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Abstract: A recently introduced new class of multi-agent transportation planning is considered.
Several agents have to cooperate in order to transfer a passive agent from its initial configuration
to a goal configuration. Docking events refer to discrete decisions, whereas the individual agents
are governed by nonlinear continuous dynamics. Modeling this problem in a hybrid optimal
control framework allows computing a solution using a centralized, hierarchical optimization
algorithm. Relatively well performing solutions can be found with much lower computational
time by decoupling the discrete-event level from the continuous processes. This is accomplished
by introducing a feedback controller based on a consensus protocol into the hierarchical
optimization structure. The scalability and optimality of this approach is examined for varying
information topologies in the consensus protocol and controller gains.
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1. INTRODUCTION

The multi-agent system (MAS) approach found its way
into a wide field of applications. The key characteristic is
that local (agent) properties in a MAS may influence any
other local agent’s properties and thus condition the global
behavior by its interconnected dynamics. Global behav-
iors and switchings can be described by discrete variables
and transitions between them, which follow underlying
continuous dynamic processes, see Olfati-Saber (2007).
Therefore, hybrid systems are widely used for modeling
MAS (see Fierro et al. (2001) ) as they can capture both
logic-based decisions and continuous control in one model.
For technical application, the performance of executing a
task by a MAS is of fundamental interest. Usually, the
overall task performance can not be represented by the
sum of the agents’ performances in their individual task
execution. Those systems operate in a cooperative manner,
whereat an optimal cooperative control strategy for a given
task depends on global knowledge, and hence, it has to be
solved in a centralized scheme, see Parker (1993).

For such performance-oriented and distributed hybrid con-
trol problems, exact methods for optimal planning and
scheduling have been seen to suffer from the “curse of di-
mensionality”. This relates to dynamic optimization solved
by backward induction as means of a divide-and-conquer
principle, where every possible information set is explored
first, before a decision about a Pareto-optimal execution
plan is taken. Computational intractability due to combi-
natorial explosion is the consequence.

Hence, classical hybrid optimal control which computes
centralized strategies by hierarchical optimization algo-
rithms (Shaikh and Caines (2007)) are applicable only
for small-scale cooperative problems with the number of

agents being in the order of 10!. Tools to reduce com-
putational complexity such as Lagrangian relaxation for
switched linear systems or heuristic methods as genetic
algorithms and evolutionary programming are available.
For the latter tools, however, quality of the resulting global
execution plans can hardly be controlled. Recently, Passen-
berg et al. (2010) introduced an algorithm, that combines
the exploitation of logic-based schedules with the under-
lying exploration of continuous state trajectories in one
scheme. The idea is to transform the globally optimal con-
trol problem to a problem depending on switching points,
which comply with a given geometric structure. Hence, the
two functional layers of exploitation on the discrete-event
level and optimization of individual continuous agent tra-
jectories can be combined in one functional layer. However,
for practical and especially large-scale problems switching
manifolds are often unknown and can hardly be computed
in a tractable way, concerning the time scale of the MAS
evolution. Therefore, a near-optimal approximation of a
switching structure is of interest.

The purpose of the current work is two-fold. First, in
addition to extensively studied generic tasks for MAS,
see Murray (2007) for reference, here a novel coopera-
tive tasking scenario is considered: several agents have
to cooperate in order to transfer a passive agent from its
initial configuration to a goal configuration. On a discrete-
event level it has to be decided in which order agents
will take part in transportation by sequentially docking
to the passive object. The continuous problem generates
state trajectories as well as the configurations and times
of docking; overall, this yields a three-layer hierarchical
algorithmic structure described in Mangesius et al. (2010).
Secondly, a new approximative method to reduce the com-
putational complexity in the hybrid optimal control prob-



lem is introduced: near optimal switching configurations
are computed time-efficiently by merging two algorithmic
layers.

Sec. 2 introduces the MAS setting, its modeling, and the
optimal control problem. Sec. 3 briefly explains the hier-
archical optimization procedure, highlights the coupling
of discrete and continuous dynamics on a middle layer,
and provides the theoretical account for decoupling using
a consensus protocol. Sec. 4 presents numerical results,
and Sec. 5 concludes the paper with an outlook to future
research.

