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Abstract—In this paper, we present a biologically-inspired
object recognition system for humanoid robots. Our approach
is based on a hierarchical model of the visual cortex for feature
extraction and rapid scene categorization of natural images.
We enhanced the model to be entropy-aware and real-time
capable, to be able to realize object recognition over time. We
integrate time in our system to model uncertainty in static
object recognition by evaluating multiple recognition results of
objects observed at different view-points over time using the
camera system on a humanoid robot. The recognition responses
are encoded as probability estimates over each trained object
class. We apply a signal detection theory approach to describe
the temporally and spatially distributed signals to gain a value
of certainty about the object class. We show that our enhanced
model outperforms the preceding model and that by integrating
time as a variable we created a highly robust object recognition
system.

I. INTRODUCTION

Humans are capable of detecting and recognizing objects

under the most complex circumstances. They can easily

identify objects under most lightning conditions, orientation,

color or size. Even objects in clutter pose little problems, in

contrast to state-of-the-art computer-based object recognition

systems, which struggle to perform adequately under varying

situations. Therefore, it only makes sense – and maybe

is the only successful way – to analyse how the visual

system in biological systems works and use that knowledge

for modelling those mechanisms to build a more likely

effective and robust object recognition system. Only recently

researchers began to look into possible architectures which

process information similar to its biological prototype [1],

[2], [3]. These models cover a sub-functionality of the vision

processing performed by the brain; like visual attention,

object recognition, tracking or learning.

Especially in the area of object recognition, models have

been built as a proof-of-concept with little effort in situating

them in the real-world, like realising it on a humanoid robot.

HMAX [4] for example only focusses on reproducing a

human’s performance in rapid scene classification – a test

used in psychology and neurology to describe how fast and

how well a human subject reacts to the task of distinguishing

between categories in natural images shown for a very short

period, where there’s no time for eye movement of shifts of
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Fig. 1: Online Learning and Classification with the iCub.

attention [5], [6]. It is known that the entire process of object

recognition activates much more areas in the brain than just

the visual cortex, which indicates that in order to achieve

similar efficiency in technical applications, simple feature

generation and classification alone won’t solve the problem

in the long run. We need to regard object recognition not as

a distinct but as a cognitive process.

Object recognition in technical systems still is very limited

in performance and confined to specific scenarios. Especially

in humanoid robotics, it is essential to model uncertainty and

make use of the robot’s abilities to act on it. With a humanoid

robot and its active vision system and manipulators we have

the tools to model the uncertainty by including the temporal

aspect. Accounting for time could push current models from

static single image recognition to a higher level of object

consciousness.

Rapid scene classification as applied in studies is usually

not the normal way how humans perceive their environment

[7]. To identify objects we usually move our eyes to different

salient areas to gain some kind of certainty about our belief

what the object might be [8]. Depending on the visibility

of the scene, this procedure might vary in time until some

certainty is gained [9]. Our system reproduces this behaviour

by applying a biologically-inspired object recognition model

to a time-aware architecture.



Fig. 2: System

II. RELATED WORK

Recently, due to a deeper understanding of information

processing in the brain and due to more powerful com-

putational resources, the vision and robotics community

started building more and more systems which gain their

inspiration and functionality from biological models. Be it

for building robots itself by studying the human corpus [10],

to build robotic insects [11] or to integrate intelligence into

humanoid robots [12]. Or to enhance common techniques

like face recognition by using biologically-inspired features

[13]. The widely applied SIFT features [14] are also inspired

by neurons in the inferior temporal cortex. Some research

draw more attention to active-vision systems, which have

been used to solve different vision problems like: object

recognition [15], [16], [17], [18]; visual search [19], [20];

visual attention [21]; or visual tracking [22]. It has also

been investigated how to integrate object recognition [23],

[24] and visual attention also with a focus on the aspect of

computational complexity [25]. In this paper we specifically

focus on the temporal aspect of object recognition, which

has only received little attention so far. With this work, we

wish to contribute further in this development, by enabling

a robot to reason over time.

