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Abstract—Even though capacity can be achieved in parallel
multiple-input multiple-output (MIMO) broadcast channels by
coding separately on each carrier, joint coding across carriers (so-
called carrier-cooperative transmission) can lead to performance
gains in MIMO broadcast channels with a restriction to linear
transceivers. In principle, carrier-cooperative transmission can
be optimized in an equivalent single-carrier MIMO system, but
it has been shown that most existing optimization algorithms
lead to solutions that are equivalent to carrier-noncooperative
transmission. The only exception discussed in the literature is the
application of iterative algorithms with a random initialization.
In this paper, we show that randomness is not a requirement to
obtain good carrier-cooperative solutions. We do so by proposing
a deterministic carrier-cooperative initialization that has good
performance in numerical simulations as well as interesting
interpretations: it can be interpreted in the context of equal gain
transmission and based on the notion of mutual incoherence.

Index Terms—carrier-cooperative transmission, linear
transceivers, multiple-input multiple-output (MIMO), multiuser
multicarrier systems, parallel broadcast channels.

I. INTRODUCTION

So-called dirty paper coding (DPC, e.g., [1]) is known to

be the capacity-achieving coding scheme for multiple-input

multiple-output (MIMO) broadcast channels [1], [2]. Since

this interference precompensation scheme has prohibitive com-

plexity for practical implementation [3], linear transceivers are

considered as a low-complexity alternative. Finding (close-

to-)optimal linear transmit strategies for MIMO broadcast

channels is a problem that has attracted the interest of many

researchers (e.g., [4]–[7]).

The restriction to linear techniques changes the nature of

the optimization fundamentally: it not only leads to nonconvex

optimization problems, for which the globally optimal solution

cannot be found efficiently, but it also renders well-established

paradigms invalid. For instance, it is known that performing

data transmission on each carrier separately using an optimized

allocation of transmit power to carriers is optimal in MIMO

broadcast channels with DPC [8]. However, in broadcast

channels with linear transceivers, breaking with the paradigm

of separate coding can lead to performance gains [9]. Another

example for such a paradigm change, which is, however,

not considered in this paper, is the use of improper (i.e.,

noncircular) transmit signals, which can lead to performance

gains in MIMO broadcast channels without DPC [10], [11].

When deciding to employ joint coding across carriers (often

referred to as carrier-cooperative transmission [12]–[14]), we

have to find a way to optimize this joint transmission. In

[13], it was proposed to introduce an equivalent single-carrier

broadcast channel with block-diagonal channel matrices and

to apply existing optimization algorithms for MIMO broadcast

channels to this equivalent setting. In the earlier work [12], a

similar approach was pursued for the single-user case, i.e., for

a point-to-point MIMO system.

The important particularity of the equivalent single-carrier

broadcast channel is that the channel matrices are block-

diagonal. The question of how conventional algorithms for

the optimization of linear transceivers in MIMO broadcast

channels (e.g., [4]–[7], [15]–[18]) behave when applied to

channels with this special structure was studied in [13]. Unfor-

tunately, it turns out that most of the algorithms lead to block-

diagonal transmit covariance matrices, which is equivalent to

carrier-noncooperative transmission (separate coding on each

carrier). Among the optimization methods studied in [13],

the only one that leads to carrier-cooperative solutions is the

application of iterative algorithms (e.g., gradient methods [6],

[15], alternating filter updates [4], [5], [7]) in combination with

a random initialization.

In [19], an algorithm for power minimization under mini-

mum rate constraints was developed for multicarrier MIMO

broadcast channels with linear zero-forcing beamforming and

carrier-cooperative transmission. In numerical simulations, this

algorithm was shown to be able to close half of the gap

between the carrier-noncooperative reference algorithm from

[20] and the globally optimal strategy using dirty-paper-coding

without zero-forcing. One of the main ingredients of this

algorithm was again a gradient-based method with random

initialization.

