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Abstract

Multidimensional hydrodynamics simulations are becoming an
increasingly useful tool for understanding processes in stellar
astrophysics. Nuclear reactions are important for many of these
processes. This work extends a hydrodynamics code with a
nuclear reaction network and investigates different methods of
coupling. Additionally, a well-balanced method for the treat-
ment of gravity is introduced to prevent numerical problems
connected to many low Mach number schemes. Convective
mixing at the core of a Population III star is simulated as a
first application.

Zusammenfassung

Mehrdimensionale Hydrodynamiksimulationen sind fiir das
Verstindnis von Prozessen in der stellaren Astrophysik von zu-
nehmendem Nutzen. Nukleare Reaktionen sind fiir viele dieser
Prozesse wichtig. Diese Arbeit erweitert einen Hydrodynamik-
Code durch ein nukleares Reaktionsnetzwerk und untersucht
verschiedene Methoden der Kopplung. Aufilerdem wird eine
ausbalancierte Methode zur Behandlung der Gravitation ein-
gefiihrt, um numerische Probleme zu verhindern, die bei vielen
Verfahren fiir kleine Machzahlen auftreten. Als erste Anwen-
dung wird das konvektive Mischen im Kern eines Sterns der
Population IIT simuliert.
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1 Introduction

Stars in various stages of their life are basically the sole producer of all
elements heavier than lithium in the Universe. Through nuclear reactions
enabled by the high densities and temperatures in their interior, they convert
the primordial elements H, He, and Li to heavier elements. Even though this
conversion happens inside stars, it is the driving mechanism of the evolution
of all baryonic matter in the Universe. This is because stars feed a part of
the elements they produce back to the interstellar medium, from which new
generations of stars and planetary systems are formed.

Stars go through different so-called burning phases in which the conditions
for fusion of a fuel element are met. For example, during the H-burning phase
they turn hydrogen into helium, in the He-burning phase they produce carbon
from helium. Nuclear burning occurs at the core or in radial shells around the
core. Different phases of shell and core burning can overlap. The last of these
phases is Si-burning, which ultimately forms iron. At this point the core of
the star will collapse due to effects discussed below.

Stars of low and intermediate mass (< 8 M) never reach the last burning
stages. In a very simplified picture this can be understood by the following
argument. When a star has depleted the fuel for a burning stage at its core,
nuclear energy generation stops and the core starts to contract. If the critical
density and temperature for the ignition of the next burning phase can be
reached, it will commence releasing energy through this burning process. If it
cannot be reached, the core will stay inert, while the previous burning stages
still occur in shells around the core. The final outcome of this system is a white
dwarf star, which is the remaining degenerate core, surrounded by a planetary
nebula formed by the outer layers of the star that were gravitationally unbound.
The material in the planetary nebula is mixed into the interstellar medium.

Many important nucleosynthetic processes occur in supernova explosions.
Supernovae are classified into two main categories according to the physical
explosion mechanism. Thermonuclear supernovae, also known as Type Ia su-
pernovae due to their spectral classification, are believed to be thermonuclear
explosions in white dwarf stars in binary systems (e.g. Hillebrandt & Niemeyer,
2000). The other kind of supernova, called Core-collapse supernovae, are trig-
gered when the cores of massive stars (Msiar 2 8 M) become gravitationally

~

unstable due nuclear changes in the composition. For stars of about 9 M this
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is expected to happen before they reach hydrostatic Ne-burning. The electrons
in the core become degenerate and the low reaction threshold of Ne and Mg
together with the increased Fermi energy of the electrons cause a large rate
of electron captures. This reduces the pressure in the core and causes it to
collapse. More massive stars form a Fe-core through hydrostatic Ne-, O-, and
Si-burning. When this core reaches about 10'° K, photodissociation of Fe to
a-particles and free nucleons occurs and the subsequent electron captures make
the core gravitationally unstable. In the ensuing formation of a neutron star or
black hole at the core the outer layers of the star are ejected by an explosion
whose exact mechanism is still not perfectly understood. It probably involves
hydrodynamic instabilities and the effect of neutrinos created in neutron star
formation (Janka, 2012). The ejecta of both types of supernova enrich the
interstellar medium with heavy elements.

A detailed knowledge of the conditions in stars is essential for an understand-
ing of nucleosynthesis in the Universe. Mixing processes inside stars can have
a great influence on the structure of a star and the elements produced through
nuclear burning. Even for supernova explosions the structure of the progenitor
star is of importance. In this introduction we give a brief overview of models
of stellar evolution and discuss how multidimensional hydrodynamics could
provide an improvement to some of the deficiencies of these models.

1.1 Stellar Evolution

The theory of stellar structure and evolution has been a cornerstone of astro-
physics since its inception; stars even gave their name to this branch of physics.
In order to put the methods developed and simulations performed in this thesis
into context, we give a brief overview of the basic theory of stellar evolution
and the numerical methods used for research in this field. This section loosely
follows the detailed introduction given in Kippenhahn et al. (2013).



1.1 Stellar Evolution

1.1.1 Basic Equations

The evolution of a star under the assumption of spherical symmetry and
ignoring mass loss at the surface, rotation, and magnetic fields is modeled by
the following set of partial differential equations (Kippenhahn et al., 2013)

or 1

- 1.1
om  4wr2p’ (1.1)
op Gm

- 1.
om A2’ (1.2)
ol or  §0p
e et 1.
om g T pot’ (13)

T T

or _ _GmTg (1.4)

om ~ Amrip

6t = m7 ;’f’ji — ;Tik . (15)

These equations are expressed in Lagrangian coordinates using the mass
variable m. The first equation defines the radial coordinate r with the density
profile p. The second ensures that acceleration due to the pressure gradient
and gravity cancel and gives rise to a state called hydrostatic equilibrium (see
Section 2.3.1 for more information). The constant G is from Newton’s law of
gravitation. The next equation is derived from energy conservation. The net
energy that passes through a sphere at radius r is denoted by the luminosity I.
It is determined by the nuclear energy generation rate ¢, and the energy
loss €, through neutrinos that are generated in nuclear interactions and can
freely stream out of the star. The last two terms track the change in energy
due to mechanical work exerted on the neighboring mass shells. This uses

the pressure p, the temperature 7', the specific heat ¢,, and § = — (311;‘51),

a derivative of the equation of state. The fourth equation describes energy
transport by radiation as well as turbulent flow driven by buoyancy, called
convection. The quantity V is chosen according to the locally applicable mode
of transport. In convectively stable regions that transport energy through
radiation! it is given by

3 Klp

V =
rad 167aclghG mT*’

(1.6)

IThis also includes thermal conductivity because it follows an equation of the same form
and the radiative and conductive opacities can just be reciprocally added.
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with the opacity x of stellar matter at the local thermodynamic state and
composition, the radiation constant a and the speed of light ciigne. In regions
that are convectively unstable V is set to another value. In the deep interior

of the star it is
oOlnT
p— 1.
vad <alnp>s7 ( 7)

which is a derivative of the equation of state at constant entropy. For convection
in the envelope it is taken from some description of convection, most commonly
mizing-length theory (see Section 1.1.2). The last equation deals with the
change of composition via nuclear reactions. The composition is defined by the
mass fraction X;, i.e. the fraction of the total mass of the shell that is made
up of species i. The reactions that create species ¢ are denoted by r;;; those
that consume it by 7.

Equations (1.1) to (1.5) are the basic equations that are solved to calculate
the evolution of a star. They are complemented with prescriptions that
capture phenomena occurring on time and length scales that cannot be easily
captured in the framework of the basic equations. One of these is convection,
which is inherently multidimensional and cannot be expressed by a simple
one-dimensional average velocity. If a region is deemed to be convectively
unstable due to the Schwarzschild or Ledoux criteria (see Section 2.3.2), the
composition in this region is instantaneously set to the average value, usually
causing discontinuities at the edges. In the case of extremely rapid burning, a
diffusive approximation for convective mixing is used instead because convection
and nuclear burning occur on similar timescales. Two other effects that are
added to basic equations, if necessary, are various diffusive effects (diffusion of
composition, temperature, and pressure) and mass loss due stellar winds at
the surface. These two are not discussed further as this thesis is concerned
with hydrodynamic processes, which are mostly related to convection.

No analytic solution of this system is possible due to the complexity of the
material functions (equation of state, opacities, nuclear reaction rates). That
is why, for many years, numerical solutions have been computed, starting
with the work of Kippenhahn et al. (1967). In the simplest case of a star in
complete equilibrium, i.e. # = p =T = 0, the four coupled ordinary differential
equations Eqs. (1.1) to (1.4) are solved for the variables r, p, I, and T for
given composition and boundary conditions. A very successful method for
accomplishing this numerically is the Henyey method, a generalized Newton—
Raphson method (Henyey et al., 1964). The solution is then advanced for a
small time step At, by computing the change in composition due to nuclear
burning using Eq. (1.5), and a new solution to stellar structure equations
Egs. (1.1) to (1.4) is sought for the modified composition. This approach is
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called operator splitting. If the model is just in hydrostatic equilibrium, i.e.
the acceleration # = 0, but T" and p are changing, their rate of change can be
computed by taking the difference to the previous time step. The results are
then used as the time derivatives on the right side of Eq. (1.3).

In evolutionary stages that are not in perfect hydrostatic equilibrium, the
acceleration term # = Jv/dt cannot be neglected anymore. The momentum
equation, Eq. (1.2), has to be extended with —(9v/dt)/47r? on the right side,
which turns the set of equations into hydrodynamical equations for radial
motions with velocity v. While this extension is useful for dynamic phases of
the life of a star, e.g. pulsations or even supernova explosions, it is still far
from a complete treatment of hydrodynamical effects in a star. This is because
spherical symmetry is still enforced in this one-dimensional theory. Convection,
being the most important hydrodynamical phenomenon from the viewpoint of
stellar structure, cannot be described in this picture. Convection is a turbulent
flow of the stellar plasma driven by a stratification of the atmosphere that is
unstable to buoyancy. Turbulence and buoyancy are inherently multidimen-
sional effects that can only be included in the one-dimensional equations by
using physically motivated prescriptions, often involving free parameters.

There are at least four main sources of errors in stellar evolution calcula-
tions. The first is due to uncertainties in the microphysical properties of the
stellar plasma, especially in the opacities and reaction rates. The second is
in the treatment of mass loss through stellar winds, for which mainly phe-
nomenological models are used at the moment. The third is the treatment of
rotation, especially the effect of large scale circulations and shear instabilities.
The fourth, and possibly most crucial, is the treatment of convection. The
most common prescription for this since the beginning of stellar evolution
calculations is mizing-length theory. Although there have been many attempts
to provide a more sophisticated theory, none of them could provide results that
match the observations significantly better. Most stellar evolution codes are
still using this theory today because of its simplicity and single free parameter.

1.1.2 Mixing-Length Theory

One of the most widely used versions of mixing-length theory in stellar as-
trophysics is that by Bohm-Vitense (1958), which we briefly introduce here
based on the presentation in Kippenhahn et al. (2013) in order to put the
multidimensional simulations of convection in this thesis into context.
Mixing-length theory considers the motion of convective elements surrounded
by a background atmosphere. It is assumed that this element is always in
pressure equilibrium with its surroundings, which is reasonable as long as its
velocity is small compared to the sound speed. The central concept of mixing-
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length theory is the mizing-length {,,, which is the length an element has to
travel before it is absorbed into the surroundings. Considering all elements
passing through a sphere at radius r the average element has traveled a length
of ¢;,/2 when reaching r. The temperature difference from the background
can be approximated linearly with

DT 10DT ¢, b 1
T T or 2 =(- V)QH

This uses the temperature gradient of the background V = 91InT/d1n P. The
index “e” indicates that the quantity is computed for the convective element.
The quantity H, = 0r/d1n P is the pressure scale height. The details of this
notation are dlscussed in Section 2.3.2. The density contrast is given by

Dp DT

=i (1.9)

(1.8)

with the derivative of the equation of state ¢ as defined for Eq. (1.3). From
this the buoyancy force can be computed

D

ky = —g—L, (1.10)

p
with the local gravitational acceleration g. As k, increases linearly with the
traveled distance, on average half of the force present at radius r acted on the
element during the time before. Using Eq. (1.8) this yields the total work

1. 0y 00,2
§k, =gd(V — V)8H

(1.11)
Assuming further that half of this work is transformed into kinetic energy of
the element while the rest is transferred to the surroundings, we can deduce a
velocity of the element

g 2
= go(V — Ve 1.12
v? = g5( S H, (1.12)
The expression for energy flux due to convective motions is
Feon = puc, DT (1.13)

This can be easily understood as it is just the product of the rate of mass
flux pu and the change in internal energy due to the different temperature of
the element c,DT'. Inserting the derived expressions for v and DT into this
equations yields

g 2
Fron = pe, T/ g0 2 H3/2(V — V,)3/2. 1.14
pep TV 905 ( ) (1.14)
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The piece that is still missing is V.. The element can change its temperature
through adiabatic expansion or contraction and through radiative exchange
with the surroundings. Assuming a certain surface area to volume ratio of the
element the resulting expression for V. is (Kippenhahn et al., 2013, Sec. 7.1)

Ve —Vaa 6acT?
= . 1.15
V -V, kp2eplmv ( )

We now have two equations for the three unknowns Feo,, V, and V.. To
close this system, we look at expressions for the energy fluxes. From a known
value of the luminosity [ at a certain radius we can compute the temperature
gradient necessary so that all of this energy would be transported by radiation.
This gradient is

3 klp
16macG mT*

This can be used in an expression for the sum radiative flux Fy,q and convective
flux Feon

Viad = (1.16)

dacG T*m
Fraad + Feon = varad- (1.17)

Now the actual radiative flux depends on the real temperature gradient V and
is given by

4acG T*m
Fra = . 1.18
Thus the convective flux is
dacG T*m
Fcon = TW(vrad —V), (119)

which is the additional equation we need to close the system.

Using some algebra and educated substitutions (Kippenhahn et al., 2013,
Section 7.2) this system can be reduced to a single cubic equation that has only
one real (as in not complex) solution. This solution determines the temperature
gradient V in presence of convection.

The perhaps most obvious flaw of mixing-length theory the mixing length £,
itself because it is a free parameter. It is typically determined by comparing
stellar models with observations of stars, especially the Sun for which the
best data are available. It is of the order of the pressure scale height H,,.
This assumes that £, is universal, i.e. it has the same value for all kinds of
convection in different types of stars. Another strong assumption is that all
convective elements have the same size and the same shape. This is important
for the amount of heat they exchange with the surroundings. From the theory
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of turbulence, numerical simulations, and even laboratory experiments we know
that convective elements are certainly not uniform. There is a full spectrum of
sizes and shapes instead. A theory taking this into account has been developed
by Canuto & Mazzitelli (1991). While it gives results that compare significantly
better to observations, it is still dependent on a mixing-length parameter.

Another problem is that mixing of chemical species at convective boundaries
in presence of fast nuclear reactions is usually modeled as a diffusive process
with a diffusion constant derived from the convective velocity given by mixing-
length theory. This is certainly not the correct picture as the simulations by
Stancliffe et al. (2011) and also our own simulations in Chapter 3 indicate.
Species can be advected further into non-convective regions than diffusion
would permit.

The inadequate model of convection does not just influence the temperature
stratification of a star, it also has an effect on other phenomena that are
modeled using prescriptions in one-dimensional codes. An important one is
the treatment of convective overshooting, where convective fluid elements are
entering the neighboring radiative zone, causing additional mixing of chemical
species. This can have an important impact on the evolution of a star. A
typical treatment of convective overshooting is to increase the region in which
the species are mixed by a fraction of the pressure scale height into the radiative
zone.

1.2 Hydrodynamical Simulations of Stars

The presentation of the deficiencies of stellar evolution calculations due to
the spherically symmetric, hydrostatic approximation leads to the natural
conclusion that the models should be improved by relaxing these assumptions
and moving to a more general set of equations to solve. The flow of the stellar
plasma can be quite accurately described using the Navier—Stokes equations,
which are derived from the principles of conservation of mass, momentum, and
energy and discussed in detail in Section 2.1.1. The purpose of this section is
to examine the possibilities of this approach, to give an overview of previous
work on this topic by other authors, and to present what is new in the methods
used in this thesis.
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1.2.1 A Matter of Timescales

For estimating the feasibility of multidimensional hydrodynamical simulations
of a star it is instructive to look at the timescales at which the relevant processes
take place (e.g. Kippenhahn et al., 2013). The first one is the free-fall timescale

T = \f \/F (1.20)

with the radius R and enclosed mass M at the point under consideration.
In the second equality, Newton’s law of gravitation with the gravitational
constant G was used. It is the time it would take a particle at radius R to
fall to the center of the star if gravitational acceleration remained constant
at its initial value and pressure would not balance it. This timescale gives
an estimate of how fast the star returns to hydrostatic equilibrium when the
pressure profile changes. It is close to the time it takes a sound wave to cross
the star. In the case of the Sun 74 ~ 27 min.
The next timescale of importance is the Kelvin—Helmholtz timescale

|Egrav| 3 GM?

= 1.21
K= Y5 RL (1.21)
with the total potential energy of the star in its own gravitational field
R 2
4
Eyraw = —G / mArr o, (1.22)
0 T

and the total luminosity of the star L. The approximation lies in assuming
that density is constant in the star, which is clearly not true but suffices for the
purpose of estimating a timescale. The Kelvin—Helmholtz timescale of the Sun
is about 1.9 x 107 years. It is the time for which the Sun could radiate energy
by just using its gravitational energy. It gives an estimate for the time it takes
the thermal structure to adjust when the rate of energy generation changes.
This means even if we neglect nuclear energy release in a stellar model, its
structure will not significantly change as long as the simulated time is well
below Tkg.

The last relevant timescale is the nuclear timescale. 1t is estimating how
long a star can support its luminosity L by thermonuclear fusion. It is given
by

EHUC

nuc — . 1.23
o = 20 (1.23)

The nuclear energy release from the conversion of 'H to “He is Q
6.3 x 10'® erg/g, which yields myue = QMg /Le = 10 years. This is the
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timescale at which the chemical composition of the Sun evolves and determines
the lifetime of the star?.
Comparing these three timescales for the Sun yields

Toue = 5 % 103 7k = 2 x 10 7. (1.24)

This shows that the different processes that influence a star act on vastly
different timescales. Especially the free-fall timescale, which is connected to
hydrodynamic phenomena, is so far from the other two that fully dynamic,
numerical modeling of the whole lifetime of a star is firmly out of reach, save for
any revolutionary advances in computer science. Even removing the necessity to
track sound waves with implicit time-stepping (see Section 2.1.3) only allows us
to gain a factor of the inverse Mach number at most, which is roughly 1072 for
convective zones. To undermine this argument with some real world numbers
we look at the model of a 250 M) star used in Chapter 3. Its luminosity is
about 2 x 10% M, giving a nuclear timescale of 12 x 10° years.? The free-fall
timescale is about one day. At the time we started the hydrodynamic simulation
the star had an age of 2 x 10° years. The three-dimensional simulations covered
a physical time of about 4 days. This means our hydrodynamical simulation
covered about only one billionth of the lifetime of the star.

Yet the situation is not hopeless. The longest part of their life stars spend in
hydrostatic hydrogen burning, which even though it involves convective regions
and large scale hydrodynamic circulation, can be described very well as a steady
state. The particular detailed outcome of hydrodynamic simulations is not
very useful anyway because of the chaotic nature of turbulence, for which only
statistical averages are meaningful. An approach that could lead to progress
in stellar models is to perform hydrodynamic simulations of phenomena like
convection, convective overshoot, or shear instabilities until they reach a steady
state and extract better prescriptions for use in the classical stellar evolution
codes.

