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Abstract

Spin wave (SW) excitations in two-dimensional (2D) and three-dimensional
(3D) periodic nanostructures and chiral helimagnets have been studied ex-
perimentally and compared to theoretical predictions. SW spectroscopy
has been performed with microstructured coplanar wave guides, to mea-
sure SW excitations as well as SW propagation. 2D samples were struc-
tured with periodic arrays of holes, so-called antidot lattices (ADLs) with
periods ranging from 800 nm down to 240 nm, using focused ion beam
lithography. Artificially introduced defects were found tosupport fast SW
propagation with the additional freedom to guide SWs around corners.
Complete band gaps were predicted in ADLs with periods below600 nm.
Bio-engineered 3D magnetoferritin crystals have been studied experimen-
tally and SW propagation over a few micrometers was found. Incollabora-
tion with a theory group, GHz excitations in these systems were modeled
using an effective anisotropy of individual nanoparticles. Different sys-
tems of chiral helimagnets, i.e. metallic MnSi, insulatingCu2OSeO3, and
semiconducting Fe1−xCoxSi, have been studied throughout their magnetic
phase diagram. The GHz excitations were found to differ in absolute val-
ues between different materials, but when being normalizedto their spe-
cific T -dependent critical fields and accounting for the geometry of the
sample, the data fall onto universal curves being characteristic for the dif-
ferent magnetic phases. We find excellent agreement betweenexperiment
and theory developed by a theoretical group.

Es wurden Spinwellen (SW) Anregungen in zweidimensionalen (2D) und
dreidimensionalen (3D) periodischen Nanostrukturen und chirale Helima-
gnete experimentell untersucht und mit theoretischen Vorhersagen ver-
glichen. Spinwellen-Spektroskopie mit mikrostrukturierten koplanaren Wellen-
leitern wurde durchgeführt, um die Anregung sowie Ausbreitung von Spin-
wellen zu messen. 2D Proben wurden mit Hilfe von fokussierter Ionen-
strahllithographie mit periodischen Löchern, so genannten Antidot-Gittern
(ADLs) mit Gitterperioden von 800 nm bis 180 nm, strukturiert. In kün-
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stlich erzeugten Defekten wurden aussergewöhnlich schnelle SW gemess-
en, die dazu noch um Ecken gelenkt werden konnten. KompletteBand-
lücken wurden für ADLs mit Gitterperioden unter 600 nm vorausgesagt.
Biologisch hergestellte 3D Magnetoferritin Kristalle wurden experimentell
untersucht und propagierende SWs über wenige Mikrometer konnten nach-
gewiesen werden. In Zusammenarbeit mit einer Theoriegruppe konnten
die GHz-Anregungen mit Hilfe einer effektiven Anisotropieder einzel-
nen Nanopartikel erklärt werden. Verschieden Systeme von chiralen He-
limagneten, d.h. metallisches MnSi, isolierendes Cu2OSeO3 und halblei-
tendes Fe1−xCoxSi, wurden über ihr magnetisches Phasendiagram unter-
sucht. Die Absolutwerte der GHz-Anregungen unterscheidensich zwi-
schen den verschiedenen Materialsystemen. Durch Normierung auf die
spezifischen temperaturabhängigen kritischen Felder und unter Berück-
sichtigung der Geometrie der Probe konnten die Anregungen in den ver-
schiedenen Phasen auf eine universelle Theorie zurückgeführt werden. Ex-
zellente Übereinstimmung zwischen den Experimenten und der Theorie,
entwickelt von einer Theoriegruppe, wurde gefunden.
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1. Introduction

The research field of magnonics has attracted a lot of interest in recent
years promoted by the need for miniaturization and low-power consump-
tion in modern information technology (IT)[ITR09]. Magnonic crystals
(MCs), i.e., periodically patterned ferromagnets, are theanalogues of pho-
tonic, plasmonic, and phononic crystals that are exploitedfor the manip-
ulation of wave-like excitations [Joa08, Gao10, Yu10]. In the field of
magnonics, one explores the creation, manipulation, and detection of spin
waves [Blo30], i.e. wave-like spin excitations [Kru06, Neu09b, Kru10,
Len11]. In general, spin-wave based MCs can be realized in a smaller
size compared to photonic crystals and they hold great promise for down-
scaling microwave devices operated in the GHz frequency regime [Neu09b,
Kru10]. The downscaling argument is similar to surface acoustic wave
based GHz filters and delay lines which are an integral part ofthe telecom-
munication market [Cam98]. Due to anisotropic dispersion and long range
dipolar interaction, the underlaying physics and tunability of magnonic
crystals can differ from their optical and acoustic counterparts due to the
formation of minibands [Neu10, Neu11d]. The discovery of the spin-
transfer torque [Bai88, Tso00, Kis03] has further stimulated the research
for nanoscale devices in the microwave regime. It has been demonstrated
that a DC current is able to excite magnetization precessionin a giant mag-
netoresistance nanopillar, so-called spin-transfer nano-oscillators (STNOs).
The combination of spin waves and STNOs was proposed to create na-
noscale microwave devices [Ber96, Dem10]. Here, the research on spin
waves is essential to pave way for future integrated STNO-SWdevices
[Nal13]. Other nanoscale logic devices have been proposed over the years
[Khi08b, Khi10, Khi08a, Khi07, Khi02, Cho06, Lee08], wherespin wave
interference effects are used to create logical output. All-electrical spin-
wave spectroscopy has been shown to be an efficient techniquefor the
excitation and detection of spin waves over distances of more than 10µm
[Cov02, Bai01, Liu07, Vla08, Vla10, Neu11d, Neu10, Due12].
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1. Introduction

Two-dimensional and three-dimensional magnonic crystals

The study of one-dimensional magnonic devices has already lead to nu-
merous publications showing unique properties of nanostructured MCs as
it has been demonstrated that MCs can be reprogrammed via themagnetic
history [Top10]. Recently, two-dimensional MCs consisting of a periodic
lattice of nanoholes, i.e., so-called magnetic antidot lattices (ADLs), have
generated in particular great interest [Gul03]. Such devices are the mag-
netic analog of photonic crystals making use of air holes in adielectric
layer [Joa08]. So far, the magnetic devices have been investigated in mag-
netic fieldsH applied in the plane of the ferromagnetic thin film being
mostly Ni80Fe20 (Py) [Gue00, Yu03, Yu04, McP05, Pec05, Yu07, Mar07,
Kos08a, Neu08, Tse09, Neu10, Tac10a, Tac10b, Ulr10, Hu11].Allowed
minibands and partial band gaps have been observed but only for specific
directions of the wave vectork [Neu11d, Ziv12]. The dispersion rela-
tions have been found to depend crucially onH, because inhomogeneous
demagnetization fields created by the holes varied significantly the refrac-
tive index of the spin waves in the permalloy thin films [Neu08, Hu11].
This provoked spin-wave localization counteracting miniband formation.
A different approach is presented in this thesis as we turn the external mag-
netic field into the out-of-plane direction, which increases the homogeneity
of the internal field. Thereby magnetostatic forward volumewaves (MS-
FVWs) are provoked that are particularly interesting for coherent mode
formation in MCs as they exhibit a isotropic dispersion relation and at the
same time the lowest propagation loss per unit time [Ari99, Sta09]. In this
thesis, we predict complete band gaps in our two-dimensional MCs and
we report on efficient spin wave guiding in complex geometries based on
MCs making use of MSFVWs.

Extending the field of MCs into the third dimension has been proposed
by theoretical calculations with predictions of large bandgaps [Kra08a,
Kra08b]. In spite of these encouraging predictions, there is a lack of ex-
perimental work on 3D MCs as the preparation of such is a greatchal-
lange. Recently, Kostylev et al. have presented very interesting results on
3D inverse opal structures [Kos12] as a possible candidate for a 3D MC.
In the meantime, the field of bioengineering has been growingover the
past years with remarkable results, e.g. to create arrays ofnanoparticles by
self-assembly of monodisperse colloidal nanocrystals [Bla00, Pil06]. Fur-
thermore, a true order in all three dimensions has been achieved by protein
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crystallization technique of magnetic nanoparticles [Kas08]. The combi-
nation of bio-assisted methods to create 3D structures on the length scale
of the magnetic exchange interaction opens completely new possibilities
for the field of magnonics. Within this work, we present first results on
magnetoferritin crystals arranging magnetic nanoparticles on a fcc lattice
with a few nm spacing. We find proof of dynamic coupling between indi-
vidual nanoparticles, supporting fast spin-wave propagation.

Chiral helimagnets

One year after the discovery of ferromagnetic resonance [Gri46] in 1946,
C. Kittel explained the uniform spin-precession mode in homogeneously
magnetized ferromagnets when irradiated by electromagnetic waves in the
GHz frequency range [Kit48]. The so-called Kittel formula is powerful
for both metallic and insulating ferromagnets. Later, it was realized that
inhomogeneous magnetic states such as bubble domains [Bar77] support a
distinct set of eigenexcitations consisting of acoustic, optical and flexible
domain wall modes. A renewed interest in such excitations has stimulated
research in recent years [Gub12]. During the time, much morecomplex
magnetic states were identified where the Skyrmion lattice is one example
among others such as canted ferromagnets and helimagnets. Chiral heli-
magnets found in non-centrosymmetric crystals have further stimulated re-
search in recent years due to the very unique phase diagram [M0̈9, Neu09a,
Yu11, Ono12]. In metallic MnSi, a topologically stable spintexture, i.e,
the Skyrmion lattice, has been demonstrated in the A-phase at low temper-
ature and finite magnetic field. Strikingly, the Skyrmion lattice is moved
by a current of relatively small density due to the spin transfer torque. This
holds great promise for future applications in spintronics[Jon10, Sch12a].
At the same time, the Skyrmions are of enormous interest in the emerg-
ing field of magnonics [Kru10] as they form a lattice which periodically
modulates the magnetic properties in a self-organized manner. In MnSi,
the period is strikingly small and on the 10 nm scale that it isin partic-
ular not routinely feasible via state-of-the-art nanolithography. Intriguing
magnonic crystal behavior might result from the Skyrmion lattice going
beyond nanostructured ferromagnetic materials. Within the framework
of this thesis we study three different chiral helimagneticmaterials, i.e.
metallic MnSi, semiconducting Fe1−xCoxSi, and insulating Cu2OSeO3.
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1. Introduction

We report on their GHz excitations and find excellent agreement with a
universal theoretical description for all chiral helimagnetic materials in-
vestigated. This universal theory of excitations can be applied in a univer-
sal manner to chiral helimagnets like the Kittel formula forferromagnets.
Furthermore, we explore the measured linewidth, i.e. the damping of the
system. We find unique dependencies of the linewdith, which differ for
different regions of the phase diagram.

Overview of the thesis

This work is organized as follows: In chapter 2, we present the theory
on ferromagnetism, dynamics, spin-waves, nanoparticles,and chiral he-
limagnets together with numerical methods. In chapter 3, wedescribe
our experimental setup used within this thesis, i.e. all-electrical spin-wave
spectroscopy. In chapter 4, we explain sample preparation using optical
lithography as well as focused ion beam lithography. In chapter 5, we
make material considerations especially for the excitation of MSFVW. In
chapter 6, we study 2D magnonic crystals, i.e. antidots in a regular square
lattice. In chapter 7, we evaluate excitations in 3D magnonic crystals, i.e.
regular arrays of nanoparticles so-called magnetoferritin crystals. In chap-
ter 8, we report on GHz excitations in chiral helimagnets together with a
universal theory for such. We finish this thesis with a summary and outlook
in chapter 9.
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2. Theory

In this chapter, we give a brief description of the theory of ferromagnetism.
From this we explain the ferromagnetic resonance basics before introduc-
ing spin waves. After an excursion into GHz excitations in nanoparticles
with bulk and surface anisotropy, we give a short introduction to chiral
magnets and their complex dynamic bahvior. The model of nanoparticles
has been developed by M. Krawczyk from the Adam Mickiewicz Univer-
sity in Poznan. The theory on chiral helimagnets has been provided by
Prof. A. Rosch’s group at the University of Cologne in order to interpret
experimental data obtained within the course of this work (see chapter 8).
Furthermore, we introduce numerical methods used throughout this work,
i.e. micromagnetic- and electromagnetic simulations. In the following the
brief description is based on the textbooks as Refs. [Kit66,Gur96, Blu01,
Hil02, Spa03, Sko08, Sta09]

2.1. Ferromagnetism

The magnetic susceptibilitŷχ classifies magnetic materials through their
response of the magnetizationM to an external fieldH:

M = χ̂H, (2.1)

whereM is defined as microscopic magnetic momentsm per volume [Sko08]:

M =
dm
dV

. (2.2)

In general,χ̂ is a tensor so thatH andM do not need to be collinear to
each other. Simplified to a scalarχ can take one of the following values in
order to classify magnetic materials:

• χ < 0: Diamagnetic materials. These materials create a magnetic
field that counteracts the external magnetic fieldH due to orbital
magnetic moments of electrons, which means that these materials
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2. Theory

are repelled from magnetic fields. Diamagnetic effects are very
small and are usually not observed in everday life.

• χ > 0: Paramagnetic materials. Uncompensated spins of electrons
align parallel toH and therefore give rise to an increased flux den-
sity. Paramagnets are attracted by an external magnetic field but un-
like ferromagnets, they do not retain their magnetization when the
field is removed.

• χ ≫ 0: Ferro- and ferrimagnetic materials. These two types of
magnetic materials have in common that they both retain a finite
magnetization even if the external fieldH is removed, i.e. they ex-
hibit spontaneous magnetization. The main difference is that fer-
rimagnetic materials consist of differently oriented ferromagnetic
sublattices, where the magnetic moments are not canceled out. This
mostly happens if the sublattices are made up of two different atoms
or ions. Above the Curie temperature these materials becomepara-
magnetic.

• χ > 0: Antiferromagnetic materials. Can be described by two inter-
penetrating and identical sublattices of magnetic moments. One set
of magnetic moments is spontaneously magnetized below somecrit-
ical temperature (Néel temperature), the second set is spontaneously
magnetized by the same amount in the opposite direction. Therefore,
aniferromagnetic moments cancel out and there is no macroscopic
magnetization left. Above the Néel temeprature antiferromagnets
undergo a phase transition and become paramagnetic.

In this work, we are working with ferromagnetic materials, i.e. χ ≫
0. Next we want to take a closer look at the energy contributions lead-
ing to spontaneous magnetization in ferromagnets. Exchange interaction
gives rise to the first energy contribution we want to look at.Exchange
originates from Coulomb interaction considering the quantum mechanical
Pauli exclusion principle, which says that two fermions cannot be in the
same state. The Hamiltonian for this exchange interaction is the sum of in-
teractions between the spinsS of localized individual magnetic moments,
here given in the Heisenberg notation:

H = −
∑

i,j

JijŜi · Ŝj , (2.3)
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2.1. Ferromagnetism

whereJij is the exchange integral that quantifies the strength of interac-
tion. A ferromagnetic order is achived whenJij has a positive sign, lead-
ing to a lower energy for parallel alignment of the spins. Using Eq. 2.3
with spin vectors instead of quantum mechanical operators we can write
the exchange energyEex as

Eex = −J
∑

i,j

Si · Sj = −2J
∑

i<j

Si · Sj . (2.4)

As the exchange interaction falls off very rapidly as a function of dis-
tance between spins, this interaction is nearly a next-neighbor interaction
[Kit66]. Nevertheless, exchange interaction is the cause for long range
ordering in ferromagnets because of its strength. It leads to the splitting
between the spin-up and spin-down bands in itinerant ferromagnets con-
sidered in this thesis on the order of 1 eV [Sto06]. Using a Taylor approx-
imation for Eq. 2.4 one derives:

Eex =

∫

dr
A

M2
(∇ · M)

2
, (2.5)

whereA is the exchange constant. In general, whereA andM are position
dependent, the exchange field is given by:

Hex =
(

∇λ2ex∇
)

M , (2.6)

whereλex is the exchange length given by:

λex =

√

2A

µ0M2
s

, (2.7)

whereMs is the saturation magnetization.
Another contribution to the total energy is the Zeeman energy EZ, which

describes the interaction of the magnetizationM with an external fieldH:

EZ = −µ0

V

∫

dVM(r) · H. (2.8)

The energy is thus minimized if the magnetization is alignedin the direc-
tion of the external field.

A further contribution is the so-called demagnetization energy Ed and
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2. Theory

the corresponding demagnetization fieldHd leads to shape anisotropy. It
has its origin in long range dipole-dipole interaction between spins. The
energy term is written as:

Ed = − µ0

2V

∫

sample
dVM(r) · Hd(r), (2.9)

whereHd(r) is the position dependent demangetization field. This quan-
tity Hd can be derived by using magnetostatic Maxwell equations:

µ0∇ · (M + Hd) = 0 (2.10)

∇× Hd = 0. (2.11)

Even though the calculation ofHd can be very complicated it is simple for
the case of a uniformly magnetized ellipsoid, where the demagnetization
field is homogeneous inside the ferromagnet and a linear function of the
magnetization [Aha06]:

Hd = N̂M . (2.12)

Here we have introduced the demagnetization field tensorN̂ given in the
appropriate coordinate system:

N̂ =





Nx 0 0
0 Ny 0
0 0 Nz



 , (2.13)

where the trace of this dimensionless demagnetization fieldtensor ful-
fills Nx+Ny+Nz = 1. For the case of a sphere the diagonal elements are
Nx=Ny=Nz = 1/3. This tensor has been calculated for different geome-
tries, e.g. for thin magnetic films [Kal86] and for ferromagnetic wires
[Gus02]. Whereas for complex two-dimensional structures ananalytical
solution does not exist. In the course of this work we study various sample
geometries and we will useNx, Ny, andNz in order to account for the
specific geometry.

Finally, we consider an anisotropy energy term, which meansthat the
energy of a sample is dependent on the direction of the magnetization. As
discussed above, one reason for an anisotropic behavior of the magneti-
zation can be shape anisotropy due to dipolar energy. But even without
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2.1. Ferromagnetism

this effect, an infinitely extended homogenous single crystal can exhibit
an anisotropic energy landscape if one considers spin-orbit interaction.
Through this, the energy of the spins is coupled to the symmetry of the
crystal lattice. The energy term for a cubic crystal reads:

Ecub = K1

(

m2
xm

2
y +m2

ym
2
z +m2

zm
2
x

)

+K2m
2
xm

2
ym

2
z, (2.14)

wheremi are the components of the normalized magnetizationm pro-
jected to the cubic axis of the lattice. One can also write this formula using
the direction cosines of the normalized magnetizationαi, which isαi =
ei · mi. The respective anisotropy field can be calculated using:

µ0H1 =
2K1

Ms
. (2.15)

Another volume anisotropy is the uniaxial anisotropy:

Euni = −Kum
2
x. (2.16)

ForKu being positive thex-axis becomes a magnetically easy-axis, whereas
for negative values ofKu the x-axis is considered a hard-axis. Besides
those volume anisotropies, one has to consider surface anisotropies, e.g.
in thin films [Bil07] and nanoparticles [Kac06, Yan07]. In thin films this
anisotropy term is described using a phenomenological uniaxial perpen-
dicular anisotropy parameterK⊥ as:

E⊥ = −K⊥

d
m2

z, (2.17)

whered is the thickness of the film. For very thin films, this anisotropy
can even dominate the demagnetization energy leading to a stable perpen-
dicular magnetization. The anisotropy field can be written as:

H⊥ = − 2K⊥

µ0Msd
m2

z. (2.18)

This relation is used to determine the surface anisotropy inthin films using
ferromagnetic measurements as shown later on.

In systems with broken inversion symmetry, i.e. if there is no inver-
sion center between magnetic sites, the Dzyaloshinskii-Moriya interaction
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2. Theory

(DMI), which has a preferred chirality, has to be considered. Its strength
is linearly proportional to the spin-orbit coupling. Here,the coupling be-
tween two spinsSA andSB on sites A and B respectively can be described
by the Hamiltonian

HDM = DAB · (SA × SB) , (2.19)

where the coupling constantDAB ∝ (x × rAB) depends on the vectorrAB

connecting the two sites, and on the displacementx of a ligand ion. It is
important to note that DMI is antisymmetric in terms of permutation of
spins. The free energy term can be written as

EDM =

∫

dr2DM(r) · (∇× M(r) ), (2.20)

with the coupling strengthD. DMI becomes important in chapter 2.5 for
chiral helimagnets, where the competition between the exchange interac-
tion and DMI is responsible for the chirality of the spin structure in such
materials.

