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Zusammenfassung

In der vorliegenden Arbeit betrachten wir die sehr flexible Klasse der regulären Vine-
Copula Modelle (R-vines). Diese multivariaten Copulas werden hierarchisch konstruiert,
wobei lediglich zwei-dimensionale Copulas als Bausteine benutzt werden. Die Zerlegung
selber wird Paar-Copula-Konstruktion (PCC) genannt. Für diese R-vine Copula Mod-
elle führen wir die konzeptionelle wie auch algorithmisch umgesetzte Berechnung der
Scorefunktion und der beobachteten Informationsmatrix ein. Die damit einhergehende
Abschätzung der Fisher-Information erlaubt es uns die Standardfehler der Parameter-
schätzer routinemäßig zu bestimmen. Außerdem beseitigen die analytischen Ausdrücke des
R-vine log-likelihood Gradienten und der Hessematrix Genauigkeitsdefizite bei den bisher
gebräuchlichen numerischen Ableitungen. Die hierfür benötigten bivariaten Ableitungen
bezüglich der Copulaparameter und -argumente werden ebenfalls berechnet. Hier sind
insbesondere die schwierigen Ableitungen der Student’s t-copula hervorzuheben.

Um R-vine Copulas mittels statistischer Tests zu validieren führen wir einige Tests
für die Güte der Anpassung (Goodness-of fit Tests) ein. Speziell betrachten wir zwei
neue Gütetests, die aus dem Informations- und Ausprägungstest von White (1982) und
dem Informationsverhältnistest von Zhang et al. (2013) hervorgehen. Wir berechnen die
entsprechenden Teststatistiken und beweisen deren asymptotische Verteilung. Für Vergle-
ichszwecke führen wir noch 13 weitere Gütetests ein, die wir aus dem zwei-dimensionalen
Fall adaptieren und für den R-vine Fall erweitern. Eine intensive Vergleichsstudie, die
die Power untersucht, zeigt die Überlegenheit der informationsmatrixbasierten Tests.
Berechnet man die size und power basierend auf simulierten gebootstrapten p-Werten,
so können exzellente Resultate erzielt werden, während Tests, die auf asymptotischen
p-Werten basieren ungenau sind. Insbesondere in höheren Dimensionen.

Eine Anwendung der gezeigten Algorithmen auf US-Wechselkurs Daten zeigt die asymp-
totische Effizienz unserer Methoden bei der Berechnung von Standardfehlern für reguläre
Vine-Copulas. Ferner wenden wir die besten Gütetests auf die genannten US-Wechselkurse,
sowie auf ein Portfolio von Aktienindizes und deren Volatilitätsindizes an, um die beste
Vine-Copula zu wählen.





Abstract

In this thesis we consider the flexible class of regular vine (R-vine) copula models.
R-vine copulas are multivariate copulas based on a pair-copula construction (PCC) which
is constructed hierarchically from only bivariate copulas as building blocks. We intro-
duce theory and algorithms for the computation of the score function and the observed
information matrix in R-vine models. The corresponding approximation of the Fisher
information allows to routinely estimate parameter standard errors. Furthermore, the an-
alytical expression of the R-vine log-likelihood gradient and Hessian matrix overcomes
reliability and accuracy issues associated with numerical differentiation. Needed bivariate
derivatives with respect to copula parameters and arguments are derived, in particular
for the Student’s t-copula.

To validate R-vine copula models based on statistical tests we introduce several goodness-
of fit tests. In particular we propose two new goodness-of-fit tests arising from the infor-
mation matrix and specification test proposed by White (1982) and the information ratio
test by Zhang et al. (2013). The test statistics are derived and their asymptotic distri-
bution proven. Further 13 goodness-of-fit tests are adapted from the bivariate case and
compared in an extensive power study, which shows the superiority of the information
matrix based tests. The bootstrapped simulation based tests show excellent performance
with respect to size and power, while the asymptotic theory based tests are inaccurate in
higher dimensions.

To illustrate the need for estimated standard errors and the asymptotic efficiency of
our algorithms we apply our methods in a rolling window analysis of US exchange rates.
The best performing goodness-of-fit tests are applied to the US exchange rates data set as
well as to a portfolio of stock indices and their related volatility indices selecting among
different R-vine specifications.
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Introduction

With more data becoming accessible the modeling of high-dimensional data is nowa-
days an often discussed problem and received considerable attention in the last decades.
Beside the classical multivariate distribution functions as for example the multivariate
Gaussian distribution the concept of copulas has been developed to model dependencies
between random variables. Copulas allow to model marginal distributions and the de-
pendence structure separately. In this thesis we discuss in particular the flexible class of
regular vine (R-vine) copula models, a pair copula construction (PCC). They decompose
the d-dimensional density into unconditional and conditional bivariate copulas, so called
pair-copulas. The high flexibility is gained on the one hand from the independently chosen
building block copula families and secondly from the choice of the decomposition itself.
Starting with Aas et al. (2009), statistical inference such as maximum likelihood estima-
tion of the pair-copula parameters or simulation algorithms for vine copula models are
developed in the existing literature.

Although there exists an asymptotic theory for the maximum likelihood parameter es-
timates, there is a surprising scarcity in the literature considering the uncertainty in point
parameter estimates for R-vines. One main contribution of this thesis is the development
and implementation of R-vine copula standard error estimation by deriving the observed
Hessian matrix as approximation for the Fisher information matrix.

The second theme is model verification by goodness-of-fit testing, which was not in-
vestigated for R-vine copula models although several goodness-of-fit tests are available for
bivariate copulas. We developed two new goodness-of-fit tests for vine copula models based
on the Information matrix equality and specification test of White (1982), and extended
several goodness-of-fit tests, considered so far for bivariate copulas, to the vine copula case.

Copulas, the central concept in this thesis, have their origin in the Fréchet classes
(Fréchet 1951), but its statistical break through came with the Theorem of Sklar (1959).
It states that for each set of continuous random variables X1, . . . , Xd with marginal distri-
bution functions F1, . . . , Fd there exists an unique copula C giving the joint distribution
function of X1, . . . , Xd. A different naming of the same concept is used in the studies
of Kimeldorf and Sampson (1975) or Galambos (1987). More recently the books of Joe
(1997), Nelsen (2006) or Mai and Scherer (2012) give a good overview of the concept of
copulas, their properties and inference methods.

Therefore bivariate copulas are well studied and many different copula families are
proposed and investigated having specific properties. Especially in economics and finance
copulas are wildly applied (see for example Patton 2012) because of their high flexibility
and easy computation. For model verification based on statistical tests several goodness-
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2 Introduction

of-fit approaches have been developed and applied. For example tests based on the em-
pirical copula process (Genest et al. 2009), the probability integral transform (Breymann
et al. 2003, Berg and Bakken 2007) or other approaches (Genest et al. 2012, Huang
and Prokhorov 2013 and many more) are available. Further, model comparison can be
achieved by tests of Vuong (1989) or Clarke (2007), or distances like the Kullback and
Leibler (1951) information criterion (KLIC) can be derived.

But copulas of classical classes such as the Archimedean ones are rather limited in
higher dimensions. They loose their flexibility, easy and fast computation and model ver-
ification by goodness-of-fit tests or the calculation of the KLIC became unstable, difficult
or even impossible. Pair-copula constructions overcome most of these difficulties. Build
from bivariate building blocks only they inherit several beneficial properties of the bi-
variate case. The hierarchical structure of the decomposition of the d-dimensional density
into d(d − 1)/2 unconditional and conditional pair-copulas allow for a high flexibility
in the construction. Further, each pair-copula can be selected independently from set of
(parametric) copula families. This is still tractable in moderate dimensions. While most
applications stay in dimension up to 50, Heinen and Valdesogo (2009) propose a vine
copula model with even 100 variables.

The graphical representation of such a construction in a nested set of trees was called
a regular vine (R-vine) copula by Bedford and Cooke (2001, 2002). Later the statistical
inference for PCCs was developed by Aas et al. (2009). Since then vine copulas are on
the rise (see for example Kurowicka and Cooke 2006, Dißmann et al. 2013, Joe et al.
2010 or Gräler and Pebesma 2011 just to name a few). They have been applied to model
dependence in various areas including agricultural science and electricity loads (Smith
et al. 2010), exchange rates (Czado et al. 2012, Stöber and Czado 2012), order books and
headache data (Panagiotelis et al. 2012).

In this thesis we extend the existing literature about vines by two important statistical
issues. First, while it is a standard exercise in multivariate statistics to compute the un-
certainty incorporated in parameter point estimates this was not possible so far for vine
copula models. We will develop algorithms to calculate the log-likelihood gradient and
Hessian matrix to approximate the Fisher information for standard error estimation. The
needed first and second derivatives with respect to the parameter(s) and copula arguments
of bivariate copulas will be derived. Secondly, goodness-of-fit tests for vine copula model
verification will be introduced and investigated with respect to their size and power. In
particular, two new goodness-of-fit tests based on the information matrix equality will
be introduced. Another 13 goodness-of-fit tests are adapted from the bivariate case for
comparison. The general outline of this thesis is as follows.

Chapter 1, which is taken from Schepsmeier and Stöber (2012) and Schepsmeier and
Stöber (2013), introduces the concept of copulas. It gives the most important definitions
and the main notation concerning copulas used in the subsequent chapters. In particular,
the class of Archimedean copulas and elliptical copulas are presented. The second part of
this chapter derives expressions for the observed and expected Fisher information for the
proposed bivariate copula families. In particular for the Student’s t-copula the first and
second derivative with respect to both copula parameters are derived as well as the Fisher
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information. It corrects several flaws in the existing literature. Numerical issues and our
implementation is discussed. Further, a practical example computing standard errors in
a rolling window analysis shows the usefulness of the derived quantities.

In Chapter 2, which is partly based on material from Stöber and Schepsmeier (2013),
pair-copula constructions (PCCs) and regular vine (R-vine) copula models are introduced.
They are the models of consideration in the Chapters 3-4. We will define PCCs and the
class of R-vine copula models, and give the general form of its density function. The last
part extensively attends to the implemented software regarding bivariate copulas and R-
vine copulas. It will lay down the main functionality of the R-package VineCopula of
Schepsmeier et al. (2012) enabling statisticians and practitioners to facilitate inference for
vine copulas.

The estimation of standard errors for an R-vine copula model is proposed in Chap-
ter 3. The content is based on material from Stöber and Schepsmeier (2013). The first
and second derivative of the regular vine copula log-likelihood is derived with respect to
its parameters in a new algorithmic manner. Thus we can estimate the observed Fisher
information matrix of R-vines copula models. The algorithms make use of the hierar-
chical nature for subsequent calculation of the log-likelihood. The routinely calculation
of the observed Fisher information overcomes reliability and accuracy issues associated
with numerical differentiation in multi-dimensional models. In particular, for statistical
estimation methods based on numerical optimization closed form expressions for the gra-
dient are computationally advantageous. For example this allows to perform maximum
likelihood estimation in a multi-dimensional setup. Here optimization based on numerical
differentiation can be highly unreliable.

A simulation study in Section 3.3 confirms that the standard errors we estimate are
appropriate. Confidence intervals are estimated using the observed information gained
from our algorithms and by sample estimates of the sequential approach proposed by
Hobæk Haff (2013). An example of application to a financial data set illustrates their
computation and gives proof of its usefulness.

Chapter 4, which is based on material from Schepsmeier (2013a) and Schepsmeier
(2013b), covers the examination of goodness-of-fit (GOF) tests for vine copula models. In
particular, two new GOF tests based on the information matrix equation and specification
test of White (1982) are introduced. The first one directly applies White’s theorem to the
vine copula case. It extends the approach of Huang and Prokhorov (2013), who proposed
a GOF test for bivariate copulas based on White (1982). The test statistic derivation is
mainly facilitated by the point-wise calculation of the sum of the Hessian matrix and outer
product of gradient using the algorithms of Chapter 3. The corresponding critical value
can be approximated by asymptotic theory or simulation using bootstrap. The simulation
based tests show excellent performance with regard to observed size and power in extensive
simulation studies, while the asymptotic theory based test is inaccurate for n ≤ 10000 for
a 5-dimensional model. In the applied 8-dimensional case even 20000 observations are not
enough.

The second new introduced GOF test is inspired by Presnell and Boos (2004), Zhou
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et al. (2012) and Zhang et al. (2013) and arises from the information matrix ratio. In
contrast to the White test, which is based on the difference of the negative Hessian matrix
and the outer product of the score function, the information ratio test considers the ratio
of these two quantities. The corresponding test statistic is derived and its asymptotic
normality proven. The test’s power is again investigated in a simulation study.

Both new GOF tests are compared in a high dimensional setting to 13 other GOF
tests, adapted from the bivariate copula case. In particular, we will compare to GOF tests
based on the empirical copula process as suggested by Genest et al. (2009) and based on
the multivariate probability integral transform (see Breymann et al. 2003 or Berg and
Bakken 2007). A combination of these two approaches (see Genest et al. 2009) is also
considered in the comparison setting. An extensive simulation study shows the excellent
performance of the introduced information based GOF tests with respect to size and
power. Furthermore, the superiority of these two tests against most other goodness-of-fit
tests is illustrated.

Finally, the best performing tests are applied in two examples validating different
R-vine specifications. The first example is an application to a portfolio of stock indices
and their related volatility indices, while the second one selects among different R-vine
specifications to model dependency among exchange rates.

An outlook and discussion of the previous chapters is given in Chapter 5. Some fur-
ther ideas on goodness-of-fit tests for regular vine copula models are proposed. Possible
pros and cons of possible extension of bivariate copula goodness-of-fit tests are consid-
ered. In particular the very interesting hybrid approach for copula goodness-of-fit testing
suggested by Zhang et al. (2013) will be briefly discussed.

The appendices finally contain additional material for the previous chapters. Appendix
A gives details for the calculation of the second derivative of the R-vine log-likelihood, the
calculation of the covariance matrix in the Gaussian case and the R-vine copula model
specification for the exchange rate data set used in the example. Some technical details for
the goodness-of-fit tests considered in Chapter 4 are given in Appendix B, while Appendix
C gives the model specifications considered in the power studies of Section 4.1.3 and 4.4.



Chapter 1

Copulas1

A copula is a multivariate distribution function C: [0, 1]d 7→ [0, 1] on the unit hypercube
with uniform univariate marginal distributions. Let F1, . . . , Fd be the marginal distri-
bution functions of the continuous random variables X1, . . . , Xd. Now, for an arbitrary
multivariate continuous distribution function F we know (Sklar 1959) that there exists a
unique copula C such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

Thus, copulas allow to model univariate effects of a random vector X = (X1, . . . , Xd)
and their joint dependence structures, separately. Standard references on copula theory
include the books by Joe (1997) and Nelsen (2006). In this chapter we concentrate on
one- or two-parametric copulas such as copulas from the elliptical class (Section 1.2) or
Archimedean ones (Section 1.1) in dimension d = 2, so called bivariate copulas. These
will form the building blocks for the investigated vine copula models in Chapters 2-4. If
C is two-times partial differentiable the bivariate copula density is

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2

,

where u1 := F1(x1) and u2 := F2(x2) are so called copula data on [0, 1].
Beside the parametric copulas on which we will focus here non-parametric approaches

are available as well. The use of non-parametric copulas avoids the need for the error-
prone selection from pre-specified sets of parametric copulas. But they require other con-
ditions, for example the choice of a bandwidth parameter, needing expert knowledge. Non-
parametric approaches such as the Bernstein copula are for example treated in Sancetta
and Satchell (2004) or the empirical copula in Rüschendorf (1976).

In the last decades we have seen a rising interest in the concept of copulas both by
statisticians and practitioners (see e.g. Joe 1997, Embrechts et al. 2003, Nelsen 2006, Chan
et al. 2009, Mai and Scherer 2012) and various applications in particular of bivariate
copulas have been considered (see for example Patton 2006, Acar et al. 2012). Thus

1The contents of this chapter is based on Schepsmeier, U. and Stöber, J. (2013), Derivatives and Fisher
information of bivariate copulas, forthcoming in Statistical Papers, and Schepsmeier, U. and Stöber, J.
(2012), Web supplement: Derivatives and Fisher information of bivariate copulas, TU München

5



6 CHAPTER 1. COPULAS

many copula families were analyzed and new ones are added to the literature. Statistical
inference is facilitated by maximum likelihood or Bayesian approaches, but estimation of
standard errors of copula parameter estimates are treated rather poorly. One reason may
be that so far closed form expressions for the Fisher information matrix are missing for
important copula families. We will fill this gap in the forthcoming sections.

To assess the uncertainty of parameter estimates, which is at the core of statistical
analysis, the observed information matrix based on the Hessian matrix of the log-likelihood
or the asymptotic Fisher information can be considered. This however requires the calcu-
lation of derivatives with respect to the copula parameters which is not straightforward
when the copula is not available in closed form as for the popular class of elliptical copulas.
Also for an efficient numerical treatment and algorithms such as the maximization by parts
(Song et al. 2005), the derivatives will be required and cannot be approximated by finite
differences. These can be numerically unstable, especially for higher-order derivatives (see
McCullough 1999 and references therein, in particular Donaldson and Schnabel 1987).
Also, for p parameters, approximating the score function by finite differences amounts to
at least 2p evaluations of the likelihood function which is infeasible in higher dimensions.

Next, we will introduce some of the most important and well known copulas, start-
ing with the Archimedean class. These and the Gaussian and Student’s t-copula of the
elliptical class of Section 1.2 we will treat in more detail with respect to their derivatives
and Fisher information matrix in Section 1.3. Our particular focus lies on the bivariate
Student’s t-distribution and its copula, the bivariate t-copula. These are perhaps the most
important distributions in financial applications due to their tail behavior which is consid-
ered to be more realistic than the behavior of the Gaussian distribution (see Demarta and
McNeil 2005 and references therein). Our main contributions are: We obtain all derivatives
of the bivariate t-copula which are required in statistical applications and calculate the
Fisher information of the related Student’s t-distribution. Further, we provide a numerical
implementation for all parametric families investigated in this chapter and demonstrate
its accuracy.

1.1 Archimedean copulas

A very popular class of parametric copulas are the Archimedean copulas because of their
simple construction and nice properties such as the easy calculation of the density or the
closed form expression for the rank dependence coefficient Kendall’s τ . An Archimedean
copula is a function C,

C(u1, u2) = ϕ(ϕ[−1](u1) + ϕ[−1](u2)),

where ϕ is the so called generator function and ϕ[−1] is the pseudo-inverse of ϕ which is
defined as follows:

ϕ[−1] : [0, 1]→ [0,∞)

ϕ[−1](x) := inf{u : ϕ(u) ≤ x}.

For necessary and sufficient conditions on the generator function ϕ, we refer to McNeil
and Nešlehová (2009). In order to ensure the existence of continuous derivatives, we will
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assume throughout this thesis that ϕ : [0,∞) 7→ [0, 1], with (−1)jϕ(j) ≥ 0, 0 ≤ j ≤ 2,
where ϕ(2) is continuous, ϕ(0) = 1, and limx→∞ ϕ(x) = 0. A good overview discussing
Archimedean copulas and extensions is given in Joe (1997) together with a list of common
parametric families. Here, we concentrate on four of the most popular members of this
class, namely the Clayton/MTCJ, Gumbel, Frank and Joe copula. The following examples
defining the copula cdf and its density. Furthermore, the conditional cdf function of U1

given U2 = u2 where (U1, U2) ∼ C is given. It is needed for example for the calculation of
the pair-copula construction which we will introduce in Chapter 2. Further, the inverse
function of the conditional cdf function can be used for the sampling algorithm of Genest
and Favre (2007).

Thus we denote the conditional cdf as

h(u1, u2; θ) := ∂2C(u1, u2; θ) =
∂C(u1, u2; θ)

∂u2

,

and call it a h-function as it is standard in the literature. For all the forthcoming definitions
we refer to Joe (1997).

Example 1.1 (Clayton/MTCJ copula)
The first Archimedean copula we consider is the Clayton/MTCJ copula. The generator

function ϕ of this copula is ϕ(t) = (1 + t)−
1
θ and the copula is given by

C(u1, u2; θ) = (u−θ1 + u−θ2 − 1)−
1
θ = A(u1, u2, θ)

− 1
θ ,

with A(u1, u2, θ) := u−θ1 + u−θ2 − 1, and corresponding density

c(u1, u2; θ) = (1 + θ)(u1u2)−1−θ(u−θ1 + u−θ2 − 1)−
1
θ
−2 =

(1 + θ)(u1u2)−1−θ

A(u1, u2, θ)
1
θ

+2
,

where 0 < θ <∞ controls the degree of dependence. For θ →∞ the Clayton/MTCJ copula
converges to the monotonicity copula with perfect positive dependence, θ → 0 corresponds
to independence.

The h-function of the Clayton copula is

h(u1, u2; θ) = u−θ−1
2 · A(u1, u2, θ)

−1− 1
θ .

Example 1.2 (Gumbel copula)
The Gumbel copula is given by

C(u1, u2; θ) = exp[−{(− ln(u1))θ + (− ln(u2))θ} 1
θ ] = exp[−(t1 + t2)

1
θ ],

where ti := (− ln (ui))
θ , i = 1, 2. Here, θ ≥ 1 is the dependence parameter. For θ → ∞

the Gumbel copula converges to the comonotonic copula with perfect positive dependence,
in contrast θ = 1 corresponds to independence. The h-function and the density are as
follows:

h(u1, u2; θ) = −e−(t1+t2)
1
θ (t1 + t2)

1
θ
−1 t2

u2 ln (u2)
,

c(u1, u2; θ) = C(u1, u2; θ)(u1u2)−1{(− ln(u1))θ + (− ln(u2))θ}−2+ 2
θ

× (ln(u1) ln(u2))θ−1{1 + (θ − 1)((− ln(u1))θ + (− ln(u2))θ)−
1
θ }

= C(u1, u2; θ)
1

u1u2

(t1 + t2)−2+ 2
θ (ln(u1) ln(u2))θ−1{1 + (θ − 1)(t1 + t2)−

1
θ }.
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Further, we consider the Frank and Joe copula. While the Frank copula has no tail depen-
dence and parameter support θ ∈ (−∞,∞)\{0} the Joe copula has upper tail dependence
2− 21/θ with θ ≥ 1.

CFrank(u1, u2; θ) = −1

θ
ln

(
1

1− e−θ [(1− e−θ)− (1− e−θu1)(1− e−θu2)]
)
,

CJoe(u1, u2; θ) = 1−
(
(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ

) 1
θ .

Figure 1.1 illustrates the bivariate contour plots corresponding to a bivariate meta dis-
tribution with standard normal margins and specified bivariate copula, namely Clayton,
Gumbel, Frank and Joe, with a Kendall’s τ value of 0.5. For a further discussion including
densities and h-functions, we refer to the web supplement Schepsmeier and Stöber (2012)
of Schepsmeier and Stöber (2013).

1.2 Elliptical copulas

The far more interesting and wildly used copulas are of the elliptical class. These consist of
the copulas corresponding to elliptical distributions by Sklar’s theorem. The Gaussian and
Student’s t-distributions are the most prominent members. For the following definitions
and calculations we refer to Schepsmeier and Stöber (2013).

Gaussian copula

The Gaussian copula is given by

C(u1, u2; ρ) = Φ2(Φ−1(u1),Φ−1(u2), ρ),

where Φ2(·, ·, ρ) is the joint distribution function of two standard normally distributed
random variables with correlation ρ ∈ (−1, 1), Φ is the cumulative distribution function
(cdf) of N(0, 1) (the standard normal distribution) and Φ−1 (the quantile function) is its
functional inverse. The density of the bivariate Gaussian copula is

c(u1, u2; ρ) =
1√

1− ρ2
exp

{
−ρ

2(x2
1 + x2

2)− 2ρx1x2

2(1− ρ2)

}
,

where x1 := Φ−1(u1) and x2 := Φ−1(u2).
The conditional distribution function of the first variable U1 given U2 = u2 is

h(u1, u2; ρ) =
∂

∂u2

C(u1, u2; ρ) = Φ2

(
Φ−1(u1)− ρΦ−1(u2)√

1− ρ2

)
,

see Aas et al. (2009). The top left panel of Figure 1.2 illustrates the contour plot of the
bivariate Gauss copula considering standard normal margins and Kendall’s τ = 0.5.
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Figure 1.1: Bivariate contour plots of Clayton (top left), Gumbel (top right), Frank (bot-
tom left) and Joe (bottom right) with standard normal margins and a Kendall’s τ value
of 0.5.

Student’s t-copula

We denote the cumulative distribution function of the univariate Student’s t-distribution
with ν > 0 degrees of freedom by tν and the corresponding quantile function by t−1

ν . The
corresponding density is given by

dt(xi; ν) =
Γ
(
ν+1

2

)

Γ
(
ν
2

)√
πν

(
1 +

x2
i

ν

)− ν+1
2

, i = 1, 2,
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where Γ(·) is the Gamma function. Let us further write the quantile of the univariate
Student’s t-distribution as

xi := t−1
ν (ui), ui ∈ (0, 1), i = 1, 2,

then the bivariate t-copula is defined by

C(u1, u2; ρ, ν) = t2;ρ,ν(x1, x2),

where t2;ρ,ν is the cumulative distribution function of the bivariate Student’s t-distribution.
The density of the bivariate t-copula with association ρ ∈ (−1, 1) and degrees of freedom
ν > 0 is given by

c(u1, u2; ρ, ν) =
1

2π
√

1− ρ2

1

dt(x1; ν)dt(x2; ν)

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)− ν+2
2

.

Again, the h-function corresponding to the t-copula has been derived in Aas et al. (2009):

h(u1, u2; ρ, ν) = tν+1




t−1
ν (u1)− ρt−1

ν (u2)√(
ν+(t−1

ν (u2))
2
)

(1−ρ2)

ν+1


 = tν+1




x1 − ρx2√
(ν+x22)(1−ρ2)

ν+1


 .

Bivariate contour plots of the Student’s t copula with Kendall’s τ = 0.5 and different
degrees-of-freedom parameter ν are plotted in Figure 1.2 considering standard normal
margins.

1.3 Derivatives and Fisher Information

Considering asymptotic properties of ML estimation, it is well known that under certain
regularity conditions (c.f. Bickel and Doksum 2007, p. 386 or Lehmann and Casella 1998,
p. 449), the ML estimator θ̂n ∈ Rp obtained from n observations is strongly consistent
and asymptotically normal:

√
n I(θ)1/2

(
θ̂n − θ

)
d−→ N(0, Ip) as n→∞,

where θ ∈ Rp is the true parameter and Ip is the p×p identity matrix. Here, the (expected)
Fisher information matrix I(θ) can be obtained as

I(θ) = −Eθ
[( ∂2

∂θi∂θj
l(θ|X)

)
i,j=1,...,p

]
= Eθ

[( ∂

∂θi
l(θ|X) · ∂

∂θj
l(θ|X)

)
i,j=1,...,p

]
,

where l(θ|x) is the log-likelihood of θ given an observation of X = x. In a finite sample
of n independent observation (x1, . . . , xn), it has been argued (Efron and Hinkley 1978)
that the Fisher information should be replaced by the observed information In(θ̂n) at the
ML estimate θ̂n

In(θ̂n) =

[( n∑

k=1

∂2

∂θi∂θj
l(θ|xk)

)
i,j=1,...,p

]

θ=θ̂n

.
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Figure 1.2: Bivariate contour plots of Gauss (top left), Student’s t with degrees-of-freedom
parameter ν = 3 (top right), Student’s t with ν = 5 (bottom left) and Student’s t with
ν = 10 (bottom right) with standard normal margins and a Kendall’s τ value of 0.5.

Thus, we require second derivatives of copula log-likelihoods in order to study the co-
variance structure of ML estimators when copulas are involved. In particular, they are
required for bivariate copulas because of their prominent role in PCCs and applications.
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1.3.1 Archimedean copulas

In the Archimedean case, all functions of interest are given in closed form such that also
computer algebra systems as Maple2 or Mathematica3 can be used for the calculation of
derivatives. If available we will also state the expected Fisher information. For the sake
of notational shortness, we will often suppress function arguments in the following.

Since we will need the first and second derivative of the density as well as of h-function
in the forthcoming chapters, we state in the first example the derivatives with respect to
the copula parameter and the copula arguments, too.

Example 1.3 (Clayton/MTCJ copula; continue of Example 1.1)
For the Clayton copula we can state the Fisher information with respect to θ as

I(θ) =
1

θ2
+

2

θ((θ − 1)(2θ − 1)
+

4θ

3θ − 2
− 2(2θ − 1)

θ − 1
ρ(θ),

with

ρ(θ) =
1

(3θ − 2)(2θ − 1)

+
θ

2(3θ − 2)(2θ − 1)(θ − 1)

[
Ψ1

(
1

2(θ − 1)

)
−Ψ1

(
θ

2(θ − 20

)]

+
1

2(3θ − 2)(2θ − 1)(θ − 1)

[
Ψ1

(
θ

2(θ − 1)

)
−Ψ1

(
2θ − 1

2(θ − 20

)]
,

where Ψ(·) is the trigamma function (Oakes 1982).

