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Automatic Flight Control of Tethered Kites for Power Generation 

  Claudius Jehle 

Kurzfassung / Abstract 

Ein automatischer Flugregler zur Trajektorienfolge von flexiblen, kabelgebundenen 
Lenkdrachen wird vorgestellt. Mangels verifizierter Systemmodelle wurde eine black-box 
Systemidentifikation zur Erstellung des Gier-Ein-Ausgangsverhaltensmodells durchgeführt, 
wobei gute Ergebnisse erzielt wurden. Der Regler ist zwei-schleifig aufgebaut, wobei die 
äußere Schleife ein Peilungssignal erstellt, das bei optimalem Streckenverhalten die Distanz 
zwischen Lenkdrachen und Solltrajektorie minimiert. Die innere Schleife basiert auf einer 
nicht-linearen dynamischen Inversion (Rückkopplungslinearisierung) des identifizierten 
Sytemmodells, auf die ein linearer P(I)-Regler wirkt. Zur Kompensierung von ungenauer 
Systemmodellierung und nicht berücksichtiger/vernachlässigter Dynamik wir ein 
Adaptionsalgorithmus (MRAC, model reference adaptive control) vorgestellt, der dem 
Grundregelsignal aufaddiert wird. 

Der Regler zeigte sowohl in der Simulation, als auch im Feldversuch seine 
Funktionstüchtigkeit und flog vollautomatisch mehrere Minuten lang die gewünschte 
Trajektorie. Jedoch beschränkten Totzeit und Aktuatorbeschränkungen des Systems die 
Regelgüte. 

 

 

An automated flight controller based for trajectory tracking of flexible, tethered kites is 
presented. Due to a lack of validated system models a black-box system identification was 
carried. The resulting yawing input-output relation showed good fit with measurement data. 
The controller consists of two loops, where the outer loop generate a bearing signal designed 
to minimize the distance error between the kite and the desired trajectory. The inner loop is 
based on a non-linear dynamic inversion of the found input-output-relation (feedback 
linearization), on which a linear P(I)-controller acts. An reference-model based adaptive 
control law is superimposed and is designed to compensate for insufficient model 
parameters and neglected dynamics.  

The controller proved its performance both in simulation and real flight experiments and was 
able to fly fully automated trajectories for several minutes. However the performance was 
limited by deadtime and actuator constraints. 
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1 System Overview 

1.1 Motivation of Kitepower 

Nowadays renewable energies become more and more important. It is well-known that 
especially the harvesting of wind energy has become more and more popular over the recent 
decades. However, the potential accessible via ridged towered windmills is limited, as the 
construction cost increase disproportionally to the increase of energy gain. Airborne wind 
power systems circumvent this shortcoming by replacing the costly and tower construction by 
light-weight cables, which today exists in almost unlimited lengths. It is assumed that the 
major advantage of airborne wind energy systems is thus an economical benefit. In addition 
to that higher wind levels are known to provide steadier and stronger winds, which also 
affects the economical advantages of this approach. 

Although issues like wear and creep of the tensile structures are not yet solved, it is believed 
that also maintenance costs can be reduced in comparison to wind mills (where specialized 
companies have to be hired to maintain and repair theses high structures).  

Kites are already used in commercial applications and more and more companies develop 
applications for high altitude wind power systems. As an example, the company SkySails 
utilizes kites to support the usual diesel engines of cargo ships with wind traction. This 
system is already successfully used in maritime applications. 

1.2 Scope of this Thesis 

To employ kites for power generation different safety issues have to be addressed 
(especially on land). While the challenges of windmill engineering lie more in stability, 
maintainability and power transformation, kites in particular are moving airborne objects and 
thus subject to a certain amount of control. Yet not only safety issues impose the need of 
controlling, but also the tracking of optimal flight trajectories to extract a maximum of energy 
is crucial for a safe and economical application. In the future, when more than one discrete 
system is indented to fly in one air space, also issues like collision avoidance and flight 
coordination have to be addressed. 

Hence the deployment of suitable control algorithms is crucial to 

• guarantee an optimal power extraction , 

• ensure the safety of operation  and 

• coordinate  distributed systems. 

In this thesis mainly the first challenge will be addressed. The document is structured like 
follows: An overview over the present system structure is given and correlation closer 
describing the dynamics of the kite are derived. A controller is then designed, simulated and 
eventually test results from a real test flight are presented. 
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1.3 Previous approaches 

Control of tethered kites is a relatively new topic and still subject to research. However, two 
main approaches have evolved in the recent decade. One method, mainly propagated by the 
groups of DIEHL (KU Leuven) and FAGIANO, is based on online optimization of the power 
output of the system, mainly employing nonlinear model predictive control (NMPC). The 
desired trajectory results from the optimization, hence the determination of control inputs and 
flight path planning are combined. Another philosophy is to prescribe a desired trajectory 
which is believed to make the kite produce an optimal power output. The control problem 
then reduces to let the kite track the desired trajectory, and different control approaches can 
be applied. In the following an overview over existing concept and their shortcomings is 
given.  

1.3.1 Model Predictive Control 

The first to come up with a proposal for automated control of tether kites was DIEHL et al. [1], 
starting with a linear quadratic regulation control (LQR) proposal for an analytical kite model. 
This approach was also chosen by WILLIAMS [2], seemingly independent from DIEHL. The 
underlying model is based on the equations of motion of the kite and hence embodies a 
variety of (unknown) parameters. Moreover, the resulting model is highly nonlinear in terms 
of control. Both approaches relied on the assumption that an asymmetric load on the 
wingtips results in a roll rate, which was then chosen to be the control input. The LQR-
approach was refined to a non-linear model predictive controller (NMPC), that – based on a 
suitable system model – predicts future system behavior and creates steering inputs 
designed optimize a problem-specific cost function. This cost function incorporates the 
maximization of the power output and stability criteria (i.e. the kite shall not exceed certain 
bounds of operation). The NMPC theory has been expanded specifically for periodic control 
tasks to Periodic-NMPC (like kite power systems) by DIEHL at al. [3] in the years ahead of 
that. This theory was refined by HOUSKA [4],[5] and ILLZHÖFER [6] over the next few years, 
and has then also been picked up by CANALAE and FAGIANO [7], [8]. All NMPC approaches 
share the fact that they highly rely on a solid and validated system model (hence the name 
model predictive control), which they internally use for the prediction. However, validated 
models were not available then and so are not today. So all results presented are based on 
simulations, which in turn ground on modeling assumptions with only little evidence from 
measurement (some experiments to validate the models were carried out by FAGIANO, see 
[9]. However, the performance of the controller was not tested.). Main difficulties of modeling 
are the unknown aerodynamic coefficients [10] and the fact that, when the modeling is 
performed correctly, the flexibility of kites has to be taken into account. This results in very 
high degrees of freedom and adds to the complexity of the NMPC structure. Moreover, while 
the theory of (linear) model predictive control often allows the determination of an optimal 
control law by offline optimization (this is, control parameters minimizing the cost function are 
constant), the predictive control of nonlinear systems in general requires an time-intensive 
online optimization of the cost function. If hard constraints are imposed to the optimization, 
the optimization even becomes more time consuming. 

Although NMPC is in fact a powerful control concept and kite power systems would certainly 
benefit from the inherent optimization capabilities, the theory has principle drawbacks. In 
particular, the application of a NMPC controller as proposed by the authors above, to a real 
system requires a preliminary thorough system model validation process. This was not in the 
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scope of this thesis, so further research on the – already rather elaborate – NMPC-theory 
was not chosen. 

What in addition has to be criticized is that all models, on which the different NMPC-
controllers are based, ground on the assumption that aerodynamic forces pull the kite aside, 
and the resulting yawing movement stems from an alignment to the apparent wind. As it will 
be shown later, there is evidence that this is not the case, but that the yawing is a direct 
result of aerodynamic angular moments due to steering inputs. 

1.3.2 Tracking Control 

Another concept, which was at least on the modeling side influence by [1-3], was presented 
by WEILENMANN and TISCHHAUSER [11]. Influenced by general tracking problems, they 
introduce the concept of cross-track error and track error angle, as it was used in this thesis 
(cf. Figure 1-1 and chapter 4.2.2), which implies the predefinition of a desired track. This 
discriminates this approach from the NMPC approaches, where the desired track was an 
outcome of the optimization problem. 

 

Figure 1-1: Illustration of cross-track error δ 
and track error angle ∆χ  

The control law was based on a linear penalization of both errors. It hence was a pure P-
compensator. Experimental results revealed that this approach faced severe problems due to 
actuator constraints1 (i.e. rate limits) and did not perform as expected. The approach of 
KNAPPSKOG [12] is in the first place comparable, as they use a similar system model and the 
error concepts appear again. Yet in contrast, here the curvature and relative movement of 
kite and trajectory are taken into account, and a LYAPUNOV-based control law is designed to 
minimize both cross track error and track error angle. This should in reality mitigate the 
impact of actuator constraints, but the controller was not tested in a real environment. 
Although published before KNAPPSKOG, the work of BAAYEN [13] can be regarded as follow 
up, as it relaxes the need of a validated model. It is grounded on the assumption (or better, 
observation) that the kites yawing movement can be effected ‘somehow’ by the steering 
inputs. The correlation is learned online by an adaption part, and a LYAPUNOV-function 
provides a proof for the stability of the adaption part and the convergence of the cross track 
error towards zero. It shall be noted that the work of BAAYEN introduces the concept of the 
turning angle, which will be found again in this thesis as the course angle χ. The controller 
was tested in real experiments, yet the kite crashed. It was assumed that this was due to 
dead times in the system, however, a proof for that is missing. 

                                                
1 A possible reason is explained in section 4.2.2.9. 

Desired Track 
δ 

χ∆  
v  

Kite 
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1.3.3 Other approaches 

One step back has been done by DE WACHTER and VAN DER VLUCHT (no reference available, 
as internal). Their PID-controller is based on a number of points (usually 4), which are 
consecutively ‘fired’; the concept can be outlined as follows (cf. also Figure 1-2): Once the 
kite crosses the line adjacent to a waypoint (in this case line B of point II), the next desired 
waypoint is activated (hence the sequence of waypoints is ideally a linear permutation 
through the available waypoints). The error angle (here denoted by α∆ ) between the actual 
heading1 and the line between kite and desired waypoint is used as an error in a usual PID-
structure. The gains are tuned manually.  

 

Figure 1-2: Illustration of the n-point autopilot 

The controller showed its performance is several flight tests. Especially the fact that a pure 
heading controller can be sufficient is a notable outcome of this approach (this implies that 
the drift angle is small, see also later on). A similar approach is used by the company 
SkySails, yet only with two lines. Once the kite crosses on the one side of the wind window, a 
steering command to the other side is applied (bang-bang-control). Also this controller 
showed its effectiveness in real experiments [14]. 

Additionally it has to be mentioned that both strategies imply high steering inputs at the 
discrete switching points, which can lead to accelerated wear and overheating of actuators. 
Moreover, the n-point-PID controller showed oscillations in the steering signal, which 
suggests a non-optimal tuning. As also neither apparent wind speed nor the velocity of the 
kite is incorporated, a physical foundation of the controller debatable. 

1.3.4 Conclusions 

Although the NMPC approach seems promising, it was excluded from the focus of this thesis 
for the before given reasons. Especially the lack of a validated model limited the possible 
range of controllers, so a preliminary study on the kite’s reaction to steering inputs was 
performed. The results showed to be well applicable to the tracking control structures 
mentioned in chapter 1.3.2. Especially the elementary correlation of steering inputs to yaw 
rate was a great supporting point of the thesis.  

 

                                                
1 The heading, i.e. the nose direction of the kite, was used in favor of the actual flight direction, as the 

measurement data was deficient. 

I 

II 
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IV α∆  

A 

B 
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2 System description 

This section shall give an overview over the various components that are used in the current 
system setup. In principle, an ordinary kite used in kite surfing is attached via one strong 
cable (hereafter referred to as tether) to a ground-fixed winch. An electrical motor is attached 
to the winch, providing both the ability to wind up the tether and unwind it in the power 
generation phase. 

 

Figure 2-1: Illustration of the power cycle [15] 

To utilize the wind for electrical power extraction1, the (airborne) kite’s angle of attack is 
increased to a maximum, resulting in a high aerodynamic force Faer on its airfoils (order of 
magnitude 1000N on a 25m² kite). The tether supports this force, leading it to the ground. 
Unwinding the cable from the winch at a certain velocity vr results in a mechanical power of 
approximately 

at the motor (acting now as a generator). Here, FT the tether force2. The power production 
phase is also called ‘power cycle’. At the end of a power production phase, e.g. when the 
maximal reel-out length is reached, a mechanism (cf. section 2.2.2) decreases the angle of 
attack, minimizing the tether tension. This is called depowering the kite. The motor winds up 
the tether again, pulling back the kite to a height, at which a new power circle can begin. 
Both phases combined form a pumping cycle. 

In the following sections, all technical components, actuators and sensors are described in 
more detail. A brief description of the software and communication framework is given. 

                                                
1 Later often – though physically incorrect – denoted as generation of power/energy. 
2 The tether force FT is in general not equal to the aerodynamic forces, as on the one hand gravity and 

on the other a non negligible drag on the tether have to be taken into account. 

 
mech T rP F v≈ ⋅  (2-1) 
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2.1 Terminology 

Although most of the concepts are explained in the place they are used/introduced and 
general concepts like reference frames are explained in the appendices, some attention shall 
be paid on general kite terminology. 

 

Figure 2-2: Basic terminology explained 

• The downwind  direction is the direction, into which the wind blows, while the upwind  
direction describes the direction from where the wind is coming. 

• The wind window  is the air volume enveloped by a quarter of a sphere with its center 
at the observer (resp. kite-surfer, or ground station in this case) and the downwind 
direction. 

• The angle between downwind and the left/right of the wind window is denoted by 
azimuth (ξ), while the angle between ground and the kite is called elevation  (η). 

• A kite flying crosswind  mainly flies from left to right (resp. vice versa). 

• The apparent wind speed  is the velocity of the kite relative to the surrounding air 
and hence a superposition of the wind speed and the kite speed. 

These circumstances are also depicted in Figure 2-3. More detailed descriptions are given in 
Appendix B. Further terminology an notations are given in Appendix A. For terminology of 
aviation engineering and navigations see [19]. 