2. TRANSPORTATION PROBLEM

In the MAS transportation problem, illustrated in Fig.
1, the agents A;,..., Ay have to cooperate in order to
transport the targeted agent T'A from its initial to a given
target position. The agent T'A is passive and can only be
transferred in the 2D Euclidean configuration space by
one or many small agents docking to and actively moving
it. Realizing the cooperative task with maximum perfor-
mance requires to determine the best suited sequence for
the agents to reach T'A as well as the most suitable dock-
ing positions and docking times. The set D4 (t) indexes
the docked (active) agent(s) transferring TA at time t.
Conversely the indices of those vehicles that have not yet
reached T'A are collected in the set M4 (t).
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Fig. 1. Scenario: agents A1, ..., A4 cooperate to transport
object TA from an initial to a goal position. The
arrows show the heading of the agents moving in
a plane spanned by the axes £ and 7. The initial
positions of the vehicles are denoted by p% ,...,p% .

2.1 Hybrid System Model

In a hybrid system model, the transportation planning sce-
nario with multiple agents is mathematically described by
collections of dynamical systems that evolve in continuous-
variable state spaces and are subject to continuous con-
trol and discrete transitions. A continuously-controlled
autonomous-switching hybrid dynamical system formally
is given by the tuple

H=[Q,%,Ad] (1)

(see Branicky et al. (1998)), with components modeled for
the MAS setting as follows:

Q:{ql, .. .,qu} is the finite set of discrete states with
the discrete states ¢(t) € Q. A discrete state is assigned
to every possible set of indices of docked agents in D4(t).
The MAS evolves continuously within each ¢, and docking
events refer to switchings between two discrete states at
a certain switching time t;. Therefore the MAS evolves
piecewise continuously through sequenced discrete states.
The times t; are the boundaries of sequenced time inter-
vals 7, which are ordered in the set

A:{[to;tl[, [tl;tQ[,...,[thl;te]}. (2)

Y = {Z¢},eq 18 the collection of controlled dynamical
systems, where each ¥, = [X,, F,, Uy is a continuously
controlled dynamical system. The continuous state vectors
x4(t) of dimension n,, € NT are defined on the continuous
state spaces X; C R"=«. Accordingly, the continuous
control inputs uy(t) of dimension n,, € NT are defined
on the continuous input spaces U, C R"“. The time-
invariant vector fields F, : R"®s x R"ws — R"=« provide
the continuous dynamics of H.

The state space X, for the MAS is defined as the product
of the configuration spaces of the freely evolving agents
and the T A (in case the latter is transported), so that

X, =C% x C% x ... x CMMal x CTA, (3)

Here, unicycle dynamics are chosen as nonlinear model for
agent motion:

A, = (pTa @):1;1, and (4)
v cos(O)
Ta, = (v sin(@)) , CY =R? x [-m; 7] (5)
w A

The position vector p,, = (f,n)gi describes the config-
uration of agent ¢ in the 2D Euclidean plane; the control
inputs are ua, = (v,w)T, where w directly sets the angular
velocity of the orientation and v sets the speed. The agent
T A moves passively, i.e. it has to be transferred by some
agent(s) and hence its control is:

ura = f(b(t))ua;. (6)
For f(b) applies that f(b) = tanh(NiAb) with b(t) =
|D4(t)], i-e. the cardinality of the set of docked agents can
be seen as an activation gain: the continuous dynamics
of T A changes to higher velocity with every additionally
agent docking to T'A.

The state ¢, € X, specifies the configurations of all agents
and is equal to

x, = (2l ,x),, ..., wng(t)‘ xh )7, (7)

where the dimension of x4 is ng, = Zy:ll“(t)l dim(C4¢) +

dim(CT4) = (IMa(t)| +1) x 3.

The differential equation system for the MAS finally is
&g = Fo(wq,uq), (8)

with F, and u, in accordance with the state vector in (7).

A= {Aq}qu is the collection of autonomous jump sets.
An autonomous jump set A, is a specified region in the
state space X, where autonomous switching occurs. In this
paper, A, is used to model the docking process when an
agent reaches T A:



Ag={zq | ®a, =14, 1 € Ma}. (9)

Within A, the position in which docking occurs is denoted
by m;? .

g= {gq}qu is the autonomous jump transition map with
hybrid transition functions G, : Ay x Q@ — X4 x Q. Hence,
G, contains all possible discrete transitions ¢ — ¢ and
updates of the continuous states.