Derivatives of the density function
The partial derivative of the density c with respect to the parameter θ is

∂c

∂θ
= (u1u2)−θ−1(u−θ1 + u−θ2 − 1)−2− 1

θ − (1 + θ)(u1u2)−θ−1 ln(u1u2)(u−θ1 + u−θ2 − 1)−2− 1
θ

+ (1 + θ)(u1u2)−θ−1(u−θ1 + u−θ2 − 1)−2− 1
θ

(
ln(u−θ1 + u−θ2 − 1)

θ2
+

(−2− 1
θ
)(−u−θ1 ln(u1)− u−θ2 ln(u2))

u−θ1 + u−θ2 − 1

)

= −c(u1, u2)

(
ln(u1u2)−

(
ln(A(u1, u2, θ))

θ2
+

(−2− 1
θ
)(−u−θ1 ln(u1)− u−θ2 ln(u2))

A(u1, u2, θ)

))
,

and the derivative with respect to u1 is

∂c

∂u1

= (1 + θ) (u1u2)−θ−1 (−θ − 1)
(
u1
−θ + u2

−θ − 1
)−2−θ−1

u1
−1 − (1 + θ) (u1u2)−θ−1

(
u1
−θ + u2

−θ − 1
)−2−θ−1 (

−2− θ−1
)
u1
−θθu1

−1
(
u1
−θ + u2

−θ − 1
)−1

= −c(u1, u2) · (θ + 1)

u1

+
c(u1, u2) ·

(
2 + 1

θ

)
θ

uθ+1
1 · A(u1, u2, θ)

.

2Maple 13.0. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
3Wolfram Research, Inc., Mathematica, Version 8.0, Champaign, IL (2012).
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Derivatives of the h-function
We calculate the derivatives of the h-function with respect to the copula parameter θ and
u2, respectively:

∂h

∂θ
= −u−θ−2

2 (u−θ1 + u−θ2 − 1)−
θ+1
θ θ − u−θ−2

2 (u−θ1 + u−θ2 − 1)−
θ+1
θ

+ u−2θ−2
2 (u−θ1 + v−θ − 1)−

2θ+1
θ θ + u−2θ−2

2 (u−θ1 + u−θ2 − 1)−
2θ+1
θ

=

(
− h

u2

+ u−2θ−2
2 A(u1, u2, θ)

− 2θ+1
θ

)
(θ + 1),

∂h

∂u2

= (−θ − 1)u−θ−2
2 A(u1, u2, θ)

−1− 1
θ + (−1− 1

θ
)A(u1, u2, θ)

−2− 1
θ
∂A

∂u2

,

where

∂A

∂u1

= −θu−θ−1
1 .

Second derivatives of the density function
For the following, we use the partial derivative of A(u1, u2, θ) to shorten the notation.

∂A

∂θ
= −u−θ1 ln(u1)− u−θ2 ln(u2),

∂2A

∂2θ
= −u−θ1 ln(u1)2 − u−θ2 ln(u2)2,

∂A

∂u1

= −θu−θ−1
1 ,

∂2A

∂2u1

= θ(θ + 1)u−θ−2
1

The second partial derivative of the Clayton copula density with respect to θ is

∂2c

∂2θ
=
∂c

∂θ
·
(
− ln(u2) +

ln(A(u1, u2, θ))

θ2
+

(
−2− 1

θ

)
∂A
∂θ

A(u1, u2, θ)

)

+ c(u1, u2) ·




∂A
∂θ

A(u1,u2,θ)
θ2 − 2 ln(A(u1, u2, θ))θ

θ4

+

(
1
θ2
∂A
∂θ

+ (−2− 1
θ
)∂

2A
∂2θ

)
· A(u1, u2, θ)− (−2− 1

θ
)
(
∂A
∂θ

)2

A(u1, u2, θ)2


 .

Further, the partial derivative with respect to u1 is

∂2c

∂2u1

= −
∂c
∂u1

(θ + 1)u1 − (θ + 1)c(u1, u2)

u2
1

+
(2 + 1

θ
)
(
∂c
∂u1

∂A
∂u1

+ c(u1, u2) ∂
2A

∂2u1

)
− c(u1, u2)(2 + 1

θ
)
(
∂2A
∂2u1

)2

A(u1, u2, θ)2
,
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and finally, we obtain the derivatives with respect to u1, and θ and u2, respectively.

∂2c

∂u1∂θ
= −

∂c
∂θ

(θ + 1) + c(u1, u2)

u1

+

(
uθ+1

1 A(u1, u2, θ)
) [

∂c
∂θ

(2θ + 1) + 2c(u1, u2)
]

u2θ+2
1 A(u1, u2, θ)2

− c(u1, u2)(2θ + 1)
[
uθ+1

1 ln(u1)A(u1, u2, θ) + uθ+1
1

∂A
∂θ

]

u2θ+2
1 A(u1, u2, θ)2

,

∂2c

∂u1∂u2

= −
∂c
∂u2

(θ + 1)

u1

+
∂c
∂u2

(2θ + 1)

uθ+1
1 A(u1, u2, θ)

− c(u1, u2)(2θ + 1)

u2θ+2
1 A(u1, u2, θ)2

· ∂A
∂u2

.

Second derivatives of the h-function
The second partial derivatives of the conditional distribution function with respect to θ
and u2 are given as follows,

∂2h

∂2θ
=
∂h

∂θ
·
(
− ln(u2) +

ln(A(u1, u2, θ))

θ2
+

(
−1− 1

θ

)
∂A
∂θ

A(u1, u2, θ)

)

+ h(u1, u2) ·




∂A
∂θ

A(u1,u2,θ)
θ2 − 2 ln(A(u1, u2, θ))θ

θ4

+

(
1
θ2
∂A
∂θ

+ (−1− 1
θ
)∂

2A
∂2θ

)
· A(u1, u2, θ)− (−1− 1

θ
)
(
∂A
∂θ

)2

A(u1, u2, θ)2


 ,

∂2h

∂2u2

= (−θ − 1)(−θ − 2)u−θ−3
2 A(u1, u2, θ)

−1− 1
θ

+ (−θ − 1)u−θ−1
2

(
−1− 1

θ

)
A(u1, u2, θ)

−2− 1
θ
∂A

∂u2

+

(
−1− 1

θ

)(
−2− 1

θ

)
A(u1, u2, θ)

−3− 1
θ

(
∂A

∂u2

)2

+

(
−1− 1

θ

)
A(u1, u2, θ)

−2− 1
θ
∂2A

∂2u2

,

∂2h

∂θ∂u2

= (θ + 1)

(
−

∂h
∂u2
u2 − h(u1, u2)

u2
2

+ (−2θ − 2)u−2θ−3
2 A(u1, u2, θ)

−2− 1
θ

+ u−2θ−2
2

(
−2− 1

θ

)
A(u1, u2, θ)

−3− 1
θ
∂A

∂u2

)
.

Example 1.4 (Gumbel copula; continue of Example 1.2)
Using that the Fisher information with respect to dependence parameters does not depend
on the marginal distributions (Smith 2007), the Fisher information can be determined
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using the corresponding distribution with Weibull marginals (Oakes and Manatunga 1992),

I(θ) =
1

θ4

[
θ2

(
−2

3
+
π2

9

)
− θ +

2K0

θ

+

(
θ3 + θ2 + (K0 − 1)θ − 2K0 +

K0

θ

)
E1(θ − 1)eθ−1

]
,

where K0 =
(

5
6
− π2

18

)
and E1(θ) =

∫∞
θ

1
u
e−udu (Abramowitz and Stegun 1992, Exponential

Integral, p. 228).

1.3.2 Elliptical copulas

Since the information with respect to the dependence parameters is independent of the
marginal distributions (Smith 2007), the Fisher information of the bivariate Gauss copula
with respect to ρ is the same as for the bivariate Gaussian distribution (Berger and Sun
2008), i.e.

I(ρ) =
1 + ρ2

(1− ρ2)2
.

But for the Student’s t-copula the calculations for the Fisher information is much more
involved and can only be given in closed form with respect to the correlation parameter,
i.e. only Iρ of

I(ρ, ν) =

(
Iρ Iρν
Iρν Iν

)

can be calculated. To do so we will consider the corresponding elliptical distribution.
The bivariate Student’s t-distribution is a special case of the bivariate Pearson type VII
distribution for which the following theorem holds.

Theorem 1.1 (Fisher Information of the Pearson VII distribution)
Let X and Y be two random variables with joint Pearson VII distribution with parameters
N > 1,m > 0, ρ ∈ (−1, 1) and density

f(x, y; ρ,N,m) =
N − 1

πm
√

1− ρ2

(
1 +

x2 + y2 − 2ρxy

m(1− ρ2)

)−N
.

Then the elements of the Fisher information matrix with respect to (ρ, ν) are

I(ρ, ν) =

(
Iρ Iρm
Iρm Im

)
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1) Iρ =
1 + ρ2

(1− ρ2)2
+
N(N − 1)ρ2

(1− ρ2)2
B(3, N − 1)

+
N(N − 1)(2− 3ρ2 + ρ6)

4(1− ρ2)4
B(3, N − 1)− 2N(N − 1)(1 + ρ2)

(1− ρ2)2
B(2, N − 1)

2) Im =
2N(N − 1)B(2, N − 1) +N(1−N)B(3, N − 1)− 1

m2

3) Iρm =
N(N − 1)[B(3, N − 1)−B(2, N − 1)]ρ

m(1− ρ2)
,

where B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt is the Beta-function.

Proof
This proof is based on an earlier attempt by Nadarajah (2006).

1) Fisher information with respect to ρ:
For the transformed variables U and V , corresponding to ρ = 0,

(
X
Y

)
=

1

2

(√
1 + ρ+

√
1− ρ √1 + ρ−√1− ρ√

1 + ρ−√1− ρ √1 + ρ+
√

1− ρ

)(
U
V

)
,

the moments are given as

EN [UpV q] =
m(p+q)/2(N − 1)

π
B

(
p+ q

2
+ 1, N − p+ q

2
− 1

)
B

(
p+ 1

2
,
q + 1

2

)
, (1.1)

if both p and q are even integers (Nadarajah 2006). If either p or q is odd, Expression
(1.1) is equal to zero.

For the calculation of the Fisher Information of the Pearson VII distribution with
respect to ρ we need the second partial derivative of the log-density with respect to ρ.

∂ logL

∂ρ
=

ρ

1− ρ2
− N(

1 + x2+y2−2ρxy
m(1−ρ2)

) · −2xy(1− ρ2) + 2ρ(x2 + y2 − 2ρxy)

m(1− ρ2)2
,

∂2 logL

∂2ρ
=

1 + ρ2

(1− ρ2)2
−
(

1 +
x2 + y2 − 2ρxy

m(1− ρ2)

)−1

·
[

2N(x2 + y2 − 2ρxy)

m(1− ρ2)2
+

8N(ρx2 + ρy2 − (1− ρ2)xy)ρ

m(1− ρ2)3

]

+

(
1 +

x2 + y2 − 2ρxy

m(1− ρ2)

)−2
4N(ρx2 + ρy2 − (1− ρ2)xy)2

m2(1− ρ2)4

Using the equations in the Appendix of Nadarajah (2006) for E[XpY q] in terms of E[UpV q]
and Expression (1.1), we can determine the Fisher Information of Pearson VII distribu-
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tion with respect to ρ:

Iρ = EN

[
−∂

2 logL

∂2ρ

]
=

1 + ρ2

(1− ρ2)2
− EN

[(
1 +

x2 + y2 − 2ρxy

m(1− ρ2)

)−1

· 2N((x2 + y2 − 2ρxy)(1− ρ2) + 4ρ(ρx2 + ρy2 − (1 + ρ2)xy)

m(1− ρ2)3

+

(
1 +

x2 + y2 − 2ρxy

m(1− ρ2)

)−2
4N (ρx2 + ρy2 − (1− ρ2)xy)

m2(1− ρ2)4

]

=
1 + ρ2

(1− ρ2)2
+ EN+2

[
4N(N − 1) (ρx2 + ρy2 − (1− ρ2)xy)

(N + 1)m2(1− ρ2)4

]

− EN+1

[
2(N − 1)((x2 + y2 − 2ρxy)(1− ρ2) + 4ρ(ρx2 + ρy2 − (1 + ρ2)xy)

m(1− ρ2)3

]

=
1 + ρ2

(1− ρ2)2
+
N(N − 1)ρ2

(1− ρ2)2
B(3, N − 1) +

N(N − 1)(2− 3ρ2 + ρ6)

4(1− ρ2)4
B(3, N − 1)

− 2N(N − 1)(1 + ρ2)

(1− ρ2)2
B(2, N − 1),

where B(a, b) is the Beta-function.
2) and 3) of Theorem 1.1: Nadarajah (2006, p.198-200) 2

Corollary 1.2 (Fisher Information of the Student’s t-distribution)
Let X and Y be two random variables with density

f(x, y; ρ, ν) =
1

2π
√

1− ρ2

(
1 +

x2 + y2 − 2ρxy

ν(1− ρ2)

)− ν+2
2

the bivariate Student’s t-distribution. The elements of the Fisher information matrix are

1) Iρ =
1 + ρ2

(1− ρ2)2
+

(ν2 + 2ν)ρ2

4(1− ρ2)2
B
(

3,
ν

2

)

+
(ν2 + 2ν)(2− 3ρ2 + ρ6)

16(1− ρ2)4
B
(

3,
ν

2

)
− (ν2 + 2ν)(1 + ρ2)

2(1− ρ2)2
B
(

2,
ν

2

)

2) Iν =
1

ν
B
(

2,
ν

2

)
− ν + 2

4ν
B
(

3,
ν

2

)

3) Iρν = − ρ

2(1− ρ2)

(
B
(

2,
ν

2

)
− ν + 2

2
B
(

3,
ν

2

))
.

Proof
The t-distribution with parameters ρ ∈ (−1, 1) and ν > 0 results from the Pearson VII
distribution for N = m+2

2
and m = ν. The log density is

l(x, y; ρ, ν) = − log(2π)− 1

2
log(1− ρ2)− ν + 2

2
log

(
1 +

x2 + y2 − 2ρxy

ν(1− ρ2)

)
.
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Thus, 1) follows directly from Theorem 1.1 1).
Since the Fisher Information for the Pearson VII distribution with respect to N,m and

ρ is known from Theorem 1.1, we can compute the elements for 2) and 3) of the Fisher
Information matrix easily. Denoting the Fisher Information of Pearson VII by IP7 and
the Fisher Information of the t-distribution by It we obtain

Itm = IP7
m + 2IP7

mN

(
∂N

∂m

)

︸ ︷︷ ︸
1/2

+IP7
N

(
∂N

∂m

)2

︸ ︷︷ ︸
1/4

=
1

m
B
(

2,
m

2

)
− m+ 2

4m
B
(

3,
m

2

)

and

Itρm = IP7
ρm + IP7

ρN

(
∂N

∂m

)

︸ ︷︷ ︸
1/2

= − ρ

2(1− ρ2)

(
B
(

2,
m

2

)
− m+ 2

2
B
(

3,
m

2

))
.

2

Here, Im = E[−∂2 log l
∂2m

], ImN = E[−∂2 log l
∂N∂m

], IN = E[−∂2 log l
∂2N

], Iρm = E[−∂2 log l
∂ρ∂m

] and IρN =

E[−∂2 log l
∂ρ∂N

].

Since ρ is a pure dependence parameter, the Fisher information of the t-copula is a
the same as for the corresponding distribution.

Corollary 1.3 (Fisher information of the bivariate t-copula)
Let U1 and U2 be two uniform distributed random variables distributed according to the
bivariate t-copula C(u1, u2; ρ, ν) . Then the Fisher Information with respect to the associ-
ation parameter ρ is

Iρ =
1 + ρ2

(1− ρ2)2
+

(ν2 + 2ν)ρ2

4(1− ρ2)2
B
(

3,
ν

2

)

+
(ν2 + 2ν)(2− 3ρ2 + ρ6)

16(1− ρ2)4
B
(

3,
ν

2

)
− (ν2 + 2ν)(1 + ρ2)

2(1− ρ2)2
B
(

2,
ν

2

)
.

Proof
The result follows directly from Corollary 1.2 and Smith (2007). 2

For the Fisher Information with respect to the degrees-of-freedom ν and with respect
to the mixed term ρ and ν no closed form expression is available. Thus, we provide a
numerical solution (see Subsection 1.3.3).

1.3.3 Numerical issues and implementation in C

The derivatives of the bivariate copula models we have discussed are included in the
R-package VineCopula (Schepsmeier et al. 2012, functions BiCopDeriv, BiCopDeriv2,
BiCopHfuncDeriv and BiCopHfuncDeriv2). For details on input and output arguments



1.3. DERIVATIVES AND FISHER INFORMATION 19

of these functions we refer to the manual of the VineCopula package. In order to speed
up the calculations, all implementations were done in C, using R (R Development Core
Team 2013) for a convenient front end. Since the derivatives for the bivariate t-copula
include derivatives of the (regularized) incomplete beta function (see details in the web
supplement Schepsmeier and Stöber 2012), an efficient calculation of these is a key issue
to achieve accuracy as well as fast computation times. For this, we employ the algorithm
of Boik and Robinson-Cox (1998). Where this was possible, the C-code was optimized
using the Computer Algebra Software Maple(TM).

To obtain a benchmark for evaluating the numerical accuracy of our implementation,
we consider the Fisher information which is analytically available for several families. We
compare the known values with numerical results using the obtained derivatives of copula
densities. For this, we employ the adaptive integration routines supplied in the cubature
package (C code by Steven G. Johnson and R by Balasubramanian Narasimhan 2011),
available on CRAN (based on Genz and Malik 1980 and Berntsen et al. 1991), with a
maximum relative tolerance of 1e−5. The results show a maximum relative error in the
order of 1e−6, confirming the accuracy of our implementation. The Fisher information with
respect to the standard parametrization of different copula families is illustrated in Figure
1.3 (with corresponding values in Table 1.1) and Figure 1.4 (Table 1.2), respectively. For
better comparison, the parameter values on the x-axis are transformed to the respective
values of Kendall’s τ . Note, that while the Fisher information is increasing with the
absolute value of Kendall’s τ for the Gaussian and Student’s t-copula, the same is not
true for the Archimedean families. This, however, is a mere consequence of the standard
parametrization for these families. If we consider the Fisher information with respect to
a parametrization in the form of Kendall’s τ , the shapes look similar as for the Gaussian
copula. This re-parametrization implies

Iτ (τ ) = Eτ

[( ∂

∂τi
l(τ |X) · ∂

∂τj
l(τ |X)

)
i,j=1,...,p

]

= Eθ(τ )

[( ∂

∂τi
l(θ(τ )|X) · ∂

∂τj
l(θ(τ )|X)

)
i,j=1,...,p

]

= Eθ(τ )

[( ∂

∂θi
l(θ(τ )|X) · ∂θi

∂τi
· ∂
∂θj

l(θ(τ )|X) · ∂θj
∂τj

)
i,j=1,...,p

]

=
(
Iθ,i,j(θ(τ ))

∂θi
∂τi

∂θj
∂τj

)
i,j=1,...,p

,

where Iθ,i,j(θ(τ )) is the i, j element of the Fisher information Iθ(θ(τ )) with respect to θ.

1.3.4 Example: Stock returns

In this section we apply the developed methods to financial data available in the R-package
VineCopula (Schepsmeier et al. 2012). We consider stock returns of Allianz AG (ALV)
and Deutsche Bank (DBK) and conduct a rolling window analysis assuming a bivariate
Student’s t-copula for the dependence structure. We estimate the correlation as well as
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(a) Fisher information for the bivariate Gauss cop-
ula over a Kendall’s τ range of (−0.8, 0.8).
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(b) Fisher information for the bivariate
Archimedean copulas over a Kendall’s τ
range of (0.05, 0.8). Top left: Clayton, top
right: Gumbel, bottom left: Frank, bottom
right: Joe.
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(d) see above

Figure 1.3: Fisher information with respect to the standard parametrization (upper panel,
(a)+(b)) and with respect to Kendall’s τ (lower panel, (c)+(d)).
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Figure 1.4: Fisher Information of the Student’s t-copula over a Kendall’s τ range of
(−0.5, 0.5) and degrees of freedom ν ∈ (7, 20) with respect to the correlation parame-
ter ρ (left) the degrees of freedom (middle) and both (right).

τ 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80

Gauss 2.50 2.59 2.99 3.31 3.75 5.07 7.40 11.82 21.48 49.21
Clayton 3.55 3.52 4.00 4.40 4.89 6.24 8.38 12.16 20.02 41.70
Gumbel 3.08 2.83 2.93 3.14 3.44 4.38 6.05 9.22 16.13 35.97
Frank 2.27 2.33 2.59 2.80 3.09 3.98 5.56 8.61 15.38 34.93
Joe 4.25 3.71 3.77 4.03 4.40 5.55 7.54 11.18 18.87 40.26

Table 1.1: Fisher information with respect to Kendall’s τ for selected values of τ .

the degrees-of-freedom parameter and compare standard error estimates obtained from
the observed and expected information.

Considering the time horizon from January 4th, 2005 to August 7th, 2009 we obtain
1158 daily log returns. Each time series is filtered using a GARCH(1,1) model with Stu-
dent’s t-innovations. A non-parametric rank transformation is applied to transform the
residuals to uniformly distributed copula data. For the remainder, we assume the marginal
distributions to be known and study the time variability only in the dependence model,
i.e. the copula parameters, and not in the margins. This is done in a rolling windows
analysis as follows: We move a window of size 100, 200 and 400 data points over the data
set, respectively, and estimate the copula parameters for each subsample. Furthermore,
the expected (see Corollary 1.3) and the observed Fisher Information are computed to
estimate the standard errors σexpexted and σobserved, respectively. The result is presented
in Figure 1.5 where the solid line corresponds to the parameter estimates for each sub-
sample and the dashed line to the overall maximum likelihood estimate (MLE) using all
observations. For each estimate, the point-wise 95% confidence interval approximated by
[θ̂MLE − 2σ̂, θ̂MLE + 2σ̂] is given in dark grey for σobserved and light grey for σexpected. For
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ν τ 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80

3 ∂2ρ 1.78 1.83 2.06 2.25 2.49 3.25 4.58 7.10 12.62 28.47
100 · ∂2ν 0.73 0.73 0.73 0.73 0.72 0.72 0.71 0.70 0.68 0.67
100 · ∂ρ∂ν -0.38 -0.78 -1.66 -2.17 -2.77 -4.35 -6.85 -11.35 -20.95 -48.27

5 ∂2ρ 1.94 2.00 2.27 2.48 2.77 3.66 5.21 8.15 14.59 33.08
100 · ∂2ν 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12
100 · ∂ρ∂ν -0.13 -0.26 -0.55 -0.73 -0.93 -1.46 -2.29 -3.80 -7.01 -16.16

10 ∂2ρ 2.14 2.21 2.52 2.78 3.12 4.16 5.99 9.46 17.05 38.84
100 · ∂2ν 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
100 · ∂ρ∂ν -0.02 -0.05 -0.11 -0.14 -0.18 -0.28 -0.44 -0.73 -1.35 -3.12

Table 1.2: t-copula: Fisher information with respect to Kendall’s τ for selected values of
τ and degrees of freedom ν.

comparison, non-parametric bootstrap estimates are given (dotted).
Dependence between the bank and the insurer was not constant over the observation

period. However, the variability is less significant than one might guess from an initial
analysis since the MLE for the overall dataset is still within the 95% confidence band for
most windows. In particular, our analysis does not support the assumption of time-varying
degrees of freedom. The estimates obtained from the observed Fisher information yield
results close to those obtained from the expected information. This supports their use
for the routinely calculation of standard errors in practical applications. With increasing
window size, also the estimates obtained from the non-parametric bootstrap coincide
with those from the information matrix for large parts of the data. The deviation at
the beginning and the end of the observation period, where the expected and observed
information yield sharper bounds than the bootstrap, could be an indicator that the pure
t-copula is misspecified. While we did not find strong evidence for time-varying parameters
in our analysis, this suggest to investigate models where the copula family is allowed to
switch (e.g. Stöber and Czado 2012) in further research.
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Figure 1.5: Rolling window analysis with window size 100 (left), 200 (middle) and 400
(right). The x-axis indicates the endpoint of each window (format: MM/YY), with the
corresponding parameter estimate on the y-axis, i.e. the dependence parameter ρ (top
panel) and the degrees-of-freedom parameter ν. The dashed horizontal line in each plot
is the MLE corresponding to the whole data set (overall MLE).
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Chapter 2

Regular vine copula models1

Since high dimensional problems and modeling issues become more and more relevant
for practical purposes the concept of (multivariate) copulas becomes highly attractive
for statisticians. The possibility to separate the modeling of the margins and the joint
dependence structure, as discussed in Chapter 1, are very advantageous and allows for
more flexibility.

But common multivariate parametric copulas such as the multivariate Gauss or Clay-
ton copula are limited in their flexibility in higher dimensions. Different bivariate depen-
dence properties such as tail dependence can not be captured. The pair-copula construc-
tion (PCC) circumvents these problems by making use of the highly flexible bivariate
copulas as building blocks in a decomposition of the multivariate copula distribution into
bivariate unconditional and conditional copulas. This main idea goes back to the paper
of Joe (1996). He developed “a class of m-variate distributions with given [univariate]
margins and m(m− 1)/2 dependence parameters”. Although he did not call it a PCC or
a vine it was what we call a D-vine.

The second great advantage of Joe’s construction was the integral free expression of
the density corresponding to his distribution construction. This is possible since the cal-
culation of the required conditional distribution functions as arguments of the conditional
copula can be derived as derivative of a copula with respect to the second argument. This
is that we will call later h-function. This property makes PCCs computational attrac-
tive compared to other (graphical) ways of dependence modeling such as (non-Gaussian)
directed acyclic graphs (DAGs) (see for example Bauer et al. 2012).

The graphical illustration of the construction as a set of nested trees and the term
“vine” goes back to the papers of Bedford and Cooke (2001, 2002). They developed
the regular vine (R-vine) as a set of connected trees specifying the construction of the
distribution. Their figure of a D-vine had the shape of a vine, giving the name of the
class. Further, they derived a general expression for the density of a PCC distribution. In
particular, they discussed the special case of a multivariate normal distribution formulated
as a vine. Here, the partial correlations derived from the correlations matrix specify the
vine copula parameters demanding bivariate Gaussian copulas as building blocks.

The statistical inference for PCCs was developed in Aas et al. (2009). Primarily the

1The contents of this chapter is based on J. Stoeber and U. Schepsmeier (2013), Estimating standard
errors in regular vine copula models, forthcoming in Computational Statistics.

25
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arbitrary selection of bivariate copula families as building blocks allows for high flexibility
in modeling dependence structures in multivariate data sets. This is illustrated by them
in an application to financial data preparing the basis for further applications (see for
example Brechmann and Czado 2013). Since then the theory of vine copulas arising from
the PCC were studied in the literature. Inference, selection methods and algorithms are
for example investigated in Czado (2010), Min and Czado (2010, 2012), Brechmann et al.
(2012) and Czado et al. (2012). The asymptotic theory we will use in Chapter 3 was
developed and applied in Hobæk Haff (2013), Stöber and Schepsmeier (2013) and Dißmann
et al. (2013), while extensions to discrete data or discrete-continuous data are proposed
in Panagiotelis et al. (2012) and Stöber et al. (2012).

In the next section we will define PCCs and regular vines in detail and give in Section
2.2 the computation of the likelihood forming the basis for the subsequent chapters. In
Section 2.3 the developed R-packages are presented containing the main functionality of
R-vine inference, estimation, simulation and model selection.

2.1 Pair-copula constructions

Pair-copula constructions are a very flexible way to model multivariate distribution func-
tions with bivariate copulas. The model is based on the decomposition of the d-dimensional
density into d(d − 1)/2 bivariate copula densities, including d − 1 unconditional and
(d − 2)(d − 1)/2 conditional ones. Bedford and Cooke (2001, 2002) introduced for the
organization of the construction a set of nested trees Ti = (Vi, Ei). Here Vi denotes the
nodes while Ei represents the set of edges. This process was called by Aas et al. (2009) a
pair-copula construction.