Azimuth ξ 

Zenith 

Downwind 

Elevation η 

Wind direction 

Wind envelope/ 
window 
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2.2 System Layout 

 

Figure 2-3: An airborne LEI-type [16]; in the lower left corner the control pod 
can be seen, while the P ITOT-tube is suspended between the bridle lines  

2.2.1 Kite 

The kites used in the current setup are mostly directly derived from ordinary kite surfing kites. 
Common types are 

• Leading Edge Inflatable (LEI): The leading edge beam is inflated on the ground using 
pressurized air. Most of the examples in this report are based on a 25m² LEI-type kite, cf. 
also Figure 2-3. 

• Ram-Air Kites: The leading edge contains air-inlets, which gradually inflate the kite with 
rising airspeed. Launching becomes more difficult, as the structure is slack while not 
airborne. An advantage is a better aerodynamic performance (at the LEI-beam causes ait 
turbulences). Additionally the risk of leaks is banned. 

• Kiteplanes: A hybrid between kites and planes. Kiteplanes have a plane shape (i.e. wings 
and tail wings), but are inflated [20]. 

The following sections describe the most commonly used LEI-type kite (cf. Figure 2-3) in 
more detail. Figure 2-6 shows a cross section of the wing, while Figure 2-4 depicts the bridle 
system.  
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Figure 2-4: Bridle system of the present kite with airborne steering mechanism 
(note that there is only one steering line , yet two steering winches  on the 

steering motor) 

2.2.2 Control Pod and Bridle System 

A surfing kite is usually controlled using a handle bar. Steering lines are attached to both 
sides of the bar, leading up to the tips of the kite. This enables the surfer to control both the 
angle of attack (by moving the handle straight down, pulling down both wingtips 
symmetrically) and to steer the kite in a certain direction (by tilting the bar and thus applying 
an unsymmetrical load to the wingtips). Pulling down the right wingtip (i.e. lowering the right 
bar tip) will result in a right-turn of surfer and kite. This technique has be adapted to the 
usage of airborne control, cf. Figure 2-4. The control pod contains two motors (see also 
Figure 2-5, note that the motors are in fact next rather than above each other), one for 
steering the kite and one for controlling the power setting. Only one winch is connected to the 
power motor; winding up the power line applies a symmetrical load the wingtips (via two 
pullies), which leads to an increase in the angle of attack. Two winches on the steering motor 
each wind up one end of the (i.e. one) steering line, so that a revolution of the steering motor 
releases one end, while pulling on the other. An asymmetric wingtip load is applied, the kite 
begins to turn. 

Due to limitations of the maximal turning rate of the motors (i.e. due to current limiters) the 
maximum rate of change of both actuators is limited to 

 
sP %max 25≈ɺ . (2-2) 

Moreover the motor controllers induce a total dead time of approximately 200ms between 
reception and execution of a steering command. In addition, it has to be noted that finding 
the neutral potentiometer position for steering, i.e. at which both steering lines are equally 
deflected and hence no cornering motion is introduced, is not trivial and has to be calibrated. 
Due to heavy wind gusts or a steady creep this value can change even during a flight. 

The airborne steering system is still subject to discussion, as some groups prefer to lead the 
steering lines down to ground (like with actual sport kites). This has positive effects on the 
aerodynamic properties of the kite, as the pod adds additional drag and weight. On the other 
hand, steering lines of more than 100m length also imply problems: 

Control Pod 

Steering Winches 

Power Winch 

Steering Line 

Power Line 

Knot 

Pulley 

Bridles to Tether 
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• To overcome the wind-drag added to the steering lines over their full length requires 
unnecessary high steering motor power 

• Flexibility and elongation effects result in longer signal traveling time and thus 
decrease the systems response time and control performance 

• The steering lines have to be reeled in and out along with the main tether, while still 
enabling full control over the kite. 

 

 

Figure 2-5: Drawing of the control pod [17] 

Besides the steering mechanism, the pod also contains sensors (especially potentiometers 
to determine the positions of both motors), microcontrollers, communication devices, 
antennas and batteries. The pod is built waterproof and is tightly packed in Styrofoam to 
prevent damage to the components in case of a crash. 

The tether consists of a 4mm thick Dyneema©-cable [21] and withstands several hundred 
kilograms of load. 

2.2.3 Ground Station 

The ground station contains the main winch with the motor/generator (asynchronous, 18kW) 
and most of the hardware components. This is in particular 

• Winch and kite control computer 

• Timeserver (for a common time) 

• Antennas and sensors (a tether force sensor, wind sensor, ground station GPS) 

Real-time operating systems (Ubuntu 10.04) were used to guarantee a fixed sampling rate 
for both measurements and the execution of the control algorithms. However, as most of the 
components of the ground station were not in the scope of this thesis it will not be further 
expanded on them. 
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2.3 Sensors 

The system contains a variety of different sensors such as GPS-sensors, an inertial 
measurement unit (IMU), a wind-sensor, a PITOT-tube, potentiometers for each steering 
motor, force sensors and various others. This chapter gives a general introduction and 
overview over the sensors in use. The IMU will be described in more detail, as it is the crucial 
sensor for an automatic flight controller.  

2.3.1 Inertial Measurement Unit (IMU) 

The IMU used is a XSens MTi-G [22] comprising a GPS-unit, both a 3-dof accelerometer and 
3-dof gyroscope as well as a magnetometer and a barometer. An internal KALMAN-filter fuses 
the measurement data to provide an estimation of the sensor’s … 

• position  (relative to the center of the earth) 

• attitude  (relative to EX, ZYX-rotational sequence) 

• velocity  (vOK)EX (relative to a NED-type coordinate system EX, cf. Appendix B) 

• acceleration (aOK)KS (expressed in sensor-fixed reference frame KS) 

• rotational rates  (ω OKS)KS (expressed in sensor-fixed reference frame KS) 

For definition of the reference frames see Appendix B.  

Mounting position 
The IMU-chasing is encapsulated in a PE-foam-layer, which in turn is attached to the main 
(center) strut of the LEI-kite (see Figure 2-6 and Figure 2-7) using industrial duct tape and/or 
Velcro. 

 

Figure 2-6: Mounting position of the IMU 

The sensor-package is removed after every test flight and reattached manually at the 
beginning of a new test by sense of proportion, as there is no visible reference on the strut.  

Misalignment 
Both embedding the sensor into a hand-carved PE-foam-frame (with a certain amount of 
clearance) and the attachment by adhesive tape inevitably lead to a not reproducible 
misalignment of the sensor from one test to another. While the clearance inside the chasing 
might be negligible, the effect of manually reattaching the sensor at each time has to be 
taken into account when post-processing measurement data. As the main strut is bent, the 
sensor’s x-axis might be tilted differently depending on the position the sensor is mounted.  

Leading 
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zK 
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Figure 2-7: Close-up depiction of the mounted IMU 

The misalignment angle between the xK- and the xKS-axis has to be extracted from the 
measurement data after each test flight. The value usually varies between 10° to 20°. 

Faulty data 
Besides the mentioned misalignment, the IMU often gave out faulty data. Especially during 
high wind speeds and highly dynamic maneuvers the GPS-fix was lost (connection to 
satellites). The reason for that is unknown, yet could also be observed by other research 
groups adjacent to the chair. 
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Figure 2-8: Velocity vector misalignment 

Figure 2-8 exemplarily shows the trace of the kite (parallel downwind projection, hence only 
the y- and z-axis) with the velocity vectors given (at a distance of 1s), both data given out by 
the IMU. It can be seen that the velocity vector is hardly aligned to the track, and before the 
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turn even starts, begins to point inwards. After the turn it takes some time to realign to the 
track again. This behavior is also called pirouette effect, as in a reconstruction-plot of the 
measurement data the kite begins to rotate before the turn, and ‘drifts’ through the corner like 
an ice figure skater during a pirouette. It has to be noted that the determination of velocity 
data from GPS data (which happens internally in the KALMAN-filter of the IMU) is not very 
accurate. This can be one reason for this behavior. 

It is believed that this misalignment between position, orientation and velocity poses major 
problems to the controller and will be addressed later on. 

2.3.2 Wind sensors 

A ground-fixed wind sensor mounted to a 6m long beam is erected several meters upwind. 
The collected wind speed vw together with the air temperature and the angle of the wind 
direction relative to (magnetic) north χw is sent to a central measurement server and is thus 
available inside the network. The determination of the wind direction turned out to be 
unreliable and has to be corrected manually in the field. In addition to that, the kite is 
equipped with a PITOT-tube situated between the bridle lines (see Figure 2-3). It can freely 
align to the airflow by using a CARDAN-suspension built of strings.  

2.3.3 Steering Potentiometers 

The current states of both the steering- and the power-microwinch in the pod are available 
through analogue potentiometers. The potentiometers are connected to the AD-converter 
(ADC) of the pod’s main microcontroller. The output is a bit-value between 0 and 4095 bits. 
The absolute values Pabs are usually converted into relative steering/power-values with a 
range of ±100% resp. 0–100% as follows: 

 ( )
abs min

max min
2 1 100%abs S S

S S
S S

P P
P P

P P

 −
= ⋅ − ⋅ − 

 (2-3) 

for the steering value and 

 ( )
abs min

max min
100%abs P P

P P
P P

P P
P P

P P

 −= ⋅ − 
 (2-4) 

for the relative power setting, respectively. The relative power setting is defined from 0–
100%, as there is no neutral position. 0% power setting would result in a fully depowered, 
slack kite, while 100% represent the highest possible angle of attack. Pmax (Pmin) refer to the 
maximal (minimal) potentiometer values from the ADC (nominally 4095 resp. 0). Therefore 
100% relative steering relates to a maximum pulling on the left (seen from a kite-fixed 
observer). The kite would make a left turn.  
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3 System Behavior 

To build an automated flight controller a minimum of system knowledge is helpful. Even if a 
model-free approach was chosen, knowledge about basic correlations supports the 
development process. While the behavior of components like the winch, motor/generator-
combination or tether might be of secondary interest, the investigation and understanding of 
the kite’s flight properties is crucial. Especially knowledge about the reaction of the kite to 
steering and power-inputs can simplify the development of a control system. 

3.1 Available Models 

A considerable amount of literature exists on the modeling of kites, and a short overview 
shall be given here. Yet although mainly groups work on high altitude wind power systems in 
theory, only few do have a real system, which can be used to verify and validate the derived 
models. Therefore only a view models have been compared to real experiments, and were 
mainly intended to verify the expected tether force (as this force determines the eventual 
power output).  

In addition it has to be distinguished between 

• analytical models , which are mainly based on the governing equations of motion 
and consist of limited degrees of freedom (usually in the order of 101). They are 
usually based on a series of assumptions and neglect various influences in order to 
reduce the complexity, yet should still provide acceptable results for their field of 
application. Especially analytical models have to be validated with real measurement 
data, as there is often no other way to determine unknown parameters or to justify 
assumptions. 

• In contrast to that, numerical models  try to reflect reality as good as possible and 
are based on the internal structure and interaction between the components, 
materials and the environment (aerodynamics). These models usually embody a high 
amount of dofs (order of magnitude 101-103), and thus require high computational 
power. 

Usually, only analytical models with limited degrees of freedom can be employed for 
controller design. One reason is that most control theories require analytical equations, from 
which the control law can be derived. Another reason is of course that at controller has to run 
alongside to the controlled plant and thus computational time is limited. The overview given 
here therefore focuses on analytical models. 

3.1.1 Point-Mass and Ridgid-Body Models 

DIEHL and HOUSKA [1-5] assume a point-mass model of the kite with the three translational 
degrees of freedom, influenced by the aerodynamic forces (plus gravity and tether force). 
They belief that a steering input introduces a rolling movement of the kite, resulting in a tilted 
lift vector (cf. Figure 3-1), which then causes a side-force (denoted by FS), pulling the kite 
aside.  
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Figure 3-1: Rolling lift vector model 

It is further assumed that the resulting build-up sideslip angle imposes an asymmetry in 
aerodynamic forces, which lets the kite realign to the incoming air flow. A yawing movement 
would result (cf. the dihedral of plane wings). This concept is also call rolling lift vector and is 
also assumed by several other groups [7,11]. 

Altogether a major shortcoming of this approach is that a rolling movement can hardly be 
observed neither in reality nor in the measurement data available. In addition it is hard to 
belief that the main reason for yawing is the result of a induced decrease of sideslip, while 
aerodynamic moments (that directly result from an asymmetric steering input) are fully 
neglected and most certainly also have their stake (cf. also the numerical simulations of [20]). 
Some experiments based on that point-mass model approach have been carried out by [9], 
yet they were only employed to verify the power output under certain conditions. No 
evaluation of the steering mechanism was carried out. Due to these shortcomings this 
approach is assumed to be inappropriate for control design (this conclusion was also made 
by WILLIAMS et al. [10]) 

As a consequence, rigid body models incorporating also rotational dofs were proposed by 
e.g. HOUSKA and WILLIAMS. It might in the first place be counterintuitive to model a highly 
flexible object as a ridig body, yet under certain operational modes this assumption can be 
justified. HOUSKA presents in [23] a 9-dof rigid body model of the kite and argues, that the 
dynamics and the inertia of the tether may not be neglected. It was also anticipated that the 
rotational inertia of the kite is small and can be neglected, which matches well with the 
results presented in this thesis (i.e. the almost linear relation of the yaw rate to a steering 
input). The forces and moments incorporated are modeled using aerodynamic derivatives, 
that is, the afore mentioned aerodynamic coefficients are functions of the system inputs and 
states. This is also standard practice in modeling of airplanes. However, as measurement 
data was missing, also this approach has to present the results without experimental 
validation. WILLIAMS [10] proposes a similar approach, yet neglecting the tether in the 
calculations. The aerodynamics coefficients are also considered being depended on the 
system states, yet also here the correlations are given without further assessment of their 
dependence on the steering input1.  

                                                
1 It has to be remarked that the steering mechanism of the kite in [10] differs from the one in this 

thesis. Small rails are attached to the wingtips, and a cart runs along them to deform the arc. 
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Figure 3-2: 2-plate model representation 

Also advancements of this approach are presented by WILLIAMS [24] and step into the 
direction of multi-body models. Figure 3-2 shows a kite model consisting of two joint plates 
representing the left resp. right of the arc-shaped kite wing. For each plate average 
aerodynamic derivatives can be assumed resp. modeled and the equations of motion can be 
derived using e.g. LAGRANGE’s equations. However, although the determination of the 
dependencies of the kinematics on steering inputs is presumably easier, the resulting 
equations are highly nonlinear and their mathematical solution faced convergence problems. 
Especially for models with more than 2 plates it was difficult to determine equilibrium 
positions.  

DE GROOT presents – besides a multi-body approach – a derivation of a 6-dof ridged body 
kite model with aerodynamic forces and moments depending on their aerodynamic 
derivatives, yet has to state a lack of evaluation and system knowledge, too [25]. 