III. SYSTEM OVERVIEW

Our system consists of a cluster of multiple PCs and

GPUs to realize the hierarchical and parallel processing in

the brain [26]. For communication between the different

areas we employed the robot operating system (ROS), which

supports modularity and makes it easy to extend our system

both in hard- and software. The images are processed in two

parallel nodes, which handle object recognition and motion

sensitivity - similar to the ventral and dorsal stream in the

visual cortex. The responses of both stream are integrated

into the decision making node - which is slightly based

on the functionality of the prefrontal cortex (PFC) and the

frontal eye fields (FEF) - an area located in the PFC, which

is responsible for guiding eye movement and saccades. The

decision node integrates the classification response probabil-

ities over time and the external motion in the visual field to

calculates a certainty measure over the present object. If after

several trails the robot is still uncertain about the object, it

could move its eyes or torso to a different position to have

a better view point, or move or turn the object itself.

A. Object Recognition

The object recognition module presented in this paper is

built on Serre et al.’s HMAX [4], which presents a feed-

forward model of the visual cortex described by Riesenhuber

and Poggio [27]. An overview is given in Figure 3. Each

layer in the classical model consists of four alternating layers

of simple cells (S1, S2) and complex cells (C1, C2) [28].

S1 Layer: The first layer is based on a representation of

simple cells which react to oriented edges and bars in the

receptive field. The response of these cells are quite similar to

Gabor filters. The Gabor filters are created using the function

Gλ,θ,ψ,σ,γ (x
′, y′) = exp
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with

x′ = x cos θ + y sin θ (2)

and

y′ = −x sin θ + y cos θ (3)

where θ controls the orientation of the filter, ψ the phase

offset, σ the variance of the Gaussian, γ the spatial aspect

ratio and λ represents the wavelength of the sine function.

The edge-sensitive cells contribute to the rotation invariance

of the recognition system by the sensitivity to edges and

bars of different orientations.

C1 Layer: Complex cells have a larger receptive field

than simple cells and add some degree of spatial invariance

and shift tolerance to the system. S1 cells of same scale

band, same orientation and adjacent filter size are connected

to a complex cell. The functionality can be described as a

kind of max pooling operation; The maximum value of two

adjacent filters of different sizes is calculated by using a

sliding window approach.

S2 Layer: In the third layer small patches are chosen

from random positions in the receptive field of C1. Each

patch set consists of 4 patches, assembled by taking each

patch in the set from a C1 response of different orientation

(0◦, 45◦, 90◦, 135◦) but same position and same scale band.

Serre et al. use different sizes of patch sets: patch sets

which contain patches of size 4; patch sets with patches of

size 8; with size 12 and with size 16. These patch sets are

then used for two different cases

Before the training or classification case, a dictionary of

patch sets needs to be built. In the standard HMAX system

these patch sets are chosen randomly over multiple images.

The S2 cell response is similar to a gaussian radial basis

function and can be calculated as follows

ri,k = exp(−β||Xi − Pk||
2) (4)

where β is the sharpness of the tuning. Xi is one of the

patch sets created in the S2 layer and Pk is one of the

“memorized” patch set in the earlier created dictionary. The



Fig. 3: Functional Overview of the architecture.

radial basis function is calculated for all patches i in the set

of patch sets of S2 and for all patch sets k in the dictionary.

C2 Layer: Like in C1, the complex cells in the C2 layer

now again perform a max operation over all the responses.

For each element in the dictionary the maximum response

for equation 4 is calculated using all the rbf responses of the

patch sets of equal size. Using equation 4 this leads to

fk = max(exp(−β||Xi − Pk||
2)); ∀i (5)

which builds the feature vector F = {f0, f1, . . . , fd}
for all k in the dictionary, with d being the length of the

dictionary. The feature vector can now be further used for

training a classifier. For comparison reasons we used a SVM

classifier as Serre et al. with a radial basis function kernel

[4].

1) Entropy Adaptiveness: We enhanced this model by

adding an information theoretic aspect of neural processing

- the maximization of information along the pathway [29],

[30]. Our system incorporates the information entropy in

the S2 layer of the system. It is sensible in regard to the

information a single patch carries and adaptively rejects

patches which don’t account for the overall information gain.

We calculate the entropy of each patch by applying:

H(X) = −

M
∑

m=1

pm log pm (6)

with pm being the relative frequency of brightness value

m within the patch. This approach filters out patches that

show an almost plain distribution of intensities.