Let F1, . . . , Fd be the marginal distribution functions of the random variablesX1, . . . , Xd.
The corresponding marginal density functions are denoted as f1, . . . , fd. Following the no-
tation of Czado (2010) with a set of bivariate copula densities
B =

{
cj(e),k(e)|D(e)|e ∈ Ei, 1 ≤ i ≤ d− 1

}
corresponding to edges j(e), k(e)|D(e) in Ei, for

1 ≤ i ≤ d− 1 a valid d-dimensional density can be constructed by setting

f1,...,d(x1, . . . , xd) =

d∏

k=1

fk(xk)
d−1∏

i=1

∏

e∈Ei

cj(e),k(e)|D(e)(Fj(e)|D(e)(xj(e)|xD(e)), Fk(e)|D(e)(xk(e)|xD(e))).
(2.1)

Here, xD(e) is the subvector of x determined by the set of indices in D(e), which is called
conditioning set while the indices j(e) and k(e) form the conditioned set. The required
conditional cumulative distribution functions (cdf) Fj(e)|D(e)(xj(e)|xD(e)) and
Fk(e)|D(e)(xk(e)|xD(e))) can be calculated as the first derivative of the corresponding copula
cdf with respect to the second copula argument (see Joe 1996).

F (xj(e)|xD(e)) =
∂Cj(e),j′(e)|D(e)\j′(e)(F (xj(e)|xD(e)\j′(e)), F (xj′(e)|xD(e)\j′(e)))

∂F (xj′(e)|xD(e)\j′(e))

=: hj(e),j′(e)|D(e)\j′(e)(F (xj(e)|xD(e)\j′(e)), F (xj′(e)|xD(e)\j′(e)))

(2.2)

For regular vines there is an index j′(e) in the conditioning set of indices given by edge
e, such that the copula Cj(e),j′(e);D(e)\j′(e) is in the set of pair-copulas B (Dißmann et al.
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2013). Doing so, we assume that the copula Cj(e),j′(e);D(e)\j′(e) does not depend on the
values xD(e)\j′(e), i.e. on the conditioning set without the chosen variable xj′(e). This is
called the simplifying assumption. In the literature Expression (2.4) is often denoted as a
h-function. A PCC is called an R-vine copula if all marginal densities are uniform.

But it is often more convenient to define and work with copula data. Therefore, assume
known margins F1, . . . , Fd for the random variables X1, . . . , Xd and base the notation on
copula data u = (u1, . . . , ud), with ui := Fi(xi), i = 1, . . . , d. Here xi is the observed value
of Xi. If the margins Fi, i = 1, . . . , d are unknown, they can be estimated empirically. As
proposed by Genest et al. (1995) these estimates can be used to transform the data x to
an approximate sample u := (u1, . . . ,un) in the copula space.

On the copula scale the vine copula density is defined as

c1,...,d(u) =
d−1∏

i=1

∏

e∈Ei

cj(e),k(e);D(e)(Cj(e)|D(e)(uj(e)|uD(e)), Ck(e)|D(e)(uk(e)|uD(e))). (2.3)

and the corresponding h-function as

C(uj(e)|uD(e)) =
∂Cj(e),j′(e);D(e)\j′(e)(C(uj(e)|uD(e)\j′(e)), C(uj′(e)|uD(e)\j′(e)))

∂C(uj′(e)|uD(e)\j′(e))

=: hj(e),j′(e);D(e)\j′(e)(C(uj(e)|uD(e)\j′(e)), C(uj′(e)|uD(e)\j′(e))).

(2.4)

Sometimes the conditional copula C(u|v) is also denoted as F (u|v) since C is a distribu-
tion function. In the next section as well as in Chapter 3 we will use the F -notation for
better distinction between the copula and its arguments. For example in the evaluation
of the copula density c2,3;1(F (u2|u1), F (u3|u1)) small c denotes the copula density and its
arguments are denoted in the F -notation. Throughout this thesis we will work on the
copula scale, i.e. assuming known margins.

Example 2.1 (3-dim pair-copula construction)
Let x1 ∼ F1, x2 ∼ F2 and x3 ∼ F3. Then we have on the original scale

f(x1, x2, x3) = f3(x3)f2(x2)f1(x1) (marginals)

× c12(F1(x1), F2(x2))c23(F2(x2), F3(x3)) (unconditional pairs)

× c13;2(F1|2(x1|x2), F3|2(x3|x2)|x2) (conditional pair)

simpli.
=

assump.
f3(x3)f2(x2)f1(x1)c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))

× c13;2(F1|2(x1|x2), F3|2(x3|x2))

The conditional cdfs such as F1|2(x1|x2) and F3|2(x3|x2) in the example can be recursively
calculated using the h-function (see Expression (2.2)).

On the copula scale, i.e. let u1 = F1(x1), u2 = F2(x2) and u3 = F3(x3), and call
u1, u2 and u3 copula data, the corresponding pair-copula construction under the simplifying
assumption is

c123(u1, u2, u3) = c12(u1, u2)c23(u2, u3)c13;2(C1|2(u1|u2), C3|2(u3|u2)).

where Ci,j denotes the conditional distribution function of Ui given Uj.
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Morales-Nápoles (2010) showed that there is a huge number of possible constructions.
A set of nested trees is used to illustrate and order all these possible constructions. Each
edge in a tree corresponds to a pair-copula in the PCC, while the nodes identify the pair-
copula arguments. Bedford and Cooke (2001) formulated the following conditions, which
a sequence of trees V = (T1, . . . , Td−1) has to fulfill to form an R-vine.

1. T1 is a tree with nodes V1 = {1, . . . , d} and edges E1.

2. For i ≥ 2, Ti is a tree with nodes Vi = Ei−1 and edges Ei.

3. If two nodes in Ti+1 are joint by an edge, the corresponding edges in Ti must share
a common node (proximity condition).

In our notation we follow Dißmann et al. (2013) by denoting the vine structure with
V , the set of bivariate copulas with B(V) and the corresponding copula parameter with
θ(B(V)). A specified regular vine copula we denote by RV (V ,B(V),θ(B(V))).

The special cases of an R-vine tree structure V are line like and star structures of the
trees. The first one is called drawable vine (D-vine) in which each node has a maximum
degree of 2, while the second one is a canonical vine (C-vine) with a root node of degree
d − 1. All other nodes, so called leafs, have degree 1. D-vines are for example studied in
Aas et al. (2009) or Min and Czado (2010). An introduction to the statistical inference
and model selection for C-vines are given for example in Czado et al. (2012). Examples
of a five-dimensional C-vine and D-vine are illustrated in Figure 2.1.

2

1 3

4

5

1,2

1,3

1,4

1,5
T1

1,3

1,2 1,4

1,5

2,3|1

2,4|1

2,5|1 T2

2,3|1 2,4|1

2,5|1

3,4|12

3,5|12 T3

3,4|12 3,5|12
4,5|123

T4

1 2 3 4 5
1,2 2,3 3,4 4,5

T1

1,2 2,3 3,4 4,5
1,3|2 2,4|3 3,5|4

T2

1,3|2 2,4|3 3,5|4
1,4|23 2,5|34

T3

1,4|23 2,5|34
1,5|234

T4

Figure 2.1: Examples of five-dimensional C- (left panel) and D-vine trees (right panel)
with edge indices.

The pair-copula selection for an R-vine copula can be done by Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) or bivariate goodness-of-fit tests,
while for the structure selection at least two algorithms are available in the literature.
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Dißmann et al. (2013) favor a maximum spanning tree (MST) algorithm maximizing
absolute Kendall’s τ tree-wise, whereas Gruber and Czado (2012) follow a Bayesian ap-
proach. They propose an algorithm to select the tree structure as well as the pair-copula
families in a regular vine copula model jointly in a tree-by-tree reversible jump MCMC
approach. Figure 2.2 illustrates the tree structure of a 5-dimensional R-vine.

T1

1

2

3

4 5

1,2 2,
3

2,
4

3,5

T2

1,2 2,3

2,4 3,5

1, 3|2

1,4|2

2,5|3

T3

1, 3|2 1, 4|2

2, 5|3

1, 5|2, 3

3, 4|1, 2

T4

1, 5|2, 3

3, 4|1, 2

4,5|1,2,3

Figure 2.2: An R-vine tree sequence in 5 dimensions with edge indices corresponding to
the pair-copulas in an R-vine copula model.

2.2 Computation of the R-vine likelihood

In order to calculate the (log-) likelihood function of an R-vine model, we have to develop
an algorithmic way to evaluate the copula terms in the decomposition (2.3) with respect
to the appropriate arguments. To simplify notation, we will assume that all copulas under
investigation are symmetric in their arguments, such that we do not have to distinguish
between the h-functions hj(e),j′(e)|D(e)\j′(e) and hj′(e),j(e)|D(e)\j′(e) given in Equation (2.4).
While this is valid for most common parametric copula families, we can easily drop this
assumption later. For calculation purposes it is convenient to use matrix notation which
has been introduced by Morales-Nápoles et al. (2010), Dißmann (2010) and Dißmann
et al. (2013). It stores the edges of an R-vine tree sequence in the following way: Consider
the R-vine in Figure 2.2 which can be described in matrix notation as follows:

M =




5
4 4
1 3 3
2 1 1 2
3 2 2 1 1



. (2.5)

As an illustration for how the R-vine matrix is derived from the tree sequence in Figure
2.2 and vice versa, let us consider the second column of the matrix. Here we have 4 on
the diagonal, and 3 as a second entry. The set of remaining entries below 3 is {1, 2}. This
corresponds to the edge 4, 3|1, 2 in T3 of Figure 2.2. Similarly, the edge 4, 1|2 corresponds
to the third entry 1 in the third row and 4, 2 to the fourth and last entry. Note that the
diagonal of M is sorted in descending order which can always be achieved by reordering
the node labels. From now on, we will assume that all matrices are ”normalized” in this



30 CHAPTER 2. REGULAR VINE COPULA MODELS

way as this allows to simplify notation. Therefore we have mi,i = d− i+ 1. For the special
cases of C-Vines and D-Vines, the matrices in 5 dimensions are

MC−V ine =




5
4 4
3 3 3
2 2 2 2
1 1 1 1 1




and MD−V ine =




5
1 4
2 1 3
3 2 1 2
4 3 2 1 1



.

In the following, we will introduce some additional notation required to develop pro-
grammable algorithms for R-vine models. For simplicity, we consider the 5-dimensional
example. Similar to the way the R-vine tree sequence is given in M , we can store the
copula families B and the corresponding parameters θ.

B =




B5,m2,1|m3,1,m4,1,m5,1

B5,m3,1|m4,1,m5,1 B4,m3,2|m4,2,m5,2

B5,m4,1|m5,1 B4,m4,2|m5,2 B3,m4,3|m5,3

B5,m5,1 B4,m5,2 B3,m5,3 B2,m5,4




=




B5,4|1,2,3
B5,1|2,3 B4,3|1,2
B5,2|3 B4,1|2 B3,1|2
B5,3 B4,2 B3,2 B2,1



∈ R5×5

θ =




θ5,m2,1|m3,1,m4,1,m5,1

θ5,m3,1|m4,1,m5,1 θ4,m3,2|m4,2,m5,2

θ5,m4,1|m5,1 θ4,m4,2|m5,2 θ3,m4,3|m5,3

θ5,m5,1 θ4,m5,2 θ3,m5,3 θ2,m5,4




=




θ5,4|1,2,3
θ5,1|2,3 θ4,3|1,2
θ5,2|3 θ4,1|2 θ3,1|2
θ5,3 θ4,2 θ3,2 θ2,1



∈ R5×5

To evaluate the (log-) likelihood function (Equation (2.3)) of an R-vine model, we
require the conditional distributions Fj(e)|D(e) and Fk(e)|D(e), evaluated at a d-dimensional
vector of observations (u1, . . . , ud), as arguments of the copula density cj(e),k(e);D(e) cor-
responding to edge e. We will store also these values in two matrices. In particular, we
calculate



2.2. COMPUTATION OF THE R-VINE LIKELIHOOD 31

V direct =




. . .

. . . F (u4|um3,2 , um4,2 , um5,2)

. . . F (u4|um4,2 , um5,2) F (u3|um4,3 , um5,3)

. . . F (u4|um5,2) F (u3|um5,3) F (u2|um5,4)

. . . u4 u3 u2 u1




(2.6)

V indirect =




. . .

. . . F (um3,2|um4,2 , um5,2 , u4)

. . . F (um4,2|um5,2 , u4) F (um4,3|um5,3 , u3)

. . . F (um5,2|u4) F (um5,3|u3) F (um5,4|u2)

. . . um5,2 um5,3 um5,4



. (2.7)

Note that for each pair-copula term cj(e),k(e);D(e) in (2.3) the corresponding terms of
V direct and V indirect involving Fj(e)|D(e) and Fk(e)|D(e) can be easily determined by applying
(2.4). When being able to evaluate

c4,m3,2;m4,2,m5,2(F (u4|um4,2 , um5,2), F (um3,2|um4,2 , um5,2))

we do also obtain

F (u4|um6,5 , um7,5 , um8,5) = (∂1C)4,m3,2|m4,2,m5,2(F (u4|um4,2 , um5,2), F (um3,2|um4,2 , um5,2)),

F (um3,2|u4, um4,2 , um5,2) = (∂2C)4,m3,2|m4,2,m5,2(F (u4|um4,2 , um5,2), F (um3,2 |um4,2 , um5,2)),

where (∂1C) and (∂2C) denote partial derivatives with respect to the first and second
argument, respectively. With all such conditional distribution functions being available
for e.g. T3, the copula terms in (2.3) corresponding to the next tree T4 can be evaluated.
Following the notation in (2.4), we write h(·, ·|Bk,i, θk,i) for the conditional distribution
function corresponding to a parametric family Bk,i with parameter θk,i, where Bk,i and
θk,i denote the (k, i)th element of the matrices B and θ, respectively. Exempli gratia,

F (u4|u3, u1, u2) = h(F (u4|u1, u2), F (u3|u1, u2)|B4,3|1,2, θ4,3|1,2)

= h(vdirect3,2 , vdirect3,3 |B6,5, θ6,5).

The only question which is left to solve for the computation of the likelihood is whether
the arguments in each step (i.e. F (u4|u1, u2), F (u3|u1, u2) in the example) have to be
picked from the matrix V direct or V indirect. For this, we exploit the descending order of the
diagonal of M . From the structure of V direct, we see that the first argument of the copula
term with family Bk,i and parameter θk,i is stored as the (k, i)th element vdirect

k,i of V direct.

To locate the second entry, let us denote M̃ = (m̃k,i|i = 1, . . . , d; k = i, . . . , d), where
m̃k,i := max{mk,i, . . . ,md,i} for all i = 1, . . . , d and k = i, . . . , d. The second argument,
which is F (umk,i|mi,i,mk+1,i, . . . ,md,i) must be in column (d−m̃k,i+1) of V direct or V indirect

by the ordering of variables. If m̃k,i = mk,i, the conditioning variable umk,i has the biggest
index and thus the entry we are looking for must be in V direct. Similarly, if m̃k,i > mk,i,
the variable with the biggest index is in the conditioning set and we must choose from
V indirect. In particular, for a C-Vine it always holds that m̃k,i = mk,i and we choose from
V direct while for the D-vine m̃k,i > mk,i and we must choose from V indirect.
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Example 2.2 (Selection of arguments for c4,3|1,2)
As an example for how this procedure selects the correct arguments for copula terms in
R-vine let us consider the copula c4,3|1,2 in our example distribution. The corresponding
parameter θ4,3|1,2 is stored as θ3,2, thus we are in the case where i = 2 and k = 3. Since
m̃3,2 = max{m3,2,m4,2,m5,2} = max{3, 1, 2} = 3 and m̃3,2 = 3 = m3,2 we select as
second argument the entry vdirectk,(d−m̃k,i+1) = vdirect3,3 = F (u3|u1, u2). Together with vdirect3,2 =

F (u4|u1, u2), which we have already selected, this is the required argument.

These sequential selections and calculations are performed in Algorithm 2.2.1, which
was developed in Dißmann (2010) and Dißmann et al. (2013).

Algorithm 2.2.1 Log-likelihood of an R-vine specification.

Require: d-dimensional R-vine specification in matrix form, i.e., M , B, θ, set of obser-
vations (u1, . . . , ud).

1: Set L = 0.
2: Let V direct = (vdirect

k,i |i = 1, . . . , d; k = i, . . . , d).

3: Let V indirect = (vindirect
k,i |i = 1, . . . , d; k = i, . . . , d).

4: Set (vdirect
d,1 , vdirect

d,2 , . . . , vdirect
d,d ) = (ud, ud−1, . . . u1).

5: Let M̃ = (m̃k,i|i = 1, . . . , d; k = i, . . . , d) where m̃k,i = max{mk,i, . . . ,md,i} for all
i = 1, . . . , d and k = i, . . . , d.

6: for i = d− 1, . . . , 1 do {Iteration over the columns of M}
7: for k = d, . . . , i+ 1 do {Iteration over the rows of M}
8: Set z1 = vdirect

k,i

9: if m̃k,i = mk,i then
10: Set z2 = vdirect

k,(d−m̃k,i+1).
11: else
12: Set z2 = vindirect

k,(d−m̃k,i+1).
13: end if
14: Set L = L+ c(z1, z2|Bk,i, θk,i).
15: Set vdirect

k−1,i = h(z1, z2|Bk,i, θk,i) and vindirect
k−1,i = h(z2, z1|Bk,i, θk,i).

16: end for
17: end for
18: return L

2.3 Software

There are two packages CDVine and VineCopula publicly available for the selection,
estimation and validation of vine copula models based on the statistical software R (R
Development Core Team 2013) given on the Comprehensive R Archive Network (CRAN,
http://cran.r-project.org/). While the R-package CDVine of Brechmann and Schep-
smeier (2013) provides the functionality for the special classes of C- and D-vines, the
R-package VineCopula of Schepsmeier et al. (2012) is available for R-vines.

Since vine copula models are based on bivariate copulas as building blocks, both
packages contain tools for bivariate exploratory data analysis and inference of a wide
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range of bivariate copula families. In particular, we provide bivariate copula families from
the two major classes of elliptical and Archimedean copulas as introduced in Chapter 1.
Graphical tools as contour plots, λ-functions, K-plots or Chi-plots are included for copula
selection. They assist the automatized Akaike information criterium (AIC) or Bayesian
information criterium (BIC) based methods. Furthermore, copula selection or verification
are possible with several implemented goodness-of-fit tests returning the corresponding
test statistic and a (bootstrapped) p-value. Dependence measures such as Kendall’s τ or
tail dependence can be calculated, as well, to analyze and characterize bivariate copulas.
It is important to know whether a particular parametric copula might be suitable for a
given data set (Joe 1997).

But the main functionality is focused on vine copula models. The packages enable
the user to facilitate vine copula inference. Parameter estimation and model selection
as well as sampling algorithms are available. Therefore, the recursive algorithm of the
log-likelihood is implemented in a fast and optimized manner for maximum likelihood es-
timation (MLE). A much faster but only approximating approach is sequential estimation
(Aas et al. 2009), which is also included. It is typically used to generate starting values
for the MLE. Furthermore, there is an extensive functionality for model verification and
model comparison. The tests of Vuong (1989) and Clarke (2007), introduced for non-
nested models, can be applied to vines as well as classical Akaike or Bayesian information
criteria.

Recently, the possibility to calculate the Hessian matrix or the gradient are imple-
mented thus providing estimated standard errors of the vine copula parameters as we will
discuss in Chapter 3. Verification of a given or estimated vine copula model by goodness-of
fit tests will also be available in the near future (see Chapter 4).

In the next two subsection we will discuss methods for bivariate data analysis and for
statistical inference of R-vine copula models in more detail. For explicit documentation of
each function we refer to the extensive manuals of CDVine and VineCopula, and the
vignette of Brechmann and Schepsmeier (2013).

Bivariate data analysis

In both packages several bivariate copula families are included for bivariate analysis as well
as for multivariate analysis using vine copulas. Beside the four mentioned Archimedean
copulas, Clayton, Gumbel, Frank and Joe, the packages provide functionality for four
Archimedean copula families with two parameters, namely the Clayton-Gumbel, the Joe-
Gumbel, the Joe-Clayton and the Joe-Frank. Following Joe (1997) we simply refer to
them as BB1, BB6, BB7 and BB8, respectively. Their more flexible structure allow for
different non-zero lower and upper tail dependence coefficients. As boundary cases they
include the Clayton and Gumbel, the Joe and Gumbel, the Joe and Clayton as well as
the Joe and Frank copula, respectively.

In addition to these families, we also implemented rotated versions of the Clayton,
Gumbel, Joe and the BB families. By rotating them by 180 degrees, one obtains the
corresponding survival copulas. In contrast, rotation by 90 and 270 degrees allows for
the modeling of negative dependence which is not possible with the standard non-rotated
versions. In particular, the distribution functions C90, C180 and C270 of a copula C rotated
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Figure 2.3: Samples from Clayton copulas rotated by 0, 90, 180 and 270 degrees with
parameters corresponding to Kendall’s τ values of 0.5 for positive dependence and −0.5
for negative dependence.

by 90, 180 and 270 degrees, respectively, are given as follows:

C90(u1, u2) = u2 − C(1− u1, u2),

C180(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2),

C270(u1, u2) = u1 − C(u1, 1− u2).

To illustrate rotated bivariate Archimedean copulas, we simulate samples of size N = 500
from Clayton copulas rotated by 0, 90, 180 and 270 degrees, respectively. Parameters
are chosen according to Kendall’s τ values of 0.5 for positive dependence and -0.5 for
negative dependence. Corresponding scatter plots are shown in Figure 2.3. The first plot
corresponds to the standard Clayton copula modeling positive dependence and lower tail
dependence. The survival copula in the third plot also covers the positive Kendall’s τ
range put has upper tail dependence. The rotated versions of the Clayton copula in the
second and forth plot model negative dependence. Again different tail behavior can be
captured by rotation.

The main functions for exploratory data analysis, simulation, selection and estimation
of bivariate copulas are:

• BiCopMetaContour gives a bivariate contour plot corresponding to a bivariate meta
distribution with different margins and specified bivariate copula and parameter
values or creates corresponding empirical contour plots based on bivariate copula
data.

• BiCopSim simulates from a given parametric bivariate copula.

• BiCopGofTest calculates goodness-of fit tests for bivariate copulas, either based
on White’s information matrix equality (White 1982) as introduced by Huang and
Prokhorov (2013) or based on Kendall’s process (Genest et al. 2009). It computes
the test statistics and calculates bootstrapped p-values.

• BiCopSelect selects an appropriate bivariate copula family for given bivariate cop-
ula data using one of a range of methods. As selection criterion either AIC or BIC
can be used.
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• BiCopEst estimates the parameter(s) for a bivariate copula using either inversion of
empirical Kendall’s τ for single parameter copula families or maximum likelihood
estimation for one and two parameter copula families.

To calculate the maximum likelihood estimates of the copula parameters in a fast and
efficient way the partial derivatives with respect to the copula parameter(s) or arguments
of several copula families are implemented. In particular, the derivatives of the elliptical
bivariate copulas Gauss and Student’s t as well as of the one-parametric Archimedean cop-
ulas calculated in Chapter 1 are available in the functions BiCopDeriv and BiCopDeriv2.
Since the bivariate derivatives of the copula density as well as of the h-function form
the building blocks of the R-vine score function and Hessian matrix these are also imple-
mented in BiCopHfuncDeriv and BiCopHfuncDeriv2. They provide the first and second
derivatives of a given conditional parametric bivariate copula (h-function; BiCopHfunc)
with respect to its parameter(s) or one of its arguments, respectively. See therefor also
Section 1.3.3.

Statistical inference for vine copulas

The statistical inference for regular vines is provided in the package VineCopula on
which we will concentrate here. Most of the functions explained in the following are
also available for C- and D-vine in the package CDVine. Brechmann and Schepsmeier
(2013) gave a detailed introduction for the handling and the functionality of the CDVine
package, which follows a slightly different notation than the VineCopula package.

As mentioned above it is convenient for calculation purposes to use the matrix notation
for R-vines as introduced by Morales-Nápoles et al. (2010), Dißmann (2010) and Dißmann
et al. (2013). The function RVineMatrix creates an R-vine matrix object which encodes
an R-vine copula model. It contains the R-vine structure matrix M , denoted as Matrix,
and three further matrices identifying the pair-copula families B (family) utilized and
their parameter matrices θ1 (par) and θ2 (par2). The RVineMatrix-object forms the basis
for all R-vine related functions, for example the simulation from a given R-vine copula
model (RVineSim) or the calculation of the log-likelihood (RVineLogLik).

Having decided the structure of the R-vine to be used, one has to select pair-copula
families for each (conditional) pair of variables or using the function RVineCopSelect.
Based on BiCopSelect, this function selects for a given copula data set appropriate
bivariate copula families from a set of possible copula families according to the AIC
(default) or the BIC criterion. This copula selection proceeds tree by tree, since the con-
ditional pairs in trees 2, ..., d−1 depend on the specification of the previous trees through
the h-functions. Hence, initially R-vine copula models are typically fitted sequentially by
proceeding iteratively tree by tree and thus only involving bivariate estimation for each in-
dividual pair-copula term. This can be established using the function RVineSeqEst which
internally calls the function BiCopEst.

Even though these sequential estimates often provide a good fit, one typically is inter-
ested in maximizing the (log-)likelihood of a vine copula specification, which is facilitated
in RVineMLE using the sequential estimates as initial values. The log-likelihood of a vine
copula for given copula data, pair-copula families and parameters can be obtained using
the function RVineLogLik which implements the algorithm given in Algorithm 2.2.1.
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If the vine structure has to be selected as well given a d-dimensional copula data
set, one can apply the function RVineStructureSelect. It performs the maximum span-
ning tree algorithm suggested by Dißmann et al. (2013) maximizing the absolute sum of
Kendall’s τ tree by tree. In particular, the following optimization problem is solved for
each tree

max
∑

edges eij in spanning tree

|τ̂ij|,

where τ̂ij denote the pairwise empirical Kendall’s taus and a spanning tree is a tree on
all nodes. The setting of the first tree selection step is always a complete graph. For
subsequent trees, the setting depends on the R-vine construction principles, in particular
on the proximity condition. The special case of a C-vine can be selected too, using the
algorithm of Czado et al. (2012). Tree structures are determined and appropriate pair-
copula families are selected using BiCopSelect and estimated sequentially.

The vine tree structure can be plotted with RVineTreePlot. This function plots one
or all trees of a given R-vine copula model. The edges can be labeled with the pair-copula
families, its parameters, the theoretical or empirical Kendall’s τ values, or the indices of
(conditioned) pair of variables identified by the edges. For an example see Figure 4.12 in
Chapter 4 illustrating the first example.

In the next chapter we will introduce the estimation of standard errors in regular vine
copula models and therefore the first and second derivatives of the R-vine log-likelihood
are needed. Of cause this functionality is also included in the package by the R-functions
RVineStdError, RVineGradient and RVineHessian, respectively. Note that the ordering
of the gradient and Hessian matrix follows the ordering of the R-vine matrix. The gradient
starts at the lower right corner of the R-vine matrix and goes column by column to the left
and up, i.e. the first entry of the gradient is the last entry of the second last column of the
parameter matrix followed by the last entry of the third last column and the second last
entry of this column. If there is a copula family with two parameters, i.e. the t-copula,
the derivative with respect to the second parameter is at the end of the gradient vector in
order of their occurrence. Since derivatives of the bivariate two parameter Archimedean
copulas, i.e. BB1, BB6, BB7, BB8 and their rotated versions are not implemented the
gradient and Hessian matrix is not available for R-vine copula models with BB copulas.

The function RVineStdError returns two matrices of standard errors corresponding to
the parameter matrices given the Hessian matrix. Note that the negative Hessian matrix
has to be positive semidefinite to calculate the covariance matrix as inversion of the
observed Fisher information, i.e. the Hessian matrix.

Furthermore, the R-vine goodness-of-fit tests proposed in Chapter 4 can be calculated
too, using the function RVineGofTest. Its function argument method determines which
goodness-of-fit method is used. Further function arguments like statistic or B manage
the different sub-methods and the calculation of bootstrapped p-values, respectively.

The main functionality is coded in C to speed up the calculation and R is used as
convenient user interface. Both packages depend on the packages igraph (Csardi 2010;
Csardi and Nepusz 2006) and mvtnorm (Genz et al. 2011; Genz and Bretz 2009). For the
calculation of the Anderson-Darling test statistics for the goodness-of-fit tests of Chapter
4 the R-package ADGofTest (Bellosta 2011) is required.
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For reproducibility we want to mention that all the calculations given in this thesis are
executed either on R 2.13.1 or R 2.15.0. The results are, to our knowledge, not affected
by the different versions or operating systems (UNIX or Windows). Most computations
have been performed using VineCopula 1.1. But unpublished pre-releases are used too.
The numerical calculations in Section 1.3.3, the simulation studies in Section 3.3, 4.1.3
and 4.4, and the examples in Section 1.3.4, 3.4 and 4.5 were performed on a Linux cluster
supported by DFG grant INST 95/919-1 FUGG.
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Chapter 3

Estimating standard errors in
regular vine copula models1

In the last chapter we introduced the very flexible class of regular vine copula models
for complex multivariate data. However, while it is a standard exercise in multivariate
statistics to compute the uncertainty incorporated in parameter point estimates for classes
like the multivariate normal distribution, this is often not possible for the more complex
models. But these advanced models are required to accurately capture the dependence
in real-world multivariate data. Despite the wide range of applications of R-vine copula
based models in practice, there is a surprising scarcity in the literature considering the
uncertainty in point estimates of the copula parameters. It is well known that maximum
likelihood estimates θ̂n of the p-dimensional vine parameter vector θ will be strongly
consistent and asymptotically normal under regularity conditions on the bivariate building
blocks (see Hobæk Haff 2013), i.e.

