, i.e., there
may be background color values not yet set in the former indices in relation
to the limited diversity of images. In order to ensure completeness, an LUT
named bcs is created based on the assumption that laser stripe color values are
expected to hold higher red components as follows:

bcs (R,G,B)=

{
1 if ∃ R′≥R−Roffset : bcstemp (R′,G,B)=1
0 if else

, (4.12)

where Roffset represents an offset in red values; this offset is required because
of the diffuse radiation that the laser naturally sends out to the environment
due to impurities in the spreading cylindrical lens. Fig. 4.9 shows an example
of the set bcstemp indices. The resulting stripes of Stage #1 are accepted
whenever they show pixel color values corresponding to laser (i.e., not to the
natural scene according to their respective bcs entry) within their upper and
lower edges. This method copes very well with the problem of bright reflections.
In addition, this method supports robustness and flexibility against changing
lighting conditions.
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Figure 4.9: RGB565 Look-Up Table. Stage #2 is fulfilled for red values above this mesh.

Fig. 4.10 illustrates the significance of the offset on laser red values Roffset.
In Fig. 4.11 the valid LUT results in the right-hand side of Fig. 4.10 are used
to validate laser stripe edges in the output image of Stage #1 (Fig. 4.7).
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Figure 4.10: On the lefth-hand side, pixel colors that fulfill the LUT with Roffset =0; on the
right-hand side, pixel colors that fulfill the LUT and an appropriate offset Roffset. Note that
the former are trapped by specular, white reflections at corners.

Figure 4.11: The detected laser stripe edges in Fig. 4.6 have been crosschecked w.r.t. the LUT
in Fig. 4.9.
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Note that the transformation of the native red-green-blue (RGB) color space
of the images into the hue-saturation-lightness (HSL) color space has been con-
sidered in (Sladczyk, 2008); using the same methods presented here, it has been
proven to be of no advantage at the cost of additional computations.

Stage #3: Width validation

The second validation stage addresses the problem of specular reflections caused
by the laser itself. This type of reflections would be most likely recognized as
laser stripes by the first two stages.

In a nutshell, Stage #3 accepts laser stripes whenever the pixel width of
the stripe is within a certain range. The feasible width of the laser stripe
depends on the measuring distance, the laser projection angle as well as on
surface reflection characteristics. In order not to be conservative when defining
this interval, experiments have been performed offline in order to identify the
biggest and the smallest stripe widths for every projected stripe in SM, refer to
Fig. 4.12.
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Figure 4.12: Maximum and minimum allowed widths for every projected stripe in SM.

These extreme widths are stored in an LUT and remain valid as long as the
LSP is not rearranged. In addition, this method copes with some of the corner
reconstruction artifacts addressed more in detail in (Curless, 1997).

In Fig. 4.13 the resulting, final image where stripe detection has gone
through Stages #1 to #3 is shown.

Estimation of the center of the stripe

When valid laser stripe projections have been found, their projection center
have to be determined. I proceed with sub-pixel precision (i.e., to within a
fraction of a pixel) by means of the center of mass method over the red channel
of the image. The precision hereby achieved are similar to the precision by
other methods like Gaussian approximation (Trucco et al., 1998). In fact,
the latter method often delivers erroneous or invalid results in the presence of
saturated brightness values; these may naturally happen on our images, not so
on the images of their original publication because they opt for filtered cameras.
Whenever the central image projection Mp̃p of the laser plane is available, by
using Eq. (2.37) we can obtain their 3-D coordinates 0p̂p.
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Figure 4.13: The detected laser stripe edges in Fig. 4.6 have been crosschecked w.r.t. the LUT
in Fig. 4.9 as well as w.r.t. the laser width LUT in Fig. 4.12.

4.3.3 Data Representation

It is of central importance for efficient 3-D data representation and eventual
treatment to comply with one of the pre-defined range data representation
types. These data instances are delivered at high rate, i.e., normally at the
camera’s rate e.g. 25 Hz. In the context of the DLR 3D-Modeler four types of
data instances are supported:

• Cartesian type: A 2-D array of ranges that are orthogonal to the sensing
plane and sequentially registered in an equally spaced 2-D sensor grid.

• Perspective type: A 2-D array of ranges that complies with the perspective
model presented in Section 2.2.1 on the basis of a normalized, rectified
pinhole camera model, i.e., α, β, γ, 0, u0, v0, 0, and in the absence
of optical distortion; all ranges are sequentially registered in an equally
spaced, projective 2-D sensor grid.

• Cylindrical type: Ranges are registered in 2 DoF, viz. a single rotatory
axis and its origin is translated on the same axis, on equally spaced dis-
tances and angles.

• Spherical type: Ranges are registered in 2 DoF, viz. two rotatory axis with
fixed origin. The array of ranges is distributed in the two equally-spaced
angles.
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Since the range data of the LSP are limited to its laser plane, I choose
the cylindrical type of depth data representation on equally spaced angles, i.e.,
with 1 sole DoF. First, the angular size and the resolution of the normalized
sensor grid is defined with the parameters NLSP (number of equally spaced an-
gles), ϑinitial (initial value of the cylindrical angle ϑ), and ∆ϑ (distance between
adjacent angles ϑ). The silent angles of all measured (̃ ) range data d̃n are:

ϑn = ϑinitial + n ·∆ϑ ∀n∈N0, i<NLSP . (4.13)

Apart from the metadata mentioned above, the only data being streamed
are NLSP real values

d̃n ∀n∈N0, n<NLSP (4.14)

corresponding to the Euclidean depth of the triangulated features using both,
the laser plane and the camera. These are usually supplied in the form of a
large, real vector size NLSP.

From these data the local, 3-D position of all range data in can be rapidly
computed as follows:

LSPpn =

d̃n · sinϑn0

d̃n · cosϑn

 . (4.15)

In addition, the 6 DoF of the tracked pose of the main camera SC w.r.t.
some world coordinate frame S0 can be delivered for every dense depth image.
In the end:

0pn = 0T̃
LSP

3×4

d̃n · sinϑn0

d̃n · cosϑn

 . (4.16)
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4.3.4 Operating Range

The LSP may be considered as the Swiss army knife of the DLR 3D-Modeler
as it can be easily configured for varied operating ranges. The parameters that
determine its operating range are:

• whether it is mounted on crosshair or regular configuration,

• the angular field of emission of the laser plane,

• the intrinsic parameters of the camera (i.e., its scaling factor and its
AOV), and

• the pose of the laser plane w.r.t. its respective camera.

For instance, in Fig. 4.14 the potential range of view of the LSP in relation
to the inclination of the laser plane is depicted, for constant basis distance
between the main camera and the laser plane of 10 cm. Within the highlighted
admissible area, I chose the a range of view of 15 to 100 cm. In Fig. 4.15
the resulting line projections in SI are shown. Similar investigations—although
more involved—can be conducted in the case of the dual, crosshair LSP.
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Figure 4.15: Expected range projections unto the normalized image frame for the laser plane
inclination highlighted in Fig. 4.14.
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Figure 4.16: Potential ratio between the adopted laser-to-camera basis distance BLSP and
the range to the reconstructed feature location at the principal point, for 13 different target
range accuracy levels.
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In the case of the DLR 3D-Modeler, the baseline distance BLSP between the
laser plane and the main camera SC is largely prespecified by the mechanical
construction of the multisensory head. It is still possible, however, to conduct
studies on the appropriate baseline in relation to the required accuracy. In
Fig. 4.16 I show the expected range precision at a particular range to the scene,
dependent on the base distance BLSP between the laser plane and the main
camera. As in the case of the stereo camera, we can estimate the expected
range precision out of noisy image processing and the geometry of the LSP by
using perturbation analysis (Haralick, 1998). In detail, the estimation of range
R using the triangulation Eqs. (2.36) can be differentiated w.r.t. the projection
location Mx; the linearized system relates now range precision σR with image
processing noise σI. We solve the equations for the baseline distance BLSP as
follows:

BLSP = 2 ·
f · σR −

√
−R2 · σ2

I + f2 · σ2
R

σI
(4.17)

where f relates to the actual focal length of the calibrated camera. Still, this
formula should be handled with care, as it assumes that the intrinsic geometry
of the LSP (e.g. from Sections 3.2 and 3.6) is perfectly known. If calibration
is not dutifully performed, these levels of precision cannot be achieved. Note
that potential inaccuracies by pose registration e.g. by the FaroArm Gold, the
ARTtrack2 or the Kuka KR 16, are not included in these expectations.

In the end, I chose to lay out the LSP for it to bridge the operating range
between the LRS and the stereo camera, i.e., in the range from 15 to 50 cm. In
detail, the LSP features 10 cm basis distance between the camera and the laser
plane, 6 mm objectives on the camera and, consequently, 58◦ AOV of the LSP.

In the following figures I detail the spatial resolution of the final implemen-
tation of the LSP within the DLR 3D-Modeler; the data stems from actual
measurements. In Fig. 4.17 the range (depth) obtained for every pixel projec-
tion in SM is shown; the illustration takes radial lens distortion into account.
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Figure 4.17: Measurement depth
for every potential laser projection
in the image memory frame SM.
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In Fig. 4.18 the azimuth angle (i.e., the horizontal yaw angle or angular
field of view AOV) for every pixel projection within SM is shown.
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Figure 4.18: Azimuth horizontal
angle (i.e., yaw) for all potential
laser projections in the image me-
mory frame SM.

In Fig. 4.19 the horizontal angular resolution (i.e., in the azimuth angle) for
every pixel projection within SM is shown.
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Figure 4.19: Angular resolu-
tion in the azimuth horizon-
tal angle for all potential laser
projections in the image me-
mory frame SM.

4.3.5 Range Estimation Accuracy

Experiments have been conducted to confirm expectations raised in Eq. (4.17)
and Fig. 4.16. The results are presented in Fig. 4.20. Range precision is in
sub-millimetric domain ranging from 0.3 mm at 15 cm range to 0.6 mm at 50
range; these are the standard deviations of Gaussian distribution resulting from
repeated, independent measurements. Experiments at 1 m distance still yield
high precision with standard deviation 1.5 mm.
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Note that these results are in line with the expected accuracy of 0.3 mm in
Fig. 4.16, with base distance of 10 cm and laser projection range between 30 and
40 cm at the principal point of the image. At peripheral image areas the noise
model may not exactly hold, e.g. at close range (15 to 20 cm) precision seems
to slightly worsen; this may be due to the bigger size of the projected stripe (as
the laser plane is not really a plane) as well as to residual lens distortion effects
at the peripheral region of the image.
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Figure 4.20: Measured range precision of the LSP. The regression function, i.e., the best
fitting polynomial model, reads σLSP(z) = 1.3639 ·10−8 ·z3−6.3523 ·106 ·z2 +0.00063736 ·z+
0.32112 mm. Refer to Fig. 4.22 for the joint representation of these data with the precision
characteristics of the LRS and the stereo camera.

4.4 DLR Laser Range Scanner

4.4.1 Introduction

In Section 2.2.3 the geometry of the DLR laser range scanner (LRS) has been
presented. In that section, the dissimilarities of both, the LSP and the LRS,
have been addressed. The most significant dissimilarity is that the LRS works
without external cameras, hence is self-contained. This allows for embedded,
dedicated electronics that compute ranges out of position sensitive devide (PSD)
projections. I will explain some particularities of these computations in the next
section.

In addition, the convenient representation of its output data as well as the
operating range of the LRS and experiments on its range precision are also
being addressed.

4.4.2 Robust Operation

As mentioned above, the rotor of the LRS does not only contain the laser diode
and the imaging optics, but it also contains computational electronics as well
as components for external communication.
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The laser reflection is detected by the PSD. It generates two electrical cur-
rents within the PSD, which relative intensity is proportional to the projection
location of the laser light, i.e., indirectly to the distance to the actual laser
spot. The characteristic curve describing this dependency is obtained during
the intrinsic calibration phase (Kielhöfer, 2003). In reality, this relationship is
subject to other factors like the background brightness of the scene and the
correct detection of the laser light in the first place. In the case that the laser
spot cannot be detected, the laser beam intensity is logaritmically being risen
in a closed loop with the readings of the PSD. It is clear that the precision of
such an analog system is dependent on the eventual intensities as well as on the
reflection properties and range of the scene.

Since range calculation is here embedded and is not open to external ob-
servation, the constructors deliver a value on the expected range precision at a
particular distance and laser power—they coin it “quality value.” This value
takes some of the abovementioned limitations into account. They are delivered
along with every single range measurement. What is more, void range mea-
surements where laser projections have not been found are indeed marked as
negative measurements. This is a very useful feature e.g. in the realm of robotic
exploration for the robot to be positive on the absence of obstacles.

4.4.3 Data Representation

It is of central importance for efficient 3-D data representation and eventual
treatment to comply with one of the pre-defined range data representation
types. These data instances are delivered at high rate, i.e., normally at the
camera’s rate e.g. 25 Hz. In the context of the DLR 3D-Modeler four types of
data instances are supported:

• Cartesian type: A 2-D array of ranges that are orthogonal to the sensing
plane and sequentially registered in an equally spaced 2-D sensor grid.

• Perspective type: A 2-D array of ranges that complies with the perspective
model presented in Section 2.2.1 on the basis of a normalized, rectified
pinhole camera model, i.e., α, β, γ, 0, u0, v0, 0, and in the absence
of optical distortion; all ranges are sequentially registered in an equally
spaced, projective 2-D sensor grid.

• Cylindrical type: Ranges are registered in 2 DoF, viz. a single rotatory
axis and its origin is translated on the same axis, on equally spaced dis-
tances and angles.

• Spherical type: Ranges are registered in 2 DoF, viz. two rotatory axis with
fixed origin. The array of ranges is distributed in the two equally-spaced
angles.

Since the range data of the LRS are naturally limited to the plane containing
the rotating laser beam, I choose the cylindrical type of depth data represen-
tation on equally spaced angles, i.e., with 1 sole DoF. First, the angular size
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and the resolution of the normalized sensor grid is defined with the parameters
NLRS (number of equally spaced angles), %initial (initial value of the cylindrical
angle %), and ∆% (distance between adjacent angles %). The silent angles of all
measured (̃ ) range data d̃n are:

%n = %initial + n ·∆% ∀n∈N0, i<NLRS . (4.18)

Apart from the metadata mentioned above, NLRS real values corresponding to
the Euclidean depths of the triangulated features are streamed:

d̃n ∀n∈N0, n<NLRS . (4.19)

These data are usually supplied in the form of a large, real vector size NLRS.
Additionally, quality values referring to the expected precision of LRS range
data are delivered:

qn ∀n∈N0, n<NLRS . (4.20)

From the depth data in Eq. (4.19), the local, 3-D position of all range data in
can be rapidly computed as follows:

LRSpn =

d̃n · sin %n0

d̃n · cos %n

 . (4.21)

In addition, the 6 DoF of the tracked pose of the LRS SLRS w.r.t. some
world coordinate frame S0 can be delivered for every dense depth image. In the
end:

0pn = 0T̃
LRS

3×4

d̃n · sin %n0

d̃n · cos %n

 . (4.22)

4.4.4 Operating Range

Quite different from the flexibility of the LSP in Section 4.3.4, the LRS is
innately limited to the operating range predefined during its design and con-
struction.

Its operating range limits in actual experiments are 80 and 250 mm, al-
though the manufacturers (in lab conditions) claim to detect laser reflections
between 50 and 500 mm range. This discrepancy is surely related to the above-
mentioned dependency of the LRS on the surface properties as well as on the
ambient illumination. On the other hand, the field of view of the LRS is still
extended due to its broad opening angle of 270◦.

4.4.5 Range Estimation Accuracy

Average accuracy values on white paper are provided in Fig. 3.4 within (Kielhöfer,
2003). Depending on the range, its ranging accuracy is given by a standard de-
viation between 0.1 and 2.5 mm at 25 cm range, cf. Fig. 4.21. This accuracy
levels at close range are remarkable with a base distance between the laser
emitter and the PSD (receiver) of only 20 mm.
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Figure 4.21: Regression function from experiments on the range precision of the LRS. The
best fitting polynomial model, reads σLRS(z) = 5.52 · 10−10 · z4.01 mm, see Eq. (3.2) in
(Kielhöfer, 2003). Refer to Fig. 4.22 for the joint representation of these data with the precision
characteristics of the LSP and the stereo camera.

4.5 Global Range Estimation Accuracy

In this section I aim at validating the assertion in Section 2.2 where I stated that
the DLR 3D-Modeler combines sensors that complement each other, evading
weaknesses that arise e.g. when the laser beam of the LRS gets too weak to be
measured by its PSD and it ends up delivering very noisy data. In this section
I only discuss the precision characteristics of the sensor components.

Fig. 4.22 unifies the accuracy curves for stereo vision in Fig. 4.4, for the
LSP in Fig. 4.20, and for the LRS in Fig. 4.21. Note that, for more convenient
representation, the scale of the current plot is logarithmic.

It can be observed from this joint plot of accuracies that the accuracy levels
achieved by the LRS are unmatched, viz. in the order of a tenth of a millimeter
(without consideration of the absolute pose tracking system errors nor of its
extrinsic calibration w.r.t. it). The accuracy of range data by the LRS, however,
decays rapidly with its distance to the scene owing to its short baseline of only
20 mm. Further, the LSP has been configured to fairly constant accuracy in
the order of 0.3 mm between 15 and 35 cm. This setup for the LSP perfectly
bridges the gap between the LRS operating range and the operating range of
stereo vision. The latter may start out at 30 cm range but then its precision
is an order de magnitude worse than the precision of the LSP. Stereo vision
by SGM, however, delivers dense depth images at extended ranges of up to 2
meters, thus properly finishes off the desired scanning range of the DLR 3D-
Modeler.
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Figure 4.22: Joint representation of expected range accuracy of the LRS, the LSP, and the
stereo vision method SGM, in relation to their range to the scene.

4.6 Supplementary Procedures

At this point we are in a position to deliver accurate, raw 3-D data of the scene
in front of the DLR 3D-Modeler in the form of pointclouds. This is, however,
not the whole story, as pointclouds are useless by themselves. In this section I
go on to the application level, mentioning three extensions of the presented work
(by my colleagues Tim Bodenmüller, Michael Suppa, Simon Kriegel, Wolfgang
Sepp, and Ulrich Hillenbrand) that build on accurate 3-D data in the form of
pointclouds in order to fulfill major tasks:

• Streaming surface reconstruction from real-time 3-D measurements in the
form of e.g. triangle meshes is perhaps the closest extension that is in-
deed demandable within the context of 3-D modeling with the DLR 3D-
Modeler. As mentioned above, in most applications 3-D pointclouds are
not valid 3-D models. In the case of hand-guided 3-D modeling, online
suface generation supports the user’s experience when digitizing complex
objects if it is deployed for visual feedback. The rendering of raw 3-D
measurement data is, of course, also possible, but it is inadequate be-
cause it does not allow for correct shading nor for the user’s to be able to
assess the quality of the eventual model. Real-time surface reconstruction
is challenging because a priori knowledge of the shape or size of the object
are missing. In addition, surface reconstruction fixes the varying density
issue, as in the case of hand-guided systems the user frequently choses to
revisit past areas (aiming at completeness due to past occlusions or con-
cavities), which yields irregularities in the density of points at the surface.
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Streaming surface reconstruction can also exploit the expected continu-
ity of surfaces in order to cancel out sensor noise. A convenient surface
model is a triangle mesh, which involves the reduction of the pointcloud’s
density to 2-D homogeneity. In addition, this method does not only allow
for virtual shading but for realistic model texturing as will be presented
in Section 5.4.6 (Bodenmüller, 2009).

• Many applications would benefit from automatization whenever 3-D mo-
deling is a repeated task, especially in industry. Robotic manipulators
like the Kuka KR 16 or the DLR Lightweight Robot III can be used to
move the DLR 3D-Modeler around the unknown object—delivering accu-
rate motion information at that. The problem of estimating the optimal
motion of a sensor for gathering 3-D data is known as the best-next-view
problem. Of course, to optimally solve that problem it is critical to know
the exact geometry of the object; this is, however, absurd if the purpose
of the procedure is precisely to obtain the object’s geometry. Solving
the next-best-view problem in this context is a challenging task that has
been addressed using the DLR 3D-Modeler in (Suppa, 2008; Kriegel et al.,
2012).

• Ever since the advent of widespread 3-D sensors like Microsoft’s KinectTM,
it has become clear that 3-D information allows for a new realm of ap-
plications compared to 2-D sensors like simple cameras. In (Sepp, 2008)
the author used the DLR 3D-Modeler to obtain 3-D pointclouds that al-
low him to track known objects in a novel, more robust way, using 2-D
cameras, as 3-D information of the object readily allows for 6 DoF pose
tracking.

• The DLR 3D-Modeler is mounted at the top of the humanoid robot
“Justin” as its perception head, see (Borst et al., 2009) and Section B.2.1
within Appendix B. In (Hillenbrand, 2008) one of the best known robotics
demonstration at my lab is addressed: “Justin” manages to recognize
known objects on a table (carafes, bottles, jars, and glasses) out of raw,
3-D data from stereo vision; after that, “Justin” is able to manipulate
these objects to autonomously prepare drinks. Pose clustering on a 6 DoF
parameters (pose) space on raw, 3-D data does the trick to accomplish
the task of object recognition as well as the estimation of their relative
poses.
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4.7 Summary

In this chapter I focused on the software computations that are regularly being
performed in realtime out of raw data (e.g. passive images or laser projections),
for the different sensor components of the DLR 3D-Modeler in order to de-
liver depth information that, together with external pose tracking, lead to 3-D
pointclouds.

First, I address stereo vision by the two cameras of the DLR 3D-Modeler.
I give an outline of the geometry of two views, which is basis for an introduc-
tion in the stereo reconstruction algorithm used at the DLR 3D-Modeler: the
semiglobal matching algorithm detailed in (Hirschmüller, 2008). Stereo vision
is a convenient sensing modality due to its passivity w.r.t. the scene (i.e., it does
not affect the scene not even by projecting light unto it). On the other hand,
however, its fair range precision may not allow for accurate 3-D reconstruction
of the scene in many applications. In the context of the DLR 3D-Modeler,
stereo vision is deployed as a long-range sensor for dense exploration where
coarse depth accuracy suffices.

After that, the operation of the perhaps main depth sensor of the DLR 3D-
Modeler is detailed, the laser stripe profiler (LSP). Depth computation out of
laser light projections is in this case dominated by the difficulty of proceeding
when the cameras ought not to be filtered to laser light—this fact was chosen
as a requirement during the conception of the DLR 3D-Modeler in the first
place. I present the novel method originally introduced in (Strobl et al., 2004);
it tackles the problem by a cascade of subsequent validation stages that starts
out from a stripes detector on the red channel of the images using the Sobel
filter.

Next, the operation of the laser range scanner (LRS) is explained. The
LRS is a self-contained sensor that works without external cameras. Embedded
electronics compute ranges based on a previous, in-house intrinsic calibration
process. It is neccesary to know about its internal operation when choosing the
desired sensor component for a particular task as well as in order to realize the
expected accuracy levels of the sensor.

As a matter of fact, I present experiments that show the expected accuracy
levels of the three sensors mentioned above. It comes as no real surprise that
sensors operating at closer range excel in accuracy compared to sensors oper-
ating at longer range. Still, I sensibly combine optimal operating ranges of the
different sensor components of the multisensory DLR 3D-Modeler in order to
facilitate the required prior choice of sensor principles, see Section 4.5.

I conclude this chapter with a degree of humility: It is clear that 3-D point-
clouds only represent the starting point for more advanced algorithms capable
of tasks like 3-D modeling, object recognition, or scene exploration. I realize
that my task ends at the beginning of other tasks. With this in mind, an
standardized representation of depth data is provided for every single sensor
component. Additionally, in Section 4.6 I list higher-level algorithms developed
by my colleagues at DLR in the context of the DLR 3D-Modeler.
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Visual Pose Tracking

“We see because we move; we move because we see.”

—James J. Gibson, The Perception of the Visual World, 1950

5.1 Introduction

Several factors like object self-occlusion, object size, or limited field of view
make it impossible for a 3-D modeling system to acquire a complete model
in a single measurement step; this is especially true in close-range. Multiple
views (or multiple sensors) are required to subsequently merge data to a single
3-D model. The prevalent approach is to measure the position and orientation
(pose) of the sensor while acquiring range data, thereby registering multiple
views, potentially in realtime, see Section 1.4.3. A range of tracking systems,
robotic manipulators, passive arms, turntables, CMMs, or electromagnetic de-
vices are commonly deployed for this purpose, see Section 5.2. Indeed, the
DLR 3D-Modeler has been only deployed together with robotic manipulators
or infrared tracking systems so far. These options are inconvenient for three
reasons: First, they limit user’s mobility; second, they are subject to accurate
synchronization and extrinsic calibration, which are cumbersome, error-prone
processes (Bodenmüller et al., 2007; Strobl and Hirzinger, 2006), and what is
more they cannot be rearranged; last, it turns out that external positioning
systems almost always represent the largest and most expensive part of the 3-D
modeling system.

In this work I present the required algorithms for robust and accurate pose
tracking of close-range 3-D modeling devices at a high data rate, by the use of
the images captured by their own cameras; cameras are already present in most
of these devices after all. In this way, the three limitations mentioned above
are lifted. Note that this potential extension is just another neat by-product of
our original decision to omit laser-light filters on the cameras.

161
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Cameras are preferred sensors in many areas because they are light, af-
fordable, consume less energy, allow for a very accurate parametrization of its
simple operating model, and still they gather a plethora of information (both
radiometric and geometric) within a single, rapid measurement. Further bene-
fits exist: cameras are non-contact sensors, thus free-floating, and passive since
they do not need to project or exert action on the environment. Note that po-
tential pose tracking from its own images would inherently become calibrated
and synchronized with further image-based sensing.

And yet visual pose tracking is a hard problem as geometric information
becomes entangled in radiometric and perspective geometric issues. Following
distinct regions of interest (feature-based tracking) is a popular and efficient
technique to overcome this problem. Still, images produce many features that
have to be handled frugally if we want to operate in realtime. In addition,
feature tracking in close-range is especially demanding because features move
faster than in medium- or long-range because they are also affected by camera
translation. To make matters worse, highest accuracy is necessary as cameras
feature small angular fields of view, which call for the concatenation of relative
measurements so that errors readily accumulate.

In order to alleviate difficulties in feature tracking, I propose two novel
schemes: either leveraging an inertial measurement unit (IMU), calibrated and
synchronized with respect to (w.r.t.) our system to complement visual tracking
(Strobl et al., 2009a; Fleps et al., 2011), or adopting the Active Matching para-
digm for more efficient tracking (Davison, 2005; Strobl et al., 2011). In order to
increase accuracy, graph-based, nonlinear optimization (keyframe-based
bundle adjustment) on relative transformations and measurement constraints,
parallel computing of front-end, back-end and other sub-tasks, feature-based
stereo vision, as well as loop-closing detection for dead reckoning error com-
pensation are employed. Even in the case that everything else fails, appearance-
based recognition of older features is provided so that pose tracking can be
resumed.

Finally, since manual 3-D scanning requires visual feedback to the user in
realtime, a streaming surface reconstruction method is presented that deliv-
ers realistic 3-D models in-the-loop during scanning as well as refined models
promptly after loop-closing corrections.

The remainder of this section is as follows: An extended survey on related
3-D modeling devices, their pose tracking techniques, and visual pose tracking
in general is delivered in Section 5.2. In Section 5.3 I motivate the layout of
the approach to visual pose tracking that will be presented in Section 5.4; its
algorithms allow now for the DLR 3D-Modeler to track its own pose in 6 DoF,
in realtime. The approach will be validated with experiments in Section 5.5.
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5.2 State of the Art

This section extends the State of the Art Section 1.4, now focusing on 3-D
modeling work with regard to their 3-D data registration concept—provided the
system meets our requirements, i.e., is non-contact and relatively lightweight.
I shall focus on mature, commercial systems; I only mention research work
in the areas where commercial systems are missing. When addressing 3-D
data registration by visual pose tracking, due to the novelty of the approach I
elaborate on its real-time variants irrespective of their potential application to
these types of systems.

5.2.1 3-D Data Registration by Scan Alignment

Dense depth sensors that e.g. provide 2-D range images (2.5-D images) may
yield rich surfaces that allow for raw 3-D data registration by 3-D matching,
without the necessity for explicitly estimating sensor motion. This is not possi-
ble, however, in the case of 1-D range images e.g. by laser stripe triangulation.

3-D matching is a computationally demanding task because correspondence
search is on higher dimensionality compared to traditional 2-D image registra-
tion. Additionally, data overlapping is required, which has to be detected in
advance out of raw depth data and perhaps some probabilistic priors. For these
reasons, scan alignment is nearly always being performed off-line, often in an
interactive way with the user. The estimation usually involves an optimization
in the form of the minimization of a particular distance metric between scans,
being the ICP method in (Besl and McKay, 1992) the reference work. Different
metrics and modifications of the original algorithm have been proposed for im-
proved robustness against noise as well as efficiency (Coudrin et al., 2011). With
the recent advent of general-purpose computing on GPUs, real-time implemen-
tations of ICP have been presented, e.g. sequential multiscale ICP on RGB-D
data (Kinect) in (Newcombe et al., 2011a). In the same context, other authors
opt for bootstrapping ICP by feature-based pose tracking for more robust scan
alignment, see (Henry et al., 2012) and Section 5.2.4.