In order to calculate the total energy density we have to sum up all en-
ergy contributions, which determines the alignment of the magnetic mo-
ments:

Etot = Eex + EDM + EZ + Ed + Ecub+ Euni + E⊥. (2.21)

From this, we have to find the energy minimum in order to find theequi-
librium configuration of the magnetization. The competition between the
different contributions can lead to magnetic moments pointing in different
directions locally. This can lead to complicated domain formation when
the total energy is minimized. Using the total energy density we can for-
mulate the total effective magnetic field:

Heff = − 1

µ0

∇MEtot. (2.22)

2.2. Magnetization Dynamics

So far we have discussed the contributions to static magnetism. Now we
consider magnetization dynamics. We use a macrospin model where all
magnetic moments are summed up to a single macro spin represented by
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2.2. Magnetization Dynamics

the magnetization vectorM . For simplicity, we assume that the governing
energy term is the Zeeman energy, which means that the external field
Hext is strong enough to align all moments in the direction of the external
field. The basic formula for magnetization dynamics was firstproposed by
Landau and Lifshitz [Lan35]:

dM
dt

= −γµ0M × Heff, (2.23)

whereγ is the gyromagnetic ratio defined asg |e|/(2me). Hereg is the
g-factor,e the electron charge, andme is the mass of an electron. Using
this model, we introduce the torqueτ acting on the magnetization, which
leads to a precessional motion around the effective field as depicted in Fig.
2.1:

τ = µ0M × Heff. (2.24)

Using the above stated model would lead to a infinite long precessional
motion of the magnetization around the equilibrium state. As this is not an-
ticipated and observed in experiments, a phenomenologicaldamping term
is included[Lan35]:

dM
dt

= −γµ0M × Heff −
λ

M2
s

M × (M × Heff) , (2.25)

considering the damping parameterλ. Although this equation could ac-
count for the observed experimental data, it fails for largevalues ofλ.
Therefore, a different damping term was proposed by Gilbert[Gil55],
where the damping depends on the time derivative of the magnetization:

dM
dt

= −γµ0M × Heff −
α

Ms

(

M × dM
dt

)

, (2.26)

whereα is the phenomenological Gilbert damping term. Equation 2.26
is called the Landau-Lifshitz-Gilbert equation and is mostly employed in
magnetization dynamics. It can be shown that for small values ofα, both
equations are equivalent [Mal03]. We stress that the damping term is a
phenomenological approach as to describe the process of energy dissipa-
tion. In general, the contributions to the damping term are numerous and
complicated. Under specific conditions, it is possible to extractα from ex-
periments. To find an analytical solution for the Landau-Lifshitz-Gilbert
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-d /dM t

M

Heff

Figure 2.1.: Precessional motion of the magnetizationM , represented by a makro
spin, around the effective internal fieldHeff. dM

dt
is pointing perpendicular to the

field and the magnetization describing the precession. If the motion is damped the
cone angle of the precessional motion is continuously decreased, leading to a spiral
motion, untilM andH are aligned again.

equation in a general form is not feasible. However, under certain assump-
tions one can solve the problem for the case of a thin film [Kit48]. For
this, we have to make the assumption that the film is extended infinitely in
thexy-plane so that we can set the demagnetization factors toNz=Ny = 0
andNx = 1. We take a uniaxial anisotropy with an easy-axis in thex-
direction into account. Furthermore, we assume that the magnetization is
parallel to the effective field pointing along thex-direction, whereas the
excitation fieldhex(t) = hexexp(iωt)ŷ is small and pointing along they-
direction. Also, we use a uniform excitation, i.e. a wave vector k = 0. We
also take perpendicular anisotropy induced by the surface into account but
we restrict this to small values so it does not exceed the demagnetization
field. Following Ref. [Gie05] we obtain the real and imaginary part of the
susceptibility:

R (χyy) = χ
′

yy =
ωM (ωH + ωeff)

(

ω2
res− ω2

)

(ω2
res− ω2)

2
+ α2ω2 (2ωH + ωeff)

2
, (2.27)

I (χyy) = χ
′′

yy =
αωωM

[

ω2 + (ωH + ωeff)
2
]

(ω2
res− ω2)

2
+ α2ω2 (2ωH + ωeff)

2
. (2.28)
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2.2. Magnetization Dynamics

Here, we have introduced the following terms:

ωM = γµ0Ms; ωH = γµ0 (Hext +Huni) ; ωeff = γµ0Meff, (2.29)

whereHuni=
2Ku
µ0Ms

contains the uniaxial anisotropy andMeff includes the
contribution of perpendicular surface anisotropy:

Meff =Ms −
2K⊥

dµ0Ms
. (2.30)

The imaginary part of the susceptibility, i.e. Eq. 2.28, canbe approx-
imated using a Lorentzian function, which has its maximum atthe reso-
nance frequency:

ω2
res= ωH (ωeff + ωH) . (2.31)

This is a special case of the well known Kittel formula [Kit48], which
contains the demagnetization factors:

ω2
res= (ωH + (Nx −Nz)ωM) (ωH + (Ny −Nz)ωM) . (2.32)

If we setNz=Ny = 0 andNx = 1, Eq. 2.32 gets the form of Eq. 2.31,
whereωM → ωeff. The uniform excitation is called ferromagnetic reso-
nance (FMR). As mentioned above, Eq. 2.31 is the field dependent res-
onance frequency for a thin film in an external magnetic field in thex-
direction. For the case of an external magnetic field perpendicular to the
thin film plane, i.e. the out-of-plane direction, we can rewrite the demagne-
tization tensor in that we setNx=Ny = 0 andNz = 1. From this, we obtain
the field dependent resonance frequencies for a magnetic field (Hext > Hd)
pointing perpendicular to the film plane [Sta09]:

ωres= ωH − ωeff. (2.33)

where againωM → ωeff. From Eq. 2.33 we see that the resonance fre-
quency increases linearly with the external field and the slope is given by
γ/2π.

Considering a Lorentzian shape of the imaginary part of the suscepti-
bility and thereforeω. The full width at half maximum (FWHM) ofω is
defined as the frequency linewidth of the imaginary part of the susceptibil-
ity [Bil07]:

∆ω = α(2ωH + ωeff). (2.34)
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Hext

k

λSW

Figure 2.2.: Spin wave with wavelengthλSW propagating in a ferromagnetic thin
film. The external field is applied along the out-of-plane direction, i.e. normal to
the film plane, leading to a magnetostatic forward volume wave. The directionof
phase evolution is indicated byk.

As the imaginary part of the susceptibility is not completely symmetric
around the resonance frequency the Lorentzian shape is a small approxi-
mation and should be kept in mind.

2.3. Spin Waves

So far we have restricted our discussion to uniform excitation in a thin
film, i.e. wave vectork = 0. Here, the magnetic moments precess at
the same phase. Next, we want to look at excitations of non-zero wave
vector. As this corresponds to a collective excitation of magnetic moments
exhibiting a finite wavelengthλSW, we call this a spin wave or magnon if
the quantized nature would be relevant. Spin waves of short wavelengths
are exchange dominated, whereas spin waves with a long wavelength are
dominated by magnetic dipole interaction. The corresponding waves are
called magnetostatic waves, which we will address here. In Fig. 2.2, we
show a sketch of such a spin wave traveling in a material with afinite
wavelength in a certain direction indicated byk.

We start with the basic Maxwell equations in the abscence of currents
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2.3. Spin Waves

in the magnetostatic limit:

∇× H = 0; ∇ · B = 0; ∇× E = −Ḃ. (2.35)

We use the magnetic induction given by:

B = µ0 (1 + ¯̄χ)H. (2.36)

Here, we have introduced̄̄χ as the high-frequency susceptibility derived
from the Landau-Lifshitz equation without loss. Using the magnetostatic
potentialψ in H = −∇ψ allows us to write down Walker’s equation
[Sta09]:

(1 + ¯̄χ)

[

∂2ψ

∂x2
+
∂2ψ

∂y2

]

+
∂2ψ

∂z2
= 0. (2.37)

Assuming that the spatially modulated potential is proportional to a uni-
form plane wave, i.e.ψ ∝ exp(ik · r), we are able to find the dispersion
relation:

(1 + ¯̄χ)
(

k2x + k2y
)

+ k2z = 0. (2.38)

We define the group- and phase velocity as

vg =
∂ω

∂k
; vp =

ω

k
, respectively. (2.39)

From this, the different magnetostatic modes are obtained by choice of
appropriate boundary conditions and relations for the different components
of k [Wal57]. In the following, we distinguish between three different
magnetostatic modes found in thin films, where we neglect anisotropy and
exchange interaction. The different modes are characterized by the angle
between the magnetization and the in-plane wave vectork||.

⋄ Magnetostatic surface wave (MSSW):
The name of this wave stems from the fact that the amplitude decays
exponentially from the surface. It is often called Damon-Eshbach
(DE) mode as they were first described by Damon and Eshbach
[Dam61]. This wave is observed whenk|| is perpendicular to the
magnetization andM lies in the sample plane. Their dispersion re-
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2. Theory

lation is given by [Sta09]:

ω2
MSSW = ωH (ωH + ωeff) +

ω2
eff

4

(

1− e−2k||d
)

. (2.40)

This wave has a positive group velocityvg as can be seen from the
positive slope depicted in Fig. 2.3 (a). In the limiting casefor k → 0
we get Eq. 2.31. Note that ford << λSW the exponential decay
across the film thickness is not significant.

⋄ Magnetostatic backward volume wave (MSBVW):
This mode is called a backward mode cause it exhibits a negative
group velocity (see Fig. 2.3 (a)). In contrast to MSSW this mode’s
amplitude is distributed uniformly throughout the film’s volume,
which is why it is called a volume mode. The configuration ofk||
andM is collinear to each other while being in the sample plane.
The dispersion relation is given by [Kal86]:

ω2
MSBVW = ωH

[

ωH + ωeff

(

1− e−k||d

k||d

)]

. (2.41)

⋄ Magnetostatic forward volume wave (MSFVW):
As the name suggests this mode has a positive group velocity and
the amplitude is uniformly distributed throughout the film’s volume.
Here, the magnetization points in the out-of-plane direction, i.e. per-
pendicular to the film plane. It is worth mentioning that thismode
does not depend on the direction of the in-plane wave vectork||. The
dispersion relation is isotropic and given by [Sta09]:

ω2
MSFVW = ωH

[

ωH + ωeff

(

1− 1− e−k||d

k||d

)]

. (2.42)

In general this mode exhibits a smaller group velocityvg at small
wave vectors (see Fig. 2.3 (a-b)), but the MSFVW are of particu-
lar interest for coherent mode formation in MCs as they exhibit the
lowest propagation loss per unit time [Sta09]. We will studythis
kind of mode extensively throughout this work. Because readers are
expected to be more familiar with the MSSW and MSBVW, we give
some extra information on the group velocity in Fig. 2.3 (c-d). In
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2.4. Ferromagnetic Resonance of Nanoparticles

Fig. 2.3 (c), we display the variation of the group velocity on the
wave vector in the dipolar regime and in Fig. 2.3 (d), we show the
dependency of the group velocity on the film thicknessd. In the in-
set of Fig. 2.3 (c) we also show the dependency of the group velocity
on the external field. To generate the plots in Fig. 2.3 we usedthe
following parameter: 41 nm thick CoFeB withMs = 1430 kA/m and
an out-of-plane anisotropy ofK⊥ = 2.9 mJ/m2. For thek-dependent
plots we set the external field to 100 mT (1.8 T) for DE and MSBVW
(MSFVW). The field dependency and the thickness dependency of
the group velocity was evaluated aroundk = 0.6× 104 rad/cm.

As mentioned above, we restrict this chapter to dipole-dipole dominated
modes but we mention that exchange-dominated spin waves exist for small
wavelength, where the exchange interaction dominates. Also, one should
keep in mind that perpendicular standing spin waves can occur, where the
wave vector is in the perpendicular direction and the surface of the thin
film sets the boundary conditions. As these modes are not the subject of
this work we will leave it up to the interested reader to follow the work of
e.g. Bilzer [Bil07].

2.4. Ferromagnetic Resonance of Nanoparticles

In chapter 7, we study dynamic excitations in ordered nanoparticle (NP)
systems. Here, we derive an analytical formula to fit the experimental data
and to get a deeper understanding of the physics involved in dynamics in
NPs. The calculations are done by Dr. Maciej Krawczyk from the Adam
Mickiewicz University in Poznan. Before we start with the derivation, we
briefly discuss the already existing studies on dynamic excitations in NPs,
which have been addressed in several papers using differentassumptions.
By excluding exchange interaction, Walker et. al [Wal57] found rich spec-
tra of magnetostatic excitations. Uniform spin wave modes with volume
magnetocrystalline anisotropy of uniaxial and cubic character where con-
sidered in Refs. [Sur92, Bia03] and Ref. [Art57], respectively. Higher
standing modes in spherical NP, i.e. with nonzero azimuthaland radial
nodalpoints, where the exchange contribution dominates were considered
by Aharoni in Refs. [Aha91, Aha97]. The influence of both exchange and
dipolar interactions were considered in Ref. [Ari05]. The fundamental
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Figure 2.3.: Spin wave dispersion relation in the dipolar regime (a) and at very
small wave vectors (b) at which all-electrical spin-wave spectroscopyexperiments
take place. The group velocity for MSFVW in (c) is calculated from the slopeof
the dispersion relation and the dependency on the film thickness is shown in (d).
Parameters for the calculations are given in the text.

mode in NPs with surface anisotropy of uniaxial character orunidirec-
tional character (always parallel to the magnetization vector) were inves-
tigated in Refs. [Shi99a, Mer00] and [Shi99b] respectively. The surface
anisotropy modifies the boundary conditions for magnetization dynamics,
i.e. it changes the magnetization pinning and the frequencyof spin waves.
Besides uniaxial and unidirectional surface anisotropy, Neel type surface
anisotropy was also considered in NPs [Kac06, Yan07]. The magnetic con-
figuration and types of anisotropies present in magnetoferritin NPs is still
unresolved [Bic50].
In our model, we assume that the kernel of the magnetic NP is charac-
terized by the magnetization vectorM of constant length (|M | ≡ Ms),
exchange constantA, and volume magnetic anisotropy with constantKu.
Furthermore, we include a single surface anisotropy constantK⊥ [Aha91].
For the derivation of spin wave resonance, we follow the standard proce-
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2.4. Ferromagnetic Resonance of Nanoparticles

dure by minimization of the total magnetic energy:

Etot =

∫

EVdV +

∮

E⊥dS, (2.43)

whereEV is composed of four elements:

EV = Eex + Euni + Ed + EZ. (2.44)

The integration in Eq. (2.43) is performed over the NP’s kernel volumeV
and over its surface areaS, in the first and second integral, respectively. We
took the uniaxial volume anisotropy instead of a cubic anisotropy for con-
venience. For magnetization along [001] direction a volumeanisotropy of
cubic crystals in first approximation reduces to the uniaxial form [Chi97].
Moreover it was shown in Ref. [Gaz98] that magnetoferritin NPs be-
have like a magnet with uniaxial volume anisotropy. In fact low tem-
perature magnetic anisotropy in bulk magnetite is still under discussion
[Bic50, Mux00]. The calculations can be straightforwardlyextended to
cubic anisotropy [Cha11]. We will also limit us to the unidirectional type
of surface anisotropy. An extensive discussion of the influence of various
forms of the surface anisotropy on magnetization dynamics can be found
in Ref. [Fio05].

The calculation of spin wave spectra in dependence on the intensity of
the magnetic field requires a two step procedure for arbitrary direction of
the magnetic field with respect to the magnetic anisotropy axis. In the first
step, the equilibrium direction of the magnetization is calculated, then the
normal modes of the spin wave oscillations are calculated ina linear ap-
proximation. The equilibrium direction of the magnetization vector can
be derived by minimization of the energy functional Eq. (2.43) under the
condition of a fixed value of|M | [Bro63]. It is equivalent to finding the
minimum of the functional (2.43) with respect to spherical coordinatesϕ
andθ of the magnetization vector defined in Fig. 2.4, where we chose the
magnetocrystalline anisotropy axis to be parallel to thez-axis. The condi-
tions for extremum of the function:

∂EV

∂ϕ
= 0 and

∂EV

∂θ
= 0 (2.45)
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provide us with the trigonometrical equation:

Ku sin 2θ = −MsHext sin(θH − θ), (2.46)

with ϕH = ϕ for uniaxial anisotropy.θH andϕH are angles of the ex-
ternal magnetic field with respect to thez-axis (Fig. 2.4). Taking into
account only solutions with second derivatives ofE with respect to angles
larger than 0. Thus the equilibrium orientation of the magnetization vector
M ≡ M0 (with unit vectore0 with spherical coordinatesϕ0 andθ0) for a
givenHext is found.

The equilibrium orientation of the magnetization allows usto look for

x

y

z

q

φ

φ
H

qH

M

Hext

R

Figure 2.4.: The coordinate system used in the calculations. Parameters and angles
used in the text are defined. The uniaxial magnetocrystalline anisotropy axis is
along thez-axis.

solutions of the Landau-Lifshitz equation (Eq. 2.23) in linear approxima-
tion, i.e., under the assumption that dynamical componentsof the mag-
netization vectorm are perpendicular toM0 and that|m| ≪ Ms. The
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2.5. Theory of Magnetic Excitations in Chiral Magnets

effective magnetic fieldHeff is calculated as the variational derivative of
Etot with respect to the magnetization vector (c.f. Eq. 2.22):

Heff =
1

µ0

∇MEtot = Hext +
2A

µ0Ms
∇2m +Huni (e · n) n − Hd, (2.47)

where the volume anisotropy field isHuni = 2Ku/Ms [Chi97].
To find the frequencies of spin wavesωres, i.e., harmonic oscillations

around the equilibrium orientation, one can solve Eq. (2.23) in linear ap-
proximation with assumed harmonic time dependence ofm ∝ eiωt and
complemented with boundary conditions. Boundary conditions are de-
rived from the energy functional Eq. (2.43). Finally we obtain an equa-
tion for the frequency of the fundamental mode in a NP with uniaxial vol-
ume anisotropy (assumed to be along thez-axis), unidirectional surface
anisotropy, which introduces pinning of the magnetizationon the NP’s
surface, in an external magnetic fieldHext applied under the angleθH with
respect to the uniaxial axis. It reads [Shi99b, Cha11]:

(

ωres

γµ0

)2

= (H⊥ +Hext cos(θH − θ0) +Huni cos 2θ0)

(

H⊥ +Hext cos(θH − θ0) +Huni cos
2 θ0

)

.

(2.48)

This formula is used in chapter 7 to fit the experimental data of magneto-
ferritin NPs.

2.5. Theory of Magnetic Excitations in Chiral Magnets

Motivated by the experiments carried out during this work, which we
present in chapter 8.1, Prof. Achim Rosch and his group at theUniver-
sity of Cologne developed a theoretical approach to describe the excita-
tions found in chiral magnets using Ginzburg-Landau theory[Wai13]. This
chapter is dedicated to briefly outline this theoretical analysis. Illustrations
of spin configurations and excitational modes shown within this chapter
are obtained by A. Rosch and his group in Cologne [Gar13]. A compari-
son with experiments is then presented in chapter 8.3.
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2.5.1. Introduction

So called helimagnetic B20 compounds such as MnSi, FeGe, Fe1−xCoxSi
and Cu2OSeO3 undergo transitions between such different states as a func-
tion of magnetic fieldHext and temperatureT (Fig. 2.5). At zero magnetic
field and below the transition temperatureTc helimagnetic order appears.
The spin configuration in the helical state is shown in Fig. 2.6 (a). While
increasing the magnetic field (µ0Hext > µ0Hc1), the helimagnetic state
undergoes a spin-flop transition to a conical phase depictedin Fig. 2.6
(b). Here, the spins are canted towards the field direction. Further increase
of the magnetic field leads to another transition to a spin-polarized state,
i.e. ferromagnetic (FM) phase. Within a small pocket close to Tc lies the
Skyrmion phase. Here, the spins form a vortex-like structure (Fig. 2.7) in
a 2D hexagonal lattice. The magnetic phases arise from the competition
between exchange interaction, Dzyaloshinskii-Moriya spin-orbit coupling
and higher order spin-orbit coupling.

2.5.2. Magnetic Excitations atk = 0

In the case of chiral magnets the solution of the Landau-Lifshitz-Gilbert
equation (Eq. 2.26) is complicated, because it cannot be linearized. There-
fore, the total free energy in the Ginzburg-Landau model forchiral magnets
is definded in analogy to the total free energy (Eq. 2.21). Itsfree energy
functional is given by

F = F0 + Fdipolar + Fcub, (2.49)

where the first termF0 containes the Dzyaloshinskii-Moriya interaction
and a Zeemann-term. [Bak80, Nak80].Fdipolar is the dipolar interaction
and the last termFcub =

∫

dr fcub contains cubic anisotropies.
The magnetic resonances are determined with the help of the equation

of motion for the magnetization (c.f. Eq. 2.23). Linearizing equation
2.23 around the equilibrium configuration allows to determine the eigen-
modes and eigenfrequencies. A magnetic time dependent excitation leads
to a deviation from the equilibrium configurationM(r , t) and thus to a fi-
nite effective field. The calculation of the resonance frequencies finally
reduces to an eigenvalue problem of a characteristic matrix, where the am-
plitudes and the pitch orientation are determined by minimizing the cor-
responding potentials [Wai13]. In general, the magnetic eigenfrequencies
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Figure 2.5.: Sketch of the phase diagram of a B20 helimagnet studied in this
thesis. Below the transition temperatureTc and at zero field the helical phase is
established. With increasing magnetic field one enters the conical phase before at
a critical fieldHc2 the field polarized or ferromagnetic (FM) phase is reached. In a
small pocket just before the critical temperatureTc the Skyrmion phase is located.
AboveTc we enter the paramagnetic (PM) phase. The intermediate (IM) phase is
not adressed in this work.

and its spectral weights are obtained by diagonalizing numerically the ma-
trix. Analytical expressions for the eigenfrequencies at zero momentum1

in the field-polarized and the conical phase can also be derived by this
ansatz.

I. Field-polarized phaseHext > Hc2

1As the distribution of the exciting magnetic field in our setupis almost homogeneous, we
will discuss the magnetic excitation frequency at zero momentum ωα ≡ ωα(0) as well
as in the limit of small momentalim|k|→0 limL→∞ ωα(k). The latter limit depends in
particular on the orientationk.
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H < Hext c1 H < H < Hc1 ext c2

Q Q||Hext(a) (b)

Figure 2.6.: (a) Sketch of the spin configuration in the helical phase with the helix
pitch vectorQ. (b) Spin configuration in the conical phase where the external field
is higher thanHc1 and the spins are canted towards the field direction [Gar13].

In the field-polarized phase we obtain a single excitation mode that cou-
ples to the magnetic field. This is the standard ferromagnetic resonance
with a frequency given by the Kittel formula:

ωres= |γ|µ0

√

[Hext + (Nx −Nz)M ] [Hext + (Ny −Nz)M ], (2.50)

with Ni (i = x, y, z) being the diagonal elements of the demagnetization
matrix (Eq. 2.13). In the case ofHext > Hc2 the magnetization is almost
saturated and we can approximateM ≈ χconHc2 so that the resonance
frequency reads

~ωres

|g|µ0µBHc2
≈

√

[h+ (Nx −Nz)χcon] [h+ (Ny −Nz)χcon]. (2.51)
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Hext

Figure 2.7.: Illustration of the Skyrmion lattice, i.e. a periodic arrangement of
vortex-like structures in an fcc lattice. The spins parallel and anti-parallelto the
external fieldHext are shown in red and green color respectively [Gar13].