Optimization of carrier-cooperative strategies using random

initializations proved to be beneficial also in other system

models. In particular, the application of this concept was stud-

ied for various relay-assisted multicarrier interference channel

scenarios in [14], [21].

Despite its good performance in numerical studies, random

initialization is not completely satisfying from a theoretical

point of view [13]. The quality of the solutions obtained by

iterative methods for nonconvex problems can depend strongly

on the initialization, and we might want to develop algorithms

with a deterministic outcome (same solution when applied

twice to the same channel realization). Furthermore, and even

more important, blindly using a random initialization is not

very insightful when trying to understand which initialization

leads to good results. Therefore, pseudorandom initializations



or arbitrarily chosen deterministic initializations without a

clear rationale are not satisfying, either.

After introducing the system model and the notions of

carrier-cooperative and carrier-noncooperative transmission in

Section II, we summarize some key points of [13] in Sec-

tion III in order to explain the need for a new deterministic

initialization. Then, we propose a deterministic initialization

based on the Fourier matrix (discrete Fourier transform matrix,

DFT matrix), which not only leads to good performance

in numerical studies (Section IV), but also to interesting

interpretations, which are discussed in Section V.

Notation: Vectors and matrices are typeset in boldface

lowercase and uppercase letters, respectively. We use •H for

the conjugate transpose, IL for the identity matrix of size L,

and 0 for the zero vector. The absolute value of a scalar is

denoted by | • |.
II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a set of C parallel K-user broadcast channels1

with M transmit antennas and Nk antennas at receiver k.

We collect the channel matrices H
(c),H
k ∈ C

Nk×M and noise

covariance matrices C
(c)
ηk

∈ C
Nk×Nk on the subchannels (e.g.,

carriers) c ∈ {1, . . . , C} in the block diagonal matrices

HH
k = blockdiag

(

H
(1),H
k , . . . ,H

(C),H
k

)

∈ C
NkC×MC (1)

Cηk
= blockdiag

(

C(1)
ηk

, . . . ,C(C)
ηk

)

∈ C
NkC×NkC . (2)

The additive noise of all carriers is collected in the noise vector

ηk ∼ CN (0,Cηk
).

Using linear transceivers, the transmission of circularly

symmetric Gaussian symbol vectors2 xk ∼ CN (0, ISk
) (con-

taining Sk ≤ Cmin {Nk,M} independent data streams for

user k) can be described in an equivalent single-carrier setting

x̂k = V H
k H

H
k

K
∑

k′=1

Bk′xk′ + V H
k ηk. (3)

Here, we have employed beamforming matrices Bk′ ∈
C

MC×S
k′ and receive filters V H

k ∈ C
Sk×NkC .

Without structural constraints on these filters, transmission

is allowed to be carrier-cooperative (joint coding across carri-

ers). In this case, the sum transmit power P and the per-user

rate rk have to be computed using

P =

K
∑

k=1

trace
[

BkB
H
k

]

. (4)

and

rk = log det
(

INkC +R−1
k HH

k BkB
H
kHk

)

(5)

with Rk = Cηk
+

∑

j 6=k

HH
k BjB

H
j Hk. (6)

1Not to be confused with interfering broadcast channels, i.e., several
interfering base stations. We consider a classical broadcast scenario with only
one base station, but parallel channels (e.g., carriers).

2Note that xk is a concatenation of all symbols intended for user k no
matter across which subchannel(s) they are transmitted.

Due to the inverse of Rk, the rate rk is not a concave

function of the beamforming matrices Bk′ , k′ = 1, . . . ,K.

Consequently, an optimization problem with rk occurring in

the objective function or in the constraints is a nonconvex

problem. An example is the power minimization with mini-

mum rate constraints (12) considered in Section IV. For such

nonconvex problems, many different local optima can exist.