Another area where multidimensional hydrodynamics calculations could
provide substantial insight is stages of stellar evolution in which the nuclear
and hydrodynamic timescale are not so extremely different. This is the case for
the very late burning phases of massive stars. For example the silicon burning
phase lasts only several days. This could even be covered in its entirety with

2The actual lifetime of stars is much shorter because events that occur in later burning
stages interrupt the complete conversion of elements and eject large amounts of unburnt
material. Lower mass stars eject their envelope as planetary nebulae, while higher mass
stars explode as core-collapse supernovae.

3This uses the luminosity during core helium burning instead of core hydrogen burning as
was done in the case of the Sun. Still it enough for getting an order of magnitude for the
lifetime of the star.

10
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hydrodynamics simulations. Two-dimensional simulations have shown that the
star departs significantly from spherical symmetry during this phase (Arnett
& Meakin, 2011) but three-dimensional studies are yet to be done.

1.2.2 Previous Work

Here we give an overview of different hydrodynamics codes that were applied
to stellar evolution, focusing on their distinguishing features and the problems
they were applied to.

The ANTARES code by Muthsam et al. (2010) employs high-order WENO
methods to model the Euler equations. In recent work (Happenhofer et al.,
2013) its capability to simulate low Mach number flows was improved using the
method by Kwatra et al. (2009). It allows to split the advective and acoustic
parts of the equation, handling the former using explicit methods and the latter
implicitly. It also gained support for curvilinear grids to avoid the problems
with small cells and grid singularities in spherical grids (Grimm-Strele et al.,
2013). One of its most prominent applications is the simulation of Cepheid
variables (Mundprecht et al., 2013).

The Djehuty code aspires to be a three-dimensional stellar evolution code
(Bazan et al., 2003). It solves the Euler equations using radiation in the
diffusion limit, nuclear reactions and neutrino losses, an equation of state for
stellar matter. The gravitational potential is computed using the monopole
approximation. To be able to simulate the core of a star the code employs
a small Cartesian grid at the center that is connected to a spherical grid in
the outer regions. Its hydrodynamic method is called arbitrary Lagrange-
Eulerian (ALE). Lagrangian means that the grid moves along with the fluid
flow where possible. As purely Lagrangian methods cause grid tangling in
more than one dimension, the grid needs to be relaxed in regions where shear
develops, making the method partially Eulerian there. The time-stepping
method is purely explicit, which means that the code is limited to time steps
that allow a sound wave to cross only one grid cell per time step. This is a
severe limitation in the case of low Mach number flows, which are predominant
in the stellar core in many phases of stellar evolution. Also, to our knowledge,
no special precautions have been taken to avoid the huge numerical dissipation
in low Mach number flows (see Section 2.2). Stancliffe et al. (2011) performed
3D simulations of proton ingestion into a convective shell in an asymptotic
giant branch star. They observe greatly enhanced convective velocities and
mixing compared to the 1D predictions from mixing-length theory.

A series of simulations of convection in stellar interiors and of the late
burning phases of massive stars has been performed using the PROMPI code,
a parallelized version of the explicit hydrodynamics code PROMETHEUS

11
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(Fryxell et al., 1989). PROMETHEUS combines the Piecewise-Parabolic
Method (PPM) of Colella & Woodward (1984) with a nuclear reaction network.
They simulated carbon and oxygen shell burning in two and three spatial
dimensions and analyzed the behavior of turbulent convection in these (Meakin
& Arnett, 2006, 2007b). Arnett & Meakin (2011) used the same code for a
two-dimensional simulation of the silicon burning phase. The main limitation
of these simulations is that they only covered rather short timescales due to the
limitations of explicit time-stepping. Meakin & Arnett (2007a) compare their
compressible simulations of oxygen shell burning using PROMPI to anelastic
simulations by Kuhlen et al. (2003) which used the numerical methods of
Glatzmaier (1984). They found significant deviations from the horizontal
averages that were absent in the anelastic simulations due to the physics not
included in this formulation.

Another descendant of the PROMETHEUS code is the HERAKLES code
by Kifonidis et al. (2003), which includes some improvements to PPM, the
HLLE Riemann solver, and the Consistent Multifluid Advection scheme (Plewa
& Miiller, 1999). It was used in a series of papers on the core helium flash
(Mocék et al., 2008, 2009, 2010). The main result of these studies was that
the behavior of the flash is not explosive, the deviation from mixing-length
theory is not huge in general but especially the boundaries of convective zone
behave differently which influences mixing of chemical species in the models.
Also here the use of an explicit time-stepping scheme limited the physical time
that could be covered in the simulations.

Herwig et al. (2011) also use an enhanced version of PPM for the simulation
of the ingestion of 'H into '2C-enriched convective shells. A distinguishing prop-
erty of these simulations is the use of the Piecewise-Parabolic Boltzmann (PPB)
scheme by Woodward et al. (2008), which greatly improves the accuracy of
species advection. In recent work the group investigates the numerical accuracy
of their simulations and find that they need at least 10243 grid cells to achieve
convergence, which they verified in 15363 simulations (Woodward et al., 2013).

In the work by Viallet et al. (2011, 2013a) a hydrodynamics code with
implicit time-stepping called MUSIC was developed. The implicit nature of
this code allows it to cover longer physical times than explicit codes. It uses
a staggered grid, where the values of certain quantities are stored at the cell
interfaces instead of the cell centers. This improves the codes behavior at low
Mach numbers. It was applied to the envelopes of red giants (Viallet et al.,
2011), for which also the properties of convection were studied (Viallet et al.,
2013b). The code includes radiation in the diffusion limit but lacks a reaction
network for the treatment of nuclear reactions so far.

Freytag et al. (2012) developed the CO5BOLD code which simulates the
equations of hydrodynamics or magnetohydrodynamics coupled with non-local
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radiative transfer. The group uses the code in boz-in-a-star simulations that
take out a small part of the outer atmosphere of a star in plane-parallel
approximation, as well as in star-in-a-box simulations, where a whole star is
put on a Cartesian grid. The main focus of their investigations are the outer
regions of stars that are becoming optically thin. This is where non-local
radiative transfer becomes important and explicit time-stepping is efficient due
to the relatively high Mach numbers. This is a very different regime from the
stellar interiors that are the target of the work in this thesis.

A similar code also used in modeling the outer regions of stars including radia-
tive transfer and magnetohydrodynamics is the STAGGER code by Nordlund
& Galsgaard (1995). A recent application of this code was the construction of
a grid of three-dimensional stellar atmosphere models by Magic et al. (2013).

The MAESTRO code (Almgren et al., 2007; Nonaka et al., 2010) follows an
approach different from all other codes mentioned above. It does not solve the
compressible Euler equations but a modified set of equations that was derived
to filter out sound waves while keeping the correct asymptotic behavior in the
low Mach number case. This limits to code strictly to application in the low
Mach number regime. It can cover long timescales because it does not resolve
sound waves. Its primary astrophysical application so far was the simulation
of convection in the simmering phase of white dwarfs prior to the ignition of a
Type Ia supernova (e.g. Nonaka et al., 2012). For this reason the code also
includes a nuclear reaction network. It does not yet include radiative diffusion.
Recently, Gilet et al. (2013) simulated core convection in a 15 M) star using
MAESTRO. Their results are qualitatively similar to the results of Kuhlen
et al. (2003) and Meakin & Arnett (2007b) but they argue that the latter
results were influenced by the small size of the computational domain.

1.2.3 The Hydrodynamics Code SLH

Having seen that hydrodynamics simulations of stellar interiors are a valuable
contribution for stellar astrophysics and that the inclusion of nuclear reactions
would improve the range of applicability, we need to chose the right basis for
this work. The Seven-League Hydro (SLH) code offers many of the features we
need. It was originally developed by Miczek (2013) during his PhD thesis.* It is
a finite-volume hydrodynamics code that simulates the Euler equations in one,
two, or three spatial dimensions. One of its most distinguishing features is a
special preconditioned Roe solver for the computation of the fluxes that allows
it to simulate flows at low Mach numbers (< 1072) while still retaining all

4In Miczek (2013) the code is called by its original name Low Mach number Hydro
Code (LHC). Due to fact that there is a particle collider by the same name, it was
renamed to SLH.
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terms of the Euler equations and thereby the ability to have regions of higher
Mach number on the same grid (see Section 2.2). Another advantage over
many other multidimensional hydrodynamics codes is its use of implicit time
stepping. This allows it to use time steps that are much larger than the ones in
explicit schemes, which are bound to the so-called CFL criterion for numerical
stability (see Section 2.1.3). Apart from these two major points the code has
a very flexible and modular design and the components are implemented in
the most general way still practicable. For example the reconstruction method
for higher order spatial accuracy can be chosen independent of numerical flux
function. In fact a whole suite of flux functions that are well suited for low
Mach numbers are implemented in the code.

For the implicit time-stepping a non-linear system of equations is solved
using the Newton—Raphson method. At every step of the Newton iteration
the solution of a linear system needs to be found. This is done using Krylov
subspace methods. The computational efficiency of these methods strongly
depends on the properties of the matrix being inverted and the type of parallel
compute cluster being used. This is why SLH employs its own linear solver
framework with a host of different methods and preconditioning techniques to
ensure efficient computation after some initial tuning.

The code takes a very general approach to geometry as well. Instead of the
typically used Cartesian or spherical grids it uses a general curvilinear grid that
can be adjusted to almost any geometry without being affected by coordinate
singularities (see Section 2.1.2). This can be achieved without sacrificing much
of the simplicity of Cartesian grids as only metric terms have to be inserted at
a few locations.

An arbitrary equation of state can be used, provided certain derivatives
can be computed, either analytically or numerically. As the equation of state
generally also depends on the local composition, SLH implements a treatment
of the chemical species as active scalars in addition to the operator-split method
used in most other hydrodynamics codes. The code also includes radiation in
the diffusion limit and thermal conduction, which is mathematically equivalent.

One issue raised by Miczek (2013) is the occurrence of an instability in
hydrostatic atmospheres that are convectively stable (see Section 2.4.1). This
thesis discusses a possible numerical cause of the instability in Section 2.4.2 and
provides a fix in Sections 2.4.3 and 2.4.4 that works in the cases we investigated
so far but definitely needs further study in future work.
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1.3 Outline of the Thesis

Section 2.1 introduces the basic equations of hydrodynamics and gives an
overview of the numerical scheme used in the SLH code. This is expanded in
Section 2.2 by a discussion of the principal problems of numerical hydrody-
namics as low Mach numbers and how they are solved in SLH. Section 2.2.3
shows new tests of the numerical viscosity of the code. Section 2.3 discusses
hydrostatic equilibrium and the convective stability of atmospheres, which is
crucial to stellar models. In Section 2.4 we give an analysis of an instability
that causes convectively stable atmospheres to become unstable as soon as a
low Mach number method is used. Furthermore, a possible cause and solution
is presented. Section 2.5 introduces the differential equations for the nuclear
reaction network, discusses their solution with and without coupling to hydro-
dynamics and compares the result of using different coupling methods. A first
application of the methods described is presented in Chapter 3, where a profile
of a massive primordial star is mapped to a three-dimensional simulation grid
to investigate the interplay of convective overshooting and enhanced reaction
rates due to the mixing of 2C and 'H.
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2 Physical Concepts and
Computational Methods

2.1 Multidimensional Hydrodynamics Simulations

As noted in the last chapter the two major caveats of the traditional formulation
of stellar evolution are the reduction to spherical symmetry and the removal
of all time-dependent terms from the Navier—Stokes equations. The natural
solution to this problem is to extend the set of model equations to three spatial
dimensions and to retain all time-dependent terms in the equations. This
section will discuss the properties of the full set of hydrodynamic equations
and necessary extensions for their use in modeling stellar interiors.

2.1.1 The Three-Dimensional Navier—Stokes Equations

For their treatment in the context of finite-volume hydrodynamic codes it is
convenient to express the Navier—Stokes equations in terms of the conservative
variables U given by

Here, p is density, pu, pv, pw are the components of momentum in z-, y-,
and z-direction, and pE is the total energy, i.e. kinetic and internal energy,
per volume. X; is the mass fraction of species i; pX; is the density of that
species. This term is used as a placeholder for all involved species. In practice,
it is replaced by as many components as there are species in the model. This
choice of variables is especially useful for numerical considerations because the
equations take a flux form. From this, it can be deduced that the integral of
each component of U over the whole domain is conserved except for fluxes
through the boundaries and source terms.
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Following Toro (2009) the Navier—-Stokes equations including all relevant
source terms can be conveniently expressed in the form

U +0,F(U)+0,GU)+ 0, HU) = 9, F* +9,G* + 9. H* + § (2.2)

with the hydrodynamical terms

pU pv pw
pu2 +0p puv puw
F=| " G| Pt H=| P~ (2.3)
puw pUw ’ pw?+p |’ '
u(pE + p) v(pE +p) w(pE +p)
puX; pvX; pwX;
the diffusive terms
F? = 0, 7%, 7% 777 ur®™ + ™ + wr** + K0, T, O)T , (2.4)
Gl = 0,79, 7% 7Y% ur¥® + ot + wr¥® + K0, T, O)T , (2.5)
HY = (0,7%%, 7%, 7% ur™® 4+ vr¥%¥ + wr¥* + K0,T, O)T , (2.6)
and the gravity and nuclear burning source terms
0
PYz
S = Pay . (2.7)
pg: _
pu-g—+p Zi enuc,iXi
pXi

Here, K is the thermal conductivity, which also includes radiation in the
diffusion limit as the two phenomena are mathematically equivalent. The
nuclear energy release epyc,; = N Amichghf /A; is determined by the rest mass
per nucleon m; of species ¢ and the speed of light cjjgne. The atomic mass
number A; and Avogadro’s constant N are used to convert from mass fraction
to number of nuclei. The vector g is gravitational acceleration. In principle, it
depends on the mass distribution inside and outside of the considered domain.
In the scope of this thesis we only consider problems for which g is solely
determined by an external mass distribution, i.e. the core of the star, which is
outside of the grid. So gravity is assumed to be constant in time. If, in the
future, problems that include the stellar core are investigated, this assumption
is not valid anymore. The gravitational potential would then have to be
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computed and g be updated accordingly. The components 7%, ... define the
viscous stress tensor. They are given by

4 2
7 = Zndsu = Zn(0y0 + :w) + 0y (O + Oy + Oew), (2:8)
T = %nayv o ;n(azw + 81“) + nb(awu + 6yU + azw)’ (29)

4 2
T = §775zw - §W(azu + ay“) + nb(awu + ayv + azw)’

(
7Y — YT n(ayu + arv), (
TVE = 7% = (8.0 + dyw), (2.12
FEE T n(axw + 8Zu). (

This introduces the shear viscosity n and bulk viscosity ny. In a stellar envi-
ronment 7 has a value of the order of 1g(cms)~! (Kippenhahn et al., 2013,
Sec. 45.1). For a fully ionized, non-relativistic gas 7, is 0 (Landau & Lifshitz,
1981, §8). This information makes an estimate of the importance of viscous
terms possible. Usually one introduces the Reynolds number Re to estimate
ratio of inertial to viscous forces. It is defined by

Re = % (2.14)

n

To give a rough estimate of Re we can use values of a Population III star
model studied in Chapter 3. Using p = 10gem™3, v = 8 x 10° cms™!, and
L = 10" em we obtain Re = 8 x 10'7. If the Sun is used to estimate these
parameters instead, we arrive at a less extreme value of Re = 3 x 102 (with
values for the solar radiative zone: p = 0.2gecm™3, M =107, T =2 x 10K,
L=05Rs=65x10"%cm, u=05,v=>5/3, u=M/vRT /).

The Euler Equations

Even the more conservative estimate of Re is in a regime that is very far from
what can be reached using direct numerical simulations. The reason is that the
discretization introduces numerical viscosity that is orders of magnitude higher
than the physical viscosity. Simulations at the current limit of computational
feasibility reach a numerical Reynolds number of less than 10% (cf. Section 2.2.3).
This means that inclusion of physical viscosity will not benefit simulations
of stellar systems. This allows us to leave out the stress tensor from the
Navier—Stokes equations. One should bear in mind that all simulations of
stellar environments have an unphysically high numerical viscosity, the full
effect of which cannot be easily estimated. In the future, a comprehensive study
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of the properties of turbulence in simulations using the SLH code could help
to improve our understanding of the errors introduced by physical viscosity.
A suitable subgrid-scale model could possibly be constructed to improve the
situation.

These simplifications result in the Fuler equations with thermal conduction,
gravity, and nuclear burning. They can be expressed in the form

oU +0, F+0,G+0.H=S, (2.15)
U PV
pu® +p puv
2
Fe puv 7 G- pv® +p 7
puw pUW
u(pE + p) — K0, T v(pE +p) — K0,T
puX; puX;
(2.16)
pw 0
puw PGz
prw Py
H = , S =
pw? +p PY-= .
w(pE + p) - KazT pu-g+p Zi enuc,iXi
pwX; pX;

This constitutes the full system of partial differential equations that needs
to be solved for modeling stellar interiors. It is valid as long as the medium
is optically thick (high opacity). At lower opacities radiation can no longer
be treated as a purely diffusive process and must be addressed using a more
elaborate method. This is only necessary for the outer regions of a star, which
are not the topic of this work.

Equation of State

The Euler equations, Egs. (2.15) and (2.16), need to be complemented by a
few microphysical quantities. One is the change in composition X;, which is
determined by nuclear network calculations. These are detailed in Section 2.5.
Other quantities to be determined are pressure p and temperature 7. These
are given by the equation of state (EoS). The precise choice of EoS depends on
the state of the system being modeled. The simplest choice is an ideal gas. Its
pressure and temperature are given by

T 1 T
Pideal = PR—,  €ideal = ——R—. (2.17)
% Yy—1 p
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This introduces R = 8.3144621 x 107 erg (mol K) ™!, the universal gas con-
stant. The adiabatic constant -y takes a value of 5/3 for a monoatomic gas. The
monoatomic gas is appropriate here because the plasma in stellar interiors is
fully ionized due to the high temperature and therefore cannot form molecules.?
Full ionization is also important for computing the mean molecular weight u
as it is largely dominated by the contribution from electrons. It is given by

! (2.18)

= =13z, .
Zi X; 1+7;

Hi

with the mean molecular weight p; and charge number Z; of species . This
formula shows that p only covers a small range of values in the case of a
fully ionized gas. Pure hydrogen has a u of 1/2, for “He u = 4/3. The value
approaches the ratio of nucleon number A; to charge number Z;, which is
roughly 2 for most low to intermediate mass elements except hydrogen.

In high temperature environments a significant fraction of energy is stored
in the radiation field. Its pressure and energy are given by

40T* 3Pra
7 ) €rad = Prad . (219)
3Clight P

Prad =

This uses the Stefan—Boltzmann constant o. This description is valid as long
as radiation is in thermal equilibrium with matter. This is true in essentially
the same regions in which the diffusion limit of radiation is applicable.

In high-density regions, such as stellar cores in late stages of evolution,
electron degeneracy can also play a role. The detailed expressions for its
pressure and energy using Fermi integrals can be found in the work of Timmes
& Arnett (1999). These contributions are also implemented in the simulation
code used in this work but are switched off because their influence is negligible
for the problems addressed here.

For use in the SLH code the Helmholtz equation of state by Timmes &
Swesty (2000) was adopted. In this approach all thermodynamic quantities
are computed as derivatives of the Helmholtz free energy. This ensures ther-
modynamic consistency even when tabulated values are used as in the case for
the degenerate electron term.