3.1.2 Other Approaches 

Besides the analytical strategy a variety of numerical simulations have been carried out. Yet 
as it was explained before, those approaches are mainly inappropriate for control synthesis 
and are therefore not explained here. Notable works have been carried out by BREUKELS 
[20], DE GROOT and BOSCH [26]. Numerical models can to a certain extend be used to 
validate analytical models, yet of course the numerical ones have to undergo a validation as 
well. 

An interesting remark is that SkySails GmbH published a identification result almost identical 
to the one found in this thesis [14]. 

3.1.3 Conclusions 

Very elaborate approaches do in fact exists. Yet all of them face the problem, that the 
dependency of the steering input to aerodynamic forces, i.e. the aerodynamic coefficients 
resp. derivatives, are unknown. In particular, the mechanism that steers the kite is obscure.  
Once theses models have been verified and validated, a controller can be based on them. 

Altogether is has to be stated that, although very elaborate and promising approaches are 
available, their lack of validation prevents them from being used in a controller intended to be 
used in reality. Even low level approaches like point mass models, which could be evaluated 
without much effort, turned out to not satisfy the requirements of a flight controller, as they 
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neglect rotations. As shown later on, it is more likely that translational dynamics 
(accelerations, forces) can be neglected in favor of the dominating rotational dynamics. 

Although not in the scope of this thesis, some effort has hence been put into the derivation of 
simple, low level, but yet resilient input-output-relations. Those empirical relations were later 
on used for the development of the controller. 

3.2 System Identification 

It is well-known that position and orientation of a body subject to forces and moments are 
determinable by differential equations. For objects moving in 3-dimensional space there are 
6 governing equations, each depending on several, possibly unknown parameters. Those 
parameters most often need to be determined from measurement data. However, often an 
approximation of the governing equations is sufficient for describing the system under distinct 
circumstances. This chapter tries to outline the derivation of empirical (‘black-box’) 
relationships directly based on measurement data.  

3.2.1 Identification 

According to NEWTON’s 2nd axiom forces and moments acting on a body affect the body’s 
position and attitude via their second derivatives, the acceleration respectively the rotational 
acceleration. It is thus advisable to investigate the effect of the steering forces and moments 
on these values. While information about the kite’s acceleration is derivable from the IMU-
measurements, predicates on rotational accelerations are difficult. To this day, sensors 
directly measuring rotational rates are at least rare, if not unavailable at all. Investigation was 
thus limited to the rotational rates directly, or a numerical differentiation of the rates.  

In the present kite setup, steering forces and moments are introduced via the steering lines, 
cf. chapter 2.2.2. The resulting deformation of the flexible structure creates aerodynamic 
forces and moments. Physically spoken, it is anticipated that a difference in line length ∆ℓ  
affects the aerodynamic coefficient C in the basic aerodynamic lift-equation1 

As also indicated, the coefficients may depend on other factors like the air flow velocity itself. 
Besides the aerodynamic coefficient, the air density ρair, effective airfoil area A and the air 
speed vapp determine the resulting aerodynamic forces and moments. Even though the 
difference in steering line length is computable using the microwinch geometry and the state 
of the two steering motor potentiometers, there is no validated correlation for these 
coefficients yet available.  

                                                
1 This equation is shall visualize the dependencies of the forces acting on the kite and is intentionally 

left in a very general form. 

 ( )21
, , ,...

2aer air app appF A v C C f vρ= ⋅ ⋅ ⋅ ⋅ = ∆ℓ . (3-1) 
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Figure 3-3: Rotational rates and steering setting f or a random maneuver 

 

 

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2

Time [s]

A
ng

ul
ar

 V
el

oc
iti

es
 [r

ad
/s

]

 

 

Roll rate p [rad/s]
Pitch rate q [rad/s]
Yaw rate r [rad/s]
Steering input P

S
 [1]

 

Figure 3-4: Rotational rates and steering setting d uring a figure-of-8 maneuver 
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3.2.1.1 Rotational rates 

Figure 3-3 shows a comparison of the rotational rates (ω0K)K together with the relative 
steering setting PS for a random maneuver1. It is obvious that the yaw rate r almost linearly 
follows the steering input, while pitch and roll rates q and p, respectively, remain almost 
unaffected. This is a remarkable fact, as one should anticipate the rate acceleration to be 
proportionally depending on aerodynamic forces and moments introduced by a steering line 
length difference. It can however be seen that the correlation can not be fully linear as at 
higher steering deflections the rates increase disproportionally. In addition, especially in wide 
cross-wind maneuvers as depicted in Figure 3-5, a bias of the steering setting off zero can 
be observed. That is, even though no yaw rate is measured (the kite is flying straight), there 
is a non-zero steering input present. Motivated by Eq. (3-1), it suggests itself to include the 
airspeed vapp into the consideration. Assuming in addition that the bias-effect is due to gravity 
(in crosswind motion the lift forces have the smallest effect on counteracting gravity, see 
below), a ‘blind guess’ for a formulaic correlation between yaw rate and steering setting 
might look like the following: 

n, c1 and c2 are parameters to be determined. The term cos(·) takes the angle between 
gravity and the kite’s lateral direction (eK

y) into account and is explained below. Evaluating 
the dot product it results that this term can be expressed using the EULER-angles: 

 

{ }( ) ( ) ( ) [ ] ( ) ( ) ( )0 0 0

0
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  

g T e
g e T Ψ

g
∡  (3-3) 

As this rather long term will be used more often later on, only the abbreviated version G(Ψ0) 
will from now on be used. Here Ψ0 indicates the set of the EULER angles of the rotation 
between EG and K, cf. Eq. (3-6) and Appendix B. 

Although this in a mainly empirical approach with only little physical foundation, the results 
are satisfying. In Figure 3-5 the congruence of measured data and (3-2), evaluated with n=1, 
c1=89·10-3 and c2=0.132 is shown. A curve-fitting algorithm2  was used to determine the 
coefficients. Another identification result is given in Figure 3-6 with the results: c1=70·10-3 and 
c2=0.131. 

► N.B.:  It is worth remarking that n=1, although one would – in accordance to Eq. (3-1) – 
expect it to be 2! 

► N.B.:  The correlation presented in Eq. (3-2) was also found by [14]. 

                                                
1 The power setting was PP=80%, and the misalignment of the IMU has been compensated using an 

angle to 15°. 
2 In this case, the MATLAB© lsqcurvefit()-function was used 

 ( ) { }( )1 2 cos ,n y
S app S kr P c v P c= ⋅ ⋅ + ⋅ g e∡  (3-2) 
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Figure 3-5: Evaluation results of the empirical mode l of Eq. (3-2) 
with c 1=89·10-3 and c 2=0.132 of a figure-of-eight (cf. Figure 3-4) 
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Figure 3-6: Evaluation results of the empirical mode l of Eq. (3-2) 
with c 1=70·10-3 and c 2=0.131 of 3 figures-of-eight 

To better understand the second term of Eq. (3-3), which takes into account the gravity, one 
explanation attempt is outlined in the following sketch: 

 

Figure 3-7: Intended slip-angle to avoid crosswind crash (exaggerated) 
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In (a), it is obvious that no force can counteract gravity, so the kite will eventually crash. A 
constant steering input lets the kite tilt up a little (introducing an intended drift angle, see (b)), 
increasing the angle of attack of upper wing tip. A lift force component F’L able to 
compensate for gravity emerges. This shows up as the second term in Eq. (3-3). Admittedly, 
this is just a qualitatively explanation and requires additional physical investigation, which 
however was not in the scope of this thesis. 

3.2.1.2 Influence of the power setting 

The lower the power setting PP, the more difficult it becomes to steer the kite. A slackly 
loaded airfoil can allegedly not perform the needed deformations necessary to steer the kite. 
Thus, at least parameter c1 is depending on the power stetting of the kite. This fact is 
illustrated in Figure 3-8: During the first 53s, the kite reacts on the steering input in the known 
manner. After t=53s, the power setting PP is reduced from 80% to 40% (this is, in fact, a 
depower maneuver). As a result, the kite does almost not react to the steering input 
anymore. Yet as during powered flight the power setting is usually held constant, this effect 
was not incorporated in the controller.  
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Figure 3-8: Effect of power setting on steering reac tions 

3.2.1.3 Accelerations 

Figure 3-9 depicts the lateral acceleration in body-fixed coordinates for the same figure-of-
eight as shown in Figure 3-4. Recall that the absolute acceleration signal in body-fixed 
coordinates, relative to an inertial frame (in this case W) consists of two components (cf. 
Appendix A.2.1), 

 ( ) ( ) ( ) ( ) ( )WW WW WK WWK
K K K KK K K KK

= = + ×a v v ω vɺ ɺ  (3-4) 

the first (on the right-hand side) taking into account the relative change of the velocity vector 
as observed by an kite-fixed observer, the second containing the relative rotation between 
the inertial frame an the kite-frame. All components are plotted. It can be seen that there is in 
fact some relation between the relative acceleration in lateral direction and the steering input, 
just like assumed by most modeling approaches presented above. It can however also be 
seen that the major part of the accelerations come due to the fictitious forces resulting from 
the relative change in orientation between the reference frames.  
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Figure 3-9: Lateral accelerations in body-fixed coo rdinates 
(same situation as in Figure 3-4) 

The relative accelerations do not exceed the 1g mark and are only present for the short 
period during a steering input. It is hence unlikely that accelerations are the main driver for 
the rotation of the kite, as it was assumed by most models available in literature. The 
investigation of the accelerations was hence limited to observation and closer studies have to 
be postponed to later works. However, the controller performed well even without 
consideration of the lateral translational dynamics, as it will be shown later on. 

3.2.1.4 Drifting Movement 

The drifting angle (also kinematic side-slip angle) βK shall be examined. It is defined as  

where vk resp. uk correspond to the y- resp. x-component of the kite’s velocity vector (relative 
to ground) in body-fixed coordinates (vK)K. It is non-zero if a sideward velocity component vk 
is present. In this case the kite would ‘not fly where it is facing to’, it seems to drift aside. The 
fact the steering inputs induce a lateral acceleration consequently results in a, at least 
temporary, velocity component vk and a certain drift is hence inevitable. By examining the 
measurement data, drifting become obvious especially after turns. Figure 3-10 shows the 
drift for a half figure-of-eight (two GPS signals were available, thus both are plotted). It can 
be seen that the angle varies in a range between ca. ±10°. Especially during crosswind 
maneuvers (i.e. between t=19:05-19:15, where the kite flies from lower left to upper right), 
the drift angle is almost constantly negative. The reason for that was explained above (cf. 
Figure 3-7). 

 
1tan k

K
k

v

u
β −  

=  
 

, (3-5) 
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Figure 3-10: Drift angle βK 

 

3.3 Consequences 

The correlations and circumstances explained above allow for great simplification of the 
underlying control concept. In this subchapter it will be outlined how the correlations can be 
simplified and then used for control. 

3.3.1 Rotational Rates 

First visualize that the attitude of the kite can be expressed as a superposition of consecutive 
rotations. In 3-dimensional space, 3 rotations suffice for the description of the orientation of a 
rigid body; see the lower path in Eq. (3-6). Here however additional rotations have been 
introduced, partly due to better comprehensibility, partly due to the structure of the system. 
Especially to employ the concept of the small earth analogy the following set of rotations (i.e. 
the upper path) was chosen between the normal earth-fixed system EG (which shall be 
regarded as an inertial reference frame1) and the kite-fixed reference frame K: 

Note that the index SE is often dropped in the EULER-angles ( ) ( ), , , ,SE SE SEψ θ φ ψ θ φ≡ =Ψ  

between SE and K. As a consequence, the rotational rate ωEG,K of the kite-fixed reference 
frame in respect to EG can be expressed as: 

 

( ) ( )
�

( )
�

, , ,W f ff ξ η ψ θ φχ

= + +EG,K EG,W W,SE SE,K
ω ω ω ω

ɺ ɺ ɺɺ ɺɺ
���

 
(3-7) 

                                                
1 In fact, EG cannot be an inertial reference system due to the rotation of the earth. This influence 

however can be well neglected, which is a common measure even for fast-flying aircrafts. 

 ( ) ( ) ( )

( )

2

0 0 0

: / : / :: : / : / :

: / : / :

W SE SE SE
π ξ ηχ ψ θ φ

ψ θ φ

− − − → → → → → 
→  

y x yz z y x

z y x

W SE
EG K  (3-6) 
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Employing the attitude differential equations for the specific rotation sequences and giving all 
terms in the kite-fixed reference frame yields1 with the aid of Appendix C.2: 

 

( )
0 0 0 1

0 0 0

1 1 0 0

SE

K EG W K W SEK

SE

p s s

q c c s c

r c c s

ξ θ ψ
ξχ ξ θ φ φ θ
η θ φ φ φ

− −         
          = = ⋅ ⋅ + ⋅ − ⋅ + ⋅          
          − −         

EG,K
ω T T

ɺ
ɺ

ɺɺ
ɺ ɺ

 (3-8) 

This equation shows that the three rotational rates p, q and r are in general a superposition 
of the time derivatives of six angles. However, for most of the regions of operation, Eq. (3-8) 
can be simplified to a great extend. 

Rate of Change of Wind Azimuth χW 
Disregarding gusts and short term squalls the wind direction can be regarded as mostly 
constant. Experience shows that the wind direction usually changes less than 10° per hour, 
which equates to 

 10
0.001

1
rad

W sh
χ °≈ɺ ≪ . (3-9) 

For an approximation of Eq. (3-8) this term is thus very well negligible. 

Rate of Change of the Spherical Angles ξ and η 
As it can be found in Appendix C.2, the time derivatives of the azimuth and elevation angles 
ξ and η can be determined by 

 cosy

x

v

v

ηξ
η
   

=   
  

ɺ

ɺ
, (3-10) 

where iv  represent the components of the projected kite velocity in the SE frame. For an 

estimation of the order of magnitude of both values assume an average velocity of the kite of 
10ms-1 at a minimum tether length of 200m, with a maximum elevation of η≈60°. Hence 

 10
0.10

200 0.5
10

0.05
200

m
s rad

s

m
s rad

s

m

m

ξ

η

≈ =
⋅

≈ =

ɺ

ɺ

. (3-11) 

As the kite usually flies at higher tether lengths, varying velocities and at lower elevation, the 
values given in Eq. (3-11) can even be assumed to be smaller (factor 0.2-0.5). Moreover, the 
velocity is distributed to both directions, lowering the values even further. Compared to 
yawing rates that are more than an order of magnitude higher, these values can be 
neglected in a first approximation. 