On the other hand, in case of block-diagonal filter matrices,

the transmission is carrier-noncooperative3 (separate coding on

each carrier), and (3) can be decomposed as

x̂
(c)
k = V

(c),H
k H

(c),H
k

K
∑

k′=1

B
(c)
k′ x

(c)
k′ + V

(c),H
k η

(c)
k . (7)

In this case, the subchannels are coupled only by the per-user

rates rk =
∑C

c=1 r
(c)
k and the sum power P =

∑C

c=1 P
(c).

Here,

P (c) =

K
∑

k=1

trace
[

B
(c)
k B

(c),H
k

]

(8)

is the transmit power on carrier c. The data rate

r
(c)
k = log det

(

INk
+R

(c),−1
k H

(c),H
k B

(c)
k B

(c),H
k H

(c)
k

)

(9)

with R
(c)
k = C

η
(c)
k

+
∑

j 6=k

H
(c),H
k B

(c)
j B

(c),H
j H

(c)
k (10)

of user k on carrier c is again a nonconcave function of the

beamforming matrices.

III. CARRIER-COOPERATIVE AND

CARRIER-NONCOOPERATIVE INITIALIZATIONS

In [13], the application of iterative optimization algorithms

to the equivalent single-carrier MIMO broadcast channel (3)

was studied. In particular, gradient-based methods [6], [15]

and methods based on alternating filter updates in the downlink

and the dual uplink [4], [5], [7] were investigated. It was

shown that these methods can converge to carrier-cooperative

solutions only if carrier-cooperative filter matrices are used as

initialization for the iterative procedures [13].

Choices for the initial filter matrices that are well established

in the existing literature are, e.g., (truncated) identity matrices

(e.g., [6]) and matrices consisting of singular vectors of

the channels (e.g., [5]). Unfortunately, these choices match

the block-structure of the channels and are, thus, carrier-

noncooperative initializations [13].

As a carrier-cooperative initialization, it was proposed to use

random initial filter matrices [13], [14], [19]. For instance, the

filter vectors (i.e., the columns of the beamforming matrices

or the rows of the receive filter matrices) can be random

orthonormal vectors [13]. This choice corresponds to carrier-

cooperative transmission almost surely. However, as discussed

3In fact, transmission is mathematically equivalent to carrier-noncooperative
transmission if the transmit covariance matrices BkB

H

k
are block-diagonal,

even if the beamforming matrices Bk are not. However, for simplicity, we
stick to the nomenclature of [12], [13], where the term carrier-noncooperative
is defined based on the transmit filters.



in the introduction, blindly using random vectors is not in-

sightful when it comes to the question of which initializations

lead to preferable outcomes of the iterative methods.

To the best of our knowledge, a sensible choice for a

deterministic carrier-cooperative initialization has not yet been

discussed in the literature. A straightforward choice of a

deterministic filter vector corresponding to carrier-cooperative

transmission is a (scaled) all-ones vector. However, it is

necessary to decide for further filter vectors for the same user,

which are linearly independent from the first one.

We therefore propose using scaled columns of the Fourier

matrix (DFT matrix)

FN =
1√
N















1 1 1 . . . 1
1 ω ω2 . . . ω(N−1)

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) . . . ω(N−1)(N−1)















∈ C
N×N (11)

with ω = e−
j2π
N (e.g., [22, Section 6.12]) as initial filter

vectors: considering only the absolute values |ωi| = 1 ∀i of the
elements, each of these vectors resembles an all-ones vector,

but due to the different phases, all these vectors are linearly

independent. In fact, when normalized, they even form an

orthonormal basis, just like the random orthonormal vectors

discussed above.

In the next section, we show that using the columns of the

Fourier matrix as initial filter vectors leads to approximately

the same performance as the random initialization used in [13].

Then, in Section V, we discuss two interesting interpretations

of the proposed initialization.