With the reduced fieldh = H/Hc2 > 1 and the susceptibilityχcon defined
as:

χcon =
µ0µ

2

JeffQ2 + µ0µ2Nz
, (2.52)

with µ = µB/f.u., i.e., a single Bohr magneton (µB > 0) per formula unit
and a stiffnessJeff that depends on the magnetic field orientation and the
helix pitch vectorQ.

II. Conical phaseHc1 < Hext < Hc2

In the conical phase we find two excitation modes. These eigenmodes
are illustrated in Fig. 2.8. The corresponding frequenciesare given by the
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analytical expression

~ω±
res

|g|µ0µBHc2
=

{(

1 +
1

4
(Nx +Ny − 4Nz)χcon

)(

2 + (1 (2.53)

− 2Nz)χcon

)

− h2
(

1 + χcon(1 +
1

4
(Nx +Ny

− 2NxNy)χcon −Nz(2 + (1−Nz)χcon))
)

± 1

4
χcon

[

N2
x

(

2 + (1− 2Nz − h2(1− 2Ny))χcon

)2

+N2
y

(

2 + (1− 2Nz − h2)χcon

)2

− 2NxNy

(

(2

+ (1− 2Nz)χcon)
2 + 2h2(4 + (1 +Ny − 4Nz)χcon)(−2

− χcon + 2Nzχcon) + h4(8 + χcon(8 + (1 + 2Ny)χcon

+ 8Nz(−2 + (−1 +Nz)χcon)))
)]1/2}1/2

.

The right hand side is a function of the reduced magnetic fieldh = Hext/Hc2 <
1 and depends on the value of the susceptibilityχcon from Eq. (2.52), that
is constant within the conical phase.

One can check that the modeω+
res smoothly connects to the Kittel re-

sult in the limitHext → Hc2. In the same limit, one finds that the spec-
tral weight of the other modeω−

res with the magnetic field vanishes. The
susceptibilityχcon is a measure for the strength of the dipolar interaction
energy. For a spherical sampleNi = 1/3, Eq. 2.53 reduces to:

~ω±
res

|g|µ0µBHc2

∣

∣

∣

∣

Ni=1/3

=
{

2− χcon

18
− h2

(

1 +
χcon

3
− χ2

con

9

)

(2.54)

± h
χcon

18

[(

6− χcon

)(

2(6 + χcon)

− 3h2(2 + χcon)
)]1/2}1/2

.

III. Helical phaseHext < Hc1

The helical phase is the most complex phase. In zero field,Hext = 0,
the mean magnetization vanishes and the anisotropic part ofthe poten-
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+Q

-Q

Figure 2.8.: The equilibrium spin configuration of the conical phase is shown on
the left. On the right hand side the two excitation modes±Q predicted by the
theory, where the individual spin precessional motion is indicated by the red arrow
[Gar13].

tial fixes the pitch vector either along a crystallographic〈111〉 direction or
along〈100〉. A finite field in general competes with the cubic anisotropy
and instead wants to align the pitch along the field. For fieldsalong high
symmetry directions, i.e.,〈100〉, 〈110〉, 〈111〉, that differ from the equilib-
rium orientation of the pitch at zero field, one expects a second-order phase
transition from the helical phase to the conical phase at a critical fieldHc1

with Hc1 < Hc2. For other directions, there is only a smooth crossover
between the helical and conical phase as the pitch reorientsitself.

For the helical phase the magnetic excitation spectrum was evaluated
numerically. Similarly as in the conical phase, one obtainstwo modes
within general different magnetic excitation frequencies.

IV. Skyrmion lattice phase
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Figure 2.9.: Monte-Carlo simulation of the three excitation modes in the Skyrmion
phase. We show snapshots of the different modes at different times (left side)
to illustrate their evolution over time. The yellow arrows indicate the in-plane
component of the magnetization [Gar13].

Within the Skyrmion lattice phase we find three magnetic resonances pre-
viously identified by Mochizuki [Moc12] as two gyration, i.e. a clockwise
and counter-clockwise mode, and a single breathing mode (see Fig. 2.9).

In Fig. 2.10 we summarize all predicted excitations within the model
considering a spherical sample, i.e.Ni = 1/3. The color in this plot indi-
cates the field range wherein the different phases exist. Thedots and their
different size illustrate the theoretical expected weightof the resonances
for an AC excitation field transverse to the static external field. Only the
breathing mode in the Skyrmion phase is shown for a longitudinal AC field
configuration because otherwise its weight vanishes.
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Skyrmion
conical

H /Hext c2

Figure 2.10.: Summary of the magnetic field dependency of the excitations pre-
dicted by the model for a spherical sample geometry, i.e.Ni = 1/3. The color code
serves as a guide to where the different excitations are present. The size of the
circles illustrate the excitation strength predicted by the model taken into account
the excitation field of the CPW [Wai13].

2.6. Numerical Methods

2.6.1. Micromagnetic Simulations

In order to further substantiate the findings by experimentswe have em-
ployed micromagnetic simulations within this thesis. We have used the
MicroMagus software package [Ber08]. The software tool calculates the
static magnetic configuration numerically by minimizing the total energy
Etot. The software takes all magnetic field contributions (besides DMI)
as discussed above into account. Furthermore, by solving the equation of
motion Eq. 2.26 numerically the response of the magnetic system to dy-
namic perturbations was obtained from the software package.

MicroMagus is a finite difference simulation software, i.e.the sample is
divided into layers of nonzero volume and each layer is discretized intoN
pixel of volumeΩi and magnetizationM i for i = 1...N . The energy contri-
butions of each pixel is summed up to the total energy of the system. The
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internal fieldH int,i is calculated for each pixeli from H int,i = −∂Etot

∂Mi

. It is
then tested for every iteration if a minimum remaining torque is reached,
i.e. if M i aligns withH int,i. If this is not the case a new magnetization
configuration is calculated. The resulting ground state is used as an input
for dynamic simulations.

We have employed two different simulation geometries fork = 0 and
k 6= 0 as illustrated in Fig. 2.11 (a) and (b) respectively. For simulations at
k = 0 we construct a unit cell of certain size, which is then subdivided into
a number of pixel cells so that we end up with a finite simulation volume
Ω. We apply 2D boundary conditions in thexy-plane. In a first step we ob-
tain the static equilibrium state magnetizationM(r) andHd(r). A spatially
uniform field pulse is then applied over the whole simulationgeometry to
get the response atk = 0. The field pulse is usually applied at the begin-
ning of a 10 ns long time-domain dynamic simulation andM(r , t) data is
obtained. Using fast Fourier transformation (FFT) we get a spatially re-
solved spectral responseP (f, r). From this we obtain the spatial power
plotsP (f

′

, r) for a given frequencyf
′

showing the localized spin preces-
sion for a mode atf

′

[Neu06].
For simulations of the dispersion relation we need to extendthe sim-

ulation geometry iny-direction (see Fig. 2.11 (b)) so that we can apply
a localized field pulse. The field pulse needs to be extended over more
than one unit cell and should not end at the border of a unit cell as this
causes zero signal at the Brillouin zones ink-space. Again one obtaines
M(r , t). We use spatio-temporal 2D FFT to obtainP (f, k) and therefore
the dispersion relationf(k) [Kru06]. In Fig. 2.12 (a) we show the sim-
ulated dispersion relation for a plain film of Py with 22 nm thickness in
the MSFVW geometry (µ0H = 1.2 T). The dashed line is the calculated
dispersion using Eq. 2.42. One can see that the calculation agrees well
with the simulated one. Only at largek the calculated dispersion obtained
by Eq. 2.42 deviates from the more accurate curve obtained bymicromag-
netic simulation. Note that the experiments in this thesis are performed
at much smaller wave vectors, i.e.k < 5 rad/µm. FromP (t, x) we also
get the time dependent spin precession amplitudes. This allows us to plot
snapshots of the spin precessional amplitude at different timest to illus-
trate propagation of spin waves. In Fig. 2.12 (b) we show those snapshots
again obtained from the Py plain film simulation in MSFVW geometry.
The exciting field pulse is located in the center of the simulation geometry
(point-like excitation) and one can see spin waves traveling isotropically
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Figure 2.11.:Schematic illustration of micromagnetic simulation layouts. (a) Lay-
out used fork = 0 simulations. One unit cell is used with two-dimensional peri-
odic boundary conditions in thexy plane. The unit cell is subdivided into quadratic
pixels, where one has the specific sizeΩ. The unit cell is excited with a homoge-
neous field pulse. (b) Layout used fork 6= 0 simulations. The unit cell is repeated
N times in they-direction. Again 2D periodic boundary conditions are applied.
The field pulse is applied over the indicated area, therefore exciting spin waves
with k 6= 0.

away from the center, which is different from in-plane field configuration
[Neu11b].

2.6.2. Electromagnetic Simulations

We use the software toolMicrowaveStudio1 in this work to obtain the
magnetic fieldh(r) produced by a coplanar waveguide. Results are pre-
sented in chapter 3.3. The waveguide is discretized into simulation cells
and Maxwell’s equation are calculated obeying the continuity conditions
of the simulation cell boundary using finite-integral-method. The software
is used to obtain the current density in the inner- and outer conductor of
the coplanar waveguide. The excitation ports are 50Ω discrete ports in
our simulations. From a FFT we get the corresponding excitation spec-

1CST Corp., Darmstadt, Germany

37



2. Theory
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Figure 2.12.: (a) Dispersion relation as simulated by micromagnetic simulations
for a 22 nm thick Py plain film with an external magnetic field of 1.2 Tesla applied
in the out-of-plane direction. The white dashed line is the calculated dispersion
relation using Eq. 2.42. The calculated curve only differs from the simulated curve
at very highk-vectors. In (b) we show snapshots of the local spin precessional
amplitude obtained by micromagnetic simulations, after a local excitation in the
center of the simulation cell, illustrating the isotropic nature of the MSFVW.
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trum of the coplanar waveguide, which we show in chapter 3.3.For more
information on the sotware we refer to [Wei08]. In Fig. 2.13 we show
a typical simulation geometry of a coplanar waveguide and the simulated
field profile.
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Figure 2.13.: The simulation geometry of a transmission CPW, i.e. two CPW’s
collinear to each other. One CPW consists of a signal line and two ground lines
on either side. A cut through the CPW and the substrate shows the simulated field
distribution.
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3. All-Electrical Spin-Wave Spectroscopy

In the course of this work we have employed all-electrical spin-wave spec-
troscopy (AESWS). This technique is related to common VNA-FMR (Vec-
tor-Network-Analyzer-FMR) in that it relies on the excitation of spin-
waves using CPWs in combination with a VNA. The main difference is
that in AESWS one excites spin waves with a nonzero wave vectork, trav-
eling over a certain distanced. Therefore, this technique is also known
as propagating spin-wave spectroscopy [Mel01, Bai01, Bai03, Bao08]. In
this chapter we present the general components of this broadband measure-
ment technique, i.e. Lakeshore Cryogenic Probe Station CPX-VF, Vector
Network Analyzer (VNA), and coplanar waveguides (CPWs). In the end
of this chapter we give a detailed description of the data analysis of a fer-
romagnetic plain film.

3.1. Measurement Setup

In Fig. 3.1 we show an overview picture of the experimental setup and a
close-up of the sample station. The main part of the experimental setup is a
commercially available open flow cryogenic refrigerator (Lakeshore Cryo-
genic Probe Station CPX-VF), which consists of six thermally anchored
microwave probe arms. However, throughout this study only two arms are
used. These two arms are connected via 50Ω microwave cables to the
VNA, which is used as a microwave source and detector and is described
in the next section in detail. The cryogenic microwave tips (250µm pitch)
are further connected via semirigid microwave cables. The probe tips ac-
complish the transition from a female K-connector to three individually
spring loaded tips in a Ground-Signal-Ground geometry, which are used
to connect to the corresponding pads of a coplanar waveguide. In order
to enable exact positioning of the probe tips a micropositioning system is
integrated in the probe arms. The inner chamber is evacuated(p ≤ 10−4

bar) and cooled using liquid helium. This enables cooling ofthe supercon-
ducting magnet, which gives rise to a perpendicular magnetic field of up
to 2.5 T. At the same time the cooling can be used for measurements at he-
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3. All-Electrical Spin-Wave Spectroscopy

lium temperature (4.2 K). In addition, the sample stage is connected to an
automated heater system, which is used to control the temperature of the
sample in the range of 4.2 K to 400 K. To avoid any environmental noise
the setup is mounted on a shock absorbing table. Automated data acquisa-
tion and control software allows to run predefined measurement schemes
and controls the magnetic field and the VNA.

3.2. Vector Network Analyzer and Scattering Parameter

The VNA in combination with a coplanar waveguide is used for the gen-
eration of electromagnetic waves. Here the VNA is used as ahf -source at
frequencies ranging from 10 Hz to 26 GHz. The VNA supports sinusoidal
voltage signals of the form:

V (r, t) = Ṽ (r)exp(iwt), (3.1)

which are traveling through the microwave cables and the CPW. Consider-
ing that the electromagnetic propagation in a microwave circuit is mainly
characterized by the series resistanceR, the series inductanceL as well as
the shunt conductanceG and the shunt capacitanceC, one can derive the
so-called Telegrapher’s equations [Sar43]:

∂2Ṽ

∂r2
= γ2Ṽ ;

∂2Ĩ

∂r2
= γ2Ĩ , (3.2)

whereγ is the propagation constant defined as:

γ =
√

(R+ jwL)(G+ jwC). (3.3)

The solutions of Eqs. 3.2 have the form:

Ṽ (r) = Ṽ +exp(−γr) + Ṽ −exp(γr) (3.4)

Ĩ(r) = Ĩ+exp(−γr) + Ĩ−exp(γr). (3.5)

Here Ṽ +, Ĩ+, Ṽ −, Ĩ− are integration constants and their solutions are
linear combinations of waves traveling backward and forward. The ratio

42



3.2. Vector Network Analyzer and Scattering Parameter

Microwave tips (ground-signal-ground)

Magnet stage

Sample position

Vector Network Analyzer Microwave cable

Probe station

Figure 3.1.: Pictures of the Lakeshore Cryogenic Probe Station CPX-VF used
within this work. The upper picture shows an overview of the setup consisting of
a Vector Network Analyzer, microwave equipment like 50Ω matched cables, and
the probe stage itself with all features explained in the text. In the lower picturewe
show the sample stage. Two microwave probe tips are used to contact the sample.
The superconducting magnet is located beneath the sample stage and supplies an
external field of up to 2.5 T. The chamber is cooled with liquid helium and the
sample stage can be heated to reach any temperature between 4.2 K and 400 K.
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of these integration constants is called the characteristic impedance:

Zc =
Ṽ +

Ĩ+
= − Ṽ

−

Ĩ−
=

√

(R+ jwL)

(G+ jwC)
. (3.6)

For a more detailed dereviation we refer the interested reader to the work
of Bilzer [Bil07].

For the situation of non-Transversal Electric and Magneticfields (TEM)
wave propagation the measurement of total voltage and current is not appli-
cable. Therefore, the VNA measures S-parameters instead. We can define
a scattering matrix for a microwave network withn-ports using complex
normalized wavesan andbn as follows:

an =
Vn + ZcnIn

2
√
Zcn

; bn =
Vn − ZcnIn

2
√
Zcn

. (3.7)

Now we can calculate the voltageVn and the currentIn at portn using:

Vn =
√

Zcn(an + bn) ; In =
an − bn√
Zcn

. (3.8)

Inserting Eqs. 3.4 and 3.5 into Eq. 3.7, one can see thatan describes the
incoming wave, whereasbn is the outgoing wave:

an =
V +
n

Zcn
exp(−γr) ; bn =

V −
n

Zcn
exp(γr). (3.9)

In Fig. 3.2 the relation betweena1,2, b1,2, and the S-paramters is sketched.
For our case of a 2-port, i.e.n = 2, device we needn2, i.e. four S-
parameters, which completely describe our network:

(

b1
b2

)

=

(

S11 S21

S12 S22

)(

a1
a2

)

(3.10)

This is called the scattering matrix and eachSnm is the ratio of the outgo-
ing wavebn at portn to the incoming waveam at portm. At this point
we want to emphasise that the S-parameters are complex values and the
measured quantities are therefore phase sensitive. We willsee later that
this enables us to evaluate the group velocity of propagating spin-waves.
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Figure 3.2.: Illustration of the microwave network and the relation between the
ports (a1,2, b1,2) and the scattering parametersSij .

In order to cancel out any errors introduced by the cables, probe tips,
connections, and inaccuracies in the hardware of the VNA we use a cali-
bration routine. This shifts the reference plane to the end of the probe tips
and the measured signal only depends on the circuit in between. We are
using the calibration substrate CS-5 ofGGB industries and the routine
OSLT (Open, Short, Load, Through), which is designed for ground-signal-
ground probe tips with a pitch of up to 250µm. The calibration substrate
has well defined standards, which are an open-circuit, shortsection, a pre-
cise 50Ω impedance and a coplanar waveguide of defined length. Each
standard has to be connected with the probe tips and measuredin both
directions in order to get a full error correction.

3.3. Coplanar Waveguides

Coplanar waveguides (Fig. 2.13) are key to our measurement technique
as they provoke defined spin precession in the material undertest. It is of
utmost importance to understand and model the excitation characteristics
of the CPWs. We have used two different CPW designs within thiswork,
which can be seen in Fig. 3.3 (a) and (b). The rf-current from the VNA
creates an oscillating fieldhrf (Fig. 3.3 (c)) according to Biot-Savart’s
law. This field causes spin precession in the magnetic material close to the
CPW. The reverse effect is then used to detect any spin precessional mo-
tion. In Fig. 3.3 (a) we show a so-called flip-chip design, where the sample
is placed on top of the CPW. In Fig. 3.3 (b) we show two CPWs, which
are prepared collinear to each other, in order to excite spinwaves with one
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3. All-Electrical Spin-Wave Spectroscopy

CPW (CPW1) and receive the propagated signal using the secondCPW
(CPW2). Thek-vector distribution depends on the geometrical parame-
ters of the CPW. The first CPW design (Fig. 3.3 (a)) has an innerconductor
width (wic) and an outer conductor width (woc) of 20µm as well as a gap
between inner and outer conductor (wgap) of 11 µm. The second CPW
geometry (Fig. 3.3 (b)) haswic = 2.4µm, woc = 2.4µm, andwgap = 1.1
µm. The distanced between the inner conductors of CPW1 and CPW2 is
12 µm. Using electromagnetic simulations (MicrowaveStudio) we ob-
tain the component of the dynamic magnetic fieldhx as depicted in Fig.
3.4 (a) and (c). In Fig. 3.4 (a) one can clearly observe the skin effect, i.e.
the tendency of an alternating electric current to become distributed inho-
mogeneously within a conductor, such that the current density is largest
near the edge of the conductor. In Fig. 3.4 (c) we have also plotted the
z-component of the dynamic fieldhz. We find that the values differ by an
order of magnitude, which is why we neglecthz for the further analysis.
Next we use Fast-Fourier-Transformation ofhx to get the excitation spec-
tra of the CPWs. The result can be seen in Fig. 3.4 (b) and (d). Wehave
labeled the first and second most prominentk excitation as well as∆k
(full width at half maximum) fork1. The parameter∆k, i.e. the distribu-
tion of excitation vectorsk, leads to inhomogeneous line broadening in the
measured resonance signal [Bil07]. In addition we want to point out that
people have used approximations of the spatial field, where they have used
rectangular field profiles [Cou04, Ken07, Neu11b]. Althoughthis might
be a good approximation for CPWs having a small inner conductor width,
e.g.wic = 2.4µm, for CPWs having an inner conductor width of 20µm the
skin effect causes a large deviation from the approximated rectangular pro-
file and is therefore not able to reproduce the excitation profile in a good
manner. If we compare thek1-vector obtained by FFT using a rectangular
function with the value obtained by the exact function from simulations we
get an absolute error of 12% (42%) for wic = 2.4µm (wic = 20µm). This
emphasizes the importance of our analysis, especially for the case of wide
CPWs. In general, spin precession is excited by the current through the
CPW and a voltage can be induced in the CPW vice versa. Following an
approach by [Gie05, Sil99] the flux in a CPWΦCPW caused by a magnetic
sample of magnetizationM is

ΦCPW = µ0

∫

V

hCPW

I
· MdV, (3.11)
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Figure 3.3.: (a) Sketch of the experimental setup in a flip-chip configuration, where
the sample is placed on top of the CPW. The microwave tips are in contact with
the contact pads of the CPW to feed the rf-current through. Thehrf-field is gen-
erated in the CPW and excites spin waves in the sample under test. (b) Sketch
of integrated CPWs lithographicaly prepared on top of the sample for propagation
measurements. The spin wave is excitated at one CPW and the propagatedsignal is
then detected using the other CPW being collinear to the first one. (c) Cut through
the substrate and the CPW on top. Thehrf-field (solid lines) is shown as well as
theerf field (dashed lines).
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Figure 3.4.: CST MicrowaveStudio is used to simulate the dynamic magnetic field
hx for a CPW with a 20µm wide signal line (a) and a 2.4µm wide signal line
(c). In addition we show the out-of-plane component (red curve in (c)), i.e.hz, for
the smaller CPW which is much smaller if compared to the in-plane component.
Through a fast Fourier transformation ofhx we obtain thek-vector distribution for
the 20µm wide signal line CPW (b) and the 2.4µm wide signal line CPW (d).

whereV is the volume of the sample,hCPW is the field created by the
CPW, andI is the current through the CPW. In a transmission experiment
with two CPWs, one CPW (CPW1) is used as the excitation port and a
second CPW (CPW2) as the receiving port, but note that excitation and
detection can also be done using just one CPW (reflection configuration).
Again neglecting out-of-plane contributions we define the magnetic flux at
CPW2 as:

Φ2 = µ0

∫

V

h2

I2
· MdV, (3.12)

whereh2 is the magnetic field along thex-direction of CPW 2 defined by
the currentI2 and the width of the inner conductor linewic:

h2 =
I2
wic

f(x)ex. (3.13)
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Heref(x) is a normalized spatial distribution function ofh2,x. It follows
that

Φ2 =
µ0tl sin δ

wic

∫

dx(f(x)Mx(x, t)), (3.14)

whereδ is the angle between the magnetization and thex-axis, l is the
length of the inner conductor andt is the thickness of the magnetic ma-
terial. From this one can calculate the induced voltageV2 at the receiver
CPW by

V2 =
dΦ2

dt
= −χ(ω)µ0tl sin δ

wic

∫

dxf(x)
dh2,x(x, t)

dt
. (3.15)

We want to point out that hereχ(ω) is the susceptibility of all contributing
spin waves [Vla10] and reads:

χ(ω) =

∫

dkχ′(ω, k)ρ(k)exp(−ikd). (3.16)

ρ(k) is the efficiency of excitation for a givenk, the exponential decay
takes the attenuation of spin waves over the distanced into account.

