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Abstract—The spectral efficiency of wireless networks can
be significantly improved by wisely integrating multiple ser-
vices at the physical layer. Here, we consider physical layer
service integration in bidirectional relay networks, in which a
relay node establishes a bidirectional communication between
two other nodes using a decode-and-forward protocol. In the
broadcast phase the relay efficiently integrates an additional
private message for one node which requires the study of the
bidirectional broadcast channel with additional private message.
The corresponding capacity regions for discrete memoryless and
MIMO Gaussian channels are derived.

I. INTRODUCTION

Recently, several key techniques have been identified which
have the potential to improve the performance of next gener-
ation wireless networks like the use of multiple transmit and
receive antennas (MIMO) [1]. The efficient implementation
of multiple services at the physical layer has been identified
as a promising research direction. In current cellular systems,
operators already offer not only traditional services such as
(bidirectional) voice communication, but also further private
services intended for specific users. This is realized by policies
that allocate different services on different logical channels,
which is quite inefficient in general. Thus, physical layer
service integration has the potential to significantly increase
the spectral efficiency of future wireless networks.

Another key technique is the concept of bidirectional relay-
ing which has the advantage of exploiting the property of bidi-
rectional communication to reduce the inherent loss in spectral
efficiency induced by half-duplex relays. Bidirectional relaying
applies to three-node networks where a relay node establishes
bidirectional communication between two other nodes using
a decode-and-forward protocol. In the initial multiple access
(MAC) phase two nodes transmit their messages to the relay
node which decodes them. Then, in the bidirectional broadcast
(BBC) phase the relay re-encodes and transmits both messages
in a way that both receiving nodes can decode their intended
message, using their own message as side information.

Bidirectional relaying and its extensions are widely studied.
Capacity achieving strategies can be found in [2–4] for discrete
memoryless channels and in [5] for MIMO Gaussian channels.
Based on these results, optimal transmit strategies are then
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(a) MAC phase (b) BBC phase

Fig. 1. Physical layer service integration in bidirectional relay networks. In
the initial MAC phase, nodes 1 and 2 transmit their messages m1 and m2

with rates R2 and R1 to the relay node. Then, in the BBC phase, the relay
forwards the messages m1 and m2 and adds a private message mp with rate
Rp to the communication for node 2.

analyzed in [6, 7]. The efficient integration of bidirectional
relaying in a cellular downlink is discussed in [8]. Physical
layer service integration with secrecy constraints is analyzed
in [9]. The scenario where the relay serves multiple pairs of
users is addressed for instance in [10–12]. The problem of
channel estimation for bidirectional relaying is studied in [13].

In this paper, we consider physical layer service integration
in bidirectional relay networks. Besides the transmission of
the bidirectional messages, the relay integrates an additional
private message as shown in Figure 1. Therefore, we introduce
the bidirectional broadcast channel (BBC) with additional
private message in Section II. The receiving nodes can use
their own messages from the previous phase for decoding,
so that this differs from the classical broadcast scenario. The
corresponding capacity regions for DMC and MIMO Gaussian
channels are subsequently derived in Sections II and III. Then
in Section IV, we discuss the problem of finding the optimal
transmit covariance matrices, which is a non-trivial task as
the corresponding optimization problems are in general non-
convex. Finally, we conclude the paper in Section V.1

II. BIDIRECTIONAL BROADCAST CHANNEL WITH
ADDITIONAL PRIVATE MESSAGE

In this section we analyze the integration of an additional
private message for discrete memoryless channels.

1Notation: Vectors and matrices are denoted by bold lower case letters and
bold capital letters; random variables are denoted by non-italic capital letters
and their realizations and ranges by lower case italic letters and script letters,
respectively; I(·; ·) is the mutual information; X−Y −Z denotes a Markov
chain of the random variables X , Y , and Z in this order; N and R+ are the
sets of non-negative integers and non-negative real numbers; (·)T idenotes
the transpose; tr(·) and det(·) are the trace and the determinant of a matrix;
A � B means the matrix A−B is positive semidefinite; A(n)

ε (·) is the set
of (weakly) typical sequences, cf. for example [14].
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A. Physical Layer Description and Capacity Result
Let X and Yk, k = 1, 2, be finite input and output sets.

A discrete memoryless broadcast channel is defined by a
family

{
W (n) : Xn → Yn1 × Yn2

}
n∈N of probability transition

functions given by W (n)(yn1 , y
n
2 |xn) :=

∏n
i=1W (y1,i, y2,i|xi)

for a probability transition function W : X → Y1×Y2. We do
not allow any cooperation between the receiving nodes so it
is sufficient to consider the marginal conditional probabilities
W

(n)
k :=

∏n
i=1W (yk,i|xi) for k = 1, 2.