2) Dictionary Creation: In the standard HMAX imple-

mentation, the dictionary is created by randomly selecting

patches as artificial neurons from a set of responses in

C1. This approach bears the risk to select a non-optimal

set with over-represented and redundant features. To avoid

this disadvantage our method is derived by the functionality

of lateral-inhibition in neurons. Only one artificial neuron

per set is allowed to react above a threshold to a certain

stimuli; this way there are no neurons which react too

similar to the same input. Until the dictionary is not fully

populated, we calculate the radial basis function response

(see Eq. (4)) between each new neuron candidate and the

current dictionary. If the response for all existing neurons in

the dictionary is below a certain threshold the candidate is

chosen as a new neuron in the dictionary. Mathematically,

we can describe our dictionary as a set

D = {x|∀x, y ∈ D,x 6= y : ∄y : rbf(x, y) > t} (7)

with D being the dictionary, rbf the radial basis function

of Equation (4) and t as the threshold we wish to apply.

Pseudo-Algorithm 1 displays how the dictionary is created.

To make sure that the algorithm halts, we adaptively reduce

the theshold t after several iterations.



Algorithm 1: Create Dictionary

Data: Dictionary D; Dictionary size s; Set of

candidates C, Threshold t

Result: D with size(D) = s

while size(D) != s do
Create New Set Of Candidates(C);

forall k do

forall i do
if rbf(Di, Ck) > t then

break;

end

end

Di+1 = Ck;
end

end

B. Recognition over time

Our approach uses a classifier which is able to output

estimates of the membership probability of each class. Our

evaluation (in Section IV-B) shows, that these probability

estimates can be used as a certainty measure of the right

classification. In terms of a time series of probabilities this

allows us to make further assumptions: 1) If we see a high

probability, we can assume less risk of false classification.

2) If we see a low probability, we’re less certain, because

we face a higher risk of a false negative test.

Therefore we assume, that the higher the response to

a certain object and the more often this signal appears,

the more likely it is that the response really represents

the object we see. To model this behaviour, we make use

of psychophysics – a method used for example in digital

signal processing and cognitive neuroscience to describe the

likeliness of a perceptual system’s response to a frequent

stimulus. We apply probability summation over time [31] -

a method used in signal detection theory - which models

the probability P that a signal is detected accounting for

all Pi, with Pi being the probability that a temporal stimuli

threshold is exceeded at time i.

P = 1−
∏

i

(1− Pi) (8)

Equation (8) is the probability for one channel. We are

interested in n channels, or in our case n classes, which

compete to reach the threshold. Therefore we apply a max-

imum function over the set of classes k:

P = max
k

(1−
∏

i

(1− Pi,k)) (9)

In our case we chose the threshold to be at least 1

n
∗

100% - with n being the number of possible classes - to

have a probability above 0% of getting detected, because if

the probability is below the threshold, there exists at least

one signal which has a higher value. We fit this constraint

to an exponential distribution

f(x) = α(exp(x)− β) (10)
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Fig. 4: Stimuli functions from Equation (13) for different

number of classes n.

with

f(1) = 1; f( 1
n
) = 0 (11)

we get

f(x, n) =
1

exp(1)− exp( 1
n
)
(exp(x)− exp( 1

n
)) (12)

Because Equation (12) is a continuous probability distri-

bution defined for [1/n; 1], we set Pi,k,n = f(Ri,k, n) from
Equation (8) with Ri,k being the probability response for

class k at time i from the classifier:

P = max
k

(1−
∏

i

(1− α(exp(Ri,k)− β))) (13)

with

α =
1

exp(1)− exp( 1
n
)
, β = exp( 1

n
) (14)

Figure 4 visualizes the resulting graphs of equation 12 for

n = 2, 3, 4, 5.

C. Motion Detection

Objects in the visual field normally don’t suddenly disap-

pear or change its structure. So according to the principle of

temporal contiguity an association is made between objects

seen in rapid succession [32]. Any difference would be

interpreted as a displacement or masking of the object.

Without the consideration of external motion or ego-motion,

it would not be possible to build a believe system over an

object in the visual field.