IV. NUMERICAL EVALUATION

In the following, we consider two examples of iterative

algorithms: one that is based on alternating filter updates and

one that is based on gradient updates of the filters. In both

cases, we compare the carrier-cooperative solutions obtained

with a random initialization and with the Fourier initialization,

and we include a reference value obtained with a carrier-

noncooperative algorithm. Both methods optimize the sum

transmit power in a broadcast channel subject to minimum

rate constraints:

min P s.t. rk ≥ ρk ∀k (12)

with P and rk from (4) and (5), respectively, where the

optimization is performed over all transmit and receive filters.

Extending our experiments to other optimization problems and

to other system models is left open for future research.

A. Power Minimization in Parallel MISO Broadcast Channels

As an example for a scenario where carrier-cooperative

transmission outperforms carrier-noncooperative transmission,

2 transmit antennas, 4 carriers, 8 users
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Fig. 1. Average transmit power needed to achieve rk ≥ 2ρ0 for half of the
users and rk ≥ ρ0 for the remaining users (1000 channel realization).

the problem of power minimization under per-user rate con-

straints in parallel multiple-input single-output (MISO) broad-

cast channels was considered in [13]. The iterative power mini-

mization algorithm from [7] was initialized both with truncated

identity matrices (carrier-noncooperative) and with matrices

with random orthonormal columns (carrier-cooperative). For

the initialization with truncated identity matrices, the algorithm

from [7] additionally requires a feasible initialization of so-

called per-stream rate targets. Loosely speaking, this can be

understood as the initialization of r
(c)
k (see Section II) and can

be related to an initial scaling of the columns of the transmit

filter matrices. Since a given combination of such per-user per-

carrier rates is not necessarily feasible even if the requested

per-user rates rk are feasible [23], finding initial r
(c)
k is a

problem in itself. In [13], the method from [23] was used

to find a basic initialization. As an improved version of the

initialization with truncated identity matrices it was proposed

to use the rates obtained with the greedy zero-forcing scheme

from [24] as initial rate targets.4

In Fig. 1, we reproduce the results from [13], which show

that the random initialization outperforms both versions of the

initialization with truncated identity matrices. Furthermore, we

have added a curve for the initialization with truncated Fourier

matrices, as proposed in this paper. It turns out that this new

initialization leads to the same average performance as the

random initialization.

To see how significantly the outcome of an iterative algo-

rithm for a nonconvex problem can depend on the initializa-

tion, it is insufficient to only study the average power over

many channel realizations. Instead, we have to compute the

power difference after convergence of the considered versions

of the algorithm for each channel realization individually. This

4Note that only the per-stream rates achieved by the zero-forcing scheme
are used as initialization, but not the zero-forcing filters.



2 transmit antennas, 4 carriers, 8 users
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Fig. 2. Histograms of the power difference when using the Fourier
initialization instead of the improved identity initialization or instead of the
random initialization for the system in Fig. 1 with ρ0 = 1.

is done for the case ρ0 = 1 in the histograms in Fig. 2. It can

be seen that for about 40% of the channel realizations, the

sum power needed after convergence is nearly the same no

matter if the improved identity initialization or the proposed

Fourier initialization is used. However, for the remaining

60% of the realizations, we observe a difference in power

which can be as large as 2dB. Cases in which the carrier-

noncooperative identity initialization outperforms the carrier-

cooperative Fourier initialization are very rare.

In the second histogram in Fig. 2, we see the same compari-

son for the Fourier initialization and the random initialization,

which are both carrier-cooperative. Apparently, these two

initializations do not only lead to the same average perfor-

mance as observed in Fig. 1, but also to the same individual

performance for most channel realizations. Nevertheless, the

histogram also reveals that these two initializations are not

completely equivalent: there is a nonvanishing number of cases

in which the algorithm converges to a different solution when

initialized with the random initialization instead of with the

Fourier initialization.

The basic identity initialization is not considered in the

more detailed comparison in Fig. 2 since the large power

gap between this initialization and all other considered ones

already becomes very clear in Fig. 1.