All the components of the equation of state given here have the form
p(p, T, X;) and e(p, T, X;). This is because they are in thermal equilibrium,
i.e. they exchanged energy until they have reached a common temperature. A
problem with this is that in hydrodynamical calculations only the total energy

IThe assumption of full ionization starts to break down at temperatures below 107 K. (e.g
Paxton et al., 2011, Fig. 1) A more appropriate EoS including partial ionization should
be used in these regions, e.g. the one by Rogers & Nayfonov (2002).
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is provided as a component of the conservative variables U. It is not easily
possible to give the individual contributions to p and T" explicitly as a function
of total energy because the distribution of energy among them is not a priori
clear. So it is not enough to be able to invert each component separately but
the sum has to be inverted as a whole. In numerical calculations this problem
is solved by using the Newton-Raphson method. To ensure convergence it is
sufficient to use the ideal gas law for the initial guess.

2.1.2 Finite-Volume Schemes

The special form of the Euler equations, Eq. (2.15), becomes evident when they
are integrated over a volume (2; ; 1, defined by the boundaries [a:i_l/g, ;v1;+1/2],
[Yj—1/2>Yj+1/2], and [2;_1/2, 21 /2). This introduces a common notation for
indices on a computational grid. Integer-valued indices refer to cell centers
while half-valued indices refer to the cell faces. The resulting equation is

Ui jx +Vijn (/
Q

This equation was divided by the cell volume V; ;, and the integral and
derivative operator were exchanged in the first term. The latter is valid
because we start from the strong form of the differential equation which implies
the differentiability of U. The notation Uj ; ; denotes the average of U over
the volume §2; ;. Using the divergence theorem the volume integral over
the derivatives of the flux functions can be replaced by an integral over the
respective surface of (2; ;5. This yields

5‘mF+/ 6yG+/ 8ZH> =S,k (2.20)
2 5,k 2i 5,k

i53.k

Ui gk + Vigr  (Fix1j2k — Fic1/2.k
+Gijr1/26 — Gij—1/2.k (2.21)
+H; j /2 — Hijr-1/2) = Sijik-

This directly shows the conservative nature of this kind of discretization. The
conservative variables U only change through fluxes through the interfaces of
a grid cell and through the cell-averaged source terms S; ;3. Thus the sum of
all U; ; 1, is conserved except for fluxes through the boundaries and the effect
of the source terms. This approach is called finite-volume discretization.

The precise method of determining the flux at the interface, e.g. F; ; 1, is a
major distinguishing factor of numerical hydro schemes. A widespread class of
schemes uses the solution to the Riemann problem to compute the flux at the
interface. The Riemann problem is the initial value problem for a conservation
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law, in this case the one-dimensional Euler equations, with initial conditions
(e.g. Toro, 2009, Sec. 4.1)

Uy, forxz <O,

(2.22)
Ugr for z > 0.

U(z,0) = {

The quantities Uy, and Uy are the conservative variables left and right of the
interface for which the flux is to be computed. The exact solution U, /5 to the
problem can be used to construct the well-known Godunov method. Here, the
flux at the cell interface is given by F (U /2(0)).

It is also possible to use approximate solutions to the Riemann problem
instead of using the exact solution. For the work in this thesis the approx-
imate Riemann solver due to Roe (1981) is of great importance because it
can be modified to treat flows at low Mach number very accurately. These
modifications are discussed in Section 2.2. In the Roe scheme the flux is given
by

Fi)y =5 (F(UL) + F(Ug) — |Aroe|(Ur — UL)) - (2.23)

N |

This uses the Jacobian matrix A,.e of the flux function F'. The subscript “roe”
means that it is evaluated at a specific average state of U, and Ugr. The
absolute value of matrix means that the absolute values of each eigenvalue are
taken. A full presentation of the scheme can be found, for example, in Toro
(2009, Chapter 11).

A very different approach is pursued in the advection upstream splitting
method (AUSM) of Liou & Steffen (1993). Here, the flux is split into a pressure
part, comprising just the pressure term in the momentum component, and an
advective part with all the remaining terms of the flux function.

Fijp=myprr+ P, %= (Lu, H)T, (2.24)

introducing the total specific enthalpy H = E + p/p. Depending on the sign
of the mass flux 17, /9, 1 is chosen based on values from the right or left. The
challenge in this scheme lies in the proper choice of 712, /o and pressure flux P, /5.
These choices are described in the original publication (Liou & Steffen, 1993)
and the following ones about improvements to the scheme called AUSM™ (Liou,
1996) and AUSM ™ -up (Liou, 2006). The last of these schemes shows the proper
behavior for low Mach number flows, as discussed in Section 2.2.

Grid Geometry

It should be noted that the discussion in this section assumes a Cartesian
computational grid. This is enough to illustrate the basic principles and also
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well suited for the astrophysical problems addressed in this thesis. Other
grid geometries are beneficial for other types of problems, e.g. those involving
spherical symmetry. The simulation code SLH has a very general implemen-
tation of geometries. The underlying idea is that there is a map between
a uniformly spaced, Cartesian grid, called the computational grid, and the
physical grid. This allows us to use arbitrary curvilinear grids. The only
limitation is that the grids need to be structured, i.e. each grid cell needs to
have exactly two neighbors per dimension. This offers greater flexibility than
traditional spherical coordinate systems because the grid can really be adjusted
to the physical object. For example, the grid can be aligned along the isobars
of a rotating star, which are not perfectly spherical. Another advantage is that
coordinate singularities at the poles and the origin can be avoided by choosing
a so-called cubed sphere grid. One suggestion for such a grid by Calhoun et al.
(2008) is depicted in Fig. 2.1. This approach to geometry has the advantage
that most of the implementation of the hydrodynamical schemes is identical
to that in Cartesian codes. The properties of geometry mainly show up in the
computation of the metric terms. The details of this approach are described
by Kifonidis & Miiller (2012) and Miczek (2013, Sec. 3.3).

2.1.3 Time-Stepping

After performing the spatial discretization as described in Section 2.1.2, the
Euler equations can be rewritten as an ordinary differential equation of the
form 5

% +R; ;1 (U)=0. (2.25)
The function R,; ;1 is called the spatial residual. The separation of the spatial
and temporal derivatives is known as the method of lines. It allows us to flexibly
choose an appropriate time-stepping method without changing anything in
the discretization of the hydrodynamical fluxes. This approach is different
from the one taken in another wide-spread method for fluid dynamics, the
Piecewise Parabolic Method (PPM) of Colella & Woodward (1984). Here, the
higher order accuracy in time is achieved by averaging over the reconstructed
values of the fluxes. This has the problem that an extension to even higher
order accuracy is not straight-forward and cell-centered source terms (like
nuclear burning) are only integrated first-order accurate. Also, it is difficult
to extend this method to implicit time stepping because the averaging would
include several cells which makes the scheme unstable. Fryxell et al. (1986)
report that it is possible to construct a stable, implicit PPM by introducing
an intermediate time step. This is conceptually similar to the Runge-Kutta
methods employed in the SLH code. In the design of SLH, the method of lines
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Figure 2.1: A curvilinear grid that is adapted to spherical geometry while avoid-
ing the singularity at the center. It was suggested by Calhoun et al.
(2008). The cell centers are aligned to be at the same radius, except
for the diagonal cells which are located at a marginally larger radius.
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approach was chosen because of its flexibility and conceptual simplicity. The
details of time stepping are described by Miczek (2013). Here, we give a quick
overview of explicit and implicit methods and discuss them with respect to
the time integration of source terms.

The astrophysical phenomena in stellar evolution whose modeling we try
to improve using multidimensional simulations typically occur at low Mach
numbers (1072 to 10~*). This is problematic if traditional hydrodynamics
codes are used that perform the time integration explicitly. The reason is the
Courant—Friedrichs-Lewy (CFL) condition for stability of solution schemes
for partial differential equations (Courant et al., 1928). It states that the
physical domain of dependence of a grid point at the new time step must not
be larger than its numerical domain of dependence. It is a necessary condition
for stability but not sufficient. The specific time-stepping method being used
can be subject to even tighter constraints on the time step.

The original CFL condition depends on the largest signal speed in the system.
Its determination in case of the Euler equations is complicated as it depends
on the local solutions to the Riemann problem. Typically, a simplified criterion
is used instead. It states that the time step At must fulfill

At < CFL,. min ﬂ
ge{u,v,w} |q| +c

(2.26)
The constant CFL,. depends on the specific temporal and spatial discretization
being used. It is typically of the order of one. Equation (2.26) shows that the
CFL limited time step is constant when reducing the velocity of the flow to a
low Mach number M because

lgl +c=c(|M]+1) =~ ec. (2.27)

This is undesirable because the physical processes of interest occur at the
timescale of the fluid velocity. Resolving sound waves is not important as
further explained in Section 2.2. The following sections discuss time-stepping
methods that avoid this restriction.

Explicit Time-Stepping

The stability constraint given by the CFL condition is valid for all explicit
time-stepping methods. The difference between explicit and implicit methods

26



2.1 Multidimensional Hydrodynamics Simulations

can be understood in the context of a general s-stage Runge-Kutta method
and its corresponding Butcher tableau.

Ufj,?k =AtR (U" +) agU® e+ cht> ,
=1

(2.28)
+1 _ )
th k= ZblU;Lk’
1| ail a2 -+ Qis
Co | Q21 G2 -+ Q2
(2.29)
Cs | As1 Ag2 - ° Qgg
by by .- b

Here, R(U,t) is the spatial residual from Eq. (2.25) including the hydrodynamic
fluxes and the other source terms. In general, it also has an explicit time
dependence, although this is not the case for the reactive Euler equations.
Note that the subscript of U, ; denotes the position on the spatial grid.
No subscript means all grid cells at the specified time. The values U9 are
intermediate evaluations of the conservative variables between the old time
step U" and the new time step U™, In the general case, each U(? depends
on all U® including U@ itself. This is a coupled system of s non-linear,
implicit equations for U . A method is called explicit if every Ui(‘;.)k can be
computed by w

U, = AtR(U™ " + c1At), (2.30)
q—1
(Q) n n
UY =AtR(U"+Y agU" 1" + ¢ At ) for g > 1. (2.31)
=1

In the picture of the Butcher tableau this means that the values ay form a
strictly lower triangular matrix, i.e. the values on the diagonal and in the
upper right part are zero. This system can be solved just by s successive
evaluations of R without solving a single non-linear equation. This is very
efficient in terms of computation (no non-linear system needs to be solved
using iterative methods) and memory (only s times the size of U is needed
instead of a large Jacobian matrix for the non-linear solver). The caveat is
that all explicit methods are subject to the CFL condition as the value of
U”Jrk1 only depends on the values of the cells connected by the stencil of the
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spatial discretization. The size of this stencil is two cells in every direction at
most for the usual reconstruction methods, i.e. constant, linear, and parabolic
reconstruction. The two explicit methods implemented in SLH are the forward
Euler method and RK3 (Shu & Osher, 1988). While forward Euler is only
first-order accurate and therefore used only for testing, RK3 is third-order
accurate and also has the Total Variation Diminishing (TVD) property (e.g.
Toro, 2009, Chapter 13). RK3 is well suited for explicit calculations but limited
to the CFL time step.

Implicit Time-Stepping

A way to avoid to the time step restriction of explicit methods is the use of
implicit methods. A method is called implicit if has at least one value on the
diagonal or in the upper right part of the Butcher tableau. This implies that at
least one non-linear equation has to be solved for a time step. This enlarges the
numerical domain of dependence to the whole computational domain, thereby
removing the restrictions posed by the CFL condition. The reason for this is
that the value in one cell at the new time step depends on the new values of
its neighbors connected by the stencil. These values depend on their neighbors
in turn. This indirectly connects the whole domain. In the most general form
of an implicit Runge-Kutta method the non-linear system has not only to be
solved for one set of conservative variables but for s sets, s being the number
of stages. This would enlarge the Jacobian matrix in the non-linear solution by
a factor of s, which is very undesirable because memory is already a limiting
factor in the size of 3D simulations. Fortunately, there is a class of implicit
Runge-Kutta methods that only requires the solution of a non-linear equation
for one set of conservative variables per stage, the so-called Diagonally Implicit
Runge-Kutta (DIRK) methods (Alexander, 1977). Their Butcher tableau has
the form

cilar O -+ 0
ca | agr az - 0
(2.32)
Cs | Gs1 Qg2 "+ QOgs
by, by --- b,

Here, the individual stages can be evaluated successively; at each stage the
number of unknowns is only a single set of conservative variables per grid cell.
A subclass of the DIRK methods are the Singly Diagonally Implicit Runge—
Kutta (SDIRK) methods, which are constructed so that a;; = age = -+ = ags.
This would enable us to reuse the LU decomposition for the solution of the
non-linear system at every stage and only compute it once. Unfortunately, this
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advantage cannot be used in the context of large hydrodynamics simulations
as the LU decomposition of the Jacobian matrix is not sparse and cannot be
stored in memory.

A subclass of the DIRK methods that saves computational resources are
the Explicit, Singly Diagonally Implicit Runge-Kutta (ESDIRK) methods.
These are like the SDIRK methods but their first diagonal value is zero. The
advantage here is that the first stage can be computed without solving a
non-linear system; it is explicit. The method as a whole is still implicit, so it
is not subject to the CFL condition.

The ESDIRK methods that are implemented in SLH are ESDIRK23 (Hosea
& Shampine, 1996), ESDIRK34 , ESDIRK46 , and ESDIRK58 (all from
Kennedy & Carpenter, 2001). The first number is the formal order of the
method, the second is the number of Runge—Kutta stages, e.g. ESDIRK58
is an eight stage Runge-Kutta method, whose error converges with At°, for
sufficiently small A¢. The Butcher tableaux for these methods are summarized
in Miczek (2013, Annex B).

An advantage of the ESDIRK methods is that they have an integrated error
estimator. It works by constructing a second set of coefficients b1, . .., by for
combining the intermediate solutions U Z-(f;-?k that gives a result accurate to an
order one below the original scheme. The difference between the two results
serves as an error estimate for the lower order method. As the higher order
method is more accurate we use higher order solution with the error estimate
from the lower order. This idea goes back to Erwin Fehlberg. A simple example
is the method given by the Butcher tableau:?

(2.33)

S | = R O
Pl O O NI

(S NIN o | Sl el NI
SN =

(el N =N

ol O

Missing values have a zero value. If the set of coefficients b is used to compute
the result the method is of fourth order. The coefficients b give a method of
third order. The difference between the two results serves as an error estimate.

As a final note on the topic of time-stepping methods it should be mentioned
that not all methods can be understood in the framework of Runge—Kutta
methods. There is also a class of methods that achieve higher order not

2Example taken from the lecture notes on numerics of ordinary differential equations by
Prof. Bernd Simeon (TU Miinchen, 2006).
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by dividing one time step into smaller sub-steps but instead by using the
information from previous steps. They are called Linear Multistep Methods.
The most common implicit multistep methods are the Adams—Moulton method
and the backward differentiation formulas (BDF) (e.g. Hairer et al., 1993,
Chapter IIT). The method BDF1 is actually a single step method, better
known under the name backward Euler. One problem with multistep methods
in general is that information from the previous steps is unavailable for the
initial time steps. The usual solution is to start with a first order method
and then increase the order at every step until the desired value is reached.
Another problem is that allowing variable time step size makes the formulas
and implementation far more complicated. Therefore, the SLH code only
implements single step methods that can be formulated as Runge-Kutta
schemes, even though multistep might be more efficient in certain cases.

Treatment of Composition Variables

In general, the equation of state has a dependence on the composition, i.e.
through the mean molecular weight p in Eq. (2.17). For implicit time-stepping
this means we need values for the composition variables X; in order to compute
the pressure that enters the momentum and energy equations. The most
rigorous way of doing this is by extending the set of equations to be solved
simultaneously in one implicit time step with the equation for the advection
of each species, i.e. the last line in Egs. (2.15) and (2.16). This approach is
treating the composition as so-called active scalars. The issue here is that this
enlarges the dense blocks in the sparse Jacobian matrix, which needs to be
inverted at every timestep. Even a moderate number of only 5 chemical species
would already double the storage size of the matrix and make operations on
it significantly more expensive. Therefore a common approach is to treat
the species as passive scalars. This means the composition is frozen at the
beginning of a time step and the Euler equations are solved assuming no
advection takes place. After that the newly determined mass flux is used
to compute the advection of the species. This is a typical operator splitting
approach. It introduces an error that scales with the time step. Fortunately,
even in the case of large implicit time steps the error is usually quite small.
This is because the dependence of the equation of state on the composition
is often rather weak as argued in Section 2.1.1. However, the active scalar is
important as a benchmark and a requirement for the unsplit coupling of a
nuclear reaction network to hydrodynamics as discussed in Section 2.5.3.
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Choice of Time Step

Implicit methods are not subject to the CFL condition for stability. Still, for
reasons of accuracy, the time step cannot be arbitrarily large. A good choice
of time step must be found that is large enough to make the simulation of the
slow phenomena we are modeling feasible but also small enough to yield the
appropriate accuracy. There are two principal ideas for choosing the time step.
One is the advective CFL criterion given by

A
At < CFL, min <

—_—. 2.34
ge{u,v,w} |q| ( )

This is simply the normal CFL criterion, Eq. (2.26), with the sound speed in
the denominator removed. With CFL, &~ 1 this means that the fluid moves
roughly one cell per time step. Miczek (2013, Section 5.6.1) performed tests
of the propagation of sound and advection waves with varying time step and
implicit time-stepping. The result was that for CFL,. < 5 sound waves are
well resolved; above this value the wave is strongly dampened. The same is
found for advective waves but using the advective CFL number CFL,, instead.
This means that for flows at low Mach number, where CFL,,. is considerably
larger than CFL,,, time steps with CFL, ~ 1 will damp the sound waves but
resolve advective waves very well. Thus, it is a practical criterion for simulation
of low Mach flows, in which the effect of sound waves is unimportant.

So far, only the Euler equations without the additional terms in Egs. (2.15)
and (2.16) have been discussed. The terms for thermal conduction, gravity, and
nuclear burning impose additional accuracy restrictions on the time step that
are not reflected at all in the advective CFL criterion. For the gravity source
term, Miczek (2013) suggested a CFL-like criterion that includes the free-fall
signal propagation speed. This criterion, called CFL,,4, is actually overly
restrictive because stellar atmospheres are very close to hydrostatic equilibrium
(see Section 2.3.1) and the gravitational acceleration is therefore nearly perfectly
balanced by the pressure gradient. However, it has the advantage that it also
gives a reasonable time step for zero-velocity initial conditions, for which the
CFL, time step is infinite.

For thermal conduction and nuclear burning such CFL-like criteria for the
time step are harder to find as these do not directly involve the fluid velocity.
Instead of trying to construct such a criterion, we evaluate the error estimator
of the ESDIRK schemes. As mentioned before, these schemes can estimate the
error of the temporal discretization by computing the result with a high- and
low-order method simultaneously. Miczek (2013, Section 5.3.2) explains how
this is used to adapt the time step to maintain a constant accuracy. There is
one issue when using the ESDIRK error estimator for low Mach flows. If sound
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waves are excited for any reason, the time step will be reduced far enough
to resolve them. Miczek (2013) suggests the implementation of a stiff error
estimator to avoid this effect. As such a stiff error estimator has not been
implemented in the SLH code to date, a minimum time step, e.g. CFL, > 0.1,
is used as a simple, yet effective workaround. This is sufficient for pure
hydrodynamics simulations but it does not ensure accuracy when including
thermal conduction and nuclear burning. The applicability of the adaptive
time stepper in this case is evaluated in Section 2.5.4 with a one-dimensional
deflagration flame as a test problem.