It is worth mentioning recent work by Coudrin et al. for the company
Noomeo SAS, see (Coudrin et al., 2011). Even though the authors realize
the convenience of visual pose tracking for online data registration, in their ap-
proach visual pose tracking merely serves as an initial estimation for subsequent
ICP optimization because they use active 3-D modeling by densely projected
patterns, which precludes concurrent visual feature matching. They can only
ressort to interleaved stereo frames where the projected pattern is switched off,
so that 3-D modeling and pose tracking are desynchronized. In the end, half
of the images serve 3-D modeling whereas the other half merely serves as an
initialization step for ICP.
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5.2.2 3-D Data Registration by External Pose Tracking

Raw 3-D data registration poses an overdetermined problem where the space
of unknowns comprises 6 degrees of freedom (DoF). It is common practice
to take subsets of 3-D data to simplify the estimation problem, but it still
remains a demanding one. In addition, its convergence is subject to a high
degree of unpredictability as it is strictly dependent on the particular geometry
being acquired. We would benefit from an independent procedure yielding an
equivalent solution to the original 6-D matching problem. It is well known that
the relative sensor pose estimation problem (6 DoF) yields that same solution,
although represented in the camera reference frame instead of in the object
reference frame.

The use of traditional absolute positioning systems attached to a 3-D sensor
is arguably the most straightforward approach for solving this problem. Due
to their robustness and accuracy, the systems listed below became widespread
and are the dominant (commercial) 3-D modeling devices in close-range:

•External, optical (infrared mostly) tracking systems are used by Northern Dig-
ital Inc., Metris NV, and Steinbichler Optotechnik GmbH. Optical tracking sys-
tems detect and track artificial (e.g. infrared-reflecting) markers attached to the
3-D sensor. They seem convenient to hand-held operation due to the absence
of a rigid positioning contact to the sensor. On second sight, however, the user
eventually feels strongly limited because of their small tolerance to sensor rota-
tion owing to visibility constraints (occlusion). Furthermore, since the spatial
distribution of the markers is limited, the accuracy of orientation estimation is
generally poor.

•Passive arms are used by FARO Technologies Inc., KREON Technologies,
RSI GmbH, Metris NV, and ShapeGrabber Inc. The use or passive arms, or
even robotic manipulators, is, of course, inconvenient to manual operation of
the sensor. However, they are the most accurate option for pose tracking—
subject to their accurate synchronization and extrinsic calibration w.r.t. the
sensor. Price and size are prohibitive in many applications.

•Electromagnetic positioning systems are implemented by Polhemus Inc. These
tracking devices resemble optical tracking in operation, but now it is not re-
quired for the sensor to maintain a free line of sight to any marker. However,
accuracy is dependent on the distance to the electromagnetic emitter and its
signal can be affected by e.g. metallic structures.

•Turntables used by Cyberware Inc. and Polygon Technology GmbH. These
allow for inexpensive systems, but are limited to small, light objects and rarely
allow for the generation of complete models.

External pose tracking does allow for accurate 3-D data registration in re-
altime, but all of the above absolute positioning systems have in common that
they represent the bulkiest and most expensive part of the eventual 3-D mode-
ling systems. Furthermore, they limit the system in mobility and flexibility, and
are subject to accurate external calibration and synchronization. These strong
limitations apply especially in the realm of robotics, where sensors are precisely
meant to promote autonomy without imposing additional constraints.
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5.2.3 3-D Data Registration by Visual Pose Tracking

Since digital videocameras are already present in most close-range 3-D modeling
systems, the estimation of the sensor motion from its own video footage is highly
desirable to avoid using external systems. Camera motion estimation is feasible
because, on a static scene, camera motion is the only factor that accounts for
varying perspective projection of the 3-D scene onto 2-D images. In addition,
since visual pose tracking is in the camera frame, an external calibration step
of the tracking system w.r.t. the camera is no longer required. Similarly, es-
timations become inherently synchronized with further camera-based sensing,
dispensing with the need for meticulous synchronization. From this idea two
variants emerged:

•Low-rate, visual pose tracking is used by Noomeo SAS in the Optinum
TM

scanners, probably as an initialization stage to scan alignment from dense range
images.

•High-rate, visual pose tracking is achieved by the HandyScan 3D scanners of
Creaform Inc. (also marketed as ZScanner R© by Z Corporation).

The latter implementation lies close to our goal of high-rate pose tracking
from a video stream. However, the necessity to adhere reflective markers to the
objects is inconvenient. In fact, in a number of applications it is prohibited or
impossible. Being one of the main motivations for using cameras the fact that
they are non-contact, free-floating sensors, i.e., effectively passive to the scene,
it is counterproductive to rely on this type of adhesive markers. Furthermore,
their dependency on active infrared (IR) illumination also entails limitations.

The DAVID-Laserscanner is a commercially available, very simple scanner
that works without an external positioning system. The pose of the laser pro-
jector is estimated from images of a static camera that, at the same time,
estimates projections depths by triangulation. The approach is fundamentally
limited to a single view with potential, subsequent scan alignment.

For the remainder we concentrate on research work.

In Refs. (Hébert, 2001) and (Khoury, 2006) a self-referenced, hand-held
crosshair laser stripe profiler was presented. Its stereo camera makes use of
fixed marker points, actively projected onto the scene, and localizes itself con-
tinuously by stereo triangulation w.r.t. these points. Actively projecting marker
points onto a scene is inconvenient and, furthermore, limits flexibility since the
cameras must see the markers the entire time. In addition, both laser profiler
operation and texturing are influenced by active illumination. The algorithm
seems to lack robustness, and efficiency considerations are not reported.

Actual image-based, passive localization approaches for 3-D modeling do
exist:
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The approach in (Pollefeys et al., 2004) uses projective reconstruction jointly
with posterior self-calibration to estimate metric—yet unscaled—motion in un-
calibrated image sequences. After that, bundle adjustment is used to refine the
results. A similar approach in (Roth and Whitehead, 2000) does make partial
use of a previous camera calibration for metric reconstruction. The approach
is intended for dense stereo vision applications and is not real-time. Accuracy
analyses are missing even though non-stochastic approaches to self-calibration
compromise it.

It is worth mentioning the instant Scene Modeler iSM device by MDA Ltd.,
Space Missions in (Se and Jasiobedzki, 2008). The system produces 3-D models
from hand-held stereo vision by registering views with scaled poses from visual
pose tracking. In contrast to the objectives in this work, the system aims
at mid-range operation using dense stereo vision. Stereo is computationally
expensive and, therefore, frame-rate is low, which in turn makes pose tracking
under unknown motion harder and essentially different from a high-rate variant.
The problem is solved using SIFT features—which again are computationally
expensive—as well as lower resolution footage.

We presented in (Strobl et al., 2009a) the first hand-held 3-D modeling
device for close-range applications that localizes itself passively from its own
images in realtime, at a high data rate. In that work, pose tracking was op-
tionally supported by an on-board IMU for more efficient feature tracking. In
(Strobl et al., 2011) we present an alternative tracking method that, inspired by
the Active Matching paradigm (Chli and Davison, 2008), achieves remarkable
tracking resilience without the need for inertial readings.

Finally, I mention a major development by Newcombe and Davison on 3-D
modeling from dense images by concurrent simultaneous localization and map-
ping (SLAM), so-termed DSLAM, in (Newcombe and Davison, 2010; Newcombe
et al., 2011b). DSLAM aims at considering every single pixel of the video stream
for structure estimation and interleaved pose tracking, maximizing information
gathering and overall performance at that. It is hard to explicitly do without
distinct features (cf. Section 5.2.4-I.) as features are, by definition, invariant un-
der several aspects and, therefore, can be better discriminated than other areas
of the image. Consequently, the method is currently limited to confined view-
point areas and constant lighting conditions as it assumes brightness constancy
(surface smoothing priors are introduced to partly relieve of this limitation).
Still, viewpoint limitation is certainly unsuitable if full-body 3-D modeling is
intended. The current implementation is computationally very costly, leverag-
ing on general-purpose computing on GPUs to achieve real-time performance.
Despite all that, DSLAM already reached improved performance concerning
resilience to erratic camera motion, pose tracking accuracy (albeit unproven in
experiments) and, most importantly, concerning its low hardware requirements,
namely a single camera and a commodity computer featuring a GPU.
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5.2.4 Visual Pose Tracking in Realtime

Visual pose tracking is a hard problem because, in geometric terms, images
merely convey 2-D information that originally stems from a higher dimensional
space, e.g. 6 DoF of camera pose, full geometry of the scene structure as well
as the intrinsic geometry of the camera(s). It is often just one among the latter
parameters that we are interested in, yet still have to infer them all from 2-D
images. This dimensionality reduction renders the problem often unsolvable
using a single image. It is by increasing the dimensionality of gathered data—
either taking separate measurements or taking them successively in time (as
model parameters change)—that we can draw a distinction between the original,
unknown parameters themselves, and infer their respective values. In doing
so, we regularly exploit prior knowledge e.g. on the rigidity of the scene, on
Euclidean geometry and on perspective projection.

In particular, there is a prevalent ambiguity in scene structure and camera
pose estimation. For instance, in the event of detecting projections of an un-
known object, it is impossible to discriminate between object size and camera
range to that object. It is indeed a chicken-and-egg problem that also charac-
terizes research in SLAM: motion estimation (localization) is straightforward
on known 3-D geometry, whereas 3-D geometry estimation (mapping) in turn
asks for known camera motion. As mentioned above, tackling the problem of
SLAM is solved by integrating data in time, when some parameters vary (e.g.
camera motion, i.e., apparent perspective distortion) to differentiate them from
others (e.g. static scene geometry).

To make matters worse, many applications require estimations in realtime,
e.g. at 30 Hz. On the one hand, it is important to realize that less applications
require a complete solution in realtime, but only part of it—the full solution can
be readily delivered delayed in time. On the other hand, parts of the solution
are really being required in realtime and, therefore, efficient methods are in
demand. Temporal priors e.g. on the dynamics of the system can be of use for
improved performance.

In this Section I address three key aspects for designing real-time visual
pose tracking algorithms, listing reference works at that.

I. How to parameterize/interpret scene structure?

II. How long to memorize associative visual data?

III. Which calculations for real-time performance?

I. Feature-Based vs. Dense Tracking. A picture might well be worth a
thousand words, but then not all visual information is created equal. Depending
on the task at hand, some image regions convey more information than others
(Brady, 1987; Torr and Zisserman, 1999; Irani and Anandan, 1999). Visual in-
formation can then be reduced to regions of interest (points or corners, edges)
that still allow for highly accurate inference. In our context, these features
represent the Merkwelt necessary for pose tracking. As most of these regions of
interest can be described in very concise, parametric ways, methods following
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this paradigm ought to be more efficient than direct methods, which compute
pixelwise from dense, raw image data.1 Furthermore, these regions are more
invariant to viewpoint location (e.g. concerning light reflection) and varying
lighting conditions, which allows wide baseline matching to increase accuracy.
Last, estimation on these separate regions is largely uncorrelated, i.e., statistical
independence holds (unlike when using direct methods) and, therefore, optimal
estimation using maximum likelihood methods is warranted. Admittedly, the
feature-based estimation paradigm entails limitations on its own, like the fea-
ture selection, scene understanding and data association issues. In general,
feature-based methods are being preferred when designing visual pose tracking
algorithms.

Feature-based methods utilize interest operators to detect salient/distinct
regions of the images, i.e., fiducial points or features at repeatable, stable loca-
tions despite change of viewpoint. Salient regions arise either from texture or
from geometry (e.g. object corners). In general, features from (planar) texture
are preferred since corner projections are not invariant to viewpoint location
e.g. due to self-occlusion. Well-known detectors are: Harris-Stephens (Harris
and Stephens, 1988) or Shi-Tomasi (Shi and Tomasi, 1994), the Laplacians
LoG, DoG or DoB (Marr, 1982), MSER (Matas et al., 2002), SUSAN (Smith
and Brady, 1997), SURF (Bay et al., 2008), FAST (Rosten and Drummond,
2005) and AGAST (Mair et al., 2010a). Additionally, an operator for invari-
ant description of these features is needed to be able to discriminate features
against each other. Well-known descriptors are: planar, oriented patches (Davi-
son and Murray, 2002), SIFT (Lowe, 1999), GLOH (Mikolajczyk and Schmid,
2005), HOG (Dalal and Triggs, 2005), SURF (Bay et al., 2008), CenSurE
(Agrawal et al., 2008), BRIEF (Calonder et al., 2010), BRISK (Leutenegger
et al., 2011), FREAK (Alahi et al., 2012) and KAZE (Alcantarilla et al., 2012).
We speak of feature tracking when these descriptions are being matched in
time, either starting from the anonymous output of a feature detector or based
on camera/feature motion priors. In the former case, a current description is
compared with a database of past descriptions, whereas in the latter case the
current description is compared with a subset of that database (potentially just
one description) within a reduced area of the image (Neira and Tardós, 2001;
Chli and Davison, 2009a; Strobl et al., 2011). Of course, the matching me-
thod is descriptor-specific, e.g. normalized cross-correlation for planar patches
or computing Hamming distances for BRIEF descriptors.

Setting an optimal framework for detection, description and matching of
features is subject to trade-offs: a general descriptor is expected so that it
is invariant to change of viewpoint or illuminance; at the same time, feature
descriptions have to be distinctive and, therefore, specific to particular features.
Moreover, specific descriptors call for an exhaustive representation of features,
which is in contradiction with the omnipresent requirement for compactness and
efficiency.

1 This conventional view is much-debated since the introduction of graphics units special-
izing in parallel computation.
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Dense methods are less invariant to change of viewpoint or illuminance;
however, they are alleged to be potentially more accurate and locally robust
than feature-based methods because their representations (whole images) are
more informative than just features. For instance, they allow for dense recon-
struction of the environment (Newcombe et al., 2011b). However, is a pixel-
wise, perspectively-projected and rasterized 2-D abstraction of the scene the
best possible representation of both 3-D scene and 6-D motion, really? On top
of that, direct methods are being complemented with simplifying assumptions
like brightness constancy. Does not a selective set of distinct points or edges,
along with their robust associative information, make up a more informative
representation for pose tracking? In any case, the implementation of dense me-
thods on current hardware is demanding both on computational and electric
power, which keeps them away from cheaper, widespread implementations and
especially from constrained environments like space. It is worth noting recent
research work that leverages feature-based methods in order to bootstrap, ac-
celerate and robustify direct methods, see (Comport et al., 2011; Henry et al.,
2012).

II. Visual Odometry vs. Visual SLAM. Both visual odometry by dead
reckoning and visual SLAM (V-SLAM) incrementally estimate camera motion
from video streams in realtime. For that purpose visual odometry exclusively
uses the last subsequent image frames—potentially more than two,2 but then
critically the total number of images considered is limited. If an image gets out-
side this scope, its associated information will not be used for motion estimation
anymore (Nistér et al., 2004; Cheng et al., 2006; Konolige et al., 2007). On the
other hand, V-SLAM may accumulate all information from past images, repre-
senting it either in the form of a graph of camera motions and measurements or
in the form of a map, continuously updating them using present visual informa-
tion (Fig. 5.1). A graph of motions and measurements is a light and exact way
to accumulate raw data, whereas generating an actual map is more involved
although potentially closer to the targeted estimations (typically feature and
camera locations as well as their statistical moments). Visual odometry does
not maintain this type of representations of the environment.

(a) Measurements used by SLAM (b) Measurements by visual odometry
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Figure 5.1: Graph on the measurements potentially being used for pose estimation at C4 by
SLAM (a) and by visual odometry (b).

2 Using two frames for sequential motion estimation is subject to drift in absolute scale. It
is only by using at least three overlapping frames of matched features that estimations may
anchor in the original scale.
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Considering older information (either in the form of a map or of a graph)
is convenient in two respects: First, the relative pose estimation accuracy is
essentially improved. Since the graph or the map relates to older camera sta-
tions, relative pose estimations w.r.t. that older stations will be more accurate
than performing repeated, relative pose estimation over unrelated frames. In
addition, virtual parallax will be bigger, therefore relative pose estimation more
accurate on the assumption of constant image noise level. Second, the very ex-
istence of a map or a graph makes it possible to find older features again (loop
closing), based either on their relative locations w.r.t. the camera or merely on
visual descriptions; this is critical to further increase pose estimation accuracy.
Indeed, it is only through closing loops that consistent graphs and drift-free ca-
mera motion estimation can be achieved in the presence of noise.3 A downside
to maintaining a map also exists: it is computationally expensive, as complex
calculations are involved e.g. to obtain statistically optimal estimations. In
addition, a considerable amount of memory is used.

When performing visual odometry the data quantity is limited to recent
camera frames, which renders the estimation problem tractable; it is not nec-
essary to make use of approximations like e.g. when using filtering to solve
V-SLAM in realtime, see Section 5.2.4-III. Still, some tricks are used to boost
performance and ensure robustness against outliers. For instance, it is common
practice to compute minimal relative motion solutions from either 3 (Grunert,
1841; Wolfe et al., 1991; Haralick et al., 1994; Nistér, 2004a), 5 (Nistér, 2004b),
6, 7 or 8 (Stewénius et al., 2006) feature points (depending on our knowledge
of the structure and the camera), which are rapidly computed in closed-form,
in order to obtain ballpark motion estimates. After that, the best solution may
bootstrap a least squares optimizer minimizing reprojection errors (iterative
refinement), potentially using more than two images (sliding window optimiza-
tion yields optimal motion estimation, see (Nistér et al., 2004; Nistér et al.,
2006; Mouragnon et al., 2006)). In this context, scene structure is usually un-
known, and consequently feature matching may be erroneous. In order to detect
outliers, the latter minimal solutions to the relative motion problem are often
within a geometric hypothesize-and-test framework like RANSAC (Nistér, 2003;
Mouragnon et al., 2009; Konolige et al., 2007). The final least squares solution
may also concern a robustified residual function.

From an operational point of view, the essential difference between visual
odometry and V-SLAM can be summarized as follows: Whereas visual odome-
try estimates camera motion from (feature) correspondences between selected
images, V-SLAM estimates camera motion from a conceptual matching be-
tween current image features and a representation of the accumulated system
state, which in turn stems from past feature tracking. Since recently, it is gen-
erally acknowledged that hybrid solutions, running both processes potentially
at different rates, are most effective as they complement one another (Klein
and Murray, 2007; Konolige and Agrawal, 2008; Mei et al., 2009; Williams and
Reid, 2010; Strasdat et al., 2011).

3 Visual odometry systems may leverage IMU or GPS devices fusing data to overcome this
problem.
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III. The Back-End of SLAM. The SLAM problem can be divided in two
tasks: front-end and back-end. The motivation for this division is the unfeasibil-
ity of achieving overall optimal estimation in realtime. Front-end calculations
essentially deal with image processing and the intelligent arrangement of in-
put data, and should run in realtime. Note that an intelligent arrangement of
data may include the solution to the data association problem and that local
pose tracking (or visual odometry) in realtime may be of necessity to that end.
It is expected that front-end calculations are rather exact even if performed
in realtime. On the other hand, back-end calculations concern the consistent
representation of the data arranged by the front-end in the form of a graph of
associated measurements or of a map. As the map grows and becomes intercon-
nected, the complexity of this sub-task naturally grows—eventually becoming
the bottleneck to optimally solving SLAM. Consequently, back-end methods
dominated research on SLAM for the last decade.

To ameliorate the situation, methods that compute approximate solutions in
realtime have been historically preferred. In recent years, however, a pertinent
observation led to a different type of algorithms delivering far more accurate re-
sults: Global geometric representation is rarely being required in realtime (Klein
and Murray, 2007), even though this assertion is of course subject to the final
application.4 More accurate estimations can be readily delivered at a lower
rate, which suits present hardware developments just fine, paving the way to a
plethora of methods trading off efficiency against accuracy (leveraging parallel
computing hardware at that). As a side note, the geometric representation de-
livered by the back-end can in turn be used to support the front-end regarding
e.g. data association (local loop closing). In the remainder, the most noted
back-end methods are being addressed.

As a consequence of V-SLAM being preceded by SLAM, initial research
adapted existing SLAM techniques (mainly using 2-D scanners) to visual input
data, without actually realizing the two main challenges of V-SLAM w.r.t.
traditional SLAM: First, digital cameras feature a narrower field of view than
2-D scanners, which makes direct triangulation harder and the time window for
feature tracking shorter; it is now more vital than ever to be accurate in local,
relative feature-based estimations, as many of them will have to concatenate for
extended motion estimation. Second, visual data spreads now in 3-D, stacking
up larger amounts of data than former SLAM methods in 2-D.

In fact, the first, best-known approach to V-SLAM by Davison in (Davison,
1999) used an Extended Kalman Filter (EKF), which delivered good, fast re-
sults if the map size was kept small concerning both, the number of features and
the overall number of measurements. Early adopters rapidly noted this limita-
tion, along with inconsistency in the estimations due to linearization errors and
potential inadequacy of the Gaussian error models (Julier and Uhlmann, 2001).
The preferred measure to ameliorate effects has been the decomposition of maps

4 For instance, in our case of visual pose tracking for 3-D modeling with online visual
feedback of the scanned object, a fairly accurate estimation of the whole motion history for
timely 3-D scan display is of course required in realtime.
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into submaps that become strictly uncorrelated from one another (Leonard and
Feder, 2000; Guivant and Nebot, 2001; Eade and Drummond, 2007), which is
at the cost of map accuracy.

The second major method for back-end estimation in V-SLAM is the Par-
ticle Filter (PF) (aka sequential Monte Carlo method) (Qian and Chellappa,
2004). A PF aims at more accurate and consistent estimations by representing
estimation distributions as well as model noise by sets of particles. However,
the size of the map that is manageable is still limited as the number of required
particles grows exponentially with the number of features and their dimensions.
A variant of the PF was proposed called Rao-Blackwellized PF (e.g. FastSLAM)
(Sim and Little, 2006; Montemerlo and Thrun, 2007). The authors observe that
feature measurements are naturally uncorrelated if they are conditioned to a
particular path estimate of the camera. Consequently, feature maps can be
efficiently computed using sparse EKFs associated to their respective pose par-
ticles. The principal drawback of PFs and its variants is the resampling step,
which is introduced to eliminate improbable particles (that would otherwise
naturally spread) in order to keep computational costs low; regrettably, the re-
sampling step causes the lost of essential, small correlation densities (depletion
problem) and consequently a loss of accuracy as well as eventual inconsistency.

As mentioned before, the two main drawbacks of exclusively using filtering
methods (EKF, PF) for the back-end of V-SLAM are both their computational
cost when dealing with a large number of features (map size) as well as their
limited potential accuracy and inconsistency. In actual fact, the latter limita-
tion can be effectively attenuated by increasing the number of measurements,
but this is in turn unsuitable due to the former limitation in the size of the
map (Strasdat et al., 2010b). This limitation is inherent to filtering approaches
for the following reason: Filtering is about maintaining a compact state-space
estimation of currently useful parameters by marginalizing out past estima-
tions (e.g. past camera locations) so that less computations and memory are
required. In doing so, artificial correlations between parameters, e.g. estimated
feature positions, have to be produced since their current position estimations
depend on common past camera locations (when they were measured in the
first place) that now have been removed from memory. Note that these corre-
lations were non-existent at the moment of measurement, refer to the filtering
graph in Fig. 5.2. Even though these correlations can be rapidly processed if the
number of features is low, the complexity of the algebra of non-sparse matrices
(full of correlations) is cubic in the number of features, which rapidly renders
filtering approaches ineffective as cameras gather many more features than 2-D
scanners. This could be avoided if the original measuring locations were still
being considered, leading to a sparse graph of constraints. It is precisely the
algebra of sparse matrices that is fast to solve after all.
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From this, a different paradigm for the back-end of V-SLAM arose: graph-
based nonlinear optimization in near-realtime. The authors of the seminal work
PTAM in Ref. (Klein and Murray, 2007) utilize the well-known optimal algo-
rithm for concurrent estimation of scene structure and camera motion called
bundle adjustment (BA) (Triggs et al., 1999). The basic idea was first formu-
lated by Lu and Milios in (Lu and Milios, 1997), by which all motion data and
measurements can be represented as a stochastic graph of nodes and edges (in
V-SLAM: camera and feature locations and measurements, respectively). The
goal is to find an optimal spatial configuration of the nodes that agrees with the
constraints provided by the edges, by means of probabilistic inference (usually
a nonlinear optimization). BA is known to be unsuitable for real-time esti-
mation. However, the novel nature of off-the-shelf hardware featuring multiple
cores for parallel computing gives the opportunity to perform BA in a real-time
context: By computationally separating front-end and back-end calculations,
BA can readily perform at lower rate without affecting local tracking perfor-
mance at the front-end. It turns out that BA is less affected by both of the
limitations of the aforementioned filtering methods. Still, its complexity lin-
early increases with the number of measurements and is cubic with the number
of frames, which can quickly become prohibitive. It has been shown that, in
the context of real-time SLAM, gathering many features per frame is preferable
to processing many frames with less features, close in time (Strasdat et al.,
2010b). Therefore, the authors proposed a variant of BA called keyframe-based
BA (kBA) (Klein and Murray, 2007; Mouragnon et al., 2006), which selects, in
a heuristic way, the most informative frames to consider, see Fig. 5.2 (c). kBA
can be considered as an outstreched sliding window BA approach aiming at a
fair distribution of computing power in space. If the number of keyframes is
low, its complexity is effectively quadratic in the number of frames.

(a) Actual measurements (b) Filtering representation (c) Keyframe-based BA
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Figure 5.2: Filtering approaches (b), motivated by the Markov property, marginalize out past
measurements (a) producing artificial correlations; keyframe-based approaches (c) avoid doing
so discarding frames with lower information content.

Of course, static, regularly-spaced keyframes do not sort well with the het-
erogeneous nature of V-SLAM in mobile systems. In the spirit of kBA, more
flexible approaches arised that focus resources on different parts of the state
space. Since there are many more features than frames, pose-to-pose graph-
based optimizations like FrameSLAM perform well in large-scale by marginal-
izing out feature locations (Konolige and Agrawal, 2008; Strasdat et al., 2010a).
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Marginalization may come at a cost of lower estimation accuracy if the opti-
mized poses deviate too much from their initial estimations where marginaliza-
tion took place. By formulating the problem in terms of relative transforma-
tions, the authors alleviate some of these effects. Another successful approach,
called RSLAM, avoids computation by sticking with a topological representa-
tion of the localization problem (Mei et al., 2010), leaving metric reconstruction
aside. By using a continuous, relative representation of the camera’s trajectory,
BA computation becomes largely sparse (see RBA in (Sibley et al., 2009)),
which is especially efficient e.g. when closing large loops. In general, V-SLAM for
mobile systems is a broad area where engineers ought to set up a task-oriented,
hybrid algorithm combining different methods featuring e.g. local metric accu-
racy in realtime and robust loop closing on a topological representation, see
Refs. (Strasdat et al., 2011; Clipp et al., 2010; Lim et al., 2011). It is worth
mentioning that filtering methods are not out of the race as they are believed
to have a niche in systems with low resources and smaller map size. They can
also take part in hybrid algorithms during Euclidean feature initialization or
local tracking within the front-end, where by the way their explicit covariances
can be of use to improved feature matching, see (Chli and Davison, 2008).
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5.3 Design Considerations for Visual Pose Tracking
in Realtime

Three major requirements arise for 3-D modeling using the self-referenced DLR
3D-Modeler: 1) real-time capability for the methods to supply motion esti-
mation, 2) high positioning accuracy as required for 3-D modeling (compared
to robotic manipulators or tracking systems plus their corresponding hand-eye
transformations),5 and 3) time-invariant estimations, meaning that repeated
scans should provide the same (high) accuracy irrespective of the scanning
time.

In the light of these requirements, three major consequences follow: First,
real-time capability implies both that motion estimations should be regularly
performed within e.g. 40 ms (25 Hz) and that this should hold all the time, i.e.,
irrespective of the motion history; we support this requirement on efficiency
by the choice of a feature-based approach where the algorithm processes nat-
urally salient, local regions of the images—recall Section 5.2.4-I. Furthermore,
the requirement on constant efficiency irrespective of motion history merges
with the requirement on time-invariant precision mentioned before, and points
at the selection of a non-filtering approach for sequential pose tracking—refer
to Section 5.2.4-III. Stochastic filtering approaches use knowledge of modeling
errors (e.g. noise in image processing or uncertainty in the motion model) in
order to increase precision. This feature is most relevant if that extra accu-
racy is really required; in fact, requirement #2 demands high accuracy for the
system. However, it turns out that we are capable of highly accurate 3-D recon-
struction of features on the scanning area by feature-based stereo vision, which
yields highly accurate structure; this in turn allows for accurate pose tracking
without the need for stochastic filtering. By using feature-based stereo vision,
the algorithm only processes the strictly required 3-D structure information for
accurate 6-D localization—extensive 3-D modeling is left for concurrent ope-
ration of the other sensors. The hereby achieved efficiency sorts well with the
present paradigm of multithreaded, efficient computing.