We also want to mention that spin waves excited by CPW1 are not only
excited directly underneath the conductor lines but also intheir close vicin-
ity and to a small amount underneath the receiving CPW2. This effect
leads to direct crosstalk and it should be evaluated for different CPW ge-
ometries as the influence of this effect on the measured data depends on the
distanced between the CPWs and the geometrical parameters of the con-
ductor lines. The CPWs used in this work have been studied extensively
in Ref. [Neu11b] and electromagnetic crosstalk was found tobe small.

3.4. Full 2-port Data Analysis

Here we demonstrate typical data analysis as used within this work. We
use a sputtered CoFeB plain film in order to describe all aspects of data
evaluation. The thickness of the film is 41 nm. The preparation of such a
film is described in the next chapter. We are using the propagating CPW
design withwic = 2.4 µm in order to make full use of AESWS. As de-
scribed before we are extracting S-parameters (S(f,H)ij) from the VNA,
wherei andj denote the ports. Herei is always the receiving port andj is
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(a) (c)

(d)(b)

Figure 3.5.: Raw measurment signals ofSij at an external field ofµ0H = 1.9 T
as obtained by the VNA (a). In order to observe the ferromagnetic resonance we
employ a difference technique as explained in the text. From this we obtain the
magnitude, the real and the imaginary part of the scattering parameters (b). The
oscillatory signal in a propagation measurement, i.e. using two seperate CPWs
to excite and detect, is shown in (c). In addition, we show the transmission and
reflection signal of the phase (d).

the exciting port. If just one port is used we writei = j. During the mea-
surement we sweep the frequency, while the external field is held constant.
Usually this is repeated for several values of external fieldin order to get
the field dependency of the resonance frequency. In Fig. 3.5 (a) we show
the measured signal at an external field of 1.9 T. The signal isshown in dB
and is defined as:

Sij = 20 log(Sij) = 20 log

(

bi
aj

)

. (3.17)

The curves in Fig. 3.5 (a) thus reflect the electromagnetic response of the
CPW. From the small values ofS12 we see that CPW1 is well isolated from
CPW2. In order to observe the resonance frequency, i.e. the response of
the magnetic material, we need to enhance the signal-to-noise ratio. This
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is done by a difference method. By taking a reference measurement at a
different field (reference field)SRef than the actual measurementSMeaswe
obtain a difference signal as:

∆S = SMeas− SRef. (3.18)

Preferably we take a reference signal at a high external field, where the
resonance is above the 26 GHz measured by the VNA, so that the signal
does not interfere with our actual measurement signal. Sometimes this is
not possible because the field strength available at the setup is not enough
to push the frequency out of the range of the VNA (depends on the material
under test). In this case we take the reference measurement at a field where
the resonance is as far away as possible from the measured signal, always
assuring that no overlap of the two resonances occurs. The obtained data
set can be seen in Fig. 3.5 (b), where we show the magnitude signal as
well as the real- and imaginary part. The main resonance is clearly visible
at 6.1 GHz as well as a second maximum on the right shoulder of the main
peak at around 6.6 GHz. The second peak can be assigned to the second
excitation maximak2 of the CPW (c.f. Fig. 3.4 (d)).

In Fig. 3.5 (c) we plot the transmission signal∆S12, i.e. spin waves
are excited at CPW2 and the signal of propagated spin waves arepicked
up using CPW1 at a distanced. We observe two signals, which stem from
the already mentioned excitations atk1 andk2. The mere fact that the
excitation spectra of a CPW has a finite width∆k produces the oscillatory
signal in the real- and imaginary part of∆S12 [Bai01, Bai03, Bao08]. This
is due to the fact that the phase of the spin wave depends on thewave vector
k:

φ = kd. (3.19)

The VNA measures the change of phase∆φ for changing frequency∆f ,
i.e. a variation inf and thus ink as mentioned above. From this it is
possible to extract a group velocity, which is given by:

vg =
∂ω

∂k
= 2πd

(

∆f

∆φ

)

. (3.20)

For the evaluation ofvg we extract the frequency difference from two max-
ima of the oscillations, which are∆φ = 2π apart. This means Eq. 3.20
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(a) (b)

Figure 3.6.: Resonance frequencies as a function of external field applied in the
out-of-plane direction (a). Linewidth∆f and effective damping parameterαeff

plotted over frequency (b). In a MSFVW thin film experiment we are able to
extract the intrinsic damping parameterαintr from the slope.

becomes:
vg = ∆fd. (3.21)

Identical to this method one can also evaluate the above mentioned phase
shift by looking directly at the phase dataφ (Fig. 3.5 (d)). Using Eq. 3.20
it is also possible to read out the group velocity from the data of ∆φ12.
Although this method is not used within this work we are showing it as this
is a more traditional way of evaluating the group velocity. If we analyze
the group velocity from∆S12 and from∆φ12 we obtainvg = 2.9 km/s
in both cases, showing the equivalence of the two methods. Inaddition,
we have plotted∆φ11, where we see a change by 180◦ at the resonance
frequency, as expected from a harmonic oscillator.

Finally, we show the field dependency of the resonance frequency in
Fig. 3.6 (a). As expected from Eq. 2.33 the frequency is a linear function
of the external field for fields higher thanµ0Meff, i.e. the magnetization
is pointing in the out-of-plane direction (MSFVW configuration). In this
case we determineµ0Meff to be 1.7 Tesla. From Eq. 2.33 we see that the
slope is given byγ/2π = 28.7 GHz/T, which is equivalent to ag-factor of
g = 2.0.

To complete the data analysis we evaluate the linewidth∆f of the
imaginary part of∆S11 at different fields (Fig. 3.6 (b)). This can be seen
as an effective linewidth where extrinsic and intrinsic contributions add up.
Assuming uniform precession in an infinite medium the linewidth connects
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to the damping parameterα as:

∆ωeff = 2αeffω, (3.22)

where we have used the subscript ”eff” to relate to the measured effective
linewidth. The effective damping parameterαeff is plotted in Fig. 3.6
(b). For an AESWS experiment Vlaminck et al. [Vla10] have proposed
that the effective linewidth consists of mainly two parts. One being the
intrinsic contribution∆ωintr = 2αintrω and the other one being the extrinsic
contribution mainly caused by the non-monochromatic excitation of the
CPW, i.e.∆ωextr = vg∆k. If one can add these two contributions to one
another one obtains:

∆ωeff = 2αintrω + vg∆k. (3.23)

From this we can extract the intrinsic damping parameterαintr by plotting
∆feff over the resonance frequency (Fig. 3.6 (b)). From the slope we
obtainαintr = 0.0151. Finally, we want to give an expression for the attenu-
ation lengthLatt over which the precession angle decays as1/e. Following
Vlaminck et al. [Vla10] the attenuation length is given by:

Latt = vg · τ, (3.24)

whereτ = 1/(αintrω) is the exponential time decay. The attenuation length
is helpful to determine how far a spin wave travels before theprecessional
cone angle decays as 1/e.

Another way of evaluating the attenuation length is the use of the mea-
sured S-paramters in a transmission measurement. The S-paramters are
connected to the attenuation length through [Hub13]:

∆S21 = β∆S11exp(−d/Latt) , (3.25)

∆S12 = (1− β)∆S22exp(−d/Latt) , (3.26)

1Note that this film was prepared before optimization of the sputtering process using Argon
plasma. In chapter 5.1 we investigate the damping of a CoFeB thin film after process
optimization by using Xenon plasma and we findαintr = 0.008.
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3. All-Electrical Spin-Wave Spectroscopy

whereβ is a non-reciprocity parameter defined as:

β =
∆S21

∆S11

∆S21

∆S11

+ ∆S12

∆S22

. (3.27)

For reciprocal characteristicsβ takes a value of 0.5.
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4. Sample Preparation

In this chapter we describe sample preparation of CPWs by optical lithog-
raphy as well as the preparation of Antidots (ADs) using focused ion beam
(FIB) technique. Semi-insulating GaAs [001] of 350µm thickness is used
as a substrate1. Other material systems investigated in this work have not
been prepared by the author; therefore, only a brief description will be
given at the beginning of the respective chapters with references to more
detailed work on the fabrication processes from the groups responsible for
the synthesis.

4.1. Samples with Integrated Coplanar Waveguides

Here we want to give an overview of the process steps involvedin the
preparation of plain films and Antidot lattices (ADL) with integrated CPWs.
For this we use optical lithography and focused ion beam (FIB) technique.
After cleaning the substrate with propan-2-ol, 2-propanone and drying
with dry Nitrogen the samples are processed as follows:

(I) Using commercial spin coaters a first layer of resist (LOR-3A2) is
spun onto the sample at 4500 rpm for 60 s. Followed by a baking
step at 180◦C for another 60 s. A second resist (S1813 G23) is
spun on top of the first one at 6000 rpm for 40 s. A baking step at
115◦C for 60 s follows. The two-step process is used to achieve an
undercut, which makes the lift-off process in the end easier.

(II) Next we use optical lithography to define a mesa of 200 x 75µm
in size. We use a mask aligner MJB-34 with a 350 W Hg lamp in
combination with a chrome mask, which contains the desired mesa.
The mask was produced by the Walther-Schottky-Institut of TUM

1Freiberger Compound Materials GmbH, Freiberg, Germany
2MicroChem Corp., Newton, MA, USA
3Rohm and Haas Company, Philadelphia, PA, USA
4Süss MicroTec AG, Garching b. München, Germany
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4. Sample Preparation

using a laser writer. The sample is put in physical contact with the
mask so the UV-light can expose the resist within the mesa defined
by the mask. The time of exposure was set to 3.6 s.

(III) The structure is now developed using MF-26A developer1 for 30 s,
where the resist of the exposed area is solved.

(IV) Deposition of the desired material. For Py we use physical vapor
deposition (PVD) by electron beam heating. The deposition is per-
formed in a high vacuum chamber under 10−7 mbar. For CoFeB
we use RF magnetron sputtering technique in Argon or Xenon gas
plasma2. The material is ejected from a Co20Fe60B20 target and
deposited onto the sample. Again the process is perfomed in high
vaccuum at a base pressure of 10−7, whereas during the sputter pro-
cess the pressure is 10−3.

(V) Lift-off processing in order to remove material on top ofthe resist is
done using remover 11653. The sample is left in the remover for at
least one hour at a temperature of 55◦C. Afterwards we are left with
a mesa of magnetic material, i.e. a plain film.

(VI) For the preparation of ADs we are using FIB to create periodic holes
in the plain film. In our case we use a cross beam system combining
a scanning electron microscope (SEM) and a FIB NVision-404. In
order to align the samples we use an automated manual mark scan
method using ElphyQuantum software5. The same software is then
used to create periodic holes by a dot exposure of the FIB. Forholes
with a 190 nm (120 nm) diameter in CoFeB (Py) we use a current
of 80 pA and an exposure time of 21 ms.

(VII) Before the preparation of integrated CPWs we use atomiclayer de-
position (ALD) of Al2O3 in order to isolate the structure from the
CPWs. The isolation layer is optimized and set to a thickness of 5

1Rohm and Haas Company, Philadelphia, PA, USA
2We have used Argon gas plasma in the beginning, but we found that Xenon leads to a better

film quality and smaller ferromagnetic linewidth.
3Rohm and Haas Company, Philadelphia, PA, USA
4Carl Zeiss NTS Corp., Oberkochen, Germany
5Raith Corp., Dortmund, Germany
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nm. The temperature in the ALD chamber is set to 100◦C during
the deposition.

(VIII) In order to prepare CPWs directly on top of the as-prepared structure
we employ again optical lithography processing to define theCPW
structure in the same manner as described in steps I-III. Followed by
material deposition using electron beam heating. First we deposit
4.5 nm of chromium in order to establish adhesion. Secondly we
deposit 120 nm of Au. The pressure during evaporation is again
around 10−7 mbar.

(IX) Finally, we perform one more lift-off process step (seeV) to be left
with the CPW structure.

In Fig. 4.1 we show an SEM image of an AD sample with integrated
CPW prepared as described above. In this case the CPW is a transmis-
sion type CPW, i.e. two CPW stuctures collinear to each other, with inner
conductor width of 2.4µm and a seperation of 12µm (c.f. chapter 3.3).

4.2. Preparation of Flip-Chip Waveguides

In some of our studies we have employed so-called flip-chip measure-
ments, where we put the material under test on top of the CPW. The CPWs
are prepared as described above using optical lithography and lift-off pro-
cessing. The CPWs can be of different geometries as mentionedin chap-
ter 3.3. This way we have control over the excited wave vectordistribution.
As we are working with samples of different sizes the length of the con-
ductor line is varied according to the sample size, i.e. someare of 9 mm
length and some are prepared to be 400µm in length.
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200 mμ

50 μm

5 μm

Figure 4.1.: SEM image of an integrated transmission CPW, i.e. two CPW’s
collinear to each other lithographically prepared on top of a thin film mesa. The
signal and ground lines are 2.4µm wide and the gap between the signal and ground
lines is 1.1µm. The separation between the inner signal line of them is 12µm,
which is the distance a spin wave travels in an AESWS experiment.
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In this chapter we study different materials for their suitability for ex-
periments with out-of-plane magnetic fields, i.e. MSFVW configuration.
As the out-of-plane geometry has not been the subject of manystudies
in thin-film materials, there is also a lack of material considerations for
this particular configuration. We start from evaporated Py,as this is a
widely used material in magnetoelectronics and magnonics research. Next,
we investigate sputtered CoFeB (the exact composition of the target is:
Co20Fe60B20) because low damping and large group velocities on this
composition have been reported recently [Yu12]. Both materials are de-
posited onto semi-insulating Gallium Arsenide substratesby optical lithog-
raphy and lift-off processing. CPW’s with an inner conductorwidth ωic =
2.4µm and a signal-to-ground separationωio = 1.1µm (c.f. chapter 3.3)
have been prepared on both samples. In order to compare theirdynamic
properties, both films have been prepared with the same thickness oft =
20 nm. Large out-of-plane fields are used to magnetize these films accord-
ingly. Finally, we consider so called perpendicular magnetic anisotropy
(PMA) samples, i.e. ultra thin Co/Ni-multilayers. These materials are
interesting as they exhibit a perpendicular magnetizationeven at zero ex-
ternal field. Furthermore, PMA has been used in spin-torque oscillators
[Mad11] to excite coherent spin waves. Therefore, the dynamic properties
of PMA are of utmost interest for future integrated spin-torque oscillator
spin-wave devices [Nal13]. The PMA samples have been prepared at the
University of Stockholm by the group of Prof. Johan Åkerman.

5.1. Permalloy and CoFeB thin films

We start our measurements with the Py plain film. In Fig. 5.1 (a) we show
a gray scale plot of∆S11 of the 20 nm thick Py film with field steps of 100
mT. The dark contrast reflects absorption of the microwave signal due to
resonant precessing spins. We divide the gray scale plot into two charac-
eristic regions (indicated by a white dashed line in Fig. 5.1(a)). In region
I the external magnetic field is not strong enough to align allspins against
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5. Materials for MSFVW-based Devices

the shape anisotropy into the out-of-plane direction. Thisis the so-called
”not-aligned” mode of spin precession. At the local minima at aroundµ0H
= 1.0 T, the external magnetic field is just as high as the anisotropy field
that stems from the shape anisotropy of the sample. From there on, the
spins are aligned with the external field and the curve follows a linear de-
pendency. In theory, the local minima should be at zero frequency, but due
to a small in-plane component of the external magnetic field at the position
of the sample or unintentional film roughness, this resonance is shifted to
a finite frequency. The blue dashed line is a fit to the measureddata in
order to obtain the saturation magnetization using Eq. 2.42, assuming that
anisotropies are not relevant, i.e.Meff = Ms. From this we extract a sat-
uration magnetizationMs = 820 kA/m, which is in good agreement with
values reported in literature[Mar10, Neu11b].

A typical line plot of the imaginary part of∆S11 at µ0H = 1.3 T is
shown in Fig. 5.1 (b). Fitting a Lorentzian curve, we extracta linewidth
of ∆f = 0.23 GHz and a resonance frequency offres = 7.5 GHz. From the
oscillations in∆S21 (Fig. 5.1 (c)) we get a group velocity ofvg = 1.0±
0.3 km/s. This is consistent with the group velocity ofvg = 0.9 km/s cal-
culated from the slope of the dispersion using Eq. 2.42 at themain CPW
excitation peakk = 0.6× 104 rad/cm. Usingvg · ∆k = 0.66× 109 rad/s
(∆k = 0.66× 104 rad/cm from simulations in chapter 3.3) together with
Eq. 3.23 we calculate the intrinsic Gilbert damping to beαintr = 0.008 (fres

= 7.5 GHz).
It is now instructive to compare these values with sputteredCoFeB. In

Fig. 5.1 (d) we show a gray scale plot together with a fit (blue dashed line)
for 20 nm thick CoFeB using equation 2.42. Note that the sample was not
aligned perfectly in the center of the sample stage and a non-zero in-plane
component of the external field caused a large frequency at the field posi-
tion where the magnetization turns out-of-plane. By fittinga straight line
to the high field data we obtainMeff = 1083 kA/m. From the lineplot of
the imaginary part of∆S11 at µ0H = 1.6 T (Fig. 5.1 (e)) we extract a
linewidth∆f = 0.3 GHz and a resonance frequency offres = 8.6 GHz. In
Fig. 5.1 (f) we show the oscillatory signal∆S21 and extract a group veloc-
ity of vg = 1.6± 0.2 km/s. This is in good agreement with the calculated
value from the slope of the dispersion relation (Eq. 2.42), where we get
vg = 1.4 km/s. Considering an extrinsic contribution as beforefor Py we
calculate an intrinsic Gilbert damping ofαintr = 0.008 for CoFeB, which is
in very good agreement with values reported in Ref. [Bil07].
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Another way of extracting the intrinsic Gilbert damping is to plot the
linewidth over the frequency (Fig. 5.2 (a)) [Vla10]. Using equation 3.23
we extractαintr from the slope of the curve. From this we getαintr = 0.0084,
which is in perfect agreement with the value obtained above usingvg∆k
as the extrinsic contribution. Please note that this value of αintr is even
smaller than the value obtained in chapter 3.4. The film investigated here
was prepared after optimization of the sputtering process and changing
from Argon to Xenon plasma, which led to an improved film quality and a
smaller linewidth in the experiment. Considering that the Xenon ions have
a shorter mean free path, we assume that the reason for the improvement on
the linewidth is connected to less impurities in the Xenon sputtered films.
In order to extract the saturation magnetization for CoFeB we have to con-
sider an out-of-plane anisotropy (c.f. chapter 2.2). Therefore CoFeB films
with different thickness, 62.5 nm, 36 nm, and 20 nm have been prepared.
From the field dependent FMR and fitting the effective magnetization we
getMeff = 1329 kA/m,Meff = 1256 kA/m, andMeff = 1083 kA/m respec-
tively. Using Eq. 2.30 and plottingMeff over1/d (Fig. 5.2 (b)) we extract
the saturation magnetization (Ms = 1440± 20 kA/m) from the intersect
with they-axis. This value is close to the saturation magentization of bulk
Co72Fe18B10, which isMbulk

s = 1430 kA/m [Bil07]. From the slopeA,
we calculate the out-of-plane anisotropy constant toK⊥ = −A/2 · µ0Ms

= 6.23± 0.25 mJ/m2. Considering the thicknesst = 20 nm we obtainK1

=K⊥/t = 3.12·105 J/m3.
Another important quantity to know is the attenuation length Latt (c.f.

Eq. 3.24). For Py we obtainLatt = 2.7µm atfres = 7.5 GHz. For CoFeB
we obtainLatt = 3.6µm at fres = 8.6 GHz for MSFVW. In Ref. [Vla10]
Latt of around 2.8µm has been reported for 20 nm thick Py in a MSFVW
experiment. In comparison, the propagation length in a 20 nmthick Py
film with in-plane magnetization, i.e. Damon-Eshbach modes, isLatt = 7.4
µm atfres = 7.5 GHz due to faster spin-wave propagation.