2.2 Low Mach Number Hydrodynamics

Riemann solver based finite-volume methods are known to exhibit excessive
numerical dissipation at low Mach numbers. This section briefly explains the
causes of this effect and discusses modifications to the spatial discretizations
in SLH to deal with this problem. At the end we show a test problem that
gives an estimate of the numerical viscosity of the code.

2.2.1 Problems with Compressible Schemes

The problem of low Mach flows and numerical schemes for the compressible
Euler equations was theoretically analyzed by Guillard & Viozat (1999). The
authors start from the non-dimensional Euler equations. Here, all physical
quantities are replaced by the product of the non-dimensional quantity and
a global reference value for the quantity, e.g. p = ppr,p = Dpr,.... The hat
denotes the non-dimensional quantity; the subscript “r” the reference quantity.
After canceling all possible reference quantities, the non-dimensional Euler
equations, without any additional terms, read

p pi po
Pl PO + 512D plid
35 po | + 0; puD + 3@ ﬁ'ﬁQ + erzﬁ +
P paa pow
pE a(pE + p) o(pE +p)
P
Pl
0; pow =0. (2.35)
A AD 1 A
pW* + 37=P
W(pE + p)
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The important point is that the only remaining reference quantity is the
reference Mach number M, = u,/¢;, with the common reference velocity u,
and the reference sound speed ¢,. The next step in the analysis is an asymptotic
expansion for M, — 0 in powers of M,. This means that all quantities are
replaced with terms of the form

p=p + MpD + M2 4. (2.36)

The terms with the same power of M, are then collected, which yields conditions
for the low Mach number limit. These conditions are (with the hat dropped
for convenience):

e order 1/M,?

Vp® 0, (2.37)

e order 1/M,
vp) 0, (2.38)

e order 1

32(:) +9- (V) =0, (2.39)
% +V- (p(O)V(O) ® V(")) +Vp? =0, (2.40)
w £ 7 (pOOVO 4 pOVO) —p, (2.41)
p© = (v — 1)p(0)e(0) (EoS). (2.42)

Here, V' = (u,v,w)T is the velocity vector. It can be seen from Equations (2.37)
and (2.38) that pressure is constant in space up to terms with M,?, i.e. it takes
the form

p(x,t) = pOt) + M 2p® (x, ¢). (2.43)

If the pressure at the boundaries is fixed, it is also constant in time. Using
this information with Eq. (2.42), we see that

PRORD
pT =V () =o. (2.44)

Inserting this into Eq. (2.41) yields

v-vO =y, (2.45)
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which is the condition for incompressibility of the zeroth component of the
asymptotic expansion.

Guillard & Viozat (1999) then continue by performing a similar asymptotic
analysis for the discretized equations. For simplicity, they chose Roe’s approxi-
mate Riemann solver (see Section 2.1.2) for the spatial discretization. However,
their result is valid for a more general class of upwind methods.? The main
result of this analysis is that pressure has a component that scales linearly
with the Mach number in the discrete case,

p(x,t) = pO(t) + MpW (x, 1). (2.46)

This is clearly in violation to the analytic result in Eq. (2.43). It means that
the discrete solution shows significantly larger pressure fluctuations at low
Mach numbers.

The problem becomes even more evident in the analysis by Miczek (2013).
Here, the asymptotic behavior of the single components of the Jacobian matrix
of the flux function is analyzed. Instead of the three Cartesian fluxes F', G,
and H in Eq. (2.16), the general result is expressed using the normal vector
n = (Ng, Ny, n.)T on the respective cell interface and ¢, = V - n, the velocity
component perpendicular to this interface. The expressions take an easier form
when they are transformed to primitive variables given by W = (p, u, v, w, p)7.
In these variables the flux Jacobian takes the form

qn PNy PNy pn 0 0
0 Gn 0 0 ]\Zﬁ 0
0 0 n 0 4= O
0 0 0 " 1\7/}22 0 (2.47)
0 pc?ng pcPny pPn,  q, 0
0 0 0 0 0 qn

The same analysis can be applied to the Roe scheme, Eq. (2.23). This leads to
the Jacobian matrix with the asymptotic scaling

O(1) O(M) OM,) OM,) O() 0

0 O(3) Ozr) OGF) OGp) 0

0 O(z) Olzr) O(z) O(zp) 0 (2.48)
0 O(i) OGr) O(F) OGr) 0 '
0 OM,) OM,) OM,,) O(x) 0

0 0 0 0 0 0(1)

31t is valid for any scheme in which the dissipation term has the form |A|(Up, — Ug). A is
the Jacobian, but not necessarily evaluated at the Roe average state.
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This uses the Landau O-notation.* It follows from this result that for low
Mach numbers some of the physical flux terms, i.e. the ones in the function F,
are completely overwhelmed by the terms stemming from the upwind term
|Aroe|(Ur — UL). Upwind means that this term ensures the numerical domain
of dependence matches the physical one. For example, a supersonic shock does
not depend on the state of the downwind material but only on the upwind
material. If this dependence is violated by the numerical scheme, it becomes
unstable (for details, see Toro, 2009). The upwind term can be viewed as
a numerical dissipation term that is important for stability. If such a term
dominates the physical flux, it causes excessive dissipation that is of a purely
numerical nature. Miczek (2013) showed this using the Gresho problem (in the
form given by Liska & Wendroff, 2003), a rotating vortex that is a stationary
solution to the Euler equations. It was found that Godunov-like methods as
well as flux vector splitting methods are subject to strong numerical viscosity
as the Mach number is lowered.

2.2.2 Modified Schemes for Use with Low Mach Number
Flows

Several of the commonly used hydrodynamics schemes can be modified to
reduce the effect of rising numerical dissipation as the Mach number is lowered.
Ideally, the dissipation of a scheme does not depend on the Mach number at
all. In this section we review two methods in the form in which they have been
suggested by Miczek (2013) for use in simulations of astrophysical flows and
implemented in SLH.

Preconditioned Roe Solver

A scheme is called preconditioned Roe scheme if can be expressed in the form

(F(UL) + F(Ug) — (P |PA|)woe(Ur — UL)) (2.49)

DO =

Fy/=

with a non-singular matrix P that depends on the local fluid state U. This
method was suggested for time-dependent flows by Turkel (1999). It is called
flux preconditioning to avoid confusion with preconditioners used in solvers for
systems of linear equations.

e M,
1f € O(g) if limsupy,, % < 0.
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The first preconditioning matrix we consider is given in primitive variables V'
by

100 0 &1 0
0100 0 0
0010 0 0
Py = 2.
Voo o1 o ol (2:50)
0000 48 0
0000 0 1
with
0 = min(1, max(M, Mcyt)). (2.51)

This form of P was introduced by Weiss & Smith (1995). It depends on the
local Mach number M, which is limited by a cut-off Mach number M., to
prevent the matrix from becoming singular at zero velocity. Additionally,
the value is capped at M = 1, so that P reduces to the identity matrix for
supersonic flow. The complete scheme with this preconditioner is known as
the Roe—Turkel scheme. Miczek (2013) found the asymptotic scaling of the
upwind term in this scheme to be

o) o(1) o() o) O(3=) 0
0 01 0@1) o) Oy=) 0
1
0 01 o1 oQ) O(erg) 0 (2.52)
0 0O(1) o) 0(1) O(3=) 0
0 o1 0(1) o) O(y=) 0
0 0 0 0 0 o)

This is far more consistent to the scaling of the physical flux in Eq. (2.47)
than that of the original Roe upwind term in Eq. (2.48). The only discrepancy
is in the first and fifth row of the fifth column. This means it overestimates
the change of density and pressure flux with respect to the difference in
pressure. While this is inconsequential for many of the low Mach number flows
considered in engineering, which have very low pressure fluctuations, it is a
problem for astrophysical applications. The reason is that stellar atmospheres
have a considerable pressure stratification, which is balanced by gravity (see
Section 2.3.1). This causes fluxes in the vertical direction even if the atmosphere
is in perfect hydrostatic equilibrium and prevents the code from resolving very
low Mach numbers.
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To improve the preconditioned Roe scheme Miczek (2013) suggested a new
preconditioning matrix

1 N pO M, n, po M, n pO M, 0 0
c ! c Z ¢ s
Py |0 0 1 0 “mzn 0| (o)
0 ngpcdM, nypcdM, n,pcdM, 1 0
0 0 0 0 0 1
with 1
5= L (2.54)

min (1, max(M, Mcyt))
It should be noted that the definition of ¢ is different from Eq. (2.50). The
asymptotic scaling of this preconditioner is

o(1) o@1) o@1) o) o) 0
0 0@1) o1 o) O(Mfz) 0
0 0@1) o1 o®) (9(Mf2) 0 (2.55)
0 01 01) 0@1) O(y=) 0
0 O1) o1 o1 o) 0
0 0 0 0 0 O(1)

Comparison with Eq. (2.47) reveals that this preconditioning matrix makes
the scaling of the upwind term fully consistent with the physical flux. Test
calculations with the Gresho vortex (see Section 2.2.1) verified that this scheme
features numerical dissipation that is independent of Mach number. While it
has not been proven that the resulting upwind term is sufficient to stabilize
the scheme, numerical tests indicate its stability. (Miczek, 2013)

AUSM™-up

Another scheme for the compressible Euler equations that also features accurate
behavior in the low Mach number limit is AUSM™-up by Liou (2006). To
introduce the scheme we start from the general from of AUSM schemes,
Eq. (2.24). The mass flux is given by

pL if My >0,

2.56
pr otherwise. ( )

m1/2 = C1/2]\41/2 {
This uses

K —
My = M (M) + My (Mg) = =2 max(1 — o M3)PE=PE(2.57)
fa pl/QCl/Q
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with
fo=My(2—M,), M?2=min(l,max(M?, M.y)), (2.58)
o U +uf
M* = 92 P12 = (pL + pr)/2, c172 = (cL + cR)- (2.59)
1/2

The pressure flux is

P1/2 = P (My)pL + P (Mg )pr
— Ky P (ML) Py (M) (pr + pr)(faciy2) (ur — ur).  (2.60)

The functions M?;L) (M) and P(ﬂ; ) (M) are polynomial functions of Mach number
given in Liou (2006). The constants K,,, K,, and ¢ can be chosen between 0
and 1. The difference between this scheme and the original AUSM™ scheme
(Liou, 1996) are the u-term in p; /5, denoted by the constant K, and the
p-term in M /5, denoted by K. The u-term improves the behavior for flows
at low Mach numbers. The p-term was introduced “to enhance calculations
of low Mach number or multi-phase flow” (Liou, 2006). The origin of this
term is explained by Edwards & Liou (1998). It was chosen to match the
pressure diffusion term that arises in another member of the class of AUSM
schemes, the AUSMDYV scheme (Wada & Liou, 1994). The reason is to ensure
pressure—velocity coupling at low speeds. We discuss the importance of this
term in Section 2.4.3.

Miczek (2013) noted that the p-term in the mass flux causes problems with
nearly hydrostatic flows similar to the Roe-Turkel scheme. It scales with 1/M
and the local pressure gradient. That means it causes a vertical mass flux in
a perfectly hydrostatic atmosphere. To remove this problem, the factor f,
is set to unity just for the computation of the p-term. The resulting scheme
is called AUSM*-Lowmach. Its ability to resolve low Mach number flows,
tested using the Gresho vortex, and to maintain hydrostatic stability, tested in
one-dimensional stratified atmospheres, is competitive with the preconditioned
Roe scheme described in the section before.

2.2.3 Tests of Numerical Viscosity

To conclude this section about dissipation in low Mach number flows we present
the Taylor-Green vortex (TGV), a test problem that can be used to estimate
the numerical Reynolds number of the schemes implemented in SLH. It is
a three-dimensional vortex, first suggested by Taylor & Green (1937), which
starts with large scale eddies that gradually decay to smaller ones until the
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kinetic energy is dissipated by viscous effects, either physical or numerical. We
use the initial conditions given by Drikakis et al. (2007)

p(t=0)=py=1.178 x 10~% g/cm?,
u(t = 0) = ug sin kx cos ky cos kz,
v(t = 0) = —ug cos kx sinky cos kz,
w(t=0)=

k=10"2cm™! (2.61)
p(t =0) =po + [u02p/16] 2 + cos 2z
100 cm
2x 2y
- | cos + cos s
100 cm 100 cm
po = 10° Ba.

The formulas were adjusted for CGS units because the original publication
used SI units. The physical domain is a box with an edge length of 27 x 100 cm
with periodic boundaries on all sides. The equation of state is that of air, i.e.
an ideal gas with v = £ = 1.4. The maximum Mach number of this vortex is

uo/\/vpo/po = 0.29. The initial conditions are visualized in Fig. 2.2.
The turbulent kinetic energy K of the vortex is given by

1
K= ((v-(v)?), (2.62)
with the velocity vector V. This uses the volumetric average, denoted by (-).
For the analysis of turbulence the kinetic energy dissipation rate dK/dt is
required. It is obtained from numerical simulations using the finite difference
approximation for the time step t;

K(t) — K(t;i1)

~ (2.63)
=t ti —tia1

dt

Another property of the turbulent flow is the mean enstrophy Q defined by

_1 2 —_
inQva>f
1 v ow\? ow  ou\> ov  ou\?
2<<8z_3y) *(ax‘az) *(ax‘ag) > (2.64)
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Figure 2.2: Contour plot of the initial Mach number of the Taylor-Green vortex.

Again, this is determined using finite differences. For easier comparability
with different initial conditions, all quantities are non-dimensionalized. This is
denoted by *, in accordance with Drikakis et al. (2007). The transformation
relations are

t* = ku0t7 K* = K/U,OQ, QF = Q/(ku0)2 (265)

To estimate the numerical Reynolds number, we use an expression for the
viscous energy dissipation rate that is valid for the incompressible Navier—Stokes
equations (Taylor & Green, 1937),

dK
22— . 2.
o n (2.66)

Using the definition of the Reynolds number in Eq. (2.14) and switching to
non-dimensional variables, results in
dK* QF
dt* ~  Re’
By independently measuring dK*/dt and Q* we can determine the numerical

Reynolds number of the scheme. This means, even though we are simulating a
flow without viscosity, it behaves as if it had a viscosity corresponding to Re.

(2.67)
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To visualize the decay of the large vortex to smaller scales we use a criterion
suggested by Jeong & Hussain (1995). They suggest to use the value of the
second largest eigenvalue of the matrix

S? + 22, (2.68)
with

S:%«VVH%VVV)mdQ: (VV) —(VvV)T). (2.69)

1
2
The tensors S and {2 are the symmetric and anti-symmetric components of
the velocity gradient tensor VV. The combination S? + 22 is consequently
symmetric. Connected regions with a negative second largest eigenvalue define
a vortex core. According to Jeong & Hussain (1995) this criterion captures
the location of vortices more accurately than other commonly used criteria,
e.g. vorticity or local pressure minima. Figure 2.3 shows the decay of vortices
to smaller scales for a simulation of the TGV with 2563 grid cells.

Figure 2.4 shows the evolution of kinetic energy and enstrophy of the TGV
at different resolutions. The numerical Reynolds number is calculated for all
times. It also shows the viscosity reducing effect of the flux preconditioner
described in Section 2.2. The plots show that the position and height of the
peak of the kinetic energy dissipation rate approach constant values. The
same phenomenon was observed by Drikakis et al. (2007). Moreover, they
compared inviscid simulations at moderate resolution with direct numerical
simulations (DNS), i.e. high-resolution simulations that resolve the flow down
to the viscous scale, including an explicit viscosity term. For DNS the energy
dissipation curve converges at Re 2 3000. The limit is very close to the result
of the inviscid simulations, which are dominated by numerical viscosity. It is
expected that such a viscosity independent limit of the energy dissipation rate
exists for large values of Re (e.g. Frisch, 1995, Chapter 5).

To understand the importance of such a result, we introduce the concept of
large eddy simulations (LES). In LES only the largest eddies are resolved on
the grid; the viscous scale is far below the grid resolution. Yet it is still possible
to ensure that the properties of the flow are the same as if the turbulent flow
was resolved down to the viscous scale. There are several approaches to achieve
this. One is by using an explicit sub-grid scale (SGS) model. Here, viscous
terms are added to the Euler equations that are a function of the resolved
properties of the flow. These terms model the transport of kinetic energy
from the resolved scale to the sub-grid scale. The first model of this kind,
which is still widely used, was developed by Smagorinsky (1963). A different
idea is taking into account that simulation codes have an inherent numerical
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t* =0 t* =3.02 t* = 10.46
scale 10% scale 10*

e
.

t* = 17.5309 t* = 28.2519 t* = 35.3615
scale 4 x 10° scale 10° scale 10°

Figure 2.3: Temporal evolution of vortex cores in the Taylor—Green vortex
visualized using the second largest eigenvalue A2 of Eq. (2.68). Blue
regions have negative \2. Regions with A2 > 0 are transparent.
The magnitude of the color scale was adjusted as stated below each
panel.

viscosity. If it shows the correct behavior, no additional effort for modeling
the sub-grid scales is required. This approach is called implicit large eddy
simulation (ILES).

Drikakis et al. (2007) compared simulations of the TGV using an explicit
SGS model, ILES, and DNS. They found that ILES is equally capable of
capturing the effects of turbulence as the explicit SGS model, at least for the
discretization schemes they considered. In the SLH code we follow the ILES
approach. The fact that the resolution independent energy dissipation curve is
reproduced fairly well is a promising indicator that this is justified. Still, final
conclusions can only be drawn after a detailed analysis of the other properties
of turbulent flows. Drikakis et al. (2007) also verify the existence and correct
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— 323 explicit — 1283 explicit
- - 32% implicit low Mach - - 128 implicit low Mach
— 643 explicit 2563 explicit
- - 643 implicit low Mach 2563 implicit low Mach

Figure 2.4: This shows kinetic energy, kinetic energy dissipation rate, enstrophy,
and numerical Reynolds number for the original Taylor—Green vortex
from Eq. (2.61) with M = 0.29. The numerical Reynolds numbers
were computed using Eq. (2.67). The colors indicate different reso-
lutions. The dashed lines are computed with the low Mach number
flux preconditioner.
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slope of the inertial range of the kinetic energy spectrum. Such tests have not
yet been performed in detail with SLH and are subject of future work.

The original form of the TGV in Eq. (2.61) has a fairly high Mach number of
0.29. We repeat the simulations shown in Fig. 2.4 with the velocity scaled down
to M = 1072. The results are shown in Fig. 2.5. In this range the positive effect
of the low Mach number preconditioner becomes even more apparent. The
preconditioned scheme reaches about the same numerical Reynolds number as
in the simulations with M = 0.29. In the unpreconditioned case, however, Re
is drastically reduced. Also, the regime of resolution independent dissipation
of kinetic energy is reached much later. This result clearly emphasizes the
importance of using a suitable spatial discretization when simulating turbulent
flows at low Mach number.
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Figure 2.5: This figure shows the same quantities as Fig. 2.4 but with the
Mach number reduced to 10™2. The grid size of the high-resolution
simulation is slightly different from Fig. 2.4 due to the size of the
nodes of the cluster that was used for these computations.
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2.3 Hydrostatic Atmospheres

2.3.1 Hydrostatic Equilibrium

Except for the dynamic phases near the end of their lives (e.g. pulsations,
explosive burning, gravitational collapse), stars spend nearly their entire
lifespan in a state close to perfect hydrostatic equilibrium. Resolving this
equilibrium and its related instabilities to high accuracy is of major importance
to the astrophysical systems that this work is applied to.