√
n I(θ)1/2

(
θ̂n − θ

)
d−→ N(0, Ip) as n→∞. (3.1)

Here, n is the number of (i.i.d.) observations, Ip the p× p identity matrix, and

I(θ) = −Eθ
[( ∂2

∂θi∂θj
l(θ|X)

)
i,j=1,...,p

]
= Eθ

[( ∂

∂θi
l(θ|X) · ∂

∂θj
l(θ|X)

)
i,j=1,...,p

]
, (3.2)

denotes the Fisher Information Matrix with l(θ|x) being the log-likelihood of parameter
θ for one multivariate observation x. For a given data set, we can replace the expectation
in Equation (3.2) by taking the sample mean to obtain the observed information. Given
the fact that full maximum likelihood inference is numerically difficult when non-uniform
marginal distributions are involved, also two-step procedures have been developed.

In particular, Joe and Xu (1996) employ the probability integral transform using
parametric marginal distributions which are fitted in a first step to obtain uniform (copula)
data on which the copula is estimated using ML in a second step. As an alternative, Genest
et al. (1995) proposed to use non-parametric rank transformations in the first step. While
these methods are computationally more tractable, they are asymptotically less efficient.

1The contents of this chapter is based on J. Stoeber and U. Schepsmeier (2013), Estimating standard
errors in regular vine copula models, forthcoming in Computational Statistics.
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Following Hobæk Haff (2013), we can decompose the asymptotic covariance matrix
for the estimates of dependence parameters θ in a marginal and a dependence part:

V θ,two−step = V dependence + V margins,

where V dependence,ML = I(θ)−1 for ML estimation and the second part is zero only when
there is no uncertainty about the margins. Further, also the estimation of copula param-
eters can be performed in a tree by tree fashion. Denote the log-likelihood arising from
parameters in tree i by

li(θi|x) :=
∑

e∈Ei

log
(
cj(e),k(e)|D(e)(Fj(e)|D(e)(xj(e)|xD(e)), Fk(e)|D(e)(xk(e)|xD(e))|θe)

)
,

where the set of components of θi is {θe|e ∈ Ei}. In particular θ1 is estimated by maxi-
mizing l1(θ1|x) and the obtained estimates θ̂1 are used to calculate the arguments of the
copula functions in l2(θ2|x). Now, we maximize l2(θ2|x) in θ2 to obtain θ̂2 and proceed
until all parameters are estimated (for an algorithm see Stöber and Czado 2012). This
implies that li also implicitly depends on the parameters θj for j < i through its argu-

ments, i.e. li(θi|x) = li(θi, θ̂i−1, . . . , θ̂1|x). The parameter estimates obtained from this
sequential procedure have asymptotical covariance

V dependence,seq. = J −1
θ Kθ

(
J −1
θ

)T
, (3.3)

where J θ involves second derivatives of the R-vine log-likelihood function and Kθ involves
elements of the score function, see Hobæk Haff (2013). To be more precise, Kθ and J θ

are defined as

Kθ =




Kθ,1,1
...

. . .

0T · · · Kθ,d−2,d−2

0T · · · 0T Kθ,d−1,d−1


 , (3.4)

J θ =




J θ,1,1
...

. . .

J θ,d−2,1 · · · J θ,d−2,d−2

J θ,d−1,1 · · · J θ,d−1,d−2 J θ,d−1,d−1


 , (3.5)

with Kθ,i,j = E

[(
∂li(θi,...,θ1|X)

∂θi

)(
∂lj(θj ,...,θ1|X)

∂θj

)T]
and J θ,i,j = −E

[
∂2li(θi,...,θ1|X)

∂θi∂θj

]
, i, j =

1, . . . , d− 1.
Again, for a given data set, the expectations can be replaced by taking the sample

mean to obtain an equivalent of the observed information. While this asymptotic theory
is well known, it is almost never applied in practice since the estimation of the asymptotic
covariance matrix will involve the Hessian matrix, i.e. the second derivatives of the R-vine
likelihood function. For these derivatives, no analytical expressions have been available,
which caused a gap between theoretical knowledge about estimation errors and practical
applicability which we will fill in this chapter. In particular, our algorithms overcome the
reliability and accuracy issues associated with statistical estimation methods based on
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numerical derivatives (see McCullough 1998, 1999 for a discussion and examples). This
allows to perform maximum likelihood estimation and compute the observed information
also in a multidimensional setup where algorithms based on numerical differentiation can
be highly unreliable.

3.1 Computation of the score function

In this section we develop an algorithm to calculate the derivatives of the R-vine log-
likelihood with respect to copula parameters and thus the score function of the model.
Throughout the remainder, we will assume that all occurring copula densities are contin-
uously differentiable with respect to their arguments and parameters. Further, we assume
that the copula parameters are all in R, the extension to two or higher dimensional pa-
rameter spaces is straightforward but makes the notation unnecessarily complex.

To determine the log-likelihood derivatives, we will again exploit the hierarchical struc-
ture of the R-vine copula model and proceed similarly as for the likelihood calculation.
The first challenge in developing an algorithm for the score function is to determine which
of the copula terms in Expression (2.3) depend on which parameter directly or indirectly
through one of their arguments. Following the steps of the log-likelihood computation and
exploiting the structure of the R-vine matrix M , this is decided in Algorithm 3.1.1.

Algorithm 3.1.1 Determine copula terms which depend on a specific parameter.

The input of the algorithm is a d-dimensional R-vine matrixM with elements (ml,j)l,j=1,...,d

and the row number k and column number i corresponding to the position of the param-
eter of interest in the corresponding parameter matrix θ. The output will be a matrix
C (with elements (cl,j)l,j=1,...,d) of zeros and ones, a one indicating that the copula term
corresponding to this position in the matrix will depend on the parameter under consid-
eration.

1: Set g := (mi,i,mk,i,mk+1,i, . . . ,md,i)
2: Set cl,j := 0 l, j = 1, . . . , d
3: for a = i, . . . , 1 do
4: for b = k, . . . , a+ 1 do
5: Set h := (ma,a,mb,a,mb+1,a, . . . ,md,a)
6: if #(g ∩ h) == #g then
7: Set cb,a := 1
8: end if
9: end for

10: end for
11: return C

Knowing how a specific copula term depends on a given parameter, we can proceed
with calculating the corresponding derivatives. Before we explain the derivatives in detail
let us consider an example in 3 dimensions, where two of the three possible cases of
dependence on a given parameter are illustrated.
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Example 3.1 (3-dim, continuation of Example 2.1)
Let x1 ∼ F1, x2 ∼ F2, x3 ∼ F3 and u1 = F (x1), u2 = F (x2), u3 = F (x3), then the joint
density can be decomposed as

f123(x1, x2, x3) = f1(x1)f2(x2)f3(x3) · c1,2(u1, u2|θ1,2) · c2,3(u2, u3|θ2,3)

· c1,3|2(h1,2(u2, u1|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2).

The first derivatives of ln f123 with respect to the copula parameters are

∂(ln f123(x1, x2, x3))

∂θ1,2

=
∂θ1,2c1,2(u1, u2|θ1,2)

c1,2(u1, u2|θ1,2)

+
∂1c1,3|2(h1,2(u2, u1|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)

c1,3|2(h1,2(u2, u1|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)
· ∂θ1,2h1,2(u1, u2|θ1,2),

∂(ln f123(x1, x2, x3))

∂θ2,3

=
∂θ2,3c2,3(u2, u3|θ2,3)

c2,3(u2, u3|θ2,3)

+
∂2c1,3|2(h1,2(u2, u1|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)

c1,3|2(h1,2(u2, u1|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)
· ∂θ2,3h2,3(u2, u3|θ2,3),

∂(ln f123(x1, x2, x3))

∂θ1,3|2
=
∂θ1,3|2c1,3|2(h1,2(u2, u1|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)

c1,3|2(h1,2(u2, u1|θ1,2), h2,3(u3, u2|θ2,3)|θ1,3|2)
.

The first case which occurs in our example is that the copula densities c1,2 and c2,3

depend on their respective parameters directly. For a general term involving a copula
cU,V |Z with parameter θ, the derivative is

∂

∂θ
ln
(
cU,V |Z

(
FU |Z(u|z), FV |Z(v|z)|θ

))
=

∂
∂θ

(
cU,V |Z

(
FU |Z(u|z), FV |Z(v|z)|θ

))

cU,V |Z
(
FU |Z(u|z), FV |Z(v|z)|θ

)

=
∂θcU,V |Z

(
FU |Z(u|z), FV |Z(v|z)|θ

)

cU,V |Z
(
FU |Z(u|z), FV |Z(v|z)|θ

) .

(3.6)

Further, like for c1,3|2, a cU,V |Z term can depend on a parameter θ through one of its
arguments, say FU |Z(u|z, θ):

∂

∂θ
ln
(
cU,V |Z

(
FU |Z(u|z, θ), FV |Z(v|z)

))
=

=

∂cU,V |Z(FU|Z(u|z,θ),FV |Z(v|z))
∂FU|Z(u|z,θ)

cU,V |Z
(
FU |Z(u|z, θ), FV |Z(v|z)

) · ∂
∂θ
FU |Z(u|z, θ)

=
∂1cU,V |Z

(
FU |Z(u|z, θ), FV |Z(v|z)

)

cU,V |Z
(
FU |Z(u|z, θ), FV |Z(v|z)

) · ∂
∂θ
FU |Z(u|z, θ).

(3.7)

Finally, in dimension d ≥ 4, both arguments of a cU,V |Z copula term can depend on a
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parameter θ. In this case,

∂

∂θ
ln
(
cU,V |Z

(
FU |Z(u|z, θ), FV |Z(v|z, θ)

))

=
∂1cU,V |Z

(
FU |Z(u|z, θ), FV |Z(v|z, θ)

)

cU,V |Z
(
FU |Z(u|z, θ), FV |Z(v|z, θ)

) · ∂
∂θ
FU |Z(u|z, θ)

+
∂2cU,V |Z

(
FU |Z(u|z, θ), FV |Z(v|z, θ)

)

cU,V |Z
(
FU |Z(u|z, θ), FV |Z(v|z, θ)

) · ∂
∂θ
FV |Z(v|z, θ).

(3.8)

We see that the derivatives of copula terms corresponding to tree Ti in the vine will
involve derivatives of conditional distribution functions which are determined in tree Ti−1.
Thus, it will be convenient to store their derivatives in matrices S1direct,θ and S1indirect,θ

related to the matrices V direct and V indirect which have been determined during the cal-
culation of the log-likelihood together with the terms

ln
(
cj(e),k(e)|D(e)(Fj(e)|D(e)(xj(e)|xD(e)), Fk(e)|D(e)(xk(e)|xD(e)))

)
=: %j(e),k(e)|D(e),

for each edge e in the R-vine V , which can also be stored in a matrix V values:

V values =




. . .

. . . %4,m3,2|m4,2,m5,2

. . . %4,m4,2|m5,2 %3,m4,3|m5,3

. . . %4,m5,2 %3,m5,3 %2,1

. . .




(3.9)

In particular, we will determine the following matrices:

S1direct,θ =




. . .

. . . ∂
∂θF (u4|um3,2 , um4,2 , um5,2)

. . . ∂
∂θF (u4|um4,2 , um5,2) ∂

∂θF (u3|um4,3 , um5,3)

. . . ∂
∂θF (u4|um5,2) ∂

∂θF (u3|um5,3) ∂
∂θF (u2|u1)

. . .



, (3.10)

S1indirect,θ =




. . .

. . . ∂
∂θF (um3,2 |um4,2 , um5,2 , u4)

. . . ∂
∂θF (um4,2 |um5,2 , u4) ∂

∂θF (um4,3 |um5,3 , u3)

. . . ∂
∂θF (um5,2 |u4) ∂

∂θF (um5,3 |u3) ∂
∂θF (u1|u2)

. . .



,

(3.11)

S1values,θ =




. . .

. . . ∂
∂θ
%4,m3,2|m4,2,m5,2

. . . ∂
∂θ
%4,m4,2|m5,2

∂
∂θ
%3,m4,3|m5,3

. . . ∂
∂θ
%4,m5,2

∂
∂θ
%3,m5,3

∂
∂θ
%2,1

. . .



. (3.12)
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Here, the terms in S1direct,θ and S1indirect,θ can be determined by differentiating (2.4)
similarly as we did for the copula terms in (3.6) - (3.8). For instance, we have

∂

∂θ
FU |V,Z(u|v, z, θ) =

∂

∂θ

(
hU |V,Z

(
FU |Z(u|z, θ), FV |Z(v|z)

))

= ∂1hU |V,Z
(
FU |Z(u|z, θ), FV |Z(v|z)

)
· ∂
∂θ
FU |Z(u|z, θ)

= cU |V,Z
(
FU |Z(u|z, θ), FV |Z(v|z)

)
· ∂
∂θ
FU |Z(u|z, θ)

and

∂

∂θ
hU |V,Z

(
FU |Z(u|z), FV |Z(v|z, θ)

)
= ∂2hU |V,Z

(
FU |Z(u|z), FV |Z(v|z, θ)

)
· ∂
∂θ
FV |Z(v|z, θ).

The complete calculations required to obtain the derivative of the log-likelihood with
respect to one copula parameter θ are performed in Algorithm 3.1.2.

Algorithm 3.1.2 Log-likelihood derivative with respect to the parameter θk̃,̃i.

The input of the algorithm is a d-dimensional R-vine matrix M with maximum matrix
M̃ and parameter matrix θ, and a matrix C determined using Algorithm 3.1.1 for a
parameter θk̃,̃i positioned at row k̃ and ĩ in the R-vine parameter matrix θ. Further, we
assume the matrices V direct, V indirect and V values corresponding to one observation from
the R-vine copula distribution, which have been determined during the calculation of
the log-likelihood, to be given. The output will be the value of the first derivative of the
copula log-likelihood for the given observation with respect to the parameter θk̃,̃i.

1: Set z1 = vdirect
k̃,̃i

2: Set s1directk,i := 0, s1indirectk,i := 0, s1valuesk,i := 0, i = 1, . . . , d; k = i, . . . , d
3: if mk̃,̃i == m̃k̃,̃i then

4: Set z2 = vdirect
k̃,d−m̃k̃,̃i+1

5: else
6: Set z2 = vindirect

k̃,d−m̃k̃,̃i+1

7: end if
8: Set s1direct

k̃−1,̃i
= ∂θk̃,̃ih(z1, z2|Bk̃,̃i, θk̃,̃i)

9: Set s1indirect
k̃−1,̃i

= ∂θk̃,̃ih(z2, z1|Bk̃,̃i, θk̃,̃i)

10: Set s1values
k̃,̃i

=
∂
θk̃,̃i

c(z1,z2|Bk̃,̃i,θk̃,̃i)
exp(vvalues

k̃,̃i
)

11: for i = ĩ, . . . , 1 do
12: for k = k̃ − 1, . . . , i+ 1 do
13: if ck,i == 1 then
14: Set z1 = vdirectk,i , z̃1 = s1directk,i

15: if mk,i == m̃k,i then
16: Set z2 = vdirectk,d−m̃k,i+1, z̃2 = s1directk,d−m̃k,i+1

17: else
18: Set z2 = vindirectk,d−m̃k,i+1, z̃2 = s1indirectk,d−m̃k,i+1
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19: end if
20: if ck+1,i == 1 then

21: Set s1valuesk,i = s1valuesk,i + ∂1c(z1,z2|Bk,i,θk,i)
vvaluesk,i

· z̃1

22: Set s1directk−1,i = s1directk−1,i + ∂1h(z1, z2|Bk,i, θk,i) · z̃1

23: Set s1indirectk−1,i = s1indirectk−1,i + ∂2h(z2, z1|Bk,i, θk,i) · z̃1

24: end if
25: if ck+1,d−m+1 == 1 then

26: Set s1valuesk,i = s1valuesk,i + ∂2c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃2

27: Set s1directk−1,i = s1directk−1,i + ∂2h(z1, z2|Bk,i, θk,i) · z̃2

28: Set s1indirectk−1,i = s1indirectk−1,i + ∂1h(z2, z1|Bk,i, θk,i) · z̃2

29: end if
30: end if
31: end for
32: end for
33: return

∑
k,i=1,...,d s1

values
k,i

In particular, this algorithm allows to replace finite-differences based numerical maximiza-
tion of R-vine likelihood functions with maximization based on the analytical gradient.
In a numerical comparison study across different R-vine models in 5-8 dimensions this
resulted in a decrease in computation time by a factor of 4-8. Note that Algorithm 3.1.2
also allows to determine the terms ∂lj(θj, . . . ,θ1)/∂θj which are required to estimate the
matrix Kθ needed for the calculation of standard errors of the sequential estimator. Here
the sum in line 33 of Algorithm 3.1.2 has to be replaced by

∑
i=1,...,d s1

values
d−j,i for derivatives

with respect to parameters θd−j+1,̃i in θj.

3.2 Computation of the observed information

Based on the calculation of the score function performed in the previous section, we
will present an algorithm to determine the Hessian matrix corresponding to the R-vine
log-likelihood function in this section. Considering a derivative with respect to bivariate
copula parameters θ and γ associated with the vine, it is clear that the expressions for the
derivatives of the log-densities in this case will contain second derivatives of the occurring
h-functions. Thus, our algorithm will determine the following matrices:

S2direct,θ,γ =



. . .

. . . ∂
∂θ∂γF (u4|um3,2 , um4,2 , um5,2)

. . . ∂
∂θ∂γF (u4|um4,2 , um5,2) ∂

∂θ∂γF (u3|um4,3 , um5,3)

. . . ∂
∂θ∂γF (u4|um5,2) ∂

∂θ∂γF (u3|um5,3) ∂
∂θ∂γF (u2|u1)

. . .



,

(3.13)
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S2indirect,θ,γ =



. . .

. . . ∂
∂θ∂γF (um3,2 |um4,2 , um5,2 , u4)

. . . ∂
∂θ∂γF (um4,2 |um5,2 , u4) ∂

∂θ∂γF (um4,3 |um5,3 , u3)

. . . ∂
∂θ∂γF (um5,2 |u4) ∂

∂θ∂γF (um5,3 |u3) ∂
∂θ∂γF (u1|u2)

. . .



,

(3.14)

S2values,θ,γ =




. . .

. . . ∂
∂θ∂γ%4,m3,2|m4,2,m5,2

. . . ∂
∂θ∂γ%4,m4,2|m5,2

∂
∂θ∂γ%3,m4,3|m5,3

. . . ∂
∂θ∂γ%4,m5,2

∂
∂θ∂γ%3,m4,2

∂
∂θ∂γ%2,1

. . .



. (3.15)

Since not all entries in (2.6), (2.7) and (3.9) depend on both θ and γ, not all entries in
(3.13) - (3.15) will be non-zero and required in the algorithm. Employing Algorithm 3.1.1
to obtain matrices Cθ and Cγ corresponding to the parameters θ and γ, respectively, we
see that the second derivatives of all elements where the corresponding matrix entry of
either Cθ or Cγ is zero vanish.
To derive an algorithm similar to Algorithm 3.1.2 which recursively determines all terms
of the second derivatives of the log-likelihood with respect to parameters θ, γ, we need
to distinguish 7 basic cases of dependence on the two parameters (Table 3.1) which can
occur for a term cU,V |Z

(
FU |Z(u|z), FV |Z(v|z)

)
.

dependence on θ γ

case 1

through

FU |Z FV |Z
case 2 FU |Z, FV |Z FV |Z
case 3 FU |Z, FV |Z FU |Z, FV |Z
case 4 FU |Z cU,V |Z
case 5 FU |Z, FV |Z cU,V |Z
case 6 FU |Z FU |Z
case 7 cU,V |Z cU,V |Z

Table 3.1: The 7 cases of how a copula terms can depend on θ and γ.

Here, case 7 is relevant only for derivatives where θ = γ, since we assume that all bivariate
copulas occurring in the vine density have one parameter in R. Because of symmetry in
the parameters, all other possible combinations are already included in these cases, we
only have to exchange θ and γ. A more detailed description of the occurring derivatives
is given in Appendix A.1.
As before, the terms in S2direct,θ,γ and S2indirect,θ,γ can be determined by differentiating
(2.4) similarly as we did for the copula terms in (A.1) - (A.7) of Appendix A.1. Thus, the
second derivatives can again be calculated recursively (see Algorithm A.1.1). Again, the
algorithm allows to determine also the terms ∂2lj(θj, . . . ,θ1)/∂θj∂θk required to estimate
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J θ. For this, the summation over S2values,θ,γ is replaced by summation over line d − j,
i.e.

∂2lj(θj, . . . ,θ1)

∂θ∂γ
=
∑

i=1,...,d

S2values,θ,γd−j,i .

Combining Algorithm A.1.1 and numerical integration techniques2 we can also calculate
the Fisher information (see Equation (3.2)) matrix of R-vine copula models and determine
asymptotical standard errors for ML estimates.

Example 3.2 (3-dim. Gaussian and Student’s t copula vine models)
Let us consider a 3-dimensional vine copula model with Gaussian pair-copulas (structure
matrix M3 and family matrix BGauss). The parameter matrix θGauss gives the correlation
parameters of the bivariate Gaussian copulas.

M3 =




3
1 2
2 1 1


 , BGauss =


Gauss
Gauss Gauss


 , θGauss =


0.34

0.79 0.35


 .

Then, we can calculate the asymptotic standard errors for each parameter based on the
expected information matrix I(θGauss) or rather V dep for the MLE case (see Equation
(3.2)) and for the sequential estimation case (Equation (3.3) and Hobæk Haff 2013),
respectively. The order of the entries in the according asymptotic standard error matrices
ASEMLE and ASEseq are the same as in the parameter matrix θGauss. For I(θGauss)
and V dep, the order of the parameters is (ρ12, ρ23, ρ13|2).

IMLE(θGauss) = Eθ

[
−
( ∂2

∂θGaussi ∂θGaussj

l(θGauss)
)
i,j=1,...,3

]
=




1.62 −0.77 0.15
−0.77 12.40 0.80

0.15 0.80 1.42


 ,

V dep,MLE =
(
IMLE

)−1
(θGauss) =




0.65 0.05 −0.10
0.05 0.09 −0.05
−0.10 −0.05 0.75


 .

This implies that the asymptotic standard errors are given by the square roots of the
diagonal elements as

ASEMLE =


0.86

0.29 0.80


 , ASEseq =


0.89

0.31 0.83


 .

For the Gaussian distribution the occurring integrals can be computed both numerically
and analytically (see Appendix A.2). The results indicate that regardless of the applied
estimation method approximately 100 observations are required to estimate the parameters
of the 3-dimensional Gaussian copula up to σ = 0.01.
In the second setting we change the bivariate copula families to Student’s t copulas. The

2We use the adaptive integration routines supplied by Steven G. Johnson and Balasubramanian
Narasimhan in the cubature package available on CRAN which are based on Genz and Malik (1980)
and Berntsen, Espelid, and Genz (1991).
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corresponding copula parameters are stored in θStudent, where the lower triangle gives the
association parameter (parameter 1) and the upper triangle gives the degrees of freedom
(parameter 2). As before ASEMLE and ASEseq denote the corresponding standard errors
based on Equation (3.1) for the full ML estimation and Equation (3.3) for sequential
estimation, respectively.

θStudent =




3 3
0.34 3
0.79 0.35


 ,

ASEMLE =




12 12
1.04 11
0.39 0.97


 , ASEseq =




12 14
1.04 12
0.48 1.15


 .

Note that our results show that for uniform [0, 1] marginal distributions, the sequen-
tial procedure is less efficient than full MLE. This is interesting in combination with
(Hobæk Haff 2013, Theorem 2) which states that together with non-parametric estima-
tion of the marginal distributions, the sequential estimation procedure for the Gaussian
distribution is asymptotically as efficient as the full MLE.

3.3 Simulation study

This section presents the results of a simulation study which shows that the standard
errors we compute for sequential and ML estimation are appropriate. We will estimate
confidence intervals using the observed information and the sample estimate of (3.3) and
compute their coverage rate.
The simulation setup is as follows: We use the 5 dimensional R-vine structure given in
Equation 2.5 (Figure 2.2), with pair-copula families B,

B =




Indep.
Clayton Clayton
Gumbel Gumbel Frank
Gumbel Gauss t5 Clayton


 .

Here, t5 is a Student’s t copula with degrees of freedom parameter ν = 5. For the cor-
responding parameters, we consider two setups: all copula parameters are chosen to cor-
respond to a Kendall’s τ rank correlation of τ = 0.2 (Setup 1) and τ = 0.6 (Setup 2).
Further, we consider four different sample sizes with N = 100, 200, 400 and 1000 obser-
vations and simulate 10000 data sets for each scenario. The coverage rate of estimated
90% confidence intervals, computed as the percentage of simulations for which the true
parameter was within the [θ̂ − 1.645σ̂, θ̂ + 1.645σ̂] interval, is given in Table 3.2.

As our results show, the coverage rate is close to the expected 90% for all parameters.
The only parameter where we observe coverage rates closer to 95% for low sample sizes is
the degrees of freedom parameter of the Student’s t copula. With increasing sample size,
however, the coverage rate decreases to 90% also for this two-parametric family. These
results are independent of the strength of dependence (as measured in terms of Kendall’s
τs which is present in the data).
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τ = 0.2

n est θ1,2 ρ2,4 ν2,4 ρ2,3 θ3,5 θ1,4|2 θ1,3|2 θ2,5|3 θ3,4|1,2 θ1,5|2,3

100 MLE 89.1 88.5 94.8 88.8 88.9 89.7 89.3 89.3 89.3 89.4
seq. 88.2 88.8 95.0 88.0 88.7 89.7 88.8 88.9 88.9 88.9

200 MLE 89.5 89.3 90.2 89.6 89.7 89.8 89.7 89.3 89.4 89.4
seq. 89.4 89.1 90.8 89.3 89.6 89.7 89.5 89.6 89.0 89.4

400 MLE 89.8 89.9 91.2 90.1 90.2 90.1 89.8 89.7 89.4 89.8
seq. 89.3 89.8 91.4 89.5 90.1 90.1 89.7 89.6 89.4 89.5

1000 MLE 90.2 90.1 90.4 90.3 89.9 90.0 90.2 89.5 89.9 89.8
seq. 89.3 89.9 90.4 90.4 89.9 90.0 90.2 89.5 89.9 89.5

τ = 0.6

n est θ1,2 ρ2,4 ν2,4 ρ2,3 θ3,5 θ1,4|2 θ1,3|2 θ2,5|3 θ3,4|1,2 θ1,5|2,3

100 MLE 89.0 88.1 89.9 88.6 88.9 89.5 89.0 89.1 89.0 89.3
seq. 88.9 87.4 96.9 87.7 88.8 89.8 89.4 88.9 86.6 88.8

200 MLE 89.6 88.4 90.2 88.7 89.2 89.5 89.2 89.9 89.5 90.1
seq. 89.4 88.4 93.6 89.3 89.6 89.8 89.5 89.5 88.4 90.0

400 MLE 89.8 89.2 89.7 89.8 89.9 89.8 90.1 89.9 90.0 90.0
seq. 89.6 89.6 91.2 89.5 89.7 90.1 89.7 89.8 88.6 89.4

1000 MLE 90.2 90.2 89.7 90.4 90.1 90.2 89.7 89.8 89.9 89.5
seq. 89.9 89.7 90.3 90.4 89.9 90.6 90.1 90.0 89.8 89.1

Table 3.2: Coverage rate of the 90% confidence interval.

Like many complex models, our implementation shows some numerical instabilities
for low sample sizes. While the numerically stable computation of derivatives has been
discussed in Chapter 1 and Schepsmeier and Stöber (2013), the recursive structure of an
R-vine can amplify numerical inaccuracies. For low sample sizes and weak dependence,
this resulted in some of the computed Hessian matrices not being negative (semi-) definite
at the estimated parameters. In the simulation setup with Kendall’s τ = 0.2 and N = 100,
this occurred for 263 of the 10000 data sets. For N = 400 only one exception was observed
and no exceptions for bigger sample sizes and τ = 0.6.

If the Hessian matrix is not negative semidefinite, a ”close” negative definite matrix
can be considered instead. We use the function nearPD of the package Matrix provided
by Bates and Maechler (2012). Their implementation is based on an algorithm of Higham
(2002).