5.2. Films with Perpendicular Magnetic Anisotropy

The first observation of PMA in [Co/Ni] multilayers was presented by
Daalderop et al. [Daa92] in 1992. Through interface effectsthese mul-
tilayer structures favor a perpendicular anisotropy and have been exten-
sively studied over the past years [Blo92, Bea09, Miz11, Mac12, Hae13].
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Figure 5.1.: Comparison of Py (a-c) and CoFeB (d-f) plain film measurements.
Gray scale plots for Py and CoFeB are shown in (a) and (d) respectively, where dark
color indicates absorption of the microwave signals. Lineplots at a fixed external
field of 1.3 T (b) and 1.6 T (e) of the reflected signal∆S11. Propagation signals
∆S21 in order to extract the group velocity are shown for Py (c) and CoFeB (f).
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A = -6879 Aμ

M = 1442 kA/ms
(a)

2α = 0.0167

(b)

Figure 5.2.: (a) Linewidth∆f plotted over the resonance frequency in order to
extract the intrinsic Gilbert dampingα. (b) Determination of the saturation mag-
netization of CoFeB by evaluating the effective magnetizationMeff for different
film thicknesses.

The driving force for these studies is to use PMA multilayersin spin-valve
devices and spin-torque oscillators [Mad11, Moh12]. Here,we present
measurements and evaluate the feasibility to use PMA for magnonic de-
vices with out-of-plane magnetization atµ0H = 0 T. The exact composi-
tion of the PMA sample under investigation is:

Ta5/Cu15/Ta2/Cu10/Co0.35/[Ni0.9-Co0.35]×15/Ta5,

where the numbers behind materials indicate the thicknesst of the re-
spective layer in nm. The saturation magnetization for suchmultilayers
can be approximated by [Blo92]:

µ0MsD = µ0M
Co
s tCo + µ0M

Ni
s tNi , (5.1)

whereD is the overall thickness of the multilayer stack,µ0M
Co
s = 1.79

T (tCo) andµ0M
Ni
s = 0.61 T (tNi) is the saturation magnetization (thick-

ness) for Co and Ni respectively. In our case the saturation magnetization
is thereforeMs = 760 kA/m (Ta and Cu are not considered forMs).

In Fig. 5.3 (a) we show spectra measured in a flip chip geometryas a
function of external magnetic field in steps of 20 mT. The resonance at zero
field lies at 11.5 GHz and increases linearly with increasingpositive field,
i.e. df/dH = const. Going to negative fields we observe a resonance of
the identical slope df/dH for µ0H ≥ -0.02 T. For -0.12 T <µ0H < -0.02
T, we do not observe a clear resonance, suggesting a multi-domain state of
the thin film. Forµ0H ≤ -0.12 T, a sharp resonance feature is regained.
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5. Materials for MSFVW-based Devices

Here, the behavior is mirrored compared toµ0H > +0.12 T. The CPW has
an inner conductor width ofωic = 20µm, which provides a most prominent
excitation atkI = 0.096× 104 rad/cm. From the slope of the resonance fre-
quency we obtain ag-factor of 2.0. The value forMeff is determined using
Eq. 2.33 to be 426 kA/m. Using Eq. 2.30 together with Eq. 5.1 weobtain
the first order anisotropy constantK1 = 5.23·105 J/m3. The linewidth is
found to decrease for increasing frequency (Fig. 5.3 (c)). This observation
is opposite to the dependencies obtained for Py and CoFeB. This finding
suggests different contributions to the linewidth than in the other ferromag-
netic materials. We evaluate the effective damping parameterαeff, which
is between 0.01 and 0.04 depending on the frequency, as shownin Fig. 5.3
(d). The values are in good agreement with the ones reported in [Mac12].
A decreasing linewidth with increasing frequency/field is not consistent
with Gilbert damping. Considering this, the intrinsic damping paramter
αintr could not be extracted.

In addition, we have conducted measurements using a different CPW
with an inner conductor width ofωic = 4µm, which provides a most promi-
nent excitation atkII = 0.31× 104 rad/cm [Fig. 5.3 (b)]. In order to extract
a group velocity we make use of the fact that we have measured the same
sample with two different CPW’s, i.e. two diffferentk-vector excitations.
Normalized spectra at an external field of 0.44 T are shown in Fig. 5.3
(e). The frequency difference is used to calculate the groupvelocity via
vg = ∆ω/∆k = 2π∆f/(kII − kI). The group velocities obtained at dif-
ferent external fields are shown in Fig. 5.3 (f). The mean value for the
group velocity amounts to 5.6±1.6 km/s. From this we obtain an attenua-
tion length ofLatt = 2.0µm at 25.7 GHz.

5.3. Summary and Conclusion

In summary, we have studied three different systems, i.e. Py, CoFeB, and
CoNi multilayer. The most important values are summerized in Table 5.1.
The most common material in magnonics research is currentlyPy, offering
low damping and isotropic magnetic properties. From a dynamics point of
view, CoFeB is more favorable because it supports faster spin-wave prop-
agation compared to Py. However, higher external fields are necessary to
turn the magnetization into the out-of-plane direction forMSFVW-based
devices. Here, materials exhibiting PMA come into play as they exhibit an
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(a) (b)

(c)

(e)

(d)

(f)

I

II

Figure 5.3.: Gray scale plots of one and the same CoNi multilayers placed on
top of two different CPWs, i.e. one having an inner conductor width of 20µm
(a) and one being 4µm wide (b). Extracted linewidth∆f and effective damping
parametersαeff as determined from the measurments using the 20µm CPW. The
shift in resonance frequency at a fixed field (e) is used to determine thegroup
velocityvg (f).
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t Meff vg α Latt K1×105

[nm] [kA/m] [km/s] [µm] [J/m3]

Py 20 820 1.0 αintr 2.7 0
= 0.008 (7.5 GHz)

CoFeB 20 1083 1.56 αintr 3.6 3.12
= 0.008 (8.6 GHz)

Co/Ni 19.1 326 5.6 αeff 2.0 5.23
ML ≈ 0.025 (25.7 GHz)

Table 5.1.:Summary of extracted parameters for three different thin films. For the
CoNi multilayer we could not obtain the intrinsic damping parameter as explained
in the text and therefore give the effective damping parameterαeff.

out-of-plane magnetization even at zero magnetic field, which makes these
materials very interesting especially for magnonic crystal devices. Our
study shows that the Co/Ni multilayers show 4-5 times fastergroup veloc-
ities for approximately the same thickness if compared to Pyand CoFeB.
At the same time CoNi multilayers show an increase in effective damping,
which then leads to a short propagation length. The reporteddecrease of
the linewidth with increasing external field suggests different contributions
to the linewidth if compared to the other two materials. The broadening
of the ferromagnetic linewidth towards lower external fields could suggest
a distribution of magnetization angles around the out-of-plane direction.
This effect has been qualitatively discussed in Ref. [Bea09].

MSFVW-devices of this thesis have been fabricated using CoFeB and
Py, as these were deposited in our own cleanroom. CoNi multilayers were
not available for nanostructured devices.
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In this chapter we study 2D antidot lattices (ADLs), i.e. periodic holes in
a ferromagnetic thin film. We use Py and CoFeB and prepare holes in a
regular square lattice using FIB (c.f. Chapter Preparation). The hole di-
ameter is held constant atd = 120±10 nm andd = 190±10 nm for Py and
CoFeB, respectively. The periodp is changed depending on the specific
experiment. We are presenting measurements using AESWS as well as
micromagnetic simulations using the software tool MicroMagus. We will
refer to different simulation parameter sets, which can be found in Ap-
pendix A.3. The first part of this chapter is dedicated to the creation of
complete band gaps, i.e. forbidden frequency gaps, only by geometrical
parameters. Here, complete means that the forbidden gaps open for the
two different in-plane directions and overlap. The second part covers de-
vices that exploit forbidden frequency gaps, i.e. the unique characteristics
of the newly created dispersion relations.

After showing that complete band gaps exist in 2D MCs formed by
square ADLs, we address the question how we can use these bandstruc-
tures for new MC devices. As mentioned in Ref. [Len11] one of the build-
ing blocks of future devices based on MCs is the guiding of spin waves.
This is not at all trivial for spin waves because of their anisotropic dis-
persion relation and has been the subject of research for quite some time
[Bai01, Cho07, Dem08, Bao08, Vog12]. In section 6.3 we follow a new
approach in that we introduce line defects (LD) in our 2D MCs with per-
pendicular magnetization, i.e. we leave out one row of ADs, to study how
this can be used as a magnonic crystal waveguide (MCWG). In section
6.3.1 and section 6.3.2, we propose further devices using this approach of
artificially introduced defects such as a bended waveguide and a spin-wave
splitter respectively.

Sections 6.1 and 6.3 have been published in Ref. [Sch12b] andRef.
[Sch13], respectively.
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(a)

(b)

(c)

Figure 6.1.: Simulation geometry as used for micromagnetic simulations of regu-
lar antidot lattices (a). The unit cell is indicated by a continuous red line for normal
configuration and for the 45◦ configuration with a red dashed line (b). The unit cell
is subdivided in regular pixels of sizeΩ and repeatedN times into thex-direction.
2D periodic boundary conditions are applied. (c) Spin-configuration atthe hole and
in the continuous film as determined by simulations at 1.2 T. The film thicknesshas
been subdivided into four layers for the simulations.

6.1. Complete Band Gaps in Antidot Lattices

It is intuitive to start with micromagnetic simulations on ADLs to establish
the necessary geometrical parameters to create tailored spin-wave proper-
ties in out-of-plane fields. In Fig. 6.1 (a) and (b) we show thesimulated
geometry. For the simulations atµ0H = 1.2 T we use Py and simulation
parameter set A. In (c) we show the magnetization configuration extracted
from simulations considering four layers in thez-direction. At 1.2 T the
magnetization is canted at the holes edges as indicated by the black ar-
rows. For higher fields, the magnetization becomes more and more uni-
form throughout the whole sample.

For comparison, we repeat the dispersion relationf(k) for a Py plain
film in Fig. 6.2 (a) (taken from chapter 2.6.1). The faintly bright regions
aroundk = 0 are attributed to numerical artefacts coming from the dis-
cretization in real space due to the finite-sized simulationcells. Next, we
simulate square ADLs with constant hole diametersd = 120 nm, whereas
the periodp is varied (800 nm≥ p ≥ 180 nm). In Fig. 6.2 (b) we show
the simulated dispersion relation of an ADL withp = 800 nm. Here, addi-
tional branches appear. Analyzing their absolute values wefind that they
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represent backfolded branches of the thin film dispersion. We display the
dispersion relation in the so-called extended zone scheme wherek extends
beyond the first Brillouin zone (BZ) boundary located atkBZ = π/p (verti-
cal broken line). We do not observe a forbidden frequency gapwithin our
simulation accuracy of 100 MHz. As we reduce the period of theADL
to p = 240 nm the BZ boundary moves to higher values. Importantly we
observe a clear frequency gap of∆f = 1.2 GHz between 8.9 GHz and 10.1
GHz at the first BZ (Fig. 6.2 (c)). In addition the frequency attheΓ-point,
i.e. k = 0, increased tof(k = 0) = 8 GHz in comparison tof(k = 0) =
6.1 GHz for the plain film. In the simulations of the ADLs the artefacts
at aroundk = 0 are even more pronounced if compared to the plain film.
This is attributed to the discretization of the ADs edge. To support this
we repeated the simulation of the ADL withp = 240 nm using a differ-
ent amount of pixel, thus, changing the discretization of the ADs edge. In
Fig. 6.2 (e) and (f) we show the simulated spectra atk = 0 using 128 pixel
(red line) and 56 pixel (black line) for discretizing the unit cell. First, we
observe no shift of the main resonance at 7.4 GHz within the simulation
accuracy of 100 MHz. Looking closely at the lower frequency side (Fig.
6.2 (f)) we see that the strength as well as the peak positionsof the artefacts
change drastically with the discretization of the unit cell. Nevertheless, for
the discussion, we will focus on regimes of the wave vectork where arte-
facts do not play a role.

In order to study whether a complete band gap is formed, we perform
a simulation withk being along the diagonal of the ADL, i.e. under 45o

to thex andy direction. To make use of 2D-boundary conditions we now
construct a conventional unit cell having an effective periodicity of peff =
p ·

√
2 along the considered stripe. In the as-simulated dispersion rela-

tion we find a frequency gap near 9.8 GHz with∆f = 0.6 GHz (Fig. 6.2
(d)). This band gap overlaps in frequency with the band gap obtained from
the simulation wherek is along a primitive vector. We observe additional
branches atk = π/

√
2p, which do not create an avoided crossing atk =

1
2

√
2π/p = π/

√
2p. This is due to the fact that we have used a conven-

tional unit cell with 2D-boundary conditions, instead of a primitive unit
cell. This leads to additional lattice points in reciprocalspace and conse-
quently additional branches in our simulation [Hun12].

We now extend this study in that we consider different periods of the
ADL between 180 nm and 800 nm. The extracted frequencies reflecting
the band gaps are summarized in Fig. 6.3. Two main features can be ex-
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1.
BZ

1. BZ1. BZ

(a) (b)

(d)(c)

(e) (f)

Figure 6.2.: Color coded spin-wave dispersion for (a) plain film, (b) ADL withp =
800 nm and (c) ADL withp = 240 nm whenk is pointing along a primitive vector,
and (d) 45 deg-rotatedk pointing along the diagonal of an ADL withp = 240 nm.
Here dark color means no spin-wave excitation and bright means high spin-wave
excitation. In (b), (c) and (d) the first BZ is indicated by the white dashed line.
Note that due to the discretization of the holes edges being periodic from unitcell
to unit additional spin waves are faintly excited. In a real device we do notexpect
to observe such features as the edge roughness over the MC would be irregular. To
support this we show line plots taken from simulated ADL withp = 240 nm at
k = 0 in (e) and (f), where we changed the discretization of the unit cell using 128
pixel (red line) and 56 pixel (black line).
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tracted from this. As the lattice period is reduced, the eigenfrequencies
increase and in addition, the size of the band gap increases.From this we
conclude that in particular, nanopatterning on the 100 nm length scale is
key to obtaining significant forbidden frequency gaps in ADLs.

We followed a phenomenological approach to model the dependency of
the band gaps as a function of the period we assume an exponential fitting
function, which reads:

f(p) = A · exp(−p/τ) + f0. (6.1)

This is assumed following recent results obtained on one-dimensional
MCs suggesting the coherence length or dipolar coupling length of spin
waves to be decisive for modeling backfolded branches in 1D quantita-
tively [Top10]. It is possible that dipolar coupling between spin excitations
modifies frequency gaps originating from Bragg reflection ina periodic po-
tential. Our simulations generically consider all mechanisms involved. An
exact analytical function for describing the data in Fig. 6.3 is not available.
In the inset of Fig. 6.3, we show frequency gaps for two different ADLs
for theΓK direction.

6.2. AESWS on Antidot Lattices in Perpendicular Fields

We now experimentally study ADLs in out-of-plane fields using AESWS.
As the group velocity for Py is rather low for a 20 nm thick film (c.f. chap-
ter 5), for the following experiments we prepared ADLs in CoFeB films
and additionally increased the thickness of the samples to 41 nm. Using
Eq. 2.42 with the material parameters of CoFeB we obtain a group velocity
for a 41 nm thick film ofvg = 3.2 km/s. For the experiments we use a trans-
mission CPW with a prominent excitation atk1 = 0.6×104 rad/cm. Note
that the hole diameter in CoFeB is 190 nm, i.e. about 70 nm larger than the
hole diameter for Py. We start by comparing resonance frequencies of a
plain film with those of ADLs with different lattice periods (Fig. 6.3 (b)).
We see a clear upshift in frequency as the lattice period is reduced, which
is consistent with the simulation data. We explain this trend by a change
in the out-of-plane demagnetization factor.

Next we extract the group velocity from the oscillations in∆S21 (c.f.
chapter 3.4). For a lattice period of 800 nm the group velocity is found to
be slightly below the group velocity of the reference plain film. Decreas-
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Γ Μ

Κ

Figure 6.3.: Symbols denote eigenfrequencies extracted at BZ boundaries for
ADLs with different periodp andk pointing alongΓM direction (see inset). The
colored regions indicate the forbidden frequency regions evaluated from the simu-
lations. The white areas denote the widths of the allowed minibands. The straight
lines are guides to the eyes obtained by fitting exponential functions. In the inset
we show eigenfrequencies at BZ boundaries (symbols) for ADLs with different
periodp andk pointing alongΓK direction, i.e., under45◦. Again the colored
regions indicate the forbidden frequency regions evaluated from the simulations.
Straight lines are guides to the eyes.

ing the lattice period to 600 nm results in much lower group velocity of
2.7±0.2 km/s.

6.3. Artificially Introduced Line Defects as Waveguides

The samples for these experiments have a period of 600 nm and are of
CoFeB having the same thickness (41 nm) as the samples of the ADLs
discussed in section 6.2. Now we leave out every 20th row of ADs in order
to create line defects (LDs) along they-direction, i.e. perpendicular to the
CPW. SEM pictures of the device are shown in Fig. 6.5 (a). Transmis-
sion CPWs are prepared on this device to measure propagating spin-waves
along the LDs. A sketch of a typical band diagram of such a magnonic
crystal is shown in Fig. 6.5 (b) and will be discussed later.

In the measured spectra we identify four resonance modes, which we
extract from the line plot of the imaginary part of∆S11 [Fig. 6.6 (a)].
We indicate those resonances by black arrows in the line plotat an exter-
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(a) (b)

Figure 6.4.: (a) Field dependency of the eigenfrequencies for different ADLs with
different periodp extracted from measurements. (b) Group velocities for different
lattice periodsp compared to the group velocity of the plain film.

nal field of 1.82 T. Considering the different demagnetization factors of
ADL and LDs we assume that the lowest frequency mode is the mode at
k1 localized in the LD and the next higher mode belongs to the ADL. The
third and fourth mode belong to the respective excitations at k2 = 2.5×104

rad/cm. In the following we will restrict our analysis to thelowest two
modes. In Fig. 6.6 (b) we plot the lowest two modes over the external
field. The inset shows all four resonances over a smaller fieldregime. We
now turn our attention to the propagation signal∆S12 shown in Fig. 6.6
(c) for an external field of 1.88 T. The oscillating signal near 6.8 GHz in
∆S21 reflects propagation in mode (1) of the MCWGs. The extracted ve-
locity amounts tovg = 3.0 ± 0.2 km/s, which is close to the plain film
value ofvg = 3.3 km/s. The next higher lying resonance frequency in Fig.
6.6 (c) is attributed to the ADL excited atk1 [mode (2)].

In order to confirm the origin of the two different modes we performed
micromagnetic simulations atk = 0 at a fixed field of 2.5 T (simulation pa-
rameter set B in the addendum). The spectrum of the simulation is shown
in Fig. 6.6 (d), where we indicate the position of the measured frequencies
of the first two modes by stars. The simulations predict well the frequency
separation between modes (1) and (2). Considering the different wave vec-
tors for the simulation (k = 0) and the experiment (k = k1), the one-to-one
correspondence of simulated and measured eigenfrequencies f points to-
wards a systematic but small error in the simulation. In Fig.6.6 (e) we
show the spatial spin-wave profiles of the two modes extracted from the
simulation. Here white is a high spin-wave amplitude and black is a low
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spin-wave amplitude. The frequencies of those two modes coincide with
the frequencies of mode 1 and mode 2 from the experiment. As weare
not simulating with the excitation spectra of the CPW, the simulation does
not predict the two additional modes fork2 = 2.5×104 rad/cm. The fact
that the waveguide mode lies below the first band is similar tothe so-called
index guided modes in photonic crystal waveguides [Joa08, Jam03]). But
there is one distinctive difference between the photonic crystal waveguide
and the MCWG. If we follow the first band of the MC down tok = 0 (c.f.
Fig. 6.5 (b)) we find that the frequencyf0 at k = 0 is higher than the fre-
quency of the MCWG atk1. In photonic crystals, the frequency atk = 0 is
always lower than that of index guided modes.

In addition to the simulations atk = 0, we perform simulations with a
localized excitation in order to get time dependent data (simulation param-
eter set C with a thickness of 41 nm). Note that here we use openboundary
conditions in order to reduce simulation time. To assure that the bound-
aries of the simulation cell do not affect the outcome of the simulation, we
have constructed a simulation cell with 15 periods of ADs (p = 600 nm) to
both sides of the LD. This is consistent with simulations of 1D magnonic
crystals [Kim09], where twelve periods are suggested for simulations. We
use a continuous wave excitation with a frequency off = 24.1 GHz as
extracted from the experiment atµ0H = 2.5 T 1. From the simulation we
obtain time dependent spin-wave amplitudes. In Fig. 6.6 (d)we show the
spin-wave amplitudes at different times, where one can see the propaga-
tion within the LD. Please note that we show just the center part of the
simulation cell (original simulation plots can be found in Appendix A.4)2.

It is now instructive to compare the measured group velocityof about
3 km/s with valuesvg of an individual CoFeB stripe acting as a magnonic
wave guide. Taking the geometrical width of the MCWG (= 1020 nm),
which is the edge-to-edge separation of holes (see white dashed lines in
Fig. 6.5 (c)). For this we perform micromagnetic simulations on a de-
vice shown in Fig. 6.7. Here simulation parameter set D is used and 2D
periodic boundary conditions are applied. The magnetic material takes

1At the excitation frequency of 24.1 GHz we find only the line defect mode to be excitated.
Changing the excitation frequency tof = 25 GHz excites again the line defect mode
(with different wavelength) but also the ADL. Going to lowerexcitation frequency (f =
15 GHz) we observe no excitation of either mode.