 

                                                
1 For the sake of clarity the trigonometric functions sin(·), cos(·) and tan(·) have been abbreviated by s, 

c and t, respectively. 
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Figure 3-11: Effect of tether sag on esp. θSE for 
a powered (a) and a depowered (b) kite 

The EULER-angles of the Small Earth 
The third term of Eq. (3-8) can also be simplified. Figure 3-11 depicts the fact that for a 
powered kite the pitch angle θSE is small due to the tether tension. This is, the heading (xK) is 
almost parallel to the tangential plane to the small earth. The kite does not ‘dig’ into the earth. 
Another intuitive fact is that 0SEφ ≈ , i.e. the kite does not bank in respect to the tangential 

plane. Any deflection around the xK-axis would be straightened out by the tether force. As a 
consequence, also the time derivatives of these two angles vanish. This can be summarized 
as follows: 

• , 0SE SEφ φ ≈ɺ : The banking motion of the kite in respect to the tangential plane to the 

small earth is negligibly small, as strong tether forces straighten out every banking 
deflection. 

• , 0SE SEθ θ ≈ɺ : There is no pitching movement in respect to the tangential plane to the 

small earth, the kite is leveled flight above the small earth. 

• The order of magnitude of SEψɺ  is around 0 4 rad
SE sψ ≈ −ɺ , which equates to a 180° turn 

in less than one second. 

These correlations could possibly have been found in another fashion, e.g. by stating that the 
tether is straight in almost all flight situations. However, to emphasize the relation to an 
airplane in leveled flight above ground this way was chosen.  

Conclusion 
Summarizing the observations from above renders Eq. (3-8) into the simplified form 

 

( )
0

0
K

K

p

q r

r

ψ
ψ

   
   = ≈ ⇒ ≈   
      

EG,K
ω ɺ

ɺ

, (3-12) 

reading: The kite mainly performs yawing movements, which in first approximation can be 
described by the first time derivative of SEψ .  
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3.3.2 Accelerations 

The accelerations will be considered for argumentation, but as the impact of a translational 
movement is slower that the immediate change in direction (double integration!), the lateral 
acceleration relation will not be included in the first version of the controller.  
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4 Control Strategy 

The actual scope of this thesis is the development of a controller that automatically steers the 
kite on a desired trajectory (also referred to as desired flight path rK

des  (read: desired position 
of the kite). rK

des is determined by a higher level system component (not scope of this thesis) 
and shall eventually be a time-varying trajectory that maximizes the kite’s power-output, for 
instance depending on the actual wind conditions. For this thesis however, rK

des was 
assumed to be of constant shape, mainly the before mentioned Figure-of-8.   

4.1 Requirements 

Besides general requirements controllers have to meet, the control of kites faces additional 
challenges and problems. Self-evidently a controller has to be stable (at least in the areas of 
operation considered) and feasible. In addition to that, further requirements are: 

• Portability:  Depending on the wind conditions, different kites (i.e. types and scales, 
cf. 2.2.1) are used. So a flight controller has to be able to cope with more than one 
kite. 

• Insensitive to parameter uncertainties:  This requirement not only arises from the 
necessity of portability, but also from the fact that for all models available the model 
parameters are either complex to determine or their dependencies are not fully 
understood (as for instance those found in the previous chapter).  

• Integrable into existing hardware/software framewor k: The developer is restricted 
to integrate the controller into the existing software structure, e.g. using given update 
rates. In addition to that, faulty sensor data has to be assumed. 

• Robust in terms of time delays and actuator constra ints:  Non-optimized system 
components (e.g. steering motor controllers), signal traveling time due to a highly 
distributed system structure (containing a vulnerable wireless link) and physical 
limitations in the motors and gearboxes had to be taken into account in the 
development process. 

The lack of verified models and thus system knowledge, high portability demands and the 
fact that this controller shall be one of the first flight controllers for kites (and thus not much 
literature reference is available) motivate a simple structure and abdication of a strong 
model-basis.  

4.2 Development 

4.2.1 Preliminary Considerations 

It has been found [21] that for maximal power generation the optimal shaped trajectory has 
the form of a lying ‘8’ – at least an observer at the ground station would have this impression. 
But in fact the kite reels out during a power circle and an off-standing observer would rather 
see a deformed and lengthened helix. So to be more precise one should speak of a 
projected figure-of-8, where the ‘outward’ component of the movement is not considered. 
The trace of the intersection between (here: perfectly straight) tether and a unit sphere with 
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origin at the tether exit point would form a perfect figure-of-8, even if the kite would reel in or 
out. Mathematically speaking, this intersection is just the norm of a position vector (relative to 
the tether exit point): 

 
, ...K K K K

des des= ⇒ → →r
ρ r ρ r ρ

r
 (4-1) 

The intersection point will be referred to as K. By projecting both desired trajectory rK
des and 

position of the kite rK onto the unit sphere, the control problem can be perceived just like 
steering an airplane over ground. A desired track over ground is prescribed on the surface of 
the sphere (‘small earth’). The controller needs to steer the kite in such a way that the kite’s 
track over ground best matches the desired track. The reeling-out movement is taken out of 
the consideration and thus also the complexity is reduced. Figure 4-1, which is clearly 
influenced by Figure 1-1, shall visualize this idea. A flat projection (a map) of the kite and the 
desired trajectory is drawn (top view).  

 

Figure 4-1: Top view on the map projection of desir ed track and actual track  

In the shown situation the kite has a cross-track error δ (distance error), a track error angle 
∆χ and a drift angle βK. χC is the course angle. As the main working space in the following is 
the small earth, the index SE will often be dropped for the sake of clarity. Generally, all 
angles measured relative to the course are denoted by an ∆(·), while absolute angles are 
measured from small north. 

4.2.1.1 Proposed Structure 

The task of the controller is to bring the kite onto the desired trajectory, hence minimizing the 
cross track error δ. By observing Figure 4-1 is becomes clear that if one was capable of 
controlling the track error angle ∆χ, i.e. letting the kite point towards the trajectory, this can 
be achieved. It is worth mentioning that both values δ and ∆χ are in fact relevant errors that 
need to be reduced, but the track error angle ∆χ will be utilized as the control variable to 
drive δ, as the controlled variable, towards zero. By geometric consideration, the decrease in 
distance δ can be assessed by the simple correlation 
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 ( )sin sin Cv vδ χ χ χ= − ⋅ ∆ = − ⋅ −ɺ  (4-2) 

which, although this is a flat projection, will turn out also hold for the general case on the 

curved surface. v = v  is the norm of the projected kite velocity, which is defined as: 

 K=v ρɺ . (4-3) 

For details also see Appendix C. Hence by controlling the flight direction of the kite, 
represented by χ, in an appropriate way, the distance in error can be diminished. In fact, χ 
should desirably be greater than the course angle χC, so that the kite is flying towards the 
desired trajectory. This desired track angle is called bearing angle and is denoted by χcmd, as 
it will be the commanded angle to the inner loop, which is explained later on. The bearing 
vector is the direction in which the kite should desirably fly at an instance of time. However, 
as the flight vector of the kite can not be set to a desired value, a controller is needed to drive 
the actual track angle χ towards χcmd, hence minimizing the error eχ between those two. This 
leads to the following considerations: 

• The bearing is determined by an overlaying component of the controller, referred to 
as Bearing Controller . The determination of the bearing is mainly based on 
geometrical considerations. 

• An inner loop controls the track angle and hence the attitude of the kite so that the 
bearing will be achieved. This component is called Attitude Controller  and takes the 
dynamics of the kite into account. 

This two-loop structure, where position and attitude and thus geometrical from kinematic 
considerations are separated, is a common and widely accepted control approach, also in 
aviation engineering. In the following chapters, the chain of thoughts will be continued and 
deepened. Figure 4-2 illustrates this idea, though is not the final structure of the controller 
presented in this report. 

 

Figure 4-2: Principle two-loop bearing/attitude cont rol structure 
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4.2.2 Bearing Controller 

Before investigating how the kite can trace the bearing angle in the inner loop/attitude 
controller, more attention has to be paid to the determination of this angle. This chapter will 
present methods to determine this angle, mainly based on geometrical considerations. 
Equation (4-2) motivates a definition of the bearing as follows:  

 
cmd C cmdχ χ χ= + ∆   (4-4) 

The first term (the course angle), adds information on the shape of the track to the bearing, 
while the second term, cmdχ∆ , is to be designed such that the time derivative of the distance 

is negative. Although subchapter 4.2.2.7 is designated to closer investigate the choice of it, 
note that for very large cross track errors cmdχ∆  should be 90°, hence the kite would point 

towards the desired track. Yet the closer the kite gets to the desired track, the more it has to 
align to it, as it would otherwise overshoot. Thus, 0 0cmdδ χ→ ⇒ ∆ → . 

The following subchapters first deal with the determination of the course angle χC and 
general geometry on spheres, while the end of chapter 4.2.2 examines the determination of 

cmdχ∆ . 

 

4.2.2.1 A Brief Summary of Parallel Transport 

Often tangential vectors to a sphere will be calculated, used and employed. Yet moreover, 
they have to be transported along curves on the sphere, which is treated the field of 
differential geometry of surfaces and denoted by parallel transport. To give a prominent 
example, the course vector, which will be derived in the following subchapter, is defined as 
the tangential vector to the desired track in point C. Yet to determine the track error angle, 
which is intuitively defined at the position of the kite K, this vector has to be … 

• moved  along the surface of the sphere from C→K and 

• then used  for the determination of the angle by e.g. the dot product. 

 

This topic is extensively treated for general surfaces in literature. As we will only transport 
vectors along geodesics on spheres, i.e. along lines of shortest distance and with no 
geodesic curvature, this generally complex topic simplifies. The following derivations are 
given without proof. For more details investigation see for instance [27], [28], [32].  

Let two vectors Cv and Cw be supported in a point C on a sphere M and be tangential to the 
sphere: 

 3,C C
C M∈ ⊂v w T ℝ  (4-5) 

Here, T#M denotes the tangent space to M at point #, i.e. the tangent plane to the sphere, 

which in turn is embedded in the usual three-dimensional space. Let now γ be a curve along 
a geodesic on the sphere, connecting point C and point K in the shortest possible way on M. 
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If both vectors are transported parallel along γ to point K using the parallel transport operator 
R, then the following correlations hold: 

 : :

) ,

)

) ,

K C
C K

K K
K

C C K K

C K C K

M M

a M

b

c

→

∈

∗ = ∗

= =

R

v w

v w v w

v v w w

T T

T
 (4-6) 

The first correlation states that the representations of Cv and Cw in TKM at K are also 

tangential to M, hence the parallel transport operation is a isomorphism between tangent 
spaces to the sphere. Yet moreover, the unique property is that this operation conserves the 
scalar product (b) and the lengths (c) (it preserves the metric tensor). In more descriptive 
words: 

The lengths and relative angles between two arbitrary tangential vectors are 
preserved under parallel transportation along geodesics. 

We can thus determine the course angle Cχ  at C and use it for the determination of e.g. the 

bearing at K without modification. The determination of the parallel transformation operator 
for the small earth is here trivial. Visualize that the xK- and yK-base vectors of the SE-frame 
are also tangential to M and hence can be identified as one of the two vectors described 
above. According to Eq. (4-6) the following then holds: 

 ( ) ( ) ( ) ( )K K C C
i iW W W W

∗ = ∗e v e v , (4-7) 

with i=x, y. Note that it actually also holds for i=z, although ez is not tangential to M but 
normal, and hence Eq. (4-7) would be 0. Evaluated for all three bases vectors, Eq. (4-7) can 
be summarized as 

 ( ) ( )

( ) ( )
K C

K K C C
SE W SE WW W

K K C C
W SE SE WW W

⋅ = ⋅

⇒ = ⋅ ⋅
R

T v T v

v T T v
�
�
�  (4-8) 

yielding the parallel transformation operator. It reveals that here the transport operation 
consists of a simple matrix multiplication and therefore is a linear operation. Note that KRC=I if 
K=C. 

► N.B.: This in fact equates to an active rotation of Cv to Kv around ρ0C×ρ0K and could have 
been deduced under this perspective as well. 

► N.B.: The ‘maps’ employed for explanation in this thesis, e.g. in Figure 4-1, can be seen as 
an ‘unrolling’ of the sphere along the geodesic, conserving hence angles and lengths of 
vectors.  
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4.2.2.2 Course 

The course is the direction into which the kite should fly if no track error angle χ∆  was 

present. From a mathematical point of view, the course vector tC is the tangential vector to 
the desired track ρK

des at a point C. This can be expressed as 

 : ,C K K
C des desC

C= ∂ ∈t ρ ρ ,  (4-9) 

where дρK
des shall for now describe a tangential vector to ρK

des. C is to be determined what 
for now shall be called optimal in some sense. For now, let it be defined as the point with the 
minimal cross track error δ (i.e. geodesic distance) between the projected kite position ρK 
and the reference trajectory ρK

des. Point C is called optimal track point and will be treated in 
the following subchapter. 

Let the course angle be defined as the angle between the course vector CtC and the small-
north direction (i.e. the x-axis of the small earth frame of reference) at C: 

 

{ } 1: , cos
C T C

C C C SE C
C C SE C

C

χ −
 ⋅
 = =
 
 

x t
t

t
∡ ℕ  (4-10) 

This is also depicted in Figure 4-1 at the beginning of this chapter. We make use of the fact 
that the angle measured at C can be employed at K without change, according to 4.2.2.1, 
hence 

 C K
C C Cχ χ χ= ≡  (4-11) 

4.2.2.3 Optimal Track Point C 

For the online computation of the course angle, which will be utilized to determine the 
bearing, the point C on the trajectory has to be found. It was already mentioned that C is 
(most often) the point with the minimal distance between itself at the kite. 

To find the closest point on a sphere, notice that the shortest distance δKC between two 
points K and C on a unit sphere (R=1) is given by [29]: 

 ( )1cos K C
CK KCδ δ −= = ∗ρ ρ  (4-12) 

The line with the shortest distance on a sphere between two points K and C is called a 
geodesic. Let now the desired trajectory ρK

des=ρ
K

des(s) be parameterized by a scalar s, then 
the problem reformulates to find the parameter sC so that the optimization problem 
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( )
( )

!

2 !