A hydrostatic atmosphere is a temporally constant solution to the Navier-
Stokes equations, Eq. (2.2), including gravity. Gravity is assumed to be
temporally constant and independent of the mass in the domain of interest.
This is a reasonable simplification because only small sections of a stellar
atmosphere are considered where the gravitational force is entirely dominated
by mass outside the domain. First a class of solutions with vanishing velocity
is investigated. To derive these all velocities and temporal derivatives are set
to 0. The resulting set of equations is

0 0
Op PGz
Oyp PGy
- 7 2.70
0.p P9 (2.70)
0 0
0 0

or Vp = pg in vector notation. A thermodynamic state is completely deter-
mined by two of the thermodynamic variables and the composition. That
means p can be written as a function of pressure p, composition X; and one
other variable, e.g. temperature T, specific internal energy e, or specific en-
tropy s. Choosing T without loss of generality, the condition for hydrostatic
equilibrium is

Vp = p(p, X, T)g. (2.71)

Furthermore, gravity can be assumed to be parallel to one of the coordinate
axes because the coordinate system can easily be adapted in a suitable way
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(e.g. by rotation or by introducing spherical coordinates).® The y-axis is chosen
in this discussion. This simplifies Eq. (2.70) to

0 0

Oxp 0

oyp | _ | p(p, X5, T)gy

o | = 0 . (2.72)
0 0
0 0

This implies that p must be constant on a surface perpendicular to g. The
pressure profile on the vertical axis is governed by an ordinary differential
equation

P (y) = o), Xi(y), T(y))gy(y)- (2.73)

This can be solved for p given an initial value for p and the profiles the
abundances X; and temperature T

2.3.2 Stability of Hydrostatic Atmospheres

The fact the time derivatives for an atmosphere in perfect hydrostatic equilib-
rium vanish is not enough ensure that such a state would actually stay constant
in time. For that it must also be stable, i.e. slight perturbations should revert
back to the original stratification. Following (Kippenhahn et al., 2013, Sec.
6.1) a brief discussion of stability criteria is given in this section.

We consider a small element of the atmosphere that rises from its original
position at radius r to a new position at r+ Ar. To compare physical properties
of the element to its surroundings we introduce the operator D defined by

DA = A, — A, (2.74)

where A is an arbitrary physical quantity and the subscripts e and s denote
the element and the surroundings, respectively. For the question of stability
it is crucial how the balance of the force caused by the pressure gradient
and the gravitational force is affected. Since we consider elements that rise
substantially slower than the speed of sound and pressure equilibrates by sound
waves, it is justified to assume that the element is in pressure equilibrium with
its surroundings, i.e. DP = (0. Although it seems to be obviously fulfilled, it

5If the gravitational force depended on the density distribution inside the domain, this
could cause coordinate singularities. An example would be a whole-star simulation with
a coordinate singularity at the center. It might still be possible to find simple solutions
to hydrostatic equilibrium if symmetries can be exploited, e.g. spherical symmetry of
stars.
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is important to note that this condition is necessary for any of the stability
criteria discussed below to work. This is especially important in the light of low
Mach number discretizations for which the properties of sound waves might be
affected.

With the pressure gradient being fixed by the surroundings the important
term in determining the motion of the element is the gravitational force. It is
enough to compare it with the gravitational force on the surroundings. This
is called the buoyancy force Fj,. With the absolute value of gravitational
acceleration g it is

Fy = (=gpe) — (=gps) = —gDp. (2.75)

This means that an element that is lighter than its surroundings after being
lifted up will continue to rise, resulting in an unstable behavior. An element
that is heavier than its surroundings will move back to its original position.
This is called a stable stratification. In differential terms the condition for

stability is
d d
Dp=pe—ps = [(dﬁ) - (df) ] Ar > 0. (2.76)

To predict the change of p under a change in P more assumptions about
the thermodynamics of the system have to be made. A straight-forward
assumption for this is an adiabatic process, i.e. no energy exchange with the
surroundings. This is reasonable as long as thermal and radiative conductivity
is small enough. To relate Dp with other quantities we start with a general
equation of state p = p(P, T, u) and its differential form

dp AP AT d
P _a + o E (2.77)

with the partial derivatives
Olnp Olnp Olnp
@ <8lnP)’ o (am:r)’ ? <8lnu (2.78)
The peculiar sign in the definition of § was chosen so that « = = p =1 in

the case of an ideal gas.
Rewriting Eq. (2.76) using Eq. (2.77) we arrive at

@dPN - (odTN  (edu
Pdr/, Tdr ), pdr ),

a dP 0 dT wdu
- (25 22 (22 S0 @
<P dr>s+<Tdr)s <udr>s>0 (2.79)
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Because pressure equilibrium was assumed above, the pressure derivatives are
identical and cancel each other. The composition of an element is advected
with it so du/dr vanishes for the element but not for the surroundings, which
can have a gradient in composition. Multiplying the equation with the pressure

scale height,
dr dr

Ho— _ __po& 2.
P dmp P’ (2.80)
and rearranging yields
dInT dInT @ (dlnp
= . 2.81
(dlnP)s < (dlnP>e+ 5 (dlnP)s (281)
Usually the following quantities are defined in stellar astrophysics
dlnT dlnT dlnp
— — (== =(—= . 2.82
v (dlnP)s’ Ve <dlnP)e’ Vu <dlnP>S (2:82)

Under the assumption that the element changes its state adiabatically V,
can be replaced by V,q, which is dInT'/dIn P for an adiabatic process. The
criterion for stability is then

b

V<Vad+6

V- (2.83)
This is known as the Ledoux criterion for convective stability. If the composition
of the atmosphere is homogeneous, the criterion reduces to the Schwarzschild

criterion
V < V. (2.84)
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2.4 Treatment of Gravity

It was noted by Miczek (2013) that atmospheres that are supposed to be
convectively stable showed a checkerboard-like instability as soon as low Mach
preconditioning was switched on. In further investigations he found that this
instability is not tied to a specific type of low Mach number discretization.
It appeared with every low Mach number scheme that was tried. Also the
result could be reproduced independently in tests with the “Fire Dynamics
Simulator”, a code developed to simulate fires in buildings. This makes it
highly unlikely that the cause is a mere programming error. The following
sections introduce the problem in detail, explain the possible numerical cause,
and suggest possible solutions.

2.4.1 Details of the Spurious Instability

A typical test problem to illustrate the above mentioned instability is that of a
hydrostatic atmosphere that has a convectively stable temperature stratification.
The composition is homogeneous which means that the Schwarzschild and
Ledoux criteria are equivalent. All quantities are given in non-dimensional
form, denoted by the hat (e.g. §). The equation of state is that of an ideal
gas with a mean molecular weight of 1. Gravity is directed in the negative
y-direction and is spatially constant. The temperature profile is given by

T =1+ ATtanh Z. (2.85)
w

The corresponding pressure profile that fulfills hydrostatic equilibrium is
then

(2.86)

9 — ATwlog(cosh(§/w) + AT sinh(§/w))
p=exp (_ 1— AT? '

The following test calculations use the parameters AT = 0.1 and w = 0.02.
For these values the square of the Brunt—Vaisila frequency is positive on the
whole domain, making the atmosphere convectively stable as seen in Fig. 2.6.

When setting up this atmosphere with zero initial velocity and simulating
its dynamical evolution, it is expected that the Mach number initially rises due
to discrepancies between the analytic and discretized hydrostatic equilibrium.
After a transient phase the Mach number settles at a value that is compatible
with the discretization (see Miczek (2013) for a detailed study of the capability
to resolve hydrostatic equilibria of different discretizations). This behavior can
be observed in Fig. 2.7 for the case of the unpreconditioned Roe scheme. When
switching on low Mach number preconditioning for the Roe solver, it can be
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Figure 2.6: Vertical profile of the Brunt—Vaisala frequency in the convectively
stable test problem. Quantities are given in non-dimensional units.

noticed that the flow reaches a significantly lower Mach number. This effect
is attributed to the lower diffusivity of this method (Miczek, 2013). However,
after a phase of exponential decrease the Mach number does not stabilize at
this level but instead rises again exponentially to saturate at a value that is
even higher than that of the unpreconditioned case. This does not occur in
the one-dimensional case (cf. Miczek, 2013, Fig. 6.2).

A two-dimensional view on this issue is given in Fig. 2.8. It shows the
Mach number and the horizontal density and pressure fluctuations. All three
show a checkerboard-like pattern that is nearly identical except in amplitude.
Only one component of the Mach number is shown to reveal its checkerboard
structure, which would not be visible if the absolute value were shown. This
pattern increases exponentially in amplitude until reaches saturation (f ~ 8.5
in Fig. 2.7). At this point it is distorted by the large velocities present on the
grid. As seen in Fig. 2.9 it closely resembles convective motions that would
appear in convectively unstable atmospheres.

The fact that this effect appears exactly at the grid scale suggests that the
cause of the instability is numerical. In the case of a physical instability, the
size of the cells should stay constant in physical space, that means the number
of grid cells per instability cell should change with resolution. Of course, an
unresolved physical instability could also appear at the grid scale.
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Figure 2.7: Temporal evolution of the maximum Mach number (solid lines) on
the grid for a convectively stable atmosphere computed with the
unpreconditioned Roe scheme. The dashed lines show the maximum
deviation of density from its horizontal average. Time is given in
non-dimensional units defined by the reference Brunt—Vaisala fre-
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Figure 2.8: Vertical slice through the atmosphere at £ = 5. Panel (a) shows

the vertical Mach number. Panel (b) shows the deviation of density
from its horizontal mean. Panel (¢) shows the same for pressure.
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Figure 2.9: Mach number in the atmosphere at £ = 10, i.e. after the instability
reaches its saturation.
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It has to be considered that the simulation code models the Euler equations,
neglecting physical viscosity (see Section 2.1.1). Since the Euler equations
can be written in a completely non-dimensional form as in Eq. (2.35), the
length scales used in the code are only meaningful when they are related to
the microphysical properties of the system. In the Navier-Stokes equations
this relation is given by the Reynolds number,

r rLr
Re = %, (2.87)

where py, uy, Ly, and p, are typical (reference) values for density, velocity,
length, and dynamic viscosity. Miczek (2013, Sec. 6.3.5) explored the effect
of adding artificial viscosity to the system in order to stabilize it while still
keeping the low Mach number discretization. The amount of viscosity needed
for this corresponds to Re = 0.07, which is a completely unrealistic regime.
It is not only very far from the stellar values of Re ~ 10'° but even far from
the regime of turbulent motions at Re 22 1000. Such a simulation would not
capture the essential properties of convection at all.

2.4.2 A Possible Cause of the Instability

The discussed instability looks remarkably similar to the development of
convection in convectively unstable atmospheres. One obvious approach to the
problem is therefore to understand why the physical mechanism that stabilizes
the atmosphere, the Schwarzschild criterion (cf. Section 2.3.2), does not work
for all the low Mach number discretizations that were investigated so far.

Figure 2.8 shows one feature that disagrees with the assumptions made for
the derivation of the Schwarzschild criterion. It was assumed that there are no
horizontal fluctuations in pressure, because sound waves are supposed to even
these out on the timescale of the sound crossing time. In the simulations from
the previous section the time it takes a sound wave to cross the whole domain
is roughly 0.15 (in non-dimensional units). The time to cross the distance
between two neighboring cells is just 1/64th of that. Physically we would
expect the pressure fluctuation to decay and not to build up exponentially.
There are two possibilities to explain this phenomenon. Either the mechanism
that is building up the pressure fluctuation is working on a faster timescale
than expected or the decay of a pressure fluctuation by sound waves is slower
than expected.

Rieper (2011) claim that the checkerboard modes in pressure decaying too
slowly is typical of many low Mach number discretizations. We repeat their
argument here. It is known from the asymptotic analysis of the analytic Euler
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equations in powers of reference Mach number that pressure is constant up to
terms of the order M,%. In particular we have Eq. (2.38),

vpH) = 0.

The analysis of the Roe scheme showed terms in pressure that scale linearly
with M,, Eq. (2.46),

p(,t) = pOt) + MpV (z,1).

This scaling behavior is the cause of the increased dissipation. In fact, this is
not a problem just of the Roe solver but of many compressible hydrodynamics
schemes. A common approach to make a scheme usable for low Mach numbers
is by removing the p(*) term. On a discrete level Rieper (2011) find that for
their low Mach number Roe scheme this results in

1 1 1 1
P~ P =0 P i =0 (2.88)

Li & Gu (2008) see the same for the preconditioned Roe scheme they developed.
This type of solution is called a four-field solution or checkerboard mode due
to the pattern of values it allows as illustrated in Fig. 2.10. The existence of
such a solution is not a problem per se as it still allows p{!) to be spatially
constant and flows in the low Mach number regime are not expected to excite
checkerboard modes. The problem becomes visible when these modes are
excited, for example by errors introduced at the boundary or by source terms
like gravity or energy release through nuclear reactions. The question is then
how fast the checkerboard modes are damped away, specifically whether they
are damped more quickly than they are built up by the source term. In the
literature this damping property is also known as pressure—velocity coupling.

A|JC|A|C]|A

Figure 2.10: Structure of the four-field solution allowed by Eq. (2.88).
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Dellacherie (2009) analyzed the dampening of checkerboard modes for the
linear wave equation and found that the energy in the checkerboard mode

behaves according to
ub
up exp <_Z~2> ) (2.89)

where ug is the initial energy, ¢ the simulation time, and Az the mesh size.
They computed the numerical diffusion factor v, for the standard Roe scheme
and for a Roe scheme where central differences are used to discretize the
momentum flux. Rieper (2011) also compute v, for their modified low Mach
number scheme. The results are

gﬁf unmodified Roe solver,
vy = 4 5% LMRoe (Rieper, 2011), (2.90)
0 pressure centering.

At low Mach numbers the unmodified Roe scheme dampens the checkerboard
modes very fast, which is in accordance with the observation that the instability
does not occur in the unpreconditioned case. Also the scheme by Rieper (2011)
has some dampening properties, which is enough to prevent the appearance
of the modes in their test cases. As these did not include the gravity source
term, it still has to be tested whether it is enough to prevent the checkerboard
modes in our problems. The scheme with pressure centering does not include
any dampening.

This analysis has not yet been performed for the preconditioned Roe scheme
used in SLH from Section 2.2.2. However, the results of Li & Gu (2008) for their
preconditioned low Mach Roe scheme lets us suspect strongly that missing
pressure—velocity coupling is the cause for the spurious, checkerboard-like
instability that causes convectively stable atmospheres to become unstable.

2.4.3 Ensuring Pressure—Velocity Coupling in Low Mach
Number Schemes

It seems that the key to removing checkerboard modes is ensuring pressure—
velocity coupling in the flow. Li & Gu (2008) discuss several options applicable
for their preconditioned Roe solver. The method they call momentum inter-
polation works by replacing the central term 1 (F(UyL) + F(Ug)) of the Roe
flux, Eq. (2.23), with

U.Q+ P, (2.91)
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where
c
U. = (up, + ur)/2 — ——(pr — pL), (2.92)
Q = (,0’ pwpv,pw,pE—i—p)T, (293)
P = (0,p,0,0,0)". (2.94)

They suggest to choose the constant c; as small as possible for accuracy but
greater than 0.04 for stability. They note that momentum interpolation leads
to a non-zero velocity divergence, which is in violation of the analytic low Mach
number limit. As an alternative that is not subject to this flaw, they mention
the use of staggered grids, where pressure is stored using its value at the cell
interface instead of the cell center. In their application they used the former
approach due to its simplicity. Some work has been done on implementing the
momentum interpolation method for the preconditioned Roe scheme in SLH
but it is not finished yet. Instead we focused on another approach.

Edwards & Liou (1998) present another method for pressure—velocity cou-
pling which they introduced for the AUSM™ scheme. They introduce an
additional term in the mass flux, which is called the p-term in the AUSM™*-up
scheme. It is the term proportional to K, in Eq. (2.57). It introduces an
additional flux proportional to the local pressure gradient. As it was mentioned
in Section 2.2.2 this is problematic in the case of atmospheres with a pressure
stratification as it then causes fluxes in the vertical direction. This in term
prevents the scheme from reaching very low Mach numbers in hydrostatic
equilibrium. That is why Miczek (2013) reduced the p-term by removing the
inverse scaling with Mach number. While the scheme can keep hydrostatic
equilibrium really well in one-dimensional test cases, this very modification
also makes it susceptible to the checkerboard-like instability.

Keeping hydrostatic atmospheres stable down to very low Mach numbers is
of great importance for the use of a scheme in stellar astrophysics. So we clearly
cannot use the unmodified AUSM™-up scheme. Still the p-term is important to
prevent checkerboard modes from growing and making the atmosphere unstable.
One possibility to retain the p-term and preserve hydrostatic equilibrium is
to “remove” the vertical pressure gradient by using a special well-balancing
method.

2.4.4 Well-Balancing

One way of counteracting the problems of the gravity source term in low
Mach number hydrodynamics is well-balancing. This was already suggested
by Miczek (2013). A numerical scheme that is able to maintain a hydrostatic
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initial state exactly is called well-balanced. Most hydrodynamics schemes
do not have this property because the pg term is discretized in a completely
different way than the Vp term. That means that Vp # pg on a discrete level
even if the initial condition was in perfect hydrostatic equilibrium analytically.
There are methods that achieve well-balancing by removing the hydrostatic
pressure gradient. This enables us to keep the pressure diffusion term from
AUSM*-up without the modifications introduced with AUSM*-Lowmach (see
Section 2.2.2).

A well-balancing method that was found to be particularly useful is the one
developed by Cargo & Le Roux (1994) for the one-dimensional Euler equations.
We give a full explanation of the one-dimensional scheme here and then develop
a way to extend it to multiple dimensions.

The One-Dimensional Cargo—Le Roux Method

We start from the one-dimensional Euler equations with gravity,

p pu 0
O pu|+0.| pu*+p | =1 pg |- (2.95)
pE u(pE + p) upg

Cargo & Le Roux (1994) suggest the introduction of a potential ¢ with the
properties

9:q = pg (2.96)

and

Og = —pgu. (2.97)

This potential is treated like a composition variable, i.e. it is advected with
the fluid flow according to

9:(pq) + Ox(pqu) = 0. (2.98)

At this stage ¢ has no influence on the equation of state and is therefore a
truly passive scalar (see Section 2.1.3).

Equation (2.98) can be simplified using the product rule and the law of mass
conservation from the Euler equations,

qOtp + pOrq + q0:(pu) + pudyq = 0, (2.99)
qOp + q0z (pu) +p0iq + pudsq = 0, (2.100)
\—:,0_/

0rq + u0zq = 0. (2.101)
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This means that if Eq. (2.96) is fulfilled initially and the temporal evolution of
q is determined by Eq. (2.98), Eq. (2.97) is automatically satisfied. Eq. (2.98)
ensures that the potential keeps its properties.

Equations (2.96) and (2.97) can be inserted into Eq. (2.95), which yields

p pu 0
Ol pu | +0.| pu2+p | =1 0.q |. (2.102)
2 u(pE + p) —0iq

Collecting derivatives with respect to the same variable and inserting 0 = ¢ — ¢
results in

p pu 0
% | pu | +0, pu? +p—q =10 (2.103)
pE +q u(pE+q+p—q) 0

The next step is the introduction of a modified equation of state. It is related
to the original equation of state via the newly introduced modified pressure

¢=p—q (2.104)
and modified total energy per volume
F=pE+q. (2.105)

In this equation of state ¢ is an active scalar.
Equation (2.102) now reads

p pu 0
O lpu|l +0. [ pu>+0 | =10], (2.106)
F u(F + ¢) 0

which has exactly the form of the homogeneous, one-dimensional Euler equa-
tions using the modified equation of state, Egs. (2.104) and (2.105).

