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ABSTRACT 

In this contribution we present a novel orthogonalization method 
for ultra-wideband (UWB) impulse radio transmission. Contrary 
to other work we utilize Uiwdin's orthogonalization method which 
delivers a shift-orthogonal basis optimally close (in energy) to the 
initial pulse genemting the shift-invariant space. We show that 
the shift-orthogonal basis can be well approximated using the Zak 
transform whenever the initial pulse fulfils certain conditions. This 
method can be efficiently implemented with the discrete Fourier 
transform. Furthermore we discuss the existence of compactly 
supported shift-orthogonal pulses, which are desimble for pulse 
position modulation. 

Index Terms- Uiwdin transformation, UWB impulse radio, 
PPM, Zak transform, shift-invariant spaces 

1. INTRODUCTION 

Ultra-wideband (UWB) transmission has been intensively investi­
gated in recent years as a candidate for short-range indoor wireless 
communication. UWB aims for high data rates at short distances 
at a very low power density. A promising UWB technology is the 
impulse radio system that uses nanosecond pulses to transmit infor­
mation (UWB-IR). Typical pulses in this setting are for example the 
Gaussian monocycle which can be realized at low cost. But for many 
applications also orthogonality of pulses is desimble, for example 
when multiple systems [1] or users will share the same spectrum. 
Moreover, the performance in bit error rate of M -ary orthogonal sig­
nal design increases with M for fixed energy per bit in a memory less 
AWGN channel when assuming that all signals possess the same en­
ergy and support in time [2, ChA]. A shift-invariant structure for 
orthogonal and spectral efficient signaling is advisable in order to 
achieve also in this case simple and low--cost filter implementations. 

Several methods for the orthogonalization of finite sets of pulse 
translates have been investigated in the context of UWB. A famous 
example is the Gram-Schmidt procedure which depends on a par­
ticular ordering of the pulses [3]. However, in such a way dif­
ferent pulse translates are distorted differently and the orthogonal 
pulses usually do not retain a shift-invariant structure, i.e. can not 
be used directly for pulse position modulation (PPM) in UWB sys­
tems. On the other hand there exists order-independent methods, 
where all given signals are handled simultaneously. The canoni­
cal and symmetric orthogonalization of Lowdin [4] are such meth­
ods. In the finite--dimensional setting these approaches are optimal 
in the L2-sense, i.e. minimizing the overall sum of energy distor­
tions [5]. For a certain class these ideas can be extended also to the 
infinite--dimensional case, i.e. orthogonal bases which are L2--close 
to Riesz bases (known as Bari-bases). But for infinite--dimensional 
shift-invariant systems the objective diverges as for example already 
stated in [6]. 
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However, we will show in this paper how Lowdin's construc­
tion can be used for approximating a shift-orthogonal sequence to 
implement an orthogonal overlapped PPM system for UWB-IR. 

The paper is organized as follows: After introducing the system 
model we present in Section 2 the orthogonalization method, for 
which we show a simplified approximation. Afterwards we relate 
our construction to the frame theory and discuss the support prop­
erties. In Section 3 we apply our method to Gaussian monocycles, 
which is an UWB relevant setting. 

Signal Model 

PPM and pulse amplitude modulation are well-known techniques in 
UWB-IR transmission [7, 8]. The power spectrum density (PSD) 
of the radiated UWB signal u for such modulation strategies is gov­
erned by the power spectrum of a single pulse p, called the basic 
pulse. In this work, we will only consider the M -ary PPM method 
[9] together with a random polarity flip, to prevent discrete spectral 
lines in the PSD [10]. If we omit the time hopping code the PPM­
transmitted waveform is: 

u(t) = L V£an p(t - nT. - dnT) (1) 
n 

where the pulse p is normalized in energy such that t: corresponds to 
the transmitted energy per symbol. To gain maximal SNR the shape 
of the basic pulse p is designed to exploit optimally the spectral mask 
required by the Fedeml Communication Commission (FCC) [1, 11]. 
The time shift T is the pulse position modulation factor. An Li.d. 
zero-mean sequence {an} models the random polarity flip and {dn} 
the M -ary Li.d. information sequence where each random variable 
dn corresponds to the nth data symbol. We assume dn to be uni­
formly distributed taking integer values between 0 and M - 1. T. 
is the symbol duration, in our case the pulse repetition time, which 
is much greater then the length Tp of the support of p. To avoid in­
tersymbol interference at the correlation receiver we would have to 
impose T. � (M - l)T + Tp with T � Tp. But then the data rate 
is limited to (log M) IT •. 