B. Power Minimization in Parallel MIMO Broadcast Channels

with Zero-Forcing

The second example considered in this paper is the carrier-

cooperative zero-forcing algorithm proposed in [19]. The aim

of this algorithm is to minimize the sum transmit power in

multicarrier MIMO broadcast channels with per-user rate con-

straints as in (12) subject to additional zero-forcing constraints

vHk,sHkbℓ,t = 0 ∀(k, s) 6= (ℓ, t) (13)

where vHk,s is the sth row of V H
k and bℓ,t is the tth column

of Bℓ.

2 transmit antennas, 5 carriers, 5 users with 2 antennas
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Fig. 3. Average transmit power needed to achieve rk ≥ ρ0 for all users in
the case of spectrally similar channels [19] (1000 channel realization).

Since the total number of data streams is limited by the

degrees of freedom at the base station MC in the case of

zero-forcing beamforming, a stream allocation is necessary.

On the other hand, to obtain a carrier-cooperative solution,

iterative methods with a suitable initialization are known to be

a sensible approach (see Section III). Therefore, the method

proposed in [19] combines a greedy stream allocation with a

gradient-based optimization of the transmit and receive filters.

In the original version of the algorithm, a random initialization

of the filter vectors is used.

In Fig. 3, we reproduce simulation results from [19] and

compare them to a modified version of the carrier-cooperative

zero-forcing algorithm where the random initialization is re-

placed by the initialization with columns of Fourier matrices.

The simulation is performed in a broadcast channel with

C = 5 carriers, M = 2 transmit antennas, and K = 5 users

with Nk = 2 receive antennas each. As channel model, we

have used the model of spectrally similar channels defined in

[19] with parameter w(c) = 0.1+0.9 c−1
C−1 on carrier c. In this

model, the channel quality depends on the carrier index. This

enables us to model, e.g., interference from neighboring cells

whose power varies as a function of the carrier index c. For

details on this channel model, the reader is referred to [19].

Just like in the first example, we can again observe that the

initialization based on Fourier matrices leads to the same aver-

age performance as the random initialization. Both versions of

the algorithm outperform the carrier-noncooperative reference

algorithm from [20].

V. INTERPRETATION

Having observed that the Fourier-based initialization leads

to the same average performance as the random initialization

in numerical simulations, we have to ask why this is the case.

In the following, we try to answer this question by discussing

two lines of interpretation.

First, we relate the proposed initialization to the concept of

equal gain transmission [25], and then, we discuss it in the



context of mutual incoherence of orthonormal bases [26].

A. Equal Gain Transmission

The concept of equal gain transmission (EGT) was dis-

cussed, e.g., in [25], [27]. The original intention of the concept

is to benefit from the potential of multiantenna systems while

keeping the requirements on the transmit amplifiers modest.

By using a constant amplitude of the transmit signal on all an-

tennas and only modifying the phases, inexpensive amplifiers

can be used [25]. Our interest in equal gain transmission is,

however, a different one. Instead of studying implementation-

related questions, we adopt the concept of EGT only as a

tool to get an interpretation of filter vectors with a particular

structure.

As mentioned in Section III, the columns of the Fourier

matrix have the notable property that all their entries have the

same magnitude. Therefore, these column vectors are suitable

as transmit filters for EGT, as was already pointed out in [25].

In the equivalent single-carrier representation of a mul-

ticarrier MIMO communication system, each channel input

represents a space-frequency dimension of the original system.

Therefore, applying EGT to the equivalent single-carrier model

means that the power is not only distributed equally among

all antennas, but also among all carriers.

On the other hand, using columns of the identity matrix

(i.e., canonical unit vectors) as filter vectors corresponds to

the concept of antenna selection in a MIMO system [25],

[28]. Applied to the equivalent single-carrier formulation of

a multicarrier MIMO system, we again have to replace the

term antenna by space-frequency dimension.