2

d
0

d

d
0

d

C

C

C
s

C K
C des C

C

s

s
s

s s

s
s

δ δ
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 ′= = 
 ⇔ ⇒ = = 
 ′′= >
 
 

C ρ ρ  (4-13) 
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is satisfied. Although there can only be one closest point, there can in fact be more than one 
parameter s for which Eq. (4-13) is satisfied. This is, besides a global minimum there can 
exist local minima. This is important to consider as the following scenario demonstrates.  
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Figure 4-3: Illustration of the optimal track point  not being the closest point 

Imagine a directed eight-shaped trajectory (for sake of simplicity but without loss of generality 
on a flat surface) as shown in Figure 4-3/top with the kite indicated by K and the displayed 
flight direction. The lower plot shows the distance plot δ(s) for this specific situation. All points 
satisfying the first condition in Eq. (4-13) are indicated in both the sketches. Unnecessary to 
say that both point D1 and D2 are not candidates for the optimal track point C, as they are 
maxima. C2 is the global minimum and C1 a local minimum. Although its distance is larger 
than the one of C2, it becomes clear that C1 should – due to the indicated flight direction – be 
chosen to be the optimal track point, as otherwise the kite would ‘jump’ across the branches 
of the desired track, taking a shortcut. Another condition has hence to be added to select the 

optimal point according to the past flight track of the kite. Using the optimal parameter Cs−  of a 

past solution of the optimization (this could in discrete time be the parameter sC of the time 

step before), one can additionally demand sC to be in a neighborhood U around Cs− : 

 ( )
!

C Cs s−∈U  (4-14) 

For implementation, one can e.g. use Cs−
 as the starting point of the optimization problem. 
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4.2.2.4 Distance on the Sphere 

The unit vector CδCK pointing along the great circle connecting K and C, supported in C can 
be found employing Figure 4-4, which depicts a view perpendicular to a cut along the 
geodesic through the sphere: 

 ( )
( )

cos

sin

K K C C K C
C CK

CK K C C
M

δ
δ

− ∗ ⋅ − ⋅= = ∈
− ∗ ⋅

ρ ρ ρ ρ ρ ρ
δ

ρ ρ ρ ρ
T  (4-15) 

 

Figure 4-4: Unit vector C
δ

CK pointing along great circle, supported in C; 
flat view on the plane spanned by ρ

C and ρK 

Evaluating Eq. (4-13) using both Eq. (4-12) and (4-9) reveals 

 

( ){ } ( )
� ( )( )

( )
( )2

d d 1
0

d d sin
1C

C

TK
TK C C

C C
TK C

s
s s s

δ
δ

 
  −= ⋅ ⋅ = − ⋅ = 
  − ⋅ t

ρ
ρ ρ t

ρ ρ

. (4-16) 

Employing Eq. (4-15) and remarking that C
C ⊥t ρ yields 

 ( ) sin
0

sin

TK

C
C

δ
δ

= ⋅ =
ρ

t
( )cos

sin

TC CK Cδ
δ

+ ⋅δ ρ ( ) 0
TC C CK C C CK C

C C C⋅ = ⋅ = ⇒ ⊥t δ t δ t , (4-17) 

showing that also the course vector CtC stands perpendicular on CδCK. Of course, all 
derivations also hold for K as the supporting point. Together with the parallel transport 
theorem we yield: 

 ,K CK K C C CK K KC K CK= ⋅ = −δ R δ δ δ  (4-18) 

and hence also K KC K
C⊥δ t . 
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This seemingly complex correlation is depicted in Figure 4-5: 

 

Figure 4-5: Geometric correlations on the unit sphe re with illustration of 
parallel transport of tangential vectors 

In other words, the great circle connecting the projected position of the kite K and the closest 
point C on the desired trajectory intersects the desired trajectory perpendicularly. 

4.2.2.5 Signed Cross Track Error 

Reinserting sC into Eq. (4-12) yields the distance resp. cross track error δ. However it is 
important for the determination of the bearing angle to indicate the sign of the distance. So 
let the sign of the cross track error be defined as: 

 ( ) ( )( )sgn : sgn C C C CK
Cδ = ∗ ×ρ t δ  (4-19) 

For an oriented desired track this means that the distance is positive if the kite is left (relative 
to an observer looking into the desired direction) of the desired track and negative vice versa. 

► N.B.: In a situation as shown in Figure 4-5 the distance would be negative, as the kite is on 
the right-hand side in respect to the desired trajectory. 

4.2.2.6 Desired Trajectory 

For optimal power output, the kite should trace a lying eight. It is up to now not known which 
specific parameters optimize the power generation, so that for now an arbitrary figure-of-
eight has been chosen. One possibility to parameterize such a figure is to use lemniscates, 
which are special cases of the LISSAJOUS-figures [30]. Such a figure can be defined in the 
azimuth and elevation (spherical) domain S by 
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q  (4-20) 

which is also depicted in Figure 4-6. A, b and φ are design parameters to adjust the shape of 
the figure and enable the user to prescribe certain properties of the desired track (e.g. width, 
height, orientation etc.; usually ξ0 is 0). In fact, Eq. (4-20) enables to generate a considerable 
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amount of different shapes only by adjustment of the parameters. An overview is given in 
Table 4-1. 

bξ:bη φξ–φη Shape Description 

1:1 0 /  Ellipse (Circle if Aξ:Aη=1) 

1:2 0  Lying eight 

2:1 0  Standing eight 

1:2 >0 
 

Distortion 

Table 4-1: Parameter properties of the L ISSAJOUS-figure 

Note that the ratio  

 !b

b
ξ

η

±∈ ℚ  (4-21) 

has to be rational for the figure to be closed. Moreover, a negative ratio will reverse the 
circumferential direction.  

 

Figure 4-6: A lemniscate represented in the spheric al domain S 

This and any other trajectory defined by (valid) azimuth and elevation angle pairs q can be 
mapped from the spherical domain S to the surface of the small earth in world domain M by 
the projection operation P: S→M, cf. Appendix C.2: 

 ( ) ( ) 3K K
des desW

M= ∈ ⊂ρ q ℝP  (4-22) 

It shall be noticed that too high elevation angles distort the shape of the projected figure, as 
the meridians of the small earth converge in zenith, thus equal distances in the 2D-
representation move closer together at high elevations. As the maximum elevation flown is 
around 50°, this effect is generally negligible. 

► N.B.: The LISSAJOUS-figure as given in Eq. (4-20) is not parameterized by its arc length but 

rather by an abstract ‘free’ parameter [ ]0, 2s π∈ . It is not trivial to parameterize 

lemniscates by their arc length, as to do so, elliptical integrals have to be solved [30, 31]. 

0ξ  
0η  

Aξ  

Aη  

η  

ξ  

( )K
des sq  
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Figure 4-7: Flat projection along geodesic of beari ng and other angles in more 
detail 

4.2.2.7 Determination of the Bearing 

So far, the basics for the determination of the course angle were given. Now the second term 
of Eq. (4-4) has to be examined, cf. also Figure 4-7:  

 ( )cmd C cmdχ χ χ δ= + ∆   

It comes from observation that the relative bearing ∆χcmd has to depend on the cross track 
error δ, for instance according to  

 
( ) 1

2 2
0

: tan ,cmd
π πδχ δ

δ
−  

∆ = ∈ − +    
 

, (4-23) 

which is also depicted in Figure 4-8. The value δ0 is the turning point distance, at which the δ 

bearing is pointing equally towards and along the desired track, i.e. ( )1tan 1 45cmdχ− ⇒ ∆ = °  

(see center of Figure 4-8 and remark below). It is straightforwardly comprehensible that the 
kite would decrease the cross track error δ and smoothly align to the track, in case the 
bearing was executed without any control errors.  
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Figure 4-8: Illustration of the gradual alignment o f the kite if a bearing angle, 
depending on the cross-track error δ, was prescribed 

It also becomes obvious that for large cross track errors ∆χcmd becomes 90°, thus the bearing 
would point directly towards the desired track (full minimization of the cross track error). Yet 
the closer the kite approaches ρK

des, the more the bearing aligns to the course (and thus to 
the desired track). It also becomes clear that the distance δ has to be signed to allow 
negative values for ∆χcmd, in the case of Figure 4-8, if the kite was right of the desired track. 

► N.B.: The choice of Eq. (4-23) turned out to be a reasonable approach. Yet also other 
definitions and approaches can give comparable or better results. The choice is hence a 
free design parameter. 

Although this approach might seem reasonable and intuitively convincing it is a purely static 
geometric consideration. Some attention has to be paid to the underlying dynamics. 

Remark on the Turning Point Distance δ0 
The turning point distance δ0 is a design parameter and can be chosen freely. To adapt the 
determination of the bearing more to the actual dynamic situation, the turning point distance 
can be transformed into a more meaningful value by making it depended on the actual 
(projected) velocity v  of the kite by 

 ( ) 00 tvv ⋅=δ . (4-24) 

Hence not δ0 is tuned but rather the characteristic time t0, which could be chosen so that 
even for different velocities of the kite the interception processes remain comparable. 
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4.2.2.8 Time Derivative of the Cross Track Error 

Although the explanation, why the choice of the bearing as defined in Eq. (4-23) is capable of 
reducing the cross track error, is intuitive, a short proof on that will be given here. Recall the 
definition of the distance δ: 

 ( )CK
KC

001cos ρρ ∗=δ −
  

Derivation in respect to time yields, with utilization of the derivations of chapter 0 and 
observation of Figure 4-7, yields: 
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ɺ ɺ ɺ ɺ
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�  (4-25) 

Hence, if cmd→v v , this is, ( )lim 0t cmdχ χ→∞ ∆ − ∆ = , then the distance will decrease. And as 

0 0cmdχ δ δ∆ ⋅ < ∀ ≠ , the bearing controller will always demand a decrease in distance for a 

non-zero cross track error. Now it is up the attitude controller to execute the commanded 
bearing angle χcmd. 

4.2.2.9 Remark on the Time Derivative of the Bearin g 

The evolution of the bearing angle with time will be of importance in the next section (attitude 
controller). However, as this topic is closely related to the geometric consideration of this 
chapter, it shall be outlined here. Derive thus Eq. (4-4) in respect to time: 

 
cmd C cmdχ χ χ= + ∆ɺ ɺ ɺ  (4-26) 

Note that δ0 will be considered constant for this derivation. The second term can be found 
using Eq. (4-23): 

 
( ) ( ) ( ) ( )2

1 2

0 0 0

cosd
tan cos sin

d
cmd

cmd cmd v
t

χδ δχ δ χ χ
δ δ δ

− ∆ 
∆ = = ⋅ ∆ = − ⋅ ∆ ⋅ 

 

ɺ
ɺ  (4-27) 

All values are measurable or know, thus cmdχ∆ ɺ  is known. For the first term however 

knowledge about geodesic curvature and the tangent angle on surfaces is required, on which 
a summary is given in Appendix C.2. The rate of change of a tangent angle χC for a curve 
ρK

des on M  at  the position of the kite K is given according to Eq. (C-25): 

 ( )tan sinC g K Cvχ κ η χ= ⋅ − ⋅ρ

�
ɺ  (4-28) 

It has to be mentioned that the rate of change of the course angle has to be determined at 
the position of the kite K rather than at C, as it involves the local geometry of the sphere 
(represented by tan(ηK)). 

 



   4 Control Strategy 
 

Automatic Flight Control of Tethered Kites for Power Generation   

Claudius Jehle  Page 39/ 67 

The velocity v�  can be identified as 

 
( )cosT C

C

v v χ= ⋅ = ⋅ ∆
t

v
t� .  (4-29) 

Employment of Eq. (C-16) (for the determination of gκ ρ  and noting the equivalence to the dot 

product) this yields in local SE-frame: 

 

( ) ( ) ( ) ( ) ( )3
cos tan sin : cos

T C CZ effSE SE
C SE K CSE

C

v vχ χ η χ χ κ
  ′ ×
  = ⋅ ∆ ⋅ ⋅ − ⋅ = ⋅ ∆ ⋅
    

t t
e

t
ɺ   (4-30) 

To sum up, Eq. (4-26) can be given as: 

 ( ) ( )
( )

2

0

sincos

cos
cmd eff

cmd v
χχ

χ κ
χδ

   ∆ ∆
= ⋅ ⋅   ∆  

ɺ  (4-31) 
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4.2.3 Attitude Controller 

4.2.3.1 Outline of the Structure 

The task of the attitude controller is to minimize the error between the actual track angle χ 
and the bearing χcmd. Before going into detail, insert Eq. (3-2) into Eq. (3-12): 

The change of the heading angle Ψ is approximately equal to the yaw rate r of the kite, and 
moreover, accessible/controllable via the steering input PS. The track angle χ can be 
determined using the drift angle (cf. Figure 4-1): 

According to chapter 3.2.1.4, for the present quality of the sensor data the determination of 
βK is deficient, but nonetheless seems to be bounded to a small value. Knowledge about 
flight direction is crucial for the controller to work, and especially the velocity vector showed 
unreliable behavior. It was thus chosen to neglect the drift dynamics in the design of the 
controller1 and rely on the fact that heading and track are always almost parallel. The drift 
angle however can always be included in future works without a change in the control 
structure. Therefore a change in track angle can be influenced via the steering inputs PS: 

Recall now from Eq. (4-25) that the cross track error decreases if the control error does. 

To investigate this problem closer, take the time derivative of Eq. (4-32) in order to get the 
error dynamics 

Note that we just found χɺ  to be controllable, so prescribing 

and reinserting would – if all assumptions held – yield 

The control error would decrease exponentially in time. The following chapters deal with the 
feasibility of this approach. 

                                                
1 The present n-point controller (cf. 1.3.3) also relies on this assumption and proved it valid. 

 ( )1 2 0app Sr c v P c Gψ ≈ = ⋅ ⋅ + ⋅ Ψɺ  (4-32) 

 
Kβψχ +=  

(4-33) 

 ( )1 2 0app Sc v P c Gχ ≈ ⋅ ⋅ + ⋅ Ψɺ  (4-34) 

 χ−χ=χ∆−χ∆=χ cmdcmde :
 

(4-35) 

 χ−χ=χ ɺɺɺ cmde
. (4-36) 

 
cmdPeK χ+=χ χ ɺɺ :

 
(4-37) 

 ( ) ( ) { }tKteteeKe PP ⋅−⋅=⇒−= χχχχ exp0ɺ
. (4-38) 
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4.2.3.2 Feedback Linearization 

By solving Eq. (4-34) for PS and inserting a requested reqχɺ  one yields an expression for the 

steering input that is required to achieve χɺ . Note that the hat shall indicate that the values 

used for the inversion can differ from the real ones, possibly due to imperfect measurement 
or insufficient system knowledge. 