A set of logic rules sets bounds on the number of discrete
states and transitions between them. In the following, a
MAS is considered where docking occurs sequentially and

e undocking is not allowed once a vehicle has docked to
the T A,

e at each docking event only one vehicle in addition to
the T'A is involved,

e all vehicles have to dock once to the T A.

Therefore, the number of discrete states in a feasible run
is L = Ny + 1. With these rules a discrete structure
arises that can be identified as an acyclic directed graph.
A possible ratio for the last assumption is that a preceding
analysis has already determined the set of agents that
should contribute to the transportation task. Undocking or
multiple dockings would result in a more complex discrete
structure - technically, a consideration of additional dis-
crete transitions would only result in an increased compu-
tational effort, due to increasing combinatorial complexity,
without adding direct value to the basic idea.

Let (I)q = (q(to), q(tl), q(tQ), e ;q(thl)) be the dis-
crete state schedule, &5 = (:qu,wa, .. .,w?L,l) the se-
quence of switching configurations, and ®, and accord-
ingly ®,, refer to the collection of continuous state tra-
jectories and control input trajectories. Then, &, =
(o0(70),01(71),...,0L-1(TL-1)), T € A according to (2)
is a hybrid state trajectory with a hybrid state being
defined as o/(t) = (z4(t),q(?)), 0 € U,cq Xq x {a}-

2.2 Optimal Control Problem

The objective is to convey the agent T A from its initial
configuration to a final configuration in an energy and time
optimal manner involving all agents. The following hybrid
optimal control problem is considered: Find a discrete
state schedule ®,, a sequence of switching points ®s, and
continuous control inputs ®,, such that the hybrid state
trajectory ®, of the hybrid dynamical system H satisfies
the hybrid boundary value problem

o (to) = (xg.q(to)), o (te) = (x5, q(te)), te free, (10)

and minimizes the real-valued cost function

L—1 tht1
J = Z {/ ug(tk)Ruq(tk) + pg dT}. (11)
k=0 ‘7t

The first part of J formulates the running costs due to the
continuous dynamics weighted by R and the second term
encodes time optimality weighted by .

Finally, let the solution of the optimization problem be
denoted by @y, @5, 7.

3. SOLUTION APPROACHES FOR THE HYBRID
MULTI-AGENT CONTROL PROBLEM

The hybrid optimal control problem (HOCP) is solved
centrally by separating the optimization of the continuous
and the discrete dynamics, similar to Shaikh and Caines
(2007). The ensuing hierarchical structure constitutes a
three-layer approach as illustrated in Fig. 2: on the upper
level the optimal discrete state sequence is determined,
whereas the optimal continuous trajectories are computed
in the inner layer as solutions of two-point boundary value
problems (TPBVP). An additional intermediate level is
introduced that accounts for the coupling of optimal dis-
crete and optimal continuous dynamics via (sub-)optimal
autonomous switching configurations, i.e. it determines the
docking positions.

Docking sequence @,

Docking positions ®g

Paths ®,, @,
L TPBVP

Fig. 2. Structure of the hierarchical solution algorithm;
the dashed feedback line connecting inner and middle
layer solutions indicates two versions of computing
docking positions: optimization based and consensus
approximations.

8.1 Coupling between Discrete and Continuous Dynamics

The continuous trajectories of a run of H consists of L
sequenced solution trajectories obtained from the solution
of embedded TPBVPs. Each of these subproblems requires
initial and final boundaries. Consequently, a sequence of
L pairs of boundary configurations is associated to each
discrete state schedule:

{[(2% ¢°); %), [w5os ], . [0 15 (2, ¢°)]} = Dy

(12)
An optimal overall transportation plan requires local opti-
mality, i.e. each local TPBVP is solved optimally , denoted
as TPBVP*. However, in view of global optimality, the
linear combination of cost functionals of L locally opti-
mal continuous problems has to be considered. In that
sense, let J denote a locally optimal cost index. Then, the
globally best discrete state sequence that represents the
Pareto-optimal solution of the optimal control problem can
be obtained from rewriting (11) such that

®; = arginf{ J(®5)}
7 _ . 7 * S _
J(@o) = min 2 J(TPBVP*(z5,)) =
g7 €D,

= J(®5), V@, €G (13)

From this representation, it can be seen that the optimal
discrete state schedule is linked with the optimal contin-



uous trajectories constituting TPBVP* via the docking
positions which represent the free variables in (13).