Finally we apply our algorithms for the computation of the score function and observed
information to a financial data set. It illustrates the applicability of our methods allowing
to compute standard errors in a routinely manner for R-vines. Here, as in the simula-
tion study before, we used the implemented algorithms of the functions RVineStdError

of the R-package VineCopula to compute the standard errors out of the inverse Hes-
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sian matrix given by RVineHessian. The matrices Kθ and J θ for the covariance matrix
in the sequential approach of Hobæk Haff (2013) can be computed by sub-routines of
RVineHessian.

3.4 Example: Rolling window analysis of exchange

rate data

In this section, we illustrate the computation of standard errors in a rolling window anal-
ysis of the exchange rate data analyzed by Czado et al. (2012) and Stöber and Czado
(2012). The data consists of 8 daily exchange rates quoted with respect to the US dol-
lar during the period from July 22, 2005 to July 17, 2009, resulting in 1007 data points
in total: Australian dollar (AUD), Japanese yen (JPY), Brazilian real (BRL), Canadian
dollar (CAD), Euro (EUR), Swiss frank (CHF), Indian rupee (INR) and British pound
(GBP). The marginal time dependence has been removed in a pre-analysis as described
by Schepsmeier (2010, Chapter 5) (see Appendix A.3 for details) and the data is given as
copula data on the unit hypercube. We employ the sequential model selection procedure
of Dißmann et al. (2013) to select an adequate model for the data set. The selected R-vine
structure, pair copula families, and estimated copula parameters for the whole data set
are given in Appendix A.3.

To study possible inhomogeneities in dependence over time, we apply a rolling win-
dow analysis as follows: A window with a window-size of 100, 200 and 400 data points,
respectively, is run over the data with step-size five, i.e. the window is moved by five
trading days in each step. For each window dataset under investigation we estimate the
R-vine parameters using ML (and sequential estimation) while keeping the R-vine struc-
ture V given by (A.17) and the copula families B given by (A.19) fixed. Additionally, we
compute the observed information (and the equivalent for the sequential estimator) for
each window and use it to obtain standard errors for the parameter estimates. In some
windows the estimated degrees of freedom parameters are very high leading to numerical
instabilities and indicating that the Student’s t copulas which are associated with some
bivariate marginal distributions might not be appropriate for the whole dataset. In Figure
3.1 we illustrate the estimated copula parameters and pointwise confidence intervals given
by [θ̂ − 2σ̂, θ̂ + 2σ̂] for some selected pair-copulas.
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Figure 3.1: Rolling window analysis for the exchange rate data with window size 100 (left), 200
(middle) and 400 (right) for some selected par-copulas with different copula families (t-copula
(row 1-2, degrees of freedom are cut off at 100), Gumbel (row 3) and Frank (row 4)). The
x-axis indicates the endpoint of each window, with the corresponding parameter estimate (ML:
solid, sequential estimation: dashed) on the y-axis. The dash-dotted horizontal line in each plot
is the MLE corresponding to the whole dataset. The confidence intervals for ML and
sequential estimation are indicated by the dark and light grey areas, respectively.
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Chapter 4

Efficient goodness-of-fit tests in
multi-dimensional vine copula
models1

Although vine copula model inference and model selection is covered in several books
and papers in the last decade the important statistical tool of goodness-of-fit testing is
poorly addressed. It is unfortunate that there is little progress known in the theory and
method concerning a goodness-of-fit (GOF) test for vine copulas, an important aspect of
statistical model diagnostics. In fact, most of the published work has been only focused
on bivariate copula models (see for example Genest et al. 2006, Dobrić and Schmid 2005,
Dobrić and Schmid 2007, Huang and Prokhorov 2013, Genest et al. 2012 and may more).
Comparison studies of Genest et al. 2009 or Berg 2009 investigated the most promising
ones. But very little is provided for the validation of vine copula models. First GOF ap-
proaches are for example proposed in Aas et al. (2009) or Berg and Aas (2009) but not
further studied or tested.

But model diagnosis becomes ever so imperative in the application of multi-dimensional
vine copulas. Developing efficient GOF tests is now a timely task as already noted in Fer-
manian (2012), and an important addition to the current literature of vine copulas. In
addition, comprehensive comparisons for many of the classical GOF tests are lacking in
terms of their relative merits when they are applied to multi-dimensional copulas. So far
model verification methods for vine copulas are usually based on the likelihood, or on the
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) as classical
comparison measures, which take the model complexity into account. The tests proposed
by Vuong (1989) and Clarke (2007), suitable for non-nested models, may be applicable
for vine copula models (see for example Brechmann et al. 2012). Note that these tests are
not GOF tests, since they only compare two given (estimated) vine copula models based
on their likelihood ratio.

1The contents of this chapter is based on Schepsmeier (2013), A goodness-of-fit test for regular vine
copula models, submitted for publication, and Schepsmeier (2013), Efficient goodness-of-fit tests in multi-
dimensional vine copula models, Submitted for publication
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In our goodness-of-fit tests we would like to test

H0 : C ∈ C0 = {Cθ : θ ∈ Θ} against H1 : C /∈ C0 = {Cθ : θ ∈ Θ}, (4.1)

where C denotes the (vine) copula distribution function and C0 is a class of parametric
(vine) copulas with Θ ⊆ Rp being the parameter space of dimension p. Here we assume a
known tree structure in the case of parametric vine copulas.

In this chapter we will propose two new rank based, “blanket” GOF tests for the
vine copulas, based on the information matrix equality and specification test proposed by
White (1982). The equality is sometimes called the Bartlett identity and is defined as

−H(θ) = C(θ). (4.2)

Here H(θ) is the expected Hessian or variability matrix, and C(θ) is the expected outer
product of the gradient or sensitivity matrix, which will be defined in more detail in
Section 4.1.

Thus, the copula/vine misspecification test will be

H0 : H(θ0) + C(θ0) = 0 against H1 : H(θ0) + C(θ0) 6= 0, (4.3)

with θ0 being the true value of the vine parameter vector. Consequently, the correspond-
ing test statistic will be based on the difference between −H(θ) and C(θ). Such a test
statistic was already proposed by Huang and Prokhorov (2013) for the bivariate cop-
ula case specializing White’s information matrix equality and specification test. They
investigated the size and power behavior for several bivariate parametric copulas given
different alternatives of the same set of copula families. But multivariate extensions and
generalizations were not investigated in their simulation study. Especially the asymptotic
distribution function of the test statistic and the derived p-values were not taken into
account in higher dimensions.

Here, we will derive the test statistic for the vine copula case and prove its asymptotic
distribution. An extensive simulation study will reveal that the simulation based test
shows excellent performance with regard to observed size and power, while the asymptotic
theory based test is inaccurate for n ≤ 10000 for a 5-dimensional model (in d = 8 even
20000 are not enough). We will denote this GOF test as White test.

In contrast to the White test, which relies on the difference between −H(θ) and C(θ),
the second new test is based on the information matrix ratio (IMR) of Zhou et al. (2012):

Ψ(θ) := −C(θ)−1H(θ).

Here, our test problem is the reformulated general test problem of White (1982):

H0 : Ψ(θ) = Ip against H1 : Ψ(θ) 6= Ip,

where Ip is the p-dimensional identity matrix.
In Section 4.2 the IMR based test statistic for vine models will be derived and its

asymptotic normality under the Bartlett identity will be proven. Secondly, the small
sample performance for size and power will be investigated. Furthermore, the two new
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GOF tests are compared to 13 other GOF tests for vines in a high dimensional setting
(d = 5 and d = 8). These test are simple extensions of good performing (Genest et al.
2009) GOF tests for bivariate copulas. In particular, we will compare to GOF tests based
on the following quantities

• empirical copula process Ĉn(u)− Cθ̂n(u), with u = (u1, . . . , ud) ∈ [0, 1]d,

Ĉn(u) =
1

n+ 1

n∑

t=1

1{Ut1≤u1,...,Utd≤ud}, (4.4)

and Cθ̂n(u) being the copula with estimated parameter(s) θ̂n, and/or

• multivariate probability integral transform (PIT).

The multivariate PIT aggregation to univariate test data is facilitated using different
aggregation functions. For the univariate test data then standard univariate GOF test
statistics such as Anderson-Darling (AD), Cramér-von Mises (CvM) and Kolmogorov-
Smirnov (KS) are used. In contrast, the empirical copula process (ECP) based test use the
multivariate Cramér-von Mises (mCvM) and multivariate Kolmogorov-Smirnov (mKS)
test statistics. The different GOF tests are given in the appendix for the convenience of
the reader.

The power study will expose that the information based GOF tests outperform the
other GOF tests in terms of size and power. The PIT based GOF tests reveal little to no
power against the considered alternatives. But applying the PIT transformed data to the
empirical copula process, as first suggested by Genest et al. (2009), is more promising.
Here Cθ̂n(u) is replaced by the independence copula C⊥ in the ECP.

A first overview of the considered GOF tests is given in Figure 4.1. The two new GOF
test are highlighted.

4.1 White’s information matrix test

The first goodness-of-fit test we introduce for regular vine copula models arises directly
from the information matrix equality and specification test proposed by White (1982) and
extends the goodness-of-fit test for copulas introduced by Huang and Prokhorov (2013).
Therefore, let us define first the misspecification test problem as already shortly touched
in Equation (4.3).

4.1.1 The misspecification test problem

Let U = (U1, . . . , Ud)
T ∈ [0, 1]d be a d dimensional random vector with distribution

function G(u) = Cθ(u1, . . . , ud), where Cθ is a d dimensional copula with parameter θ
and Ui ∼ U(0, 1) for i = 1, . . . , d. Let cθ be the corresponding copula density, then

H(θ) = E
[
∂2
θln(cθ(U1, . . . , Ud))

]
,

C(θ) = E
[
∂θln(cθ(U1, . . . , Ud))

(
∂θln(cθ(U1, . . . , Ud))

)T] (4.5)
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are the expected Hessian matrix of ln(cθ(u1, . . . , ud)) and the expected outer product of
the corresponding score function, respectively, where ∂θ denotes the gradient with respect
to the copula parameter θ. Now, the theorem of White (1982) shows that under correct
model specification (θ = θ0) the negative expected Hessian matrix H(θ0) and the expected
outer product of the corresponding score function C(θ0) are equal, see Equation (4.2).
Thus, the corresponding vine copula misspecification test problem is therefore given by

H0 : H(θ0) + C(θ0) = 0 against H1 : H(θ0) + C(θ0) 6= 0,

as already stated in Equation (4.3). Here we will expand the GOF test of Huang and
Prokhorov (2013) who used White’s information matrix equality (4.2) to the vine copula.
In our setting we replace the d-dimensional density cθ(u1, . . . , ud) in (4.5) with the vine
density c1,...,d(u1, . . . , ud) given in (2.3), with a parametric vine copula, i.e. the parameter
vector θ is given by θ = (θj(e),k(e);D(e), e ∈ Ei, i = 1, . . . , d). Remember we assume copula
data, i.e. known margins.

4.1.2 Goodness-of-fit test for R-vine copulas

The first step in the development of a GOF test for the testing problem given in (4.3)
will be the estimation of the Hessian matrix H(θ) and the outer product of gradient
C(θ). For this we assume the availability of an i.i.d. sample in d dimensions of size n,
denoted by u := (u1, . . . ,un) in the copula space. This pseudo data u is used to estimate
the unknown true parameter θ0 of the vine copula. Algorithms for maximum likelihood
estimation for vine copula parameters are given in e.g. Czado et al. (2012) for C-vine
copulas or Dißmann et al. (2013) for R-vine copulas. We call the estimate derived from
these algorithms applied to u1, . . . ,un pseudo maximum likelihood (ML) estimate and
denote it by θ̂n = θ̂(u1, . . . ,un). Assuming that U follows an R-vine copula model,
i.e. U ∼ RV (V ,B(V),θ(B(V))) we define the random matrices

H(θ|U) :=
∂2

∂2θ
l(θ|U) and C(θ|U) :=

∂

∂θ
l(θ|U )

(
∂

∂θ
l(θ|U)

)T
(4.6)

for the second derivative of the log-likelihood function l(θ|U) and the outer product
of the score function, respectively. Further, we denote the sample counter parts of the
Hessian matrix and the outer product of the score function for the copula data ut =
(u1t, . . . , udt)

T , 1 ≤ t ≤ n at θ = θ̂n of a vine copula with density given in (2.3) (in (2.3)
the margins are assumed to be uniform) by

Ĥt(θ̂n) := H(θ̂n|ut) ∈ Rp×p and Ĉt(θ̂n) := C(θ̂n|ut) ∈ Rp×p.

Here p is the length of the parameter vector θ. Thus, the sample equivalents to H(θ)
(expected Hessian) and C(θ) (expected outer product of gradient) for the pseudo ML
estimate θ̂n are

H̄(θ̂n) :=
1

n

n∑

t=1

Ĥt(θ̂n) and C̄(θ̂n) :=
1

n

n∑

t=1

Ĉt(θ̂n), (4.7)
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given n observations. In Chapter 3 we provided algorithms for the calculation of the
gradient as well as of the Hessian matrix for R-vines. Alternatively numerical versions
based on finite differences can be used as well, unless they are not precise enough.

Note that the matrices Ĥt(θ̂n) and Ĉt(θ̂n) are of size d(d−1)/2×d(d−1)/2 if all pair-
copulas are one-parametric. In this case we have p = d(d − 1)/2. For each two or higher
parametrized bivariate copula in the vine the dimension of the matrices increases by 1 or
the number of additional parameters. An example for a two-parameter bivariate copula is
the bivariate Student’s t-copula. But the dimension of the information matrices decrease
if independence copulas are used in the pair-copula construction. This often appears in
higher trees since the dependence usually decreases as number of trees increases. For
higher dimensional vines a truncation, i.e. setting all pair-copula families of higher order
trees to the independence copula, may be helpful to reduce the number of parameters
significantly (Brechmann et al. 2012).

To formulate the test statistic we vectorize the sum of the expected Hessian matrix
H(θ0) and the expected outer product of gradient C(θ0). Therefore we define the random
vector

d(θ|U) := vech(H(θ|U) + C(θ|U)) ∈ R
p(p+1)

2

and its empirical version by

d̂t(θ̂n) := d(θ̂n|ut) and d̄(θ̂n) :=
1

n

n∑

t=1

d̂t(θ̂n) ∈ R
p(p+1)

2 .

Note that because of symmetry only the lower triangle (including the diagonal) of the ma-
trices has to be vectorized. Further, assuming existence of derivative and finite expectation
we define the expected gradient matrix of the random vector d(θ|U) as

∇Dθ := E [∂θkdl(θ|U)]
l=1,...,

p(p+1)
2

,k=1,...,p
∈ R

p(p+1)
2
×p, and

∇̂Dθ :=
1

n

n∑

t=1

[
∂θk d̂l(θ̂n|ut)

]
l=1,...,

p(p+1)
2

,k=1,...,p
∈ R

p(p+1)
2
×p

as its estimate. White (1982, Appendix) derived the corresponding asymptotic covariance
matrix of

√
nd̄(θ̂n), which is given by

Vθ0 = E

[
(d(θ0|U)−∇Dθ0H(θ0)−1∂θ0l(θ0|U))

(
d(θ0|U)−∇Dθ0H(θ0)−1∂θ0l(θ0|U)

)T
]

(4.8)

In particular
√
nd̄(θ̂n)

d−→ N(0, Vθ0), as n→∞.
The following proposition of Whites theorem is valid under the assumptions A1-A10 of
White (1982). This assures that l(θ̂n|ut) is a continuous measurable function and its
derivatives exist; A10 assumes that Vθ0 is nonsingular.
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Proposition 4.1
Under the correct vine copula specification and suitable regularity conditions (A1-A10 in
White 1982) the information matrix test statistic is defined as

Tn = n
(
d̄(θ̂n)

)T
V̂ −1

θ̂n
d̄(θ̂n), (4.9)

where V̂ −1

θ̂n
is an consistent estimate for the inverse asymptotic covariance matrix Vθ0. It

follows that Tn is asymptotically χ2
p(p+1)/2 distributed.

The proof is an extension of the proof of White (1982) since the maximum likelihood
estimator θ̂n in a vine copula is also to be shown normally distributed (see Hobæk Haff
2013 and Equation (3.1) in Chapter 3). Since the asymptotic distribution is independent
of model parameters the test is asymptotically pivotal. The χ2-distribution only depends
on the parameter vector dimension p, which is known aforehand given the pair-copula
families, and not on θ0. Furthermore, the test is a so called ”blanket” test in the sense of
Genest et al. (2009).

Note that all calculations are performed using copula data, thus ignoring the uncer-
tainty in the margins. In Section 4.1.4 we extend our GOF test adjusting Vθ0 for the
estimation of the margins. For general multivariate copulas this is already done by Huang
and Prokhorov (2013). Given the test statistic Tn of Proposition 4.1 we can define an
α-level test.

Corollary 4.2
Let α ∈ (0, 1) and Tn as in Proposition 4.1. Then the test

Reject H0 : H(θ0) + C(θ0) = 0 versus H1 : H(θ0) + C(θ0) 6= 0

⇔ T >
(
χ2
p(p+1)/2

)−1
(1− α)

is an asymptotic α-level test. Here
(
χ2
df

)−1
(β) denotes the β quantile of a χ2

df distribution
with df degrees of freedom.

4.1.3 Power studies

A GOF test’s performance is usually measured by its power, which is often unknown. In
this case, it can only be investigated by simulations. Given a significance level α a high
power at a specified alternative indicates a good discrimination against the alternative.
In this section we will investigate the introduced test for a suitable large n and under
a variety of alternatives. In particular we determine the power function under the true
data generating process (DGP) and under the alternative DGP. In the first case the null
hypothesis H0 holds, while in the second case the null hypothesis H0 does not hold. The
power at the true DGP assesses the ability of the test in Corollary 4.2 to maintain its
nominal level.
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Performance measures

As performance measures we use p-value plots and size-power curves, introduced by David-
son and MacKinnon (1998) and explained in the following.

Given an observed test statistic Tn = t the p-value at t is

p(t) := P (Tn ≥ t),

i.e. the smallest α level at which the test can reject H0 when Tn = t is observed. The
distribution of Tn has to be known at least asymptotically such as the χ2-distribution in
our case or has to be estimated empirically using simulated data.

Let ZM1 := p(Tn(M1)) be the random variable on [0, 1] with value p(t) when Tn = t
is observed and data is generated from model M1. The distribution function for ZM1 we
denote by FM1(·), i.e. FM1(α) := P (ZM1 ≤ α), being the size of the test. To estimate ZM1

and FM1 we assume B realizations of the test statistic Tn(M1) when n observations are
generated from model M1, denoted as tjn(M1), j = 1, . . . , B, and estimate the p-values pjM1

as

p̂jM1
:= p̂(tjn(M1)) :=

1

B

R∑

r=1

1{trn(M1)≥tjn(M1)}

and consider the empirical distribution function of them. Thus,

F̂M1(α) :=
1

B

B∑

r=1

1{p̂rM1
≤α} α ∈ (0, 1),

forms an estimate for the size of the test at level α. F̂M1(α) is called actual size or actual
alpha (probability of the outcome under the null hypothesis), while α is known as nominal
size.

p-value plot: The p-value plot graphs α versus F̂M1(α), i.e. nominal size against
actual size. The plot indicates if the test reaches its nominal size, i.e. if the assumed
asymptotic holds.

Size-power curve: We are not only interested in the size of the test but also in its
power. For data generated under model M2 we want to determine FM2(α), which gives the
power of the test when H1 is true, i.e. M2 holds, and a level α is used for the test. Gener-
ate B i.i.d. data sets from M2 and use them to estimate FM2(α) by F̂M2(α). The plot of
F̂M1(α) versus F̂M2(α) is called the size-power curve. A test with good power should have
small power when the size is small and approach power one rapidly as the size increases.

Remark: Note that these curves correspond to the better known Receiver-operating-
characteristic curves (ROC), which plot the fraction of true positives (TP) out of the
positives (TPR = true positive rate) versus the fraction of false positives (FP) out of the
negatives (FPR = false positive rate), at various threshold settings. TPR is also known
as sensitivity, and FPR is one minus the specificity or true negative rate. False positive
(FP) is better known as Type I error. Since α (nominal size) is the false positive rate and
power is one minus the false negative rate (FNR; prob. of of a Type II error occurring),
ROC plots nominal size versus power (Fawcett 2006).
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General remarks on size and power, and the implementation of the test

It is shown for other statistical models that the size behavior of the information matrix
test (IMT) is very poor. E.g. in the regression model context the IMT has poor size
properties even in samples of size 1000 and more (see Hall 1989 and references within,
especially Taylor 1987). Similar observations are made by e.g. Chesher and Spady (1991).

In the bivariate copula case the asymptotic approximation holds even for relative
small number of observations. But this is not investigated or documented in Huang and
Prokhorov (2013).

In this simulation study three possible errors can occur, which may influence the
asymptotic behavior: simulation error, estimation and model error, and numerical errors.
Simulation errors are always involved since only pseudo random variables can be gen-
erated on a computer. For the parameter estimation maximum likelihood is used based
on Newton-Raphson algorithms for maximization. In higher dimensions this can be quite
challenging, even given the analytical gradient (and the analytical Hessian matrix). A
local maximum may be returned. Further, numerical instabilities can occur, especially in
the calculation of the score function and the Hessian matrix as discussed in Chapter 3.

Even the estimator of Vθ0 may not be positive definite, though this becomes increas-
ingly unlikely as the sample size increases.

Furthermore, the normal asymptotic theory only holds for full maximum likelihood,
but a sequential maximum likelihood, i.e. a tree-wise estimation, is performed due to
resource and time limits. Usually sequential estimates are close to full ML estimates,
except of the degree-of-freedom parameter ν of the Student’s t copula. There exists even
an asymptotic theory for sequential estimates similar to Equation (3.1), see Hobæk Haff
(2013).

General simulation setup

We test if our goodness-of-fit test Tn based on the vine copula model
M1 = RV (V1,B1(V1),θ1(B1(V1))) has suitable power against an alternative vine copula
model M2 = RV (V2,B2(V2),θ2(B2(V2))), where M2 6= M1. To produce the corresponding
p-value plots for M1 and the size-power curves we proceed as follows:

1. Set vine copula model M1.

2. Generate a copula data sample of size n = 1000 from model M1 (pre-run).

3. Given the data of the pre-run select and estimate M2 using e.g. the step-wise selec-
tion algorithm of Dißmann et al. (2013).

4. For r = 1, . . . , B

• Generate copula data urM1
= (u1r

M1
, . . . ,udrM1

) from M1 of size n.

• Estimate θ1(B1(V1)) of modelM1 given data urM1
and denote it by θ̂1(B1(V1);urM1

).

• Calculate test statistic trn(M1) := trn(θ̂1(B1(V1);urM1
)) based on data urM1

as-

suming the vine copula model M1 = RV (V1,B1(V1), θ̂1(B1(V1))).
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• Calculate asymptotic p-values p(trn(M1)) = (χ2
p(p+1)/2)−1(trn(M1)),

where p is the number of parameters of θ1(B1(V1)).

• Generate copula data urM2
= (u1r

M2
, . . . ,udrM2

) from M2 of size n.

• Estimate θ1(B1(V1)) of modelM1 given data urM2
and denote it by θ̂1(B1(V1);uM2).

• Calculate test statistic trn(M2) := trn(θ̂1(B1(V1);urM2
)) based on data urM2

as-
suming vine copula model M1.

• Calculate asymptotic p-values p(trn(M2)) = (χ2
p(p+1)/2)−1(trn(M2)).

end for

5. Estimate p-values pjM1
and pjM2

by

p̂jM1
= p̂(tjn(M1)) :=

1

B

B∑

r=1

1{trn(M1)≥tjn(M1)} and

p̂jM2
= p̂(tjn(M2)) :=

1

B

B∑

r=1

1{trn(M2)≥tjn(M2)},

respectively, for j = 1, . . . , B.

6. Estimate the distribution function of ZM1 and ZM2 by

F̂M1(α) =
1

B

B∑

r=1

1{p̂rM1
≤α} and F̂M2(α) =

1

B

B∑

r=1

1{p̂rM2
≤α},

respectively.

The following simulation results are based on B = 10000 replications and the number
of observations n are chosen to be 300, 500, 750 or 1000. The dimension of the vine
copula models Mi, i = 1, 2 is 5. Possible pair-copula families are the elliptical Gauss and
Student’s t-copula, the Archimedean Clayton, Gumbel, Frank and Joe copula, and the
rotated Archimedean copulas. A p-value plot to assess the nominal size of the test is
achieved by plotting α versus F̂M1(α). Evaluating F̂M1(α) and F̂M2(α) on the grid

α = 0.001, 0.002, . . . , 0.010, 0.015, . . . , 0.990, 0.991, . . . , 0.999

with smaller grid size near 0 and 1 we can plot a size-power curve F̂M1(α) versus F̂M2(α).
All calculations are performed with R (R Development Core Team 2013), the R-

package VineCopula of Schepsmeier et al. (2012) (see Section 2.3) and the copula-
package (Yan 2007; Kojadinovic and Yan 2010; Hofert et al. 2013).

Specific setting

In the following three power studies we investigate the properties of the introduced test
with respect to its size and power. In the first power study we determine the power of
the test assuming an R-vine copula as true model (M1 in the notation from above) under
three alternatives of simpler copula models such as
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• the multivariate Gauss copula,

• the C-vine copula and

• the D-vine copula,

which are special cases of the R-vine. Every multivariate Gaussian copula can be written
as a vine copula with Gaussian pair-copulas and vice versa (Czado 2010). Only in the
Gaussian case the conditional correlation parameters, forming the pair-copula parameters,
are equal to the partial correlation parameter, which can be calculated recursively using
the entries of the multivariate Gauss copula variance-covariance matrix.

The second power study investigates the power of the test between two R-vines, which
are chosen with two different selection methods - a maximum spanning tree approach
introduced by Dißmann et al. (2013) versus a Bayesian approach (MCMC) investigated
by Gruber and Czado (2012), based on a generated data set given a specified R-vine
copula model.

In a third simulation study we compare the often used multivariate t-copula under
the alternative of an R-vine with only bivariate t-copulas, and vise versa. The difference
is the common degree-of-freedom parameter ν in the multivariate t-copula versus vari-
able, separately estimated νs in the R-vine model. The correlation parameters ρ can be
set/estimated such as in the Gaussian case described above.

Table 4.1 gives an overview of all three power studies, their true model and their
alternatives.

Study True model (M1) Alternative (M2)

I R-vine (VR,BR(VR),θR(BR(VR))) multivariate Gauss

C-vine (VC ,BC(VC),θC(BC(VC)))
D-vine (VD,BD(VD),θD(BD(VD)))

II R-vine (VR,BR(VR),θR(BR(VR))) R-vine estimated by Dißmann et al. (2013)
(VMST ,BMST (VMST ),θMST (BMST (VMST )))
R-vine estimated by Gruber and Czado (2012)
(VB,BB(VB),θB(BB(VB)))

III multivariate t-copula R-vine estimated by Dißmann et al. (2013)
with only Student’s t-copulas

R-vine with only t-copulas multivariate t-copula

Table 4.1: Overview of the studied test settings

Power study I

We investigated three variants of the dependence:

• M1 with mixed Kendall’s τ values,

• M1 with constant low (τ = 0.25) Kendall’s τ values and

• M1 with constant medium (τ = 0.5) Kendall’s τ values
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for the d(d − 1)/2 pair-copulas. An R-vine with constant high dependencies is omitted
since the power in the medium case are already very high and allow to draw conclusions
for the high dependency case. The structure of the chosen R-vine is given in Figure C.1
and Equation (C.1) of Appendix C.1. The chosen bivariate copula families and Kendall’s
τ values can be found in Table C.1 of Appendix C.1.

The selected D-vine structure (Step 3 in the test procedure) is already defined by
the ordering of its variables in the first tree. Here the ordering is 3-4-5-1-2, see Equation
(C.3) of Appendix C.1. Similarly, the C-vine structure is defined by its root nodes. The
root in the first tree is variable 2 while in the second tree variable 1 is added to the
root, i.e. the root in Tree 2 is 1,2. Variable 4, 5 and 3 are added in the next trees,
respectively, see Equation (C.2) of Appendix C.1. The selected copula structure and pair-
copula parameters in Step 3 are quite stable given more than one data set in Step 2, i.e. no
changes in the vine copula structure and minor changes in the pair-copula choice (e.g. the
algorithm selects a rotated Gumbel copula instead of a Clayton copula, which are quite
similar given a low Kendall’s τ). Neglecting possible small variations in the pair-copula
selection given R different data sets we fix the C- and D-vine structure as well as the
pair-copula family selection after one run of Step 2.

An overview of all investigated models is given in Table 4.2.