This means that the initialization with truncated identity ma-

trices maps a stream to exactly one space-frequency dimension

while the initialization with truncated Fourier matrices does

just the opposite: it distributes the signal corresponding to a

data stream equally on all space-frequency dimensions.

Note that this does not mean that the solution obtained

after convergence of the iterative procedures is constrained

to consist of filter vectors that are feasible for EGT. The

iterative methods based on gradient steps and on alternating

filter updates are able to redistribute power among the space-

frequency dimensions and can potentially converge to any

carrier-cooperative or carrier-noncooperative solution when

initialized with EGT filters. This is in contrast to the initial-

ization with truncated identity matrices where convergence to

carrier-cooperative solutions is impossible as shown in [13].

In comparison to the initialization with random orthonormal

vectors used in [13], [19], we note the following. The random

initialization from [13], [19] treats all space-frequency dimen-

sions equally from a statistical point of view, i.e., on average,

the signal corresponding to a data stream is distributed equally

among all antennas and all carriers. The initialization based on

the Fourier matrix does the same in a deterministic manner,

i.e., the signal is distributed equally on all space-frequency

dimensions not only on average, but every time the algorithm

is started.

Apparently, both initialization strategies (random orthonor-

mal and Fourier) lead to the same good average performance in

the power minimization simulations in Section IV. This reveals

that not the randomness is the important factor when choosing

the initial filters of iterative algorithms to optimize carrier-

cooperative transmit strategies. Instead, the equal distribution

of power to space-frequency dimensions seems to be a factor

of success.

B. Mutual Incoherence of Orthonormal Bases

For a second line of interpretation, we make use of the

notion of mutual incoherence of orthonormal bases. This

concept was introduced in [26] with the aim of studying sparse

representations of signals and became one of the foundations

of compressed sensing [29]. Here, however, we apply the very

same concept in a completely different context.

Consider two orthonormal bases consisting of the columns

of the unitary matrices Φ = [φ1, . . . ,φN ] ∈ C
N×N and

Ψ = [ψ1, . . . ,ψN ] ∈ C
N×N , respectively. Then, the mutual

coherence of these two bases is given by [26], [30]

M(Φ,Ψ) = sup
{

|φH
i ψj | : i, j ∈ {1, . . . , N}

}

. (14)

It is easy to show that 1√
N

≤ M(Φ,Ψ) ≤ 1 [26].

As pointed out in [26], the basis defined by the identity

matrix and the Fourier basis are a so-called most mutually

incoherent pair, since their coherence achieves the lower

bound, i.e., M(IN ,FN ) = Mmin(N) = 1√
N
.

Based on this concept, the Fourier initialization can be

understood as the opposite of the initialization with truncated

identity matrices. The rows of the channel matrices are sparse

in the identity basis since they have nonzero elements only in

the components corresponding to one of the carriers. Using

the vectors of the identity basis as initialization, each initial

filter vector has a common support with some rows of the

channel matrices (those that correspond to the same carrier)

and is orthogonal to all others. This property of the filters has

previously been described by the formulation that the filters

match the block-structure of the channels [13], and it has been

shown that this perfect match inevitably leads to convergence

to carrier-noncooperative solutions [13]. However, we are

interested in an initialization that can potentially lead to both

carrier-cooperative and carrier-noncooperative solutions.

According to [26], a vector that is sparse in one basis cannot

be sparse in a second basis if the two bases are mutually

incoherent. Therefore, the rows of the channel matrices cannot

be sparse in the Fourier basis. From this point of view, using

the columns of the Fourier matrix as initial filter vectors can

be understood as one of the worst possible matches with the

block-structure of the channel vectors. As we want to avoid

a perfect match, the worst possible match is an intuitively

sensible choice.

Moreover, by initializing the algorithm with one of the worst

possible matches, we also avoid picking an initialization with

a small amount of carrier cooperation. Recall that carrier-

noncooperative transmission is stable under the considered

algorithms, i.e., if we have a carrier-noncooperative strategy



in one step of the iteration, all strategies obtained in the

following iterations are carrier-noncooperative as well [13].