To further increase the data mte we need to allow T < Tp, 
resulting in overlapping pulses. But with orthogonality, further per­
formance gains could be achieved then by opemting at a higher data 
mte (see for example [2, (4.95)]) or more users could be supported 
in a multi-user setting [8]. Thus, in the view application for PPM, 
we are essentially confronted with the problem of adequate orthog­
onalization of a set of pulse translates. 

2. ORTHOGONALIZATION OF PULSE-TRANSLATES 

Let be p E L2(R) = L2 a finite--energy pulse (11 .11
2 

will denote the 
usual L2-norm). For simplicity we rescale the time-axis in (1) such 



that T = 1 and consider the first frame (n = 0). The set of all semi­
discrete convolutions of p with sequences c = {em} E 1.2 (Z) = £2 
(the Hilbert space of square-summable sequences) 

V(p):= {� cmp(. - m) I CE £2} (2) 

defines a shift-invariant space, i.e. for each f E V (p) we have also 
{J(. - m)}mEZ C V(p). We call then p a generator for V(p) 
[12]. For any KEN we denote finite sets of translates with {p(. -
m)}�=-K and with {p(. - m)} the infinite set of all translates 
mEZ. 

LOwdin Orthogonalization 

Our goal is to find for the space V(p) a new pulse pO E V(p) such 
that its integer translates {pO (. -n)} constitute an orthonormal basis 
(ONB) for V(p). For the existence of such a countable ONB it is 
necessary and sufficient that V(p) is a separable Hilbert space, in 
particular a closed subspace of L 2• This can be ensured for a pE L 2 
if there exists two constants 0 < A ::; B < 00 such that 

A::; <Pp(lI) := L Ip(1I + k)12 ::; B (3) 
kEZ 

holds for almost every frequency II E � (P denotes here the Fourier 
transform of p). In this case {p(. - mJ } is a Riesz basis for V(p), 
which is then a closed subspace of L [13, 14]. If A = B = 1 
the pulse p generates an ONB [15, Th. 7.2.3] and (3) is also known 
as the Nyquist condition. Since any Riesz basis can be transformed 
by a bounded bijective operator L : V (P) -+ V (p) to an ONB, 
the main contribution of the present work is to derive the expansion 
coefficients of the ONB elements in the Riesz basis together with a 
stable approximation method. For this we use the Gram matrix of 
{p(. - m) }, which is given element wise by the L 2 -scalar product : 

[G]nm := i: p(t - m)p(t - n)dt, (4) 

where the bar denotes complex conjugation. This defines by (3) a 
positive, bounded and invertible operator from £2 into itself having 
a bounded inverse. For any K E N  the first K translates in both 
directions {p(. - m)}�=_K define the (2K + 1) x (2K + 1) di­
mensional Gram matrix GK, which is a submatrix of G. An or­
thonormal pulse set {p�,K}:::=_K is then obtained by the Li)wdin 
transformation [16,17,18]: 

K 1 o,K._ � -2 Pn .- L...J [GK ]nmP(· - m). 
m=-K 

(5) 

1 
Here we denote the inverse square root of G K by G � 2. Note that 

1 
this is in general not a submatrix of G - "2 • 

Since the sum in (5) is finite, this is also pointwise well-defined 
for each t E R. But to construct an orthogonal generator for the 
shift-invariant space V(p) we have to take the limit in (5). To guar­
antee hence a pointwise convergence we need at least continuity and 
a smooth decay at infinity. If we further assume that p and p are in 
the Wiener space W(�), i.e. essentially bounded functions with: 

Il pllw := L ess sUPtE[O,l)lp(t - m)1 < 00 (6) 
mEZ 

then the condition (3) holds pointwise (see for example [19, p.105] 
and [12]). Let us denote by Wo(�) the space of all continuous 
Wiener functions. Note that by the Riemann-Lebesgue Lemma 

p,p E W(�) already implies continuity. The spectral function <Pp 
in (3) can also be expressed in terms of the Zak transform [20], 
defined as: 

(Zf)(t,II):= L f(t - k)e27riktv for lI,t E � 
kEZ 

(7) 

for any continuous function f. Let rp := p * p be the auto­
correlation of p. The spectral function is then: 

<Pp(lI) = Z(p * p_)(O, II), (8) 

where the function p_ (t) := p(  -t) denotes here the time reversal 
of p. The integer samples of the auto-correlation r p define also the 
Gram matrix elements: 

rp (n - m) = (p * p_)(n - m) = i: p(n - m - t)p( -t)dt 

= i: p(t - m)p(t - n)dt = [G]nm. (9) 

Note that if the pulse fulfills the symmetry p( -t) = p(t), the auto­
correlation is the auto-convolution. 