We now consider a block code of arbitrary but fixed length
n. The set of bidirectional messages of node k, k = 1, 2 is
denoted byMk := {1, . . . ,M (n)

k } which is also known at the
relay node. Furthermore, the set of the additional private mes-
sages of the relay node is denoted by Mp := {1, . . . ,M (n)

p }.
We introduce the abbreviation M :=Mp ×M1 ×M2.

In the BBC phase, we assume that the relay has successfully
decoded both bidirectional messages m1 ∈M1 and m2 ∈M2

which have been transmitted in the MAC phase by nodes 1
and 2. Besides these two private messages, the relay integrates
an additional private message mp ∈Mp for node 2.

Definition 1: An (M
(n)
p ,M

(n)
1 ,M

(n)
2 , n)-code for the BBC

with additional private message consists of one encoder at the
relay node

f :Mp ×M1 ×M2 → Xn

and decoders at nodes 1 and 2

g1 : Yn1 ×M1 →M2

g2 : Yn2 ×M2 →Mp ×M1.

Now, we assume that the relay has sent the message
m = (mp,m1,m2) and nodes 1 and 2 have received yn1 and
yn2 , respectively. Then, the decoder at node 1 is in error if
g1(y

n
1 ,m1) 6= m2. Accordingly, the decoder at node 2 is in

error if g2(yn2 ,m2) 6= (mp,m1). This allows us to introduce
the notation for the average probability of error for the kth
node

µ
(n)
k =

1

|M|
∑
m∈M

λk(m)

with λ1(m) = P {g1(yn1 ,m1) 6= m2|m was sent} and
λ2(m) = P {g2(yn2 ,m2) 6= (mp,m1)|m was sent}.

Definition 2: A rate triple (Rp, R1, R2) ∈ R3
+ is said to

be achievable for the BBC with additional private message
if for any δ > 0 there exists an n(δ) ∈ N and a sequence
of (M

(n)
p ,M

(n)
1 ,M

(n)
2 , n)-codes such that for all n ≥ n(δ)

we have 1
n log |Mp| ≥ Rp − δ, 1

n log |M2| ≥ R1 − δ and
1
n log |M1| ≥ R2 − δ while µ(n)

1 , µ
(n)
2 → 0 as n → ∞. The

set of all achievable rate triples is the capacity region of the
BBC with additional private message and is denoted by CBBC.

Theorem 1: The capacity region CBBC of the discrete mem-
oryless BBC with additional private message is the set of all
rate triples (Rp, R1, R2) ∈ R3

+ that satisfy:

R1 ≤ I(U ;Y1) (1a)
Rp ≤ I(X;Y2|U) (1b)

Rp +R2 ≤ I(X;Y2) (1c)

for random variables U −X− (Y1, Y2). The cardinality of the
range of U can be bounded by |U| ≤ min{|X |, |Y1|, |Y2|}+1.

Remark 1: Applying some reformulations and substitutions
the result can also be deduced from [4], which studies a
similar broadcast scenario, where the receivers have (partial)
side information about the transmitted messages available.

Theorem 1 is proved in the following two subsections.

B. Proof of Achievability

1) Random Codebook Generation: For any δ > 0 we
define the message sets Mp,M1,M2 such that |Mp| =

b2n(Rp− δ2 )c, |M1| = b2n(R2− δ2 )c and |M2| = b2n(R1− δ2 )c.
Randomly and independently we generate |M1||M2| code-
words (“cloud centers”) un(m1,m2), each according to∏n
i=1 pU (ui). For each codeword un(m1,m2) randomly

and conditionally independently we generate |Mp| code-
words (“satellites”) xn(mp,m1,m2), each according to∏n
i=1 pX|U (xi|ui).
2) Encoding: To send the message (mp,m1,m2) the relay

transmits the codeword xn(mp,m1,m2).
3) Decoding: The receiving nodes use typical set de-

coding. The decoder in node 1 decodes the “cloud cen-
ter” un(m1,m2). It declares that a message m̂2 was sent
if it is the unique message such that (un(m1, m̂2), y

n
1 ) ∈

A
(n)
ε (UY1). Respectively, the decoder in node 2 decodes the

“satellite” xn(mp,m1,m2) and it declares that the messages
(m̂p, m̂1) were sent if they are the unique messages such that
(un(m̂1,m2), x

n(m̂p, m̂1,m2), y
n
2 ) ∈ A

(n)
ε (UXY2).