 ( )( )2 0
1

1 ˆˆ
ˆ ˆ

cmd req
S

app

P c G
c v

χ= − ⋅
⋅

Ψɺ  (4-39) 

The input-output relation has been inverted. Although this is – in this case – admittedly a 
trivial operation, the underlying idea can be investigated from a more theoretical point of 
view. Especially for future research, when validated system models are available, this 
inversion becomes more complex, as e.g. the drift angle dynamic or the full set of angular 
velocity have to be included. In general, the idea to invert such systems is in control theory 
called non-linear dynamic inversion (NDI) and supplies a technique to ‘prepare’ non-linear 
systems like the one in Eq. (4-34) for a linear controller. The resultant structure, i.e. the 
inversion (what is here just Eq. (4-39)) together with the plant appears to the outside as a 
chain of regular, linear integrators, for which any linear control structure can be applied. 
Therefore this technique is also referred to  feedback linearization (to be more precise, NDI is 
a subcategory of feedback linearization). Hence although the plant itself is non-linear in 
terms of control theory, by applying a NDI a linear controller can be employed. An ample 
amount of literature exists on the topic ([33, 34]). 

 

 

Figure 4-9: NDI renders the system under considerat ion (a) to 
a single integrator (b) (simplified) 
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Reinserting Eq. (4-39) into Eq. (4-34) and assuming perfect knowledge of the parameters c, 
perfect actuators and measurable apparent wind speed vapp and EULER-angles we yield 

 

( )( ) ( )

( )( ) ( )

( )� ( )

1 2 0 2 0
1

1 1
2 0 2 0

1 1
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ˆ ˆ
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app app
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c v

c v c v
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c v c v

χ χ
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 
= ⋅ ⋅ − ⋅ + ⋅  ⋅ 

   ⋅ ⋅
= ⋅ − ⋅ ⋅ + ⋅      ⋅ ⋅   

≡ ⇔ ⋅ = ⋅

Ψ Ψ

Ψ Ψ

ɺ ɺ

ɺ

ɺ

 
(4-40) 

Let χ be the output of the system under consideration (as it will be later fed back for the linear 
controller), then it becomes clear that the inversion in fact results in an integrator. This is also 
depicted in Figure 4-9. 

 

Feasibility and Limitations 
Needless to say that for this inversion to be feasible the apparent wind speed has to be 
greater than zero: 

 !

1 0appc v⋅ ≠  (4-41) 

c1 is per definition a nonzero scalar, and the apparent wind speed vapp has to be non-zero as 
otherwise the aerodynamic lift forces would collapse and the kite crash. Moreover it was 
assumed that all the required data is measurable. As it will be seen in the experimental 
results, the apparent wind speed was not available for feedback as it was not yet integrable 
into the system’s sensor grid. 

Additionally it is important to mention that both the apparent wind speed and the attitude 
induce a feedback into the controller, which can in theory cause instability. As an example, 
the apparent wind speed is depending on the orientation relative to the wind, hence it 
includes information of the attitude. The attitude itself is influenced by this controller. Due to 
the lack of appropriate models, these correlations had to be neglected. However, they can 
and have to be included in future versions of the controller. 

Besides that a crucial issue is the dynamics and constraints of the actuators, as well as time 
delay in the system, as it was already mentioned in chapter 2.2.2. So far it was assumed that  

 ( ) ( )tPtP cmd
S

real
S = , (4-42) 

which is not necessarily the case. Even if there was perfect system knowledge and sensors, 
the invasion as proposed in Eq. (4-40) would not necessary succeed as shown. The required 
steering commands PS

cmd have to be executable by the steering motors, which have wanted 
and unwanted limitations, which are for example: 

• Limited steering line lengths (i.e. actuator  saturation ): It was mentioned before 
that the steering inputs PS are limited to ±100%, which relates to certain motor 
position and thus to steering line lengths. Too high line lengths are not feasible and 
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state a limit for the valid control outputs. This can be compensated for by reducing 
controller gains, see below. 

• Limited motor speed (i.e. rate limit ): Even more impact has the fact that the motors 
have a maximum rate of revolution (cf. Eq. (2-2)), mainly due to current limiters to 
protect the batteries. Hence not arbitrarily fast movements can be performed (i.e. 
jumps or too steep/fast maneuvers, or too high curvatures). As a consequence, the 
required steering inputs (i.e. also the required yaw rates) have to be smooth enough.  

• Signal traveling time, response times (i.e. dead times ): Due to the distributed 
system structure signal traveling times have to be taken into account. Moreover, and 
even more critical, some components of the control structure are not optimized in 
term of computational and response time (i.e. the motor controllers) and impose a 
major part of the overall delays.  

All those constraints are rather difficult to incorporate into basic control structures and require 
more elaborate approaches to fully compensate for them, resp. mitigate their impact. 
However, also basic control structures like the one proposed in this thesis can deal with 
them. Gains and parameters can be tuned to let the controller work in a safe operation 
region. It turned out that the resultant controller was very well able to stay within a safe mode 
of operation; however the adaption component faced difficulties especially due to the time 
delays, which will be treated later on. 

 

4.2.3.3 Linear Controller 

With the ‘preparation’ of the system for a linear controller using NDI, a control law as 

proposed in Eq. (4-37) can be applied. Note that in the following reqχɺ  will be referred to as 

the baseline signal νB, as the linear controller is also called baseline controller to distinguish it 
from the adaption part presented later (with output νad). By investigating the structure of Eq. 
(4-37), 

 ( )B P cmd cmdKν χ χ χ= ⋅ − + ɺ , (4-43) 

it becomes clear that the first term is just a proportional compensator (cf. PID-controller), 
while the second term contains information on the change of the curvature of the desired 
trajectory. It can be interpreted in a demonstrative manner if one assumes both δ and eχ to 
be zero (i.e. the kite is on-track and perfectly aligned), then according to Eq. (4-31) νB turns 
into 

and hence the linear controller gives out only a signal identical to the rate of change of the 
trajectory – the ‘yaw rate’ of the trajectory, if one likes – making the kite yaw at the same rate 

as the track changes. It hence maintains a zero control error. The contrary effect, i.e. if cmdχɺ  

was not superimposed, comes straightforwardly: A control error would build up and would 
have to be compensated for again. 

 0 B cmd C effe vχδ ν χ χ κ= = ⇒ = = = ⋅ɺ ɺ  (4-44) 



4 Control Strategy    
 

Automatic Flight Control of Tethered Kites for Power Generation 

Page 44  Claudius Jehle 

Note that the bearing controller together with the linear controller presented here act – from 
the perspective of nonlinear dynamic inversion theory – as a reference model of the kite. The 
signal(s) generated correspond to the optimal behavior of the kite and, assuming a perfect 
integrator due to the inversion, would result in optimal tracking. 

 

Figure 4-10: Structure of the baseline controller 

A meaningful choice of the proportional gain Kp is offered by the following consideration: The 
error ∆χ is limited to ±180°, i.e. when the kite should fly  into the opposite direction. Due to 
material and aerodynamic limitations as well as actuator limits, kites should not be forced to 
fly turns with yaw rates higher than r≈2–3 rad/s. Thus to limit the maximal yaw rates asked 
from the system, a conservative choice of Kp would be: 

However, if one relies on a working controller which is able to maintain an error ∆χ smaller 
than 180°, also higher values for Kp are justified. It is worth mentioning that this is valid for 
both turning direction. If ∆χ<0°, the controller will automatically turn the kite in the other 
direction, always choosing the ‘shorter turning way’. 

Remark: Justification of a PI-structure 
Note that in addition to the presented structure an additional I-compensator can be justified. 

If cmdχɺ  is low-pass filtered, which can be necessary if e.g. determined via numerical 

differentiation, a phase-lag is introduced. Assuming smooth shape of the desired trajectory 

(i.e. approx. constant amount of frequencies contained in cmdχɺ ), this lag can be regarded as 

constant or changing only slowly and hence can be compensated for by a (low) I-gain. 

 

4.2.3.4 Adaptive Inversion 

Up until now, a perfect inversion has been assumed. This however is an idealized 
assumption, as the underlying NDI-model stems from black-box identification and it is thus 
very likely to be imperfect. Additionally, time-varying parameters (for instance induced by 
wear or the before mentioned creep in the steering lines) can not be excepted. For easier 
usability, maintainability and also portability one would even want to limit the system 
identification/parameter fitting to a minimum, as this requires an offline post-processing of the 
measurement data by trained personnel. To give a prominent example, it was mentioned 
before (cf. chapter 2.3.3) that even the finding of the neutral steering potentiometer position 
is not a trivial undertaking and has to be redone from time to time. It can even change when 
airborne due to gusts and creep. This motivates the application of an online parameter 
adaption. Such an adaption accepts parameter uncertainties and tries to reduce them online, 

 
max 1

,max

2 3
0.5 1.0

rad
s

p s

r
K

eχ π
−

= = ≈ −  (4-45) 
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i.e. while the kite is flying and alongside with the running controllers. There exists a great 
variety of adaptation approaches, and there is no general rule for categorization. One is to 
distinguish between 

• indirect or explicit methods , where unknown plant parameters are estimated online 
(i.e. a system identification is performed) and a controller is adjusted based on these 
estimations, and  

• direct or implicit methods , where no online identification is performed, but the 
controller is directly tuned to minimize a certain performance criterion.  

Both philosophies of course have advantages and disadvantages, which are discussed 
thoroughly in e.g. [35]. What is albeit obvious just from the definition above is that the indirect 
method requires additional effort for the identification part. Recall that the actual task in this 
subchapter is to improve the presumably imperfect integrator resulting from the non-perfect 
nonlinear dynamic inversion. The system identification, meaning the determination of the 
principle structure of the model representation was done beforehand and shall remain 
unaffected. Thus the structure is already known and identification is not necessary. Hence a 
direct adaptive algorithm shall be derive and employed. As this algorithm compares the 
actual performance of the inversion part to an optimal reference, this approach is also called 
model reference adaptive control (MRAC). 

 

Figure 4-11: Principle structure of a MRAC-adaption scheme (simplified) 

The principle structure is depicted in Figure 4-11 and can be outlined as follows: An adaptive 
control law creates a control signal νad, which – superimposed onto the baseline signal – 
minimizes the error ead between the actual system and a reference model running alongside. 
Hence not the identification parameters inside the inversion themselves are altered, but a 
signal it created that minimizes the negative effects of an imperfect inversion. The following 
derivation of the adaption signal is based on the theory presented [35]. 

For the derivation of the adaption signal, recall the reinsertion Eq. (4-40), now with inaccurate 
values. It is obvious that the inversion is erroneous for inaccurate parameters: 

 

( ) ( ) 1 1
2 0 2 0

1 1

ˆˆ
ˆ ˆ ˆ ˆ
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c v c v
c G c G
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χ ν

    ⋅ ⋅
= ⋅ − ⋅ ⋅ + ⋅        ⋅ ⋅    
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Again, all values with a hat describe unknown or measured values. Yet assuming that at 
least the EULER-angles Ψ and the apparent wind speed can be measured, the equation turns 
into (with ki unknown scalars): 

The combined system input ν= νb + νad is a superposition of the baseline signal νB and the 
adaption signal 

 XΞ ⋅=ν T
ad

ˆ
. 

(4-48) 

Both the parameter set Ξ̂  and the regression vector X are to be determined in the following. 
For determination of the reference model the closed-loop system, i.e. inversion together with 
baseline controller (sic!) has to be taken into account, as for convergence and stability of the 
adaption law the reference model has to be stable (and a pure integrator is unstable in terms 
of control theory). It shall here be assumed that the baseline controller, in addition to the 
proportional gain and the dynamic baseline signal, also comprises an integrator. Hence the 
reference model yields: 

► N.B.: The reference model equates to the baseline signal, yet with the internal feedback of 
χ

M rather than the real χ. 

Defining now the adaption error ead as the difference between the actual system output and 
the output of the reference model from Eq. (4-49) 

Consecutively inserting Eq. (4-47)-(4-49) into its time derivative eventually results it the 
adaption error dynamics: 

This rather longish and unhandy equation can be reformulated into (using an expansion 

by P P I IK K K Kχ χ χ χ+ − + ∫ − ∫ ): 
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ˆ :
ˆ ˆ
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χ ν ν
    

= − + ⋅ = ⋅ + ⋅     
    

Ψ Ψɺ

 

(4-47) 

 
( ) ( )

0

t
M M M

P cmd I cmd cmd

t

K K dtχ χ χ χ χ χ= ⋅ − + ⋅ − +∫ɺ ɺ  (4-49) 

 M
ade χ χ= − . (4-50) 
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(4-52) 

This is the core equation that describes how the error between an optimal reference system 
and the real system behaves.  Admittedly it is not straightforwardly evident how a diminishing 
error can be achieved. Yet it can be shown that the following LYAPUNOV-candidate can be 
utilized to drive this error to zero: 

As 1k +∈ℝ  (cf. Eq. (4-47)) and 2 2×∈Γ ℝ  is chosen to be a positive definite diagonal matrix, 

Eq. (4-53) is a valid LYAPUNOV-function, as it is positive definite. Differentiating by time yields: 
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(4-54) 

We require Eq. (4-54) to be negative (semi)definite so that (4-53) is decreasing for any non-
zero error ead. This can be achieved by  

 ( ) XΓΞ ⋅⋅−= ade:
~

:2 ɺ
, (4-55) 

as term (1) is already strictly negative for every ead. This is a feasible and valid choice under 
the assumption that the real parameter set Ξ (which is unknown) changes slowly or not at all 
over time. We then yield the adaption law: 

Γ is the learning rate matrix that allows for different learning rates of different members of the 
regression vector X. The resulting structure is depicted in the following block diagram (this 
equates to the adaption law block in Figure 4-11): 

 ( )2 2 11
12

T
ad I adV e K E k −= + ⋅ + Ξ Γ Ξɶ ɶ  (4-53) 

 
�

0

ˆ ˆ
ade

≈
= − ⇒ = − ⋅ ⋅Ξ Ξ Ξ Ξ Γ Xɺ ɺɺɶ ɺ  (4-56) 
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Figure 4-12: Adaption law block 

► N.B.: Note again that this approach will not, or at least very unlikely, let the parameter set of 
the adaption block converge against the optimal/real one. It will rather adjust it a way that 

minimizes the adaption error, which implies not necessarily a zero parameter error Ξɶ ! 

 

4.2.3.5 Remarks on the Validity of the Stability Pr oof 

It has to be mentioned that the stability of the LYAPUNOV-function Eq. (4-53) has been 
justified under the implicit assumption that the EULER-angles, which appear within G(Ψ0), are 
independent from the adaption error ead and are not fed back within the system. While this 
might be a valid assumption from a technical point of view (slow evolution in respect to the 
error), this is not true from a strict mathematical point of view. For a more accurate proof they 
have to be included as a state of the adaption (just like ead itself). However, as no valid model 
for their behavior was available, they have been assumed to be independent.  