2We show snapshots of the time dependent spin-wave amplitudes only after a settling time
of t ≥ 2 ns because of transient response of the system.
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Figure 6.5.: (a) Scanning electron microscopy images of a magnonic crystal wave
guide device. The hole diameter (period) is 190 nm (600 nm). The white dashed
line indicates the geometrical width of the MCWG of 1020 nm. (b) Sketch of the
band structure for MSFVWs in a square-lattice magnonic crystal. We indicate the
frequency of a MCWG.

up half of the simulation width (w2), illustrated by the dark gray color.
From the simulated dispersion relation we extract the groupvelocity in
the limit of small wave vectors using a linear fit. Forw2 = 1020 nm
andµ0H = 1.9 T, we obtainvg = 1.9 ± 0.2 km/s. The stripe thus sup-
ports substantially slower spin waves compared to the MCWG (slower by
about 30 %). To check the outcome of the simulation, we also considered
w2 = w1, i.e., we modelled the plain film. Here, we extracted a group ve-
locity of vg = 3.3± 0.2 km/s. This value was in good agreement with the
calculated group velocity ofvg = 3.3 km/s, substantiating the reliability
of the micromagnetic approach.
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Figure 6.6.: (a) Multiple resonances (arrows) of an ADL with MCGWs at 1.82 T.
(b) Field dependencies of the two most pronounced modes [mode (1) and mode (2)]
and all four resonances at smallH (inset). Filled and open symbols defined in (a)
stand for excitations atk1 andk2, respectively. (c) Transmission signal measured
for mode (1) and (2) of the ADL with MCWGs at 1.88 T. (d) Simulated spectrum
of the ADL with MCWGs at 2.5 T compared to the measured eigenfrequencies
(open stars). (e) Spin-precessional amplitudes as simulated for mode(1) mode (2)
seen in the spectrum of (a). The color code for amplitudes is shown on theright. (f)
Snapshots of the time dependent spin-precessional amplitudes in a MCWGusing
a continuous wave excitation with a frequency off = 24.1 GHz at 2.5 T.
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Figure 6.7.: Simulation geometry of a ferromagnetic stripe forw2 6= w1 and a
plain film for w2 = w1. The group velocity is then obatined from the slope of the
dispersion relation.

If we now take a closer look at the spin-wave profiles in Fig. 6.6 (c) we
can see that the spin-wave excitation is not only localized within the LD. It
extends into the ADL. This suggests that we have to consider an effective
width for the MCWG. The concept of an effective width for stripes was
introduced by Guslienko et al. [Gus02]. In order to explain the quantized
modes found in stripes they introduced an effective ”pinning” parameter
d:

d(a) =
2π

a[1 + 2ln(1/a)]
(6.2)

with a being the aspect ratio of the stripe (p = thickness/width). This can
also be written as an effective widthweff:

weff = w[d/(d− 2)]. (6.3)

Calculating the effective width of a stripe withd = 1.02µm we getweff =
1.13µm. Repeating the simulation of the stripe using this effective width
we obtain a group velocity ofvg = 2±0.2 km/s, still lower than the mea-
sured group velocity of the MCWG. Now we approximate the effective
width by taking the width of the spin-wave profile from Fig. 6.6 (c), which
is roughlyweff = 1.8µm. The group velocity extracted from a simulation
using this effective width gives usvg = 2.6±0.2 km/s, which comes close
to the measured group velocity of the MCWG. We summarize all group
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Figure 6.8.: Simulated and measuredvg of a plain film (squares), MCWG (circle),
and three stripes of different widths, i.e. 1.02µm (diamond), 1.13µm (triangle),
and 1.80µm (star). The dashed line is the reference group velocity calculated from
the dispersion relation of the unpatterned film.

velocities in Fig. 6.8 (b). Our analysis suggests a MCWG as prepared here
supports a group velocityvg, which would be present in a conventional
stripe-like wave guide of much larger geometrical width.

6.3.1. Guiding Spin Waves around a Corner

In the previous section we showed that spin waves are guided efficiently
using a straight MCWG. In the following we address the challenge to
guide spin waves in arbitrary in-plane directions. This challenge has been
the subject of recent studies [Cla11, Vog12], all of which used ferromag-
nets subject to an in-plane magnetic field, where the dispersion relation is
anisotropic. In the framework of this thesis we make use of MSFVW, for
which the dispersion is isotropic. Still it is unexplored how MSFVWs are
guided around a corner. This, however, is essential if one thinks of inte-
grated and interconnected magnonic devices.

We have fabricated an ADL device from 41 nm thick CoFeB in the same
manner as before with integrated CPWs for transmission measurements
[Fig. 6.9 (a)]. The period has been set to 500 nm and every 15throw has
been modified as shown in Fig. 6.9 (a). The missing row and therefore the
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path for the spin-wave is indicated by the white dashed line.We will call
this device a wave guide bend (WGB) in the following. In Fig. 6.9 (b) we
show a spectrum∆S11 atµ0H=1.82 T. We observe two main resonances
indicated by the black arrows. Following our earlier analysis, we identify
the lowest mode as the mode localized within the WGB and the next higher
mode as the one stemming from the surrounding ADL.

It is now intruiging to analyze the group velocity of spin waves follow-
ing the WGB. In Fig. 6.9 (c) we have plotted the group velocities at dif-
ferent external fields as extracted from∆S12. Note that spin waves which
follow the WGB have to travel a longer path in order to reach thedetecting
CPW (path length through wave guide = 13.6µm). For calculating the
group velocity we have considered the additional path of 1.6µm. We find
that the group velocity is smaller than the group velocity ofa plain film of
CoFeB of the same thickness. Finally, we perform micromagnetic simula-
tions. We use material parameters of CoFeB and simulation parameter set
C. The simulation cell is constructed of an ADL with p = 500 nm and a
thickness of 41 nm. We apply continuous wave excitation witha frequency
of f = 22.7 GHz, which is the resonance frequency of the first mode at 2.5
T taken from the experiment. In Fig. 6.9 (d) we display snapshots after
different time periods of 2 ns, 4 ns, and 6 ns after the initialexcitation. One
clearly sees a spin-wave ”packet” following the WGB. This result supports
and illustrates our experimental findings.

Apart from the group velocity, we can use the whole set of S-parameters
and with Eq. 3.25, compare the attenuation lengthLatt of a plain film, a
straight wave guide, and a WGB device. In Fig. 6.10 we plotLatt for
the plain film, a regular ADL, and the other two devices at different fields
(symbols) together with the respective mean values (dashedlines). The at-
tenuation length of the plain film isLatt = 16.9µm, whereas for the ADL,
the line defect, and the WGB we extractLatt = 5.3µm,Latt = 5.2µm, and
Latt = 6.3µm respectively. The comparison reveals that introducing ADs
reduces the attenuation length by a factor of 3 if compared tothe attenua-
tion length of a plain film. Note that the group velocity only changes by a
factor of 1.2 comparing a plain film with an ADL. Introducing straight or
bended line defects does not affect the attenuation length of the spin waves
propagating through such wave guides compared to the ones propagating
through an ADL.
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Figure 6.9.: (a) Scanning electron microscopy images of a wave guide bend de-
vice. The white dashed line indicates the path where we left out holes. (b) Mea-
sured spectrum at 1.82 T indicating two prominent resonances by arrows. (c)
Group velocity of the WGB mode (squares) evaluated for different external field
values and compared to the group velocity of a plain film (dashed line). (d)Snap-
shots of the time dependent spin-precessional amplitudes in a WGB using acon-
tinuous wave excitation with a frequency off = 22.7 GHz at 2.5 T.
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Figure 6.10.: Comparison of the attenuation lengthLatt at different fields (sym-
bols) and the mean values (dashed lines) for a plain film (squares), a ADL (circles),
a MCWG (rectangles), and a WGB (diamonds).

6.3.2. Splitting of Spin Waves in a Two-Path Device

We have designed a MC splitter (MCS), which splits a spin-wave into two
paths before uniting it again after a short distance. SEM images of our
sample are shown in Fig. 6.11 (a). The sample is made from 53 nmthick
CoFeB with a period of the ADL of 500 nm. The path of the artificially
introduced defect state is marked by the white dashed line. The structure
is repeated after every 15th row of ADs. In Fig. 6.11 (b), we plot the field
dependency of the first two modes observed in our measurements. Like
in the other structures, we identify the lowest mode as the mode which is
localized within the regions where we left out holes.

An evaluation of the group velocity for the lowest mode givesus a sim-
ilar result as for all the devices based on missing rows of ADs, i.e. the
group velocity of the MCS is slightly below the group velocity of the plain
film (Fig. 6.11 (c)). We employ micromagnetic simulations with material
parameters of CoFeB and simulation parameters C. The simulation cell is
constructed of an ADL with p = 500 nm and a thickness of 53 nm. We
use a continuous wave excitation with a frequency off = 22.8 GHz, which
was evaluated to correspond to the resonance frequency of the first mode
at 2.5 T from the experiment. In Fig. 6.11 (d) we show snapshots after
different time periods. We see how the spin wave is split intotwo paths (t
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= 2.5 ns), travels within the two arms (t = 4.5 ns), and finally is combined
at the end of the device (t = 6 ns). Apart from the splitting of spin waves
we have additionally shown that one can also combine spin waves again.

6.4. Summary and Discussion

In this chapter we discussed magnonic crystals that exhibitcomplete band
gaps by considering periodic antidot lattices in perpendicular fields. The
existance of band gaps has been observed using micromagnetic simula-
tions. In addition, simulations predict an increase in resonance frequency
for decreasing lattice periods. This has been confirmed by AESWS exper-
iments. Furthermore, a reduction of the group velocity by going to smaller
periods has been obeserved in our measurements. The reason for this be-
haviour can be found in the modified dispersion relation, when introducing
a regular ADL. In simulations of such ADLs, we observe the existance of
forbidden frequency gaps accompanied with a gradual changeof slope of
the dispersion relation, i.e. at the 1. BZ boundary the slopeis zero. As
we observe a decreasing group velocity for decreasing ADL periods we
conclude that the slope of the dispersion changes atk1 of the CPW in such
a manner that the measured group velocity decreases for smaller lattice pe-
riods.

Making use of the forbidden frequency regions created by theADL, we
have explored wave guides by removing rows of AD’s. We showedthat
spin waves are located within this line defect and are guidedthrough the
ADL. Even more intruiging, we showed that the group velocityin such a
device is very close to the group velocity of the plain film andhigher when
compared to a simple magnetic stripe of the same geometricalwidth. We
assume that this is due to a relatively large effective widthof the wave
guide caused by leaking of the spin wave into the ADL. We also showed
the difference of a MCWG compared to its photonic crystal counterpart in
that the excitation frequency lies below the frequency atk = 0 of the low-
est band. This implies that the MCWG mode cannot scatter into another
branch of the dispersion relation.

Furthermore, we have shown that artificially introduced line defects can
be used in guiding spin waves around corners in complex structures such
as a spin-wave splitter. Here, we showed that spin waves can be divided
into two different paths and even be united again. The devices based on ar-
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Figure 6.11.: (a) Scanning electron microscopy images of a magnonic crystal
splitter device. The white dashed line indicates regions where we left out holes.
(b) Field dependency of the first two modes extracted from the measurement. (c)
Group velocities at different field values evaluated for the MCS mode (squares)
and compared to the group velocity of the plain film (dashed line). (d) Snapshots
of the time dependent spin-precessional amplitudes in a MCS using a continuous
wave excitation with a frequency off = 22.8 GHz at 2.5 T.
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tificially introduced imperfections in generall support fast spin wave prop-
agation almost as high as in a plain film. The attenuation length in such
devices is found to be comparable to the attenuation length of a regular
ADL. We will give a more visionary discussion on how to utilize such a
spin-wave device in the final outlook section of this thesis.
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7. Protein Based 3-Dimensional Magnonic
Crystals

After the discussion of 2D MCs in the previous chapter we now present
our results on 3D MCs. 1D and 2D MCs have been the subject of intense
research over the last years. Still, there is lack of experimental work on 3D
MCs as periodic nanopatterning of ferromagnets in three spatial directions
is a great challenge. Only very recently, Kostylev et al. have presented
first FMR measurements on 3D magnetic inverse opal structures [Kos12]
forming a possible candidate for a 3D MC. Recent advancements in the
field of bioengineering make it possible to create large arrays of magnetic
nanoparticles (NPs), called magnetoferritin, ordered in three dimensions.
Diluted magnetoferritin NPs have been studied in the past using cavity
ferromagnetic resonance technique at a fixed frequency of 9.43 GHz (X-
band) and temperatures ranging from room temperature down to 4.2 K
[Gus07]. Using electron magnetic resonance (EMR) at 9.2 GHz(X-band)
at liquid helium temperature Li et al. studied anisotropiesin such diluted
systems of nanoparticles [Li09]. Furthermore, theoretical calculations us-
ing the plane wave method showed large tailored spin wave band structures
with allowed and forbidden frequency gaps by filling the air gaps between
ordered arrays of magnetoferritin with a second ferromagnetic material
[Kra08a, Kra08b, Mam12]. Here we study the dynamic properties of or-
dered magnetoferritin NPs in view of 3D MC properties experimentally.

The crystals studied here have been prepared by the group of Prof. W.
Schwarzacher at the University of Bristol. The NPs consist either of γ-
Fe3O4 (maghemite) or Fe3O4 (magnetite). These magnetic NPs are en-
closed by a protein cavity called apoferritin, hence the name magnetofer-
ritin (Fig. 7.1 (a)). Under appropriate conditions, the proteins crystalize in
a regular fcc-lattice (Fig. 7.1 (b)). For details of the fabrication process we
refer the interested reader to Ref. [Kas08] and references within.

The first part of this chapter is dedicated to develop an understanding of
the dynamic properties, i.e. resonance frequencies and damping of the NP
arrays. We distinguish the properties above and below the blocking tem-
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Figure 7.1.: Sketch of a single apoferritin cage with magnetite (Fe3O4) nanopar-
ticle enclosed in its cavity (a). The whole is then called magnetoferritin. Under
appropriate conditions these Proteins can form a regular array in a fcc lattice via
self organization (b).

peratureTB of the NPs, i.e., in the superparamagnetic and ferromagnetic
state, respectively. In the second part we study collectivebehaviour, i.e.
the interaction of the NPs. In the last part we study the possibility of dop-
ing magnetoferritin crystals with cobalt in order to increase the blocking
temperature of the NPs.

7.1. Dynamic Properties of Magnetoferritin
Nanoparticles between 5 and 290 K

In Fig. 7.2 (a), we show a sketch of the experimental setup forbroadband
spectroscopy. In order to study the dynamic response of magnetoferritin
crystals we place them on top of a CPW fixed with dried CdSO4 solution.
The field direction is in the out-of-plane direction, i.e. pointing perpen-
dicular to the plane of the CPW. We study four different samples, A to D
in this chapter. Sample A consists of 50 crystals of maghemite placed on
top of a CPW (Fig. 7.2 (b)). Sample B and C contains four crystals of
magnetite and just one crystal of magnetite, respectively (Fig. 7.2 (c-d)).
For sample D, we employed the FIB technique to cut out a cubic NP array
from a regular crystal of magnetite [Oku13] and placed it on top of a CPW
(Fig. 7.3).
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Figure 7.2.: (a) Sketch of the experimental setup for AESWS measurements. The
specimen is placed on top of the CPW and fixed with dried CdSO4 solution. The
applied magnetic field is oriented in the out-of-plane direction as indicated by the
white arrow. (b) Optical microscope image of sample A. In (c) and (d) an optical
and scanning electron microscopy image, respectively, of sample C is shown.

7.1.1. Resonance Frequencies

First, we compare resonance frequencies detected on the four different
samples. In Fig. 7.4 we show typical line plots of the measured signal
∆S12 at 290 K and at 5 K at an external magnetic field of 0.5 T. Here
the resonance frequencies match between all samples. The signal strength
decreases as the amount of magnetic material is reduced. Comparing the
signals at 290 K and 5 K, we obeserve a shift to higher frequencies as well
as a line broadening for all four samples.

The extracted resonance frequencies at 290 K for different field values
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Figure 7.3.: Sketch of the FIB process to prepare a cubic sample of magentoferritin
(a-c). The sample is cut by FIB in different directions before lifted up and placed
on top of a CPW. (d) SEM image of sample D placed on top of the CPW.

are summerized in Fig. 7.5 (a). At 290 K we resolve a resonancefor mag-
netic fields larger than 200 mT. The frequencies agree well for all samples
and from the slope we extractγ/2π = 28.6 GHz/T. This value corresponds
to a Land́e factor of 2.04. In Fig. 7.5 (b) we show the field dependent
resonance frequencies measured at 5 K. Here, we observe a resonance at
zero field. At low fields, i.e. below 0.4 T, the resonance frequencies are
found to vary slightly from sample to sample, whereas at higher fields, the
resonance frequencies are very close and follow the same linear depen-
dency as for 290 K. The different field dependencies observedfor 290 and
5 K are taken above and below the blocking temperatureTB = 18 K ex-
tracted from magnetization curves [Oku12]. The NP arrays are therefore
in the superparagmagnetic and ferromagnetic states, respectively. In the
superparamagnetic state, we need a minimum field of 200 mT to align the
moments and restore a resonance. In the ferromagnetic state, the sponta-
neous magnetic order allows us to observe a resonance also atµ0H = 0 T.
The resonance nearµ0H = 0 T will be investigated further in the following.

We use Eq. 2.48 derived from chapter 2.4 to model the experimental
results. The black line in Fig. 7.5 (b) is a best fit to the measurements
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Figure 7.4.: Typical data of∆S12 as detected by the VNA (a-d). Room temper-
ature data are shown in (a) and (b) for maghemite and magnetite samples respec-
tively. Spectra at T = 5 K are shown in (c) and (d) for maghemite and magnetite
respectively.

obtained by Eq. 2.48. To obtain this curve, the following parameters have
been used. The magnetic moment of a single NP in the crystal was esti-
mated to be 6000µB (µB is the Bohr magneton). The NP radius is set to
R = 4 nm [Kas08]. Thus, the saturation magnetization of the NP is calcu-
lated to beMS = 6000µB/V = 0.208×106 A/m. The effective anisotropy
fieldHeff,ani = |Hani|+ |Hsur|, i.e., the anisotropy field which includes vol-
ume and surface contributions, can be estimated from the blocking temper-
atureTB = 18± 1 K measured with SQUID [Oku12] and following Ref.
[Far05]:

µ0Heff,ani =
2Keff

MS
=

2Keff(25TBkB)

V
, (7.1)

wherekB is the Boltzmann constant andKeff is the effective magnetocrys-
talline anisotropy constant. From this we get a magnetic anisotropy field
of 0.236 T. We assume the Landé factor to be the value of the free elec-
tron (g = 2.0), which is close to the experimental value foundhere and in
Ref. [Bic50]. The surface anisotropy constant and the anglebetween hard
axis direction and the direction of the external magnetic field are used as
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Figure 7.5.: The field dependent resonance frequencies at room temperature (a)
and at T = 5 K (b). The black line is a fit to the data using the theoretical model
described in the text. The inset of (b) shows the shift of the resonance frequencies
when changing the temperature for sampe B.

fitting parameters. Good agreement of calculated and measured field de-
pendency is found forµ0Hani = −0.09 T, µ0Hsur = 0.144 T. The angle
of the external magnetic field with respect to the anisotropyaxis was set
to θH = 23◦. We get almost perfect agreement between the calculated
black line and the experimental values. Note should also be taken of the
excellent agreement of the effective anisotropy field of 0.234 T (sum of
the absolute values of the volume and surface anisotropy field) with the
experimental value of 0.236 T.

7.1.2. Linewidth and Damping

It is now instructive to study the damping of the different samples. First
we extract the linewidth∆f from the spectra by fitting a Lorentzian curve
to the measured data. From this we obtain the linewidth of themagnitude,
which can be translated into the linewidth of the imaginary part by taking
∆f/

√
3 [Sta09]. These values are summarized in Fig.7.6 (a) for all four

samples.
We see that the linewidths of samples A and B are higher compared to

samples C and D. Usingαeff = ∆ω/2ω = 2π∆f/2ω at f ≈ 15.6
GHz, we obtain an effective damping parameterαeff of 0.155 for samples
A and B and 0.135 for samples C and D [Fig. 7.6 (b)]. We assume that
the linewidth consists of an intrinsic contribution [∆ωintr = 2αintrω] and
an extrinsic contribution∆ωext and that these two contributions add in the
same manner as in chapter 3.4. Fitting a linear curve to the data points
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(a) (b) (c)

sample
A B C D

sample
A B C D

Figure 7.6.: (a) Experimental values of the frequency dependent linewidth∆f
(symbols) and the respective linear fits (lines). (b) Effective dampingparameter
αeff at f ≈ 15.6 GHz. (c) Intrinsic damping parameterαintr as determined from
the slope of the frequency dependent linewidth.

in Fig. 7.6 (a), we extract the intrinsic damping termαintr from the slope
[Fig. 7.6 (c)]. Note that we restrict our evaluation to the saturated regime.
From this we obtain values forαintr of about 0.05 for sample A and 0.03
for samples B, C, and D.

7.1.3. Collective Behaviour and Propagating Spin Waves

As mentioned above, the resonance frequencies have been found to shift to
higher values at low temperatures when compared to resonance frequen-
cies at 290 K. In the inset of Fig. 7.5 (b) we have plotted the resonance fre-
quencies for 290 K and 5 K in the saturated state. The frequency shift has
been observed earlier on disordered arrays of NPs and interpreted as dy-
namic coupling of the individual NP via dipole-dipole interaction [Gus07].
In addition, in Ref. [Kas08] the hysteric behaviour of ordered and disored-
ered magnetoferritin NPs has been studied. It has been concluded that
interparticle interaction leads to a change in the hystericbehaviour in or-
dered magnetoferritin NPs.