3.2 Brute-Force Enumerative Hierarchical Optimization

In the brute-force approach, each of the loops in Fig. 2 uses
the optimal value of the cost function from the embedded
problem at the next lower level as performance index for
appropriate variations of the respective argument of its
own level. In order to adequately measure changes in the
cost index due to variations in an outer level, all optimal
solutions of the embedded inner sub-problems need to
be recalculated. By that, an embedded subproblem can
be considered as a ’black-box’ where the input (varied
argument) and the output (corresponding cost index) are
the only measurable quantities from the perspective of the
related outer optimization layer.

First, the algorithm generates all possible docking se-
quences ®, that are in accordance with the transition
map G. Furthermore, the algorithm has to be initialized
with one feasible discrete state sequence ®, and L — 1
docking positions ®s. As a consequence, L. TPBVP are
considered in the lower layer and are solved for the ini-
tialized docking positions. By gradient-descent applied to
the vector of docking positions ®s, the docking config-
uration is varied until the optimal sequence of docking
positions is found. The overall cost index as sum of the
cost indices of the L TPBVP has to be computed for
each variation of the docking positions. The information
stored with each optimized feasible run @, is a structure
HR = (@4, Dy, Pz, s,te,J) and is passed to the up-
per level. The algorithm continues with a re-initialization
using the next discrete state schedule ®, and an initial
sequence Pgs, and it calculates the optimal values HR. In
this enumerative approach, the algorithm finishes when all
possible docking sequences have been examined. The best
plan for the vehicles’ transportation scheme is the one with
lowest cost index J.

The hierarchically operating, centralized gradient-descent
algorithm, together with the combinatorial complexity
of this enumerative approach, leads to computational
times in the scale of hours for already small numbers of
cooperating agents , e.g. N4 = 3, as demonstrated in
Mangesius et al. (2010).

3.8 Decoupled Hybrid Optimization by Approximation
of Sub-Optimal Docking Positions Using A Consensus
Feedback Controller

Other than in the brute-force methodology, the ex ante
knowledge about docking positions allows to decouple
the discrete and continuous dynamics and thereby en-
ables the construction of a weighted transition graph.
By that, shortest path algorithms can be applied in a
tree search as an instance of dynamic programming. This
enables relatively time efficient computation of solutions,
which perform good in comparison to the optimal solution
trajectories. Within such sub-optimal strategies only one
free agent tries to reach T'A per discrete state, what al-
lows for distributed planning coordinated by one supervi-
sor. Near-optimal cooperative strategies are then approx-
imated starting from these trajectories.

A consensus feedback controller is used to approximate
docking positions, whereat the controller gains and the
receding horizon of the static information topology in the
nonlinear consensus protocol are the adjustable parame-
ters.
The degree of optimality of an approximated single dock-
ing position not only depends on the one agent to dock
next but also on one or more future docking decisions.
To reflect this, the receding horizon parameter r is in-
troduced, which together with ®, defines the ordered set
of agents forming a cooperative group that is subject to
the consensus feedback controller. The goal within this
group is to agree on a common information state, i.e.
|cai—xa;| = 0, Vis#jast — oo, that is the rendez-vous
configuration.
Let the docking schedule ®, and the number r of agents
influencing the rendez-vous approximation of one dock-
ing configuration be given. Then, an undirected and con-
nected information graph encodes the information topol-
ogy that captures the state information exchange between
the agents, and it is represented by the normed graph
Laplacian

Ly = D7 (Dy — Adjy). (14)
Here, D, is the degree matrix of the information graph and
Adj, the adjacency matrix; both matrices are symmetric
and of dimension (r + 1) x (r + 1). For the case of a two
agent receding horizon the Laplacian is

1 —05-05
L, = <0.5 1 0.5) .
—0.5 05 1

Let p7 = (p%A,pﬁl, . 71)271) be the stack vector of
Euclidean position measures, then the system level error
operation on Euclidean positions dp is given by

6p = (L. ® Lo)p. (16)
Here, ® denotes the Kronecker product, which assures
separated computation of errors in ¢ and 7, while ex-
plicitly taking into account the parameterization with the
information topology. The entries of the normed Laplacian
thereby represent the weights in the averaging process of
calculating the individual errors. To compute the overall
heading error associated to the control input of one agent,
the relative angle between two agents A; and A; is given
as

(15)

N — N
Uy, = arctan(———/).
& —&
In accordance with Dimarogonas and Kyriakopoulos
(2007), arctan(3) = 0 is used. Then, with the stacked
vector ©F = (©7,4,04,,...,04,) and the (r+1) x (r+1)
heading error matrix T, which is build element-wise by

[T]“ :®Ai and [T]ij =Wy Vi, j € {1,...,7“}, (18)
the heading error operation is defined as the contraction
6® =L, : T =tr(LYT). (19)

Finally, let t4, = (cos©a,,sin04,)7 denote the ith
agent’s unit heading vector. Similar to Listmann et al.
(2009), a control strategy that achieves a consensus on
the Euclidean distance measure and the headings between
the agents {A;} within a receding horizon is

(17)

ij?