This rationale (cf. Fig. 5.4) leads to the development of a feature-based,
non-filtering pose tracking algorithm that requires occasional stereo initializa-
tion of natural features and monocular tracking of these features over time.6

Monocular tracking yields 2-D motion of salient features in the image stream.
Since stereo vision provides the 3-D geometry of these features, their 2-D mo-
tion is now solely dependent on perspective projection, i.e., the (static and
known) magnifying characteristics of the camera and its motion in 6 degrees
of freedom (DoF). In order to extract camera motion I opt for an efficient so-
lution to the relative pose estimation problem: the Visual-GPS method first
presented in (Burschka and Hager, 2003), see Fig. 5.5. In addition, feature ini-

5 Typical accuracies for robotic manipulators are σθ<0.1◦ and σp≈0.5mm; for IR tracking
systems σθ ≈ 0.25◦ and σp> 0.5mm. The accuracy of the IR tracking system in orientation
depends on the constellation of markers and is very limited.

6 The features are supposed to be in rigid coupling; thus, in general, deformable objects or
dynamic scenes are prohibited. In reality, moving objects are tolerated as a by-product of the
robustified approach that will be presented in Section 5.4.3.
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tialization and loop closing have to be governed by a data management scheme
at a higher level, see Section 5.4.3 and Fig. 5.3. Crucially, feature tracking data
are being stored, which enables intensive nonlinear optimizations at eventual
loop closures, see Section 5.4.5.

Real-time
capability

High accuracy

estimations

Instantaneous
   efficiency

Time-invariant
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filtering

non-filtering

feature-based
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Figure 5.4: Requirements , implications, and consequences.
�
 �	-

Note our accordance with the graph-based optimization paradigm in SLAM
of reducing DoF in high-rate pose tracking for better performance, see Sec-
tion 5.2.4-III. PTAM reduced them from 6+3 ·N in general SLAM (N is the
number of features) to 6 in PTAM (local pose tracking), estimating further DoF
(mapping) and absolute motion in a concurrent thread, at lower rate, from se-
lected keyframes. In our case mapping also relies on keyframes, but substitute
repeated bundle adjustment by accurate, feature-based stereo vision. The latter
is computationally cheaper and, furthermore, contributes absolute scaling—a
prerequisite in 3-D modeling. Of course, in the event of loop closures, structure
can be globally optimized by graph-based nonlinear optimization techniques,
see Section 5.4.5.

5.4 Visual Pose Tracking with the DLR 3D-Modeler

In this section I present novel methods required for visual pose tracking of the
DLR 3D-Modeler from its own images, in realtime. By doing this, concurrent
3-D data acquisition and registration is possible without the need for external
reference systems, which signifies a remarkable improvement in flexibility and
cost of the system. Taking the multisensory capabilities of the DLR 3D-Modeler
into account, the methods have been specially tailored not to actively affect the
scene nor, by implication, other 3-D sensors. In order to ensure mobility, the
computational complexity of the algorithms has to be especially low for unre-
stricted concurrent operation of the other 3-D sensors on the same hardware.

Visual-GPS
Feature-based stereo vision

Monocular tracking
pose

Figure 5.5: Feature-based stereo vision and monocular tracking serve Visual-GPS, which pays
out with camera pose estimations.
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5.4.1 Accurate Structure Estimation by Stereo Vision

Accurate knowledge of the sparse scene structure is a grounding pillar of this
approach, as it increases efficiency and accuracy of local pose tracking. In
addition, 3-D modeling requires accurate knowledge of the scene scale as well
as passivity w.r.t. the scene, i.e., the inclusion of artificial landmarks in the scene
should be avoided. These requirements point at feature-based stereo vision for
accurate scene structure estimation.

Conventional, sparse feature-based stereo matching relies on computationaly
expensive Harris affine and DoG feature detectors that deal with affine trans-
formations (Marr, 1982). In our case of parallel cameras on a short baseline,
however, affine distortion can be neglected, which leads to the same assump-
tions of Shi and Tomasi in (Shi and Tomasi, 1994): Good features to track are
extracted from the main camera image. Next, a larger number of features are
extracted from the second image. Correspondence search is now restricted to
a few locations within the epipolar band, which is also limited in disparity to
obtain useful features on the near scene, refer to Section 4.2.2. Gradient de-
scent optimization yields sub-pixel accurate feature matching, and the match
with smallest difference in gradient patches is chosen. Feature triangulation is
then performed by linear least squares and tested for consistency. Expected
accuracy levels by stereo vision in our application domain are shown in (Strobl
et al., 2009a) and in Section 4.2.6.

Note that this feature initialization process cannot be performed in real-
time; I opt for using a separate computing thread while concurrently tracking,
in monocular, already initialized features in the former thread (in monocular)
so that pose tracking is not interrumpted. Of course, at the very first initial-
ization step no features are available and pose cannot be delivered. Here it
is still necessary to monocularly track the potential features until their corre-
sponding projections in the stereo image are found and triangulated, in order
to seamlessly bootstrap the feature tracking algorithm presented next.

5.4.2 Efficient Monocular Tracking of Distinctive Features

The pose tracking algorithm basically compares a known set of 3-D features (re-
sult of last section) with their current monocular projections—with due regard
to correct feature-to-projection correspondences. In order to correctly establish
correspondences, two approaches are possible: global feature tracking searches
for their appearance (e.g. a 2-D descriptor patch) within the whole image, whe-
reas local, sequential feature tracking looks for them locally, in particular spots
of the image after tracking them ever since their 3-D stereo initialization. I
opt for the latter option, which is on the premise that features slightly move in
successive images, which holds if the camera motion is moderate.

Both the already presented stereo-based feature initialization step and mo-
nocular tracking in this section are based on the KLT feature tracker (Tomasi
and Kanade, 1991) owing to its potential efficiency and robustness. The imple-
mentation at (Birchfield) was extended for more efficient and robust operation
in resource-limited platforms Mair et al. (2010b): First, convolutions (smooth-
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ing and gradients calculation) are applied locally around expected feature loca-
tions, which speeds up tracking especially in high-resolution footage. Second,
good features to track (Shi and Tomasi, 1994) are selected on sub-regions of the
image so that features are better spread. Third, the image processing functions
within the multithreading library Integrated Performance Primitives (IPP) by
Intel R© are being extensively used. The fourth improvement concerns the pre-
dictive estimation of feature search areas in order to minimize computation and
support tracking robustness.

Sequential feature tracking is a predictive feature search method that ex-
ploits probabilistic priors on their expected image projections in order to know
where to focus processing resources in each image. These prior distributions
ultimately depend on the 3-D location of the features and on the camera mo-
tion. Camera motion can be estimated from past measurements and further
predicted using e.g. a motion model. 3-D structure, camera past motion esti-
mation as well as its present motion model may however differ from reality to
some extent, translating into “gated” image regions where each feature is ex-
pected to lie according to priors, see Fig. 5.6. The feature tracker seeks feature
appearance matches within these bounded regions, hereby delivering temporal
image displacements of features—keeping track of correct data association.

t-1

t

1st pyram.

Last projection

Current projection

Search
area

transl.

rot.

(100 x 100 p)

2nd pyram.

(-40 ms)

Figure 5.6: KLT tracker with big search area due to large expected displacements. Two levels
of pyramidal representation are shown.

At close range, translation and rotation potentially cause projection displa-
cements of similar size (the rotational component is dominant at long range).
Displacements may add up to long distances (e.g. search areas of 100×100 pix-
els) that are beyond the real-time capabilities of the regular KLT tracker, even
in its pyramidal implementation (coarse-to-fine matching, see (Bouguet, 2000)
and Fig. 5.6). The pyramidal implementation applies the original implemen-
tation’s gradient descent search also to coarser resolutions (higher pyramidal
levels) of the original image pair—for conveniency, pyramidal levels differ in size
at least by powers of two (octave steps). Matching at lower-resolution helps in
the predominant case where, at original resolution, the search region is bigger
than the ’basin of attraction’ of the matching function, which depends on the
chosen size of the feature template (typically between 7×7 and 11×11 pixels).
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The use of similar-sized patches in lower-resolution images implies bigger, vir-
tual ’basins of attraction’ at the original resolution, which aim at the size of
the original search region. By sequentially searching into lower pyramidal levels
(higher-resolution images), absolute convergence is in theory guaranteed if the
matching precision at the higher level is higher than the limits of the ’basin of
attraction’ at the lower level search—for all pyramid levels. The algorithm ide-
ally ends up matching correctly at the lowest level—and matching is finished.
Two significant limitations may apply:

• The bigger the search range, the more pyramidal levels have to be created.
This can render tracking computationally too expensive—especially with
a large number of features.

• Features following the Shi-Tomasi criterion are good features to track at
the resolution where they were selected in the first place. At lower reso-
lutions this does not necessarily hold anymore (distinctive small corners
will attenuate and potentially disappear).

In fact, hand-held operation of the DLR 3D-Modeler can be highly dynamic
and a simple motion model will not be able to narrow down feature search areas
to admissible sizes. Therefore, both limitations apply.

In general, it is possible to lay out optical flow prediction schemes at different
complexity levels (see Fig. 5.3):

1. Extrapolation of the last measured (̃ ) feature projections f̃ in time; cur-
rent estimated (̂ ) projections are their last measured projections, i.e.,
f̂ t, f̃ t−1.

2. Extrapolation of the 2-D displacement (optical flow) of the last projec-
tions, i.e., d̂t, d̃t−1 = f̃ t−1−f̃ t−2.

3. Extrapolation of the last camera 6-D motion, assuming either constant
velocity or acceleration.

4. IMU-assisted camera motion prediction at time t using the last estimated
camera motion at t−1 together with the integrated IMU outputs (rota-
tional rate and linear accelerations) from time t−1 to t.

5. IMU-assisted camera orientation prediction together with optical flow-
based translational extrapolation.

6. Individual feature displacement prediction by sequential Active Matching
(Chli and Davison, 2008).

The optical flow prediction schemes that best perform in the case of general
motion of the DLR 3D-Modeler are #4, #5 and #6. Since schemes #5 and
#6 deliver similar accuracy to scheme #4 at lower cost, the formers are to be
preferred and will be explained next.
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Hybrid feature displacement prediction leveraging an IMU (optical
flow prediction scheme #5)

In order to improve accuracy in feature displacement estimations (and as a
result reduce search areas in size), the user may opt for improving camera
motion estimation by rigidly attaching an IMU (scheme #4). Reduced search
areas make KLT tracking more efficient, hence feasible in the presence of broader
motion bandwidth.

Inertial sensors are being extensively implemented in vision systems because
they perfectly complement off-the-shelf cameras both in measuring rate and in
temporal precision: On the one hand, regular cameras take about 25 images per
second and estimations from their images are, in principle, equally accurate all
the time; on the other hand, IMUs yield data at kHz rates but their readings
drift in time—they are only accurate for the short term. I am using interleaved
IMU data to support the prediction step of feature projections.

Introducing an IMU in the system entails, however, costs and extra weight.
In addition, careful synchronization and extrinsic calibration are critical. I
propose an alternative scheme #5 that deskills this problem.

Even though translations and rotations are not commutative in general,
their effects on feature projections are clearly differentiated: camera rotations
cause projection flow irrespective of their range w.r.t. the camera, whereas
camera translations only have a measurable effect at close range. Since the
DLR 3D-Modeler operates at close range, both motion aspects will affect their
optical flow. In fact, experiments show that jerky handling of the device entails
speeds of up to 75 ◦/s (interframe 3 ◦ at 25 Hz) and 0.5 m/s (interframe 2 cm),
which may yield 40 rotational and 50 translational pixels interframe optical flow
at a typical range of 30 cm. Both components are potentially about the same
size and neither of them should be neglected, see Fig. 5.7.

{411, 309}
{447, 291}

rotat. flow
trans.
flow

Figure 5.7: Feature displacement in the same image area in two consecutive images. A feature
moves from {411, 309} to {447, 291} a distance of 40.2 pixels within 40 ms. 37 pixels are due
to rotation, whereas 17 pixels stem from translation; some pixels cancel out.

Nonetheless, it is not the amplitude of the optical flow that is critical for
successful tracking, but the certainty of its prediction. This is why informed,
IMU-assisted predictions are more helpful than mere (uninformed) motion ex-
trapolations. It turns out that hand-held operation allows for much better
uninformed translational camera motion prediction than rotational. This is
because of the bulky body of the sensor: It is easier for the user to rotate it
with a facile twist movement than to linearly accelerate the whole sensor in
any direction. This fact translates into the following relevant circumstance:
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Translational feature displacements may be as big as the rotational ones, but
they vary much less in time or, in other words, they allow for more accurate
prediction by mere extrapolation.

In addition, many factors discourage developers from accessing translational
readings of the IMU: First, translation is given in the form of its second deriva-
tive, which calls for repeated integration and for maintaining a camera motion
model as well as an IMU model for its own drifts. Second, acceleration values
are noisier than rotational rate ones, even after integration. Third, the grav-
ity vector has to be estimated and subtracted all the time. Last, translational
camera motion depends both on the rotational rate and on the linear accelera-
tion readings of the IMU, whereas camera rotation directly corresponds to the
integrated rotational rate at the IMU because it is rigid body motion. What is
more, these relationships are defined by an external IMU-to-camera calibration
process, which can be very simple for the rotational component but complex
and prone to errors for the translational one (Fleps et al., 2011).

These considerations led me to a novel, hybrid optical flow prediction scheme
where the predicted displacements d̂t decompose into rotational and transla-
tional components: The rotational part d̃trot is an informed estimation from
the (integration of the) rotational rate of the IMU, whereas the translational
part d̂ttra is an extrapolation of the last translational optical flow d̃t−1

tra , for each
feature. The latter stems from the subtraction of the last, informed rotational
optical flow d̃t−1

rot from the last, actually tracked displacement d̃t−1 as follows:

d̂ttra, d̃
t−1
tra = d̃t−1− d̃t−1

rot = f̃ t−1− f̃ t−2− d̃t−1
rot . (5.1)

To round off, there exists another appeal for this approach: Feature flow
prediction now only depends on the last tracking results f̃ t−1 and f̃ t−2 as well
as on IMU rotational rate readings (both d̃t−1

rot and d̃trot); contrary to pose
tracking or motion model estimations, these measurements are characterized
by low noise level.

Of course, this hybrid scheme cannot be applied to temporarily lost features
(e.g. due to occlusions, blur or limited field of view). In this case, the prediction
scheme #3 takes over for that particular features until enough optical flow
information is accumulated—and the hybrid scheme seamlessly recovers control.

Feature displacement prediction by Active Matching (optical flow
prediction scheme #6)

Active Matching (AM) is a recent paradigm to feature tracking that yields
considerable advantages w.r.t. traditional methods. It follows from the crucial
observation that feature matching does not necessarily have to be a monolytic
2-D process, but might as well incur higher level estimations during operation,
see Refs. (Davison, 2005; Chli and Davison, 2008, 2009a) and Fig. 5.8. In
short, AM is putting feature matching into the loop of e.g. SLAM, performing
feature by feature matching search while updating the system state as well as
predicting measurement projections after every single feature matching process.
This is a “dynamic” optical flow prediction scheme that can be compared to
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covert attention in humans, quickly browsing for informative locations within
the image—contrary to overt attention linked to sluggish sensory saccades.

Image proc.:

State estim. : t-1

Match.
feature

Match.
feature

t

Match.
feature

Image proc.:

State estim. : t-1

 Matching
all features

t

(a)

(b)

Figure 5.8: Traditional methods (b) take priors on feature projections once, where image
projections are most uncertain. Active Matching (a) recursively updates (a representation of)
the state after single feature matching so that feature projection priors can be more accurately
estimated before a matching attempt starts (represented by the thickness of the arrows).

• Built-in global consensus. Instead of hypothesizing on correct data associa-
tion after a monolytic feature matching process (Neira and Tardós, 2001), AM
can readily walk down the sole correct hypothesis during feature matching by
alternation of single feature matching and subsequent state update—for all fea-
tures. In doing so, AM puts image processing into the loop of the search for
global consensus by not processing areas of the image where features are not
really expected in the first place. Feature matching will then be trapped in far
less matching ambiguities. In order to cope with residual mismatches due to
unavoidable image ambiguity, in (Chli and Davison, 2008, 2009a) the original
authors make use of a dynamic Mixture of Gaussians (MoG) representation.

• Less computation through less image processing. AM leads feature tracking
to process far smaller areas of the image. This is because of the paradigm shift
from matching between images to matching between an image and the state,
which is a far more informative description of the system history.

• Less computation through guided search. A stochastic representation along
with the use of information theory make it possible for AM to quantify potential
information gain. Some feature measurements will be more informative than
others; by taking them first, the overall, eventual computational cost will be
further reduced. Furthermore, this allows for anticipated termination of feature
matching at a point of diminishing returns.

• Estimation accuracy. Real-time algorithms are usually tuned to perform at
full capacity at the expense of e.g. a larger number of features being tracked, or
more accurate feature matching or pose estimation results. Therefore, in real-
time vision more efficient algorithms generally imply more accurate estimations.

The aforementioned aspects allow for more effective feature matching, but
this is not the whole story because they are not for free as two important
calculations must be repeatedly performed: First, the system state must be
invariably updated after every single attempt of feature matching.7 Second,
making guided search decisions on information-theoretic grounds is associated

7 A joint distribution on the expected feature projections may be used instead for efficiency
reasons (Chli and Davison, 2008, 2009a).
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with substantial computational costs. It is appropriate to question whether the
alleged information gain really merits the extra calculations involved, finally
yielding an overall more efficient algorithm.

It is worth noting that the aforementioned aspects are potential but not
compulsory; it is readily possible to take advantage of some aspects and not of
the others. For instance, since a large number of features skyrocket the cost of
making exact decisions on guided search, an alternative algorithm called Fast
AM (FAM) was proposed in (Chli and Davison, 2009a). FAM is cheaper than
AM by making approximate, non-optimal decisions. On the other hand, the
works in (Solà, 2007; Kaess and Dellaert, 2009) precisely employ guided search
for selective feature matching but do not update the state after single feature
matching.

In (Strobl et al., 2011) we make out our case for a non-stochastic version
of AM using accurate 3-D knowledge of the scene. We point to the fact that
accurate knowledge of the scene (Section 5.4.1) allows for higher accuracy in
pose estimation with the aid of even less features, which in turn renders the
overall stochastic treatment of AM and local pose tracking insignificant and
ineffective. In this section and in Section 5.4.3 I present feature and pose
tracking algorithms tailored to this observation, aiming at more efficiency whilst
accurate in their estimations.

Traditional AM in the context of SLAM is severely limited by the difficulty
in distinguishing 3-D scene and camera motion, with the result that many fea-
ture measurements are necessary to discriminate between them. What is more,
the expected projection areas remain uncertain, i.e., big in size. This is quite
the contrary in our case of accurate 3-D scene knowledge where immediate
inference of camera motion from a few feature displacements is possible. Fur-
thermore, all remaining displacements will only depend precisely on that newly
estimated motion. For this reason I assert that non-stochastic AM with known
structure is a best case scenario for AM, where eventual search regions can be
reduced outright.

The approach is as follows: We aim at rapid, full (6-D) camera motion
preliminary estimation using a minimal set of features thanks to our prior 3-D
knowledge of them. This estimation will be used to update priors on feature
projections yet to be measured. Only now very small residuals will allow for
extensive KLT feature tracking in a highly efficient way.

The minimal set of known features for unconstrained motion prediction in
6 DoF comprises 3 perspective projection correspondences of non-collinear 3-D
points—this was first described by Grunert in (Grunert, 1841). One of the
principal findings in Section 5.4.2 was that, at close range, translational and
rotational effects in feature displacements are potentially of similar size, but
translational effects can be accurately predicted using a constant camera velocity
model. From this I now propose reducing the required number of correspon-
dences for full motion estimation from 3 to 2 (1.5 actually) by predicting camera
translation from the motion model, so that only rotation (3 DoF) remains to
be estimated. We expect that potential translation prediction errors will not
corrupt this preliminary rotation estimation. My intention is that, after apply-
ing this preliminary motion estimation, the projections of the N−2 remaining
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features will fall within their respective ’basins of attraction’ of regular KLT
feature matching, e.g. 5 pixel radius. This rules out using expensive pyramidal
representations for N−2 matching processes. Note the potential significance of
such an achievement: By using AM, projection estimation errors are reduced,
for every remaining N−2 features, from potentially more than 50 to less than
5 pixels after two sole feature matching results, see Fig. 5.9. These last un-
avoidable minor residuals are consequences of the approximation concerning
translation propagation.

The dramatic reduction of image processing is here the biggest appeal for
using AM: Only two active features have to be extensively searched for (the
second one less extensively) and the remaining features are easy prey for the
regular KLT tracker. A second major appeal exists: Guided feature search
based on information theory is, together with state update, main overhead in
potential AM-related calculations (Chli and Davison, 2009a). Sensible guidance
of feature search is indeed advantageous in SLAM because some 3-D feature lo-
cations are more correlated than others (Chli and Davison, 2009b). However,
in our case of full map knowledge, all feature locations are equally (totally) cor-
related in SE(3), so that fair preliminary motion estimation can be achieved
by any feature pair used. Third, we expect small residuals within their ’basins
of attraction’ for N−2 features; therefore, most features are clear of data as-
sociation issues. These arguments consolidate my view of non-stochastic AM
with known structure as a best case scenario for AM.

• The KLT feature tracker with larger search regions. The KLT fea-
ture tracker is able to cope with larger feature search regions using pyramidal
representations of image patches, refer to (Bouguet, 2000; Mair et al., 2009) and
Section 5.4.2. However, this poses difficulties in efficiency and matching robust-
ness at higher pyramidal levels. In order to avoid the two limitations mentioned
in Section 5.4.2, I constrain the KLT tracker in the context of non-stochastic
AM: First, the height of the pyramidal representation is limited to one sole
subsampled level with decimation by a factor of two. Second, at the subsam-
pled level, I perform exhaustive template search by sum of absolute differences
(SAD) to half a pixel accuracy, followed by standard, sub-pixel accurate gradi-
ent descent search at the original resolution; I do not perform gradient descent
search at the subsampled level because the search region, even at that level, is
still much bigger than the template size, potentially leading to local minima.
Sequential, exhaustive template search by SAD using bigger templates may be
expensive, but it is very robust to ambiguities. These modifications only apply
to the initial set of two active features with big search areas.

• Preliminary motion estimation from two features. I present an algo-
rithm for interframe rotation estimation from two sequentially tracked features
at the current image frame It. This estimation R̂ptr, together with translational
propagation following a constant velocity motion model similar to Eq. (5.1),
yields tight priors on all other feature projections.
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The algorithm is detailed in Alg. 2 and Fig. 5.9. The choice of the active
features p and q is quite immaterial—provided they were sequentially tracked
in It−1 and It, and their templates at lower resolution are distinctive. I choose
the two most distant features in the image to avoid noise in the estimation of
the roll rotation R̂r. The pan+tilt rotation R̂pt is estimated (̂ ) from the first

active feature p. Together with R̂r they form R̂ptr.

Algorithm 2 Pose correction from two features.

Require: Last tracked features and last camera translation tt−1.
repeat

Pick first active feature p

Apply translation propagation: p̂ttra =proj
(

Cp̃
t−1−tt−1

)
Exhaustive template match around p̂ttra {wide search}

until reliable match p̃t {normally 1×}
Estimate minimal rotation (2 DoF): R̂

t−1, t

pt {Eq. (5.2)}
........................................................................................................................
repeat

Pick second active feature q

Apply translation propagation: Cq̂
t
tra =Cq̃

t−1−tt−1

Apply minimal rotation: q̂ttra+pt =proj
(
R̂
t−1, t

pt · Cq̂ttra
)

Exhaustive template match around q̂ttra+pt {narrow search}
until reliable match q̃t {normally 1×}
Estimate remaining rotation (1 DoF): R̂

t−1, t

r {Eq. (5.3)}
........................................................................................................................

Pick random validation set e.g. 1..5v

Apply translation propagation: 1..5
Cv̂

t
tra =1..5

Cṽ
t−1−tt−1

Apply rotation: 1..5v̂ttra+ptr =proj
(
R̂
t−1, t

pt ·R̂
t−1, t

r · 1..5Cv̂
t
tra

)
Validation by regular KLT tracker on 1..5v̂ttra+ptr {else restart}
........................................................................................................................

Apply transl. propagation to i
Cf̂

t

tra= i
Cf̃

t−1−tt−1, ∀ if ∈It

Apply rotation: if̂
t

tra+ptr =proj
(
R̂
t−1, t

pt ·R̂
t−1, t

r · iCf̂
t

tra

)
return updated feature projections if̂

t

tra+ptr for regular KLT.

From the discrepancy between the translationally propagated p̂ttra and the
first exhaustive matching result p̃t, the minimal rotation potentially responsible
for that displacement reads, in axis-angle representation,

(
ω = p̂ttra×p̃t, θ = ± arccos

(
p̂ttra · p̃t)

)
, (5.2)
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where pt = Cp
t/
|Cpt| and Cp

t is the 3-D location of p in the camera reference
frame SC at time t, thus p̃t is the direction in SC of the 2-D, actually tracked

feature p̃t. Eventually in SO(3): R̂
t−1, t

pt = exp([ω]×, θ) where [ω]× is the skew-
symmetric cross product matrix of ω.

From the second match q̃t the only remaining DoF can be estimated: the
roll rotation around the axis p̃t that relates the planes containing the estimated

projection q̂ttra+pt and the actual projection q̃t as follows:(
ω = p̃t, θ=± arccos

((
p̃t× q̂ttra+pt

)
·
(
p̃t×q̃t

)))
(5.3)

and the rotation matrix R̂
t−1, t

r is calculated as above.
Both pan+tilt and roll rotations yield:

R̂
t−1, t

ptr = R̂
t−1, t

pt · R̂
t−1, t

r , (5.4)

which is good estimate of the interframe camera rotation between t−1 and
t. Together with the last camera translation tt−1 it can be used to recompute
further feature projections. Note that R̂pt obtained from feature p was also
used for improved tracking of feature q.

Image proc.:

State estim. : t-1 +trans. prop.
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+roll
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Figure 5.9: Top: Pictorial schematic on the 2-D estimations involved. Two active features p
and q as well as the resulting estimation steps on a further feature v are detailed. The latter
is tracked using the regular KLT feature tracker. Bottom: Time evolution of state estimation
w.r.t. the image processing steps.

After successful tracking of features p and q I opt for tracking a random
subset of five of the remaining features in order to validate the rotation hy-
pothesis in case of mismatches or inaccurate translational motion propagation.
The validation features 1..5v are rapidly tracked using the standard, gradient
descent KLT tracker at the original resolution only. Valid hypotheses prompt
rapid, local matching of all remaining features if (typically 20 to 50), as in the
validation step.

Two types of errors may appear when searching for active features: First,
indistinctive matching templates at lower resolution or corrupted projections
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(e.g. occlusions). The frequency of these errors is minimized owing to sequential
matching, as they are best detected during matching itself—they are signalized
in order not to be further used as active features. Second, image ambiguity may
cause incorrect data association (false positives) even though exhaustive search
and sequential matching minimize that risk. The validation step mentioned
above detects this by checking consistency w.r.t. the state history (Neira and
Tardós, 2001; Kaess and Dellaert, 2009). If there is a discrepancy, the used
active features are signalized as unsuitable for AM; it is not worth the effort
involved in maintaining multiple hypothesis on this event, as ambiguity is re-
current on particular features and we only require two valid active features after
all. Both types of errors are however rare in regular operation. Since hypothesis
generation (tracking of p and q) is expensive, I opt for rigorous preemption:
one sole hypothesis will be generated unless the aforementioned errors appear.
In exceptional cases of multiple errors at the same image, the computational
overhead may exceed the time budget for matching (e.g. 20 ms). These occa-
sional peaks can be filtered out by making use of an image buffer, e.g., of the
last two images. This implies a latency of e.g. 80 ms, which is admissible in
most applications.

The sizes of the search areas for the two active features are empirically
based on worst case experiments at 25 Hz. They amount to circles of 50 and
25 pixels radii respectively. The second search area is smaller because R̂pt is
known. Typical matching times on a 2008 notebook equipped with an Intel R©

Core
TM

2 Duo P8700 processor are: for active feature #1 3.2 ms (50 p. radius)
or 2.3 ms (40 p.), for active feature #2 1.3 ms (25 p. radius) or 1.0 ms (20 p.),
standard matching of 5 validation features takes 0.6 ms, and the remaining
features require 1.7 ms (15 features) or 2.7 ms (20).