This suggests that when starting at a point that is not far from

being carrier-noncooperative, we might be within a region

of attraction of the set of carrier-noncooperative strategies

and quickly converge towards this set. Since the aim was

to find a general initialization that does not necessarily lead

to carrier-noncooperative solutions, it makes sense to choose

initial filters that are far from being carrier-noncooperative,

i.e., far from being a good match. As explained above, the

Fourier initialization has this property.

To obtain a complete picture, we have to interpret the

random orthonormal initialization within the same framework.

Since we consider complex vectors, the results about the

coherence of the identity basis and a real-valued random

orthonormal basis from [26] do not apply. However, we can

make use of the extension to complex random orthonormal

(i.e., random unitary) bases given in [31]. In fact, the difference

between the complex case and the real-valued case is only of

quantitative, but not of qualitative nature.

Let UN ∈ CN×N be a random matrix that is uniformly

distributed on the unitary group, i.e., a complex Haar matrix

[31], [32]. This can be considered as the most natural choice

for a random unitary matrix. Then, with high probability, the

mutual coherence M(IN ,UN ) is not larger than Mrand(N) =
√

2 logN
N

[31], and for N → ∞,
M(IN ,UN )
Mrand(N) converges to 1 in

probability [31].

Note that Mrand(N) > Mmin(N) = 1√
N
. However, espe-

cially for large N , we have that Mrand(N) ≪ 1 = Mmax. For

the scenario studied in this paper, the total dimension N is

the product of the number of transmit antennas M and the

number of carriers C, i.e., we have a large N if either M or

C or both are large.

Consequently, as was already pointed out in [26], a ran-

dom orthonormal basis is typically quite incoherent with the

identity basis. For the initialization of an iterative algorithm

to optimize carrier-cooperative transmit strategies, this has the

following implications. Just like the Fourier initialization, the

random orthonormal initialization is typically a rather bad

match with the block-structure of the channel matrices.

It is obvious that a random initialization drawn from a

general continuous distribution is carrier-cooperative almost

surely. However, we now have a stronger statement: we now

know that by using the columns of a Haar matrix UN as

initial filter vectors, we also avoid picking initializations that

are, despite being carrier-cooperative, very close to carrier-

noncooperative filters. In other words: it is clear that with

random matrices, we do not obtain a perfect match of the

block-structure of the channels, but the columns of Haar

matrices as random orthonormal initialization, we also avoid

any kind of a good match. The study based on the concept of

mutual incoherence tells us that the columns of a Haar matrix

are typically not far from being one of the worst possible

matches. Recall that we have obtained the same statement for

the initialization based on the Fourier matrix.

This gives us an additional intuitive explanation of why

the average performances of the Fourier initialization and

the random initialization are very similar in our numerical

experiments.

VI. SUMMARY AND OUTLOOK

By proposing an initialization based on the Fourier matrix

and by demonstrating its favorable behavior in numerical sim-

ulations, we have shown that randomness of the initialization is

not a requirement for the optimization of carrier-cooperative

transmit strategies using iterative algorithms. The numerical

experiments have been performed for the example of power

minimization under per-user rate constraints in parallel MIMO

broadcast channels, but we conjecture that the Fourier ini-

tialization also leads to good results in other system models

and for other optimization problems. A study of such other

scenarios is left open for future research.

Our conjecture is based on the fact that the Fourier ini-

tialization has a clear rationale, which we have discussed in

detail in this paper. The good performance and the similarity

to the random orthonormal initialization can be interpreted in

the context of equal gain transmission as well as based on

the notion of mutual incoherence of orthonormal bases. We

think that a further study, in particular of the latter aspect,

might help to gain more insights on the problem of optimizing

carrier-cooperative strategies.
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