It is clear from Eq. (2.96) that the potential ¢ is identical to the hydrostatic
pressure up to an arbitrary ,constant offset. This means that the new pres-
sure ¢ = p — q for a stratified hydrostatic atmosphere is spatially constant.
Solving the Euler equations with gravity has been reduced to solving the Euler
equations without any source term. The closer the atmosphere is to hydrostatic
equilibrium the closer it is to an isobaric state within the framework of the
Cargo—Le Roux method. The well-balancing property is then fulfilled for all
hydrodynamics schemes used in SLH because they all preserve isobaric states
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exactly, at least when density and pressure are used for the reconstruction of
left and right states.%

It should further be noted that no part of the derivations presented here
used the assumption that the state is close to hydrostatic equilibrium. In fact,
is valid also for states far from equilibrium. Here, the effect of gravity just
shows up in the modified pressure gradient. The method is still beneficial
in these cases as it removes the need to find a suitable discretization for the
source terms.

Extension to Multiple Dimensions

In the one-dimensional case the potential ¢ can always be found by just
integrating pg,

o) = [ aw'pla)gla) (2.107)

This is no longer true in more than one dimension.
The natural, multidimensional extension of Eq. (2.96) is

Vq=pg. (2.108)
A necessary condition for the existence of such a potential is

V x pg = 0. (2.109)

9

This is a consequence of the fundamental theorem of calculus and Stokes
theorem. Using the fact that V x g = 0, we find

Vxpg=pVxg—gxVp=—gxVp. (2.110)

This means that ¢ can only be determined if the gradient of density is parallel
or antiparallel to gravity. In other words, p must be constant on surfaces
perpendicular to g. This is not the case for general flows, where bubbles of
lighter material can be in denser surroundings.

We now introduce a modified version of the Cargo—Le Roux method that
works for two- and three-dimensional problems and retains some but not all of
the beneficial properties of the original method.

The working hypothesis for the modified method is that a meaningful
horizontal average can be defined, horizontal meaning perpendicular to g. This

6Reconstruction is the method by which SLH achieves a higher spatial order. It uses
information of the surrounding cells to reconstruct values at the cell interfaces that are
required to compute the flux. SLH offers a choice of different sets of variables to perform
this reconstruction. The details are described in Miczek (2013, Sec. 3.4)
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is possible for a wide range of the applications the code SLH aims at, for
example an atmosphere in plane-parallel approximation that is simulated in a
box with gravity along one of the coordinate axes or a spherical stellar model in
which gravity is directed in radial direction. The horizontal average is denoted
with (-).

We define a mean horizontal density

po = (p). (2.111)

By definition of the horizontal average, the gradient of pg is parallel to g. Due
to the above argument this allows us to find a scalar potential

Vg = pog. (2.112)

In contrast to the original method this potential is not advected like a scalar
composition variable but left constant.

If the equation of state is then modified identically to Eqgs. (2.104) and (2.105),
the three-dimensional Euler equations with gravity take the form

p pu pu
pu pu? + ¢ puv
O | pv | +0, puv +0, | p®+¢
pw puw pow
F w(F + ¢) v(F + ¢)
pu 0
puw (P = P0)(9)a
+0.| pow | = (p—ro)(g)y |- (2:113)
pw’ + ¢ (p = po)(9)-
w(F + ¢) pg - u

There are two fundamental differences between this expression and the one-
dimensional case, Eq. (2.103). The energy equations retains the full source
term pg - u because ¢ is temporally constant. As long as g is not varying in
time, this term can easily be removed by including the potential energy in the
total energy as it is already commonly done for the Euler equations without
well-balancing. The source terms in the momentum equations are a bit more
problematic. They correspond to the acceleration due to buoyancy. These
terms are much smaller than the full gravitational acceleration term and only
present where density deviates from its horizontal average.

This new method still has the well-balancing property for states without
horizontal density gradients, which is most of the cases considered in stellar
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astrophysics. It also retains the feature of changing originally stratified hy-
drostatic atmospheres to isobaric atmospheres in the modified equation of
state.

The severest issue with this method is that g does not automatically change
with changing hydrostatic stratification as it does in the one-dimensional case.
This means the beneficial properties of the scheme are partially lost if p starts
to deviate further from py. One possibility to prevent this is to periodically
update pg with current horizontal averages.

There are two principal methods for computing ¢ and py. One is by taking
the horizontal density average,

po = (p) (2.114)

and then using integration along the vertical axis (denoted by x here)

xr
q(x) = / dx’ g(x")po(2'). (2.115)
x
Gravitational acceleration is a scalar value here because the vertical direction
was chosen to be the direction of g.

The alternative is to determine ¢ as the horizontal average of pressure

q=(p)- (2.116)

Then we choose pg so that it fulfills Eq. (2.112) by taking the derivative along
the vertical axis
po(x) = q'(x)/9(). (2.117)
Both methods have their disadvantages. The integration method needs
a starting point zg. The further away from this point the larger the error
becomes, so this introduces regions in the flow that are systematically better
well-balanced than others. The differentiation method on the other hand just
depends on local information, so it does not have these systematic effects.
The challenge here is to find a proper method for numerical differentiation.
Straight-forward finite differences encounter difficulties when the py profile
shows small jumps or oscillations, especially when high-order finite differences
are used. Omne possible solution to this is using the formalism of weighted
essentially non-oscillatory (WENO) schemes (Liu et al., 1994) to compute the
derivative. These schemes use a linear combination of several possible stencils
for the finite difference and weight them according to smoothness. This is
much less susceptible to discontinuities in the profile. First tests of this method
are promising. For the simulations performed for this thesis, however, the
simpler approach is chosen that only initializes ¢ once from analytic hydrostatic
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equilibrium and leaves it constant for the whole simulation. As long as the
profile does not change significantly this provides good well-balancing properties
without introducing any of the problems connected to the update of q.

2.4.5 Stability Tests of Well-Balanced Schemes

In this section we explore the impact of Cargo—Le Roux well-balancing on
the test setup from Section 2.4.1. We test the AUSMT-Lowmach scheme, the
original AUSM™-up scheme, and the preconditioned Roe solver. All schemes
are tested with and without well-balancing, except the AUSM™-up scheme,
which is hardly usable in a hydrostatic atmosphere without well-balancing, as
discussed in Section 2.2.2.

T T T T
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Figure 2.11: Evolution of the maximum Mach number (solid line), horizontal
density fluctuation (dashed line), and horizontal pressure fluctua-
tion (dash-dotted line). Cargo-Le Roux well-balancing is indicated
by “wb”. Time is measured in units corresponding to the Brunt—
Viisdléd frequency.

Figure 2.11 shows the evolution of the maximum Mach number and horizontal
density and pressure fluctuations. The behavior of the preconditioned Roe
scheme is basically unchanged by well-balancing; the instability grows quickly
in both cases. The AUSM™-Lowmach scheme without well-balancing does
not reach Mach numbers below ~ 1073. This is due to the flux caused by
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the p-term, which is proportional to the pressure gradient. The instability
grows more slowly than in case of the Roe scheme but is still unacceptable for
application. When well-balancing is used together with AUSM™-Lowmach, the
scheme reaches very low Mach numbers of about 10~!4. There are no signs of
a growing instability. The well-balanced AUSM™-up scheme, i.e. with the full
p-term, reaches Mach numbers of about 1076, This is because multidimensional
Cargo—Le Roux well-balancing does not perfectly remove the pressure gradient
and the p-term causes fluxes in the vertical direction. We can also see a rise
in the horizontal pressure fluctuations that is considerably slower than in
the other unstable cases. To see the long term evolution, we continued the
simulations with AUSM™T-Lowmach an AUSM™-up for a longer time. The
result is depicted in Fig. 2.12. AUSM™-up shows a slowly growing instability
that saturates at horizontal density fluctuations of ~ 1078, The horizontal
density fluctuations in AUSM*-Lowmach remain below 10713,

—  AUSMT*-Lowmach

— AUSMT-Lowmach wh

— prec. Roe

—— prec. Roe wb
AUSM™*-up wb
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Figure 2.12: This plot is identical to Fig. 2.11 but covers a longer time scale for
the well-balanced AUSM™-up and AUSM™-Lowmach schemes.

It is unintuitive that the scheme with the stronger pressure diffusion term,
AUSM™-up, experiences a growth of the instability while AUSM™*-Lowmach
does not. We presume this is because of fluxes originating from the p-term,
that appear due to non-ideal well-balancing. Further tests are necessary to
verify this.

64



2.4 Treatment of Gravity

We conclude from the tests which were performed that AUSM™-Lowmach
combined with Cargo—Le Roux well-balancing is the preferred method in SLH
to prevent the spurious instability in convectively stable atmospheres. It is
also able to maintain very low Mach numbers down to ~ 107!3. It should
be kept in mind that these properties strongly depend on the effectiveness
of well-balancing. The Cargo-Le Roux method has several caveats in mul-
tiple dimensions. It depends on a well-defined horizontal average, which is
not available in all geometries. Furtherly, its ability to remove the hydro-
static pressure gradient is reduced when there are strong deviations from the
horizontal mean density. For universal applicability a better well-balancing
method must be found. Alternatively the p-term could be modified to work
well with stratified atmospheres. Another viable strategy is to explore one of
the methods suggested in Section 2.4.3. This could also remove the instability
for the preconditioned Roe scheme.
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2.5 Nuclear Reaction Networks

In order to compute the change in abundances and the energy release by
nuclear reactions, the corresponding reaction rates need to be computed.
Every reaction rate depends on temperature (influenced by energy release)
and the abundances of all reaction partners. This produces a set of differential
equations which is numerically challenging even without coupling it to the
equations of hydrodynamics. The goal of this section is to introduce the
relevant equations, briefly discuss solution strategies for the system without
hydrodynamics and finally compare different methods for coupling nuclear
reactions to hydro simulations.

2.5.1 Nuclear Reaction Rates

Nuclear reactions can be classified into categories according to the number of
input nuclei involved. The simplest case is a nuclear decay in which only the
decaying nucleus is involved. The two other classes are reactions with collisions
of two or three input nuclei, respectively. Rates involving even more species
are not relevant for the astrophysical problems considered here and are not
included in the rate tables. Note that the involved nuclei may be identical, e.g.
‘He + “He + *He — '2C. The change in number density n; of a nucleus i
due to these three categories can be cast into the equation (e.g. Hix & Meyer,
2006)

3ni
ot

=D Nirj+ > Nirie+ > N pimina (2.118)
j ik

p=const. g,k,1

The reaction rates 7;, 75 %, and rj ,; are the number of reactions per volume
and time with input species j, j and k, or j, k and [, respectively. The factors
N account for the numbers of created and destroyed nuclei and include a
correction for double counting identical reactants. Their definition is

Nj =N (2.119)

Nk =N/ TT (INw]), (2.120)
m=1

Niwa =N/ TT (INw])- (2.121)
m=1

N; in the numerator is an integer indicating how many particles of species i are
created or destroyed in the reaction. In the latter case the number is negative.
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n; and n; i are the numbers of different species that are involved in the
reaction r;j or r; k1, respectively. Ny, in the denominator is the number of
reactants of the species m.

The dependence of the rates on the local physical state deserves some further
discussion. The rates depend linearly on the number density of each of the input
species. The reason for this can be understood by considering the different
categories separately. Nuclear decays involve no interaction with other nuclei,
so the rate per volume is directly proportional to the number density of the
decaying species. For two-body collisions of two nuclei, the rate is found by
integrating the velocity-dependent cross section over the distribution of the
involved particles. Under the assumption of a Maxwell-Boltzmann velocity
distribution, as valid for a plasma in thermal equilibrium, the number densities
can be factored out (see e.g. Hix & Meyer, 2006). If three-body reactions are
regarded as two two-body reactions in immediate succession, the resulting rate
is also proportional to the number densities of the three original reactants.

The reaction network used in this work is the one described in Pakmor
et al. (2012). For completeness, the constituents are briefly mentioned here.
The reaction rates used in this work were taken from Rauscher & Thielemann
(2000) (including the updates published by the group in 2009). In their work
they combined experimentally measured reaction rates with rates from their
own statistical model calculations. Additionally, weak reaction rates, i.e. rates
for electron and positron capture, 37 and 3~ decay, are taken from the tables
of Langanke & Martinez-Pinedo (2001). To account for the screening effect
of the electron background the prescriptions of Wallace et al. (1982) with
corrections from Wallace et al. (1983) are used.

For nuclear network calculations Eq. (2.118) is usually rewritten in terms of
number fractions Y;, defined by Y; = n;/pNa. The result, known as the rate
equation, is

Y =D NY Y pNaNT A 1YY 4+ D (0NA) N At Y3 ViV
j gk 3.kl

(2.122)

The quantities A\;, A; x, and ;. ; are the rates with their linear dependence on
the abundance of the input nuclei split off. They still depend on temperature
and possibly also on density and other mass fractions due to screening effects.

Equation (2.122) constitutes a system of Nypecies coupled ordinary differential
equations. To couple them to the Navier—-Stokes equations, Eq. (2.2), the
number fraction Y; has to be transformed to the mass fraction X;. The two
quantities are related by X, = Y;/A; with the nucleon number A;.
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2.5.2 Solution of the Nuclear Reaction Network

Before turning to the integration of these reaction terms into the system of
hydrodynamical equations, we consider solving the nuclear reaction network
on its own to discuss possible difficulties. The system of ordinary differential
equations, Eq. (2.122), has some properties that make its numerical solution
challenging and require the use of a properly suited integration method. One
of these is the fact that the rates A\ for different reactions vary over many
orders of magnitude. This makes it a so-called stiff system. A characteristic
feature of these systems is that they are restricted to very small time steps
if explicit methods are used for time integration. The time step is related to
the fastest reaction, larger steps would make the computation unstable. Thus,
implicit methods are usually used for this kind of differential equations. One
method that was found to be particularly efficient was suggested by Bader
& Deuflhard (1983).7 It is the method of choice for most nuclear network
computations in this thesis. The details of its numerical implementation can be
found in Edelmann (2010). One major improvement that was added since is in
the calculation of the Jacobian matrix, which is now computed by automated
differentiation. Before, it was computed manually using only the few most
important components. The new method provides a much more accurate
Jacobian which allows the error-based time step estimator to chose much larger
values. Overall, the additional effort taken in determining the Jacobian makes
the whole method much more computationally efficient.

Another typical numerical property of nuclear networks is the structure of
the Jacobian matrix of the right hand side of Eq. (2.122). Most species are
only connected to the others by a few reactions, except for p, n, and “He. That
means that for larger networks (= 100 species) the Jacobian is very sparse.
This enables the use of special methods to compute its LU decomposition,
which is needed for the implicit solver. This is similar to the sparse matrix
that appears in the implicit solution of the equations of hydrodynamics. The
difference is that in the case of hydrodynamics the matrix is so large that
storing the LU decomposition directly is out of the question. The reason is
that the LU decomposition of a sparse matrix is dense, in general. For the
nuclear network storage space is not an issue because the size of the matrix is
negligible. This means computing the LU decomposition directly is possible
and also desirable as the solution to several different vectors is needed in the
Bader—Deuflhard method. The methods for sparse LU decomposition used
in the context of this thesis are PARDISO (Schenk & Gértner, 2004) and
SuperLU (Demmel et al., 1999). For small nuclear networks with less than a
few tens of species the use of the standard LU decomposition for dense matrix

7See Timmes (1999) for a comparison of different numerical methods for reaction networks.
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is as efficient or even more efficient than the sparse methods. Consequently,
the standard LU decomposition (e.g. from Galassi et al., 2009) is used these
cases.

2.5.3 Coupling to Hydrodynamics

Nuclear reactions couple to the equations of hydrodynamics through two
effects. First the changing composition has an influence on the equation of
state, through the mean molecular weight or degeneracy. The second effect
is the release of binding energy to thermal energy of the plasma. The latter
effect could be absorbed in the equation of state by including nuclear binding
energy in the total energy. We do not follow this approach in this work as it is
expected that errors in the advection of the composition variables would lead
to large fluctuations in the internal energy and thereby in temperature and
pressure.

There are several possibilities for numerically coupling the reaction terms to
hydrodynamics. The most straight-forward one is simple operator splitting.
Here, one complete hydrodynamics step is performed—including all intermedi-
ate stages of the high-order Runge-Kutta methods. The resulting fluid state is
used to apply the nuclear reaction network to every individual grid cell. The
resulting state, changed in energy and composition, is then used as initial data
for the next hydrodynamics step and the process is repeated. This type of
operator splitting is called Godunov splitting.

It is quite obvious that this splitting strategy introduces an error that
depends on the size of the time step. For example, nuclear burning releases
energy in one cell, which increases temperature and pressure. The increased
temperature in turn enhances the reaction rates. If there is an intermediate
hydrodynamics step, the increased pressure would cause a fluid flow out of the
cell. The temperature would subsequently drop and reduce the reaction rates.
The shorter the interval between reaction and hydrodynamics is the closer it
is to the unsplit solution. A rigorous, mathematical treatment of this matter
is given by LeVeque (2002). He finds that the splitting error takes the form

q(z, At) — ¢** (z, At) = %Atz(AB — BA)q(x,0) + O(A3). (2.123)

q(z,t) is the exact solution to the differential equation considered, ¢**(x, At)
is the solution computed using Godunov splitting (not including any errors
caused by the particular time stepping method). A and B are the two operators
that are being split. This shows that the combined system is only first order
accurate in time, with its error proportional to the commutator AB — BA.
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One suggestion to remove the At? term in the error is the so-called Strang
splitting. Here, one complete time step is split into a step of length At/2 with
the operator A, a step of length At with the operator B, and another step of
length At/2 using A. This scheme can be further simplified by combining two
successive A steps to one of length At. This makes Strang splitting identical
to Godunov splitting except for the first and last steps, which are half-steps
using A. It seems surprising that the errors of the two methods should differ
greatly even though they are virtually identical except for the very first and
last step. Indeed tests shown in LeVeque (2002) indicate that the coefficient
for the At? error term is very small and for all practical resolutions the two
methods deliver nearly identical results. In the limit of At — 0 the difference
in order will become apparent but this range is not reached in many cases.

In the light of the marginal benefits of Strang splitting and the additional
complexity introduced by the constraint that two consecutive time steps must
have the same length, it is not pursued in the work of this thesis. Instead we
investigate more accurate coupling methods to judge the accuracy of Godunov
splitting.

It is possible to completely remove any splitting error by using an unsplit
method. The errors are then solely determined by the errors of spatial dis-
cretization (Section 2.1.2) and of time integration (Section 2.1.3). In an unsplit
method the reaction terms are added to the spatial residual function, which al-
ready includes the hydrodynamical fluxes, and then integrated in time together.
This coupling method adds several additional difficulties to the solution of the
system which are discussed in the following section.

All species that are part of the reaction network have to be treated as active
scalars. That means they increase the number of variables per grid cell for
which the system is solved simultaneously from 5 (in the three-dimensional
case) by the number of species. This also affects the Jacobian matrix which
normally consists of 5 x 5 blocks. Including a rather small 5 species network
would quadruple the size of the Jacobian matrix. As the size of the Jacobian
is already one of the most restrictive constraints on computational resources,
the use of large networks in the unsplit method is only possible for limited test
scenarios. The feasibility must be checked for the individual cases.

Another issue is the fact that nuclear reaction networks are stiff systems
and need to be integrated by implicit methods as explained in Section 2.5.2.
This prevents the use of explicit time stepping methods for the unsplit reactive
hydrodynamics equations. This is unproblematic for the type of systems
targeted in this thesis as they are at very low Mach numbers and benefit from
implicit methods anyway. But even if stability is not a concern, accuracy has
to be considered. If the time step is simply chosen according to the advective
CFL condition, it might be too large to resolve some of the fast reactions and
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yield inaccurate results, even compared to a split method. The error estimator
present in the ESDIRK time stepping schemes can be used in this case to
ensure time steps stay small enough. In certain cases, however, this time step
might be prohibitively small. We will investigate the feasibility for a number
of test cases in the following section.