Stability and Approximation 

In the limit K -+ 00 the initial pulse sequence {p(. - n)}:::=_K 
will be shift-invariant, hence the Riesz and Nyquist conditions are 
expressed by (3) in terms of p. This suggests together with (8) a 
straightforward construction of an orthogonalization procedure with 
the discrete Fourier transform (DFT). However, for any finite K, 
shift-invariance can only be achieved by cyclic extension and then it 
is not clear, whether such an approach is also stable. 

Theorem (Stability of Ll>wdin Orthogonalization). Let MEN and 
p,p E Wo(�) such that it holds: 

(i) supp(p) C [-�, �] and 

(ii) {p(. - k)} is a Riesz basis for V(p), i.e. satisfy (3). 
Then the limit {pk} of the L6wdin orthonormalization in (5) can be 

approximated by the sequence {p�,K}f=_K' which is represented 
pointwise for K � M and each k E [-K, K] by: 

such that for each k E Z: 

, It I ::; K + � , (10) 
,else 

Pk(t) = pO(t - k) = lim p�,K (t) K-->oo (11) 

converges for each t E � (i.e. pointwise) and defines a shift­
orthonormal basis for V(p). 

Sketch of proof. Before we can start with an approximation of the 
limit in (5) we have to establish the existence of the limit in a point­
wise sense. In general, this follows by requiring continuity and a 
certain polynomial decay for the generator p [11, Lemma 1]. How­
ever, for compact and bounded pulses (i.e. with polynomial decay) 
(5) is well-defined in the limit (it is a finite sum). But if one relaxes 
the condition from compactly supported to a certain decay condi­
tion, one needs the argumentation by the so called Schur class. From 
Jaffards Theorem on matrix operators with polynomial diagonal-off 
decay [21] it follows that the Ll>wdin pulses PI. are continuous. 

The main part for the approximation uses the finite section 
method for the Gram matrix. In [11] we apply an approximation 



result by Christensen and Strohmer in [22] (given for frame opera­
tors) to the Gram matrix G. Let us denote by PK the matrix of the 
orthogonal projection of c E f? to cK 

= {Ck}f"=-K. Then we can 
use a sequence of the inverse-square roots of the "Strang circulant 
preconditioner" G K of the matrix G K = P KGP K, which are 
cyclic matrices defined by the first row: { TP (m) 

� = 0 
Tp (2 K+l- m) 

mE {O, . . .  ,M} 
else (12) 
mE {2 K+I-M, . . .  ,2 K} 

1 
as an applicable approximation method for G -2. This is possible, 
since IIGK - GK II --.. 0 as K goes to infinity, which follows £2 ..... £2 
from a result of Gray in [23]. For sufficiently large values of K 
and for all sequences c E £2 we have then G�/PKC --.. G-1c as 
K --.. 00 (strong convergence as operators £2 --.. £2). IfGK is also 
positive, than we can deduce the strong convergence for its inverse 
square root. Since Ct = {p( t -l)} E £2 for all t E R we have: 

K 1 
p�,

K (t) = L [G;?lkl p (t -l) 
l=-K 

(13) 

for all K E N such that Pk (t) = limK ..... oop�'K(t) for allk E Z. 
The circulant matrix GK = FKDKFi< can now be diagonal­

ized by the (2 K + 1) x (2 K + 1) DFT matrix F K where the eigen­
values of the diagonal matrix DK are given by [23, Theorem 7]: 

2K . ).: = L�e-21ri21n1 
n=O 

(14) 

for j E {O, . . .  , 2 K}. Next we use (9) to rewrite the eigenvalues in 
terms of Tp by definition (12): 

M . ).: = L Tp(n)e -21rij 2Kn+1 = (ZTp)(O, 2 K
J 
+ 1). (IS) 

n=-M 

The second equality follows from the support [-M, Ml of Tp, i.e. 
it is the Zak transform (7) of Tp evaluated at time t = 0 and fre­
quency v = 212+1. Note that Tp is independent of K. Thus, all 
eigenvalues are given as samples of the spectral function <I>p (v) := 

I:k Ip(v + k)12 which is bounded by A and B almost everywhere 
(the Riesz condition in (3». But, since p,p E W(R) they are con­
tinuous and the above is true for all v and hence for all eigenvalues 
of any G K. With this we have for each t E R: 