Model V B(V) θ(B(V))1 θ(B(V))2 θ(B(V))3

R-vine Eq. (C.1), Fig. C.1 Tab. C.1 Tab. C.1 τ = 0.25 τ = 0.5

Gauss - Gauss θ̂1 θ̂2 θ̂3

C-vine V̂C , Eq. (C.2) B̂C(V̂C) θ̂C(B̂C(V̂C))1 θ̂C(B̂C(V̂C))2 θ̂C(B̂C(V̂C))3

D-vine V̂D, Eq. (C.3) B̂D(V̂D) θ̂D(B̂D(V̂D))1 θ̂D(B̂D(V̂D))2 θ̂D(B̂D(V̂D))3

Table 4.2: Model specifications

Results with regard to nominal size: A p-value plot (α versus F̂M1(α)) for the
simulated results shows that the test works perfectly under the null independent of the
number of observations, since the p-value plot fits the 45 degree line nearly perfect (see
Figure 4.2a). That means that the test reaches its nominal level in the case of simulated
p-values.

Given the asymptotic p-values p(trn(M1)) = (χ2
p(p+1)/2)−1(trn(M1)) and their corre-

sponding empirical distribution function F̂ asy
M1

(α) we have a different picture. The actual
size is much greater than the nominal size (see Figure 4.2b). Also the test does not hold
its nominal level in the case of asymptotic p-values given a small/medium data set. The
test over-rejects quite too often based on asymptotic p-values.

Comparing the finite sample distribution of the test statistic with the theoretical
χ2 distribution in Figure 4.3a (left panel) we can clearly see, that even in the case of
1000 observation points the χ2 distribution does not fit the empirical distribution given
the observed test statistics trn(M1). For the investigated 5-dimensional case the empirical
distribution fits the theoretical one not until n = 10000 . In this case the actual size is
the nominal size (see Figure 4.3a, right panel).
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Additionally, we investigated the size behavior in a 8-dimensional vine copula model,
whose details are not provided here. Figure 4.3b clearly illustrates that the asymptotic
theory based test is too conservative, while in the 5-dimensional case the test is too lib-
eral. Even for a sample size of n = 20000 for d = 8 the the actual size does not reach the
nominal size.
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(a) p-value plots using simulated p-values
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(b) p-value plots using asymptotic p-values
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(c) detail plots of (b)

Figure 4.2: p-value plots for the three different scenarios; left: mixed Kendall’s τ , center:
constant Kendall’s τ = 0.25, right: constant Kendall’s τ = 0.5.
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(b) d = 8

Figure 4.3: Empirical density plot (left panel) and p-value plot for the asymptotic p-values
(right panel)

Results with regard to power: In Figure 4.4 we show the behavior of the size-power
curve for varying number of observations n in each scenario. The number of observations
increase from n = 300 in the upper left panel over n = 500 (upper right panel) and
n = 750 (lower left panel) to n = 1000 in the lower right panel. Due to the results of
the p-value plots we only consider the results of the simulated p-values in the following.
The dotted diagonal line represents the case where size (x-axes) equals power (y-axes).
In addition, we list in Table 4.3 the power for n = 500 at nominal size 5% in several
senarios. Given a true vine model different vine models are tested. E.g. given a C-vine
with Kendall’s τ value of 0.25 the test for an R-vine returned on average a power of 18.4%
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using simulated p-values (Simul.) and 59.9% using asymptotic p-values (Asy.).

The first observation evaluating the plots is that the power is always greater than the
size. This indicates a good performance of the test in mean. Further, an increasing number
of observations increases the power of the test. In the medium dependence scenarios the
tests are consistent since the power reaches one at quite low size.

Further conclusions are:

• The size-power curves of the C-vine and the D-vine are close to each other in each
scenario. This changes in higher dimensional data sets (a 8-dimensional scenario was
performed but is not documented here in detail). In the 5-dimensional case all vine
structures are very similar, i.e. a change of one edge can change an R-vine into a C-
or D-vine.

• The Gauss model is the first detected model, i.e. its size-power curve is the steepest
and outperforms the other two. The C- and D-vine are more flexible in their choice
of pair-copula families and thus can fit the data better.

• If the number of observations is too low, e.g. n = 300, conclusions are less robust.
This weakness can be often observed in the inferential context and is e.g. documented
for other goodness-of-fit tests for copulas in the comparison study of Genest et al.
(2009).

• Very low dependencies yield to flatter size-power curves. If Kendall’s τ is very small
(in absolute terms) all copulas are close to the product copula and the choice of the
vine structure as well as of the pair-copula families are less significant. Increasing
power by increasing strength of dependence are already observed in other goodness-
of-fit tests for copulas, see e.g. Genest et al. (2009) or Genest et al. (2012).

• Additional simulation studies with 8-dimensional vine copula models show that the
power decreases (slightly) for increasing dimension. With increasing dimension the
number of pair-copulas and thus the number of copula parameters increases, e.g. in
scenario 3 (Kendall’s τ = 0.5) the power of an R-vine copula against a C-vine copula
decreases at size 5% from 92% to 57%, and against a Gauss copula from 78% to
20%, but against a D-vine copula it increases from 82% to 89%. For bigger size the
gap shrinks. Our assumption is that numerical instabilities in the calculation of the
gradient and especially of the Hessian matrix increase. Nevertheless, in 8 dimensions
the power is still substantive.

Power study II

In the second scenario we investigate if the test can distinguish between two different 5-
dimensional R-vines. One is selected and estimated with a maximum spanning tree (MST)
algorithm and sequential estimation based on bivariate maximum likelihood (MLE), which
is quite close to the full MLE (Dißmann et al. 2013). The comparison candidate is an R-
vine chosen via MCMC in a Bayesian approach with the highest probability among the
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(a) empirical with mixed Kendall’s τ
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(b) empirical with constant Kendall’s τ = 0.5
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(c) empirical with constant Kendall’s τ = 0.25

Figure 4.4: Size-power curves for different number of observations. In each panel: Upper
left: n = 300, upper right: n = 500, lower left: n = 750 and lower right: n = 1000.
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True model
in the Vine τ = 0.25 τ = 0.5 mixed τ
alternative H1 under H0 Simul. Asy. Simul. Asy. Simul. Asy.

R-vine R-vine 5.0 31.9 5.0 53.5 5.0 44.4
C-vine 18.4 59.9 92.8 100.0 42.5 89.8
D-vine 15.6 56.8 82.7 98.2 40.8 90.1
Gauss 38.7 81.9 78.1 99.6 33.2 88.5

C-vine R-vine 15.8 54.6 59.8 97.7 30.8 88.0
C-vine 5.0 29.3 5.0 47.8 5.0 46.3
D-vine 14.1 50.5 67.6 98.2 51.8 94.1
Gauss 17.3 57.6 58.4 97.3 36.5 92.1

D-vine R-vine 6.8 36.1 35.8 93.8 54.3 95.5
C-vine 9.4 41.6 62.3 98.8 35.8 90.0
D-vine 5.0 29.0 5.0 51.2 5.0 44.4
Gauss 17.5 56.5 37.9 94.3 60.4 96.5

Gauss R-Vine 6.1 9.1 7.3 28.3 7.7 17.9
C-vine 6.1 9.3 6.3 25.4 6.6 16.0
D-vine 5.8 8.4 8.0 30.3 7.4 17.5
Gauss 5.0 7.6 5.0 23.1 5.0 13.2

Table 4.3: Estimated power (in %) for n = 500 at nominal size 5% (Values in italic give
the actual size of the test)

visited variants in the MCMC (Gruber and Czado 2012). The true data generating model
and the specification of the two estimated models are given in Table C.2 of Appendix
C.2. The model selected by the Bayesian approach differs from the original R-vine just
in two copulas, i.e. c2,4 instead of c3,4 and consequently c3,4|2 instead of c2,4|3. In contrast,

the MST model differs in its fitted structure V̂ and pair-copula family selection B̂(V̂) to
the other two more pronounced. Figure 4.5 shows the results and the conclusions are:

• The MST model is clearly detected as different from the true R-vine model for
n > 500, while the MCMC model, which is much ”closer” to the true model, since
the size-power curves are close to 45 degree for all sample sizes n.

• As in power study I the power for the MST model is increasing with increasing
number of observations.

• The observed log-likelihood is a first indicator for the misspecification in the MST
case, since lMST = 3360 < lMCMC = 3731 < ltrue = 3757 (n=1000)2. The log-
likelihood of the MCMC model is much closer to the true one.

2Results from Gruber and Czado (2012)
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Figure 4.5: Simulated size-power curves for different sample sizes in power study II. Left
panel: R-vine model fitted with maximum spanning tree (MST) and sequential estimation,
right panel: R-vine model fitted with Bayesian approach.

Power study III

In financial applications often the multivariate Student’s t-distribution or multivariate
t-copula is used. In the last simulation study we investigate the difference of the mul-
tivariate t-copula with common degree-of-freedom versus an R-vine copula based on bi-
variate t-copulas with variable and separately estimated degrees-of-freedom in terms of
our goodness-of-fit test. Again we choose the mixed R-vine model from power study I
but change all copula families to t-copulas with the degree-of-freedom parameters in the
range ν ∈ [4, 20].

Using the convergence of the t-copula for large ν to the Gauss copula we replace t-
copulas with estimated degrees-of-freedom greater or equal 30 with the Gaussian copula in
the R-vine copula model. This is done for stability and accuracy reasons in the calculations
of the derivatives.

In Figure 4.6 we give the size-power curves for the simulated p-values for the two
scenarios. The right panel indicates that given an R-vine with t-copulas the multivariate
t-copula is not a good fit, since the test has power to discriminate against the multivariate
t-copula. In contrast, the test has less power to discriminate an R-vine as alternative to a
multivariate t-copula regardless of the sample size. For n = 300 the test has no detection
power since the size-power curves are close to the 45 degree line.

Further observations are: The shape of the size-power curves depends heavily on
the sample size. The numerical instability in estimation of the degrees-of-freedom may be
a reason for this behavior. Compared to the other scenarios we have less power for small
size.

4.1.4 Extension to unknown margins

Goodness-of-fit tests such as the tests discussed Berg (2009) do not account for uncer-
tainties in the margins. He uses rank transformed data, i.e. so called pseudo-samples
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Figure 4.6: Size-power curves based on simulated p-values for different sample sizes. Left:
R-vine (vine in H1) versus multivariate t-copula (vine under H0); right: multivariate t-
copula (vine in H1) versus R-vine (vine under H0).

u1 = (u11, . . . , u1d), . . . ,un = (un1, . . . , und), where

uj = (uj1, . . . , ujd) :=

(
Rj1

n+ 1
, . . . ,

Rjd

n+ 1

)
,

and Rji is the rank of xij, i = 1, . . . , n and j = 1, . . . , d, which are i.i.d. observations of the
random vector X = (X1, . . . , Xd). The denominator n + 1 instead of n avoids numerical
problems at the boundaries of the unit hypercube.

A second method to handle unknown margins is the inference functions for margins
(IFM) approach by Joe (1997), which uses parametric estimates Fγ̂i , i = 1, . . . , d of the
margins based on marginal parameter estimates γ̂i and use them to transform to copula
data.

In the case of unknown margins one has to adjust the computation of the test statistic.
Huang and Prokhorov (2013) did this for their copula goodness-of fit test. Similarly we
can adjust our proposed R-vine copula goodness-of-fit test.

The asymptotic variance matrix Vθ0 (Expression (4.8)) for the test statistic Tn (Ex-
pression (4.9)) is extended using expected derivatives with respect to the margins of the
log-likelihood and the expected derivatives of the vectorized sum of the Hessian matrix
and the outer product of gradient, respectively. More precisely define

Wi(Fi) :=

∫

[0,1]d

[
I{Fi≤ui} − ui

]
∂2
θ,ui

ln(cθ0(u1, . . . , ud))cθ0(u1, . . . , ud)du1 . . . dud,

Mi(Fi) :=

∫

[0,1]d

[
I{Fi≤ui} − ui

]
∂uivech

(
∂2
θ ln(cθ0(u1, . . . , ud))+

∂θ ln(cθ0(u1, . . . , ud))
(
∂θ ln(cθ0(u1, . . . , ud))

)T
)
du1 . . . dud,
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with Fi := Fi(xi), i = 1, . . . , d. Furthermore, d(θ0) is now defined in terms of the random
vector X:

d(θ0|X) := vech(H(θ0) + C(θ0)),

where H(θ0) and C(θ0) are defined in (4.5). With l(θ|X) := ln(cθ0(F1, . . . , Fd)) the ad-
justed variance matrix is

Vθ0 = E

[(
d(θ0|X)−∇Dθ0H−1(θ0)

(
∂θl(θ0|X) +

d∑

i=1

Wi(Fi)

)
+

d∑

i=1

Mi(Fi)

)

(
d(θ0|X)−∇Dθ0H−1(θ0)

(
∂θl(θ0|X) +

d∑

i=1

Wi(Fi)

)
+

d∑

i=1

Mi(Fi)

)T

 .

But, this correction of White’s original formula would involve multidimensional inte-
grals, not computational tractable in appropriate time. An adjusted gradient and Hesse
matrix may avoid this problem. Since the goodness-of-fit test calculation does not depend
directly on the density function f but on the product of pair-copulas and marginal density
functions, the derivatives should not only be with respect to the parameters but to the
marginals too. This approach may be a topic for further research. Thus (4.8) will be used
as an approximation in the case of unknown margins, e.g. in our application in the next
section.

To justify the good approximation behavior of (4.8) we run power study I of Section
4.1.3 with unknown margins. We limit ourselves here to the mixed copula case with
n = 500 observations. The chosen data generating process uses the standard normal
distribution for all 5 margins in a first scenario, and centered normal distributions with
different standard deviations σ ∈ {1, 2, 3, 4, 5} in a second scenario. The margins are
estimated via moments in an IFM approach.

In Figure 4.7 we illustrate the resulting size-power curves. Comparing the middle
panel to the right panel or to the left panel we cannot detect significant differences in the
power if the margins are unknown. Further, the choice of the marginal distribution Fγ
has no significant influence on the size-power curves. This is confirmed by further power
studies not presented in this manuscript, e.g. marginal Student’s t-distributions. This is
no longer true if the choice of the marginal distribution fits badly the (generated) data,
e.g. data generated from a Student’s t-distribution fitted with an exponential distribution.
An estimation of the margins with the rank based approach returned similar results as
the IFM approach above.

4.2 Information matrix ratio test

As second goodness-of-fit test for vine copula models we introduce the information ratio
(IR) test. It is inspired by the paper of Zhou et al. (2012), who propose an IR test for gen-
eral model misspecification of the variance or covariance structures. Their test is related
to the “in-and-out-sample” (IOS) test of Presnell and Boos (2004), which is a likelihood
ratio test. Additionally Presnell and Boos (2004) showed that the IOS test statistic can
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Figure 4.7: Simulated size-power curves for the mixed Kendall’s τ R-vine copula model
considering n = 500 observations. left panel: no uncertainty in the margins; middle panel:
data generating process with standard normal margins for all 5 dimensions, right panel:
data generating process with centered normal margins with different standard deviations.

be expressed as a ratio of the expected Hessian and the expected outer product of the gra-
dient. Following the notation of Section 4.1, H(θ) and C(θ) denote the expected Hessian
matrix and the expected outer product of the score function, respectively. See Equation
(4.5) for definition of H(θ) and C(θ). Now the information matrix ratio (IMR) is defined
as

Ψ(θ) := −H(θ)−1C(θ) (4.10)

and the test problem is

H0 : Ψ(θ) = Ip against H1 : Ψ(θ) 6= Ip,

where Ip is the p-dimensional identity matrix.

Given again the sample equivalents to H(θ) and C(θ) denoted as H̄(θ̂n) and C̄(θ̂n) as
defined in Equation (4.7) we get as empirical version of (4.10):

Ψ̄(θ̂n) := −H̄(θ̂n)−1C̄(θ̂n).

As in Zhou et al. (2012) we define the information ratio (IR) statistic as

IRn := tr(Ψ̄(θ̂n))/p, (4.11)

where tr(A) denotes the trace of matrix A. To derive the asymptotic normality of the test
statistic IRn some conditions have to be set. The first two conditions C1 and C2 guarantee
the existence of the gradient and the Hessian matrix.

C1 : The density function (2.3) is twice continuous differentiable with respect to θ.

C2 : -H̄(θ̂n) and C̄(θ̂n) are positive definite.

Condition C3 − C5 are more technical and are the same as in Presnell and Boos (2004).

C3 : There exist θ0 such that θ̂n
P→ θ0 as n→∞.
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C4 : The estimator θ̂n ∈ Rp has an approximating influence curve function h(θ|u) such
that

θ̂n − θ =
1

n

n∑

i=1

h(θ0|Ui) +Rn1,

where
√
nRn1

P→ 0 as n→∞, E[h(θ0|U1] = 0, and cov(h(θ0|U1) is finite.

C5 : The real-valued function q(θ|u) possesses second order partial derivatives with re-
spect to θ, and

(a) V ar(q(θ0|U1)) and E
[
∂
∂θ
q(θ0|U1)

]
are finite.

(b) There exists a function M(u) such that for all θ in a neighborhood of θ0 and

all j, k ∈ {1, . . . , p},
∣∣∣ ∂2∂2θq(θ|u)jk

∣∣∣ ≤M(u), where E[M(U1)] <∞.

In the following vech(A) ∈ Rp(p+1)/2 represents the vectorization of the symmetric matrix
A ∈ Rp×p. Let W := (W1, . . . ,Wp(p+1))

T = (vech(C̄(θ̂n)), vech(H̄(θ̂n)))T ∈ Rp(p+1), then
Presnell and Boos (2004) showed that

Σ
−1/2
W

√
nW − µW d→ Np(p+1)(0p(p+1), Ip(p+1)),

where µW is the mean vector and ΣW is the asymptotic covariance matrix of W . Here
0p(p+1) := (0, . . . , 0)T is the p(p + 1)-dimensional zero vector and Ip(p+1) is the p(p + 1)-

dimensional identity matrix. Furthermore, let D(θ̂n) define the partial derivatives of IRn

taken with respect to the components of W , i.e.

D(θ̂n) :=

(
∂IRn

∂Wi

)

i=1,...,p(p+1)

∈ Rp(p+1).

Theorem 4.3
Let U ∼ RV (V ,B(V),θ(B(V))) satisfy the conditions C1 − C3. Further, let C4 hold for

the maximum likelihood estimator θ̂n with h(θ0|u) := C(θ0)−1 ∂
∂θ
l(θ0|u). Additionally,

the condition C5 has to be satisfied for both q(θ|u) := − ∂2

∂2θ
l(θ|u)jk and q(θ|u) :=(

∂
∂θ
l(θ|u)

(
∂
∂θ
l(θ|u)

)T)
jk

for each j, k ∈ {1, . . . , p}. Then the IR test statistic

Zn :=
IRn − 1

σIR

d→ N(0, 1) as n→∞,

where σIR is the standard error of the IR test statistic, defined as

σ2
IR :=

1

n
DTΣWD.

Here ΣW is the asymptotic covariance matrix arising from the joint asymptotic normality
of vech(C̄(θ̂n)) and vech(H̄(θ̂n)) defined above. By D we denote the p(p+ 1)-dimensional
vector of partial derivatives of IRn taken with respect to the components of W and eval-
uated at their limits in probability, i.e. D := D(θ̂n)|

θ̂n
P→θ0

.
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Proof
The proof follows directly from the proof of Theorem 3 in Presnell and Boos (2004), since
we have a fully specified likelihood and the conditions of Theorem 3 are assumed to be
satisfied for vine copulas considered in Theorem 4.3. 2

Since the theoretical asymptotic variance σ2
IR is quite difficult to compute, an em-

pirical version is used in practice. To evaluate the standard error σIR numerically, Zhou
et al. (2012) suggest a perturbation resampling approach. Furthermore, Presnell and Boos
(2004) state that the convergence to normality is slow and thus they suggest obtaining
p-values using a parametric bootstrap under the null hypothesis.

The condition C4 for q(θ|u) := − ∂2

∂2θ
l(θ|u)jk implies, that the copula density function

(2.3) is four times differentiable with respect to θ. Furthermore, the first and second
moment of the second derivative has to be finite. The vine copula density is four times
differentiable if all selected pair-copulas are four times differentiable. These assumptions
are satisfied for the elliptical Gauss and Student’s t-copula as well as for the parametric
Archimedean copulas in all dimensions.

Note that in Zhou et al. (2012) the information matrix ratio is defined inversely,
i.e. Ψ(θ) = −C(θ)−1H(θ). This does not change the asymptotic normality of Theorem
4.3, since H̄(θ̂n) + C̄(θ̂n) = 0 as n→∞ (under the correct model). The asymptotic mean
matrix of Ψ(θ) is the identity matrix Ip and therefore the mean of the IR statistic is
tr(Ip)/p = 1.

Let α ∈ (0, 1) and Zn as in Theorem 4.3. Then the test

Reject H0 : Ψ(θ) = Ip against Ψ(θ) 6= Ip ⇔ Zn > Φ−1(1− α)

is an asymptotic α-level test. Here Φ−1 denotes the quantile of a N(0, 1)-distribution.

4.3 Further goodness-of-fit tests for vine copulas

In the recent years many GOF test were suggested for copulas. The most promising ones
were investigated in Genest et al. (2009) and Berg (2009). However only the size and power
of the elliptical and one-parametric Archimedean copulas for d ∈ {2, 4, 8} were analyzed.
The multivariate case is therefore poorly addressed. For vine copulas little is done. A first
test for vine copulas was suggested but not investigated in Aas et al. (2009). Their GOF is
based on the multivariate PIT and an aggregation introduced by Breymann et al. (2003).
After aggregation standard univariate GOF tests such as the Anderson-Darling (AD), the
Cramér-von Mises (CvM) or the Kolmogorov-Smirnov (KS) tests are applied. They are
described in more detail in B.2. We will denote the resulting tests as Breymann.

Similar approaches based on the multivariate PIT are proposed by Berg and Bakken
(2007). Beside new aggregation functions forming univariate test data, they perform the
aggregation step on the ordered PIT output data yT(1), . . . ,y

T
(d) instead of yT1 , . . . ,y

T
d .

Again standard univariate GOF tests are applied. These approaches will be called Berg
and Berg2, respectively.

Berg and Aas (2009) applied a test for H0 : C ∈ C0 against H1 : C /∈ C0 based on
the empirical copula process (ECP) to a 4-dimensional vine copula. As the Breymann
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test, their GOF test is not described in detail or investigated with respect to its power.
We will denote this test as ECP. An extension of the ECP-test is the combination of
the multivariate PIT approach with the ECP. The general idea is that the transformed
data of a multivariate PIT should be “close” to the independence copula C⊥ Genest et al.
(2009). Thus a distance of CvM or KS type between them is considered. This approach
is called ECP2.

In the forthcoming sections we will introduce the multivariate PIT based GOF such
as the ones of Breymann et al. (2003) and Berg and Bakken (2007), and the two ECP
based GOF tests. For an overview see the diagram in Figure 4.1 at the beginning of this
Chapter.

4.3.1 Rosenbatt’s transform test

The vine copula GOF test suggested by Aas et al. (2009) is based on the multivari-
ate probability integral transform (PIT) of Rosenblatt (1952) applied to copula data
u = (uT1 , . . . ,u

T
d ),ui = (u1i, . . . , uni)

T , i = 1, . . . , d and a given estimated vine copula

model (V ,B(V), θ̂(B(V))). The general multivariate PIT definition and the explicit al-
gorithm for the R-vine copula model is given in Appendix B.1. The PIT output data
y = (yT1 , . . . ,y

T
d ), yi = (y1i, . . . , yni)

T , i = 1 . . . , d is assumed to be i.i.d. with yit ∼ U [0, 1]
for t = 1, . . . , n. Now, a common approach in multivariate GOF testing is dimension
reduction. Here the aggregation is performed by

st :=
d∑

i=1

Γ(yti), t = {1, . . . , n}, (4.12)

with a weighting function Γ(·). Breymann et al. (2003) suggest as weight function the



u11 . . . u1d
...

...
un1 . . . und


 Rosenblatt−−−−−−→

(PIT )



y11 . . . y1d
...

...
yn1 . . . ynd


 Aggregation−−−−−−−→

Γ(yti)



s1
...
sn


 univariate−−−−−−→

GOFtests

Figure 4.8: Schematic procedure of the PIT based goodness-of-fit tests.

squared quantile of the standard normal distribution, i.e. Γ(yti) = Φ−1(yti)
2, with Φ(·)

denoting the N(0, 1) cdf. Finally, they apply a univariate Anderson-Darling test to the
univariate test data st. The three step procedure is summarized in Figure 4.8.

Berg and Bakken (2007) point out that the approach of Breymann et al. (2003) has
some weaknesses and limitations. The weighting function Φ−1(yti)

2 strongly weights data
along the boundaries of the d-dimensional unit hypercube. They suggest a generalization
and extension of the PIT approach. First, they propose two new weighting functions for
the aggregation in (4.12):

Γ(yti) = |yti − 0.5| and Γ(yti) = (yti − 0.5)α, α = (2, 4, . . .).
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Further, they use the order statistics of the random vector Y = (Y1, . . . , Yd), denoted
by Y(1) ≤ Y(2) ≤ . . . ≤ Y(d) with observed values y(1) < y(2) ≤ . . . ≤ y(d). The calculation
of the order statistics PIT can be simplified by using the fact that Y(1) ≤ Y(2) ≤ . . . ≤ Y(d)

are i.i.d. U(0, 1) random variables and {Y(i), 1 ≤ i ≤ d} is a Markov chain (David 1981,
Theorem 2.7). Now Theorem 1 of Deheuvels (1984) can be applied and the calculation of
the PIT ease to

vi := FY(i)|Y(i−1)
(y(i)) = 1−

(
1− y(i)

1− y(i−1)

)d−(i−1)

, i = 1, . . . , d, y(0) = 0. (4.13)

Now, Berg and Bakken (2007) construct the aggregation as the sum of a product of
two weighting functions applied to y and v = (v1, . . . , vd), respectively, i.e.

st :=
d∑

i=1

Γy(yti) · Γv(vti), t = {1, . . . , n}.

Here Γy(·) and Γv(·) are chosen from the suggested weighting functions including the
one of Breymann et al. (2003). Let St be the corresponding random aggregation of st. If
Γy(·) = 1 and Γv(·) = Φ−1(·)2 or vise versa, the asymptotic distribution of St follows a
χ2
d distributed random variable (Breymann et al. 2003). In all other cases the asymptotic

distribution of St is unknown.
The combinations with Γy(yti) = |yti − 0.5| and Γy(yti) = (yti − 0.5)α for α = 2, 4, . . .

performed very poorly in the simulation setup considered later. Thus we will not include
them in the forthcoming power study. Only the weighting functions listed in Table 4.4
will be investigated. As final test statistics to the test data st we apply the univariate
Cramér-von Mises (CvM) or Kolmogorov-Smirnov (KS) test, as well as the mentioned
univariate Anderson-Darling (AD) test. All three test statistics are given in Appendix
B.2 for the convenience of the reader.

Short Description

Breymann Γy(yti) = Φ−1(yti) Γv(vti) = 1
Berg Γy(yti) = 1 Γv(vti) = |vti − 0.5|
Berg2 Γy(yti) = 1 Γv(vti) = (vti − 0.5)2

Table 4.4: Specifications of the PIT based goodness-of-fit tests.

Let sAD1−α, s
CvM
1−α and sKS1−α denote the 1 − α quantile of the univariate AD, CvM or

KS test statistic, respectively. Then the test rejects the null hypothesis (4.1) if W 2
n >

sAD1−α, ω
2 > sCvM1−α or Dn > sKS1−α, respectively.

4.3.2 Empirical copula process tests

A rather different approach is suggested by Genest and Rémillard (2008) for copula GOF
testing. They propose to use the difference of the copula distribution function Cθ̂n(u) with

estimated parameter θ̂n and the empirical copula Ĉn(u) (see Equation (4.4)) given the
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copula data u. This stochastic process is known as the empirical copula process (ECP)
and will be used to test (4.1). For a vine copula model the copula distribution function
Cθ̂n(u) is not given in closed form. Thus a bootstrapped version has to be used.

Now, the ECP Ĉn(u)−Cθ̂n(u) is utilized in a multivariate Cramér-von Mises (mCvM)
or multivariate Kolmogorov-Smirnov (mKS) based test statistic. The multivariate distri-
bution functions F̂n(y) and F (y) in Equation (B.1) and (B.2) of Appendix B.2.1 are
replaced by their (vine) copula equivalents Ĉn(u) and Cθ̂n(u), respectively. Thus we con-
sider

ECP-mCvM: nω2
ECP := n

∫

[0,1]d
(Ĉn(u)− Cθ̂n(u))2dĈn(u) and

ECP-mKS: Dn,ECP := sup
u∈[0,1]d

|Ĉn(u)− Cθ̂n(u)|.