If the unsplit methods are computationally too demanding and Godunov
splitting turns out to be too inaccurate, other methods of coupling could be
investigated. A possibility for this is running the nuclear burning under the
assumption of constant pressure (i.e. add the energy release to the enthalpy of
the system and compute the change in temperature from density and enthalpy)
and release the energy from burning not instantaneously at the beginning of a
time step but rather at a constant rate during the step.

2.5.4 Test on a One-Dimensional Deflagration Front

We try the different coupling methods on a simple test problem, to see what
the impact of the different coupling schemes is. Additionally, we make a
comparison with another hydrodynamics code to check for any obvious errors
in the integration of the nuclear network into SLH. The tests are performed in
one spatial dimension.

One problem in which the coupling between hydrodynamics, nuclear reac-
tions, and also thermal conduction are important is that of a deflagration
front in white dwarf matter. This problem appears in the context of Type Ia
supernovae.® The problem is clearly in the subsonic regime and consequently
well suited to the hydrodynamics code used in this thesis. For comparison we
use a hydrodynamics code that was originally developed for the purpose of
simulating thermonuclear flames by Edelmann (2010). We call it Hydrold in
the following. It combines the explicit Piecewise-Parabolic Method (PPM) of
Colella & Woodward (1984) with a Riemann solver for real gases (Colella &
Glaz, 1985). The equation of state is the same as in SLH (Timmes & Swesty,
2000). The nuclear reaction network is identical as well. Thermal conduc-
tion in Hydrold is handled using the Crank-Nicolson method, which is an
implicit method that is second-order accurate in time and space. Hydrold uses
Godunov splitting to couple hydrodynamics, nuclear reactions, and thermal
conduction. SLH also uses a second-order spatial discretization of the thermal
conduction term but couples it to hydrodynamics in an unsplit way. Both
codes use exactly the same formula for the conductivity of degenerate electrons.

The initial setup is a homogeneous plasma of 50% '2C and 50% 60 at a
constant density of 10° g/cm? and temperature of 103 K. To ignite the flame,

8See Hillebrandt & Niemeyer (2000, Section 5) for a review of flames in Type Ia supernovae.
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the temperature in a small region on one side is raised to 5 x 10° K. This also
increases pressure and causes a shock to propagate through the cold material.
The boundary condition allows the outflow of material, so pressure equilibrium
is quickly reestablished. This leaves the hot region at a lower density. This
ignition procedure is merely a convenient way of setting up a steadily burning
deflagration flame and does not reflect the real physics of ignition.

The initial relaxation phase is computed in Hydrold and the result is then
transferred to SLH. We do this to avoid any differences in the results that
are simply due to the treatment of the initial shock wave, in which we are not
interested in here. The propagation of the flame is then followed in Hydrold
as well as in SLH, using different coupling and time-stepping for the latter.
Godunov splitting together with passive treatment of composition variables
in the sense of Section 2.1.3 is termed “passive scalars” in the plots. The
unsplit method combined with active treatment of the composition is denoted
by “active scalars”. Time-stepping was performed implicitly in all calculations
with SLH, except for one. The choice of time step was either due to the CFL,,
criterion or by setting a relative error threshold for the adaptive time-stepper
(see Section 2.1.3). HydrolD is a purely explicit code, thus the time step was
chosen according to the CFL,,. criterion. The same criterion was used the
explicit SLH calculation.

Figure 2.13 shows the profile of the '2C mass fraction for the different
methods. The region with the strongest deviation of the different models is at
the front of the deflagration, where the '2C content starts to drop. HydrolD
differs, if just slightly, from the SLH results. The hydrodynamics method in
HydrolD uses parabolic reconstruction and is therefore of higher order than
the SLH runs. They were performed using linear reconstruction. This is the
probable explanation for the small separation of results. It is verified with an
explicit, operator-split simulation, whose method and time step is identical to
HydrolD. The only difference lies in the order of the hydrodynamics method.
This explicit calculation also deviates from HydrolD and lies very close to the
unsplit result.

Another property we want to investigate is how well the hydrodynamics time-
stepper can compute the pure network without the influence of hydrodynamics.
For this, we look at the temporal evolution of the '2C mass fraction in the
cell directly at the left boundary, shown in Fig. 2.14. This cell is near to
completely free of the effects of hydrodynamics and of thermal conduction.
The curves for the three unsplit calculations, and HydrolD lie essentially on
top of each other. The operator-split calculations show a slight deviation
from this curve, except for the calculation with explicit time-stepping. The
operator-split calculation using adaptive time-stepping with a threshold of
10~* deviates most from the others. The cause becomes obvious with Fig. 2.15.
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Figure 2.13: Profile of the *>C mass fraction of a one dimensional deflagration
for different methods. The number in parentheses after adaptive is
the relative error threshold of the adaptive time-stepper.

Larger time steps are correlated with larger deviations for the “passive scalars”,
while the “active scalars” are accurate even for the largest time steps. The
reason for this behavior is that the operator-split calculations only increase
the temperature between the steps, while the unsplit method accounts for
the change in temperature also during one step. A similar behavior could be
achieved in the operator-split case if the temperature change were tracked
during a network time step assuming a predetermined thermodynamic behavior.
Pakmor et al. (2012) discusses this possibility.

For the simulations presented in Chapter 3 we use the operator-split method
in combination with the CFL,, time step. It is significantly cheaper compu-
tationally and delivers results that are still accurate enough for these first
proof-of-concept calculations.
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Figure 2.14: Temporal evolution of the *2C mass fraction at the left boundary
of the domain.
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Figure 2.15: Time-step size in the 1D deflagration simulation according to dif-
ferent criteria.
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3 Convective Mixing in Massive
Population Ill Stars

As a first astrophysical application of the methods developed in the previous
parts of this thesis, we turn to convective mixing in massive Population III (Pop-
IIT) stars. More precisely, we simulate the boundary between the convective
helium burning core and the non-convective hydrogen shell on top of it. As
Pop-I1I stars are completely deficient of metals, all hydrogen burning occurs
through the pp chain. When carbon is mixed from the core into the hydrogen
shell, the CNO cycle is enabled, which is orders of magnitude more efficient in
burning hydrogen. There is doubt in the stellar evolution community on what
the correct treatment of mixing at this interface is. The goal is to gain more
insight into this process using multidimensional hydrodynamics simulations
including nuclear burning.

3.1 Introduction to Massive Population Il Stars

Pop-I1I stars are the first stars that formed in the universe. They are identified
by their complete lack of elements heavier than helium, except for a tiny
fraction of Li. As no other stars could have enriched the interstellar medium
with their burning products previously, Pop-III stars form with the primordial
abundance of the elements. This has important implications for the structure
and evolution of these stars.

Stars of solar metallicity (Z = 0.02) become pulsationally unstable above
a mass of about 60 My (Schwarzschild & Harm, 1959). The underlying
phenomenon is called the e-mechanism caused by an increase in nuclear energy
generation during contraction of the star (for details see e.g. Kippenhahn et al.,
2013). Stars considerably heavier than this limit are expected to shed their
mass in shells at each pulsation until it is reduced to the critical value of 60 M.
However, it is still unresolved whether the growth rate of these instabilities is
large enough to have a significant impact during the main-sequence lifetime of
these stars.

The situation is different for Pop-III stars. These lack elements heavier than
helium and therefore cannot perform hydrogen burning through the CNO cycle,
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but only through the pp chain, even though they have core temperatures that
would make the former much more efficient. Consequently, their hydrogen
burning region is much hotter and more compact than in metal-enriched,
massive stars. Baraffe et al. (2001) performed an analysis of pulsational
instabilities in very massive primordial stars (M > 120 M¢)). They found that
the lack of metals causes the instabilities to grow on much longer timescales and
the growth is stopped while the star is still in the hydrogen burning phase. Even
stars with masses of 300 M) only lose 8.5 M) until they become pulsationally
stable. This leads to the conclusion that if star formation produces such objects,
they can survive all burning stages up to core collapse without losing much
of their mass due to pulsations. As very massive Pop-III stars reach different
regimes of density and temperature at the core, their final fate is very different
from their metal-enriched counterparts. The reason is that electron—positron
pairs can be created, which take up part of the internal energy stored in gas
and radiation, in their rest mass energy. This reduces the pressure and leads
to the collapse of the star. The contraction triggers explosive thermonuclear
oxygen and silicon burning, which produces enough energy to disrupt the whole
star, leaving no compact remnant behind. This scenario, called pair instability
supernova, was first described by Barkat et al. (1967) and explored in the
context of very massive stars by Bond et al. (1984). As these explosions occur
in the first generation of stars, which formed even before the first galaxies, and
produce large amounts of *’Ni (which ultimately decays to °°Fe), they play
an important role in the early chemical evolution of the Universe. Heger &
Woosley (2002) performed a systematic study of the nucleosynthetic signature
of Pop-III stars with masses from 140 M to 260 M. This covers the whole
range of stars that are expected to explode as pair instability supernovae.
Lower-mass stars would undergo core collapse with direct black hole formation.
More massive stars (2 260 M) are still subject to the pair instability, but
the energy released in the following thermonuclear explosion is not sufficient
to overcome the collapse and the star forms a black hole (Fryer et al., 2001).
A distinct feature of nucleosynthesis of pair instability supernovae is that all
isotopes above '*N with odd charge number and neutron-rich isotopes are
significantly underproduced. There is basically no production of elements
beyond the iron group either, since the conditions for neither the r- nor the
s-process are fulfilled in Pop-III stars. Heger & Woosley (2002) suggest that
pair instability supernovae could have left a detectable signature in metal-poor
stars ([Fe/H] = —4).

The predictions made above depend on stellar evolution models, which
employ simplified prescriptions for all phenomena that cannot be treated in a
one-dimensional, hydrostatic code. Two of these are the treatment of mixing in
convection zones and that of convective overshooting. If a region is determined
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to be convectively unstable by either the Schwarzschild or Ledoux criterion
(see Section 2.3.2), the composition is evenly distributed over all mass shells in
the region. This is a reasonable assumption if the timescales of nuclear burning
are much longer than those of convection. In certain situations, however, this
is not valid. Marigo et al. (2001) notice this problem in their simulations
of Pop-III stars. During the central He-burning phase the boundary of the
convective part of the core moves outward until it reaches the surrounding
H-shell. When this happens, hydrogen is mixed into and distributed over the
whole core, not just its outermost regions. At this point, the core has already
produced a sufficient fraction of '2C through the 3a-reaction to support the
CNO cycle. The addition of hydrogen causes a flash, i.e. a sudden release of
energy by nuclear burning. This flash causes the core to expand the convective
region to recede below the H-shell. This stops the mixing of hydrogen into
the core, the structure slowly returns to the pre-flash state, and the process is
repeated when the convective zone grows to reach the H-shell again. The result
are quasi-periodic H-flashes. Marigo et al. (2001) argue that these flashes are
unrealistic because they are only caused by the unphysically strong mixing of
hydrogen into the core. For lack of a more realistic solution they suppress these
flashes by artificially constraining the core convective region to the bottom of
the H-shell. It is clearly desirable to investigate the interplay of convective
mixing and nuclear burning at this interface to find out whether prescriptions
as mentioned above are justified or have to be replaced with a more physical
model.

3.2 The Stellar Model

As a basis for the three-dimensional modeling of the boundary of a convective
core we received several snapshots of a stellar evolution calculation of a non-
rotating 250 M, Pop-III star (Alexander Heger, private communication). The
stellar model was evolved using the one-dimensional, implicit hydrodynamics
code KEPLER, (Weaver et al., 1978; Heger et al., 2000). Figure 3.1 shows the
model during core He-burning. A fraction of about 0.2 of “He has already been
converted to '2C by the 3a-process. The center of the core is convective but the
convective region does not yet extend to the H-shell. This shell is completely
devoid of any of the elements that act as catalysts for the CNO cycle. H-
burning therefore only proceeds through the pp chain despite the temperature
of more than 100 MK at the bottom of the shell. During the following evolution
of the star, the convective region in the core grows and reaches the H-shell
at some point. When this happens, a small fraction of 2C is mixed into the
hydrogen-rich region and enables burning via the CNO cycle. The increased
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3 Convective Mixing in Massive Population III Stars

energy release changes the temperature profile, so that a small convectively
stable region forms at the upper boundary of the core, which separates the
convective zones at the center and at the bottom of the H-shell.

Figure 3.2 shows the model about 20000 years after the state displayed in
the previous figure. Here, the bottom of the H-shell is convective and is burning
via the CNO cycle due to a 12C mass fraction of 107°. This convective zone is
separated from the convective core through a small radiative layer. The region
above the convective part of the H-shell is still devoid of CNO isotopes and
therefore burning hydrogen via the pp chain.
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Figure 3.1: A 250 M Pop-III star model during core He-burning, before the
central convective region reaches the H-burning shell. The upper
panel shows the composition structure in mass coordinates. Convec-
tive regions are shaded in blue. The lower panel shows temperature
(blue), density (green), and entropy (green dashed).

3.3 Setup of the Three-Dimensional Simulation

In order to study the mixing of species at the boundary between the He-
burning core and the H-burning layer above, we pick a section of the model that
encompasses the top part of the convective core and the whole convective region
at the bottom of the H-shell. This section is mapped to the computational grid
of the multidimensional hydrodynamics code SLH. In the model from Fig. 3.1
the convective part of the core has not yet reached the H-shell, so no mixing is

80



3.3 Setup of the Three-Dimensional Simulation

S e
= o o O
T

mass fraction

o
N
T

<
o

200
150 |
100 |-
50 |-

T/MK

__________ — 1 420

Figure

| il 0
50 100 150 200 250
m/Meg

3.2: The model from Fig. 3.1 in a state roughly 20 000 years later. The
central convective region now partially encompasses the H-burning
shell. The upper panel shows the composition structure of a 250 M
Pop-III star in mass coordinates. Convective regions are shaded in
blue. The lower panel shows temperature (blue), density (green),
and entropy (green dashed).
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expected here. Starting with this model and waiting for the convective region
of the core to expand to the H-shell is not feasible either, because the growth
is tied to the nuclear timescale of He-burning, which is much larger than the
hydrodynamical timescale. Hydrodynamical simulations with the required
resolution can be performed for a physical time of several weeks at most. A
significant growth of the core would, however, take tens to hundreds of years,
as illustrated by the comparison of Figs. 3.1 and 3.2, which are 20000 years
apart. For this reason we choose the later one of the two snapshots, which has
already undergone significant mixing at the interface.
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Figure 3.3: The inner part of the stellar model from Fig. 3.2 is shown in radial
instead of mass coordinates. The vertical dashed lines indicate the
size of the domain chosen for multidimensional simulations.

The computational domain is centered at the top of the core and extends
radially in both directions for 2 H,,. This uses the pressure scale height H,
defined by Eq. (2.80), at the center of the domain, for reference. This domain
includes the whole convective zone at the bottom of the H-shell. Figure 3.3
shows where the chosen region is located in the stellar model. It is now
displayed in radial coordinates instead of mass. The radius of the whole star is
90 R. This illustrates that the core carries about half of the mass of the star
while, due to the high density contrast between core and envelope, its radial
extent is only 2% of the stellar radius. The inner and outer radii of the domain
differ by a factor of 2, which makes the plane parallel approximation to this
problem clearly invalid. We still use a Cartesian box as the computational
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grid for the first proof-of-concept simulations as it reduces the complexity of
the problem and allows us to focus on the interaction of hydrodynamics and
nuclear burning. This means, of course, that before any definite conclusions
about stellar models can be drawn the simulations should be repeated with a
more realistic grid geometry. This could either be a spherical wedge in which
the core and the poles have been cut out to avoid the singularities or even a
grid of the type shown in Fig. 2.1. The latter geometry would enable us to
simulate the whole convective core of the star, consequently removing the inner
boundary and thereby avoid numerical artifacts there. As the implementation
of a gravity solver in SLH is still pending, full-core simulations have to be
postponed to future investigations outside the scope of this thesis.

For the horizontal extent of the computational domain we chose the same
as for the vertical in order to not suppress or enhance convective motions
through boundary effects. This is probably an overestimate since the convective
structures are much smaller than the domain, but it serves as a conservative
estimate.

Models of stellar structure are computed under the assumption of perfect
hydrostatic equilibrium (see Section 2.3.1). We should also assume this for
the initial state of the multidimensional simulation. If the quantities from the
stellar model are just naively interpolated to the finer hydrodynamics grid, the
resulting stratification is not in perfect equilibrium and will experience large
accelerations at the beginning of the simulation.

We use a special technique to ensure that the initial conditions are in good
agreement with hydrostatic equilibrium. We start from the ordinary differential
equation (ODE) for the hydrostatic pressure, Eq. (2.73),

P'(y) = p (), Xi(y), T(y)) 9y(y)- (3.1)

This ODE can be solved numerically using values for the composition X;,
temperature T', and gravity g, from the stellar model. Alternatively, specific
entropy s can be used instead of T. An even simpler method is to interpolate
the values of density p directly and determine p by numerical integration. In
the interpolated model, only the “given” quantity will match the original stellar
model exactly; the other quantities are determined by hydrostatic equilibrium
and the equation of state.

The results of using these different methods are shown in Fig. 3.4. An
important feature of the original model is the location of the convectively
unstable zones. Each panel shows the original convective regions at the bottom
and the convective regions of the interpolated model at the top. We find that
the models with given density and given entropy reproduce the non-convective
region at the entropy jump equally well; the model with given temperature
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makes this region significantly larger. The model with given density introduces
a few additional convective zones at large radii which are not present in the
original model; for the other two models this is not the case. These observations
imply that it is best to perform the interpolation in specific entropy and to
compute density and temperature from that, according to the equation of state
and hydrostatic equilibrium.

The first multidimensional tests found the entropy jump occurring at the
upper end of the stable region at the grid center to cause convergence problems
in the hydrodynamics code. In turn, the cause of this discontinuity lies in
the treatment of convection in stellar evolution codes. Constant values of
composition and entropy are enforced in the convective regions. This leads
to abrupt changes in the entropy profile at the interfaces of these regions.
As the jump is only resolved within a few mass shells, we do not expect
this to be the true physical state. In order ease the initial mapping of the
model onto the multidimensional grid we employ smoothing of the data. It
is performed by averaging over a moving window of 11 data points, weighted
with the Hann function.! Again all three choices of interpolation quantity
were tried using smoothing. The results are shown in Fig. 3.5. The position
of the non-convective zone at the center is still best preserved by the models
with given density or entropy but it is understandably not as good as in
the unsmoothed case. At large radii the models are nearly indistinguishable.
No additional convective zones are created in the model with given p this
time, but the two small convective regions of the original model are no longer
reproduced, either. It might be possible to improve the mapping of the model
by applying smoothing only in selected regions or changing the size of the
smoothing window, but for the initial proof-of-concept calculations here we
settle on interpolation in entropy using the smoothing described above.