It is therefore instructive to exploit the hysteretic behavior in the 50 crys-
tals sample using AESWS. In Fig. 7.7 (a), we have sketched a hysteresis
curve, which we divide into four segments (I-IV). For a magnetic hystere-
sis present in the sample, the resonance frequency is expected to depend
on the field history. To test this we take difference data shown in Fig. 7.7
(b) for one field value of 60 mT. To obatin the curves in Fig. 7.7(b) we
first saturated the sample at +1.5 T and then took a spectrum at60 mT, i.e.
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Figure 7.7.: (a) Sketch of the hysteresis curve for magnetoferritin subdivided in
four segments. (b) Spectra ofS12 at the same external field of 60 mT but on
different branches of the hysteresis curve, i.e. coming from negative field (I) and
coming from positive field (II), as well as the resulting difference curve∆S12(I) -
∆S12(II).

being on branch II of the hysteresis curve. Then, we saturated the sample
at -1.5 T and took a second spectrum at 60 mT (branch I of the hysteresis
curve). Substracting both spectra, we obtain a difference signal (magenta
curve in Fig. 7.7 (b)). We executed this procedure for different field values
and obtained difference curves shown in Fig. 7.8 (a). We see that as we
increase the field value the difference signal starts to appear at around 20
mT and as we approach 80 mT the signal starts to vanish again. In order to
test if this difference signal is not caused by any drift in the measurement
setup we obtain difference signals by substracting measurements at oppos-
ing fields, i.e. branch IV and branch II. The obtained difference signals
show no variation (7.8 (b)). This suggests a hysteresis curve with point
symmetry.

It is now intriguing to study spin wave propagation in magnetofferitin
3D MC. For this we make use of a different CPW exciting a differentk-
vector (k2). By this we explore the dispersion relation and therefore the
group velocityvg = dω/dk ≈ ∆ω/∆k = ∆ω/ (k2 − k1). In Fig.7.9
(a) we plot the resonance frequencies of one and the same crystal (mag-
netite) placed on top of two different CPW’s. The resonance frequencies
differ between CPW1 (k1) and CPW2 (k2). Assuming a linear dependency
of the dispersion relation in the small wavevector regime, we calculate the
group velocity using Eq. 3.20 with∆k = k2-k1 = 0.504× 104 rad/cm and
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II-I IV-II(a) (b)

Figure 7.8.: Difference signals obtained from substracting spectra taken at dif-
ferent branches of the hysteresis indicated by the roman numbers. In(a) we sub-
stracted the spectra from branch I from II. A difference signal is pronounced be-
tween about 20 mT and 80 mT. In (b) we substracted the spectra from branch VI
from II taken at the same field. No difference signal is resolved.
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∆ω = ω(k1)-ω(k2). In Fig.7.9 (b) we have plotted the group velocities at
different field values. The group velocity varies between 7.5 km/s and 12.5
km/s. Using the damping parameter obtained above we obtain the attenua-
tion lengthLatt, i.e. the length over which the precession amplitude decays
as1/e (c.f. chapter 3.4). Using Eq. 3.24 together withτ = 1/(αintrω) we
obtainLatt = 2.25µm atf = 15 GHz.

7.2. Co-doped Magnetoferritin

So far we have discussed data at temperatures as low as 5 K and thereby
stayed below the blocking temperature. It would be desirable to increase
the blocking temperatures of such NP arrays. In order to do sowe inves-
tigated samples prepared following [Oku12] et al. For this,Co was added
to increase the blocking temperature of magnetoferritin crystals. Here, we
report dynamic properties of such Co-doped magnetoferritin.

In Fig.7.10 (a), we show spectra taken at 290 K on a crystal with 0%
Co, a crystal with 1% Co, and a crystal with 2.5% Co1. We observe an
increase in the linewidth as the Co content increases. Adding one percent
of Co leads to a linewidth broadened by a factor of 3 compared to the
linewidth of the undoped sample, i.e. a linewidth of 6 GHz. Increasing the
Co content further increases the linewidth to values above 8GHz. Note
that the resonance frequencies themselves do not vary much in contrast to
the linewidths. The extracted linewidths for the three samples are plot-
ted in Fig.7.10 (b). The linewidth was found to increase evenfurther for
decreasing temperature such that we were not able to resolvea resonance
below the blocking temperature.

7.3. Discussion

The fact that the resonance frequencies of all NP arrays agree well is a re-
markable result. Not so much because we have studied two different ma-
terials, i.e. magnetite and maghemite, as these materials are well known
to behave very similar. More fascinating is the fact that even though the
geometry, i.e. the external shape, of the samples was chosento be very

1We use the notationx% Co to refer to apoferritin containing magnetite nanoparticles syn-
thesized withx% molar ratio of Co.
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(a)

(b)

Figure 7.9.: (a) Resonance frequencies measured on one and the same sample
using two different CPWs resulting in two differentk-vector values. The filled
squares are obtained using a CPW with a maximum excitation strength atk1 =
0.096× 104 rad/cm, whereas open squares are obtained with a CPW having maxi-
mum excitation strength atk2 = 0.6× 104 rad/cm. (b) Calculated group velocities
as determined by the frequency difference of the two datasets.
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(a) (b)

Figure 7.10.: (a) Typical lineplots ofS12 of Co-doped magnetoferritin crystals at
T = 290 K. (b) The linewidth∆f as a function of Co-content in magnetoferrtin.

different, the eigenfrequencies do not change considerably. In ferromag-
netic resonance experiments shape anisotropy caused by demagnetization
fields have a strong influence on the resonance frequency [Gie05, Gub07,
Kos08b]. In our measurements we find the resonance frequencies to vary
a bit in the low field regime, i.e. the unsaturated regime below 0.4 T,
but at higher fields the frequencies of the different samplesagree well.
Note that any effect from demagnetization fields, i.e. shapeanisotropy,
would change the resonance frequencies over the whole field range. We
also want to mention that the measurements are repeated several times and
with different crystals (not shown) and we always find the same resonance
frequencies, which is clear evidence of a very stable and repeatable prepa-
ration process.

In our calculations to model the field dependency of the resonance fre-
quencies, we have used an effective anisotropy termKeff. Since mag-
netic anisotropy of individual NP has been reported in many publications
it can safely be assumed to be present in the magnetoferritincrystals stud-
ied here. Especially the contribution of surface anisotropy has been shown
to be quite significant in spherical NPs, but depends on the size of the NPs.
Here, three types of surface anisotropies have been reported, i.e. Néel type,
Aharoni type, and spin-glass shell [Gar03, Gaz98, Per05, Yan09, Yan07].
We point out that we have neglected any dynamic coupling between in-
dividual NPs as the theoratical curve is obtained for isolated NPs. The
dynamic coupling might however modify the magnetic parametersKeff

andMs such as in a metamaterial [Neu11c].
Another interesting question is the alignment of the uniaxial anisotropy

96



7.3. Discussion

of individual NPs with respect to the fcc crystallographic structure. We
assume that this mainly depends on the conditions during formation of
the crystals and that even if there is some alignment it wouldbe with
some distribution. We point out that independenlty on the orientation of
the anisotropy axis, the anisotropy field of a given NP does not influence
the resonance of another particle, i.e. it is a local property of each NP.
The extracted ferromagnetic linewidth (around 4.5 GHz) showed the com-
mon behavior for ferromagnetic materials, but is about an order of mag-
nitude larger if compared to other common materials like Py and CoFeB
(around 400 MHz). Considering that the extrinsic linewidthcontribution
of the CPW used here amounts to approximately 200 MHz we expect ad-
ditional contributions to the linewidth to be present. Thiscould be coming
from slightly different resonance frequencies of different NPs, which can
be caused by size variations of NPs or a spread of misalignment angles
of anisotropy axes with respect to the external field direction. Neverthe-
less, we could argue that spin wave propagation is possible in such 3D
MCs even over several micrometer, which is comparable to thepropaga-
tion length of other common ferromagnetic materials.

In summary we have studied dynamic excitations in 3D arrays of NPs
formed by crystalization of magnetoferritin. The excitation characteristics
are repeatable even for different external geometries of the MC. By using
FIB processing a crystal was shaped as a cube without modifying the dy-
namic response significantly. This offers the possibility to tailor crystals
in any way required by experiments or applications. We have applied a
theoretical model developed by M. Krawczyk in order to describe the field
dependencies of such crystals using an effective anisotropy of individual
NPs. Furthermore, we showed that these crystals support spin-wave propa-
gation over a few micrometers, which is key for magnonic crystal device as
it offers the possibility to transmit information. Still the attenuation length
needs to be improved.
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8. Skyrmion Crystals

In this chapter we report on helimagnon and skyrmion excitations in metal-
lic, semiconducting and insulating chiral magnets. Here, we study bulk
samples of MnSi, Fe1−xCoxSi and Cu2OSeO3 across the magnetic phase
diagram. In the first part of this chapter we present measurements using
AESWS. We evaluate the field dependent resonance frequenciesas well
as the linewidth, thereby addressing the damping of the spinprecessional
motion. In the second part, we compare our results with theoretical pre-
dictions for the excitation frequencies elaborated by the group of Prof.
A. Rosch as outlined in chapter 2.5. Taking into account the sample ge-
ometry, i.e. the appropriate demagnetization fields, we obtain very good
quantitative agreement between measured frequencies and the predicted
excitation frequencies for all samples studied. The singlecrystal samples
of Fe1−xCoxSi and MnSi studied here were grown by optical float zoning
under UHV compatible conditions in the group of Prof. Christian Pflei-
derer at TUM [Neu11a]. For our study, the samples were cut from the
ingot with a wire saw. High quality single crystals of Cu2OSeO3 were
grown by the standard chemical vapor phase method and provided by H.
Berger of EPFL Lausanne in Switzerland. More details about the crystal
growth can be found in Ref. [Bel10].

8.1. GHz Excitations in Chiral Helimagnets

The magnetism and excitations in the helimagnetic B20 compounds are
characterized by a well understood hierarchy of energy scales. The strongest
energy scale is the magnetic exchangeJ that aligns the spins ferromag-
netically on short distances. A weak spin-orbit Dzyaloshinskii-Moriya
exchangeD however, twists the magnetization on longer length scales
giving rise to modulated chiral magnetic textures with typical momenta
Q ∼ D/J . Finally, these textures are aligned along crystallographic high
symmetry directions by cubic anisotropies that constitutethe weakest en-
ergy scale as it is proportional to higher-orders of spin-orbit coupling. This
hierarchy of energy scales is at the origin of the universality of magnetic
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properties shared by the B20 materials, and in particular, permits a com-
mon account of their spin excitations. This clear separation of scales is also
reflected in the magnetic phase diagram, which we introducedin chapter
2.5 (c.f. Fig. 2.5) as observed in bulk samples of all known helimagnetic
B20 compounds.

First, we study dynamic excitations of three bulk samples ofMnSi,
Fe1−xCoxSi and Cu2OSeO3 in a flip-chip geometry, i.e. the samples are
placed directly on top of the CPWs. The three samples and theirgeometry
as well as the respective demagnetization factors are summarized in Table
8.1. For the width of the inner conductor of20 µm used in our study the
main excitation arises atkCPW = 0.094 · 104 rad/cm. The corresponding
wavelength (λCPW = 10.6µm) is therefore much larger as compared to
the intrinsic scales of the helimagnetic state (typically ranging from sev-
eral 10 to 1000 Angstroms for different systems). In the following, we
assume to operate in the long-wavelength-limit close tok = 0.

We start our investigation with a MnSi sample cut out (thickness of 1
mm) from a MnSi single crystal putting the flat side (〈100〉 plane) on top
of the CPW. In Fig. 8.1 (a) we show the magnitude of∆Sij measured on
MnSi at 5 K in a gray-scale plot. The dark color means absorption of the
microwave signal, i.e., magnetic resonance. For increasing H, the reso-
nance frequency first decreases starting from slightly above 26.5 GHz at
H = 0. At µ0H = 0.7 T, the resonance frequencyf exhibits a minimum
with f ≈ 17 GHz (white dashed line). Following the phase diagram of
MnSi [Bau12] the minimum at 0.7 T is attributed to the phase transition,
where the crystal changes from the conical to the ferromagnetic phase. Be-
yond 0.7 T, the resonance frequency increases almost linearly with H. At
27.5 K [Fig. 8.1 (b)], the branch starts at a smaller resonance frequencyf
of 18 GHz atH = 0 and exhibits a negative slope for the conical phase up
to the phase transition field of nowµ0H = 0.5 T. For largerH, the fre-
quency increases in a similar way as observed in Fig. 8.1 (a) beyond 0.7 T.
The almost linear slope is again attributed to the ferromagnetic or so-called
field-polarized phase. A detailed inspection of Fig. 8.1 (b)however reveals
a further resonance of weak intensity at about 10 GHz and 0.2 T(marked
by an arrow). At the same field, the intensity of the upper branch is re-
duced. The measurements performed with finer field steps between 0.1
and 0.3 T [Fig. 8.1 (c)] prove the excitation at small frequency. At 0.2 T,
there is a coexistence of two excitations, but at 0.22 T and 0.24 T the for-
merly pronounced upper branch has vanished completely. We attribute the
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Figure 8.1.: ∆S21 measured on MnSi at (a) 5 and (b) 27.5 K with a field step
size of 0.1 T. Dark color indicates resonant absorption, i.e. spin excitation. In (a)
the white dashed line marks the field position of the phase transition from conical
to ferromagnetic phase. In (b) the arrow highlights an additional low frequency
excitation at about 10 GHz observed forT = 27.5 K. The step-like variation off
atµ0H ≥ 0.5 T is due to the discrete field steps. (c)∆S12 taken at 27.5 K with a
field-step size of 0.02 T, i.e., a detailed investigation of the field regime indicated by
the broken lines in (b). The low frequency excitation is attributed to the skyrmion
phase following the phase diagram of MnSi. (d) Spectra∆S12 taken at (d) 26.5,
(e) 27.0 and (f) 28.5 K illustrating the temperature and field dependencies of the
A-phase as observed with GHz spectroscopy.

low frequency excitation to the skyrmion phase (A-phase) formed in this
field regime. The field dependency of this skyrmion excitation is opposite
to that of the conical phase as the frequency is found to increase with field.
At 0.26 T, two branches co-exist again. For largerH, the upper branch of
the conical phase is present, still exhibiting the negativeslope as a function
of increasingH.

Excitations in the skyrmion phase are depicted for further temperatures
T in Fig. 8.1 (d) to (f). The experiments show that at only above26.5 K,
the intermediate skyrmion phase appears [Fig. 8.1 (e) to (f)] in a specific
field regime. The width of the regime depends onT . At 28.5 K, it extends
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(a) (b)

Figure 8.2.: (a) Field-dependence of the magnetic susceptibilityχ of MnSi (top)
compared to eigenfrequencies of prominent modes (bottom) extractedfrom spectra
at 28 K. Excitations measured in the skyrmion phase are shown as red circles.
(c) Field dependency of eigenfrequencies at smallµ0H for three differentT that
demonstrate the helical-conical phase transition.

already over more than 0.1 T. The temperature dependent behavior is con-
sistent with the field and temperature regimes covered by theA-phase in
the phase diagram. As an example, we show susceptibility measurements
for MnSi for the respective field and temperature regime in Fig. 8.2 (a),
where we compare the field dependence of the magnetic susceptibility χ
measured in a separate experiment with the variation of the excitation fre-
quencyf between 0 and 0.35 T at 28 K. Discontinuities appearing inχ
andf take place at the same field positions, i.e., at 0.185 and 0.26T. The
dataχ (T,H) was taken by A. Bauer at TUM.

In Fig. 8.2 (b), we show resonance frequenciesf(H) measured at small
H and normalized tof(0) at different temperaturesT = 10, 20, and 25 K.
We observe thatf(H)/f(0) stays nearly constant at smallH and then de-
creases with increasing field. ForT = 10 K, the nearly constant behavior
is found over a broad field regime ranging from zero to about 0.15 T. We
attribute the characteristic change in slope off(H)/f(0) to the phase tran-
sition from the helical to the conical phase.

Now we extend our investigation to Fe1−xCoxSi and Cu2OSeO3. The
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samples are placed on top of the same CPW. In Fig. 8.3 (a-l) we show typi-
cal frequency dependencies of∆S21 in MnSi, Fe1−xCoxSi and Cu2OSeO3
at a fixed temperature for each magnetic phase. Data were recorded for the
field along the hard magnetic axis to minimize the influence ofanisotropies
on the excitation spectra, where field values stated in each panel refer to
the applied magnetic field. The colored lines serve as a guideto the eye
(the raw data including noise is shown in gray). For all materials, the data
∆S21 recorded within the magnetically ordered phases is dominated by a
broad minimum as marked by an arrow. A close inspection of theMnSi
spectra at 0.18 T and 0.19 T shows that slightly above the transition field
of 0.185 T, in fact, two resonances exist (Fig. 8.3 (b)). The prominent
low-frequency mode at 9.8 GHz that was prominent in the gray-scale plots
of Fig. 8.1 contains a pronounced shoulder on the high-frequency side.
This shoulder indicates a further resonance at about 19 GHz.Note that
this resonance frequency is at a slightly larger frequency compared tof ,
which would be expected for the conical phase if it was to exist at 0.19 T.
The increased frequency suggests that beyond 0.185 T the high-frequency
mode (shoulder) is of a different microscopic origin compared to the al-
ready discussed excitations. This second excitation is visible throughout
the field regime where skyrmion excitations take place and stay more or
less constant as a function of field. For MnSi in the skyrmion phase, two
separate modes have already been predicted and observed by Mochizuki
et al. [Moc12] and Onose et al. [Ono12], so that we can safely assume to
observe this second mode as well.

Summarized in Fig. 8.3 (m), (n) and (o) are the excitation frequen-
cies as a function of applied magnetic field for MnSi, Fe1−xCoxSi and
Cu2OSeO3, respectively. For each material field-sweep data is shown for
at least two temperatures, one well below the respectiveTc and the other
close toTc crossing the skyrmion lattice phase. Perhaps most remarkable
is the wide frequency range over which the excitations are observed when
comparing the different materials, extending over nearly an order of mag-
nitude. Nevertheless, for all three materials, the field dependencies of the
excitation frequencies are qualitatively similar despitethe vastly different
quantitative values. Distinct changes of frequency coincide with the phase
boundaries as determined for the same samples in measurements of the AC
susceptibility.
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Figure 8.3.: (a-l) Spectra of∆S21 of MnSi, Fe1−xCoxSi and Cu2OSeO3 at vari-
ous magnetic fields. An averaged curve has been added as a guide to theeye. The
plots are subdivided into the different magnetic phases found in chiral helimag-
nets, i.e. helical, conical, skyrmion, and ferromagnetic phase. At fields where the
respective phase transition is better observed by plotting consecutive measurements
we show two lineplots. Characteristic resonance frequencies are marked by an ar-
row. (m-o) Summary of excitations for all three materials at different temperatures.
Note the differences in the frequency scale.
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8.2. Linewidth and Damping

Next, we evaluate the linewidth. As in the previous chapter,we extract
the linewidth from the magnitude of∆S12 and calculate from this the
linewidth of the imaginary part. We will focus here on the metallic MnSi
sample and the isolating Cu2OSeO3 sample. First, we study the linewidth
in the field-polarized phase, as we are able to compare these values with
values found in common ferromagnetic materials.

We start by plotting the linewidth of MnSi and Cu2OSeO3 over the fre-
quency for different temperatures(Fig. 8.4 (a-b)), where we observe an
increase in linewidth with increasing frequency. This is consistent with the
behaviour observed in common ferromagnets, as demonstrated in other
chapters of this work (c.f. chapter 3.4, 5.1, and 7.1). The temperature de-
pendency of the linewidth for MnSi and Cu2OSeO3 is shown in Fig. 8.4
(c-d). For MnSi, the linewidth decreases for increasing temperature before
leveling off at around 25 K. For Cu2OSeO3, the linewidth stays nearly
constant at low temperatures and starts to decrease from approximately 30
K. In Fig. 8.4 (c-d) (righty-axis) we also showαeff = ∆ω/(2ω), which
basically follows the same dependency as the linewidth. It is worth noting
that the linewidth of MnSi is about four times larger when compared to
Cu2OSeO3, whereasαeff is comparable for both materials at around 0.06
to 0.1. In Fig. 8.4 (e-f) we show the values ofαintr versus temperature as
extracted from the slope of the linewidth versus frequency.For Cu2OSeO3
we findαintr ≈ 0.011 and for MnSi we findαintr to vary between 0.082
and 0.032.

Next, we evaluate the linewidth for the other phases found inMnSi and
Cu2OSeO3. The signal strength and the signal-to-noise ratio allows us
to explore all phases in MnSi, whereas we are not able to evaluate the
skyrmion phase in Cu2OSeO3. Starting with MnSi, we show the field de-
pendency of the resonance frequency in the helical-, the conical-, and the
skyrmion phase in Fig. 8.5 (a) for all temperatures evaluated hereafter.
The field dependent linewidth∆f and effective dampingαeff are plotted
in Fig. 8.5 (b) and (c) respectively. At low fields, the linewidth stays nearly
constant before at around 100 mT, where it starts to either increase (20 -
28 K) or decrease (15 K) slightly. For 28 K we observe an abruptincrease
in linewidth at an external field of 190 mT. From 190 mT to 260 mT, the
linewidth decreases before reaching the same level as for small fields. The
field regime from 190 mT to 260 mT coincides with the skyrmion phase. It
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MnSi Cu OSeO2 3(a) (b)

(c) (d)

(e) (f)

Figure 8.4.: Field-polarized phase: frequency dependent linewidth∆f obtained
from (a) MnSi and (b) Cu2OSeO3. Temperature dependencies of∆f and the ef-
fective damping parameterαeff for (c) MnSi and (d) Cu2OSeO3. The intrinsic
damping parameterαintr as evaluated from the slope in (a) and (b) are shown for
(e) MnSi and (f) Cu2OSeO3.

is interesting to inspect the temperature dependency at a constant field (in-
set of Fig. 8.5 (b)). From 15 K to 20 K, the linewidth decreasesbefore the
linewidth increases for 27 and 28 K. This can also be seen in the frequency
dependent linewidth plot in the helical/conical phase in Fig. 8.5 (d). Note
that at T = 27 and 28 K, the skyrmion phase is present. Furthermore, in the
inset of Fig. 8.5 (d) we show the dependency at T = 20 K. Here, initially
the linewidth stays nearly around the same value of 2.05 GHz.Then as
the frequency slowly starts to decrease, the linewidth alsodecreases until
the linewidth starts to increase. This beahvior is obeserved for all temper-
atures except for T = 15 K, where the linewidth does not show a very clear
increase towards lower frequencies. The strong frequency and linewidth
change can be assigned to the conical phase. In Fig. 8.5 (e) wealso show
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the frequency dependency ofαeff. The frequency dependency of∆f and
αeff in the skyrmion phase is shown in Fig. 8.5 (d) and (e) on the left
side of the graphs. Besides the increase in absolute values,the linewidth
as well as the damping parameter strongly decrease for increasing frequen-
cies. Note that the field dependency of the resonance frequency is opposite
in the skyrmion phase and the helical/conical phase.