VA, = —ga,0Ph ta,
wa; = —g4,004,.



Here, g denotes a controller gain, and the §-operator ap-
plied to the position and heading coordinates represents
the respective overall error between one agent and all other
agents within a receding horizon.

The receding action horizon is adjusted after convergence
to the rendez-vous configuration along the provided dock-
ing sequence ®, until N4 — 1 docking positions are ap-
proximated.

Having a set of docking positions approximated, sequenced
TPBVP can be formulated according to (12). As these
continuous sub-problems are decoupled from one another,
they can be solved in a decentralized manner, i.e. by each
agent computing its own optimal trajectory. This method
is denoted decentralized planning.

Based on the decentralized individual solutions a set of
most promising global plans is determined. For those tra-
jectories, a cooperative strategy is approximated, where all
agents that have not yet reached T'A already move towards
a future docking configuration as illustrated in scheme Fig.
1. Therefore, intermediate boundary values are introduced
for agents {4;}, Vi € M4(t). This technique is referred to
cooperated planning. By contrast, cooperative transporta-
tion plans computed by full hierarchical optimization are
related to the brute-force planning approach.

4. NUMERICAL RESULTS

In the following, (sub-) optimal solutions obtained from
applying the consensus based decoupling method are dis-
cussed in terms of their performance and the adjustable
parameters in the consensus protocol. The scalability of
this technique is presented in comparison to brute-force
enumerative planning.

4.1 Approxzimation of Best-Performing Plans and the
Influence of the Consensus Parameters

In the examined four-vehicle setup, the fixed initial con-
ditions are &% = (10,9,0,5),7% = (10,0,7,10)7,8% =
(=%, —m, %,O)T, and 2%, = (7,8, m)T, x5, = (0,0, 7).

In Tab. 1 the effects of a varying information topology
in approximating well-performing docking positions are
listed. In the left half of the table the best performing
docking sequences are given for the decentralized planning
approach. The performance of the approximated solutions
increases until an information topology involving three
agents in addition to the T'A is used for docking position
approximation. The lowest cost index is obtained for the
docking sequence A4-Ai-As-As. Cooperative task execu-
tion for this best plan is approximated and depicted in
Fig. 3. For comparison, the costs of the same docking
schedule computed in the brute-force manner results in a
costs index of J = 68.3. For r = 4 the performance slightly
decreases, but when examining the three best performing
schedules with the cooperated planning method the best
plan is represented by the schedule A4-As-A;1-As, accom-
panied by a performance increase of almost 30 percent.

For this latter planning approach and the globally best
plan, the effect of a varying receding horizon is examined
again, see the right half of Tab. 1. Here, the increase in
cost efficient execution of the transportation plan with
increased r becomes more evident. Comparing the cost

Table 1. Varying information topology and

best approximated solution plans. Left: dis-

tributed planning; Right: cooperated planning;
Nv =4, f(b)-gain

r Sequence Cost Sequence Cost
1 Aj-A4-Agx-As 975 Ag-Ag-A1-As 88.9
2 Ay-Ag-Ai-Az 95.2 Ag-Ag-A1-Az 86.3
3 A4-A1-Al-Az 913 Ag-Ag-A1-Asz T75.0
4 A4-Ag-Aj-As 923 Ag-Ag-A1-A3  65.7

11

Ui

5

-1

-1 5 4 11

Fig. 3. Cooperative transportation plan approximated
from the best performing solution resulting from
decentralized planning. The docking sequence is Ay-
Aq-As-As with the transportation cost J = 76.7. The
white filled circles represent intermediate boundaries.