To avoid the calculation/approximation of Cθ̂n(u) Genest et al. (2009) and other
authors propose to use the transformed data y = (y1, . . . , yd) of the PIT approach and
plug them into the ECP. The idea is to calculate the distance between the empirical
copula Ĉn(y) of the transformed data y and the independence copula C⊥(y). Thus, the
considered multivariate CvM and KS test statistics are

ECP2-mCvM: nω2
ECP2 := n

∫

[0,1]d
(Ĉn(y)− C⊥(y))2dĈn(y) and

ECP2-mKS: Dn,ECP2 := sup
y∈[0,1]d

|Ĉn(y)− C⊥(y)|,

respectively. Since neither the mCvM nor the mKS test statistic has a known asymptotic
distribution function a parametric bootstrap procedure has to be applied to estimate p-
values. Thus a computer intensive double bootstrap procedure has to be implemented.
As before the test rejects the null hypothesis (4.1) if nω2

ECP > smCvM1−α or Dn,ECP > smKS1−α ,
respectively. Here smCvM1−α and smKS1−α are the 1 − α quantiles of the mCvM and mKS
test statistic’s empirical distribution function, respectively. Similar rejection regions are
defined for the ECP2 test statistics.

4.4 Comparison in a power study

To investigate the power behavior of the proposed GOF tests and to compare them to
each other we conduct several Monte Carlo studies of different dimension. The second
property of interest is the ability of the test to maintain the nominal level or size, usually
chosen at 5%.

As in Section 4.1.3 we use the estimated size (actual size) and power as performance
measures. Furthermore, the general simulation setup stated in Section 4.1.3 is also applied
to the different test statistics defined in Section 4.2 and 4.3, namely Tn (White), Zn (IR),
W 2
n (AD), nω2 (CvM or mCvM) and Dn (KS or mKS).

In all of the forthcoming simulation studies we used B = 2500 replications and the
number of observations were chosen to be n = 500, n = 750, n = 1000 or n = 2000.
As model dimension we chose d = 5 and d = 8 and the critical level α is 0.05. As
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before all calculations are performed using the statistical software R and the R-package
VineCopula of Schepsmeier et al. (2012) introduced in Section 2.3.

As test specification we consider again an R-vine as true model (M1) and the alterna-
tives

• multivariate Gauss copula,

• C-vine copula and

• D-vine copula,

as defined in Power study I of Section 4.1.3 and Appendix C.1. For the 8 dimensional
example we refer to Table C.3 and Figure C.2 of Appendix C.3.

Although all three stated alternatives have different vine structures and pair-copula
families we do not know which vine copula model is “closer” to the true R-vine model. A
often proposed approach for model comparison is the Kullback and Leibler (1951) infor-
mation criterion (KLIC). It measures the distance between a true unknown distribution
and a specified, but estimated model. In the following definition we follow Vuong (1989).
Let c0(·) be the true (vine) copula density function of a d-dimensional random vector U .
Further, E0 denotes the expected value with respect to this true distribution. The esti-
mated (vine) copula density of U is denoted as c(θ̂n|U), where θ̂n is the estimated model
parameter (vector) given n samples of U . Then, the KLIC between c0 and c is defined as

KLIC(c0, c) :=

∫

(0,1)d
c0(u) ln

(
c0(u)

c(θ̂n|u)

)
du = E0[ln c0(U)]− E0[ln c(θ̂n|U)].

The model with the smallest KLIC is “closest” to the true model. In the plots of the
following power study we ordered the alternatives on the x-axis by their KLIC as listed
in Table 4.5, e.g. for d = 5 we have the order D-vine, C-vine, Gauss.

The approximation of the multidimensional integral is facilitated by Monte Carlo or a
numerical integration based on the R-package cubature (C code by Steven G. Johnson
and R by Balasubramanian Narasimhan 2011). In the numerical integration copula data,
i.e. u ∈ (0, 1)d, or standard normal transformed data, i.e. x = Φ(u) ∈ Rd, are used. We
see that it is quite challenging to estimate the KLIC distance in high dimensions.

Results

Since all proposed GOF tests have either no asymptotic distribution at all or face sub-
stantial numerical problems estimating the asymptotic variance or have shown to have
low power in small samples, we only investigate the bootstrapped version of the tests. In
the Figures 4.9 and 4.10 we illustrate the estimated power of all 15 proposed GOF tests
for d = 5 and d = 8, respectively. On the x-axis we have the R-vine as true model and the
three alternatives ordered by their KLIC. For the true model the actual size is plotted. A
horizontal black dashed line indicates the 5% α-level.

Size: All proposed GOF tests maintain their given size independently of the number
of sample points for d = 5. In the 8-dimensional case the GOF tests based on the Berg
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Figure 4.9: Power comparison of the proposed goodness-of-fit tests in 5 dimensions with
different number of sample points. The alternatives are ordered on the x-axis by the rank
of their KLIC value with respect to the true R-vine.
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Figure 4.10: Power comparison of the proposed goodness-of-fit tests in 8 dimensions with
different number of sample points. The alternatives are ordered on the x-axis by the rank
of their KLIC value with respect to the true R-vine.
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d method C-vine D-vine Gauss

5 Monte Carlo 0.65 0.64 0.72
numerical integration based on copula margins 0.62a 0.45a 0.71a

numerical integration based on normal margins 0.48a 0.51a 0.50a

8 Monte Carlo 1.66 0.13 0.73
numerical integration based on copula margins 1.46b 1.29b 1.91b

numerical integration based on normal margins 2.15c 3.20c 2.14c

Table 4.5: Kullback-Leibler distances of the proposed vine copula models with respect to
the true R-vine copula model (aestimated relative error < 0.01, bestimated relative error
≈ 1.4, cestimated relative error ≈ 3.5).

approaches do not maintain their nominal size in case of n = 500 and n = 750. All other
GOF tests do hold the 5% level and thus control the type I error.

Sample size effects on power: We have increasing power with increasing sample size
for the White, IR, ECP, ECP2 and Breymann (in combination with the AD test statistic)
GOF test. The tests based on Berg and Berg2 have no or very low power independently of
the number of observations. This is also true for the Breymann GOF test in combination
with the univariate CvM and KS test statistics. In eight dimensions the number of sample
points are important for the IR test since the tests has very small power considering only
500 data points. In five dimensions the effect is not that eye-catching but can be found
too. Almost independent from the the number of sample points is the ordering of the test
by their power. In all test scenarios the ECP2 test with mCvM test statistic outperforms
the others, followed by the IR test, the test based on White and the ECP2 test based
on the mKS test statistic. The next GOF tests are the tests based on the ECP and the
Breymann transformation with AD test statistic.

Dimension effect on the power: The power of the top four GOF tests (IR, White,
ECP and ECP2) are almost independent of the dimension. Only in the case of n = 500
sample points a clearly increase of power can be observed from d = 5 to d = 8 dimensions.
For the weaker tests the reverse is true. With increasing dimension the Breymann GOF
test decreases in power. The Berg and Berg2 tests are independently of the dimension.

Effect of alternatives on the power: The results with respect to the KLIC are
two-fold. For d = 5 the power increases with increasing KLIC for most the GOF tests
except for the Gauss copula in H1. For d = 8 it is again the multivariate Gauss copula
which is out of line for many of the tests. The exceptions are the ECP tests. For n ≥ 1000
the power of the four “good” tests mentioned before increases with KLIC. Some of them
have even a power of 100%. The Breymann test is conspicuous, since the test is working
quite well for the C- and D-vine alternative but is relatively poor for the multivariate
Gaussian copula independent of the dimension or sample size. While the Breymann tests
have much lower power than the four best GOF tests, they still have power to distinguish
between the null and alternative models.

Effects of the test functionals on power: For ECP, ECP2 or Breymann tests it
appears that CvM based test statistics are more powerful than the KS type test statistics.
This is in line with Genest et al. (2009) for bivariate copula GOF tests.
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The poor performance of the Breymann, Berg and Berg2 approach was also recognized
in the comparison studies of Genest et al. (2009) in the bivariate case and in Berg (2009)
for copulas of dimension 2, 4 and 8. The analyzed copulas in Berg (2009) were the Gauss,
Student’s t, Clayton, Gumbel and Frank copula. But there the test statistics maintained
their nominal level and had some explanatory power.

The bootstrapped p-values or power values stabilize fast for increasing bootstrap repli-
cations, for all GOF tests. This happens for 1000-1500 replications, irrespective of sample
size or alternative. In many cases the stabilization is even faster.

Beside these last points, no clear hierarchy among the best performing proposed test
statistics is recognizable. But some tests perform rather well while others do not even
maintain their nominal level. In particular, our new IR test performs quite well in terms
of power against false alternatives.

Of cause the computation time for the different proposed GOF tests is also a point
of interest for practical applications. Therefore, in Table 4.6 the computation times in
seconds for the different methods run on a Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz
computer for n = 1000 are given alongside with a summary of our findings. The computing
time of the information matrix based methods White and IR are clearly higher than the
other test statistics. Given the complex calculation of the R-vine gradient and Hessian
matrix (see Chapter 3) this is not very surprising.

4.5 Examples

4.5.1 Indices and volatility indices

As first application we consider a financial data set of four indices and their correspond-
ing volatility indices, namely the German DAX and VDAX-NEW, the European Eu-
roSTOXX50 and VSTOXX, the US S&P500 and VIX, and the Swiss SMI and VSMI.
The daily data cover the time horizon of the current financial crisis starting at August,
9th, 2007 when a sharp increase of inter bank interest rates was noticed, until April
30th, 2013, resulting in 1405 data points. For each marginal time series we calculated the
log-returns and modeled them with an AR(1)-GARCH(1,1) model using Student’s t in-
novations. The resulting standardized residuals are transformed using the non-parametric
rank transformation (see Genest et al. 1995) to obtain [0, 1]8 copula data.

The contour and pair plots in Figure 4.11 reveal the expected elliptical positive de-
pendence behavior among the indices and among the volatility indices. But between the
indices and the volatilities a negative dependence can be observed. Furthermore, a slight
asymmetric tail dependence is recognizable.

To model the dependence structure we investigated four models. In particular, an R-
vine copula model, selected using the maximum spanning tree algorithm by Dißmann et al.
(2013), a C-vine copula, selected by the heuristic proposed by Czado et al. (2012), a D-
vine copula, selected using a traveling sales man algorithm, and a multivariate Gaussian
copula. The corresponding first trees of the vine models are illustrated in Figure 4.12.
For the R-vine copula as well as in the D-vine copula we can see that the indices and the
volatilities cluster except for the US ones. The C-vine copula is too restrictive to recognize
such groupings. Another interesting point is that the first tree structure of the R-vine is
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Figure 4.11: Lower left: Contour plots with standard normal margins; upper right: pairs
plots of the transformed data set.

very close to the first tree structure of the D-vine. If we delete the edge “DAX-VDAX-
NEW” and add a new edge “VSMI-SMI” in the R-vine we get the D-vine tree structure.
Further, we see evidence of asymmetric tail dependence since (rotated) Gumbel copulas
are selected.

Performing a parametric bootstrap with B = 2500 most of the good performing pro-
posed GOF tests, namely White, IR, ECP (with CvM) and ECP2 (with CvM), confirm
that a vine copula model can not be rejected at a 5% significance level (see Table 4.7).
Only the ECP2 approach returns a p-value of 0.01 below the chosen significance level of
0.05 for the estimated C-vine copula, and the White based test a pvalue < 0.01 for the
estimated R-vine copula model. The multivariate Gauss copula is rejected by the White,
the IR and ECP2 GOF test, while the ECP based test returns a p-value of 0.6. In 3 of 4
GOF tests the highest returned p-value is for the D-vine copula. But note that the size
of the p-value or the ordering of the p-values do not give an ordering of the considered
models.
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Figure 4.12: First tree structure of the selected R-vine (left), C-vine (center) and D-
vine (right). The edge label denote the corresponding pair-copula family (t=̂Student’s t;
G90, G270=̂rotated Gumbel).

As in the simulation study the GOF tests differ in their rejection decision and several
GOF tests are needed to get a better picture of the better fitting model. The discrimination
between the estimated vine copula models is even harder than in the power study. The
MC-estimated KLIC of the R-vine to the C-vine is only 0.15, while the KLIC of the R-vine
to the D-vine is even smaller (0.11). Even the multivariate Gauss copula has an estimated
small KLIC with 0.31. Additional simulation studies based on the estimated vine copula
models for n = 1000 show that the simulated power is quite small for all proposed GOF
tests.

In terms of log-likelihood the D-vine is also the best fitting vine copula to the data
unless the R-vine has a better AIC and BIC. The significant smaller number of parameters
favors the R-vine compared to the D- or C-vine.

The economical interpretation of these findings is, that the assumption of multivariate
Gaussian distributed random vectors is not fulfilled in times of financial and economic
crises. More flexible models are needed to capture the asymmetric behaviors and tail
dependencies. R-vines are able to model these properties as already shown in Brechmann
and Czado (2013), Almeida and Czado (2012) or Min and Czado (2012).

log-lik #par AIC BIC White IR ECP ECP2

CvM KS CvM KS

R-vine 7652 33 -15238 -15065 0.002 0.75 0.18 0.98 0.30 0.67
C-vine 7585 42 -15086 -14865 0.14 0.74 0.51 0.36 0.01 < 0.01
D-vine 7654 41 -15226 -15011 0.41 0.52 0.82 0.24 0.55 0.67
Gauss 7320 28 -14584 -14445 < 0.01 < 0.01 0.60 0.28 < 0.01 < 0.01

Table 4.7: Likelihood based validation quantities and bootstrapped p-values of the White,
ECP, ECP2 and IR goodness-of-fit test for the 4 considered (vine) copula models
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4.5.2 Exchange rate data

The second example to illustrate the introduced goodness-of-fit tests is the exchange rate
data set of Section 3.4. We investigate three different fitted vine models. First, we consider
a C-vine as already discussed in Schepsmeier (2010, Chapter 5) and Czado et al. (2012).
Further, the R-vine of Section 3.4 and Appendix A.3, which was also already applied in
Stöber and Czado (2012) in a regime switching model, is taken into consideration. Finally,
a multivariate Gauss copula is considered, as commonly often applied in finance.

Performing a parametric bootstrap with repetition rate B = 2500 and sample size
N = 5000 our goodness-of-fit test results (see Table 4.8) confirm that the C-vine model of
Czado et al. (2012) can not be rejected at a 5% significance level given the White, ECP
and ECP2 test. The R-vine model of Section 3.4 has only a bootstrapped p-value of 2%
in the White test, but is greater than the significance level of 5% in all other considered
tests. As in the example before the ECP based tests can not reject the assumption of a
multivariate Gauss copula. All other GOF test reject the multivariate Gauss copula at a
significance level of 5%.

The log-likelihood, AIC and BIC show a similar picture since the C-vine is preferred
in terms of log-likelihood and AIC. Looking at the BIC criterion the R-vine is favorable
due to its relative small number of parameters and a quite high log-likelihood. Also, our
goodness-of-fit tests are consistent with the previous findings that the more flexible R-vine
and C-vine are appropriate to model financial data.

log-lik #par AIC BIC White IR ECP ECP2

CvM KS CvM KS

C-vine 2213 34 -4358 -4191 0.51 0.04 1 0.72 0.11 0.56
R-vine 2199 28 -4343 -4205 0.02 0.06 1 0.92 0.08 0.57
Gauss 2089 29 -4121 -3984 0.04 < 0.01 0.99 0.78 0.03 0.03

Table 4.8: Likelihood based validation quantities and bootstrapped p-values of the White,
ECP, ECP2 and IR goodness-of-fit test for the 4 considered (vine) copula models
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Chapter 5

Outlook and discussion

In the recent chapters we have introduced two important statistical inference tools for the
very flexible class of regular vine copula models. The possibility to estimate standard er-
rors of the estimated vine copula parameters closes a gap in the corresponding literature.
Therefore, algorithms for the R-vine log-likelihood gradient and Hessian matrix are de-
veloped. The necessary first and second derivatives with respect to the copula parameters
of bivariate copulas are derived and implemented. Now statisticians are able to quantify
the uncertainty of their vine copula parameter estimates. Secondly, we discussed several
goodness-of-fit tests for R-vine copulas. In particular, two new approaches arising from
the Information matrix equality and specification test of White (1982) were introduced
and their small sample performance studied. For comparison other GOF tests were ex-
tended from the bivariate copula case.

The algorithm for the gradient allows us to replace finite-differences of R-vine log-
likelihood functions with the analytical gradient. Thus a great numerical improvement in
the computation of the MLE can be achieved. As mentioned in Section 3.1 a decrease
of computation time by a factor of 4-8 is possible. Other methods like maximization by
parts of Song et al. (2005) will also gain from the analytical derivatives of the (copula)
log-likelihood.

Although the calculation of copula log-likelihood derivatives seem to be a rather tech-
nical issue, it is quite challenging and was derived with flaws in the past. In particular
the derivatives of the Student’s t-copula with respect to the degrees-of-freedom parameter
was wrong in the existing literature, for example Nadarajah (2006).

Despite the fast and optimized implementation in C the algorithms for the calculation
of the log-likelihood gradient and Hessian matrix of an R-vine are very time consuming.
Assuming only one-parametric copula families for all pair-copulas of the PCC d(d− 1)/2
parameters have to be estimated. Thus the dimension of the parameter vector θ(B(V))
grows quadratically in d and the dimension of the Hessian matrix roughly in the order of
d4. It follows that the estimation of the Fisher information by the negative Hessian matrix
and thereby the estimation of standard errors is limited to small to medium dimensions
of data sets.

Therefore truncation methods for the vine copulas have to be considered to reduce the
number of model parameters. First approaches of parameter cutback are already proposed
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by Brechmann et al. (2012) truncating the vine tree structure after a certain tree level.
Here, truncation means that all (conditional) pair-copulas are set to the independence
copula after the selected tree level. It is the authors opinion that further approaches have
to be considered to stay computationally trackable. One idea is to include empirical cop-
ulas as building blocks. Especially in higher order trees. A first non-parametric method is
suggested by Haff and Segers (2012) using an idea similar to the empirical copula, called
empirical pair-copula. Here only one bandwidth parameter h > 0 has to be selected.

But current practice is to model the vine parametrically. New approaches of non-
parametric vine copulas try to obviate the possible false copula selection form a set of
parametric copula families. In some cases parametric copulas are too limited to catch
for example the specific tail dependence of a pair of variables. Non-parametric copulas
estimation can be more flexible since they refrain from any strong parametric assumption
of the data structure. Vine copula models with exclusive non-parametric pair-copulas are
for example proposed by Weiß and Scheffer (2012) using non-parametric Bernstein cop-
ulas, or by Kauermann and Schellhase (2013) using bivariate penalized splines. Since so
called non-parametric copulas need parameters as well, the term “non-parametric” may
be misleading. Here the parameters are smoothing, bandwidth (Weiß and Scheffer 2012),
or spline and penalization parameters (Kauermann and Schellhase 2013), which are not
connected anymore to copula moments such as Kendall’s τ . If at all the number of model
parameters is not reduced significantly.

Another important issue, which is broadly discussed in this thesis, is the validation of
R-vine copula models using goodness-of-fit tests. We introduced two new goodness-of-fit
tests for vine copulas based on White’s information matrix test. The calculation of the test
statistics as well as their asymptotic distribution functions showed up to be challenging.
But good empirical approximations have been found as shown in several extensive power
studies. The studies revealed good performance of the tests in terms of power against
false alternatives given simulated p-values. Given sufficient data points the tests are even
empirical consistent. Furthermore, the new GOF tests maintained always their nominal
level, controlling the type I error, independently of sample size, dimension or alternative.

Further GOF tests are extended from the (bivariate) copula case to facilitate a wider
comparison. The small sample performance for size and power were investigated for GOF
tests based on the empirical copula process and the multivariate PIT. The application
of the PIT data in the empirical copula process was also considered, which showed good
performance results.

We discuss now some additional approaches for copula GOF tests, which might yield
further useful GOF tests for regular vines.

1. Of cause further known GOF tests for copulas can be extended to the vine copula
case. But most of them will have major problems in higher dimensions. For example
the likelihood ratio based GOF test or the Chi-squared type GOF test,
both introduced for copulas by Dobrić and Schmid (2005), have to partition the unit
hypercube. This will probably result in long computation time in high dimensions
as well as the need of sufficient large number of observations.



91

2. Berg and Aas (2009) developed a further GOF test based on the Kendall’s pro-
cess. To define the Kendall’s process we need U1, . . . , Ud uniform distributed random
variables with joint distribution (copula) C. Then, Kendall’s transformK is the (uni-
variate) distribution of the random variable V = C(U1, . . . , Ud). Now we consider
uj = (uj1, . . . , ujd)

T as U(0, 1)d pseudo-observations, defined as normalized ranks.

Further, let θ̂n the maximum likelihood estimator corresponding to the parametric
copula Cθ given n observations. Now, Berg and Aas (2009) apply a GOF test based
on Kendall’s process Kn =

√
n{Kn−Kθ̂n} to a four dimensional vine copula. Here,

Kn(t) =
1

n+ 1

n∑

j=1

1{Cn(uj)≤t} t ∈ (0, 1)

is the empirical distribution function of Cn(u). Further, Kθ̂n(t) = P (Cθ̂n ≤ t) is the
parametric estimate of Kendall’s dependence function K(t). Remember Cn is the
empirical copula introduced by Deheuvels (1979),

Cn(u) =
1

n+ 1

n∑

t=1

1{ut1≤u1,...,utd≤ud}.

Kn is then used in the Cramér-von Mises statistic, i.e.:

Tn =

∫

[0,1]d
{Kn(u)−Kθ̂n(u)}2dKn(u) =

n∑

j=1

{
Kn(uj)−Kθ̂n(uj)

}2
.

This approach revealed good results in the comparison study of Genest et al. (2009)
for bivariate copulas, whereKθ̂n has a closed form. For the vine copulas the Kendall’s
transform is not trackable. Thus the Kendall’s process based GOF test needs like
the ECP based GOF tests a double bootstrap procedure. Unfortunately Berg and
Aas (2009) did not test or investigate this GOF test in detail for the vine copula
case.

3. Further suggestions for copula GOF tests are for example presented in Fermanian
(2012). Some special GOF test designed for Archimedean or extreme value
copulas only are presented. Since the multivariate Clayton copula is the only
Archimedean copula which allows a vine representation (Stöber et al. 2013), this
approach is limited for vine copula GOF tests. Further, a density based GOF is
proposed to avoid the calculation of the copula cdf like in the ECP or Kendall’s
process approach. Testing the closeness between the true copula density and one
of its estimates out of a set of possible copula families is equivalent to study the
identity C = C0 (Fermanian 2005).

4. A very interesting hybrid approach was suggested by Zhang et al. (2013). Since no
GOF test outperforms in all cases a hybrid test is introduced. In our simulation
studies we noted, that for different scenarios or even just for different alternatives
diverse GOF tests performed best. Although the Information based tests performed
in most of the investigated scenarios best in terms of power against false alternatives
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the ECP based GOF tests outperformed them in some settings. Thus a hybrid test
for vine copula goodness-of-fit testing may be a good extension to the proposed
tests. Given the complex structure of vine copula models the strategy of a hybrid
test is particularly appealing. We hope that a hybrid test approach will lead to
more consistent test decisions in those cases where different GOF tests come to
conflicting test decisions (see for example the two applications in Section 4.5). As
possible members of a hybrid test we suggest the Information based test, namely
the White test and the IR test, as well as the ECP and ECP2 test showing good
performing results in our studies. The latter ones in the Cramér-von Mises type.
But other GOF tests may be considered as well.

We discuss now in more detail the hybrid approach. Given m test statistics t
(i)
n , i =

1, . . . ,m with sample size n and controlling type I error for any given significance
level α under the null hypothesis the hybrid p-value is defined as

phybridn := m ∗min{p(1)
n , . . . , p(m)

n }.

Here p
(i)
n , i = 1, . . . ,m denote the p-values of the test statistics t

(i)
n . Zhang et al.

(2013) showed that the power function is bounded from below and if there is at
least one test which is consistent, then the hybrid test is consistent. The rejection
rule of the hybrid test is

Reject H0 : C ∈ C0 = {Cθ : θ ∈ Θ} versus H1 : C /∈ C0 ⇔ phybridn ≤ α,

where C denotes the (vine) copula distribution function and C0 is a class of para-
metric (vine) copulas with Θ ⊆ Rp being the parameter space of dimension p. This
is equivalent to the situation where there is at least one test rejecting the null at
the level of α/m (Zhang et al. 2013).

Beside the choice of the best GOF test there is another issue to discuss. By testing
the validity of the null hypothesis H0 : C ∈ C0 one has to take the margins into account
if the margins are unknown. As pointed out by Genest et al. (2009) the marginal dis-
tribution functions F1, . . . , Fd of the random variables X1, . . . , Xd can be considered as
nuisance parameters. So far we always considered known margins. Only for the White test
we extended the GOF test statistic to unknown margins so far (see Section 4.1.4). Thus
an extension of the proposed GOF tests to unknown margins has to be considered in the
future. But this will be a tough question resulting possibly in numerical difficult solutions
as in the White case. A more practical approach is to validate the margins first and then
the dependence structure resulting from using the validated margins.

A more interesting question is the extension of the GOF tests to variable vine struc-
tures. Remember that we assume a known tree structure for the considered tests so far.
Thus GOF tests over structures of vines would be an interesting point. The question arises
“Is the underlying dependence structure of a given data set an R-vine?” Or, how much
influence does a specific vine structure have on the goodness of fit? For example different
vine copula structures can have a similar good fit in terms of likelihood, AIC or BIC.
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Different selection heuristics may estimate different vine copulas, including different vine
tree structures or just different pair-copula families, and return a comparable fit. Such
heuristics are for example the maximum spanning tree approach of Dißmann et al. (2013)
or the Bayesian approach of Gruber and Czado (2012).

Model comparison in terms of distances such as the Kullback and Leibler (1951) infor-
mation criterion (KLIC) are computational difficult to handle and not trackable in higher
dimension. As shown in the examples of Section 4.4 and Section 4.5 the results of the
numerical integration algorithms can be quite unstable. Furthermore, the number of pos-
sible vine copula models grows exponentially in the dimension, making direct comparisons
between all members of a specified vine copula class impossible. Thus a goodness-of-fit
test checking a general R-vine class would be helpful.

Note that in an extended case the R-vine does not have to be specified in terms of
structure V , pair-copula families B(V) or θ(B(V)). Consider for example an arbitrary C-,
D- or R-vine with only Student’s t-copulas or any other fixed copula family. Or the class
of truncated R-vines with arbitrary copula families on the first trees and independence
pair-copulas in higher trees. The test problem would be then

H0 : C ∈ C0 versus H1 : C /∈ C0,

where C0 is a subclass of arbitrary R-vine copula models. The GOF tests proposed in
Chapter 4 or in the previous paragraphs would be special cases defining C0 = {Cθ : θ ∈
Θ and VCθ

fix}. To the authors knowledge there is no such GOF test available.
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Appendix A

Appendix for Estimating standard
errors

A.1 Algorithm for the calculation of second deriva-

tives

In Section 3.2 we introduced the seven possible cases of dependence which can occur during
the calculation of the second log-likelihood derivative. In the following, we illustrate these
cases in detail. In case 1 we determine

∂2

∂θ∂γ
ln
(
cU,V |Z

(
FU |Z(u|z, θ), FV |Z(v|z, γ)

))

=
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(A.1)

for case 2
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ln
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(A.2)
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+
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and case 3 yields
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Similarly, we have for case 4 that
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and
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for the fifth case. Finally,
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Algorithm A.1.1 Second derivative with respect to the parameters θk̃,̃i and θk̂,̂i.

The input of the algorithm is a d-dimensional R-vine matrix M with maximum matrix
M̃ and parameter matrix θ, and matrices C k̃,̃i, C k̂,̂i determined using Algorithm 3.1.1
for parameters θk̃,̃i and θk̂,̂i of the R-vine parameter matrix. Further, we assume the
matrices V direct, V indirect and V values, the matrices S1direct,k̃,̃i, S1indirect,k̃,̃i and S1values,k̃,̃i

and S1direct,k̂,̂i, S1indirect,k̂,̂i and S1values,k̂,̂i to be given. The output will be the value of
the second derivative of the copula log-likelihood for the given observation with respect
to parameters θk̃,̃i and θk̂,̂i. Without loss of generality, we assume that î ≥ ĩ, and k̂ ≥ k̃ if
î = ĩ.