3) Analysis of the Probability of Error: For the decoder in
node 1, we define the error events

E11 :=
{
(un, yn1 ) /∈ A(n)

ε (UY1)
}

E12 :=
{
∃m′2 6= m2 : (u

n, yn1 ) ∈ A(n)
ε (UY1)

}
.

From the union bound we have

µ
(n)
1 ≤ P {E11}+ P {E12} .

From the Law of Large Numbers we know that P {E11} → 0
as n→∞. For the second error event, with δ = 10ε, by using
standard arguments we can show that

P {E12} ≤ 2−n(I(U ;Y1)−R1+2ε).

For the decoder in node 2, we define the error events

E21 :=
{
(un, xn, yn2 ) /∈ A(n)

ε (UXY2)
}

E22 :=
{
∃m′1 6= m1 : (u

n, xn, yn2 ) ∈ A(n)
ε (UXY2)

}
E23 :=

{
∃m′p 6= mp : (u

n, xn, yn2 ) ∈ A(n)
ε (UXY2)

}
E24 :=

{
∃(m′p,m′1)6=(mp,m1):(u

n, xn, yn2 )∈A(n)
ε (UXY2)

}
.

From the union bound we have µ(n)
2 ≤ P {E21}+ P {E22}+

P {E23}+ P {E24}.
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Again, from the Law of Large Numbers we have P {E21} →
0 as n→∞ and similarly we can show that

P {E22} ≤ 2−n(I(U,X;Y2)−R2+2ε)

P {E23} ≤ 2−n(I(X;Y2|U)−Rp+ε)

P {E24} ≤ 2−n(I(U,X;Y2)−Rp−R2+2ε).

Now, by arguing that the average probabilities of error
should be arbitrarily close to zero and by observing that
U −X − (Y1, Y2), we get the capacity region of Theorem 1.
The cardinality bound of the random variable U , i.e. |U| ≤
min{|X |, |Y1|, |Y2|}+ 1, follows from [15, Appendix C] and
[16]. This completes the proof of achievability. �

C. Proof of Converse

Trying to prove the converse directly for the expression
(1) does not appear to be feasible. This is mainly because
it is difficult to find an identification of the auxiliary random
variable U that works for the first two inequalities. As in [15],
we introduce the equivalent region consisting of all rate triples
(Rp, R1, R2) ∈ R3

+ such that:

R1 ≤ I(U ;Y1) (3a)
Rp +R1 ≤ I(X;Y2|U) + I(U ;Y1) (3b)
Rp +R2 ≤ I(X;Y2). (3c)

The proof of equivalence of the regions (1) and (3) involves
rate splitting and the Fourier-Motzkin elimination procedure.
We omit the details due to space constraints. Now, we can
prove the converse for the equivalent region (3).

By Fano’s inequality it is straightforward that

nR1 ≤ I(M1,M2;Y
n
1 ) + nε

(n)
1

n(Rp +R1) ≤ I(Mp;Y
n
2 |M1,M2) + I(M1,M2;Y

n
1 )+nε

(n)
2

n(Rp +R2) ≤ I(Mp,M1,M2;Y
n
2 ) + nε

(n)
3 .

By using the Csiszár sum identity [17, Lemma 7], [18], the
mutual information chain rules and other standard arguments
in the above inequalities, we can show that

R1 ≤
1

n

n∑
i=1

I(Ui;Y1,i) + ε
(n)
1 (5a)

Rp +R1 ≤
1

n

n∑
i=1

(
I(Xi;Y2,i|Ui) + I(Ui;Y1,i)

)
+ ε

(n)
2

(5b)

Rp +R2 ≤
1

n

n∑
i=1

I(Xi;Y2,i) + ε
(n)
3 (5c)

where the auxiliary random variable identification is Ui =
(M1,M2, Y

i−1
2 , Y n1,i+1).

We can rewrite the inequalities (5a)-(5c) by
introducing a “time-sharing” random variable T ,
where T = i ∈ {1, 2, . . . , n} with probability 1

n ,

Fig. 2. MIMO Gaussian BBC with additional private message.

i.e., we have pTUTXTY1,TY2,T
(i, ui, xi, y1,i, y2,i) =

1
npUiXi(ui, xi)pY1Y2|X(y1, y2|x). For (5a) we have

R1 ≤
n∑
i=1

P(T = i)I(Ui;Y1,i) + ε
(n)
1 = I(UT ;Y1,T ) + ε

(n)
1

where the distributions of the new random variables
UT , XT , Y1,T , Y2,T depends on T in the same way as the
distributions of Ui, Xi, Y1,i, Y2,i depend on i. We define
U := UT , X := XT , Y1 := Y1,T , Y2 := Y2,T . Now we can
bound (5a) as R1 ≤ I(U ;Y1) + ε

(n)
1 . Similarly we can bound

(5b) and (5c) as Rp+R1 ≤ I(X;Y2|U)+I(U ;Y1)+ ε
(n)
2 and

Rp + R2 ≤ I(X;Y2) + ε
(n)
3 , where ε(n)k → 0, k = 1, 2, 3, as

n→∞. This completes the proof of converse. �

III. MIMO GAUSSIAN CHANNEL

In this section we consider physical layer service integration
in mulitantenna bidirectional relay networks and prove the
corresponding capacity region of the MIMO Gaussian BBC
with additional private message.