It is worth noting that this approach scales well with increasing frame rate
since it facilitates tracking through smaller active search areas—at constant
target motion bandwidth.

5.4.3 Real-Time Pose Tracking from Features Flow

In this section I present the methods used for real-time pose tracking of the
DLR 3D-Modeler, which rely on tracking of feature projections (last section),
together with their known 3-D geometry (Section 5.4.1). Assuming a rigid set
of 3-D points and static camera geometry, the feature projections flow is solely
caused by varying perspective projection, i.e., by varying pose of the camera
w.r.t. the scene. In this context, pose tracking basically works out camera poses
that match these feature displacements (optical flow), see Fig. 5.10.

Structure

Camera geometry

Camera motion

Optical flow

(Visual-GPS)
Pose tracking

Figure 5.10: Structure, camera geometry, and camera motion determine optical flow.
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The robust Visual-GPS

Visual-GPS (V-GPS) is an algorithm that solves the relative orientation prob-
lem iteratively, but efficiently (Burschka and Hager, 2003). After the determi-
nation of the orientation, the translation can be also estimated. The method
assumes a set of known 3-D points related to the initial camera reference frame
S0 (a set of n points 0Pi, i ∈ {1..n}). This sparse set can be constructed in
an arbitrary way—I use feature-based stereo as in Section 5.4.1. The exterior
orientation problem of the estimation of the following monocular camera poses
St w.r.t. that reference set 0Pi is now equivalent to the original relative pose
estimation problem—provided the correspondences between the points Pi and
their projections are known.

In order to solve the exterior orientation problem of St w.r.t. the set of
points 0Pi, an additional, tentative 3-D model tP̂i is generated at the current
frame St using both, the current 2-D projections of Pi as well as approximated
ranges to that points (from preceding estimations). The problem now reduces to
solving the absolute orientation problem between these two 3-D sets of points

0Pi and tP̂i, which is an approximate, orthogonal Procrustean problem that
can be solved in closed form using the singular value decomposition (SVD).
As relative translation and rotation are estimated separately, I first set the
origins of the sets to their respective centers of mass without modifying their
orientations, which yields 0P

′
i and tP̂

′
i . The relative rotation between the sets

corresponds to the relative rotation between camera reference frames S0 and St
and can be optimized (∗) by maximizing the trace of the inertia matrix of the
matched set:

tR
∗=arg max

R
trace(tR

T
tM) , tM =

n∑
i=1

tP̂
′
i 0P

′
i
T

.

Let (U, σ, V ) be the SVD of tM , that is UσV T = tM :

tR
∗=UV T ,

and the translation by subtracting centers of mass:

tt
∗=

1

n

n∑
i=1

tP̂i − tR
∗ 1

n

n∑
i=1

0Pi .

Since the tentative 3-D pointset tP̂i may differ from reality (0Pi), the final
solution is found iteratively, by concurrently optimizing the ranges of the ten-
tative model. The algorithm terminates whenever sufficient consistency with
the original set of points 0Pi is achieved.

The specifics of the implementation are:

• V-GPS is being sequentially applied, see Section 5.4.3.

• The set of 3-D points 0Pi is obtained by stereo vision at the initial refer-
ence frame S0 (Section 5.4.1) and is not updated due to its high accuracy.
Nevertheless, the robust formulation presented below can also suppress
erroneous instances.
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• Gross outliers in the estimation of the 3-D set of points or in their 2-D
monocular tracking may indeed occur, especially at close range (due to
repetitive background patterns, blur, occlusions, shadows, etc.). In order
to disregard them, I make novel use of a redescending M-estimator on
the residual Euclidean distances between matched 3-D points. Indeed,
when tracking rigid body motion, it is indicated to perform robustification
wherever the most complete model of the system be used, i.e., in our
case during 3-D pose tracking instead of 2-D feature tracking. I use the
biweight function of Tukey because of its continuous derivatives and its
handy weights. The modification concerns weighting the contribution of
each point to the inertia matrix of the matched set of points with

twi ∝ (1− tRi · tRi)2 if |tRi| < 1

twi = 0 if |tRi| ≥ 1

where tRi=(tR 0Pi−tP̂i)/s is the estimated normalized matching residual
for object point i at instant t before performing SVD, and s is the scale
of the inlier noise. In the end:

tR
∗=arg max

R
trace(tR

T
tM

R) , tM
R =

n∑
i=1

twi tP̂
′
i 0P

′
i
T
.

Further, the robustified method (RVGPS) not only neutralizes the effects
of outliers, but also signalizes them so that they can be removed from
memory.

• I use an efficient termination policy determined by a threshold on absolute
orientation correction.

Sequential, relative pose tracking

Following the concept in Section 5.3, an efficient pose-tracking algorithm should
adopt a frugal policy when taking advantage of stereo vision. This consideration
led me to treat 3-D structure for pose tracking as separate sets of 3-D points.
These are being triangulated once (cf. Section 5.4.1) and are used for local,
monocular pose tracking thereafter, until a new set of points takes over. This
is in contrast to tracking methods that dynamically triangulate new points, e.g.
(Cheng et al., 2006). In our case, it is only when closing loops that we reutilize
past sets of points. My approach is similar to visual odometry in (Nistér et al.,
2006), if only using AM instead of RANSAC, V-GPS instead of the 3-point
algorithm, and a more precise feature matching algorithm.

It turns out that the abovementioned “limitation” suits two present trends
in SLAM back-end design just fine: First, the reference frame for representation
of structure and motion is neither camera-attached nor absolute, but local in
the vicinity of the camera; this yields an advantage in terms of efficiency, see
(Moore et al., 2009). Second, the sets of triangulated points now represent a
natural way of spacing keyframes in the context of keyframe-based BA, refer to
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Section 5.2.4-III. Third, the relative pose estimation algorithm (V-GPS) regu-
larly makes use of the most representative images that offer biggest parallax for
triangulation—first and last feature projections, disregarding redundant data
in between (Strasdat et al., 2010b).

Fig. 5.11 depicts the standard operation of local pose tracking. In the case of
advanced flow prediction schemes, the tracked feature set is not always unique—
two sets are being tracked, in parallel, during handover frames in order for the
latter to accumulate feature displacement information that will in turn facilitate
feature displacement prediction in the following frames.

Stereo keyframe #1 Stereo keyframe #2Monocular
  tracking

Feature set #1 Feature set #2

RL RLL Motion

Figure 5.11: Standard operation of local pose tracking. Stereo vision is used in keyframes #1
and #2, and monocular tracking elsewhere.

Of course, individual feature losses may appear, and features regularly get
out of sight and void areas take their place. I treat short- and long-term losses
separately: Short-term losses are features that are lost by tracking but maintain
several fellow points of the 3-D set in track so that camera pose can still be
estimated. Monocular tracking will repeatedly try to recover these features
with the aid of the current pose estimation—unless RVGPS marked them as
invalid. Long-term losses are features that are deliberately abandoned because
their associated 3-D set of points becomes inadequate to the current vantage
point. In this event, either an inactive set of features is retrieved, or a new set
of 3-D features has to be generated:

Generation of new features sets: I command initialization as in Sec-
tion 5.4.1 whenever too few features of the current set are being tracked or
the set’s center of mass drifts outside the central area of the image and no
other inactive set lies within the field of view. As soon as generation is suc-
cessfully completed (and feature flow information is accumulated), I give up on
tracking past features. Since this will take some frames, initialization proceeds
concurrently in a separate computing thread. After that, only the new feature
set #2 is being tracked and the current, local relative pose estimation nowT

l2

will add to the relative pose l2T
l1 between the last keyframes (offset) as follows:

nowT
l1 =nowT

l2
l2T

l1.
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Retrieval of inactive features sets (local loop closure): Whenever the
projection of the centroid of an inactive set of points is more central than the
current one, and their view direction and range did not vary too much, all its
features within the current field of view are to be tracked again. Their predicted
projections are now solely based on the current pose estimation nowT

l1, thus no
extrapolation is needed, cf. Fig. 5.3. It is worth mentioning that, by referring
back to previous sets, potential pose drifts that may have arisen by leaping
onto newer sets necessarily disappear, which is another appealing property of
this approach compared to sequential dead reckoning (visual odometry) or even
filtering approaches, as they usually depend on the particular path history, or
even become inconsistent (Julier and Uhlmann, 2001).

Local, hybrid bundle adjustment

It is a peculiarity of 3-D modeling that new areas are continuously being ex-
plored and loop-closing events are rare. In this section, I focus on optimal
motion estimation without closing large loops, i.e., by dead reckoning (refer to
Section 5.2.4-II); in Section 5.4.5 I shall present a more complete optimization
in the event of final loop closing, e.g. after scanning all around an object.

While robust V-GPS in Section 5.4.3 provides a robust, fast relative motion
estimation from monocular footage by dead reckoning in realtime, it is still
advisable to perform optimal motion and structure estimation by minimization
of reprojection errors (i.e., BA) at handover stereo keyframes to further increase
accuracy. Following e.g. Refs. (Klein and Murray, 2007; Mouragnon et al.,
2006; Strasdat et al., 2010b), I opt for an efficient BA optimization disregarding
image frames in between selected keyframes (i.e., kBA). It is worth noting that
some information contained in these intermediate images is still being used by
sequential tracking for correct data association. Since in my approach all 3-D
features are measured locally, i.e., on a unique static reference frame defined at
keyframes, the global optimization of the covered dead reckoning motion can
be decomposed into independent sub-optimizations exclusively concerning one
reference frame along with its feature set. In detail, the information required
for a sub-optimization is confined to the stereo keyframe lIi∪rIi that initialized
the i-th feature set by stereo triangulation, along with the final, left monocular
image fIi that both, tracks the i-th feature set last, and coincides with the left
frame lIi+1 of the next keyframe (from which the following feature set #i+1 will
be initialized, see Fig. 5.12).8 This frugal, hybrid keyframe selection policy does
deliver high accuracy as both, initial and last tracking vantage points, are being
considered for every feature, maximizing their projected parallax. In addition,
the inclusion of stereo images serves to anchor global scale.

8 As kBA is only concerned with keyframes and not with timestamps, the right superscript
on variables refers now to the feature set being tracked and not to timestamps as before.



192 CHAPTER 5. VISUAL POSE TRACKING
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Figure 5.12: Data concerned in local, hybrid BA on feature set #i.

The novel formulation minimizes the sum of squared reprojection residuals
as follows:

Ω̂i
?=arg min

Mi∑
p=1

(
||lm̃i

p − lm̂
i
p(lp̂

i
p)||2

+||rm̃i
p − rm̂

i
p(lT

r, lp̂
i
p)||2

+||fm̃i
p − fm̂

i
p(liT̂

fi, lp̂
i
p)||2

)
(5.5)

where the optimized (?) parameters Ωi
? include the 3-D coordinates lp

i
p =

[lx
i
p, ly

i
p, lz

i
p]

T, ∀p∈N1, i≤Mi of the i-th set of Mi features w.r.t. the left camera

at keyframe #i, and the inter-keyframe transformation liT
fi of the left camera

frame between keyframes #i and #i+1. The residual is composed of estimated
(̂ ) reprojections lm̂

i
p=[lû

i
p lv̂

i
p]

T=proj(lp̂
i
p) and rm̂

i
p=[rû

i
p rv̂

i
p]

T=proj(rT
l
lp̂
i
p)

onto the left and the right frames at the initial keyframe of feature set #i,
respectively, as well as their last, final feature projections fm̂

i
p = [fû

i
p fv̂

i
p]

T =

proj(fiT̂
li

lp̂
i
p) at the left frame (remember that fIi, lIi+1). These estimations

are being subtracted from the actual measurements lm̃
i
p, rm̃

i
p and fm̃

i
p. The

transformation rT
l stems from the epipolar geometry of the stereo camera by

camera calibration (Strobl et al., 2005). Note that the projection function
proj() does not include lens distortion; for efficiency reasons, I opt for mini-
mizing undistorted reprojection errors and have to undistort actual, distorted
projections beforehand, e.g. lm̂p=undist(lm̂

d
p).

Note that global scale could also be anchored even if the projections rm̂
i
p

had not been included in the residual function, but considered ground truth
instead. However, I stress that the structure of the 3-D features pip does not
stem from selected, ground truth projections into an image (e.g. rm̃

i
p) in the

context of stereo vision, but from their rigid body geometry alone. In this
way, by releasing all three key projections the optimal 3-D solution will be
solely constrained by both, the rigid body assumption along with perspective
geometry. In addition, it is well known that full BA turns out to be faster than
any attempts to eliminate e.g. the structure parameters (Nistér et al., 2006).
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The hybrid optimization utilizes the nonlinear least squares optimization
function dlevmar der() (Lourakis, Jul. 2004), which implements the Levenberg-
Marquardt method. I am providing analytic Jacobians for improved perfor-
mance, see Eq. (5.6). Even though the Jacobians are always sparse, the small
size of the system of equations renders sparse optimization methods unneces-
sary. It is worth noting that minimal representations are used for unknown
rotations, specifically differential perturbations of Euler angles. In addition,
the residual function has been robustified in case of outliers.

∂(m̃i − m̂i)

∂Ωi
=


...

∂∆mi
p

∂Ωi

...


6Mi×(6+3Mi)

=
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i
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∗White boxes correspond to zero elements;
gray or black boxes to non-zero ones. (5.6)

By way of illustration, I go into detail about the calculation of the black
Jacobian element above:
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where
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fẑip
+ v0)

fx̂
i
p

fŷ
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lẑ
i
p

1


; (5.7)

β and v0 are part of the intrinsic parameters of the left camera, and ∆T̂ li+1

represents the estimated rigid body perturbation on the left camera pose at
keyframe i+1.

This method yields sub-millimetric corrections w.r.t. V-GPS on 3-D feature
locations pip and the relative pose liT

fi for every keyframe or feature set. Milli-
metric differences may arise on eventual loop closures after many keyframes, e.g.
when scanning all around an object. On balance, it turns out that this method
does not substantially improve the already accurate dead reckoning motion es-
timation by V-GPS. On the other hand, its computational cost remains low (2
to 5 ms)—roughly twice as long as V-GPS.

5.4.4 Appearance-Based Relocalization

Whenever

1. saccadic motion precludes sequential tracking,

2. the user browses outside a proximate scene, or

3. the cameras return to an area used before (loop closing) that has not been
tracked for a long time,

pose tracking accuracy gets too low for consistent KLT tracking to be warranted
anymore—even in its AM variant. Due to the richness of visual data, cameras
are ideally suited for recognizing similarity; appearance-based relocalization can
help to continue scanning on the original reference frame.

As mentioned in Section 5.2.4-I, there exist a number of operators, called
descriptors, that concern about the visual appearance of features in order to
be distinctive between features and invariant to viewpoint pose. In this work,
I choose the performant SURF features (Bay et al., 2008) in its original imple-
mentation, on stereo images. By using stereo images, the 3-D position of SURF
features w.r.t. the camera leftT

SURF can be triangulated at the same frame dur-
ing stereo initialization of the KLT feature set, where we obtained leftT

KLT, see
Section 5.4.1 and Fig. 5.13. By doing so, whenever 3 or more of these SURF
features (and consequently nowT

SURF) are found again, the location of the stereo
camera w.r.t. the original KLT feature set can be roughly estimated as follows:

nowT̂
KLT = nowT

SURF
(

leftT
SURF

)−1
leftT

KLT .
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Figure 5.13: SURF features are robustly detected in stereo and triangulated. From this fair
pose estimation nowT SURF, I estimate nowT KLT to support monocular 2-D tracking of known
KLT features. These SURF features bootstrap P3P pose estimation on KLT features to
increase pose precision (Grunert, 1841); for improved robustness, three different sets of three
features are being used. The best pose estimation allows seamless monocular KLT tracking
as in Section 5.4.2.

This estimation is far less accurate than sequential pose tracking using V-GPS,
compromising seamless transition to KLT tracking. I opt for using interleaved,
monocular three point perspective (P3P) pose estimation on KLT features for
increased accuracy. Feature matching is now on extended search regions due
to inaccurate SURF-based pose estimation, thus requires exhaustive template
matching similar to active features in Section 5.4.2. The procedure can be also
interpreted as a validation stage on candidate SURF-based hypothesis. In the
end, regular KLT tracking takes on sequential pose tracking on the original
reference frame—not without prior scaling and affine distortion of the features’
templates according to the current pose.

In detail, the P3P problem deals with the estimation of the positions of
three known points out of their monocular perspective projections (in our case
KLT features), i.e., the pose estimation of the set of points w.r.t. the current
vantage point. The direct solution to this problem is in the form of a fourth-
degree polynomial (Grunert, 1841). Solving for the polynomial roots involves
the computation of the eigenvalues of its companion matrix, which delivers up to
four real solutions (rigid body transformations). From these, I pick the one that,
in translation, is most consistent with the original SURF-based stereo solution.
I choose not to use a RANSAC scheme, both for efficiency reasons (feature
matching is expensive) and because we already have a fair pose estimation
in the first place. My heuristic approach is to obtain three independent P3P
solutions (out of three different triplets) and, again, choose the one that is most
coherent with the SURF-based stereo solution.

5.4.5 Global, Relative and Hybrid BA on Loop Closures

Loop closure events occur whenever former scene features that have not been
recently tracked are being revisited. These events present the opportunity to
greatly increase present and past pose tracking accuracy.

I distinguish between two types of loop closures: local loop closures can still
take advantage of metric information for improved performance (Section 5.4.3),
whereas global, large-scale loop closure ought to be independent of motion es-
timation precisely because its main objective is to correct inaccurate motion
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estimation in the first place. Global, large-scale loop closing may instead con-
cern about the projected appearance of features, which are still discriminative
in the face of unknown localization, see Sections 5.2.4-I. and 5.4.4.

Whatever the nature of the loop closure, it is indicated to subsequently
optimize structure and motion estimations in the light of the discrepancies
between expected and actually matched loop-closing features.

In the absence of loop closures, current measurements (projections) only
depend on their initial stereo keyframe and on the current relative pose w.r.t.
that frame, see dead reckoning in Section 5.4.3. In the event of loop closure,
however, current projections also depend on the camera motion history, i.e.,
on all relative transformations and stereo feature triangulations even since the
creation of the newly regained features, see Fig. 5.14.
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Figure 5.14: Skeleton of stereo keyframes 1..N when browsing around an object. During
monocular tracking of feature set #N , feature set #1 can be retrieved at images l,rI

N+1.
Depending on the distance traveled, loop closing occurs either by monocular tracking of KLT
features or with the help of stereo SURF features.

As a consequence, the optimal solution by nonlinear optimization consisting
in the minimization of squared reprojection residuals presents higher complexity
than the local optimization in Eq. (5.5). Now:
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i=j
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fN, lp̂

j
p)||2 (5.8)

where the parameters to be optimized Ω?=[Ωj..ΩN ] include all history of 3-D
features between the older feature set #j being found again, and the last tracked
feature set #N (i.e., N−j+1 feature sets in total), as well as the N−j relative,
inter-keyframe transformations between their respectives keyframes and the
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final local pose lNT̂
fN where the loop was closed (included in ΩN). In total, this

amounts to
∑N

i=j(3·Mi+6) parameters, compared to 3·Mi+6 in Eq. (5.5). Note
that, due to the non-convexity of the regular BA problem, I am optimizing over
(differential perturbations of) non-privileged, relative transformations in order
to avoid local minima (Strasdat et al., 2010a). Consequently, feature locations
and camera motions are both locally Euclidean, but globally topological; the
global Euclidean representation remains as a separate task, left aside e.g. for
the realtime meshing application to consistently visualize it in realtime, perhaps
augmenting it with the live image stream in Section 5.4.6.

The residual in Eq. (5.8) is composed of the accumulation of residuals ∆mi
p

in Eq. (5.5), now for every feature set i within the loop, as well as for the subset
R of features contained in feature set j that have been found again in projections

lr̃
j
p = [lN+1

ũjp lN+1
ṽjp]T, see Fig. 5.14. In matricial form, the number of equations

amounts to
∑N

i=j(2·3·Mi)+2·size(R), compared to just 2·3·Mi in the case of
local BA for dead reckoning in Eq. (5.5).

Optimization processes with system equations of this magnitude clearly ben-
efit from sparse optimization methods if their Jacobians are sparse. Indeed,
zero elements are pervasive in the Jacobian of this system of equations w.r.t.
the abovementioned parameters:

∂(m̃− m̂)

∂Ω
=

Ωj︷ ︸︸ ︷· · · ΩN︷ ︸︸ ︷


∂∆mj

∂Ωj 0 ←mj

. . .

0 ∂∆mN

∂ΩN ←mN

∂∆rj

∂Ω
← rj

(5.9)

where

∂∆rj

∂Ω
=


...

∂∆rjp
∂Ωj · · · ∂∆rjp

∂Ωk · · · ∂∆rjp
∂ΩN

...


∂∆rjp

∂Ωj
=

[
02×3(p−1) 02×3(Mi−p)

]
∂∆rjp

∂Ωk
=

[
02×3Mi

]
∂∆rjp

∂ΩN
=

[
02×3Mi

]
(5.10)

∗White boxes correspond to zero elements;
gray or black boxes to non-zero ones.

I now go into detail about the calculation of the black Jacobian element
highlighted above concerning features within R that have been tracked again.
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The estimated reprojection lr̂
j
p of these features from feature set #j onto the

left camera frame at keyframe #N+1 is a function of both, the 3-D structure lp̂
j
p

of the original set #j and the current left camera pose ljT̂
fN that, in turn, is a

function of all local transformations by dead reckoning lying between keyframes
#j and #N+1. Here the calculation of its partial derivative w.r.t. the first
Euler angle lα

k of the differential perturbation ∆T̂−1
lk

at the left camera frame
of keyframe #k is detailed:
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ṽjp−lN+1
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j
p

ljẑ
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. (5.11)

These few features are of extreme importance, as they produce the only
residuals bringing about loop-closing information—else global optimization equals
repeated local optimization by dead reckoning in Eq. (5.5).

In reality, the formulation explained above corresponds to the ideal case
where all features tracked at loop closure have also been tracked at their tri-
angulation frame, i.e., fm

j
p exists and is included in both Eqs. (5.8) and (5.9);

however, features that were not succesfully tracked until keyframe #j+1 can
readily be found again when closing the loop. In that case (approximately 15%
of the detected features), the residual Eq. (5.8), the optimization parameters
Ω, as well as the Jacobian in Eq. (5.9) have to be extended to include their
initial projections lm

j
p and rm

j
p as well as their 3-D locations.

My hybrid optimization utilizes the nonlinear, least squares sparse opti-
mization function sparselm dercrs() detailed in (Lourakis, 2010), as well as
supernodal sparse Cholesky factorization by CHOLMOD (Chen et al., 2008)
and graph partitioning by METIS (Karypis and Kumar, 1999) to observe both
primary and secondary sparsity structures of the Jacobian in Eq. (5.9), see
(Konolige, 2010). I am providing the abovementioned, full analytic Jacobian in
CRS fomat for improved performance. Of course, common derivative compo-
nents are being stored instead of recalculated. By way of example, timekeeping
improves from 94 sec (standard BA with full analytic Jacobian) to between
750 ms and 1.4 sec using its sparse variant. Not providing analytic Jacobians
proves slower by a factor of 2 or 3. Global BA is performed in a separate com-
puting thread in order not to disrupt concurrent real-time pose tracking and
3-D modeling. In Section 5.5 I show extended loop closure experiments where
global BA compensates for substantial dead reckoning errors of several cm in
the course of obtaining consistent topology of the map.
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Apart from the novel, hybrid nature of my approach to anchor global scale
by stereo vision in selected keyframes (which incidentally deskills local pose
tracking), my work differs from similar relative implementations in the general
SLAM literature in Refs. (Mei et al., 2010; Sibley et al., 2009; Konolige and
Agrawal, 2008; Strasdat et al., 2010a; Strasdat et al., 2011; Clipp et al., 2010;
Lim et al., 2011) since accurate motion tracking is here required globally, for
the whole motion history, whereas in SLAM metric accuracy is encouraged only
locally, as global topological integrity suffices (Sibley et al., 2009).

5.4.6 Real-Time Surface Reconstruction and Correction

Manual 3-D scanning requires visual feedback to the user for timely and success-
ful acquisition of whole 3-D models. For this purpose we designed a streaming
surface reconstruction method that delivers realistic 3-D models in-the-loop,
concurrently with 3-D acquisition of unorganized range data as well as pose
tracking.

Object

Range sensor

Pose
tracking

Streaming surface reconstruction

3-D model

Human       operator

  Manual
scanning

  Normal
estimation

   Mesh
generation

Visualization

Figure 5.15: 3-D modeling pipeline including fusion of range and pose data, online surface
reconstruction by normal estimation and mesh generation, and 3-D model rendering for visu-
alization.

In detail, the real-time method iteratively generates a dense and homoge-
neous triangle mesh in Euclidean space by inserting sample points from real-
time data streams and motion readings from e.g. visual pose tracking, refining
the surface model locally around each new sample point, see Fig. 5.15. A dy-
namic spatial data structure using an extendable octree ensures prompt access
to growing pointsets as well as continuously updated meshes without restric-
tions to object size or number of sample points, see (Bodenmüller, 2009). The
generated model can then be accessed at any time, e.g. for visualization and
optional live image stream registration, see Fig. 5.16.
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(a) (b) (c)

Figure 5.16: Online visualization by augmented triangle mesh (a) or surface model (b), leading
to a textured model (c).

(a) Picture (b) Front triangle mesh

Figure 5.17: Resulting mesh from a front scanning sweep.
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5.4.7 Summary

This section presented the required algorithms to provide pose tracking es-
timations in realtime out of monocular tracking of salient features by using a
robust V-GPS algorithm in the context of an extended KLT feature tracker; the
features have been accurately reconstructed in 3-D by one-time stereo vision.
Perhaps the major challenge in this context is tracking features in close-range;
unlike in the case of long-range tracking, close-range feature tracking is affected
by translations to a similar extent as by rotations. This is aggravated by the
fact that the DLR 3D-Modeler is a hand-guided device prone to jerky motion.
My novel optical flow prediction scheme #5 (Strobl et al., 2009a) leverages the
rotational readings of an IMU for improved estimation of the displacement of
features in between frames. An alternative method, coined optical flow predic-
tion scheme #6 (Strobl et al., 2011), works without IMU readings by casting
the KLT feature tracker unto the Active Matching (AM) paradigm, achieving
robust feature tracking at an even higher motion bandwidth.

3-D modeling by browsing an object is largely an exploratory task where
loop closures are rare. Hence pose tracking in realtime largely relies on dead
reckoning, which is inconvenient as visual odometry invariably accumulates
drifts. The ultimate goal of 3-D modeling is, however, the complete reconstruc-
tion of objects e.g. by scanning all around the object. This event always involves
(at least) one loop closure that provides the opportunity to greatly increase
present and past pose tracking accuracy so that the final 3-D model will excel
in accuracy irrespective of prior motion drifts by visual odometry. It is worth
noting that visual odometry is still perfectly useful during the browsing period
as it is mainly used to provide live image augmentation and timely meshing
results for the user to be fully aware of the fulfillment of the 3-D modeling task,
and secondarily to support rapid, local loop closures. For these reasons, in this
work I also introduce graph-based nonlinear optimization of the tracked pose
by minimization of residual reprojection errors. In the context of the current
localization framework, I opt for a hybrid, keyframe-based bundle adjustment
(kBA) algorithm on stereo keyframes and monocular views because kBA is al-
legedly the most accurate and efficient option to tackle this problem in the face
of higher number of features and keyframes (Strasdat et al., 2010b). It is by
the relative/topological nature of the approach that the eventual optimization
will be sparse, yielding rapid optimization of the whole tracking history. Loop
closing as well as relocalization in the case of interrumpted feature tracking are
supported by the use of appearance-based SURF descriptors and rapid, coarse
relocalization using a bank of parallel three-point-perspective pose solvers. In
the end, highly accurate motion history is delivered to the meshing algorithm
that is able to refine the whole object model using both, accumulated range
data and newly optimized motion, within a second.

I learned that bundle adjustment (BA) for dead reckoning estimation hardly
improves accuracy compared with V-GPS. In the case of loop closures, however,
the use of BA makes large pose corrections possible. In addition, I learned that
it is crucial to consider the sparsity of the pose-graph optimization problem for
BA to perform in a timely manner.
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5.5 Experimental Validation

In this section I first describe the operation of the proposed visual pose tracking
methods by detailing on a challenging sequence. Second, the accuracy of the
approach is addressed by assessing the consistency of loop closures as well as
by pre-defined motions in concert with a rigidly attached robotic manipulator
that acts as ground truth. Third, the computational efficiency is evaluated. For
a more descriptive demonstration please refer to the supplementary videos—
during scanning, hectic movements were intentionally performed to prove the
robustness of the system.