98 APPENDIX A. APPENDIX FOR ESTIMATING STANDARD ERRORS

1: if ck̂,̂i
k̃,̃i

== 1 then

2: Set m = m̃k̃,̃i

3: Set z1 = vdirect
k̃,̃i

, z̃1 = s1direct,k̂,̂i
k̃,̃i

4: if m == mk̃,̃i then

5: Set z2 = vdirect
k̃,d−m+1

, z̃2 = s1direct,k̂,̂i
k̃,d−m+1

6: else
7: Set z2 = vindirect

k̃,d−m+1
, z̃2 = s1indirect,k̂,̂i

k̃,d−m+1

8: end if
9: Set s2direct

k̃−1,̃i
= 0, s2indirect

k̃−1,̃i
= 0, s2values

k̃,̃i
= 0

10: if k̃ == k̂ & ĩ == î then
11: Set s2direct

k̃−1,̃i
= ∂θk̃,̃i∂θk̃,̃ih(z1, z2|Bk̃,̃i, θk̃,̃i)

12: Set s2indirect
k̃−1,̃i

= ∂θk̃,̃i∂θk̃,̃ih(z2, z1|Bk̃,̃i, θk̃,̃i)

13: Set s2values
k̃,̃i

=
∂
θk̃,̃i

∂
θk̃,̃i

c(z1,z2|Bk̃,̃i,θk̃,̃i)
exp(vvalues

k̃,̃i
)

− (s1values,k̂,̂i
k̃,̃i

)2

14: end if
15: if ck̂,̂i

k̃+1,̃i
== 1 then

16: Set s2values
k̃,̃i

= s1values,k̂,̂i
k̃,̃i

· −∂θk̃,̃ic(z1,z2|B
k̃,̃i,θk̃,̃i)

exp(vvalues
k̃,̃i

)
+

∂1∂
θk̃,̃i

c(z1,z2|Bk̃,̃i,θk̃,̃i)
exp(vvalues

k̃,̃i
)

· z̃1

17: Set s2direct
k̃−1,̃i

= ∂1∂θk̃,̃ih(z1, z2|Bk̃,̃i, θk̃,̃i) · z̃1

18: Set s2indirect
k̃−1,̃i

= ∂2∂θk̃,̃ih(z2, z1|Bk̃,̃i, θk̃,̃i) · z̃1

19: end if
20: if ck̂,̂i

k̃+1,d−m+1
== 1 then

21: Set s2values
k̃,̃i

= s2values
k̃,̃i

+
∂2∂

θk̃,̃i
c(z1,z2|Bk̃,̃i,θk̃,̃i)
exp(vvalues

k̃,̃i
)

· z̃2

22: if ck̂,̂ik+1,i == 0 then

23: Set s2values
k̃,̃i

= s2values
k̃,̃i

+ s1values,k̂,̂i
k̃,̃i

· −∂θk̃,̃ic(z1,z2|B
k̃,̃i,θk̃,̃i)

exp(vvalues
k̃,̃i

)

24: end if
25: Set s2direct

k̃−1,̃i
= s2direct

k̃−1,̃i
+ ∂2∂θk̃,̃ih(z1, z2|Bk̃,̃i, θk̃,̃i) · z̃2

26: Set s2indirect
k̃−1,̃i

= s2indirect
k̃−1,̃i

+ ∂1∂θk̃,̃ih(z2, z1|Bk̃,̃i, θk̃,̃i) · z̃2

27: end if
28: end if
29: for i = ĩ, . . . , 1 do
30: for k = k̃ − 1, . . . , i+ 1 do
31: Set m = m̃k,i

32: Set z1 = vdirectk,i , z̃k̂,̂i1 = s1direct,k̂,̂ik,i , z̃k̃,̃i1 = s1direct,k̃,̃ik,i , z̄1 = s2directk,i

33: if m == mk,i then

34: Set z2 = vdirectk,d−m+1, z̃
k̂,̂i
2 = s1direct,k̂,̂ik,d−m+1, z̃

k̃,̃i
2 = s1direct,k̃,̃ik,d−m+1, z̄2 = s2directk,d−m+1

35: else
36: Set z2 = vindirectk,d−m+1, z̃

k̂,̂i
2 = s1indirect,k̂,̂ik,d−m+1 , z̃k̃,̃i2 = s1indirect,k̃,̃ik,d−m+1 , z̄2 = s2indirectk,d−m+1

37: end if
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38: Set s2valuesk,i = −s1values,k̂,̂ik,i · s1values,k̃,̃ik,i , s2directk−1,i = 0, s2indirectk−1,i = 0

39: if ck̂,̂ik+1,i == 1 & ck̃,̃ik+1,i == 1 then

40: Set s2valuesk,i = s2valuesk,i + ∂1∂1c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃k̂,̂i1 · z̃k̃,̃i1 + ∂1c(z1,z2|Bk,i,θk,i)
cop

· z̄1

41: Set s2directk−1,i = s2directk−1,i + ∂1h(z1, z2|Bk,i, θk,i) · z̄1 + ∂1∂1h(z1, z2|Bk,i, θk,i) · z̃k̂,̂i1 · z̃k̃,̃i1

42: Set s2indirectk−1,i = s2indirectk−1,i +∂2h(z2, z1|Bk,i, θk,i)·z̄1+∂2∂2h(z2, z1|Bk,i, θk,i)·z̃k̂,̂i1 ·z̃k̃,̃i1

43: end if
44: if ck̂,̂ik+1,d−m+1 == 1 & ck̃,̃ik+1,d−m+1 == 1 then

45: Set s2valuesk,i = s2valuesk,i + ∂2∂2c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃k̂,̂i2 · z̃k̃,̃i2 + ∂2c(z1,z2|θk,i)
exp(vvaluesk,i )

· z̄2

46: Set s2directk−1,i = s2directk−1,i + ∂2h(z1, z2|Bk,i, θk,i) · z̄2 + ∂2∂2h(z1, z2|Bk,i, θk,i) · z̃k̂,̂i2 · z̃k̃,̃i2

47: Set s2indirectk−1,i = s2indirectk−1,i +∂1h(z2, z1|Bk,i, θk,i)·z̄2+∂1∂1h(z2, z1|Bk,i, θk,i)·z̃k̂,̂i2 ·z̃k̃,̃i2

48: end if
49: if ck̂,̂ik+1,i == 1 & ck̃,̃ik+1,d−m+1 == 1 then

50: Set s2valuesk,i = s2valuesk,i + ∂1∂2c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃k̂,̂i1 · z̃k̃,̃i2

51: Set s2directk−1,i = s2directk−1,i + ∂1∂2h(z1, z2|Bk,i, θk,i) · z̃k̂,̂i1 · z̃k̃,̃i2

52: Set s2indirectk−1,i = s2directk−1,i + ∂1∂2h(z2, z1|Bk,i, θk,i) · z̃k̂,̂i1 · z̃k̃,̃i2

53: end if
54: if ck̂,̂ik+1,d−m+1 == 1 & ck̃,̃ik+1,i == 1 then

55: Set s2valuesk,i = s2valuesk,i + ∂2∂1c(z1,z2|Bk,i,θk,i)
exp(vvaluesk,i )

· z̃k̂,̂i2 · z̃k̃,̃i1

56: Set s2directk−1,i = s2directk−1,i + ∂1∂2h(z1, z2|Bk,i, θk,i) · z̃k̂,̂i2 · z̃k̃,̃i1

57: Set s2indirectk−1,i = s2directk−1,i + ∂1∂2h(z2, z1|Bk,i, θk,i) · z̃k̂,̂i2 · z̃k̃,̃i1

58: end if
59: end for
60: end for
61: return

∑
k,i=1,...,d s2

values
k,i

A.2 Calculation of the covariance matrix in the Gaus-

sian case

While analytical results on the Fisher information for the multivariate normal distribution
are well known (Mardia and Marshall 1984) we will now illustrate how the matrices Kθ and
J θ (Equation (3.4) and (3.5)) can be calculated. We consider a 3-dimensional Gaussian
distribution 


X1

X2

X3


 ∼ N3(0,Σ), Σ =




1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


 ,

with density f123 and corresponding copula c123. Exampli gratia, we show the computation
for the entry (2, 1) in Kθ in detail. The other entries in Kθ and J θ are obtained similarly.
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The first step is to calculate the following integral:

∫

[0,1]3

(
∂

∂ρ12

ln(c12(u1, u2|ρ12))

)(
∂

∂ρ23

ln(c23(u2, u3|ρ23))

)
c123(u1, u2, u3)du1du2du3,

(A.9)
where c12 and c23 are the corresponding copulas to the bivariate marginal distributions
f12 and f23, respectively. Since the integral is independent of the univariate marginal
distributions, we can compute it using standard normal margins (see Smith 2007):

∫

R3

(
∂

∂ρ12

ln(f12(x1, x2|ρ12))

)(
∂

∂ρ23

ln(f23(x2, x3|ρ23))

)
f123(x1, x2, x3)dx1dx2dx3,

(A.10)
where f12 and f23 are the according bivariate normal distributions. The 3-dimensional and
bivariate normal densities in (A.9) and (A.10) can be expressed as

f123(x1, x2, x3) =

√
2

π3/2
√

2 ρ13ρ12ρ23 − ρ13
2 − ρ12

2 + 1− ρ23
2

· exp

{
−1

2

−x1
2 − x2

2 − x3
2 + x1

2ρ23
2 + x2

2ρ13
2 + x3

2ρ12
2 + 2x1x2ρ12 + 2x1x3ρ13

−2 ρ13ρ12ρ23 + ρ13
2 + ρ12

2 − 1 + ρ23
2

}

· exp

{
+2x2x3ρ23 − 2x1x2ρ13ρ23 − 2x1x3ρ12ρ23 − 2x2x3ρ13ρ12

−2 ρ13ρ12ρ23 + ρ13
2 + ρ12

2 − 1 + ρ23
2

}
,

(A.11)

and

f12(x1, x2) =
1

2π

1√
1− ρ12

2
exp

{
−1

2

−x1
2 + 2x1x2ρ12 − x2

2

(−1 + ρ12) (ρ12 + 1)

}
. (A.12)

Further, the derivatives needed in Equation (A.10) are

∂

∂ρ12

ln(f12(x1, x2|ρ12)) = −ρ12
3 − x1x2ρ12

2 + x2
2ρ12 − ρ12 + x1

2ρ12 − x1x2

(−1 + ρ12)2 (ρ12 + 1)2 , (A.13)

and

∂

∂ρ23

ln(f23(x2, x3|ρ23)) = −ρ23
3 − x2x3ρ23

2 + x3
2ρ23 − ρ23 + x2

2ρ23 − x2x3

(−1 + ρ23)2 (ρ23 + 1)2 . (A.14)

Using (A.11), (A.13) and (A.14) in (A.10) we get

(A.10) =

∫

R3

ρ12
3 − x1x2ρ12

2 + x2
2ρ12 − ρ12 + x1

2ρ12 − x1x2

(−1 + ρ12)2 (ρ12 + 1)2

· ρ23
3 − x2x3ρ23

2 + x3
2ρ23 − ρ23 + x2

2ρ23 − x2x3

(−1 + ρ23)2 (ρ23 + 1)2 · f123(x1, x2, x3)dx1dx2dx3.

(A.15)
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The integral (A.15) can be solved using well known results on product moments of mul-
tivariate normal distributions (see Isserlis 1918).

(A.15) =
ρ23ρ12

3 + ρ12
3ρ23

3 − 3 ρ23
2ρ12

2ρ13 − ρ12
2ρ13 + 2 ρ23ρ13

2ρ12

(ρ23 + 1)2 (−1 + ρ23)2 (−1 + ρ12
2)2

+
−ρ12ρ23 + ρ23

3ρ12 + ρ13 − ρ23
2ρ13

(ρ23 + 1)2 (−1 + ρ23)2 (−1 + ρ12
2)2

(A.16)

Since (ρ23 + 1)2 (−1 + ρ23)2 = (1− ρ2
23)2 we can simplify Equation (A.16) to

(A.9) = (A.16) =
(ρ13 − ρ12ρ23)(1− ρ2

12)(1− ρ2
23) + 2ρ12ρ23(ρ13 − ρ12ρ23)2

(1− ρ2
12)2(1− ρ2

23)2

=
ρ13 − ρ12ρ23

(1− ρ2
12)(1− ρ2

23)
+ 2ρ12ρ23

(ρ13 − ρ12ρ23)2

(1− ρ2
12)2(1− ρ2

23)2

=
k12

(1− ρ2
12)(1− ρ2

23)
,

with

k12 = (ρ13 − ρ12ρ23)

(
1 + 2ρ12ρ23

ρ13 − ρ12ρ23

(1− ρ2
12)(1− ρ2

23)

)
.

For the computation of terms corresponding to parameter ρ13|2, note that

ρ13|2 =
ρ13 − ρ12ρ23√

(1− ρ2
12)(1− ρ2

23)
,

and

ρ13 = ρ13|2

√
(1− ρ2

12)(1− ρ2
23) + ρ12ρ23,

which means that (A.11), (A.13) and (A.14) can easily be re-parametrized.
The final matrices are

Kθ =




1+ρ212
(1−ρ212)2

k12
(1−ρ212)(1−ρ223)

0
k12

(1−ρ212)(1−ρ223)

1+ρ223
(1−ρ223)2

0

0 0
1+ρ13|2

(ρ2
13|2−1)2


 ,

J θ =




1+ρ212
(1−ρ212)2

0 0

0
1+ρ223

(1−ρ223)2
0

ρ13|2ρ12
(ρ212−1)(ρ2

13|2−1)

ρ13|2ρ23
(ρ223−1)(ρ2

13|2−1)

1+ρ13|2
(ρ2

13|2−1)2


 .

A.3 Selected model for the exchange rate data

To obtain marginally uniformly distributed copula data on [0, 1]8, we conduct a pre-
analysis as described in (Schepsmeier 2010, Chapter 5). AR(1)-GARCH(1,1) models (Ta-
ble A.1) are selected for the marginal time series, and the resulting standardized residuals
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are transformed using the non-parametric rank transformation (see Genest et al. 1995).
We could also employ the probability integral transformation based on the parametric
error distributions (IFM, Joe and Xu 1996) but since we are only interested in depen-
dence properties here, we choose the non-parametric alternative which is more robust
with respect to misspecification of marginal error distributions.

µ a1 ω α1 β1 skew shape

EUR 0.0011 0.9982 0.0000 0.0422 0.9554 0.9844 9.2961
GBP 0.0014 0.9972 0.0000 0.0465 0.9511 1.0533 8.1926
CAD 0.0049 0.9954 0.0000 0.0576 0.9363 0.9590 9.5090
AUD 0.0025 0.9978 0.0000 0.0755 0.9170 1.2211 7.4130
BRL 0.0023 0.9982 0.0000 0.1860 0.8137 1.1349 10.0000
JPY 0.1660 0.9986 0.0068 0.0367 0.9514 0.8823 7.1649
CHF 0.0042 0.9963 0.0000 0.0342 0.9619 0.8839 9.2343
INR 0.0305 0.9994 0.0011 0.2588 0.8169 1.0625 2.9743

Table A.1: Parameters of the AR(1)-GARCH(1,1) models. µ and a1 correspond to the AR-
process, while ω, α1, and β1 define the GARCH(1,1)-process. skew and shape describe the
Skew-t error distribution.

The R-vine describing the exchange rate data set is specified by the structure matrix M ,
the copula family matrix B and the estimated copula parameter matrix θ̂MLE. For sim-
plicity, we use the following abbreviations: 1=AUD (Australian dollar), 2=JPY (Japanese
yen), 3=BRL (Brazilian real), 4=CAD (Canadian dollar), 5=EUR (Euro), 6=CHF (Swiss
frank), 7=INR (Indian rupee) and 8=GBP (British pound).
The pair-copula families in the application were chosen from the elliptical copulas Gauss
and Student’s t copula, the Archimedean Clayton, Gumbel, Frank and Joe copula, and
their rotated versions. The selection is done using to AIC/BIC.

M =




8
7 7
2 2 6
3 3 2 5
6 4 3 2 4
4 1 4 3 2 3
1 5 1 4 3 2 2
5 6 5 1 1 1 1 1




(A.17)
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θ̂MLE =




11.85 8.96
7.74
3.76

−0.70 −0.09 9.97
−0.88 −1.44 8.41

0.07 −1.10 −0.73 7.46
0.26 −1.23 −1.17 1.13 1.08 0.63
0.72 0.55 0.88 0.63 0.54 0.48 0.3




(A.18)

B =




Indep.
Indep. Indep.
Indep. Frank Gauss
Indep. Frank Frank Indep.
Gauss r. Joe Frank Indep. Indep.

Student’s t r. Gumbel r. Gumbel Gumbel Frank Frank
Student’s t Student’s t Student’s t Student’s t Student’s t Student’s t Gauss




(A.19)

The standard errors corresponding to the parameters in (A.18) are

SEMLE
n =




5.00 2.54
1.95
0.59

0.19 0.03 3.04
0.19 0.20 2.40

0.03 0.03 0.19 2.01
0.03 0.03 0.03 0.02 0.19 0.19
0.01 0.02 0.01 0.02 0.02 0.02 0.03




. (A.20)
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T1 2 1 5 6 7

3 4 8

1,2 1,5 5,6 6,7

1,3
1,4 5,8

T2 1,2 1,3 1,4 1,5 5,6 6,7

5,8

2, 3|1 3, 4|1 4, 5|1 1, 6|5 5, 7|6
1, 8|5

T3 2, 3|1 3, 4|1 4, 5|1 1, 6|5 5, 7|6

1, 8|5

2, 4|1, 3 3, 5|1, 4 4, 6|1, 5 1, 7|5, 6
4, 8|1, 5

T4 2, 4|1, 3 3, 5|1, 4 4, 6|1, 5 1, 7|5, 6

4, 8|1, 5

2, 5|1, 3, 4 3, 6|1, 4, 5 4, 7|1, 5, 6
6, 8|1, 4, 5

T5 2, 5|1, 3, 4 3, 6|1, 4, 5 4, 7|1, 5, 6

6, 8|1, 4, 5

2, 6|1, 3, 4, 5 3, 7|1, 4, 5, 6
3, 8|1, 4, 5, 6

T6 3, 8|1, 4, 5, 6 2, 6|1, 3, 4, 5 3, 7|1, 4, 5, 6
2, 8|1, 3, 4, 5, 6 2, 7|1, 3, 4, 5, 6

T7 2, 8|1, 3, 4, 5, 6 2, 7|1, 3, 4, 5, 6
7, 8|1, 2, 3, 4, 5, 6

Figure A.1: The R-vine tree sequence of an 8-dimensional R-vine fitted to our exchange
rate data set used in Section 3.4 and Section 4.5.2 applying the MST approach.



Appendix B

Technical details for the
goodness-of-fit tests

B.1 Rosenblatt’s transform

The multivariate probability integral transformation (PIT) of Rosenblatt (1952) trans-
forms the copula data u = (u1, . . . , ud) with a given multivariate copula C into indepen-
dent data in [0, 1]d, where d is the dimension of the data set.

Definition B.1 (Rosenblatt’s transform)
Let u = (u1, . . . , ud) denote copula data of dimension d. Further let C be the joint cdf of
u. Then Rosenblatt’s transformation of u, denoted as y = (y1, . . . , yd), is defined as

y1 := u1, y2 := C(u2|u1), . . . yd := C(ud|u1, . . . , ud−1),

where C(uk|u1, . . . , uk−1) is the conditional copula of Uk given U1 = u1, . . . , Uk−1 =
uk−1, k = 2, . . . , d.

The data vector y = (y1, . . . , yd) is now i.i.d. with yi ∼ U [0, 1]. In the context of
vine copulas the multivariate PIT is given for the special classes of C- and D-vine in Aas
et al. (2009, Algorithm 5 and 6). It is a straight forward application of the Rosenblatt
transformation of Definition B.1 to the recursive structure of a C- or D-vine copula.
Similar, an algorithm for the R-vine can be stated, see Algorithm B.1.1. Here we make
use of a similar structured algorithm of Dißmann et al. (2013) for calculating the log-
likelihood of an R-vine copula given in Algorithm 2.2.1.

Algorithm B.1.1 now calculates the PIT of an R-vine copula model. The vector y =
(y1, . . . , yd) stores at the end the transformed PIT variables.

Algorithm B.1.1 Probability integral transform (PIT) of an R-vine

Require: d-dimensional R-vine specification in matrix form, i.e., M , B, θ, where mk,k =
d− k + 1, k = 1, . . . , d, and a set of observations (u1, . . . , ud).

1: Let V direct = (vdirect
k,i |i = 1, . . . , d; k = i, . . . , d).

2: Let V indirect = (vindirect
k,i |i = 1, . . . , d; k = i, . . . , d).

3: Set (vdirect
d,1 , vdirect

d,2 , . . . , vdirect
d,d ) = (ud, ud−1, . . . u1).

105
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4: Let M̃ = (m̃k,i|i = 1, . . . , d; k = i, . . . , d) where m̃k,i = max{mk,i, . . . ,md,i} for all
i = 1, . . . , d and k = i, . . . , d.

5: Set y1 = u1

6: for i = d− 1, . . . , 1 do {Iteration over the columns of M}
7: for k = d, . . . , i+ 1 do {Iteration over the rows of M}
8: Set z1 = vdirect

k,i

9: if m̃k,i = mk,i then
10: Set z2 = vdirect

k,(d−m̃k,i+1).
11: else
12: Set z2 = vindirect

k,(d−m̃k,i+1).
13: end if
14: Set vdirect

k−1,i = h(z1, z2|Bk,i, θk,i) and vindirect
k−1,i = h(z2, z1|Bk,i, θk,i).

15: Set yd−k+1 = vdirecti−1,k

16: end for
17: end for
18: return y = (y1, . . . , yd)

B.2 Cramér-von Mises, Kolmogorov-Smirnov and

Anderson Darling goodness-of-fit test

B.2.1 Multivariate and univariate Cramér-von Mises and
Kolmogorov-Smirnov test

Already in the third century of 1900 two model specification tests were developed by
Cramér and von Mises, and by Kolmogorov and Smirnov. Both tests treat the hypothesis
that n i.i.d. samples y1, . . . ,yn of the random vector Y = (Y1, . . . , Yd) follow a specified
continuous distribution function F , i.e.

H0 : Y ∼ F versus H1 : Y 6∼ F.

The general multivariate Cramér-von Mises (mCvM) test statistic for a d-dimensional
random vector Y is defined as

mCvM: ω2 =

∫

Rd

[
F̂n(y)− F (y)

]2

dF (y), (B.1)

while the multivariate Kolmogorov-Smirnov (mKS) test statistic is

mKS: Dn = sup
y
|F̂n(y)− F (y)|. (B.2)

Here F̂n(y) = 1
n+1

∑n
j=1 1{yj≤y} denotes the empirical distribution function corresponds

to the i.i.d. sample (y1, . . . ,yn) of Y .
The univariate cases for the random variable Y are then denoted by

CvM: ω2 =

∫ ∞

−∞

[
F̂n(y)− F (y)

]2

dF (y) and

KS: Dn = sup
y
|F̂n(y)− F (y)|.
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B.2.2 Univariate Anderson-Darling test

The Anderson and Darling (1954) test, is a statistical test of whether a given probability
distribution fits a given set of data samples. It extends the Cramér-von Mises test statistics
by adding more weight in the tails of the distribution in consideration. Although it has
a general multivariate definition we introduce only the univariate case, since only the
univariate case is needed in Section 4.3.1. Let Y be a random variable then the null
hypothesis of the Anderson-Darling test is again H0 : Y ∼ F (y) against the alternative
H1 : Y 6∼ F (y). The general univariate Anderson-Darling (AD) test statistic is
defined as

W 2
n = n

∫ ∞

−∞

[
F̂n(y)− F (y)

]2

ψ(F (y))dF (y), (B.3)

where ψ(F (y)) is a non-negative weighting function. With the weighting function ψ(u) =
1

u(1−u)
Anderson and Darling (1954) put more weight in the tails since this function is

large near u = 0 and u = 1. Setting the weight function to ψ(u) = 1 one gets as a special
case the Cramér-von Mises test statistic. In the case of uniform margins (B.3) simplifies
to

AD: W 2
n = n

∫ 1

0

[
F̂n(y)− y

]2

y(1− y)
dy, y ∈ [0, 1]. (B.4)



Appendix C

Model specifications in the power
studies

C.1 Model specification in power study I

For the vine copula density (see Equation (2.3)) often a short hand notation is used.
For this the pair-copula arguments are omitted and denotes only the conditioned and
conditioning set. Thus, for the R-vine considered in the first power study and given in
Figure C.1 we can write

c12345 = c1,2 · c1,3 · c1,4 · c4,5 · c2,4;1 · c1,5;4 · c2,3;1,4 · c3,5;1,4 · c2,5;1,3,4. (C.1)

Similarly the considered C- and D-vine copula can be expressed as

c12345 = c1,2 · c2,3 · c2,4 · c2,5 · c1,3|2 · c1,4|2 · c1,5|2 · c3,4|1,2 · c4,5|1,2 · c3,5|1,2,4 (C.2)

c12345 = c1,2 · c1,5 · c4,5 · c3,4 · c2,5|1 · c1,4|5 · c3,5|4 · c2,4|1,5 · c1,3|4,5 · c2,3|1,4,5 (C.3)

T1

2

1

3

4 5

1,2 1,
3

1,
4

4,5

T2

1,2 1,3

1,4

4,5

2, 4|1 3,
4|1

1,5|4

T3

2, 4|1 1, 5|4

3, 4|1

2, 3|1, 4 3,
5|1

, 4

T4

2, 3|1, 4

3, 5|1, 4

2,5|1,3,4

Figure C.1: Tree structure of the 5 dimensional R-vine copula used in the power studies.
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Tree VR BR(VR) τ

1 c1,2 Gauss 0.71
c1,3 Gauss 0.33
c1,4 Clayton 0.71
c4,5 Gumbel 0.74

2 c2,4|1 Gumbel 0.38
c3,4|1 Gumbel 0.47
c1,5|4 Gumbel 0.33

3 c2,3|1,4 Clayton 0.35
c3,5|1,4 Clayton 0.31

4 c2,5|1,3,4 Gauss 0.13

Table C.1: Copula families and Kendall’s τ values of the investigated (mixed) R-vine
copula model defined by (C.1).

C.2 Model specification in power study II

True model (M1) MMST
2 MMCMC

2

V B(V) τ V̂ B̂(V̂) V̂ B̂(V̂)

c1,2 Gauss 0.10 c1,3 tν c1,2 Gauss
c2,3 t3 -0.15 c1,5 Gauss c2,3 tν
c3,4 t3 -0.10 c2,5 tν c2,4 Gumbel 90
c3,5 t3 0.15 c4,5 Gumbel 270 c3,5 tν
c1,3|2 N 0.70 c1,2|5 tν c1,3|2 Gauss
c2,4|3 Gumbel 90 -0.60 c1,4|5 tν c3,4|2 Gumbel
c2,5|3 Gumbel 0.85 c3,5|1 tν c2,5|3 tν
c1,4|2,3 Gauss 0.45 c2,3|1,5 tν c1,4|2,3 Gauss
c1,5|2,3 Gauss -0.50 c3,4|1,5 tν c1,5|2,3 Gauss
c4,5|1,2,3 Gauss 0.10 c2,4|1,3,5 Gauss c4,5|1,2,3 Gauss

Table C.2: Copula families and Kendall’s τ values of the investigated R-vine models in
power study 2 (tν=̂ t-copula with ν degrees-of-freedom, Gumbel 90 =̂ 90 degree rotated
Gumbel copula, Gumbel 270 =̂ 270 degree rotated Gumbel copula).
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C.3 Model specification in power comparison study

(d = 8)

T1

3 6

12

5

4 7

8

3,6

1,
6

1,2

1,5

1,4 4,7

7
,8

Figure C.2: First tree of the 8 dimensional R-vine copula used in the power study.

Tree V8
R B8

R(V8
R) τ Tree V8

R B8
R(V8

R) τ

1 c1,2 Joe 0.41 3 c6,7|1,4 Frank 0.03 7
c1,4 Gauss 0.59 c1,8|4,7 Gumbel 0.22
c1,5 Gauss 0.59 c3,4|1,6 Gauss 0.41
c1,6 Frank 0.23 c2,3|1,6 Gumbel 0.68
c3,6 Frank 0.19 4 c6,8|1,4,7 Clayton 0.17
c4,7 Clayton 0.44 c5,7|1,4,6 Gauss 0.09
c7,8 Gumbel 0.64 c3,5|1,4,6 Frank 0.21

2 c2,6|1 Clayton 0.58 c2,4|1,3,6 Gumbel 0.57
c1,3|6 Gumbel 0.44 5 c2,5|1,3,4,6 Joe 0.25
c4,6|1 Frank 0.11 c3,7|1,4,5,6 Gumbel 0.17
c4,5|1 Clayton 0.53 c5,8|1,4,6,7 Frank 0.02
c1,7|4 Clayton 0.29 6 c2,7|1,3,4,5,6 Gumbel 0.31
c4,8|7 Gauss 0.53 c3,8|1,4,5,6,7 Clayton 0.20

3 c5,6|1,4 Gauss 0.19 7 c2,8|1,3,4,5,6,7 Frank 0.03

Table C.3: Copula families and Kendall’s τ values of the investigated (mixed) R-vine
copula model in the 8-dimensional case.
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