K 1 
p�,

K (t) = L [FKD;?Fi<lkl p(t -l) (16) 
l=-K 

2K K 2ftlj 1 L 
- 2,d.jk I:l=-K p(t - l)e 2 +1 

= -- e 2K+1 (17) 
2 K+l j=O .Jf!/ 

For each t this is nothing else than the DFT of the sample sequence 
cf = {p(t-ln�_K' where eachj'th sample of the DFT is divided 
by the square root of the j'th eigenvalue. Moreover, if we restrict 
the numerator to the time-domain [-K - �, K + �l, this agrees 
with the Zak transform (Zp) (t, 212+1)' since we can replace the sum 
by an infinite sum. Together with (IS) this yields (10). The Zak 
expression in (10) is for each t a continuous function in v, since it 
consists of finite sums of continuous functions. Hence, in the limit 
we can express the partial sum as a Riemann integral: 

Pk (t) = 
11 (Zp) (t -k, v) 

dv. 
o J(ZTp) (O,V) 

(18) 

The quotient of two continuous functions is continuous if the nom­
inator is not zero at some point, which is granted by the positivity 
of <I>p due to the Riesz condition. The last step in the numerator 
comes from the periodic property in time of the Zak transform (see 
[20, eq. (2.18) + (2.19)]). This shows immediately that {pI:} is a 
shift-sequence, i.e. Pk = Po (· -k) =: pO (. -k) for all k E Z. So 
it remains to show the orthonormality. If we write (18) in the Zak 
domain, multiplying both sides by e-21rivt and integrating over the 
time t, we get for every v E R: 

by the commutation relation between Zak and Fourier transform and 
the periodicity in frequency (see for example [20, (2.14)+(2.19)]). 
Finally, by using the inversion formula and the spectral function <I>p 
as representation for the eigenvalues, we get from [20, (2.30)] the 
orthogonalization in the frequency domain: 

(19) 

With this relation we can easily show that pO fulfils the Nyquist con­
dition with A = B = 1 in (3). In fact the orthogonalization (19) 
in the frequency domain is a well know result (see for example [1S, 
Prop. 7.3.9]). 

However, our approach provides now a stable approximation of 
this limit by finite constructions. This is achieved by demanding fast 
and smooth decay in time and frequency (e.g. in using a continuous 
compact supported pulse) which implies continuity. The results has 
therefore the important advantage of having a pointwise meaning. 

D 

2. 1. Discussion 

In this section we state some properties of our presented orthogonal­
ization construction. 

Canonical Tight Frame 

For (regular) shift-invariant spaces V (p) the Lowdin orthogonaliza­
tion method corresponds to the canonical tight frame construction. 
Thus, if Sf := I:l (p(. -l), f) p(. -l) defines the frame opera­
tor S on V(p) for the Riesz-sequence {p(. - In c V(P), then a 
straightforward calculation gives: 

Lemma ( [24] eq. (3.3». Let the sequence {p(. -kn be a Riesz 
basis for its closed span, then the Lowdin orthogonalization: 

pO (·-k) = S-!p(.-k) = L[G-! lkl p(·-l) , k E Z (20) 
I 

yields the canonical tight frame. 

This was already stated (without proof) by Meyer in [24, (3.3)]. 
In the case of Gabor frames for L2 Janssen and Strohmer [6] have 
shown by duality that this minimize lip - pO 112 over all orthogonal 
Gabor bases pO for a closed subspace of L2. For a proof of this 
Lemma and further details see [11]. 

Compactly Supported Orthogonal Generators 

For PPM transmission the existence of compactly supported orthog­
onal generators is of central interest, since in this case the transmis­
sion and receiving time is finite and hence realizable without further 
modifications. 



Since the setting, i.e. the condition on the generator pulse p in 
the theorem, is very strict, we yield a small shift-invariant space. In 
fact we have V(p) = S(p) where S(p) is called a principal shift­
invariant subspace of L2 which is defined as the L2-c1osure of all 
finite linear combinations of translates of p. This result was estab­
lished in general U spaces by Jia in [25, Thm. 2). In case of com­
pactly supported generators the generated principal shift-invariant 
subspaces were characterized in detail by de Boor et al. in [26]. 
Since we demand for p the Wiener condition (6), we have pointwise 
boundedness below and above of <I>p in (3). De Boor et al. could 
show in their work that this implies stability for p. If additionally 
all shifts of p are linearly independent in the sense of [26], then this 
generator is unique up to shifts and scalar multiplies. Finally they 
show in this case a negative result, which excludes the existence of 
a compactly supported orthogonal generator if p itself is not already 
orthogonal. But if p would be already orthogonal, then p is unique 
up to shifts and scalar multiplies and the Uiwdin construction be­
comes a scaled identity (normalizing p). Moreover, the uniqueness 
then rules out the existence of a filter construction c E e2 on p such 
that L: k CkP(' -k) becomes a compactly supported orthogonal gen­
erator for S(p). The linearly independent property of a compactly 
supported generator p is equivalent to: 