5.5.1 Operation

I illustrate the operation of the proposed methods both, with the assistance of
a synchronized and calibrated IMU for resilient feature tracking, and without
it, by following the Active Matching paradigm, refer to Section 5.4.2. May I
suggest that the reader retrieves the processed video streams from the Internet
that show the look and feel of visual pose tracking of the DLR 3D-Modeler at:

• http://www.robotic.de/Klaus.Strobl/iros2009,

• http://www.robotic.de/Klaus.Strobl/icra2011.

The challenging sequence is composed of 625 images acquired at 25 Hz for a
period of time of 25 s. The hand-held 3D-Modeler targets a 40 cm tall sculpture
at a range of approximately 35 cm, sweeping up and down the figure three times
similar to scanning it. Both the distance to the sculpture and the rough view
direction to it are maintained. However, during that time the camera suffers
from very strong, saccadic movements, which create an optical flow the size
of 40 pixels. The IMU readings state maximal orientation changes of 2.5◦ and
translations of up to 1 cm (i.e., 62◦/s and 0.25 m/s) between images (i.e., within
40 ms).

The visual tracking method presented in Section 5.4.2 sequentially localizes
the camera w.r.t. eight different sets of points in realtime. The sequence is
initialized by a set of 3-D points Set#1, which is composed of 25 points and
this is also the average number of features in the following sets. Fig. 5.18 (a)
shows Set#1. The camera moves downwards, see Fig. 5.18 (b), and five further
sets of points are initialized, one after another. Then the camera reaches its
lowest position and starts moving back to the top. Here the algorithm does
not create new sets of points but detects former ones following the policies in
Section 5.4.3, see Fig. 5.18 (c), and leaps onto them. Fig. 5.18 (d) traces these
changes during the entire sequence; note two additional sets at images number
#298 (Set#7) and #349 (Set#8). In the end, the camera returns to the initial
area where the algorithm refers back to Set#1.

http://www.robotic.de/Klaus.Strobl/iros2009
http://www.robotic.de/Klaus.Strobl/icra2011
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Img. #8

Img. #26

Img. #118
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Figure 5.18: (a) Image #8 tracking Set#1. (b) Image #26 after generation of Set#2, changing
reference. (c) Image #118 while retrieving Set#4. (d) Reference sets history during the
experiment.

The behavior defined by the policies in Section 5.4.3 yields successful track-
ing all the time. It seamlessly leaps from current reference sets onto former ones
(local loop closure), which implies bias-free round-scanning, i.e., the positioning
accuracy at the end of the sequence equals the accuracy at the beginning.

The tracking method based on the Active Matching paradigm presented in
Section 5.4.2 does a similar job without the help of an IMU. Fig. 5.19 displays
a typical frame highlighting both active features, the validation set, as well as
remaining features. The authors suggest that the reader retrieves the processed
sequence from the Internet for in-depth examination.

Active feature #1
Active feature #2

Validation
features

expected
found

(radius 40 p.)
(rad. 20 p.)

Figure 5.19: Image frame including two active features, three validation features, and a number
of current and past regular features.
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5.5.2 Positioning Accuracy

Loop closing is the most natural option for assessing pose tracking accuracy,
as pose estimation is possible w.r.t. both, original and present features, imme-
diately after detection of the closure. Subject to the original and the present
vantage points w.r.t. the original features, pose estimation w.r.t. that features
is truly very accurate, which virtually acts as ground truth to ongoing dead
reckoning estimations.

Fig. 5.20 depicts a complete scanning procedure around a 50 cm tall sculp-
ture. A natural browsing procedure asks for prolonged scanning sweeps and is
characterized by the absence of loop closure events (neither local nor global),
i.e., only dead reckoning estimation is possible. The video at http://goo.gl/

1Bx6eE shows 4 sweeps featuring a roll angle of 90◦ between them, a total length
of 320 cm and an accumulated rotation of 360◦, which certainly bring about
dead reckoning errors higher than the tolerated for accurate 3-D modeling. In
this event, we close the motion loop as explained in Section 5.4.5, which cor-
rects current and former pose estimation within a second, and subsequently the
whole mesh of the 3-D model as well.

Loop closure!
Start

Sweep #1

Sweep #2

Sweep #3
  (back)Sweep #4

Hand-Guided DLR 3D-Modeler

Figure 5.20: The hand-guided DLR 3D-Modeler browsing all around the sculpture.

http://goo.gl/1Bx6eE
http://goo.gl/1Bx6eE
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The video sequence starts tracking salient features in frame #23033, featu-
ring 4 sweeps in 90◦ relative yaw angles, prior to loop closing in frame #24521
for a total motion length of 320 cm. During the whole trayectory 44 feature
sets are initialized by feature-based stereo vision.

As can be seen by the drift of the white circles corresponding to the features
of the two first datasets, dead reckoning errors accumulate to an extent that
precludes seamless KLT tracking when trying to retrieve these sets based on
their expected relative pose to the camera—even in its AM implementation.
Appearance-based relocalization on stereo images (triggered on a sensible ba-
sis based on the rough pose of the camera) may detect older SURF features,
but their positioning accuracy by stereo vision is still insufficient. It is only
by the inclusion of the intermediate stage concerning P3P pose estimation on
KLT features with larger search regions (see Section 5.4.4) that we achieve the
required pose accuracy for seamless KLT tracking of 55 features pertaining to
the feature set #1. After that, pose refinement by global, hybrid BA as ex-
plained in Section 5.4.5 takes place. Of course, relocalization on SURF features
and subsequent P3P pose estimation happen at an older image frame because
these prior stages run in a separate computing thread. After successful pose
refinement by P3P pose estimation, the AM implementation of the extended
KLT tracker presented in Ref. Strobl et al. (2011) takes over, tracking as many
features of the original feature set #1 as possible, cf. Fig. 5.21. These 55 fea-
tures in turn trigger the global, hybrid BA process explained in Section 5.4.5
in a separate computing thread. It is only by image frame #24535 that pose
refinement on the whole pose graph is finished, updating all 43 relative trans-
formations liT

fi , ∀i ∈ N1, i ≤ 44 along with the 3-D pose of all 1816 features
pip, ∀p∈N1, p≤Mi. This step cannot be appreciated in the sequence because,
ever since the successful tracking in frame #24521, data is already being rep-
resented in the local reference frame of feature set #1.

Using a dated notebook equipped with an Intel R© Core
TM

2 Duo P8700
processor, the robustified nonlinear optimization takes 870 ms. The parameters
vector contains all features and relative poses involved in the loop closure; its
size amounts to 5769. The size of the residuals vector is 11090 including past
and current hybrid residuals on stereo and monocular images.

The final pose correction after 320 cm of dead reckoning estimation amounts
to 2.5 cm and 6.5◦. The appearance-based stage in Section 5.4.4 misses the point
by 7.5 mm and 1.5◦, which is still adequate for successful tracking by the AM
implementation of KLT tracking in (Strobl et al., 2011). Figs. 5.22 and 5.23
show typical corrections of the resulting 3-D pointcloud and full mesh after
successful closure of the loop.

Note that the LSP is active for a second process to segment laser stripe
projections and subsequently triangulate range data (Strobl et al., 2004). A
third process performs online meshing of 3-D data on the original camera frame
(i.e., at the camera frame at image frame #23033). Refer to the older videos
in the above links to learn more about these concurrent processes.
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Figure 5.21: Parallel tracking of feature set #43 and loop-closing set #1 at the loop-closing
image frame #24521. Parallel tracking is necessary to build up feature drift information
required for robust tracking following (Strobl et al., 2011). Please find the high-resolution
sequence at: http://goo.gl/1Bx6eE.

(a) Prior to loop closure (b) After loop closure

Figure 5.22: Pointcloud correction after successful closure of the loop.

http://goo.gl/1Bx6eE
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(a) Prior to loop closure

(b) After loop closure

Figure 5.23: Mesh correction after successful closure of the loop.
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I also compare the pose tracking accuracy of my method with an external
positioning system: the Kuka KR 16 robotic manipulator featuring ∼0.1 mm
and less than 0.1◦ accuracy. The DLR 3D-Modeler was attached at the TCP
of the manipulator. Still, translational readings are on a different reference
frame and have to be calibrated w.r.t. the camera reference frame, see (Strobl
and Hirzinger, 2006; Strobl et al., 2005), which is subject to errors. As a
consequence, the results of this comparison ought to be considered a worst-case
estimation of their accuracy.

A motion around an object is performed, total length of 125 cm and 55◦,
featuring 710 stereo frames. The images are synchronized with the robot’s
motion following Ref. (Bodenmüller et al., 2007). Fig. 5.24 shows residual errors
in translation and rotation. Additionally, motion estimation by non-robustified
V-GPS is also shown in order to realize the significance of the robustified variant
introduced in Section 5.4.3. Pose tracking error by dead reckoning increases up
to 3 mm and 0.4◦ at the turning point; on its way back, the error is removed
thanks to the retrival of former sets of points. It is worth noting that the
vanilla, non-robustified V-GPS in (Burschka and Hager, 2003) cannot provide
reliable position due to the outliers (up to 2 cm error even though its orientation
accuracy is still fair). These results featuring less than 1% error in range match
former visual odometry results in (Nistér et al., 2004; Cheng et al., 2006).

0 100 200 300 400 500 600 700
0

2

4

6

8

10

Tr
an

sl
at

io
n 

er
ro

r (
m

m
)

Image number

Points rejections

S7 S1S2

Refind old struct.Unrobust est.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

A
bs

ol
ut

e 
or

ie
nt

at
io

n 
er

ro
r (

 )

Image number

o Points rejection

S2 S3 S4S5S6 S7 S1

Refind old struct.Initialization #7 starts

Init. takes place

Figure 5.24: Residual translation (upper) and rotation (lower) errors w.r.t. the robotic ma-
nipulator using RVGPS (blue) and using V-GPS (pink); in the latter case, translation error
rises to more than 2 cm.
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5.5.3 Performance

Last I recap on typical processing times of visual pose tracking on the DLR 3D-
Modeler. Recall that these computations are in parallel to LSP triangulation
(Strobl et al., 2004) and surface reconstruction in Section 5.4.6 (Bodenmüller,
2009).

• Feature-based stereo triangulation (Section 5.4.1) takes approximately
300 ms (for 50 features).

• High-rate, 2-D feature tracking:

– Using an IMU (optical flow prediction scheme #5) it takes approxi-
mately 18 ms (for 25 features).

– Following AM (optical flow prediction scheme #6) it takes 3+1.2+
0.6+8 = 12.8 ms (for 50 features).

• The robustified V-GPS estimation takes 3 ms (for 50 features), refer to
Section 5.4.3.

• Local bundle adjustment as in Section 5.4.3 takes 6 ms.

• Large-scale loop closing (global bundle adjustment) as in Section 5.4.5
takes 650 ms (including 48 stereo keyframes and 2100 features).

• Appearance-based relocalization as in Section 5.4.4 takes approximately
600 ms.

• The costs of video stream visualization should not be neglected in the case
of weaker devices. Otherwise frame-rate visualization typically needs less
than 3 ms.

Most of these tasks are independent threads themselves. Computing times
are on an aged Intel R© Core

TM
2 Duo P8700 processor notebook.
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5.6 Summary and Discussion

In this chapter I describe the required algorithms that instantiate the first
3-D modeling device for close-range applications that localizes itself passively
from its own images in realtime, at a high data rate. This is an important
contribution in order to increase flexibility for this type of devices, doing without
external positioning systems that constrain the system in size, mobility, and
cost.

A comprehensive review of 3-D modeling systems in Section 5.2 points out
the lack of devices able to passively localize themselves at a high data rate.
I implemented a visual pose tracking algorithm tailored to 3-D modeling by
carefully engineering its key processes: relative motion is delivered at a high
data rate from feature tracking on a monocular image stream using a novel,
robustified V-GPS algorithm characterized by its efficiency and accuracy, see
Section 5.4.3; in turn, feature tracking is based upon an accelerated KLT feature
tracker, cast into the Active Matching paradigm for improved performance in
close-range (close-range feature tracking is twice as hard as in long range), see
Section 5.4.2. In order to detach feature set structure estimation from high-rate
tracking at the front-end, feature-based stereo vision is being frugally triggered
(at keyframe instants only) to compute accurate 3-D feature sets—providing
accurate absolute scale at that, see Section 5.4.1; in case of interrupted pose
tracking, contingent appearance-based relocalization on known SURF features
is provided, together with a rapid pose refinement using a bank of parallel three-
point-perspective pose solvers, see Section 5.4.4; finally, potential loop closures
are utilized to increase accuracy in motion estimation performing pose-graph
optimization in the form of a hybrid, sparse bundle adjustment by minimization
of the reprojection errors in a set of stereo keyframes and monocular views (see
Section 5.4.5). In addition, real-time reconstruction and texturing of the 3-D
model’s surface provides visual feedback during acquisition. In Section 5.4.7
I summarize and discuss the details of the implementation. In the end, pose-
graph optimization on loop closures delivers refined motion history to the online
meshing algorithm for display (see Section 5.4.6). Extended validation experi-
ments including links to videos are provided in Section 5.5.

The presented approach is in a position to deskill current 3-D modeling,
providing more flexibility in their usage and driving down prices, such that it
might even call for reconsideration in areas that traditionally turned away from
3-D modeling.
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Conclusion

“It is the mark of an educated mind to be able to entertain a thought

without accepting it.”

—Aristotle, Metaphysics (980a), 350 B.C.

6.1 Summary

This thesis presents the algorithms required for the production of a multisensory
hand-held 3-D modeling system that complies with the specific requirements of
service robotics applications. In Chapter 1 these requirements are listed, and
it is shown that state of the art 3-D modeling systems do not currently comply
with them. The algorithms devised throughout this work led to the development
of the DLR 3D-Modeler.

The DLR 3D-Modeler is a multipurpose, multisensory platform for geome-
tric and visual perception. It combines complementary sensors in a compact,
generic way. The main approaches for depth acquisition include stereo vision,
structured light, and laser scanning. Fig. 4.22 shows that these sensors seam-
lessly cover the desired range of sensing and, what is more, that their expected
accuracy levels sensibly compensate one another. In addition, the DLR 3D-
Modeler achieves robustness through data fusion: The sensor principles can be
compared, and the best one chosen for a specific task; evading and clearing
sensor weaknesses can be also accomplished.

Since accurate geometric reconstruction plays a central role in 3-D modeling,
a through understanding of the underlying operational principles of all compo-
nent sensors is required. In Chapter 2 we focus on compact, non-redundant
sensor models that feature general validity, as opposed to extended models that
are subject to overfitting.

These valid sensor models are parameterized in Chapter 3. This extended
chapter introduces novel calibration methods for the sensor components of the
DLR 3D-Modeler. This is a central chapter as it makes possible to accurately

211
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operate with the DLR 3D-Modeler’s sensors in Chapter 4, as well as to vi-
sually track their pose by its own cameras in Chapter 5. As a consequence,
the DLR 3D-Modeler has been successfully deployed in many applications,
see Appendix B. In my view, two key factors decide on the validity of ca-
libration methods: First, whether the method is mathematically sound (e.g.
whether it minimizes actual errors for the sake of statistical optimality). Sec-
ond, whether the method’s requirements are low, yielding a straightforward and
flexible method—as opposed to traditional methods that entail severe costs like
expensive calibration targets and external mesurements. In this context, I iden-
tify wrongdoings in standard calibration methods of both, cameras and range
scanners, and bring forward novel methods that amend the shortcomings. In
the spirit of the softwarization paradigm introduced in Section 1.2, the proposed
calibration methods may be computationally more intensive, but they do yield
unforeseen benefits:

• Calibration approaches that reduce hardware requirements tend to avert
human or measurement mistakes that were otherwise bound to occur; they
also enable faster, automatic calibration of elaborate setups as illustrated
in Section B.2.4 within Appendix B.

• Accurately parameterized sensor models will eventually render new me-
thods possible, such as accurate, visual pose tracking even in the absence
of closures in the motion loop (Chapter 5), or stereo reconstruction on
inexistent textures (Section B.2.1 within Appendix B).

The following novel calibration methods are contributed:

1. A novel calibration method for eye-in-hand systems is presented in Sec-
tion 3.3. Eye-in-hand systems attaching cameras at the end-effectors of
robotic manipulators are the most common approach currently used to
promote their autonomy. The method estimates both, the hand-eye tra-
nsformation TT

C as well as the robot-to-world transformation BT
0. It

minimizes Euclidean transformation errors of the external pose tracking
system for statistically optimal estimation. Ever since its original pre-
sentation in (Strobl and Hirzinger, 2006), the method very much became
standard in academia and industry and it has been included in the cali-
bration toolbox DLR CalDe and DLR CalLab (Strobl et al., 2005).

2. In Section 3.4 I identified and addressed the problem of widespread in-
accurate knowledge of the geometry of the pattern imprinted on planar
calibration targets; this type of patterns are being predominantly used in
the context of camera calibration. I note that highly accurate knowledge
of the dimensions of the calibration pattern rarely exists, and further-
more that this violation has negative effects on the proper estimation of
the camera parameters. I provide two novel methods that yield optimal
parametrization of the camera and of its pose w.r.t. an external pose
tracking system, irrespective of the actual dimensions of the calibration
target (Strobl and Hirzinger, 2008, 2011).
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3. I also became aware of the unsuitability of the standard methods for
intrinsic and extrinsic camera calibration in the case of cameras with
narrow angular field of view. Consequently, in Section 3.5 I bring forward
an alternative method merging standard intrinsic camera calibration with
the hand-eye extrinsic calibration method proposed in Section 3.3. This
improves calibration performance in the case of cameras featuring narrow
angular field of view.

4. The traditional camera calibration methods, together with the abovemen-
tioned novel methods, have been implemented in a calibration toolbox
called DLR CalDe and DLR CalLab (Strobl et al., 2005). The software is
freely available worldwide (for academic purposes only). I am main author
of DLR CalLab (the calibration part of the toolbox), and my colleagues
Wolfgang Sepp and Stefan Fuchs developed DLR CalDe (the corner de-
tection software). The software is ranked in the top three among the
freely-available camera calibration toolboxes worldwide. Beyond learning
my lessons on algorithmic and computer programming, I learned a lot
about maintaining a software package for an active community of users.

5. Section 3.6 details the novel calibration method for the light stripe pro-
filer (a laser triangulation method), originally presented in (Strobl et al.,
2004). The method avoids complex calibraton targets as required by state-
of-the-art methods, leveraging the prior, accurate intrinsic and extrinsic
camera calibrations so that only 3 DoF are left for calibration. This self-
calibration approach proceeds by correcting deformations when scanning
a planar surface of unknown pose caused by miscalibration of the laser
plane.

More often than not, the abovementioned methods become entangled; Fig. 6.1
illustrates their potential functional interactions.

Images

Calibration obj.
Intrinsic camera calibration

(by-product)

Hand-eye calibration

LSP cal. images

LSP calibration

LRS calibrationLRS Range data

Absolute extrinsics  T0
C

Poses  T  from tracking systemT
B

Poses  T  from tracking systemT
B

Figure 6.1: Functional interaction between the calibration procedures (Figs. 1.2 reprint).
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Again in the spirit of the softwarization paradigm, which anticipates opera-
tional advantages whenever hardware measures can be successfully substituted
by software, in Chapter 4 complex algorithms for sensor data processing are pre-
sented. These methods eventually yield unforeseen operational advantages. For
instance, the design guidelines for the development or more effective perception
systems presented in Section 1.2 mandate multisensory devices that provide
multiple data types within a compact, lightweight package. As a consequence,
in the case of the light stripe profiler we decided not to use narrow-band optical
filters in front of the cameras; filters are otherwise regularly used to filter out
non-laser light. This measure makes it harder to obtain robust 3-D data, hence
robust methods for software-based segmentation of the laser line are required;
I propose a multi-stage method featuring a cascade of detection and validation
steps, as well as a dual, crosshair configuration of the sensor. On the other
hand, however, unfiltered cameras now allow for concurrent operation of stereo
vision, texturing, image augmentation, and even of visual pose tracking based
on the same images.

Indeed, this last contribution concerning the possibility to track the pose
of the DLR 3D-Modeler by its own images is key to promote autonomy during
its operation, and it turned the DLR 3D-Modeler into a worldwide novelty.
Due to object self-occlusion, object size, or limited field of view, it is often
impossible to acquire a complete 3-D model in a single measurement step. It
is common for 3-D modeling devices to revert to external tracking systems in
order to represent data in a common reference frame. This option is, however,
inconvenient for three reasons: First, they limit the user’s mobility; second,
they are subject to accurate synchronization and extrinsic calibration, which
are cumbersome, error-prone processes; last, it turns out that external tracking
systems almost always represent the largest and most expensive part of the
3-D modeling system. In this context, the DLR 3D-Modeler is extended to
passive visual pose tracking, yielding the first hand-held 3-D modeling device
for close-range applications that localizes itself passively from its own images
in realtime, at a high data rate. The approach comprises efficient tracking
of distinct features following the active matching paradigm, a frugal use of
feature-based stereo triangulation, accurate, relative motion estimation by dead
reckoning using a robust V-GPS as well as bundle adjustment, appearance-
based relocalization, and real-time reconstruction of the scene. Ideally, objects
are completely digitized by browsing around the scene; in the event of closing the
motion loop, a hybrid, graph-based nonlinear optimization takes place, which
delivers highly accurate motion history to the meshing algorithm that is able to
refine the whole object model using both, accumulated range data and newly
optimized motion, within a second. The approach has been welcomed by the
computer vision community, as it was rated as a finalist to the best paper award
at the well-known IROS conference in 2009. Again, inconvenient hardware is
hereby substituted by software in the context of the softwarization paradigm.

In Appendix B the methods presented throughout this thesis, as well as the
DLR 3D-Modeler, have been successfully applied to a number of scenarios in
robotics and beyond.
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6.2 Open Directions

“Dissertations are not finished; they are abandoned.” —Fred Brooks

This section lists potential extensions of the methods presented in this thesis.

• After so many years maintaining the camera calibration toolbox DLR
CalDe and DLR CalLab—fostering researchers especially during failed
calibration attempts, I intend to further simplify the camera calibration
process by promoting its own degree of autonomy. Novel methods are
to be devised to autonomously select the appropriate camera model and
optimization method, and even to instruct the user during the data ac-
quisition stage in the first place.

• A straightforward option to simplify hardware concerning stereo came-
ras is to use a monocular camera instead. In this context, monocular
visual pose tracking will be pursued, together with alternative solutions
to provide absolute scale.

• An exclusive use of visual pose tracking requires a closer examination of
its precision characteristics in 6-D motion. The solution is expected to
depend on the camera’s inner geometry, its motion, and the imaged scene.
The outcome of this examination ought to enable intrinsic and extrinsic
calibration methods that are better suited to the hardware used.

• The DLR 3D-Modeler pushes traditional 3-D modeling forward owing to
its flexibility, passivity, and accuracy. It deskills 3-D modeling, driving
down prices, such that an extensive review of new applications might ena-
ble access to markets that traditionally turned away from 3-D modeling.
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A
Homography Estimation
in Perspective Projection

“What most experimenters take for granted before they begin their experiments
is infinitely more interesting than any results to which their experiments lead.”

—Norbert Wiener

In the context of perspective projection using cameras, homographies are
linear transformations that geometrically relate planar projections of pencils
of rays intersecting at the focal point of the camera, on the condition that
these projections are represented in homogeneous coordinates. This fact stems
from the simple geometric principle of the Thales’ theorem. Homographies
are widely used in computer vision, where applicable, because they are linear
transformations that allow for rapid computation by linear algebra.

In this work we use homographies for initialization of the intrinsic parame-
ters of cameras in advance of their more accurate, nonlinear optimization, see
Section 3.2.3. The transformation between image projections Mpi = [Mxi Myi]

T

and the actual, 3-D coordinates of the projecting corners 0xi can be reduced
to the homography between the image projections Mpi and the planar, 2-D
coordinates of the corners on the calibration plane as follows:

Mp̄i ∝

Mxi
Myi
1

 ∝H(3×3)

0xi
0yi
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

0xi
0yi
1

 (A.1)

where Mp̄i are the homogeneous (̄ ) coordinates of the image projections. This
relationship holds for every single image projection at a particular camera pose
w.r.t. the planar calibration object, say I projections. It is worth noting that
the relationship only holds in the absence of lens distortion, cf. Section 2.2.1, but
then using distorted projections still allows for fairly accurate estimations that
will eventually bootstrap final nonlinear optimization of the complete camera
model (including lens distortion) in Section 3.2.3.
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For every instance i≤I of Eq. (A.1) we obtain two independent equations

Mxi =
h11 0xi + h12 0yi + h13

h31 0xi + h32 0yi + h33
(A.2)

Myi =
h21 0xi + h22 0yi + h23

h31 0xi + h32 0yi + h33
. (A.3)

It is only by accumulating 4 or more instances of these equations that we are in a
position to calculate the 8 DoF of the homography matrix H. In general, many
more instances are available (≈100) which makes it impossible to find an exact
solution to the system of equations in the face of unavoidable errors either in
image processing or in the measurement of the corners of the planar calibration
object. Hence we opt for the homogeneous linear least squares solution of the
system of all 2·I equations. To this end, we can rearrange Eqs. (A.2) and (A.3)
for every instance i to form the homogeneous linear system of equations

Ah = 0 (A.4)

where the unknown parameters stack in a vector

h = [h11 h12 h13 h21 h22 h23 h31 h32 h33 ]T . (A.5)

The data matrix A stacks 2 equations for every single instance i seen in the
image, i.e., is size 2I×9, as follows:

A = [A1 · · · Ai · · · AI ]T (A.6)

where

Ai =

[
0xi 0yi 1 0 0 0 −Mxi 0xi −Mxi 0yi −Mxi
0 0 0 0xi 0yi 1 −Myi 0xi −Myi 0yi −Myi

]T
. (A.7)

The system of equations in Eq. (A.4) can be solved for the unknowns h fol-
lowing the homogeneous linear least squares method using the singular value
decomposition. The right singular vector corresponding to the smallest sin-
gular value of the matrix A (ultimately the eigenvector of ATA that has the
eigenvalue closest to zero) contains the solution to h in the least squares sense
concerning errors in the null vector in the right-hand side of Eq. (A.4).

It is worth noting that this solution is sensitive to the scale units used
in both, the image projections Mpi and the actual, 3-D coordinates of the
projecting corners 0xi. We suggest in strongest terms to normalize both input
data and to relocate them to their respective average values (Hartley, 1997). Of
course, the resulting homography will only perform on normalized data, hence
it should be scaled back to actual scale units (e.g. pixels against millimeters).



B
Experimental Platforms and Applications

“My mind is made up; don’t confuse me with the facts.”

—Roy S. Durstine, Advertising & Selling, 1945

B.1 Introduction

In this chapter I focus on major implementations either of the algorithms pre-
sented all thougout this thesis or, directly, of the DLR 3D-Modeler. Note that
separate experiments that are specific to the contributions of this thesis have
been already delivered contiguous to their corresponding descriptions. The
successful implementations presented in this chapter are a consequence of the
statements in Section 1.1, where I laid out the design guidelines for the algo-
rithms developed in this thesis to be effectively implemented in service robotics
applications.

The applications in this chapter range from satellite pose tracking to min-
imally invasive surgery. The realization of regular camera calibration tasks on
innumerable platforms using the algorithms and software provided in this the-
sis is not included in this chapter, with the exception of special cases like the
intrinsic and extrinsic calibration of the 18 cameras mounted on the robotic car
RoboMobil, the inverse calibration of a so-called laser pico projector as a virtual
(inverted) camera, and the calibration of cameras mounted on a 3-D display by
means of a hand-held mirror; this last contribution is the only patent that has
been filed in the context of this thesis.

In addition, the camera calibration toolbox DLR CalDe and DLR CalLab
(Strobl et al., 2005) will be addressed as a stand-alone application of the me-
thods presented in Chapter 3.
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B.2 Experimental Platforms

B.2.1 The Humanoid Robot “Justin”

Introduction

The perception head for the humanoid robot “Justin” is perhaps the most
direct application of the DLR 3D-Modeler (Borst et al., 2009). Upon its early
completion in 2006 (originally as a torso mounted on a table), “Justin” was
topped off with the DLR 3D-Modeler due to its modularity and interfaces. The
DLR 3D-Modeler was attached to a pan-tilt unit mounted on the the torso of
“Justin,” see Fig. B.1, in order to make active perception by saccadic motions
possible.

Figure B.1: The DLR 3D-Modeler as the perception head of the original humanoid torso
“Justin” at the Automatica Fair 2006.