index stemming from the most and least expensive dock-
ing position approximations, again an overall performance
increase of almost one third can be observed. In Tab. 2 the
influence of the controller gain on the rendez-vous point
approximation is demonstrated for three cases. In the unit
gain scenario, all control inputs in the feedback controller
are weighted equally, and thus, besides the receding hori-
zon, the docking position approximation depends only on
the type of kinematics, i.e. the unicycle type. In contrast
to that, f(b)-related gains consider by weighting the T A-
inputs with the factor f(b(t)) the switching T'A dynamics
in case of an agent docking to it, see (6). For the third case,
the TA controls are weighted with f(b(¢))?; hence, the
resulting docking approximation is related to the objective
function (11), where the square of the control inputs is
integrated over time. Herein, the most cost efficient decou-
pling ensues from using the f(b)?-gain in the consensus
protocol. Moreover, for each examined docking plan, a
performance improvement is achieved by applying the gain
strategies in the order "unit-f(b)-f(b)?’.

In reference to the decoupling approaches presented in
Mangesius et al. (2010), it is to note that the feedback
consensus decoupling approach applied to the three-agent
scenario leads to the same best transportation plan.

Table 2. Controller gain and costs of best
performing global plans for Ny = 4, r = 4
and coordinated planning

Sequence unit-gain  f(b)-gain  f(b)?-gain
A1-Ay-Ag-As 79.4 74.2 73.6
Ay-Aj-Ag-As 76.7 72.2 71.6
Ay-Ag-Aq-As 72.8 65.7 64.0




4.2 Scalability

In Fig. 4 the computational effort of the three meth-
ods decentralized, cooperated, and brute-force planning
is shown. It is to note that the combinatorial complexity
of enumeration on the upper level is not considered in
this illustration, but only the effort to find the optimal
solution for one discrete state schedule. The solution pro-
cess of the decentralized approach scales linearly with
an increasing number of agents. The effort in cooper-
ated planning strongly increases, whereas it remains in
the scale of the decentralized approach. Therefore, the
combination of decentralized planning and reduction to a
small set of well performing docking sequences upon which
cooperative planning is applied is reasonable. The brute-
force approach quickly becomes intractable already for a
small number of agents. Due to that, the computational
effort of this approach is plotted as logarithmic value. The
reason for such expensive computation is the exponential
increase of the computational time when adopting hier-
archical optimization: For each variation of a variable on
the middle layer a complete sequence of TPBVP has to
be re-optimized. In that sense, the decoupling approach
by approximating the docking positions avoids the effect
of exponential increase of effort. Exploring the solution

Fig. 4. Computational effort to solve the overall trans-
portation planning problem normed by the effort
to solve one TPBVP optimally; red - cooperated,
blue - decentralized and black - log-scaled brute-force
scheme

space of a three-agent scenario, and approximating a coop-
erative plan that corresponds to the best discrete sequence
requires approximately 7 minutes. The same procedure for
the four-agent setup lasts about 36 minutes, whereas in the
later case the solution space comprises 24 discrete state
sequences to examine (in contrast to 6 for the three-agent
case).

5. IMPLICATIONS AND FUTURE OUTLOOK

In this new type of multi-agent problem, a relation between
optimal discrete and continuous dynamics is established
via autonomous jump sets and optimal switching configu-
rations therein, see (13). The approximation of switching
configurations ensues without explicitly computing values
of encapsulated objective functions; however, essentially
invariant features of the global minimization of the value
function (11) are reflected in the near-optimal switching
position approximation. These features are the agent kine-
matics and dynamics (5) and (6) as well as the transition
graph G, which is related to the information graph within

the receding horizon. This scheme differs from standard
(static) heuristics, such as purely geometric measures, by
being implemented in a dynamics setting reaching agree-
ments between the inner two hierarchical levels, see Fig. 2.
Hence, a dynamics related approximation is achieved by
merging of two layers. In contrast to optimization based
approximations, see Mangesius et al. (2010), near-optimal
switching configurations can be computed by simple time
integration.

Numerical simulation results show gradual performance in-
crease by gradually adding structural information into the
consensus controller. This clearly indicates that a Pareto-
optimal solution of the collective dynamics has a special
invariant structure, and thus it has to lie in a constraint
solution set. Furthermore, the design of a computation
scheme for real-time application has to include balance
between exploration of the continuous solution space and
exploitation of the discrete solution space in one functional
layer; Hence, future research aims at incorporating the
top-level supervisor in a hybrid consensus scheme, that
produces a near-optimal agreement between discrete state
scheduling and locally optimal trajectories in a distributed
fashion.
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