{(2'p)(z - n)}nEZ # 0 for all z E C (21) 

where (!£p) denotes the Laplace transform of p [26, p.53]. This 
means that (!£p) is required to not have periodic zero points. See 
Cor. 2.17, Cor. 2.27, Prop. 2.25 and Thm. 2.29 in [26] for more 
details. 

From this discussion follows that if the initial pulse p fulfils (21) 
we can not expect to construct strictly interference-free orthogonal 
PPM systems by FIR filtering with time shift T < Tp. This means 
for practical implementations, that K has to be chosen such that 
the matched filter output for wrong decision is reasonably below the 
noise level. The detailed interference level depending on K has to 
be further investigated. 

3. ALGORITHMIC IMPLEMENTATION 

The most common pulse for UWB-IR transmission in (1) is a trun­
cated Gaussian monocycle: q(t') � t' . exp (_t,2 /(2) where a is 
chosen such that the maximum of 1<1(f) 12 is reached at the center 
Ie = 6.85GHz of the passband [27]. Since we need continuity, 
we mask q with a unit triangle window A of width Tp = 4.95a = 

0.1626ns such that 99.99% of the energy of q is concentrated in the 
window [-Tp/2,Tp/2]. Let us scale the time t = t'Tp/M such 
that the support is [-M/2, M/2] and the time shift T is one. If we 
fix M and p, then p�,K is the K-approximation to the limit pulse 
pO := Po which is an orthogonal generator for V(p), hence we call 
them approximated Lowdin orthogonal (ALO). The question is, how 
well {p�,K} approximates a shift-orthogonal set for finite K? 

For this we compute with MATLAB the ALO pulses p�,K in 
(17) by using the DFT and plot the result in Fig. 1 for the parameters 
M = 4 and K = 12 together with the initial pulse p and the Lowdin 
orthogonal (LO) pulse p�,K. It can be observed that p�,K and p�,K 

are quite similar but have increased support as compared to p. Due 
to the circulant construction p�,K has slight more concentration at 
the boundaries which vanishes with increasing K. 

In Fig. 2 we plot the correlation functions of p�,K, given as: 

{{;i(T) = Ip�'K(t)p�'K(t-T)dt , T E IR, 

and respectively for p�,K as {{;i, for k = l = 0 (auto-correlation). 
Furthermore, Fig. 2 contains the auto-correlation Tp of p. As one 

has to expect, the orthogonalized pulses have zeros at almost each 
shift-instant T reinforcing its shift-orthogonal character. Again ­
the cyclic extension in the ALO pulses results in slightly increased 
correlation at the boundaries. 

In Fig. 3 we plot the condition numbers of the Strang matrix G 
K 

for K = 4 to K = 100. The minimum eigenvalue is for each K 
almost constant, whereby variation in the condition number is caused 
only by the variation of the maximum eigenvalue. 

In Fig. 4 we derive numerically the Riesz bounds in (3) for var­
ious M. We computed the minimal and maximal eigenvalue Am in 
resp. Amax of G (11pll = 1) with a semi-definite program (SDP) 
from [28, p.59], as well as the minimal and maximal eigenvalue 

5,:'in resp. 5,:'ax of G 
K

. One can see that for finite K the min­
imal and maximal eigenvalue of G are almost attained, see also 
Fig. 3. For comparison we plot the eigenvalues An of a rectangle 
masked Gaussian monocycle. Increasing M results in more overlap 
and hence in a degradation of the Riesz bounds. 

4. CONCLUSIONS 

We have presented a novel orthogonalization method for UWB im­
pulse radio transmission. Contrary to prior work our method has the 
advantage of being order-independent and optimal in the L2-sense. 
We have shown that the shift-orthogonal basis can be well and sta­
ble approximated. Thus, our method provide a simple and realizable 
procedure of orthogonalizing UWB pulses. However, it seems not 
to be clear if there exist a stable construction method out of p for 
a compactly supported orthogonal generator. This question will be 
further studied in (11). Since our construction is applicable to a wide 
class of compactly supported pulses, one can also start with an initial 
pulse which is optimized to the FCC mask constraints, [27, 11). 
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