The choice of proper boundary conditions is very important for hydrody-
namics simulations, especially when the computational grid is immersed in a
larger object, like a star, and does not cover it in its entirety. Many boundary
conditions are expressed using ghost cells. These are cells just outside the
computational grid that influence the flux through the cells at the boundary.
The boundary conditions for the vertical fluxes are of particular importance for
hydrostatic atmospheres. Outflow boundaries that extrapolate from the state
right at the boundary are not suitable because the atmosphere starts to flow
“out” of the grid then. This happens because of a self-amplifying effect caused
by vertical velocities at the boundary. These are extrapolated into the ghost
cells, which then trigger an increase of the velocity at the boundary. An alter-

1The Hann function is given by w; = % [1 —cos(2mj/(N — 1))], where j is the index of the
point in a window of size N (Press et al., 1992).
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Figure 3.4: This shows the vertical profile of temperature (blue), density (green)
and specific entropy (red) in the multidimensional simulation box
The points marked (4) stem from the one-dimensional model; the
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line is the interpolated profile. The shaded areas at the bottom
indicate regions in which the original stellar model was convectively

unstable. The shaded areas on top show the regions that are unstable
in the multidimensional model, according to the Ledoux criterion
The different panels show the result of using p, T, or s as input
variable for the integration of hydrostatic equilibrium.
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3.3 Setup of the Three-Dimensional Simulation

native are boundary conditions that enforce zero flux through the boundary.
Possibilities implemented in SLH are reflective and wall boundary conditions.
Reflective boundaries fill the ghost cells with mirrored values from the grid and
invert the direction of velocity. The wall boundary is a flur boundary condition,
i.e. it does not use ghost cells but computes the flux at the boundary directly.
Both of these boundary conditions show spurious oscillations at the vertical
boundary that span a few grid cells. Another simple yet very effective type
of boundary condition are constant ghost cells. Here the values in the ghost
cells are set at the beginning using values from the initial profile and zero
velocity. They are then left untouched for the whole simulation. This boundary
condition can keep the initial hydrostatic profile very accurately without any
obvious artifacts. It allows in- and outflow as the last grid cell before the
boundary can have a non-zero velocity. Still the velocities in the cells adjacent
to the boundary are dampened because of the zero velocity ghost cells. There
are also so-called far-field boundary conditions that allow hydrodynamically
consistent in- and outflow according to a prescribed background state of the
fluid far away from the grid. While these are excellent boundary conditions,
they cannot be used in the case of a stratified atmosphere, because the far-field
state depends on the height in the atmosphere. In the future hydrostatic
far-field boundaries could be designed, possibly using an approach similar to
the well-balancing technique from Section 2.4.4. For the simulations in this
thesis we choose constant ghost cells.

The boundary conditions for the horizontal fluxes also deserve some con-
sideration. Periodic boundary conditions seem physically reasonable and are
numerically well behaved. Yet we noticed in numerical tests that shear flows
develop on the grid. These are not expected from the stellar model, which did
not include rotation effects. As the simplified plane-parallel geometry of the
simulation box does not accurately represent the geometry of the stellar core, it
is not justified to say that the shear naturally develops in this part of the star.
To investigate this, future simulations should employ a more realistic geometry
either using spherical coordinates with a cut-out center or even a curvilinear
grid as shown in Fig. 2.1. To prevent these shear flows from developing we use
the wall boundary condition described above.

As the hydrodynamics method we choose the AUSM™*-Lowmach scheme
including Cargo—Leroux well-balancing. This method resolves hydrostatic
equilibrium very accurately and shows no checkerboard instabilities as seen
in the test in Section 2.4.5. We use the Helmholtz equation of state (see
Section 2.1.1) including the effects of an ideal gas of ions, radiation, and
degenerate electrons. The contribution of degeneracy is negligible. It is included
nevertheless because the additional computational cost of the equation of state
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has only a minor impact on the overall efficiency, as implicit time stepping
needs fewer calls to the equation of state.

A suitable nuclear reaction network needs to be chosen. The network
included in SLH automatically chooses reaction rates according to the chemical
species given. So the choice of network is in fact determined by the choice
of included species. There are three main nuclear processes occurring in the
selected part of the stellar model. In the lower half of the atmosphere, which
consists of “He and '2C, *He is fused to '2C by the triple a process. In the
upper half of the atmosphere, where 'H is present, the pp chain is turning
'H to “He. It does not need the presence of any other element as a catalyst.
The remaining process is the CNO cycle, which only occurs in regions where
'H and at least a small fraction of CNO elements (i.e. carbon, nitrogen, or
oxygen) are present. The CNO cycle is a catalytic process, which involves the
following reactions (e.g. Kippenhahn et al., 2013):

1ZC+1H N 13N—|—7

13N — BCHet+v
BC+H — “N+y
UN+'H — O+~
50 — PN+tef4v
N 4+ 'H — 12C + ‘He

This is known as the CNO-I cycle. Branching is possible in the last reaction:

PN+H — %0+~
160 +'"H — F + 4

I7p — O +et +v
70+ 1H — 1N + ‘He

This is the CNO-II cycle. The *N produced in the last reaction can then enter
the cycle again at the fourth line of the CNO-I cycle. This cycle is about 103
times less probable than the CNO-I cycle (Kippenhahn et al., 2013) thus it
has only a minor impact on the reaction rate. It shows that the presence of
160 alone is enough to activate the CNO cycle.

To decide which processes are relevant on the dynamical timescale of this
setup, we calculate the energy release rate of the different processes. The
sound crossing time through the simulation box is about 8 min. Even the
assumption of conservatively low Mach numbers in the convective zone of
0.01 results in a dynamical timescale of only 13days. For the triple alpha
process under its most favorable conditions, at the very bottom of the grid,
the energy release rate is 0.3erg/(gs). The energy release rate from the
pp chain would amount to 300 erg/(g s), under the extreme assumption that
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the highest mass fraction of *H on the grid were mixed down to the bottom
of the domain. The CNO cycle is more efficient than the pp chain above
temperatures of ~ 1.5 x 10" K (Kippenhahn et al., 2013). Indeed, under the
same assumption as above, and adding a '2C mass fraction of just 1078, it
results in an energy release rate of 2 x 108 erg/(g s). These are just thought
experiments to explore the limits of the different processes. The process that
will have the largest energy release in the actual simulations is burning of 'H
in a very '2C-rich environment. The '2C abundance in the core is 0.28. The
ingestion of X (*H) = 10~° into the core already leads to an energy release
of 6 x 10%erg/(g s). The largest energy release is expected directly at the
boundary between the 2C-rich core and the 'H-rich shell above. This effect
can be understood with the formula for the energy release from the CNO cycle
(e.g. Kippenhahn et al., 2013)

ecno = 8.24 x 1025914,1XCN0X1HPT9_2/3
o ) (3.2)
- exp (715231T9 - (T9/08) ) )
g1a1 = (1 — 2.00Ty + 3.41T2 — 2.43T2), (3.3)

where Ty = 107°T. The quantities ecno and p are in CGS units. In the original
stellar evolution model, the mass fraction of '2C in the upper convective zone
was 107°. If Xcno is raised to 0.1 by mixing, the reaction rate increases by a
factor of 10%.

We conclude that it is sufficient to reproduce the CNO-I cycle. Even in
regions without CNO elements, where only the pp chain can take place, it is
so slow that we do not need to follow it in the dynamical simulation. The
same is true for the triple a process. We choose to use 10 species in the 3D
simulation: 'H, 4He, 12C, 13C, 13N, 4N, 15N, 0, and '60. “He and '60 are
just included because in the original model, they are present in a non-negligible
mass fraction, that we want to preserve.

We also include radiation transport in the diffusion limit. This is important
because it ensures that the convective regions from the stellar model stay
convective, where expected. Without radiation transport, convection would
flatten the unstable temperature gradient until the region becomes stable.
We use the OPAL Rosseland mean opacities tabulated by Iglesias & Rogers
(1996). The opacity varies from 0.16 cm? g=! to 0.18 cm? g~! over the whole
simulation domain. For simplicity, we do not implement a live table look-up
during the 3D simulation, but instead assume a mean value of 0.167 cm? g~1
for the opacity. This approximation has no notable effect on the properties of
radiation transport and convection.
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3.4 Results

To get an overview of the effects to be expected in the 3D simulation, a 2D
simulation was performed priorly. A simulation box with a resolution of 128
grid cells in the vertical direction and 96 cells in the horizontal direction was
used. The horizontal size of the domain was chosen so that the cells are of
square shape, in order for the resolutions in horizontal and vertical direction to
be the same. Due to the relatively low computational cost of the 2D simulation
it could be followed for 58 days of physical time.
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Figure 3.6: Temporal evolution of the horizontally averaged mass fractions of “H
(top panel) and '2C (bottom panel) against the vertical coordinate
y given in solar radii. The data are from the 2D simulation.

Figure 3.6 shows the temporal evolution of the horizontal average of the
abundance profiles of 'H and '2C. After a few days, '2C is getting mixed into
the 'H-rich layers. After about 20 days, the boundary between the core and the
shell above begins to move noticeably outward. The cause is the fast burning
of 'H in the 2C-enriched environment. The shell is consumed from below,
where the temperature is higher, because the efficiency of the CNO cycle is
highly sensitive to temperature.

Initially, there is a higher fraction of 'H in the convectively stable region at
the top of the domain, which disappears after about 10 days. This is not due
to nuclear burning; the temperature in that region is not high enough. Instead,
mixing with the convective layer below is the cause.
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These effects are in contradiction to the predictions of the 1D stellar evo-
lution model, where much less 2C is mixed through convective overshooting.
Hydrogen burning in the shell above the core progresses much more efficiently
in the 2D hydrodynamical simulation. Still, no definite conclusions should
be drawn from this first study. The end of this section discusses required
improvements to the simulation setup.
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Figure 3.7: Mass fraction of 'H (left panel), mass fraction of '*C (center panel),
and nuclear energy release rate due to the CNO cycle in erg/(g s).
The axes are the Cartesian coordinates in cm. The data are from
the 2D simulation, they show a snapshot after 30 days. The artifact
at the upper edge results from the constant ghost cell boundary
condition.

In Fig. 3.7, a snapshot from the 2D simulation shows the mass fractions of
H and '2C and the nuclear energy release rate due to the CNO cycle. In the
'H mass fraction, an artifact can be seen at the top boundary. It stems from
the constant ghost cell boundaries. A different boundary type could be chosen
to avoid this in future simulations, but as discussed in Section 3.3 there are no
good alternatives at the moment. Another solution is simply an extension of
the simulation box.

After the 2D simulation, we mapped the exact same model to a 3D grid with
128 grid cells in each spatial dimension. Due to the increased computational
cost the model was only followed for 4 days.

Figure 3.8 shows the Mach number at 4 days for both simulations. We
see the typical characteristics of 2D and 3D turbulence. In two dimensions
turbulence forms large structures. In the 3D simulation, the eddies can decay
in an additional dimension and form smaller structures. Also, the turbulent
energy cascade is fundamentally different in both cases. This alone is a
strong argument that 3D simulations are necessary to get a reliable result for
convective mixing.

91



3 Convective Mixing in Massive Population III Stars

<ot 2D 0.050  x10! 3D
0.045
1.6 0.040 1 g
0.035

=14 0.030 1.4
= 0.025
19 0.020 1.28

0.015
10 0.010 1.0
0.005

6 7 T0.000 0.0 . 0.4 0.6 0.8
%1010 T in cm x 101!

=

0 2 3 4 5

T in cm

Figure 3.8: Mach number 4 days after the start of the simulation. The left panel
shows the 2D simulation, the right panel a cut through the 3D
simulation. The colorscale is the same for both panels.

Figure 3.9 compares the evolution of the horizontally averaged Mach number
from the 2D and 3D cases. They are qualitatively similar but the 3D case is
considerably smoother. This is probably a consequence of the smaller scales of
the structures in 3D turbulence and the fact that the averaging is performed
over a larger sample in 3D. The temporal evolution over the whole time span
of the 2D simulation is shown in Fig. 3.10. For illustration, a 3D volume
rendering of the Mach number, the "N, and the energy release rate is depicted
in Fig. 3.11. In the image of the energy release the ingestion of 'H into the
core is visible.

Regrettably, the shorter simulated time of the 3D run means it does not
progress to a stage where enough '2C has been mixed into the upper layers
for a discernable effect. So no statement can be made as to whether hydrogen
shell burning will be increased in efficiency compared to the 2D case.

The 3D simulation still has several shortcomings that should be addressed
before continuing the simulation for longer times in future work. The size of the
simulation box is too small to properly capture the behavior in the convectively
stable region at the top. It should be increased for the next simulations. The
resolution of 1282 does not resolve the interface at the center of the box well
enough. It remains to be seen if the observed increase of mixing with respect
to the 1D stellar evolution model is upheld in a simulation of higher resolution.
As a last point, the plane-parallel geometry is clearly not even close to the
real geometry of the core. Using a more appropriate geometry and including
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Figure 3.9: Temporal evolution of the horizontally averaged Mach number. The
top panel shows the 2D results, the bottom panel the 3D results.
The y-axis shows the vertical coordinate in solar radii. The panels
do not share the same colorscale.
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Figure 3.10: Temporal evolution of the horizontally averaged Mach number of
the 2D simulation. The y-axis shows the vertical coordinate in
solar radii.

the full core on the grid would treat core convection and possible shear flows
much more realistically.
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Figure 3.11: Volume rendering of the 3D simulation at 3.3 days. The top panel
shows the Mach number, the central panel the **N mass fraction,
and the bottom panel the energy release rate.
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4 Conclusions and Outlook

Traditional stellar evolution models are computed in spherical symmetry under
many simplifying assumptions. Especially the treatment of convection and the
related mixing processes is not adequate. Multidimensional modeling of the full
evolution of a star following hydrodynamical processes is firmly out of reach of
current computational capabilities due to disparate timescales involved. Yet
what can be done using today’s resources is the hydrodynamical simulation
of limited regions of a star on dynamical timescales. Such calculations can
serve as a check of the “recipes” employed in stellar evolution codes. In a next
step careful evaluation of the multidimensional results could be used to devise
improved prescriptions that would make stellar models more realistic.

In some of these convective mixing processes nuclear reactions are enabled
that have an effect on the dynamical timescale. Thus the aim of this thesis
was to discuss the coupling of nuclear reaction networks and multidimensional
hydrodynamics to be used in the simulation of stellar interiors. The basis of
this work is the Seven-League Hydro (SLH) code. This code is particularly
well suited for the hydrodynamics of low Mach number flows due to its low-
dissipation discretizations and implicit time-stepping. Yet it solves the full
Euler equations, which makes it also applicable to high Mach number flows.
In the work leading to this thesis the code was extended with a more general
equation of state and a flexible nuclear reaction network that can be easily be
applied to different nuclear processes occurring in stars.

In Section 2.2.3 the numerical Reynolds number of the code was examined
using the Taylor—Green vortex as a test problem. It was found that the
numerical Reynolds number of the low-Mach discretization used in SLH is
largely independent of the Mach number, whereas the usual discretizations
fail to reach the turbulent flow regime. Reynolds numbers of roughly 1000
are reached with resolutions of 2403. While this is still far from the regime of
stellar Reynolds numbers, we see that the energy dissipation rate is converged
and the flow is in the turbulent regime. This allows us to apply the code to
simulations of stellar convection. In the future, improvements could be made
with the inclusion of an explicit sub-grid scale model.

In past work with SLH it was found that convectively stable atmospheres in
hydrostatic equilibrium experience a spurious instability that causes flows with
Mach numbers of roughly 10~2. This is unacceptable for application since there
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is no physical mechanism that should cause this instability. In Section 2.4.2
we give a possible explanation of this phenomenon. There is literature about
checkerboard-like modes in pressure that decay more slowly than physically
expected. This is a problem of many low Mach number discretizations. In
some schemes special terms are introduced to implement pressure—velocity
coupling that counteracts this effect. Since these solutions typically come from
the engineering community, they are not easily applicable to the stratified
atmospheres that are common in stellar astrophysics. In Section 2.4.4 we
present a well-balanced method that removes the pressure gradient. As the
original method was only developed for the one-dimensional case, we develop
a modification that makes it usable in multidimensional hydrodynamics. Even
though this extension is not universal, it is applicable for many of the problems
we want to address. In Section 2.4.5 a survey of the impact of the well-balanced
method on the instability is conducted for several different discretizations. It
is found that the AUSM*-Lowmach method shows no sign of the instability
provided that the hydrostatic pressure gradient is removed by the well-balanced
method.

Section 2.5.3 discusses two methods for coupling the reaction network to
hydrodynamics. One of them is Godunov splitting, which is the simplest case
of operator splitting. The other is a fully unsplit treatment, in which the
combined set of equations is evolved in time simultaneously. In Section 2.5.4
both methods are applied to a simple test problem. For comparison the same
problem is computed with a different hydrodynamics code. The result is
that the difference between the two coupling methods is minor and Godunov
splitting is used in applications due to its significantly lower computational
cost.

As an application of the developed methods, we simulate a model of a
250 M Population III star during core He-burning. The phase we model
using multidimensional hydrodynamics is at the time when the convective
zone in the core penetrates the H-rich shell above. This mixes CNO-elements
into regions that could so far only burn hydrogen via the pp chain, which is
much less efficient at the present temperatures. In a long-term 2D simulation
we find, in contrast to the predictions of the 1D stellar evolution model, that
large amounts of '2C are mixed into the H-burning shell, which is then rapidly
consumed from below. Three-dimensional calculations are also presented but
these did not yet reach a state where conclusions on the mixing of 2C could
be drawn. It has to be noted that these first applications were run with limited
resolution and with simplified geometry. Before any definite statements about
the behavior of the convective boundary can be made, improved 3D simulations
must be performed. Yet the present simulation demonstrates the potential
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insight multidimensional models can provide to our understanding of stellar
processes.

Before embarking on future astrophysical applications with the SLH code
several numerical improvements are advised. First of all, the nature of the
checkerboard mode should be studied in detail and a more comprehensive fix
than the current method should be implemented. This could be done, for
example, by modifying the p-term in the AUSM™-up scheme so that it can
cope with stratified atmospheres. A similar term could possibly also be added
to the preconditioned Roe scheme to dampen the checkerboard mode. Another
interesting possibility is the low Mach Roe scheme suggested by Rieper (2011),
which has some intrinsic dampening of the checkerboard mode. It could be
implemented in SLH with relative ease. If these two approaches do not yield
the desired result, the momentum interpolation method by Li & Gu (2008)
provides an alternative, although the prospective violation of zero velocity
divergence makes it less favorable.

After these immediate concerns the next important step in development is
the implementation of a gravity solver, so that setups including self-gravity
can be simulated. A simple monopole approach would be good enough for a
number of applications since many models are close to spherical symmetry.
For reasons of flexibility it is preferable to have a solution that also works on
general curvilinear grids, so that these can be used to simulate the whole core
of a star. A suitable method for this might be an FFT gravity solver that
works on an oversampled Cartesian grid.

The study of the turbulence properties of SLH should be extended with an
analysis of the turbulent energy spectrum. If necessary, the code could be
augmented with an explicit sub-grid scale model.

From an astrophysical point of view, an improvement of the Population ITI
star model from this thesis is the next logical step. A more realistic geometry
should be chosen in future simulations, either a spherical grid or even mapping
the whole core to a curvilinear grid. The size of the computational domain must
be increased at the top boundary to be able to investigate how far convection
penetrates into the stable layer above. After these modifications, a more highly
resolved 3D simulation of the model that is run for a time comparable to the
2D model of this thesis can provide a robust picture of the convective boundary
in this star.

Another phase of stellar evolution that is well suited to multidimensional
modeling is Si-burning in massive stars. This phase lasts only several days,
which means it can probably be simulated in its entirety. This phase is of
particular importance since it is the last burning phase before core collapse
and thus determines the progenitor model other groups use to simulate core-
collapse supernovae. Strong deviations from spherical symmetry are expected
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in such models (Arnett & Meakin, 2011). To treat the physics of this problem
accurately, to nuclear network of SLH must to be extended with the energy
losses via neutrinos.

In the form presented in this thesis, SLH constitutes a versatile tool, suited
to the simulation of dynamical phenomena in stellar atmospheres. Its future
application will hopefully shed more light on the workings of these intricate
objects known as stars.
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