Extrinsic calibration with respect to “Justin”’s torso

The original “Justin” torso has been conceived for two-handed manipulation
using its compliant arms and hands. In order for “Justin” to achieve some de-
gree of autonomy, its perception head is used e.g. to detect and locate objects
on its mounting table for it to be able to grasp them. It is therefore essential
to deliver range data on robot-related coordinates instead of using e.g. the ca-
mera reference frame SC. This registration process is facilitated if the extrinsic
calibration of the DLR 3D-Modeler w.r.t. some reference frame on “Justin” is
provided, i.e., if its hand-eye calibration to it is provided, refer to Section 3.3.
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Interestingly enough, it turns out that the introduction of a pan-tilt unit
becomes essential in order to be able to extrinsically calibrate the DLR 3D-
Modeler using the convenient, vision-based methods presented in Section 3.3.
Vision-based methods are preferred because reference frames both, at the pan-
tilt unit and at the DLR 3D-Modeler, are non-salient locations that have only
been defined in theory, e.g. using CAD tools. The method addressed in Sec-
tion 3.3 is a workaround to avoid direct measurement of these reference frames.
It exploits the fact that, if two rotational motions of both reference frames
(with nonparallel rotation axis) are known w.r.t. a common rigid body (e.g. the
scene), it is possible to mathematically estimate the rigid body transformation
between the camera frame SC and the hand or TCP frame ST without the need
for direct measurements on these reference frames. Luckily, one of these motion
estimates is exactly what the pan-tilt unit delivers, viz. the pose of its moving
head w.r.t. “Justin”’s torso.

The only missing motion data is the motion of the DLR 3D-Modeler w.r.t.
the torso. Two options have been considered:

1. To use stereo images of a calibration plate taken by the DLR 3D-Modeler,
as performed during intrinsic and extrinsic camera calibration. In actual
fact, the stereo camera has been already calibrated in advance. Since us-
ing a pan-tilt unit the diversity of perspective projections of a calibration
object fixed to the world frame S0 is naturally limited, the intrinsic param-
eters of the stereo camera should not be optimized during this extrinsic
calibration procedure. The camera calibration toolbox DLR CalDe and
DLR CalLab (Strobl et al., 2005) allows for highly-accurate estimation
of the pose of the calibration plate w.r.t. the camera (i.e., the absolute
extrinsics) similar to an intrinsic calibration, but using fixed intrinsic pa-
rameters instead. Additionally, if the other component sensors of the DLR
3D-Modeler have been already calibrated w.r.t. some other extrinsic pose
tracking system, the opportunity arises to utilize the method presented
in Section 3.9. The disadvantage of this first option is the smaller rota-
tional motions that can be achieved when rotating the stereo camera in
front of a fixed calibration plate using a pan-tilt unit. Smaller rotational
motions lead to worse conditioning of the hand-eye system of equations
in Eqs. (3.6).

2. To use motion readings of an external pose tracking system to which
the DLR 3D-Modeler has already been externally calibrated, e.g. the in-
frared tracking system ARTtrack2. The approach essentially consists in
extrinsically calibrating the pan-tilt unit w.r.t. the external pose tracking
system by minimizing the discrepancies as explained in Section 3.3; the
resulting transformation has to be concatenated with the former hand-
eye transformations between the external pose tracking system and e.g.
the camera frame SC. The disadvantage of this option is the necessity to
install a tracking system on the working area of “Justin.” On the other
hand, however, in this case the range of potential rotational motions of
the perception head that can be tracked for a better conditioning of the
system of hand-eye equations in Eqs. (3.6) is large.
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Since the first option is more convenient, I opted to avoid reduced motion
ranges by extending the calibration object with multiple origins, see Fig. B.2.
The relative position of the origins has been measured in advance of calibration
in order to ensure correct association even in the case of partial imaging of the
plate. This extension makes it possible to perform larger rotational motions
that allow for high-accuracy hand-eye calibration of the DLR 3D-Modeler w.r.t.
“Justin”’s pan-tilt unit.

Figure B.2: Calibration plate featuring two origins; it allows for larger rotational motions of
the pan-tilt unit compared to the regular calibration plate featuring only sole origin.

The importance of calibration accuracy for stereo vision

In the context of the humanoid robot “Justin,” it is indeed crucial to achieve
highest accuracy in camera calibration, as illustrated by the following example.

Perhaps the demonstration of “Justin” that is worldwide best known is when
servicing on a table, grasping jars and pouring water into glasses, refer to http:

//www.youtube.com/watch?v=2tVilONTMfw. In the scene pictured in Fig. B.3,
“Justin” meets with untextured objects like glasses and a carafe. Untextured
objects compromise correct association by stereo algorithms. In addition, the
objects are transparent so that the stereo algorithm cannot rely on the diffuse
reflection of light as e.g. in the case of a planar wall. The stereo algorithm
ultimately relies on the accuracy of the intrinsic calibration of the stereo camera
by its epipolar geometry in order to find correspondences between both rectified
images.

For instance, in the case of the carafe, the most salient features for the stereo
algorithm to find correspondences lie on its rim. Due to its circular form, at two
points (the top and the bottom projections on the image, see Fig. B.4) these
regions project horizontally so that their searches for correspondence using the

http://www.youtube.com/watch?v=2tVilONTMfw
http://www.youtube.com/watch?v=2tVilONTMfw
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Figure B.3: Typical table scene captured by the main (left) camera of “Justin.”
Visit http://goo.gl/XhoCR to see a video of “Justin” with its hands in the cookie jar.

horizontal epipolar line on rectified images will be very sensitive to erroneous
epipolar geometry. In the face of slight calibration errors, the epipolar line
corresponding to the top or the bottom projections of the rim either will not
meet the borders of the other rectified stereo projection, or it will meet two
different areas instead, see Fig. B.4. As a consequence, 3-D artifacts appear
that, in the end, yield invalid 3-D reconstruction results as can be seen in
Fig. B.5. In that image it is also shown that a precise calibration following
the novel method presented in Section 3.4.4 alleviates symptoms compared to
an already very precise but standard calibration using DLR CalDe and DLR
CalLab.

A

B

A' ?

B' ?

Figure B.4: Search for correspondences between left and right projections of the A and B spots
on the rims of the carafe becomes compromised in the case of inaccurate epipolar geometry.

http://goo.gl/XhoCR
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Precision plate, before Precision plate, after

Figure B.5: Improvement in disparity reconstruction by SGM (Hirschmüller, 2008) of a carafe
when opting for the novel method presented in Section 3.4.4 compared to the standard me-
thod in Section 3.2 (Fig. 3.25 reprint). The novel method allows for more complete results,
particularly in untextured rims parallel to the epipolar line.

Vision-based evaluation of “Justin”’s kinematic accuracy

An unexpected use of calibrated cameras on “Justin” has been to assess the
accuracy of “Justin”’s kinematics. Since “Justin” is composed of several robotic
components, the imprecision in their models and parametrizations accumulate,
which is to the detriment of precise manipulation tasks.

Here visual data is used to support a more precise parametrization of the
kinematic models of “Justin”. In Fig. B.6 the images used for relative pose
estimation are shown.

Two observations have to be considered:

• Image-based pose estimation is more accurate if the calibration plate is
tilted w.r.t. the principal axis of the camera, refer to Section 3.5 and
(Strobl et al., 2009b).

• The configuration of the robotic manipulator ought to differ in every
station—irrespective of the orientation of the calibration plate.

In Fig. B.7 augmented reality is used to assess the validity of the kinematic
calibration of the whole system.
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(a) Image #1 (left) (b) Image #1 (right) (c) Image #2 (left) (d) Image #2 (right)

(e) Image #3 (left) (f) Image #3 (right) (g) Image #4 (left) (h) Image #4 (right)

(i) Image #5 (left) (j) Image #5 (right) (k) Image #6 (left) (l) Image #6 (right)

(m) Image #7 (left) (n) Image #7 (right)

Figure B.6: Images used for correction of the kinematic chain of “Justin.”

Figure B.7: Image used for assessment of the validity of the kinematic chain of “Justin.”
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B.2.2 The HazCam at the ExoMars Rover by the European
Space Agency

Introduction

ExoMars (Exobiology on Mars) is a Mars mission planned by the European
Space Agency (ESA) to launch a robotic rover along with stationary and orbiter
stations to Mars, in order to search for biosignatures of eventual, past or present
life. The mission had been originally conceived as a joint initiative with NASA.
Regrettably, starting 2011 and definitely on February 2012, NASA announced
that it was compelled to withdraw from the joint mission due to budgetary
cuts by the Obama administration. On March 2013, the ESA and the Russian
space agency (Roscosmos) agreed to shift NASA’s rights and responsibilities to
Roscosmos. This option may have saved the mission but, at the same time, it is
subject to a number of restraining policies concerning widespread unapproved
access to NASA-related original documents by the Russians.

Figure B.8: Photo composition by ESA on the expected Exomars rover. Courtesy of ESA.

The ExoMars rover features a PanCam (Panoramic Camera System) lo-
cated at the top of a mast, see Fig. B.8, consisting of two wide AOV cameras
for multi-spectral, stereoscopic panoramic mapping along with a high-resolution
camera for close-up, color pictures in its search for morphological signatures of
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life. Furthermore, the rover is meant to autonomously navigate for approxi-
mately 100 meters per day. Its main visual sensor to this end is the NavCam
(Navigation Camera System), which is a stereo camera mounted on the same
housing than the PanCam, featuring a smaller base distance than the latter.
The NavCam focuses on long-range navigation, hence does not allow for close-
range navigation and obstacle avoidance. Incidentally, a third set of cameras
coined OdoCam (Odometry Camera System) are mounted at the front of the
rover. The OdoCam yields visual odometry to be fused with wheeled odome-
try, as slippery conditions are indeed expected. We proposed to take advantage
of the OdoCam cameras, making them part of an structured light system in-
cluding laser projectors in order to create yet another camera system, called
HazCam (Hazard Avoidance Camera System). After all, structured light is a
more efficient alternative compared to dense stereo vision in close-range obsta-
cle avoidance. This hybrid sensor ought to provide the missing information for
local obstacle avoidance.

The project took place in 2008 as a subcontract by the French National
Centre for Space Studies (CNES) to the Institute of Robotics and Mechatron-
ics of the DLR. A group of three engineers was dedicated to the project. I led
the programming and algorithmic part of the study (data processing and cali-
bration). The study culminated in the experimental validation of the proposed
method on an ExoMars prototype at the SEROM facility within the CNES
premises in Toulouse, France.

The project suited me just fine in order to put my already developed me-
thods to the proof. First, the required calibration methods had been already
developed in the context of the DLR 3D-Modeler, refer to Sections 3.2 and 3.6.
Second, the HazCam was not allowed to interfere with the separate OdoCam
project, i.e., the OdoCam cameras may not be narrow-band filtered to laser
light; this fact also matches with the restrictions that we originally imposed
on the DLR 3D-Modeler during its design phase. My robust image processing
algorithms presented in Section 4.3.2 were expected to serve that purpose.

The HazCam design

The operating area of the HazCam is the immediate vicinity of the front wheels
of the rover, for it not to get stuck by smaller obstacles that could pass unde-
tected by the NavCam. Note that the OdoCams are directed to that region.
Since the HazCam is not expected to be actuated and the motion of the rover
is slow, a dense, coded structured light approach delivering 2.5-D depth images
should be preferred w.r.t. a single light stripe profiler that only yields 2-D infor-
mation in the form of a 1-D depth vector. It is, however, difficult to convey the
desired energy to project a 2-D pattern in daylight conditions—especially on
Mars. The generation of a laser plane is much more efficient. For this reason,
we opted for the installation of a series of four laser modules that sequentially
(i.e., in pulsed mode) project laser stripes on the scene, see Fig. B.9. It is
worth noting that, in the event that this option becomes too heavy for final
deployment, a workaround with computer-controlled micromirrors can be also
provided.
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(a) Expected HazCam layout. (b) Detail of the HazCam.

Figure B.9: Prior design of the HazCam. Note that, in reality, the lasers are pulsed.

The calibration of HazCam

Since the HazCam system matches the DLR 3D-Modeler except for the pose
tracking system, I opted for the rapid and accurace methods presented in
this thesis both, for the intrinsic calibration of the OdoCam cameras (viz.
monochrome uEye UI-1540-M 1.3 MP cameras equipped with Schneider Kreuz-
nach Cinegon 1.4/8-0902 lenses, yielding an AOV of 37◦×45◦), refer to Sec-
tion 3.2, and for the extrinsic calibration of every laser plane w.r.t. the camera
frame SC, refer to Section 3.6. Since the latter method needs for the motion
of the laser planes, and furthermore for that motion to be tracked by a pose
tracking system, I attached the HazCam to the end-effector of a Kuka KR 16
for the calibration process only. In this way, the intrinsic calibration of the
whole HazCam system can be readily performed within an hour.

There still remains the extrinsic calibration of the whole HazCam system
w.r.t. the ExoMars rover. This method corresponds with the extrinsic calibra-
tion of the OdoCam system, which has been already addressed elsewhere. Still,
since our prototype did not yet concern the OdoCam cameras, I devised a rapid
method for extrinsic calibration of the HazCam by measuring the planar soil in
front of the rover.

The image processing algorithms of HazCam

It was my intention to implement the same methods for the segmentation and
reconstruction of the laser stripe that I have presented in Sections 4.3.2 and
2.2.2, respectively. Regrettably, I encountered three problems that prevented
me from directly using these methods:

1. The projected laser stripes on the images were too weak. The reason is
twofold: On the one hand, because the robot had to perform at daylight
(on Earth). On the other hand, because the laser projections were more
distant than in the case of the DLR 3D-Modeler, e.g. 1 m distant. More
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powerful lasers would have make up for this first problem. Even though
it is not a problem to use powerful lasers on Mars, and powerful lasers
are still energy-efficient, strong payload limitations apply to the HazCam
system, which prevented us from using heavier devices.

2. The OdoCam system features monochrome cameras. Since the methods
presented in Section 4.3.2 partly rely on the red color of laser projections,
it is expected that they perform worse when using monochrome cameras.

3. It turns out that the tolerance to erroneous measurements in the Exo-
Mars rover mission totally opposes the assumed tolerance in the case of
the DLR 3D-Modeler. Whereas in the latter case false negatives (i.e.,
non-detected surfaces) are readily tolerated as the DLR 3D-Modeler can
repeat measurements from a different vantage point, in the case of the
HazCam these errors are strictly prohibited, as their likely consequence
is a stranded or damaged rover. Conversely, in the case of the DLR 3D-
Modeler false positives (i.e., detection noise from reflections, etc.) ought
not to be tolerated in order to obtain clean 3-D models, whereas in the
case of the HazCam these measurements are tolerated because they do
not compromise the safety of the robot, refer to Table B.1.

Table B.1: Different sensitivity tolerances by the DLR 3D-Modeler and the HazCam.

DLR 3D-Modeler HazCam

False negatives
tolerated not allowed

(non-detected obstacle)

False positives
not allowed tolerated

(detection w/o obstacle)

These facts called for a reconception of the detection algorithms in Sec-
tion 4.3.2. Since the laser modules are being pulsed to activate single modules
sequentially, the option presents itself to take ’dark,’ reference images where
all modules are switched off in between laser images. In this way, the direct
subtraction of consecutive images yields very clear laser projections, similar to
imaging the laser projection through a narrow-band, laser light filter—subject
to the speed of the rover. Fig. B.10 shows a typical differential image at full
speed motion of the rover. Due to its speed and the slow triggering of the
camera drivers (> 100 ms), some shadow artifacts appear. The resulting im-
ages by direct image subtraction, however, already allow for robust, accurate
segmentation by simply using Stage #1 and the center-of-stripe detection stage
explained in Section 4.3.2. It plays into our own hands that the rover is slow,
or rather static, when performing differential laser light detection.
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(a) Raw differential image. (b) Stripe detection on differential image.

Figure B.10: Laser light detection by differential images.

In the case of brighter illumination conditions (above 2000 lux), the former
limitation of 100 ms on the triggering speed by the provided camera drivers
may actually entail robustness issues. In that event I propose the generation
of synthetic images compensating for the rover motion. Unfortunately, this
mapping requires the knowledge of the structure of the scene. I propose using
the a priori ground plane (as a result of the extrinsic calibration of the HazCam)
as supporting structure for this procedure. In addition, in this way the mapping
can be reduced to a 2-D-to-2-D (i.e., camera-to-ground) homography, which is
a relatively inexpensive transformation to perform to begin with. Admittedly,
in the regions where the scene strongly differs from this virtual plane (e.g. rocks,
holes, and slopes), the method is not going to perform optimally. Nonetheless,
these regions usually correspond to rocks, where this problem is less noticeable
than in the highly-frequent texture on the soil in the first place.

The resulting laser stripe projections onto the image are to be undistorted
and reprojected on the basis of the intrinsic parameters of the camera, refer
to Section 2.2.1. After that, the segmented laser stripe projections are recon-
structed in 3-D camera coordinates by triangulation, refer to Section 2.2.2. In
addition, the extrinsic transformation makes it possible to represent 3-D data
on the rover’s ground reference system.

The last issue is the conception of the decision making process responsible for
sending the alarm signal on the basis of the surface elevation profiles obtained
from the above detection and triangulation steps. This process is open to
interpretation in relation to the actual obstacles faced by the rover. In our study,
the alarm signal has been sent whenever elevations points were consistently
detected above a particular threshold (e.g. above 15 cm or below −10 cm), refer
to the experimental results below. Furthermore, an elevation representation
w.r.t. the ground of the laser projection is continuously overlaid on the image
window for representation.
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Final experiments at the SEROM facility

The final on-site verification experiments were conducted on Monday and Tues-
day 24th and 25th of November, 2008, at the SEROM facility of CNES in
Toulouse, France. The HazCam system was mounted on a prototype rover
approximately 70 cm above ground and with an inclination of 20◦, refer to
Fig. B.11. The HazCam system was operated from an external PC connected
by two long USB cables to the system. Experiments were carried out indoors
(<200 lux) and outdoors (>2000 lux), both with static and cruising rover.

First, indoor experiments in a hangar were conducted, see Fig. B.11 (b,c).
First of all, an online extrinsic calibration process was automatically performed
(within a couple of seconds). Then, the Hazcam system delivered accurate,
robust data in regular operation both, with static rover and at full speed. Dif-
ferential images proved indeed extremely robust. The screenshots in Figs. B.12
and B.13 stem from this session. At the top of the images, the reconstructed
height profile is overlayed and the hazard detection signal is delivered. In ad-
dition, the detected line is highlighted in red.

Last, outdoor experiments at 2000 lux were conducted. At this illuminance
level two limitations are noticed:

1. The 5 mW laser light (laser class 2M) is virtually invisible to the naked
eye. Differential images, however, do manage to trace the line depending
on the scene illumination and the rover speed.

2. The rover motion originates stronger artifacts in differential images due
to the brighter background illumination. Critically, these artifacts are
aggravated by the fact that the camera drivers do not allow consecutive
external triggering faster than approximately 100 ms. In the case of robot
motion, the background artifacts are consequently strong. It is future
work to fix this limitation to provide seamless robust operation, virtually
irrespective of the external illumination level.

In Fig. B.14 successful height profiles are shown when the robot was static.
Even though the illumination level was high (2000 lux), the HazCam worked
fairly, i.e., within the original precision requirements. In the case of robot
motion, however, the robustness in laser detection is strongly compromised
mainly due to the abovementioned second reason. This limitation concerns
the chosen propietary hardware and software and ought to be lifted for robust
outdoors operation.
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(a) The HazCam prototype mounted on the CNES rover at SEROM, Toulouse.

(b) HazCam control by an external computer. (c) Detail of the HazCam.

Figure B.11: The HazCam prototype at the CNES rover. The lasers were pulsed in operation.
Visit the videos of indoors and outdoors experiments here: http://goo.gl/jgdFn,
http://goo.gl/Ik1dt, http://goo.gl/mfcVy, and http://goo.gl/yG3Ka.

http://goo.gl/jgdFn
http://goo.gl/Ik1dt
http://goo.gl/mfcVy
http://goo.gl/yG3Ka
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(a) Laser module #1. (b) Laser module #2.

(c) Laser module #3. (d) Laser module #4.

Figure B.12: Sequential HazCam readings in the face of obstacles (indoors).

(a) Laser module #1. (b) Laser module #2.

(c) Laser module #3. (d) Laser module #4.

Figure B.13: Sequential HazCam readings in the face of a slope (indoors).
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(a) Laser module #1. (b) Laser module #2.

(c) Laser module #3. (d) Laser module #4.

Figure B.14: Sequential HazCam readings in the face of obstacles (outdoors).

B.2.3 Motion Estimation for Free-Flying Satellite Rendezvous

Introduction

The DEOS project (Deutsche Orbitale Servicing Mission) started in 2007 out
of the programmatic reorientation of the former TECSAS project by both Ger-
many and Russia. The project focuses on the guidance, navigation and non-
destructive capturing of cooperative or non-cooperative tumbling client satelli-
tes, to perform maneuvers with the coupled system and, potentially, to de-orbit
it in a controlled manner. The project is on behalf of the Space Agency of the
German Aerospace Center (DLR), funded by the Federal Ministry of Economy
and Technology within the framework of Germany’s National Space Program.

In the context of the so-called preliminary design definition phase (Phase
B), our institute is assigned with the technical requirements specifications, eval-
uation, and demonstration of the algorithms required to capture and control the
coupled satellite system. A key aspect of the rendezvous and docking phase is
the accurate relative motion estimation between unconnected satellites. Since
the mockup capturing satellite is equipped with a stereo camera, cf. Fig. B.16,
I opted to utilize the relative pose tracking algorithms presented in Chapter 5.



B.2. EXPERIMENTAL PLATFORMS 235

Figure B.15: The DEOS project focuses on the rendezvouz, capture, and controlled de-orbiting
of a tumbling target satellite. Source: DLR.

The experimental data stems from the European Proximity Operations
Simulator (EPOS) facility in Oberpfaffenhofen, Germany, see Fig. B.16. The
present setup consists of a fixed-base robotic manipulator holding a stereo ca-
mera and a moving robotic manipulator holding a client satellite mockup (size
2.3×1.8 m) with a noozle and thermal foil. The latter satellite is in linear motion
as it is mounted on an actuated linear slide. The stereo camera has a sensor
chip with 1024×768 pixels and 8 bit resolution. Its full AOV is 124◦×109◦; the
angular resolution of the cameras is slightly worse than the planned CAM-CR.
The stereo baseline is 0.12 m. Images are acquired at 1 Hz.

Kuka KR 100 HA robot

Linear slide

Kuka KR 240-2 robot Protective fence

Peripheric
control cabinet

Kuka KR 100 HA
robot control

Kuka KR 240-2
robot control

Figure B.16: The EPOS facility; for the present experiment, the moving-base robot held a
satellite mockup, the fixed-base robot held a pair of stereo cameras. Source: DLR.
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Pose tracking method

A prerequisite for accurate pose tracking of the client satellite by the stereo
camera of the service satellite is the intrinsic and extrinsic calibration of its
stereo camera. This task has been performed following the methods presented
in Sections 3.2 and 3.3 and using the software package DLR CalDe and DLR
CalLab that will be presented in Section B.3.

The motion of the camera system w.r.t. the target satellite is estimated
based on tracked features on the target satellite’s surface. Even though most
salient features correspond to spurious reflections (cf. Fig. B.17), i.e., they can-
not be reliably tracked for longer periods of time, we perform feature tracking
with perishable features, dumping features every 4 frames, i.e., every 4 seconds
or less. In this way, long-term accuracy is compromised as neither local nor
global loop closures are possible, see Section 5.2.4-II., thus motion estimation
corresponds with dead reckoning. Nonetheless, the accuracy of this method for
visual odometry proved to be sufficient for medium-range satellite pose tracking.

The method presented in Section 5.4.2 selects so-called “good features to
track” with distinctive appearance, refer to (Shi and Tomasi, 1994). The upside
of using this type of features is their general applicability, as a prior modeling
of the (rigid) target satellite is not required anymore—this is useful in the (pre-
dominant) case of meeting with an older satellite featuring decommissioned
parts. On the other hand, in a satellite-engaging scenario these features fre-
quently correspond to reflections, shadows, or occlusions, which usually are not

Figure B.17: Sample image from the sequence with tracked image features (yellow: recovered
feature points with search regions; blue: new feature points initialized for subsequent tracking).
Visit http://goo.gl/Jhb22 to see the whole sequence in motion.

http://goo.gl/Jhb22
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consistent with the rigid satellite assumption in the long run. To overcome
this problem the algorithm regularly reinitializes features, i.e., performs dead
reckoning motion estimation. The rigid motion estimator is at its core a ro-
bust M-estimator. I used a blunt implementation of the pose tracking method
in Section 5.4 and (Strobl et al., 2009a). In a nutshell: Monocular feature
tracking and relative pose estimation are performed in parallel with stereo re-
construction of feature depth, see Section 5.4.1. Feature depth in turn makes it
possible to deliver scaled, metric pose estimations as well as to sensibly discard
inconsistent data.

Experimental results

The tested trajectory is in medium-range, traversing from 0.85 m to 1.65 m
away from the target satellite, translating it at realistic speed of 1 cm/s away
from the service satellite. At the same time, the target satellite is spinning at
4 ◦/s in the direction of translation.

Fig. B.18 shows the 2-D tracking consistency w.r.t. the virtual projections
of the estimated rigid structure as estimated by stereo vision in average, at
the optimal pose estimated by the algorithm. The figures evaluate both, the
triangulation accuracy and the precision of feature tracking. Fig. B.18 (a) shows
the RMS error in relation to the range to the target satellite. Fig. B.18 (b) in
turn shows the average absolute error, also in relation to the range to the target
satellite. Estimations are consistent to around 1 pixel. The effects of motion
in residual reprojection errors naturally decrease at larger distances, leading to
an apparently higher consistency with feature detection.
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(a) RMS error in range.
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(b) Mean absolute error in range.

Figure B.18: Tracking accuracy and consistency in the image memory frame SM.

Next I am assessing the accuracy of the motion estimation. In order to
leave potential extrinsic calibration errors aside, I opt to estimate absolute
distances and absolute angles, as they are irrespective of the orientation of the
reference frames. The actual relative motion between satellites amounts to 1
cm between images and 4◦. Fig. B.19 (a,b) show the relative translation depth
and roll angle between consecutive frames, in relation to the absolute distance
to the satellite. The red horizontal lines indicate the ground truth. Relative
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roll angle errors stay below 0.1◦ and relative translation errors within 2 mm
for range estimation up to 1.5 m distance. In Fig. B.19 (c,d) the accumulated
translational and rotational motions are shown. Whereas orientation estimation
in roll angle remains good conditioned, range estimation accuracy abruptly
decreases beyond 140 cm, cf. Fig. B.19 (e.f), which is natural consequence of
the short basis distance and resolution of the used stereo camera.
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(a) Target differential translation in range.
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(b) Target differential rotation in roll.
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(c) Estimated translation in range.
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(d) Estimated rotation in roll.
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(e) Accumulated residual error in range.
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(f) Accumulated residual error in roll.

Figure B.19: Range and pose estimation accuracy in relative and absolute terms. Note that
motion estimation is performed by dead reckoning.



B.2. EXPERIMENTAL PLATFORMS 239

In conclusion, sufficient accuracy in feature tracking and motion estimation
w.r.t. the original technical requirements specifications in Phase B is provided
at distances up to 1.5 m of the client satellite. It is important, however, to note
that these results depend upon the number and distribution of trackable feature
points, i.e., on sufficient client satellite texture to be visible in the images.

B.2.4 Rapid Calibration of 18 Cameras on the DLR RoboMobil

Introduction

As distinguished from present efforts of car manufacturers, the RoboMobil
project (RoMo) at the Institute of Robotics and Mechatronics of the DLR
focuses on autonomous driving from the original conception of the car in the
first place, i.e., we aim at an holistic new approach to electricity-enabled au-
tonomous driving from the car rims to its top. And quite literally so: Inspired
by the lunar roving vehicles of the Apollo spaceflight missions, mechatronic
electric drives are embedded into the rims, as they make for a swifter drive-by-
wire control of the car dynamics by the central computer (similar to robotics
dynamical simulations in our institute); in addition, they allow for extended
steering ranges from −25◦ up to 95◦. In turn, RoMo’s exceptional agility im-
poses further requirements on its perception system; 18 cameras and further
sensors are attached to its roof, as state-of-the-art computers allow for parallel
interfacing and computing of loads of independent sensory information. With
RoMo we ultimately aim at demonstrating how closely related electric driving
and robotics in the near future will be (Brembeck et al., 2011), see Fig. B.20.

Perception is key to increase autonomy in traditional robots as well as in
robotic cars, and a consistent representation of the 3-D scene ought to play a
central role for this purpose. A number of sensors can be tapped to this end,
but a major source are video cameras. They are especially convenient due to

Figure B.20: The DLR RoboMobil (RoMo).
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their passivity w.r.t. the scene, i.e., due to their extended operating range, the
lack of potential crosstalk with other sensors, and because most road signs and
markings are designed for visual recognition in the first place. Their uses range
from simple visual feedback for telepresence by humans (mostly in “shared au-
tonomy” mode), to optical flow computation for rapid collision avoidance, lane
following, detection of road signs, and 3-D reconstruction by stereo vision for
autonomous maneuvering (e.g. parking), refer to Fig. B.21. Their only limita-
tion is the high computational requirements owing to the selected perception
method. At RoMo we aim at showing how much computational power is pos-
sible to embed into an electric car, taking software and hardware optimization
measures into account, e.g. by leveraging GPGPU and FPGA hardware options.