 

4.2.3.6 Remarks on Robustness 

All derivations rely on the fact that the plant will execute the desired inputs ν resp. PS
cmd. It 

was mentioned before that the present system contains actuator limitations and constraints, 
as well as time delays. These can result in a mismatch between reference model and real 
plant and cause malfunction of the MRAC approach and eventually instability. If the actuator 
dynamics are known, it may at a first glance seem to be easy to incorporate those in the 
reference model. However, proof of LYAPUNOV-stability, as employed in Eq. (4-53), becomes 
problematic. Adaptive control under constraints and adaptive control in general are still 
subject to research [36]. 

As the current system setup turned out to contain rather restrictive actuator constrains and 
non-negligible dead time, a certain robustification was necessary. Hence methods to improve 
the robustness towards limitations and delays are outlined in the following. For more detailed 
consideration see [36, 37]. 

Bounds on Parameter Set and Dead Zone 
A straightforward, yet pragmatic method to prevent the signal from becoming unbounded is 

to constrain the estimated parameter set Ξ̂  to predefined and problem-specific bounds: 

 !

min max
ˆ ˆ ˆ, ∈  Ξ Ξ Ξ  (4-57) 
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The resulting structure, together with the σ-modification (see below), is depicted in Figure 4-
13. Another comparably pragmatic way is to turn the adaption off in case the error falls below 
a certain bound (called the dead zone). 

 

Figure 4-13: Adaption law block with bounded parame ter set and σ-
modification 

 

σ-Modification 
Comparable to a mechanical damper, the growth of the parameter set can be suppressed by 
feeding back the parameter set, scaled by a scalar σ, as depicted in Figure 4-13. Hence the 
adaption law Eq. (4-56) is altered to: 

 ΞXΓΞ ˆ:ˆ ⋅σ−⋅⋅−= ade
ɺ

 (4-58) 

It can be shown that this modification makes the adaption law robust in a sense and 
additionally the LYAPUNOV-stability is provable. Yet, choosing σ  requires some problem-
specific tuning. Additionally, the adaption error ead will not converge to zero anymore, even if 
the actuator limits are removed [35]. To overcome this issue, the σ-modification was 
extended by NARENDA and ANNASWAMY [37] to scale σ depending on the adaption error, 

adeσ γ≜ , enabling the system to degrade to zero error again. 

adν  ade  
- Γ 

X  

Ξ̂
ɺ  Ξ̂  
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4.3 Final Structure 

The final control structure can be summarized as follows: 

• The concept of the small earth is employed, so that standard concepts from aviation 
engineering can be used.  

• Bearing Controller  (Outer Loop): Depending on the position of the kite relative to the 
desired trajectory a bearing is generated which, if executed properly, minimizes the 
cross track error δ. Moreover, the bearing is designed such that the kite would also 
align to the track as δ decreases. 

• Attitude Controller  (Inner Loop): This component generates steering signals 
designed to minimize the error between the actual heading and the bearing. It hence 
‘executes’ the commands received from the bearing controller. In particular, the 
attitude controller comprises 

o a linear P(I)-controller (with superimposed reference baseline signal) 

o an adaption to compensate for uncertainties in the model and 

o a dynamic inversion part (NDI) that translates the control signals from the PI-
controller and the adaption into steering inputs 

Admittedly it is difficult to draw a clear line between outer and inner loop, as the requirements 
for the inner loop already result from considerations in the outer loop and therefore the 
principle structure of the inner loop arises as a result of that. A way to interpret the structure 
is to see the bearing controller as a reference model of the kite – i.e. a perfect kite – that 
gives out the bearing plus the evolution of the bearing in time, which is translated by the NDI 
into a steering signal, so that under perfect inversion the real kite would act like the desired 
reference. 

An entire block diagram, comprising all mentioned components, together with actuators and 
measurement unit, is depicted in Figure 4-14.  
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Figure 4-14: Final structure of the control system with actuators and 
measurement unit 
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4.3.1 Remark: Parking Autopilot 

Besides the tracking controller, also an operation mode to park the kite in a steady position 
next to zenith was implemented. This mode is called parking mode and is mainly 
characterized by an unchanged inner loop and inversion, but with the bearing controller largly 
bypassed. The desired trajectory then consists of a single point C at q=[0, 90°] , i.e. at zenith. 
Due to aerodynamic constraints the kite can not reach this point and will start floating around 
zero azimuth at an elevation of approximately 70°-8 0°. The bearing controller will not 
calculate a course (as it is not defined for 0-dimensional trajectories) but rather give out only 
the distance and bearing between the kite and the point. 
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5 Results 

5.1 Evaluation Process 

The controller was tested and simulated in a MATLAB SIMULINK© environment, primarily in 
order to asses the performance and functionality under different circumstances and 
especially to be able to adjust the parameters and gains to make the controller able to cope 
with the constraints and limitations mentioned earlier.  

There was however only a limited amount of physical system models available, on which the 
controller could have been tested (cf. chapter 3.1). The available models were altogether not 
validated with real measurement data and are all based on various assumptions which are 
still subject to discussion. This is, in particular, most models neglect rotational dynamics and 
assume that a difference in steering line length (i.e. steering input) mainly results in directed 
aerodynamic forces that pull the kite into this particular direction. The yawing movement then 
results from the changing apparent wind speed and an induced decrease of the side slip 
angle. There are however reasons to believe that this mechanism can at least not be the 
main origin of the kite’s dynamics, if not even play a negligible role. This was discussed in 
chapter 3. Moreover the available models were written in different languages and 
development environments and hence not connectable (and adaptable) without significant 
effort. It was thus chosen to build a basic kite simulation model based on the results of 
chapter 3, embodying 

• parameter uncertainties, 

• measurement noise, offsets and pre-filters and 

• actuator constraints (signal traveling delay, rate limiters, saturation). 

Gravity and aerodynamic forces – besides those incorporated in the black-box identification 
results – were however neglected. 

As field tests were held on a monthly basis more focus was put on real experiments and only 
a supporting function of the – doubtlessly deficient in contrast to reality – computational 
models, which were and are still under development. Nevertheless, the controller was tested 
on a SIMULINK-model that was developed alongside by another student (no reference 
available as still under development) and another promising approach of [26], which 
incorporates a coupled FEM-aeroelasticity-simulation. Both experiments showed a working 
controller only with minor adaptions and adjustments.  

 

5.2 Simulation Results 

This chapter is split into two parts. First, the performance of the controller without 
deficiencies (i.e. delays, parameter uncertainties, actuator limits etc.) is presented. The 
second part demonstrates the impact of constraints on the performance and gives 
recommendations for the choice of gains and parameters. The ratio between the uncertain 
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parameters used for the inversion and the ‘real’ ones used in the system model shall be 
abbreviated by 

 2,1,
ˆ

: == i
c

c
C

i

i
i , (5-1) 

so that C=1.0 stands for perfect system knowledge. All simulations have been performed at a 
sampling rate of 20Hz, which equates to the sampling time of the real system.  
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Figure 5-1: Plot of q K for different turning point values δ0 

5.2.1 Unconstrained Case 

5.2.1.1 Unconstraint Simulation without Uncertainti es 

The simulation case without any parameter or measurement uncertainties shall demonstrate 
the general effectiveness of the control structure. The next figure in particular demonstrates 
the effect of different choices for the turning point distance δ0. Note that all values have been 
mapped from the three-dimensional surface of the sphere to the spherical parameter space 
S for better presentability. That is, only the azimuth and elevation pairs q are given. Table 
5-1 comprises additional common information for the following control cases. 

Value Amount Description 

PK  s
10.1  Proportional gain 

IK  0  Integrator gain 

v  s
115.0  Projected kite velocity 

iC  { }0.1,0.1  Parameter uncertainties 

Table 5-1: Parameters for the unconstraint case with out uncertainties 
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It becomes clear that greater values of δ0 lead to slower, but also smoother behavior of the 
kite. However, as a look at Figure 5-2 reveals, too large values can also be problematic. It 
may be true that the kite at the beginning intercepts smoother for δ0=0.6, leading to lower 
steering commands during the first 8s. Yet the slow behavior forces it into a sharp turn in the 
right of the figure, where the controller with δ0=0.6 requires less control effort. A balanced 
choice was δ0=0.3, which will be used in the following. The exponential decrease of the error, 
which was postulated in Eq. (4-38), is nicely observable. 
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Figure 5-2: Plot of P S for different turning point values δ0 
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Figure 5-3: Plot of eχ for different turning point values δ0 
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Figure 5-4: Plot of δ for different turning point values δ0 



5 Results    
 

Automatic Flight Control of Tethered Kites for Power Generation 

Page 56  Claudius Jehle 

−25 −20 −15 −10 −5 0 5 10 15 20 25
15

20

25

30

35

40

45

50

55

6.0
7.0

8.0

9.0

10.012.0

13.0

14.0

Azimuth ξ [deg]

E
le

va
tio

n 
η 

[d
eg

]

 

 

8.0

9.0

10.0

11.0

12.0

14.0

1.0

2.0

3.0

4.0

5.0

6.0

8.0

9.0

10.0

12.0

13.0

14.0

Desired Track qK
des

qK:  Γ=diag(0.0, 0.0)

qK:  Γ=diag(2.0, 2.0)

qK:  Γ=diag(10.0, 10.0)

 

Figure 5-5: Plot of q K with parameter uncertainties for different learnin g rates Γ 
of the adaption 

5.2.1.2 Unconstraint Simulation with Uncertainties 

Introducing the more realistic case, i.e. uncertainties in the identification parameters, enables 
to examine the performance of the adaption part. Like in chapter 5.2.1.1, first an 
azimuth/elevation plot of the kite track is shown. Obviously, the inversion is not perfect 
anymore, which can also be seen from the plot of the adaption errors, Figure 5-7. The 
adaption error is in fact a measure for the mismatch between a perfect integrator and the 
inversion together with the plant and hence gives information on the quality of the inversion.  

In the case of unconstraint simulation the effect of the learning rate is visible. Just as 
expected the control error decreases (slightly) faster for higher learning rates, cf. Figure 5-7. 
Yet both sets drive the error to a minimum.  

► N.B.: Just as expected the adaption law does not drive to parameter error Ξɶ  to zero, but 
only the adaption error. This is due to the structure of the LYAPUNOV-approach, cf. chapter 
4.2.3.4.  

Value Amount Description 

PK  s
10.1  Proportional gain 

IK  0  Integrator gain 

v  s
115.0  Projected kite velocity 

iC  { }5.1,0.2  Parameter uncertainties 

0δ  3.0  Turning point distance 

Table 5-2: Parameters for the unconstraint case with  parameter uncertainties 
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Figure 5-6: Plot of P S  with parameter uncertainties for different learnin g rates Γ 
of the adaption 
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Figure 5-7: Plot of e χ with parameter uncertainties for different learning  rates Γ 
of the adaption 
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5.2.2 Constrained Case 

Enabling actuator constraints, that is, introducing a dead time of ∆td=200ms (4 sampling 
steps, approximately the dead time of the real system) and actuator rate limits of 

%25
max

=SPɺ , greatly alter the performance. In Figure 5-8 the trace of the kite for a 

controller with settings given like in Table 5-2 is shown, with only the uncertainties being 
reset.  
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Figure 5-8: Plot of q K with enabled constraints, but without parameter 
uncertainties, for two restrictions on the maximum steering value 

If the full steering range of PS=±100% was allow for control, the control performance suffered 
a lot from the rate limitations. Up to t=11,5s (at q≈[10°,18° ]T, note that Figure 5-9 only shows 
a cutout of the whole steering evolution) both tracks coincide. Although the controller 
demands a decreasing steering input already then (see PS

cmd, dashed lines in Figure 5-9), 
the dead time and actuator rate limits let the kite continue its turn in the unrestricted case. It 
shoots over the desired track. 

The issue of slow actuators itself can not be compensated for by a controller. Admittedly, 
controllers that incorporate actuator dynamics can generate steering commands such that 
the constraints are not violated, but the constraints themselves do not vanish. So without 
major changes to the control structure, the only measure that can be taken (without 
modifying the actuators) is to restrict the maximal steering input to  

Lower absolute values cause less ‘induced’ time delays. It is well known that this is of course 
not the optimal measure that can be taken, yet was believed to be the best one under the 

 !

,min ,max,cmd cmd cmd
S S SP P P ∈   . (5-2) 



   5 Results 
 

Automatic Flight Control of Tethered Kites for Power Generation   

Claudius Jehle  Page 59/ 67 

given circumstances. An appropriate value was found to be 30%1, leaving enough freedom 
for the controller. The effect is shown in both Figure 5-8 and Figure 5-9 as the blue line (resp. 
bullet-marked). An improvement of the control performance can be observed. 

8 10 12 14 16 18 20
−50

−40

−30

−20

−10

0

10

20

30

40

50

Time [s]

S
te

er
in

g 
in

pu
t P

S
 [%

]

 

 

P
S
cmd [%]:  ||P

S
||

max
 = 30%

P
S
real [%]:  ||P

S
||

max
 = 30%

P
S
cmd [%]:  ||P

S
||

max
 = 100%

P
S
real [%]:  ||P

S
||

max
 = 100%

 

Figure 5-9: Plot of the actual (commanded) steering values P S
real (PS

cmd ) with 
enabled constraints, but without parameter uncertai nties, for two restrictions 

on the maximum steering value 
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Figure 5-10: Plot of q K with enabled constraints, (1) without parameter 
uncertainties, (2) with uncertainties and (3) with uncertainties and enabled 

adaption 

                                                
1 The 30% restriction was also applied to the n-point controller, cf. 1.3.3. 
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All cases shown up to now were simulations at 0.15m
sν = , which equates e.g. to a velocity of 

15ms-1 at a tether length of 100m. It was not possible to improve the control performance 
further at this velocity setting, also not with adaption. In fact, the adaption could not deal with 
the constraints imposed here and even for strict measures to increase the robustness (cf. 
chapter 4.2.3.6), did not perform as indented and/or became unstable. For the following, the 
tether length was increased to 200m ( 0.075m

sν = ). The red (square-marked) trace in Figure 

5-10 corresponds to the constraint case without parameter uncertainties Ci=1.0. While in that 
case acceptable control performance is achieved, introducing imperfect inversion worsens 
the performance again (blue, rhomb-marked; cf. Figure 5-5). In the case of a slower kite 
however this negative effect can be mitigated by the adaption again. The green line (triangle-
marked) shows that an adaption law with Γ=diag(4, 4) and σ=2.0 can almost cancel the 
uncertainties again. 