A. Physical Layer Description and Capacity Result
Let NR be the number of antennas at the relay node and Nk

be the number of antennas at node k, k = 1, 2 as shown in
Figure 2. The discrete-time real-valued input-output relation
between the relay node and node k, k = 1, 2, can now be
modeled as

yk = Hkx+ nk

where yk ∈ RNk×1 denotes the output at node k, Hk ∈
RNk×NR is the multiplicative channel matrix, x ∈ RNR×1 is
the input of the relay node and nk ∈ RNk×1 is independent
additive noise according to a circular symmetric Gaussian
distribution N (0, σ2

kINk).
As in [9, 19, 20], we consider two different kinds of power

constraints: a total power constraint and a covariance con-
straint. An input sequence xn = (x1,x2, . . . ,xn) of length n
satisfies a total power constraint P if

1

n

n∑
i=1

xTi xi ≤ P.

Similarly xn satisfies the covariance constraint S if
1
n

∑n
i=1 xix

T
i � S where S � 0 is a positive semidefinite

matrix.
Theorem 2: The capacity region CMIMO

BBC (S) of the MIMO
Gaussian BBC with additional private message under the
covariance constraint S is:

CMIMO
BBC (S) =

⋃
0�Qp�S

R(S,Qp) (6)
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where R(S,Qp) is the set of all rate triples (Rp, R1, R2) ∈
R3

+ that satisfy:

R1 ≤
1

2
log det

(
H1SH

T
1 + σ2

1IN1

H1QpH
T
1 + σ2

1IN1

)
(7a)

Rp ≤
1

2
log det

(
IN2 +

1
σ2
2
H2QpH

T
2

)
(7b)

Rp +R2 ≤
1

2
log det

(
IN2

+ 1
σ2
2
H2SH

T
2

)
. (7c)

The capacity region under the total power constraint can be
derived from the following corollary [20, Lemma 1].

Corollary 1: The extension of Theorem 2 to the total power
constraint is immediate and given by

CMIMO
BBC (P ) =

⋃
tr(S)� P

CMIMO
BBC (S). (8)

Theorem 2 is proved in the following two subsections.

B. Proof of Achievability

To obtain the desired region (7) we follow the proof of
the discrete case, cf. Section II, with a proper choice of
auxiliary and input random variables. More precisely, with
U ∼ N (0,S − Qp) for the bidirectional messages, V ∼
N (0,Qp) for the additional private message, and further
X = U + V ∼ N (0,S), the region (7) follows immediately
from Theorem 1. Therefore we omit the details for brevity.�

C. Proof of Converse

To establish the converse it remains to show that no other
rate triples than those characterized in (7) are achievable for
some 0 � Qp � S.

We define the single user capacity of the channel between
the relay and user 2 as:

C2 =
1

2
log det

(
IN2

+ 1
σ2
2
H2SH

T
2

)
.

As both the bidirectional message m1 and the private
message mp have to be successfully received by user 2, we
must have

Rp +R2 ≤ C2 =
1

2
log det

(
IN2

+ 1
σ2
2
H2SH

T
2

)
which proves the inequality (7c).

Proving the inequalities (7a) and (7b) is not a trivial prob-
lem. Therefore, we use existing bounds of a similar scenario
and with proper arguments we conclude to the desired result.

It is proved in [20] that the capacity region of a multi-
antenna Gaussian broadcast channel with one private message
at rate R′p, and one common message at rate Rc is the rate
pair

R′p ≤
1

2
log det

(
IN1

+ 1
σ2
1
H1Q

′
pH

T
1

)
(9a)

Rc ≤ min(R1
c , R

2
c) (9b)

where

Rkc =
1

2
log det

(
HkS

′HT
k + σ2

i INk
HkQ

′
pH

T
k + σ2

i INk

)
(9c)

for some 0 � Q′p � S′.