A hard requirement for all of these methods is to calibrate the cameras,
both intrinsically and w.r.t. the car’s chassis. Due to my extended experience
calibrating this type of sensors, see Chapter 3, I assumed the task of intrin-
sically and extrinsically calibrating its 18 cameras. In this way, a registered
representation of depth data from stereo vision as in Fig. B.21 will be rendered
possible.

Calibration procedures

In this section the required calibration procedures are detailed. These are
largely based on the general methods presented in Chapter 3. Three types
of calibration procedures are used:

1. Intrinsic calibration of monocular cameras and stereo cameras.
The methods and requirements fully correspond with the monocular and
stereo methods presented in Section 3.2. The use of the novel methods

Figure B.21: Registered depth data from stereo vision on 6 concurrent stereo cameras at the
RoMo. In this view, all range data except for ground-level range points are represented; their
color codes their minimum distance to the car. These data are used e.g. for path planning.
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presented in Section 3.4 is discouraged unless the calibration target is
perfectly rigid. Since it is difficult for the car to be relocated around the
calibration target, I opt for the inverse option, i.e., shifting a calibration
target around the car. In detail, I choose a thin metallic plate for the
user to be able to easily tilt it by hand in front of the 18 cameras. In
this context, sub-millimetric plate deflections are possible, thus a static
geometry cannot really be expected, and consequently it is not a good idea
to optimize its structure during camera calibration. This observation is,
of course, subject to the calibration target used.

2. Relative, extrinsic calibration between intrinsically calibrated
monocular and stereo cameras. The estimation of the relative rigid
body transformation between already intrinsically calibrated cameras is
simplified if it is possible for both cameras to aim at the same calibration
target. The fields of view (FOV) of some cameras, however, do not overlap
(e.g. cameras #1 and #11 in Fig. B.22). Three approaches are possible to
overcome this problem: First, it is possible to use two calibration targets
that are rigidly attached to each other (in an unknown configuration), and
use the hand-eye calibration method presented in Section 3.3 to estimate
their relative location. Alternatively, it is possible to build up sparse maps
of features with both cameras, rotating the car until their overlapping
can be detected and both maps can be registered, refer to (Carrera et al.,
2011). A third option is to repeat the absolute extrinsic calibration stage
presented below, for every subset of relatively-calibrated cameras. I opt
for the last option as it allows for high accuracy without the need for
extra hardware, thus it is subject to less potential mistakes by the user.

Even though it is perfectly possible to estimate relative transformations
between cameras in the context of a standard stereo camera calibration,
that is an incorrect procedure if the optimal camera parameters have
been already estimated during a previous intrinsic calibration stage. As
explained in Section 3.2, a different parametrization of the camera goes
along with a relocation of its reference frame SC, and consequently the

estimated transformation between cameras CiT̂
Cj

is not exactly valid in

Cameras #1, #2, #3

#7, #8
#11, #12 #13, #14

#9, #10

#4, #5, #6

#17, #18#15, #16

Figure B.22: Layout of the cameras mounted on the DLR RoboMobil. Only cameras #1, #2,
#3, #4, #5, and #6 are color cameras.
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this context. For this reason, the intrinsic parameters of the camera ought
to be fixed during an optimization process that is equivalent to regular
stereo camera calibration, where the only parameters to be optimized
are either the 6 DoF of the relative transformation between cameras, or
the 12 DoF of the relative transformations between the cameras and the
common calibration target located in S0. The camera calibration toolbox
DLR CalDe and DLR CalLab allows for the user to load previous opti-
mal solutions to the camera parameters so that only the abovementioned
transformations are estimated, with highest accuracy. Depending on the
calibration data used (either a file of one stereo camera or two files of

two monocular cameras), the desired transformation CiT̂
Cj

will either be
directly obtained using a stereo image (in the case of a stereo calibra-
tion), or indirectly using two monocular images in the case of monocular
calibrations, by making use of the following equation:

CiT̂
Cj

= 0T̂
Ci−1

0T̂
Cj

. (B.1)

3. Absolute, extrinsic calibration of relatively calibrated cameras
w.r.t. the car’s chassis. In theory, only one extrinsic calibration of this
type is necessary if all 18 cameras have been perfectly registered to each
other using the above methods. Since we opted for decoupling subsets
of relatively calibrated cameras, we actually require several absolute ex-
trinsic calibration procedures to fully register the cameras of the RoMo.
The camera subsets are four, divided in front, right-hand side, left-hand
side, and rear camera subsets, cf. Fig. B.23. Thus four absolute extrinsic
calibration procedures are required. The overall procedure is as follows:

(a) Three salient features are located in the FOV of a stereo camera
included in each of the four camera subsets (or, if necessary, of a
virtual stereo camera composed of relatively calibrated monocular
cameras), i.e., a total of 12 features on the scene are required.

(b) The 3-D coordinates of the features have to be measured w.r.t. the
absolute reference frame of the RoMo SRoMo. In order to deskill this
procedure, the features should be located on common planes, and
two of the features should lie in the direction of one of the main axis
of SRoMo, cf. Fig. B.23.

(c) A single stereo image with sufficient disparity is to be taken of every
set of three features. After that, the 3-D location of the features
w.r.t. the main camera of the camera subset can be easily estimated
by feature-based stereo vision as in Section 5.4.1. Finally, the ab-
solute transformation of every subset of cameras w.r.t. SRoMo can
be obtained by 3-D trigonometric calculations and concatenation of
rigid body transformations.
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Overall procedure

The overall sequence of calibration procedures is as follows:

1. Intrinsic calibration of monocular cameras and stereo cameras.

• 6× stereo camera calibrations for cameras 7∪ 8, 9∪ 10, 11∪ 12, 13∪
14, 15 ∪ 16, and 17 ∪ 18.

• 6× monocular camera calibrations for cameras 1, 2, 3, 4, 5, and 6.

2. Relative, extrinsic calibration between intrinsically calibrated
monocular and stereo cameras.

• 4× between monocular cameras 1 ∪ 2, 2 ∪ 3, 4 ∪ 5, and 5 ∪ 6.

• 2× between monocular and stereo cameras 2∪(7∪8) and 5∪(9∪10).

• 4× between stereo cameras (11∪12)∪(13∪14) and (15∪16)∪(17∪18).

S
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RoMo

Front and
rear panel

 Front
camera
 subset

 Right-hand
side camera
    subset

 Left-hand
side camera
   subset

  Rear
camera
 subset

Figure B.23: Layout of the features used for absolute, extrinsic calibration of the front, right-
hand side, left-hand side, and rear camera subsets.
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3. Absolute, extrinsic calibration of relatively calibrated cameras
w.r.t. the car’s chassis.

• 4× between 4 camera subsets and 3 known features each, using the
stereo cameras 7∪ 8 and 9∪ 10 as well as the virtual stereo cameras
11 ∪ 13 and 16 ∪ 18.

As soon as the calibration images are gathered, the whole process including
pattern detection and parameters estimation proceeds automatically. Due to
the recent reimplementation of DLR CalDe and DLR CalLab into C++, massive
parallelization of image processing is possible. It is worth noting that, due to the
flexibility of DLR CalLab, different lens distortion models are supported even
between the cameras forming a stereo camera. In the end, a single calibration
file listing the intrinsic parameters of all 18 cameras and their relative, as well
as their absolute, rigid body transformations is automatically generated.

B.2.5 Retrocalibration of a Pico projector

Introduction

Augmented reality concerns the natural extension of real entities with synthetic,
virtual data. One example is the overlay of virtual objects on actual images
in a natural way, i.e., taking the actual scene geometry and the vantage point
of the camera into consideration. Another example is the active projection of
signs or text unto the actual scene. This last example is recurrent in modern
medicine e.g. for preoperative planning prior to performing minimally invasive
surgery (Konietschke, 2008), see Figs. B.24 and B.25. In 2008 we at the In-
stitute of Robotics and Mechatronics observed the technological development
of miniaturized video projectors called pico projectors, and realized that these
devices could easily outdo the traditionally deployed laser autopointers that
were bulkier and limited to one sole type of pattern projection.

Figure B.24: Using an autopointer, different symbols can be projected onto the patient.

Traditional autopointers feature a limited field of view, therefore have to be
shifted to encompass the whole scene. An unknown motion of the autopointer,
however, renders it useless as the correct directions of projection cannot be
inferred anymore. It is by tracking the motion of the autopointer that the ab-
solute pose of the autopointer in the world reference frame S0 can be eventually
estimated, and hereby the projection directions updated to the actual structure
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Figure B.25: The VR-Map is a device focusing on augmented reality for robot-assisted surgery
including stereo vision, an LSP, and an autopointer, refer to (Schwier et al., 2010).

in front of the autopointer. Regrettably, most tracking systems perform w.r.t.
their own reference frame, e.g. the TCP reference frame ST, and therefore it
is necessary to extrinsically calibrate the autopointer w.r.t. that external refer-
ence system in a similar way as explained in Section 3.3. The inner geometry
of the autopointer is usually known ex factory. That is not the case when us-
ing pico projectors. They are not really conceived for this applicacion but for
visualization only, hence neither their angular amplification is known nor their
distortion effects w.r.t. pure perspective projection are totally compensated for.
In this work we aimed at intrinsically and extrinsically calibrating a pico pro-
jector aiming at advanced augmented reality by projecting complex textures
with highly accurate registration w.r.t. the actual scene structure.

We chose the SHOWWX+ laser pico projector of MicroVision, which is size
118×60×14 mm and projects color, high-resolution images. In order to allow
for hand-held motion of the projector, the used external tracking system was
an infrared optical tracking system called ARTtrack2. The motion readings of
the tracking system together with the intrinsic and extrinsic calibration results
of the projector ought to compensate for the random motion of the projec-
tor so that projections stay static on the canvas, virtually irrespective of the
projector’s motion.

Two types of calibrations are required:

1. Extrinsic calibration of the beamer w.r.t. the TCP of the tracking system.

2. Intrinsic calibration of the projector in order to accurately infer 2-D pro-
jections out from desired 3-D directions.

Due to my experience in the field of camera calibration, it immediately occurred
to me that an active projector ought to be the counterpart of a passive camera,
as light rays are emitted from a small region within the optics (similar to the
focal point of cameras, see Section 2.2.1), and light rays are emitted nearly con-
stantly distributed in polar coordinates. Furthermore, as the projector contains
optics, it is possible that the remaining distortion can be in part compensated
by the models presented in Section 2.2.1. Hence I tried to apply the intrinsic
calibration method presented in Section 3.2, regarding the projector as a sort of
inverse camera—emitting radiation instead of receiving it. Incidentally, if such
a calibration is possible, it seems natural to perform extrinsic calibration out of
camera absolute extrinsics and readings of the external pose tracking following
the method presented in Section 3.3.
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The standard camera calibration method in Section 3.2 solely requires image
projections corresponding to known planar features on the scene. Nearly with-
out exception, camera calibration is being performed using a common calibra-
tion pattern for all images. It is difficult to imagine how to obtain image-to-
feature correspondences of a common pattern using a projector. It is critical to
realize, however, that using a common calibration pattern is not a fundamental
requirement for camera calibration as presented in Section 3.2, but it is only
for convenience that users do so. By doing so, the calibration pattern only has
to be measured once. It is perfectly possible to use a different set of corners
at every camera station—as long as the set is flat (for rapid initialization using
homographies) and valid correspondences with projector coordinates exist. I
propose to project a calibration pattern unto a flat canvas using the projector,
from different vantage points, and to measure their projections on the canvas
externally, for every projection. This is equivalent to camera calibration when
using a different calibration pattern for every projection. In so doing, the cor-
respondence problem can be naturally solved: coordinates in S0 are identified
and measured by an external camera, whereas projections on the projector (the
virtual camera) are controlled by the user in the first place.

Related work

Recently in (Gavaghan et al., 2011) the authors intended the same device with
a similar approach. Their approach is, however, inadequate in three respects:
First, they do not consider the distortion of images due to the use of optics
and microelectromechanically-actuated mirrors, which is very strong in such
devices. Second, they extrinsically calibrate the projector by measuring the
pose of the calibration plane in the world frame S0 so that only the projector-
to-TCP transformation is required, which can be directly estimated from the
absolute extrinsics of one sole station included in camera calibration results. My
experiments show that such an approach is subject to errors as the plane’s pose
is estimated from tracking using reflective markers lying on the plane, and the
millimetric transformation between the markers and the actual plane has to be
ultimately estimated by hand. Third, they use a hand-guided probe to measure
the corner projections, for every single image. This task is prone to errors and
undeniably dull and inconvenient. For the above reasons, experiments show
huge errors of up to ±15 pixels.

On the other hand, the earlier work in (Kimura et al., 2007) fixes their last
limitation, using homographies between the projected pattern and images of
a calibrated camera unto an unknown plane, instead of measuring projected
corners by hand. Still, this implementation falls short because the actual pose
of the projector cannot be estimated, and therefore an extrinsic calibration of
the projector w.r.t. the tracking system is missing. In addition, the distortion
of images by the projector is left unattended. Overall, the approach only yields
the apparent scaling of the projector.

The approach presented in the next section fuses both above approaches.
In addition, it copes with image distortion and estimates the hand-eye trans-
formation in the context of maximum likelihood estimation using the method
presented in Section 3.3.
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Proposed method

Fig. B.26 shows the proposed setup for calibration of the laser pico projector.

Figure B.26: Experimental setup for in-
trinsic and extrinsic calibration of the
pico projector: aluminum frame (1)
where a white canvas (2) is mounted
on, including four known features used
to estimate the pose of the external ca-
mera (8) w.r.t. the canvas by homogra-
phies. The external camera is in turn
used to measure the projections gener-
ated by the pico projector (4) mounted
on a tripod (3), which is required for
intrinsic and extrinsic calibration of the
pico projector (4). The pico projector
(4) is tracked by an optical tracking
system ARTtrack2 (6) using four IR-
reflecting markers (5) mounted on the
pico projector (4). The tracking system
(6) features its own controller unit (7).

The calibration procedure is as follows:

1. Intrinsically calibrate the camera (8) using the method in Section 3.2.

2. Extimate the camera-to-canvas homography using the method presented
in Appendix A and four features on the canvas measured w.r.t. an aleatory
reference frame Scanvas. This homography, together with the intrinsically
calibrated camera, makes highly-accurate, direct metric measurements on
the canvas possible.

3. Deploy the projector (4) to project a calibration pattern unto the canvas
(2) as performed during intrinsic and extrinsic camera calibration in Sec-
tions 3.2 and 3.3, i.e., tilted w.r.t. the canvas and with at least two rota-
tional motions with nonparallel rotation axes. Capture these projections
with the external camera (8). Fig. B.27 (a) shows a typical projection
unto the canvas. At the same time, record the poses of the TCP (5) of
the tracking system attached to the projector (6).

4. Process the images using DLR CalDe, and subsequently convert these
pixel projections unto metric coordinates in Scanvas using the camera-to-
canvas homography obtained above.

5. Modify the text interface files between DLR CalDe and DLR CalLab,
substituting pixel coordinates by the projected pattern coordinates in
projector coordinates, as well as calibration object coordinates by metric
projection coordinates on Scanvas, for every image (refer to Section B.3).
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6. These files allow now to intrinsically calibrate the projector as a “virtual”
camera using DLR CalLab. Regrettably, it turns out that the traditional
lens distortion methods presented in Section 2.2.1 do not match the dis-
tortion effects of the pico projector. This is due to the fact that distortion
is mainly due to the dynamics of the microelectromechanically-actuated
mirror, and secondarily to the lenses used. Fig. B.27 (b) shows a typical
pattern of projection residuals. Critically, the pattern is identical in ev-
ery calibrated projection, which proves that the camera can actually be
modeled perspectively as long as we manage to cancel out these residual
distortion errors. I opt to generate a 2-D LUT on projection coordinates
and undistort the projected pattern by direct mapping using bilinear in-
terpolation of the LUT. To that end, we utilize the OpenGL ES library
for computer graphics in embedded systems. This method brings dis-
torted projections back to perspectively correct projections and results in
sub-pixel accurate reprojections after intrinsic calibration (in the order of
0.25 pixels RMS error), which in turn provide highly-accurate estimation
of the absolute extrinsics of the projector w.r.t. the canvas frame Scanvas.

7. Proceed with the second stage of DLR CalLab to extrinsically calibrate
the projector w.r.t. the external tracking system (hand-eye calibration).
This process (explained in Section 3.3) estimates both, the hand-eye tra-
nsformation between the projector and the TCP of the tracking system,
and the rigid body transformation between Scanvas and the base reference
frame of the tracking system e.g. S0.

(a) Typical projection captured and
measured by the external camera used
for calibration of the projector.

(b) Residuals between actual and expected projec-
tions using an optimally-parameterized pinhole ca-
mera model of the projector (3.7 pixels RMS error).

Figure B.27: Image projections and reprojection residuals during calibration.

This method results in millimetric accuracy in the projected pattern if the
projector is static, viz. ±1.5 mm at 40 cm range. If the projector is in motion,
the lag of the external motion tracking system and of the interfaces to an
embedded computer produce larger deviations in the ballpark estimate of 8
mm in hand-held motion. The estimated delay in pose tracking estimation
amounts to 0.1 seconds, refer to (Sollinger, 2012).
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B.2.6 Other Platforms

Calibration of eye-tracking cameras on 3-D displays

Manufacturers of display panels introduced the first glassless 3-D flatscreens for
close-range applications (i.e., for desktop computers) approximately five years
ago. Their technology works from the premise that the human’s eyes are located
on a particular spot w.r.t. the display. Alternatively, the human’s eyes can be
tracked e.g. by a display-mounted stereo camera to estimate their pose w.r.t.
the camera. If the pose of the stereo camera w.r.t. the display is known, the
pose of the human’s eyes w.r.t. the display can be finally estimated. Sometimes
these cameras are not integrated into the display but attached by the user,
therefore a camera calibration method is necessary that estimates both, the
intrinsic parameters of the cameras and their pose w.r.t. the display.

In 2010 I and colleagues at DLR filed a patent for a method that solves
the abovementioned problem. The patent specification DE20101004233
at http://goo.gl/JiQbE presents a general method for the estimation of the
pose of a camera or several cameras w.r.t. an object when the object does
not lie within the field of view of the camera(s). To this end, we propose the
use of a planar mirror of unknown pose. Put in concrete terms, this general
procedure makes it possible to calibrate a display-mounted (stereo) camera
in a similar way as presented in Section 3.2, whenever a mirror is used for
the camera to visualize a calibration target displayed on the 3-D display, see
Fig. B.28. The mirror can be freely moved at the front of the camera and, by
varying its orientation, the pattern on the display imaged by the camera, viz.
perspectively distorted depending on the poses of the mirror and of the camera.
By formulating the intrinsic and extrinsic camera calibration methods w.r.t. a
virtual camera behind the mirror, it is possible to estimate both, the pose of the
mirror and the pose of the camera—along with its intrinsic camera parameters.

Figure B.28: A calibration pattern (1) is displayed on a 3-D flatscreen (3). A camera (2) is
rigidly attached at the top of the 3-D flatscreen (3). A planar mirror (4) is used for the camera
(2) to image the calibration pattern on display (1), thus estimating its intrinsic and extrinsic
parameters in a similar way as presented in Sections 3.2 and 3.3. Source: DE20101004233.

http://goo.gl/JiQbE
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Sensing on automotive assembly lines

The assembly of wheels in the production line of cars is one of the last pro-
duction stages where human intervention is still necessary. This is due to the
fact that the process requires high accuracy whereas the car usually hangs from
a conveyor line, and because force-controlled positioning and screwing of the
wheel onto the car are required. Furthermore, the front wheels’ orientation is
unknown and has to be measured. In 2008 our institute led a robotic demon-
stration of this process, see Fig. B.29.

Figure B.29: Demonstration of robotic assembly of wheels onto a BMW car. In the right-hand
side: close-up of the impact screwdriver mounted on the end-effector of the robot. Note the
camera inbetween the five screwdriver heads.

The position of the conveyor line (see the left-hand side of Fig. B.29) can
be only used as a first estimation of the position of the car, as the car may
be swinging when hanging from the rails. After that, cameras mounted on the
TCP of the robotic manipulator take over perception. To achieve the required
accuracy when estimating the pose of the wheel hub w.r.t. the robotic manipu-
lator, the intrinsic and extrinsic calibration methods presented in Sections 3.2
and 3.3 have been employed.

It is, however, hard to estimate the front wheel’s rotation in the vertical
axis by images from the side of the car. In (Lange et al., 2008) a method
was presented to estimate the tilt angle of the front wheels using a laser stripe
profiler similar to the used in Sections 2.2.2, 3.6, and 4.3. At close range, the
cameras cannot see the wheel hub anymore as their angular field of view is
limited by the wheel (the cameras are located at the central hole of the wheel,
see Fig. B.29). At close range, contact and force sensors mounted on the robot
take over perception to lead control of the robotic manipulator.
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Patient registration in minimally invasive surgery

Minimally invasive surgery (MIS) or laparoscopic surgery is a modern surgical
technique in which surgical instruments are introduced in the body by small
incisions the size of 0.5 to 1.5 cm. In recent years, specialized tools and even
robots have been introduced in the field. In robot-assisted MIS surgery it is
crucial for the quality of the procedure to accurately localize the patient in
a non-intrusive way, as this is a requirement e.g. for preoperative planning
of the intervention or augmented reality as presented in Section B.2.5. For
instance, MRI or CT data can be overlayed on the patient, and the optimal
entry positions for MIS interventions, biopsy needle trajectories, or cutting
trajectories for osteotomies can be indicated.

Since humans do not have salient features especially suited for their ex-
trinsic calibration, it is necessary to acquire (part of) their 3-D shape for data
registration. A hand-held perception device for 3-D acquisition of the human’s
body geometry has been developed in the Institute of Robotics and Mechatron-
ics of the DLR, see Fig. B.30. The VR-Map can be considered an adaptation of
the DLR 3D-Modeler, see (Schwier et al., 2010). It meets the abovementioned
requirements by markerless and contact-free acquisition of 3-D geometry, with
highest accuracy. Subsequently, the scan is registered with preoperative data us-
ing the Iterative Closest Point algorithm ICP (see (Besl and McKay, 1992) and
Fig. B.31 (b)), and represented in the local reference frames of robots for MIS
interventions as performed by the MiroSurge robotic system in Fig. B.31 (a).

Figure B.30: The VR-Map is a hand-held perception device for robot-assisted surgery in-
cluding stereo vision, an LSP, and an autopointer, refer to (Schwier et al., 2010). It can be
considered an adaptation of the DLR 3D-Modeler to medical applications (Fig. B.25 reprint).

(a) The robotic system for minimally invasive surgery
MiroSurge developed at DLR.

Registration

(b) 3-D data registration of a torso
3-D scan using the ICP algorithm.

Figure B.31: Patient shape registration in minimally invasive surgery.
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B.3 The Camera Calibration Toolbox DLR CalDe
and DLR CalLab

DLR CalDe and DLR CalLab emerged late in the year 2005 at the Institute of
Robotics and Mechatronics of the DLR. It followed from the strategic purpose
of both, upgrading the former CalLab package and to develope a platform-
independent application. It was decided that a brand new application—independent
but inspired by the old CalLab—had to be produced. Having platform inde-
pendency in mind, it was chosen to develop in the IDL programming language.
In addition to that, this choice yielded reduced development time and boosted
performance.

Concerning application design, it was decided to detach the processes of
feature detection from the parameters estimation process. The former task is
now performed by the program DLR CalDe, which is completely independent
of DLR CalLab. The latter task is exclusively performed by DLR CalLab. The
sole interface are plain text files.

Figs. B.32 and B.33 give a first impression of the look-and-feel of the cali-
bration toolbox.

Note that recently I translated DLR CalDe and DLR CalLab into the C++
programming language, which allows for lighter packaging and distribution of
the toolbox e.g. together with commercial robotic systems. In addition, a C++
implementation of DLR CalDe allows for faster image processing and extensive
parallelization, which is useful in the case of large numbers of high-resolution
images.

B.3.1 DLR CalDe (DLR Cal ibration Detection Toolbox)

The detection toolbox DLR CalDe serves the need for localizing landmarks/corners
on a chessboard-like 2-D calibration panel, viz. with sub-pixel accuracy.

In contrast to the vast majority of similar freely-available applications, here
the operation is fully automatic. In addition to that, the calibration pattern no
longer has to be fully visible within the images. The implications of this fact are
twofold: First, it makes possible to calibrate lens distortion in the peripheral
regions of the image. Second, it facilitates the calibration of stereo cameras and
eye-in-hand or eye-to-hand systems, since partially visible patterns suffice for
calibration.

The application also preserves the possibility of manual interaction and
adjustment of the selected landmarks.

In the end, DLR CalDe generates files containing the correspondences be-
tween the actual 3-D coordinates of the landmarks of the calibration object
and their (stereo) image correspondences, i.e., their detected 2-D projections.
These are starting point for the camera calibration toolbox DLR CalLab.

Please find the short tutorial of DLR Calde In Section D.1 within Ap-
pendix D.
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Figure B.32: Main window of the corners detection program DLR CalDe.

Figure B.33: Main window of the parameters estimation program DLR CalLab.



254 APPENDIX B. EXPERIMENTAL PLATFORMS & APPLICATIONS

B.3.2 DLR CalLab (DLR Cal ibration Laboratory)

DLR CalLab estimates both, the intrinsic and extrinsic parameters of either a
single camera or a stereo camera (i.e., of a constellation of two or more cameras
rigidly attached to each other). It does so on the basis of the previously detected
image features (e.g. from DLR CalDe).

Intrinsic parameters describe perspective projection, lens and sensor distor-
tions, as well as the digitization process (refer to Chapter 2). These define the
nonlinear transformation between projections in the camera reference frame SC

and themselves when represented in the image memory frame SM. In the case
of a stereo camera calibration, the rigid body transfomation(s) between came-
ras can be considered as further intrinsic parameters of a more general instance
called stereo camera.

Extrinsic parameters describe the rigid body transformations between the
main camera reference frame SC and either the world reference frame S0 or
the tool center point (TCP) reference frame ST. The former transformation
changes at different instants (camera stations), whereas the latter (also called
hand-eye transformation) remains constant as long as the camera(s) stay rigidly
attached to the TCP. The hand-eye calibration is implemented following dif-
ferent methods like 2-D image reprojection minimization (Zhuang et al., 1995;
Malm, 2003), closed-form solutions (Zhuang et al., 1994), as well as the novel
method presented in (Strobl and Hirzinger, 2006) and Section 3.3.

The program offers extensive interaction possibilities:

• Choice and parametrization of the numerical optimization algorithms.

• Hands-on histograms and images for the selection of mistaken corners
to be removed. It is more appropriate to take over this task from DLR
CalDe since estimated, reprojected points are useful to promptly verify
the detected corners.

• A variety of parameter estimation methods is implemented.

• The lens distortion model can be flexibly selected up to radial distortion
in 3rd, 5th, and 7th orders, decentering distortion in 2nd and 4th orders,
and thin prism distortion in 2nd and 4th orders (refer to Section 2.2.1).

• It is possible to release the aspect ratio and the absolute scale of the
calibration target, see (Strobl and Hirzinger, 2008).

• It is even possible to release the full geometry of the calibration target
during intrinsic and extrinsic calibrations, by following the novel methods
in (Strobl and Hirzinger, 2011).

Of course, it is also possible to perform automatically the whole calibration
process in one-button-mode.

Please find the short tutorial of DLR CalLab In Section D.2 within Ap-
pendix D.
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B.4 Summary and Discussion

In this chapter I present several implementations of the methods and devices
introduced in the last chapters. These implementations constitute the real-
world context of the introduced methods and devices. By understanding their
context, the reader may now better comprehend the details of their realization,
as well as the design guidelines originally introduced in Section 1.2 focusing on
the effective implementation of methods and devices in service robotics appli-
cations.

Starting out I present the DLR 3D-Modeler as the perception head of the
humanoid robot “Justin.” In this context, the calibration of the cameras of the
DLR 3D-Modeler requires special care both, because of the limited motion range
of the pan-tilt unit on which the DLR 3D-Modeler is mounted, and because of
the strong accuracy requirements of the applications. In reward, the stereo
camera can be also used to support the kinematic calibration of “Justin.”

Next the implementation of a light stripe profiler (LSP) acting as an obstacle
avoidance sensor mounted on the ExoMars rover has been detailed. Due to the
particularities of the platform, the original LSP within the DLR 3D-Modeler
had to be extended in aspects concerning both hardware and software. In a
further implementation—now in outer space—the visual pose tracking method
presented in Chapter 5 has been used to estimate the relative motion of two
satellites—one potentially tumbling down to Earth and the other aiming at a
controlled docking maneuver unto the latter. The visual pose tracking method
presented in Chapter 5 had to be customized to cope with spurious specularities
obtained in hardware-in-the-loop experiments.