For Cu2OSeO3, we start by evaluating the linewidth∆f and the ef-
fective dampingαeff at different temperatures and fields. In Fig. 8.6 (a),
we first show the field dependent resonance frequencies for seven temper-
atures ranging from 5 K to 57 K. In Fig. 8.6 (b) and (c), we show the
field dependencies of the linewidth in the helical/conical phase. Looking
at∆f at zero field (see also inset of Fig. 8.6 (b)) we observe a decrease in
linewidth for increasing temperature. Only at T = 57 K the linewidth in-
creases and even exceeds the value at the lowest temperatureof 15 K. Note
that T = 57 K is the temperature where the skyrmion phase is present.

Further, we observe that the linewidth increases with increasing field for
all temperatures. Note that the values forαeff shown in Fig. 8.6 (c) are just
slightly below the values found for MnSi. The frequency dependency of
∆f andαeff is shown in Fig. 8.6 (d) and (e), respectively. For all tempera-
tures we observe a decrease in linewidth for increasing frequency.

We want to mention that for both materials we are not able to extract
αintr in the helical-, the conical-, and the skyrmion phase because the fre-
quency dependent linewidth is opposite to the one in the field-polarized
phase.

8.3. Universal Theory of Collective Spin Excitations in
Chiral Helimagnets

All three studied materials differ in the critical temperature Tc and the
pitchQ, see Table 8.1. Nevertheless, the common character of the mag-
netism together with the underlying hierarchy of energy scales intrinsic to
each material allows to describe their microwave excitations in a universal
manner. For the quantitative interpretation of our data, itis important to
go beyond previous work [Kat87, Moc12] and to include dipolar interac-
tions and the demagnetization factorsNi with i = x, y, z. As introduced
in chapter 2.5 in the field-polarized phaseH > Hc2, one obtains the stan-
dard ferromagnetic resonance condition as described by theKittel formula.
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(a)

(b) (c)

28 K
27.5 K
27 K
20 K
15 K

(d) (e)

15 K

20 K

27 K

28 Kµ H0

µ H0

Figure 8.5.: Helical-, conical-, and skyrmion phase: field dependency of the mea-
sured resonance frequencies (a). Field dependent linewidth∆f (b) and effective
damping parameterαeff (c) for MnSi. The inset in (b) shows the temperature de-
pendent linewidth at a constant field ofµ0H = 140 mT.∆f (d) andαeff (e) as a
function of frequency. Black arrows indicate the field direction for constant tem-
perature.

At intermediate fieldHc1 < H < Hc2 where cubic anisotropies are neg-
ligible, we find that the magnitude of the excitation frequencies is deter-
mined by the temperature dependent critical fieldHc2(T ). The precise
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(a)

(c)

57 K
40 K
30 K
20 K
15 K
10 K
5 K

(b)

µ H0

(d) (e)

Figure 8.6.: Helical- and conical phase: field dependency of the resonance fre-
quencies (a). Field dependent linewidth∆f (a) and effective damping parameter
αeff (b) for Cu2OSeO3 at various temperatures. The inset in (b) shows the temper-
ature dependency of the linewidth at zero field.∆f (d) andαeff (e) as a function of
frequency in the helical and conical phase. Black arrow indicates the field direction
for constant temperature.

magnetic field-dependence and the frequency splitting of the two modes
however depends on the demagnetization factors of the samples as well as
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Material Tc H int
c2 2π/Q χint

con Nx Ny Nz

(T=0)

MnSi 29 K 0.6 T 180 Å 0.34 0.18 0.18 0.64

Fe1−xCoxSi 58 K 0.13 T 340 Å 0.65 0.08 0.46 0.46

Cu2OSeO3 27 K 0.1 T 600 Å 1.76 0.39 0.27 0.34

Table 8.1.: Parameters of the chiral magnets investigated: critical temperature at
zero fieldTc, critical internal field in the low-temperature limit, the pitchQ and
the internal magnetic susceptibility within the conical phaseχint

con = ∂M/∂Hint

whereHint is the internal field, and theg-factor. The demagnetization factors of the
specific shapes of the samples are given in the last three columns. The static field
H was always applied along the principalz-axis so thatχ−1

con = (χint
con)

−1 + Nz

holds withχcon = ∂M/∂H.

on a single material parameter, i.e., the constant magneticsusceptibility
χcon = ∂M/∂H within the conical phase. An analytical expression for
the excitation frequencies within the conical phase is given in chapter 2.5.

For the benefit of the reader, we replot the results found in chapter 2.5
for a sphere in Fig. 8.7 (a). For the quantitative comparisonwe renormal-
ized the observed frequencies, shown as triangles in Fig. 8.7 (b)-(d), by
the respectiveT -dependent critical field energygµ0µBHc2(T ) whereg is
theg-factor of the materials. Following this normalization procedure, the
eigenfrequencies taken at different temperatures and in different phases
follow the universal behavior as a function ofH/Hc2 that is predicted by
the theory. The theoretical expected position and weight ofmodes are
shown as circles for which the demagnetization factors and the material
parameterχint

con of the materials were taken into account, see Table 8.1.
The static magnetic field was aligned along the principalz-axis and the AC
field pointed along the principalx-axis of the sample. The sample shapes
correspond to an approximate disc, bar and cuboid for MnSi, Fe1−xCoxSi
and Cu2OSeO3, respectively. Within the conical phase we were not able
to detect two distinct modes with our measurement setup, whereas in the
skyrmion phase of MnSi, both gyration modes are resolved in Fe1−xCoxSi
and Cu2OSeO3 only the one with the larger weight is detected.
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Figure 8.7.: (a) Excitations predicted by the theoretical model of a spherical spec-
imen. The color shaded regions illustrate the field regime, where the respective
phases are expected. (b-d) Comparison between experimental (triangles) and theo-
retical (circles) data for (b) MnSi, (c) Fe1−xCoxSi, and (d) Cu2OSeO3 for various
temperatures after normalization and considering the geometrical shapeof the sam-
ples with the respective theoretical predictions.
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8.4. Discussion

We have studied excitation frequencies in three helimagnets, i.e. metallic
MnSi, semiconducting Fe1−xCoxSi, and insulating Cu2OSeO3, through
their whole phase diagrams. We find different absolute values for the ex-
citation frequencies in the three systems ranging from 3 GHzup to 26
GHz. Intruigingly, if normalized to their specificT -dependent critical
fields and accounting for the geometry of the sample, the datafall onto
universal curves. We find excellent quantitative agreementbetween exper-
iment and theory. Apart from the demagnetization factors ofthe sample
shapes, the excitation frequencies and their weights are determined by a
single material parameter, the susceptibilityχint

con within the conical phase.
It quantifies the strength of the dipolar interaction in eachmaterial, and it
is determined by the ratio of magnetic and Dzyaloshinski-Moriya energy,
χint
con = µ0µ

2/(JQ2), whereµ0 is the magnetic constant andµ is the mag-
netization density. Due to the hierarchy of energy scales, further correc-
tions attributed to the cubic anisotropies are negligible forH > Hc1. Such
corrections become only important for a detailed quantitative description
of the resonances within the helical phase at smaller fields0 ≤ H < Hc1.
With this we could proof the universal character of the theory outlined in
chapter 2.5.

Furthermore, we have studied the linewidth, i.e. the damping, in MnSi
and Cu2OSeO3. In the field polarized phase, we find the same frequency
dependency of the linewidth for both MnSi and Cu2OSeO3 as in ferro-
magnetic materials. Therefore, we are able to extract the intrinsic damp-
ing parameterαintr. We find αintr to be larger in MnSi if compared to
Cu2OSeO3. Although the absolute values of the linewidth were found to
differ by a factor of 3, the values of the effective damping termαeff, which
scales with frequency, is of the same order for both materials. The temper-
ature dependency of the linewidths are found to be differentfor MnSi and
Cu2OSeO3. For the metallic MnSi sample, we find that the temperature
dependency of the damping compares to the situation in metallic Ni, Fe,
and Co systems, where the competition between interband andintraband
contributions lead to the following dependency [Gil10]: Atlow temper-
atures, the intraband contribution is dominant leading to an increase in
damping towards lower temperatures. At higher temperatures, the inter-
band contribution takes over leading to an increase in damping towards
higher temperatures. For the insulating Cu2OSeO3, the observed tempera-
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ture dependency of the linewidth is comparable to the temperature depen-
dency of insulating YIG (Yttrium-Iron-Garnet), where the FMR linewidth
∆H1 scales with1/Ms [Vit85]. This relationship leads to only small vari-
ations of the linewidth at low temperatures.

For the helical-, the conical-, and the skyrmion phase, we evaluated the
linewidth dependencies for both materials. In general, their linewidth de-
pendencies on the field and on the frequency were comparable.We found
that in both materials, the linewidth decreases with increasing temperature
when the skyrmion phase is not present. When the skyrmion phase is al-
lowed to form at a specific temperature the linewidth of the helical/conical
phase exhibits a significantly increased value.

1∆H ∝ ∆f [Kal06]
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9. Summary and Outlook

In this thesis we have studied 2D and 3D magnonic crystals andGHz ex-
citations in chiral helimagnets using all-electrical spin-wave spectroscopy
and micromagnetic simulations. In the following, we give a summary of
the key results obtained within the framework of this work. In the end, we
share our thoughts on how to carry on with the results obtained within this
thesis.

Summary

In chapter 5 we examined different materials for their advantages and dis-
advantages for MSFVW experiments. We compared Py to CoFeB and
found CoFeB to exhibit a faster spin wave group velocity, which is desir-
able for propagation measurements. On the other hand side, CoFeB needs
higher out-of-plane fields in order to turn the magnetization in the out-of-
plane direction. Besides Py and CoFeB, we presented first measurements
of perpendicular magnetic anisotropy samples (PMA), i.e. thin multilayers
of Co and Ni, which showed very good dynamic properties. As PMA ma-
terials exhibit an out-of-plane magnetization even at zeromagnetic field,
these materials could be interesting for real MC device applications in zero
or small external fields. The group velocity of PMA was found to be 3
times as high as in CoFeB and 6 times higher than in Py. On the contrary,
PMA showed an increased damping if compared to the other two materi-
als.

In 2D systems of regular ADLs in chapter 6 we demonstrated thepos-
sibility to create complete band gaps, i.e. forbidden frequency gaps, in
the dispersion relation of spin waves. We have introduced line defects
in a magnonic crystal to create wave guide devices. We could show that
this is a very efficient way of transmitting spin waves through a MC with
higher group velocities than a simple magnetic stripe of thesame width.
We demonstrated that it is possible to guide spin waves around corners.
Our approach does not need additional currents and the propagation length
is not altered by introducing a corner if compared to a regular ADL. With
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the studies on guiding of spin waves through line defects in such MCs we
are one step closer towards an all magnonic device, where efficient guiding
in arbitary directions is a necessity. Furthermore, we studied a spin-wave
splitter device, that has the potential to be used as an interferometer. All
2D devices have been prepared by optical- and focused ion beam lithog-
raphy within the framework of this thesis. The experimentalresults using
AESWS are compared to and confirmed by micromagnetic simulations.

In chapter 7 we explored 3D magnonic crystals formed by a bio-engi-
neered method of self assembled magnetoferritin nanoparticles. We mod-
eled the field dependent resonance frequencies by taking thesurface and
bulk anisotropy of the single nanoparticles into account. Intruigingly we
showed that spin wave propagation throughout the crystal ispossible as
the nanoparticles are coupling dynamically. This is key forany magnonic
crystal device as it offers the possibility to transmit information. In addi-
tion to the as-prepared magnetoferritin crystals, we studied the possibility
to cut out a cubic sample using focused ion beam. We found thatthe
additional process step does not alter the dynamic properties of the NPs.
Moreover, we studied the possibility of introducing Co to the magnetite so-
lution, resulting in a higher blocking temperature, but found an increased
damping. The reason for this cannot be determined by our measurements,
but might be due to size variations of the NPs or the anisotropy axis distri-
bution among the different NPs.

In the last part of this thesis (chapter 8), we studied GHz excitations in
chiral helimagnets for three different materials, i.e. metalic MnSi, semi-
conducting Fe1−xCoxSi, and insulating Cu2OSeO3. Although the abso-
lute values of the resonance frequencies differ by almost anorder of magni-
tude between different systems, we found a general dependency. This was
explained by a universal theory for chiral helimagnetic materials. In addi-
tion, we studied linewidth and damping of MnSi and Cu2OSeO3. In the
field polarized phase we found the frequency dependency of the linewidth
to compare to ferromagnetic materials. This allowed us to extract the in-
trinsic damping parameterαintr for both materials. The temperature depen-
dency of the linewidth in the field polarized phase in metallic MnSi and in-
sulating Cu2OSeO3 is found to reproduce the temperature dependency of
ferromagnetic metals and that of insulating YIG respectively. In the non-
trivial phases, i.e. the helical-, the conical-, and the skyrmion phase, we
found the dependencies of the linewidth and the damping parameter to be
different for each phase. Comparing both materials we foundthe linewidth
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of MnSi to be 3 times larger compared to Cu2OSeO3 in all phases. Con-
sidering the different absolute values of the excitation frequencies in both
materials we found the effective damping parameterαeff to be comparable
among the two materials.

Outlook

Next, we want to give an outlook for the four experimental sections of this
thesis. Starting with PMA materials, we believe that the good dynamic
properties found in this work are in general promising for future magnonic
devices especially where out-of-plane magnetization is desired. As the
linewidth and the group velocity are known to be influenced byfilm qual-
ity and thickness in ferromagnetic materials a complete study of different
multilayer thickness is necessary to find the best dynamic paramters. Af-
ter optimization, nanostructuring of such multilayer is going to show how
the additional preparational steps influence the dynamic properties of the
material.

As mentioned above, we believe that the studied spin wave splitter has
the potential to be used as an interferometer device. For this, one has to
find a way to influence the phase of the spin wave within one of the two
arms of the device in order to get constructive or destructive interference
at the output. One way of realizing such a scenario is to use a current
carrying wire on top of one of the arms of our device to create alocal
field and therefore changing the phase of the spin wave as demonstrated
by Demidov et al. [Dem09]. Here the additional in-plane fieldis in the
order of 10 mT, which is small compared to the fields applied inout-of-
plane measurements. Nevertheless, working close to the anisotropy field
of the device could lead to a drastic change in resonance frequency even
for such small in-plane fields. For a Py plain film of 22 nm thickness at
an out-of-plane field of 1 T1 an additional in-plane field of 10 mT leads to
a change in resonance frequency of about 400 MHz, which is in the same
order of magnitude as in Ref. [Dem09]. Another possibility is the integra-
tion of a f-MRFM (ferromagnetic resonance force microscope) setup with
a magnetic tip [Pig12], which can also create an additional local field in
the order of 15 mT. For the same arguments as before, one has towork
close to the anisotropy field of the device in order to create asignificant

1The anisotropy field is around 0.93 T.
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frequency shift and therefore a phase shift.
Furthermore, in the future, one might also make use not only of the forbid-
den frequency gaps created by the MC, but also the specific shape of the
dispersion relation. Here, photonic crystals have been shown to exhibit re-
markable effects on interfaces, like negative refraction,based on the newly
created dispersion relation [Joa08].

The combination of bio-assisted methods to create 3D structures on the
length scale of the magnetic exchange interaction opens completely new
possibilities for the field of magnonics. For future devicesit is necessary
to increase the blocking temperature of magnetoferritin crystals. Future
experiments on magnetoferritin crystals might also include transmission
measurements with two CPWs to detect the transmitted signal.

For the chiral helimagnetic systems it would be desirable tocompare the
linewidth dependencies to theoretical predictions on the damping mecha-
nisms present in such systems. According to our knowledge a comprehen-
sive theory has not been presented up to now. As our measurements have
been obtained using a CPW with an excitation aroundk ≈ 0, it would
be intruiging to address excitations at differentk, i.e. using another CPW.
With this, one is able to probe the dispersion relation.

Recent results on MnSi thin films show that the skyrmion phasecan be
stable up to room temperature as observed by Lorentz transmission elec-
tron microscopy [Kar11, Kar12]. To study dynamic excitations in such
thin films could pave the way for skyrmion devices at room temperature.
Here, one could make use of our integrated CPW design to efficiently cou-
ple electromagnetic waves to the spin system and study propagating spin
waves through the skyrmion lattice. One might also think of manipulating
the spin system by a very low spin polarized current as demonstrated in
Ref. [Jon10] and study the dynamic response. Future experiments might
also include in-plane fields in order to address other modes.
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A.1. List of Abbreviations

Abbreviation Explicit
AESWS All-electrical spin-wave spectroscopy
VNA Vector Network Analyzer
PMA Perpendicular Magnetic Anisotropy
Py Permalloy (Ni80Fe20)
CPW Coplanar waveguide
AD Antidot
ADL Antidot lattice
MSFVW Magnetostatic forward volume wave
MC Magnonic crystal
BZ Brillouin zone
SEM Scanning electron microscopy
LD Line defect
MCWG Magnonic crystal waveguide
MCB Magnonic crystal bend
MCS Magnonic crystal split
FMR Ferromagnetic resonance
FIB Focuse ion beam
SW Spin wave
1D one dimensional
2D two dimensional
3D three dimensional
rf radio frequency
S-Parameter Scattering parameter
f-MRFM ferromagnetic resonance force microscopy
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A.2. Electromagnetic Simulation Parameter

A great number of parameters enters the electromagnetic field parameter simula-
tion. Not all of these parameters are known. Parameters are defined with respect to
the software Microwave Studio.

Material and geometry parameters:

• Isolator thicknesstiso = 10 nm

• Isolator permittivity is set toǫiso = 8

• The Py permeability is modeled according to arf susceptibility with pa-
rametersMs = 800 kA/m,fr = 6 GHz, saturated alongx axis.

• Py thicknessts = 25 nm and CPW thickness 200 nm

• Boundary conditions: beneath substrate: no transversal electric field.Oth-
erwise: no transversal magnetic field.

Simulation parameters:

• Frequency domain solver, -40 dB accuracy

• Hexahedral mesh, with 28-33 meshcells.

• Ports are modeled as 50Ω discrete ports
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A.3. Micromagnetic Simulation Parameter

Throughout this thesis, results of micromagnetic simulation are presented. The de-
tailed simulation parameters are listed hereafter. When not stated explicitly below,
the excitation of SWs is stated in the text.

Parameters which do not change are:

• Dampingα = 0.005

• Saved simulation timestep∆τ = 6 ps

• No crystal anisotropies

Simulation Parameter Set A

Spatio-temporal resolved simulation for a plain film (here the simulation cell
was set to be p/N = 12.5 nm) and ADLs (p = 180-800 nm). Hole diameters have
been always keps constant at d = 120 nm.

• Saturation magnetizationMs = 780 kA/m

• Exchange constant: A = 1.3× 109 J/m

• Film thicknessts = 22 nm

• Simulation cells N = 64× 4096× 1

• Simulation cell size = p/N× p/N× 22 nm3.

• Simulation duration: T = 10 ns.

Spin waves are excited by a short and spatially localized field pulse.

Simulation Parameter Set B

Temporal resolved simulation. This set of simulation parameters is used tosim-
ulate an MCWG structure with uniform excitation.

• Saturation magnetizationMs = 1330 kA/m (Ms has been adjusted with an
additional surface anisotropy)

• Exchange constant: A = 2.75× 109 J/m

• Film thicknessts = 41 nm

• Simulation cells N = 1000× 1000× 1

• Simulation cell size = 12× 12× 41 nm3

• Simulation duration: T = 8 ns.
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Spin waves are excited by a spatially uniform, short field pulse.

Simulation Parameter Set C

Spatio-temporal resolved simulation for MCWG, MCB, and MCS with open
boundary conditions. The size of the simulation cell is 15µm× 15µm× thickness
(given in the respective chapter).

• Saturation magnetizationMs = 1330 kA/m

• Exchange constant: A = 2.75× 109 J/m

• Film thicknessts = 41 nm

• Simulation cells N = 768× 768× 1

• Simulation cell size = 19.5× 19.5× 41 nm3.

• Simulation duration: T = 10 ns.

Spin waves are excited by a spatially localized sinusoidal driving field of given
frequency.

Simulation Parameter Set D

Spatio-temporal resolved simulation for a stripe simulations.

• Saturation magnetizationMs = 1330 kA/m

• Exchange constant: A = 2.75× 109 J/m

• Film thicknessts = 41 nm

• Simulation cells N = 128× 4096× 1

• Simulation cell size = 2040 nm× 65.28µm × 41 nm3.

• Simulation duration: T = 10 ns.

Spin waves are excited by a short and spatially localized field pulse.
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A.4. Micromagnetic Simulation Plots

Here we show the complete simulation cells for the time dependent simulations
used in chapter 6.

Simulation Plots for MCWG

t = 2 ns t = 3 ns

t = 5 nst = 4 ns

Figure A.1.: MCWG time dependent simulations.
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Simulation Plots for MCB

t = 2 ns t = 4 ns

t = 6 ns

Figure A.2.: MCB time dependent simulations.
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Simulation Plots for MCS

t = 2.5 ns t = 4.5 ns

t = 6 ns

Figure A.3.: MCS time dependent simulations.
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