We can interpret the united bidirectional message that con-
tains both messages m1 and m2 (after the relay re-encoding),
as a common message that is partially known from the two
users. We set R2 = 0 thus we ”maximize” the bidirectional
(common) rate R1 of the message m2. With this reformulation,
our problem corresponds exactly to the similar scenario of one
private and one common message. Now, we can claim that we
are not interested in user 2 to be able to decode the message
m2 because there is already available as side information. So,
we can discard the minimum from (9b) and keep only the
corresponding rate for the channel of user 1. With the above
arguments we get an exact correspondance of the rate pairs
(Rp, R1) and (R′p, R

1
c) between the two scenarios. This gives

us the desired bounds (7a) and (7b) and completes the proof
of converse. �

IV. DISCUSSION

The optimal transmit covariance matrices are determined
by non-convex optimization problems and so the weighted rate
sum optimal rate triples as well. Hence, obtaining the boundary
of the capacity region (6) is in general non-trivial. For the
MISO scenario we can reformulate the optimization problem
in such a way that it becomes convex and therewith tractable.

In the MISO case, the channel matrices Hk reduce to
vectors hTk , k = 1, 2. Here, we use the total power constraint
P instead of the covariance constraint S.

Similar to the MIMO case we assume that U ∼ N (0,Q12),
V ∼ N (0,Qp) and X = U + V ∼ N (0,Q12 +Qp) where
we require a total power constraint tr(Q12 +Qp) ≤ P . Now,
in an exact correspondance to region (7), we can write that
R(Q12,Qp) is the set of all rate triples (Rp, R1, R2) ∈ R3

+

that satisfy

R1 ≤
1

2
log

(
1 +

hT1 Q12h1

hT1 Qph1 + σ2
1

)
(10a)

Rp ≤
1

2
log
(
1 + 1

σ2
2
hT2 Qph2

)
(10b)

Rp +R2 ≤
1

2
log
(
1 + 1

σ2
2
hT2 (Q12 +Qp)h2

)
. (10c)

Now we consider a slightly different problem. As in [20]
and [9], instead of finding the best possible rates for a given
power constraint, we find the minimum power required to
achieve a set of minimal rate requirements. Furthermore, in-
stead of considering the rates themselves, we can equivalently
give minimum requirements on the SNIRs of the different
users. With the above arguments we can write the follow-
ing optimization problem which will allow us to calculate
R(Q12,Qp):

min
(Q12,Qp)∈G1

tr(Q12 +Qp) (11)

where
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(a) Capacity region (b) Comparable TDMA approach

Fig. 3. Capacity region of the MISO Gaussian BBC with additional private
message, with NR = 2, N1 = N2 = 1, h1 = [2 0.4]T , h2 = [0.2 1.2]T

and P = 5. Fig. 3(b) compares the capacity region with the achievable rate
region of a comparable TDMA approach (white box) which realizes the same
routing task in three orthogonal time slots.

G1 =


(Q12,Qp)|

Q12 � 0,Qp � 0

hT1 Q12h1

hT1 Qph1+σ2
1
≥ αγ1

1
σ2
2
hT2 Qph2 ≥ αγp

1
σ2
2
hT2 (Q12 +Qp)h2 ≥ αγ2


and where α is an auxiliary non-negative parameter and
the triplet (γp,γ1,γ2) can be interpreted as received SNIR
“weights”.

By rewriting the constraint set of G1 as a linear constraint
set, we obtain a linear semi-definite optimization problem and
hence convex. Yet, this still falls short of finding a point on
the boundary of R(Q12,Qp).

Obviously all rates increase as the auxiliary parameter α
increases. Thus we obtain the weighted rate sum optimal
rate triple on the boundary of R(Q12,Qp) for fixed weights
γp,γ1,γ2, by finding the maximum α such that the constraint
set provides at least one feasible solution. Finally, running
through all weight vectors with γp + γ1 + γ2 = 1 yields all
weighted rate sum optimal rate triples and characterizes the
boundary of R(Q12,Qp).

A visual representation of the capacity region (10) is pre-
sented in Figure 3(a) and a comparison of this region with the
TDMA approach in Figure 3(b).

V. CONCLUSION

Physical layer service integration deals with the efficient
implementation of different services at the physical layer. In
this paper we studied physical layer integration of additional
private message in bidirectional relay networks which basi-
cally required the study of the discrete memoryless BBC and
multi-antenna Gaussian BBC with additional private message.
We established the entire capacity region which characterize
the fundamental limits up to which rates bidirectional and
private messages can be transmitted in bidirectional relay
networks for each case. Finally, for the MISO scenario with
multiple transmit antennas but single receive antenna, we
found a way to convert the non-convex optimization problem
into a convex one which allows to compute the weighted

rate-sum optimal rate triples. This yields the boundary of the
capacity region which is compared with the TDMA approach.
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