Special calibration methods for constrained hardware have been also pre-
sented targeted at the robotic car RoboMobil featuring 18 cameras, a laser pico
projector acting as an inverse camera, and to cameras mounted on 3-D display
panels (in this context the patent DE20101004233 was filed).

Medical applications comprise the calibraton of autopointers for augmented
reality as well as the insertion of the LSP of the DLR 3D-Modeler for 3-D
patient registration; these contributions are realized in the 3-D modeling device
VR-Map.

On the software side, the well-known camera calibration toolbox DLR CalDe
and DLR CalLab has been introduced (Strobl et al., 2005). The software is
ranked in the top three among the freely-available camera calibration tool-
boxes worldwide. Beyond learning my lessons on algorithmic and computer
programming, I learned a lot about maintaining a software package for an ac-
tive community of users.

In conclusion, from the numerous implementations of the DLR 3D-Modeler
and of the methods developed in this thesis, I first and foremost learned that
real-world implementations always require a considerable extent of ad hoc cus-
tomization and developing time.
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C
The DLR 3D-Modeler Documentation

“If you can’t explain it simply, you don’t understand it well enough.”

—Albert Einstein

This appendix contains the latest version of the official documentation of the
DLR 3D-Modeler (ver. 1.1-pre, 2010-10-29). This document was co-authored
by Tim Bodenmüller.

C.1 General System Description

Legal Information

The multisensory DLR 3D-Modeler hardware and software components (Suppa
and Hirzinger, 2004; Suppa et al., 2007) have been developed at the Institute
of Robotics and Mechatronics, German Aerospace Center (DLR), Oberpfaffen-
hofen, Germany.

This documentation describes the use of the DLR 3D-Modeler with ego-
motion estimation from images, i.e., without using external pose sensing.

C.1.1 Introduction

Generally, 3-D scanning is the task of sampling the surface of an object by man-
ually moving a scanner device along a scan trajectory with respect to (w.r.t.)
the surface. A 3-D scanner system consists of a range sensor that measures a
set of distances and a pose sensor that measures the pose of the scanner system
w.r.t. a global coordinate system (usually one rigidly attached to the object).
Here, the range sensor is the Light Stripe Profiler (LSP), see Section C.1.1,
and the pose sensor is the ego-motion estimator, see Section C.1.1. The DLR
3D-Modeler system further supports the immediate (streaming) 3-D surface re-
construction and visualization of the measured data. The processing concept is
summarized in Fig. C.1. In the following, the principles of these modules are
summarized.
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Scanner System

3D-Modelling+
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Figure C.1: 3-D modeling using the DLR 3D-Modeler.

Range Measurement: The Light Stripe Profiler (LSP)

The Light Stripe Profiler (LSP) (Strobl et al., 2004) is a 1-D range sensor (i.e.,
it delivers range data for a 1-D stripe of directions) that uses one camera and a
laser-line module. The laser beam illuminates a stripe on the surface while the
camera records the diffuse reflection. An advantage of our implementation of
this sensor is that we are not using any optical filter1 for direct line segmentation
on the images. By doing this, concurrent applications can simultaneously use
unfiltered camera images. Possible applications are here stereo reconstruction,
texturing of the resulting 3-D model, image-based pose estimation (ego-motion
tracker), and the use of the camera live stream for user-friendly visualization
during scanning, e.g. augmented reality.

Pose Measurement: The Ego-Motion Tracker (EMT)

The Ego-Motion Tracker (Strobl et al., 2009a; Mair et al., 2009, 2010b; Strobl
et al., 2011) is an accurate, real-time localization system based on a single
calibrated camera. Its efficiency and accuracy are based on monocular fea-
ture tracking and sub-pixel accurate stereo triangulation respectively. By using
motion tracking, no external referencing system is necessary anymore. Further-
more, it is a purely passive method as it does not require any physical action
on the environment. Efficient pose estimation is achieved by using V-GPS
(Burschka and Hager, 2003) in a novel, robust manner (Mair et al., 2009). In-
telligent feature management robustifies the pose estimation additionally. The
algorithm is designed for close range applications like hand-held 3-D scanning,
but it also allows for mobile robots to estimate their own motion in real-time,
without any knowledge about their environment except for its rigidity.

3-D Modeling and Visualization

In order to provide a suitable visual feedback to the user it is necessary to allow
for in-the-loop integration and processing of range measurements. Rendering of
the raw measurement data is the most simple way of providing visual feedback.
However, this typically results in poor visualization quality as no reasonable
model shading is possible and it is difficult for the user to judge the quality of

1Optical filters may be mounted in front of the camera lens in order to filter out light at
frequencies different from the characteristic frequency of the filter, i.e., only laser light passes
through.



C.1. GENERAL SYSTEM DESCRIPTION 259

the eventual 3-D model. Hence, it would be beneficial to generate the desired
3-D model in-the-loop and to be able to visualize it in real time.

The DLR 3D-Modeler software suite integrates in-the-loop generation and
visualization of 3-D surface models (Bodenmüller and Hirzinger, 2004). Surface
reconstruction incrementally generates a dense and homogeneous triangular
mesh from measurement data by extending and refining the surface model with
every newly inserted point. This process implicitly filters out outliers and rejects
under-sampled regions until enough sample points are available. The method
is not scanner-specific but it is suitable for generic types of 3-D scanners. The
user can instantly begin scanning objects and does not need to parametrize the
workspace beforehand. Further, the generated model is available at any time
and no additional post-processing is required for visualization.

C.1.2 Hardware Components

The multisensory DLR 3D-Modeler system (in its ego-motion setup) comprises
the DLR 3D-Modeler unit with attached carry handle, the sensor PC, and some
cabling, as shown in Fig. C.2. In detail:

• 1x DLR 3D-Modeler main unit with handle and stand

• 1x 1394b Firewire cable

• 1x Sensor PC with mouse and keyboard

• 1x 27” Monitor

Figure C.2: Components of the multisensory DLR 3D-Modeler (ego-motion setup).
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C.1.3 The DLR 3D-Modeler Overview

The multisensory DLR 3D-Modeler main unit (Fig. C.3) is a sensor system for
manual and automatic digitization of object surfaces. Its sensing components
are a pair of FireWire cameras, two laser-line modules, and a DLR laser-range
scanner (LRS). The latter is an independent laser-range sensor in its own and
is described by Hacker et al. in Ref. (Hacker et al., 1997). The integrated AVT
Marlin cameras2 feature an image resolution of 780×580 pixel and a maximum
full-frame rate of 50 Hz. The base distance of the cameras is 50 mm, which
represents a trade-off between perspective projection dissimilarity and range
precision, assuming a general working range between 100 and 2000 mm for
stereo triangulation. The laser-line modules have an opening angle of 60◦ and
wavelength of 635 nm. The DLR 3D-Modeler main unit can be used either
robot-mounted, hand-guided in combination with an external pose measure-
ment system (e.g. optical tracking system), or without any external sensors
in the current ego-motion setup. The three mechanical couplers/adapters are
identical and they can be used for mounting a handle, tracking markers or robot
flanges.

Three buttons are integrated in the handle. They are used to control and
configure the sensor modules of the DLR 3D-Modeler. The configuration is
visualized on a TFT display on top of the DLR 3D-Modeler main unit. Data
and power transmission are via Firewire bus.

Handhold

Laser Range
    Scanner

Robot interface

Display

Cameras

Line laser
modules

passive or active
Markers

Figure C.3: The multisensory DLR 3D-Modeler and its different potential adapters.

The 3-D modeling software suite is structured in several processing stages,
which are implemented as individual programs. Fig. C.4 shows the relations
between these components. A hardware abstraction layer is implemented in the
program SensorServer. This program directly communicates with the DLR
3D-Modeler. On top of SensorServer the individual pose and range measu-
rement modules (i.e., LSP and EMT) are arranged, see (Bodenmüller et al.,

2Allied Vision Technologies (http://www.alliedvisiontec.com, 2008).

http://www.alliedvisiontec.com
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2007). Data from both sensor modules are received by the Visu3D software,
which in turn generates and displays the resulting 3-D model. Further, the
software supports the simultaneous display of live camera streams and textured
3-D models (augmented reality).

Sensor-
server

LSP

EMT

Visu3D
3D-Modeller

range data

pose data

camera 
images

Figure C.4: Overview of the DLR 3D-Modeler’s software architecture.

C.2 System Installation

C.2.1 Wiring

Fig. C.5 shows the required physical connections between the DLR 3D-Modeler’s
components. The Firewire cable connects the DLR 3D-Modeler with the Sensor-
PC. The 1394a plug has to be connect to the PC, the 1394b plug must be
connected to the DLR 3D-Modeler main unit (see Fig. C.5).

(a) Plugs

Connector

(b) Modeler connector

Connector

(c) PC connector

Figure C.5: Connecting the DLR 3D-Modeler to the Sensor-PC.
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Figure C.6: Initial desktop of the PC and link to Q3dMo-Menu.

C.2.2 Starting up the System

The DLR 3D-Modeler system has to be started in the following order:

1. Hardware setup:

(a) Turn on PC (in EXTERN mode if outside DLR-RM’s local area
network) and login.

(b) Turn on power switch of the DLR 3D-Modeler main unit; wait until
the DLR 3D-Modeler display shows its menu.

2. Software setup (via Q3dMo-Menu):

(a) Start Q3dMo-Menu (see Fig. C.6).

(b) Select the DLR 3D-Modeler main unit used (Q3dMo-Menu: device
→ 3dMo-R4 ).

(c) Select the desired pose sensor (Q3dMo-Menu: pose → VSLAM ).

(d) Start the SensorServer module (Q3dMo-Menu: SensorServer but-
ton).

(e) Configure the stereo camera system (see Section C.2.3).

(f) Start and configure Visu3D (see Section C.5).

(g) Start and configure the LSP module (see Section C.2.4).

(h) Start the EMT module (ego-motion, see Section C.2.5).

A more detailed description of the Q3dMo-Menu program is given in Sec-
tion C.3.
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C.2.3 Configuration of the Stereo Camera

The parameters of the stereo camera system (shutter time, gain and white bal-
ance) have to be set by the user because environmental lighting conditions differ
depending on both the system’s location and potentially the time of the day
as well. The coriander software can be used for this purpose. The necessary
steps are as follows:

1. Start stereo viewer module (Q3dMo-Menu: extras → start stereo viewer)

2. Start coriander twice (Q3dMo-Menu: extras → start coriander) and
select a different camera on each coriander window.

3. Set shutter time and gain (coriander: Controls label) so that the stereo
viewer’s images are not overexposed (see Fig. C.7). Furthermore, the
shutter times of both cameras must be identical. Typical values are in
the range of 300 to 800. The gain is set by coriander to 1 but should
be increased to values up to 150 if necessary: Higher gain values allow
for lower shutter times in the case that shutter time is higher than 400 (a
value that would be desirable).

4. Set white balance. First, the DLR 3D-Modeler main unit’s cameras should
solely aim at a rather white/neutral scene. After that, the white balance
mode (coriander: Controls label) has to be set to auto for a few seconds
(the color weighting of the cameras now changes automatically). Then,
the white balance mode has to be set back to man.

5. Close the stereo viewer module (type ’x’ or ’q’ in its console window, and
then <ENTER>).

6. Close—or minimize—the coriander windows.

C.2.4 Start and Configuration of the LSP Module

The Laser Stripe Profiler (LSP) uses a color look-up table (LUT) of the scene in
order to distinguish between (scene) background and laser-line reflection. Even
though a typical LUT is already provided, the LUT should be adapted by the
user to include the color values of the scene that will be digitized. A strongly
inadequate LUT may cause either wrong segmentation results of the laser-line
or no segmentation at all.

In order to learn the LUT anew, the LSP must be first started (click on
’RangeSensor LSP’ button in Q3dMo-Menu). After that (and, if required, at
any other moment during operation), ’LUT measurement’ must be selected
either using the display, wheel and buttons on the DLR 3D-Modeler main unit
(see Section C.4), or using the ’Sensor special command’ button in Visu3D (see
Section C.5). Now, the DLR 3D-Modeler main unit has to be directed to the
scene or object to be modeled. By pressing (and maintain pressed) the unit’s
fire button, or alternatively clicking on Visu3D’s ’Start LUT’ button, the system
acquires images of the scene without laser projections. These images are used
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Figure C.7: Screen of the PC during configuration of the stereo camera system: For each
camera a coriander tool is started (upper, right-hand side windows). The SensorServer (up-
per, left-hand side console) and the stereo viewer (lower, left-hand side console and two lower
image windows) are also running.

for generating the new LUT. The user should rapidly scan the scene. When
finished after some seconds, the user can finish the LUT learning phase by
releasing the fire button or pressing ’Stop LUT’ in Visu3D.

This LUT learning phase should only be performed once unless either the
scene or its ilumination change.

C.2.5 Start of the EMT Module

To start the ego-motion estimation module (EMT ) click on the ’PoseSensor
VSLAM’ button in Q3dMo-Menu. A camera window appears and the EMT
module automatically starts delivering pose estimations to the SensorServer.

The EMT module’s operation is as follows: First, scene features at close
range (10 to 50 cm) are searched for that are convenient for eventual feature
tracking. Only after successful (stereo) initialization of these features, the EMT
module delivers accurate pose estimations by tracking these features using the
image stream of one camera only. If the features are lost by saccadic hand
movements or by the absence of other scene features at close range, pose esti-
mation is interrupted. Every time that this happens, the object reference frame
where 3-D results are being represented by Visu3D is lost. If further data has
to be acquired the already modeled scene has to be deleted, or alternatively a
separated, new 3-D scene can be opened.

Software extensions that are convenient for extended scanning of a scene,
like automatic relocalization on former scenes or loop closing, have been already
implemented but are not delivered in this software package yet.
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C.2.6 Shutting down the System

The DLR 3D-Modeler system should be turned off in the following order:

1. Disconnect and close Visu3D.

2. Close all modules (Q3dMo-Menu: extras → terminate all).

3. Turn off the DLR 3D-Modeler main unit.

4. Shut down PC (by briefly pressing the power button).

C.3 The Q3dMo-Menu

Q3DMo-Menu is a a graphical user interface (GUI) program for starting and
surveilance of the software components of the DLR 3D-Modeler. The menu is
shown in Fig. C.8 with labeled components. In this section the components
functions are explained.

Show/Hide Sensor Control

Sensor Control

State Info
Terminate
Program

Start
Program

Configuration
Info

Menu Bar

Figure C.8: The components of the Q3dMo-Menu.
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C.3.1 Starting and Stopping Modules

The main area of the Q3DMo-Menu shows a start button, a state info and a
terminate button for every sensor module (program) that is available. This is
for a selected combination of a DLR 3D-Modeler device and a pose sensor. The
DLR 3D-Modeler device can be selected by the device menu in the menu bar.
Analogously, the pose sensor is selected in its pose menu. A module is started
by pressing its respective labeled button and terminated by pressing the red
cross button beside it. The state info field (colored square) shows the current
state of the respective module, which can have the following colors:

program has not been started yet

sensor is turned off (state OFF)

sensor is ready (state READY)

sensor is measuring (state RUNNING)

sensor is busy (state UNDEFINED)

Logging Options

The logging menu controls the programs output, e.g. error messages. The
following options can be used:

• No logging output - no output

• Log messages to console - program is executed in a separate console

• Log messages to files - program messages are written in a file

The option Close console defines whether a console ought to be closed after
program termination (in effect only if Log messages to console is active).

If Log messages to files is selected, the user can assign the destination di-
rectory via Log. file directory . Each program writes to a separate file named
[program name].log (e.g. SensorServer.log).

Configuration Info Area

The Configuration Info Area shows the currently selected DLR 3D-Modeler
device and the pose sensor. Further, the logging options are displayed.



C.3. THE Q3DMO-MENU 267

Extras

The extras menu contains additional useful operations:

(re-)start all: Starts all modules, if not already started.

(re-)start selected: Starts all modules checked in the main window.

terminate all: Terminates all running programs.

kill all: Stops all programs immediately.

start coriander: Starts an instance of the camera configuration tool coriander.

start stereo viewer: Starts an instance of a viewer that displays the live
stream of the stereo camera.

start visu3d: Starts an instance of the Visu3D program, see Section C.5.

C.3.2 Range Sensor Control

The Range Sensor Control area provides direct control of the started range
sensors (e.g. of the LSP). Every range sensor has three states (and one error
state):

• OFF: The program is running but no resources are allocated – the system
is idle.

• READY: The program is running and resources are allocated – the sys-
tem is ready for immediate measurement.

• RUNNING: The program is measuring data.

State Info Area

Configuration Area

(a) Menu

Wheel

Fire Button

Left Button

Right Button

(b) Buttons

Figure C.9: The DLR 3D-Modeler display areas and buttons on the DLR 3D-Modeler handle.
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C.4 The DLR 3D-Modeler Display and Buttons

The DLR 3D-Modeler can be operated using the handle and display of its main
unit after software initialization (refer to chapter C.2). However, data transfer
to Visu3D still has to be released manually. The displayed menu, the buttons
and the wheel are shown in Fig. C.9.

C.4.1 The Display Menu

The display menu has two areas: the state info area (left-hand side column)
and the configuration area (right-hand side window). The state info area shows
the state of the available range sensors as colored squares. These colors co-
rrespond to the state encoding of the Q3dMo-Menu (see Section C.3). At the
moment only the state square of the LSP (labeled with P) and the state of
the SensorServer (labeled with T) are relevant. Similar to the Range Sensor
Control area at the Q3dMo-Menu, the configuration area shows sensor-specific
settings: For the LSP, the sensor can be turned on and off and the function of
the fire button can be toggled between measurement (laser) and learning the
color look-up table (LUT) as explained in Section C.2.4.

C.4.2 Usage of the Buttons and the Central Wheel

To navigate the menu use the left and right buttons as well as the central
wheel. The left button has the cancel/back function, the right button has the
okay/next function. Fields in focus can be browsed using the wheel. The fire
button toggles (start/stop) the measurement of the selected range sensor (in
this software version only the LSP (P) is available).

In the state info area (left-hand side column) different sensors are browsed
by turning the wheel. The right button will select the sensor, activating its
configuration area on the right-hand side. Another right button press applies
possible changes and jumps to the next entry. A left button press returns to
the state info area.

C.5 3-D Modeling using the 3-D Software Visu3D

Measurements can be acquired, visualized and stored using the 3-D software
Visu3D. The software also enables control of the used range sensors. The data
is maintained in one or more data sets, which can be visualized simultaneously.
After data acquisition, the data sets can be post-processed, e.g. texturized.
Fig. C.10 shows the main window of Visu3D with some labeled components.
In the following the configuration of the software, the control of range sensors,
data acquisition as well as texturing of 3-D models is explained.
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Sensor
Control

Transfer
Control

Connection
Options

View
Options

Data Set
Options

Event Log

3D-Model
View

Figure C.10: The components of Visu3D.

C.5.1 Introduction

The Visu3D main window consists of four areas (see Fig. C.10): the 3-D viewer
that displays the generated model, the sensor and data transfer control,
an event logger window, and the tool- and menu bars. The sensor control
provides direct access to the selected range sensor (e.g. the LSP). The com-
mands are similar to the sensor control of the Q3dMo-Menu (see Section C.3).
The upper area of the program window consists of a menu bar with all options
and three toolbars for data set, sensor connection, and 3-D viewer options.

The 3-D viewer area consists of one or more viewers (or render windows).
Each viewer can hold different types of data sets. These determine the kind of
data that is displayed and also the type of processing to be performed on these
data. At the moment the following data set types are supported:

• Viewer: The gathered data is directly shown, in raw. Newly inserted
data is not further processed and it is shown as a point set.

• TriangleMesh: All inserted data is processed by the surface reconstruc-
tion module to generate a triangle mesh in real time.

• The types Ext. Viewer, Viewer+Reduction and Normalizer are only
for internal use and should not be used.

C.5.2 Connecting to the DLR 3D-Modeler

In order to receive data from the DLR 3D-Modeler system, Visu3D has to be
connected to the data streams of both LSP and EMT, in other words it has to
be connected to their respective sensor modules. This is done by the following
procedure:
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1. Choose LSP as sensor.

2. Choose VSLAM as pose.

3. Enter localhost as host.

4. Press the connect button.

5. If no data set has been created yet, the data set creation dialog will be
displayed as in Fig. C.11. Select either Viewer to show the raw 3-D points
or TriangleMesh for activating surface reconstruction.

6. If the range sensor has not been already started (i.e., showing the state
READY ) by e.g. the Q3dMo-Menu or the DLR 3D-Modeler main unit,
the user can also use the sensor control section in Visu3D to start the
range sensor.

7. Start the EMT using the Q3dMo-Menu (if not already performed before).

Figure C.11: Selection of the data set type. In this version: use only Viewer or TriangleMesh!

C.5.3 Receiving Data

Visu3D is set into data reception mode by pressing the start/stop transfer button
in the transfer control area. The reception mode is indicated by a symbol beside
that button. When the program is in this mode, mouse interaction with the
model in the 3-D viewer is locked. Visu3D immediatley processes all data by the
DLR 3D-Modeler system. To stop this data reception mode press the start/stop
transfer button again.
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Figure C.12: The Visu3D in transfer mode.

C.5.4 Working with the 3-D Viewer Window

When Visu3D is not in data reception mode the user can interact with the
acquired 3-D model using mouse events on the 3-D viewer window:

• Mouse motion with pressed left button rotates the model.

• Mouse motion with pressed right button modifies the representation scale
(in other words, the range from the 3-D viewer’s point of view to the 3-D
model).

• Mouse motion with pressed central button (wheel) shifts the position of
the 3-D model w.r.t. the 3-D viewer’s point of view, but without modifying
its range.

The user can also choose between different perspective representation modes
for the 3-D viewer using camera-mode at the the third toolbar of the top menu
bar:

• Line follow representation follows range data as it arrives from the sen-
sor, rescaling the 3-D modeling at that.

• Live pose represents the acquired 3-D model in its correct perspective
as perceived by the selected camera (0 or 1), using pose estimation from
EMT.

• Live pose and image is similar to the last option but it additionally
displays actual 2-D images gathered by one of the DLR 3D-Modeler’s
cameras at the back of the virtual, 3-D model – i.e., the 3-D model is
overlayed on the actual, 2-D image stream. This corresponds to so-called
augmented reality, see Fig. C.13.
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Figure C.13: Visu3D transfer mode with live image background.

Further viewer options can be activated by keyboard shortcuts, see Fig. C.14.

Figure C.14: Viewer commands on the keyboard.

C.5.5 Texturing

Texturing 3-D models can be performed after geometrical 3-D model (range
data) acquisition. It is mandatory that data transfer is suspended (see Scanner
Control–Data Transfer) for this. In order to texture models the following steps
are indicated (see Fig. C.15):

1. Tools–Texture Mapping–Grab Image grabs a single image for texturing.

2. The amount of overlayed yellow boxes represents the number of acquired
images. The user can readily acquire several images following Tools–
Texture Mapping–Grab Image.
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Figure C.15: Visu3D texturing.

3. Applying Tools–Texture Mapping–Map Texture Images places textures on
the 3-D model surfaces. Note that the model has to consist of triangle
faces (TriangleMesh data set).

4. The textured model is then visualized. If several images were acquired,
choose the option Merge views for sensibly merging textures before map-
ping, see Fig. C.15.
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D
DLR CalDe and DLR CalLab Short Tutorial

“Every science begins as philosophy and ends as art.”

—Will Durant, The Story of Philosophy, 1926

This appendix contains the latest version of the short tutorials on the usage
of the camera calibration toolbox DLR CalDe and DLR CalLab (Strobl et al.,
2005), including the short tutorial of Wolfgang Sepp on DLR CalDe, and my
own short tutorial on DLR CalLab.

D.1 Short Tutorial on DLR CalDe

1. Preparation:

a) Create a calibration pattern using “Options→Create calibration pattern”
or use one of the supplied patterns. The size of the pattern should be
chosen according to the lens aperture as well as to the range for sharp
imaging. A bigger calibration pattern usually fits the demands. The
pattern should be sticked onto a flat surface, which may be difficult
in the case of large objects.

b) Shoot 3 to 10 images of the calibration pattern from vantage points
featuring varying orientations and distances, using either monocular
or synchronized stereo cameras. Note that perpendicular images to
the pattern are discouraged, see (Strobl et al., 2009b). An optimal
calibration can be only achieved if the calibration pattern fills the
whole image.

c) Save the images as Portable Network Graphics (PNG) files named
“*.(left|right|upper|lower).*png”. Additionally, save the corre-
sponding tool center point (TCP)-to-robot base homogeneous tra-
nsformation matrix to text files “*.coords” only if you also require
the extrinsic hand-eye calibration.

275
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2. Load data.

a) Load the configuration file corresponding to the particular calibra-
tion pattern in “Options→Settings” and edit the measured size of
the checkboard rectangles (remember that off-the-shelf printers do
not necessarily preserve pattern dimensions, refer to (Strobl and
Hirzinger, 2008, 2011)). Note that the circles on the calibration
pattern indicate its x/y-axis directions as well as the origin of the
plate. The z-axis is perpendicular to the calibration plane and points
inside the object.

b) Load the PNG images.

3. Detect corner points in the images.

a) Run the automatic corner point detection for the first image/tab.

b) If the circles of the calibration pattern have not been recognized, then
either enter an appropriate binarization threshold in “Options→Settings”
and return to step 3.a), or run semi-automatic detection by mouse-
clicking in the circles of the calibration pattern.

c) If too few corners of the calibration pattern have been detected in
spite of correctly detected central points, then the confidence thresh-
old in “Options→Settings”is too high; please lower it and return to 3.a).
The images probably present low contrast.

d) Run the corner point detection for all images/tabs with the above
configuration.

e) Check the result for example by using the “repaint grid”-icon at the
top of the table. The detected corners are then linked by a line to
their horizontal and vertical neighbors. Wrongly identified points
can be now easily detected. Either:

i. select these points in the table on the right-hand side and click
on the “delete-point”-icon to remove these points, or

ii. adjust the parameters as in 3.b) or 3.c) and repeat full-automatic
detection.

Manual corner point localization is the last resource in the case of really
compromised images. For this purpose, select a corner point in the table
on the right-hand side and click near to the corresponding corner in the
image. These adjustments are actually very rarely needed.

4. Save data.

Save the detected corner points for all images/tabs by clicking on the
“save-points-of-all-tabs”-icon.
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Figure D.1: Upper interface buttons on the GUI of DLR CalDe.

Figure D.2: Further indications on the GUI of DLR CalDe.
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D.2 Short Tutorial on DLR CalLab

1. Preparation.

Run DLR CalDe or any other similar program to detect and identify
features of a calibration object.

2. Load data.

Load the PNG image files as in DLR CalDe. The application is flexible
to the names and numbers used. At least three images (or stereo image
pairs) are required for initialization. You can select several files at the
same time by pressing the SHIFT key and selecting the first and the
last files, or by pressing the CTRL key and selecting each file. Load the
corresponding points files for the images as from DLR CalDe.

3. First calibration stage.

The general settings should not be modified in a standard calibration case.
If the command output says that you are ready for the estimation of the
parameters, do proceed with the first calibration stage. Intrinsic camera
parameters (including the camera-#1 to camera-#n transformation(s) in
the case of a stereo camera rig) are to be estimated. At the beginning, an
initial estimation is performed based on homographies, refer to (Zhang,
2000; Sturm and Maybank, 1999). Then, this last estimation is numer-
ically optimized. After that, the reprojection errors are overlaid on the
images. You can browse through images searching for mistakenly de-
tected corners. Here it is useful to hide the actual image (click on “Switch
monochrome image”), and it is also useful to augment arrows correspond-
ing to the reprojection residuals (click on “Error zoom”). In addition, you
can use the histograms for rapidly finding mistakenly detected corners.
Repeat this first calibration stage if you did remove corner points.

4. Second calibration stage.

The second calibration stage provides the TCP-to-camera transformation
(or hand-eye transformation). This transformation is not always required
by the user and can only be estimated if TCP-to-robot-base transforma-
tions for every calibration image have been collected. These transforma-
tions have been already used in DLR CalDe, hence embedded into the
points files. DLR CalLab implements different algorithms for estimating
this transformation (“Settings→General settings”):

a) The method of Strobl and Hirzinger in (Strobl and Hirzinger, 2006)
minimizes errors in the erroneous world-to-TCP transformation. The
residual errors in translation can be located either at the top of the
manipulator, at its bottom, or on both ends. The algorithm uses a
linear least squares solution for initialization.

b) You can also minimize features reprojection errors. This is only a
sound solution in the case of highly noisy cameras e.g. with very low
image resolution.
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5. Third calibration stage.

The third calibration stage only serves to verify correct estimation in
prior stages. It furthermore produces accuracy estimations for the posi-
tioning device (e.g. a robotic manipulator like the Kuka KR 16, an in-
frared tracking system like the ARTtrack2, etc.); these devices produce
the abovementioned world-to-TCP estimations.

6. Save data.

“File→Save” saves the calibration results in the desired output format. For
information on these formats refer to “Help→Documentation.”

Figure D.3: The DLR CalLab GUI after successful calibration.
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