Therefore, we model motion as a trigger for resetting the

classification believe certainty. If there is unsuspected motion

from an external force e.g. something moves in the field

of view or the object is taken away or replaced, we reset

the believe probability in Equation (13) back to 0%. We

model the motion detection as a stream separate from object

recognition, which responses also end in the decision node.

We detect the motion by reacting to a certain threshold to

account for noise in the image data.
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Fig. 5: Comparison of classification results for faces of the

Caltech image database between the standard HMAX and

our approach.

IV. EVALUATION

In Section IV-A we evaluate the object recognition module

separately from the whole system to measure the perfor-

mance of our object recognition approach over the standard

HMAX. Then we test our assumptions over the probability

estimates of the system (Section IV-B) and evaluate our

approach in a real world scenario using the iCub humanoid

robot (see Figure 1). A video contribution of our system

connected with the paper is attached.

A. Single Object Recognition

We tested our object recognition module on the caltech-

101 database; it contains 101 image categories and a back-

ground image set. Each category contains about 30-800

images. We chose airplanes, faces and cars image sets to

test our approach against the standard HMAX model.

For each run, we created a dictionary and randomly

picked 100 (where possible) images for training and for

classification. Like in [33] we computed results with a

number of positive training examples of 1, 3, 15, 30 and

40 images and negative training examples of 50 images. For

each configuration the results were obtained and averaged

after 10 runs. Each configuration consists of a different

number of patches to pick during training and classification.

Throughout the tests we chose a dictionary size of 200 (50

per patch size), which is one fifth the size compared to Serre

et al. [33].

Our approach outperforms the original system in regard

to the classification accuracy (see Figure 5), e.g. for the

airplanes test set 93% compared to 86%, for the faces test

set 96% compared to 90%, or cars 98% compared to 96%.

B. Propabilitiy Estimates over Time

The support vector machine classifier supports probabilis-

tic outputs of the membership likeliness for each trained class

[34], [35]. If a feature vector is more likely to represent an

object of e.g. class 1, the probability for that class is higher

than for the other classes. We tested how representative and
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Fig. 6: Probabilities’ frequency distribution of a two-class

classification benchmark.

Fig. 7: Example of the believe graph development over time

for different number of classes n for responses hitting the

threshold.

valuable those results are for being applied to our system.

Figure 6 shows the probabilities’ frequency distribution of a

two-class classification benchmark over multiple runs. The

green bars represent the true positive, the red bars the false

negative test results. It shows, that the probabilities give a

good estimate of how likely the class assignment is. The

false negative votes had an average probability of about

63% whereas the true positive probability was about 87%

(keep in mind: these probabilities are not the classification

average, but the average of the probability responses of the

true positive/false negative tests). We ran multiple test to

verify the correctness of our probability over time approach.

Figure 7 shows the ascending graphs for different number of

classes.

C. Real-world Scenario

We tested our approach for usability on real world sce-

nario with live image acquisition. To be able to speed up

processing we enhanced our system to be multi-core and

multi-GPU capable. We used the iCub humanoid robot (see

Figure 1) for image acquisition and the objects shown in

Figure 8 for training and testing. We used the first three

objects (hand, action figure, table tennis bat) for training. We

obtained about 15 feature vectors for each object. We then

tested the trained system on the two previous unseen figures

(the iCub hand and a second action figure). All objects were

correctly classified over time, because the system could cope

with temporary misclassifications of the SVM classifier.



Fig. 8: Training and Test Objects.

1) Motion Detection: It is worthy to note, we experienced

object mix-ups without the motion detection module. This

happens if the object shown is exchanged after a certain

believe value is already reached, so that the remaining time

can’t compensate for the new object. We were able to avoid

this behaviour by activating motion detecting, which resets

the probabilities and believe values. We achieve the motion

detection by simple subtraction, thresholding and calculating

the percentage of change pixels.

V. CONCLUSION

In this paper we have presented a biologically-inspired

object recognition framework, which applies signal detection

theory to describe the temporally and spatially distributed

signals over time by integrating separate probability esti-

mates. This approach provided our robots with a certainty

measure about their believe of the perceived world. We

showed that our enhanced HMAX system outperforms cur-

rent models in classification performance (up to ≈ +6%) and

speed, and that the integration of time as a variable helps to

provide a highly robust object recognition system functioning

in the real-world.
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