Without the σ-modification the adaption became instable. A lower limit of σ≈1.0 was found, 
from where on the adaption deteriorated. Too high values albeit imposed too high 
suppression, so that the for values σ>5.0 the stake of the adaption signal νad of the total 
control signal ν became almost negligible. 

5.2.3 Conclusions  

It was shown that the simulation of the controller using a basic kite model performed well, 
even under model uncertainties. In the non-constraint case, the adaption was able to 
compensate for almost all uncertainties, leading to very good performance in the presence of 
imperfect inversion. 

Another result is that both linear controller and adaption have difficulties with constraints 
anticipated from the real system. Especially at short tether lengths resp. high kite velocities 
the rate limits imposed a limiting factor. It comes mainly due to Eq. (4-31) that a fast kite 
together with high curvature of the desired track lead to big steering inputs. Restricting the 
commanded steering values mitigated this effect to a certain extend, yet of course was not 
able to solve the problem itself. However, for lower values of v  the interaction of linear 
controller and adaption almost reached the same performance as in the unconstrained case.   
In reality, higher tether lengths are desirable anyway, as at higher altitudes (i.e. longer 
tethers) more energy can be generated. And as the velocity of the kite is limited in contrast to 
the tether length (or at least is growing slower), it is anticipated that the controller will perform 
well in reality. Moreover, the σ-modification showed to be able to robustify the adaption, 
making it less delicate towards constraints. 
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5.3 Experimental Results 

5.3.1 Preliminary Remarks 

As it was described earlier, the overall system is in a permanent state of development. The 
main purpose of the monthly test flights is to test the interaction of the various components 
that are developed by different groups of the team. Critical components subject to test are 

• new/altered sensors (e.g. a new GPS system), 

• sensor fusion software (collecting, filtering and preprocessing all sensor data), 

• time synchronization process (proving a common time for all components) 

• system state display (providing an overview over all relevant data and aiding manual 
control) 

• the autopilots (among them the one presented in this thesis). 

Resulting from this amount of tasks, only limited time was available for the test of the flight 
controller. Hence not the full range of possible parameter combinations was tested and more 
detailed tests have to be postponed to future flights. Nonetheless the available test data 
provides a good basis for improving the system. 

However, as a development process implies also malfunctions of components, the following 
setbacks have to be accepted: 

• The apparent wind speed vapp was not available, as the PITOT-tube it not yet 
integrable into the sensor grid. It was estimated using the wind speed and direction at 
ground level and the velocity of the kite. 

• The wind direction filtering contained an implementation fault, so that jumps in the 
azimuth position occurred. 

• A new GPS system was attached to the main strut (in addition to the IMU, cf. 2.3.1) 
and obviously altered the flight characteristics more than anticipated.  

• The communication interrupted several times and the kite crashed, so that the tests 
often had to be halted. 

• Due to an implementation mistake, neither the adaption error ead, nor the parameter 
set Ξ  was logged and can therefore not be presented. 

To be able to compare the results of the different flight tests, let  

be the arithmetic average of the normed cross track error over the time of the specific 
experiment. 

 ( )( )mean tδ δ∅ =  (5-3) 
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5.3.2 Without Adaption 

Figure 5-11 depicts the trace of the kite without activated adaption (start and endpoint 
marked with a bold square). The parameters of the controller can be seen in Table 5-3. 
Although proportional gain and turning point distance were set to the values that were found 
to be best in the simulation, the real experiment data does not reach the grade of the 
simulation. It is very likely that the inversion did not perform correctly, as the apparent air 
speed was not available for measurement (and is crucial for the inversion part). 
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Figure 5-11: Plot of q K for a real test without adaption (cf. Table 5-3) 

Value Amount Description 

PK  s
10.1  Proportional gain 

IK  0  Integrator gain 

v∅  10.023s  Projected kite velocity 

0δ  3.0  Turning point distance 

max

cmd
SP  30% Maximum steering signal 

δ∅  
398.4 10 rad−⋅  Average crosstrack error 

Table 5-3: Parameters for a real test without adapti on 

Figure 5-12 shows the trace for two controllers with activated I-part (KI=0.5 and a limited 
output of the integrator to ±0.5) and without adaption. The mean crosstrack errors were 

43.9mradδ∅ =  for KP=1.0 resp. 34.2mradδ∅ = . An interesting fact is that the controller 
seemingly performs better on the left than on the right side of the wind window. During the 
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test day however also the other flight controller (n-point, cf. chapter 1.3.3) showed this 
behavior. This effect will be discussed in the adaption part below. 
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Figure 5-12: Plot of the trace two controllers (K I=0.5) with different P-gains 
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Figure 5-13: Plot of two trace for different adaptio n parameter sets 
(cf. Table 5-4) 
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5.3.3 With Adaption 

Unfortunately the adaption error signal ead, which could have given information of the quality 
of both adaption and inversion, was not logged due to a software fault. The investigation of 
the control quality is thus limited to observation of the adaption signal νad, which also gives 
some insight to the adaption error (recall that a high adaption error will lead to an increase in 
adaption signal). 

Figure 5-13 shows the performance of the controller with 2 parameter sets given in Table 
5-4. Though the first set (blue/square) does not perform as good as the red set, it still gives a 
better result than the same case without adaption (cf. Figure 5-11). The mean cross track 
error was 70.0·10-3rad. The second set however performed best of all tests (mean cross 
track error 28.9·10-3rad). 

Value Set 1 (rhomb) Set 2 (square) Description 

PK  s
10.1  s

10.1  Proportional gain 

IK  0  5.0  Integrator gain 

v∅  0,024m
s  0,025m

s  Projected kite velocity 

max

cmd
SP  30% 30% Maximum steering signal 

Γ  
{ }0.5, 0.5diag =  { }1.0,1.0diag =  Adaption learning rates 

σ  2.0 2.0 Adaption damping factor 

δ∅  
370.0 10 rad−⋅  

328.9.0 10 rad−⋅  
Average crosstrack error 

Table 5-4: Parameters for real tests with adaption 
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Figure 5-14: Control signals for parameter set 2 (c f. Table 5-4) 
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A closer look at Figure 5-14, which demonstrates for 1.5 figures-of-eight all components of 
the control signal, gives some interesting insight. The following list allocates regions of the 
trajectory to the time in the figure: 

Time Region 

08:30–08:35 left corner 

08:35–08:50 upstroke to upper right 

08:50–09:00 right corner 

09:00-09:10 upstroke to upper left 

 etc. 

Table 5-5: Allocation of time signal of Figure 5-14  to 
regions in the figure-of-eight 

While the upstroke to the upper right is always characterized by oscillations, the upstroke to 
the upper left seems to run smoothly. During that path however the integrator is at its limit, 
while during the other path it is almost empty. This asymmetry can also be observed in the 
trace image (it is in fact seeable in all trace image): While the trace towards the left turn runs 
smoothly, the other side is subject to oscillations. Right turns are undershooting more and 
the adaption signal exceeds the one in left turns up to the factor of 3-5. This asymmetry can 
have several reasons. It is for instance possible that the wind direction data was not giving 
the straight downwind direction, or that the downwind direction at the height of the kite 
differed from the one measured at ground. So the kite would fly the figures of eight not 
passing the center of the wind window, which leads to asymmetric aerodynamic behavior 
and thus to the obvious unbalance of sides. 

Another reason could be that a zero baseline signal did not relate to the neutral position of 
the steering motors. This would explain, why the integrator runs full on one side, but is empty 
during the other (as it compensates for a constant offset in PS).  

It is also possible that the additional weight of the new GPS system attached to the strut 
altered the aerodynamic behavior, resp. affected the gravitational term of Eq. (3-2) such that 
the inversion did not perform right. 

The comparatively modest adaption effort leaves room for improvements. Obviously the 
adaption, as set in the presented tests, was not capable to compensate for all uncertainties. 
It has however also to be noted that in fact an increase in learning rate was tested, yet 

( { }5,5diag=Γ ) resulted in instability of the overall controller. Although more tests were 

scheduled, they could not be carried out due to the above mentioned tight test plan and 
various problems concerning communications and a kite crash.  



5 Results    
 

Automatic Flight Control of Tethered Kites for Power Generation 

Page 66  Claudius Jehle 

18:55 19:00 19:05 19:10 19:15 19:20 19:25 19:30 19:35
−40

−30

−20

−10

0

10

20

30

40

Time [s]

S
te

er
in

g 
in

pu
t P

S
 [%

]

 

 

Steering input P
S
cmd [%]

Steering input P
S
real [%]

 

Figure 5-15: Time delay and rate limitations 

Figure 5-15, for the sake of completeness, shows the time delay and the effect of the rate 
limiters. While the time delay is constantly round 200ms, rate limitation violations can only be 
observed at the beginning and the end.  

5.3.4 Conclusions 

The controller proved its performance in real flight tests and was able to fly automated 
figures of eight for an overall time of approx. 30mins. The longest uninterrupted flight was 
7mins. The results are promising and it is likely that the control performance can be 
improved. 

However, the anticipated problems (i.e. actuator constraints and time delays) pose an 
impediment for the controller. Unlike during simulations, the controller performed acceptable 
even without adaption, however with an additional integrator. The improvement effect of the 
I-component is assumed to stem from the imperfect inversion. Several changes have been 
applied to the system and could have altered the behavior (e.g. additional mass). Also 
malfunction of the wind direction measurement could be a reason, yet is not reproducible 
anymore (one malfunction however is document, this is, jumps in azimuth position).  

While the adaption was able to compensate for parts of the imperfections, there is still room 
for improvements. The following table confronts the mean cross track errors of two flight with 
and two without adaption, yet with identical parameters of the baseline controller. 

 

Baseline 
Parameters 

Adaption 
Parameters 

Mean Crosstrack 
Error Runtime 

off 98.4 mrad 74s 

0.0

0.1

=
=

I

P

K

K
 

2,5.0 =σ⋅= 1Γ  70.0 mrad 75s 

off 34.2 mrad 178s 

5.0

5.1

=
=

I

P

K

K
 

2,0.1 =σ⋅= 1Γ  28.9 mrad 512s 

Table 5-6: Direct comparison of flight test with an d without adaption 
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6 Conclusions and Recommendations  

The presented controller was able to fly fully automated figures of eight over a period around 
30mins, using a low-level black-box model (input-output-relation) of only the yawing 
movement. Although the proposed modeling approach does not incorporate any equations of 
motion or information on aerodynamic coefficients, the identification results are promising 
and suggest further investigation. A possible linking to the modeling approaches presented in 
chapter 3.1 would be an interesting continuation of this process, and the ample amount of 
measurement data available would support this proposition. It is desirable to focus on low-dof 
models, as only those are in general suitable for control design. 

It was shown that the controller was able to track automated trajectories, yet nonetheless 
improvement is possible. While several problems of the present system, like malfunction of 
sensors (cf. wind direction measurement, missing connection of the PITOT-tube, unreliable 
position and velocity data) are principle problems and are largely already under investigation, 
not enough importance has been ascribed to issues like the time delay (4 sampling steps) 
and the tight rate limits actuator. Future control structures will face the same limitations, and 
amendment of these negative effects requires either a more sophisticated control design, 
more robust implementation or the physical mitigation of the restrictions itself (e.g. 
replacement of motors and/or motor controllers). 

It is believed that more sophisticated control designs, like for instance the non-linear model 
predictive control presented in chapter 1.3, are able to compensate for constraints and time 
delays. However, most of the control theories available today require also more detailed, 
resilient and esp. validated system models. Another possibility to overcome the need of 
system models is a stronger focus on adaptive algorithms, like it was already presented in 
this thesis. Adaptive controllers learn the behavior of the system online and thus depend less 
on a priori knowledge of the plant subject to control. Yet as it was also mentioned before, 
also adaptive systems suffer from constraint systems, and the robustification of MRAC-
systems is still under research.  

To sum up, it is recommendable to put a stronger focus on both the identification and 
verification of (control-design suitable) system models, and a physical mitigation of the 
constraints and delays embodied in the system. 
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Appendix A: Nomenclature 

A.1 General Nomenclature 

Category Notation Remarks 

Vectors ,v γ  bold, straight, lowercasei  

Matrices ,M Γ  bold, straight, uppercase 

Points P  bold, straight, uppercaseii 

Scalars , ,A a α  normal, italic, upper and lowercase 

Sets, Domains S  normal, italic, uppercase 

Table A-1: Summarization of typeface definitions of variables 

Remarks 
i) This notation is also used for ‘unreal’ vectors, i.e. tuples that are not element of 

3ℝ . An example are the azimuth and elevations pairs [ ] 2,
T

Sξ η= ∈ ⊂q ℝ . 

ii) Although the same notation as matrices, a confusion is unlikely, as most often 
used in different contexts. 

 

A.2 Indexing of Vectors and Matrices 

Vectors in particular are elements of 3ℝ  and physically describe directions in it. For example 
the position vector pointing from a point A to a point B would be denoted by: 

 
B

A
ABBA rrr

0
,

=
==  

(A-1) 

Hence the direction of a vector is indexed at the vector with a right-upper index, where the 
two connected points are delimited by a comma. The first point is the starting point, the 
second the endpoint. If confusion is unlikely, the comma is dropped. Moreover, if the first 
point is the origin 0, it is often neglected. For angular rates ωAB (and accelerations), the 
indices correspond to references (reference frames) and have to be read as “the rotation of B 
relative to A”. If A is believed to be intertial, it is often dropped. 

If the interpretation of a vector being a connection between points is difficult, e.g. for velocity 
vectors or the base vectors of a reference frame, their direction in a meaningful context is 
denoted there, however most often in lowercase letters to avoid confusion with points: 

 [ ]Tz 100=e  (A-2) 

This vector is the unit vector in z-direction. The lower-right position is used for general 
purpose that arises from the context of usage. 
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► N.B.: It is often difficult to clearly distinct whether an index should be upper- or lower-right, 
e.g. the course vector tC. It is indeed pointing in the direction of the course, which would 
justify putting an upper-right C. Yet it is also in some sense closer describing the purpose 
of this tangent vector, namely the tangent vector to a curve, hence also a lower-right index 
is vindicated. 

► N.B.: An upper-right T corresponds to the transposition operation, if not denoted differently.  

Especially in differential geometry on surfaces, which is required and employed extensively 
in this thesis, it is often necessary to indicate the supporting point of a vector, which is 
marked by an upper-left index. An (i.e. one) interpretation is given in the following equation. 
Imagine the tangential vector t(s) to a parameterized curve γ=γ(s). To abbreviate the 
declaration, at which parameter sA the tangential vector has been evaluated, it is handy to 
write:  

 ( ) ( ) ( )( )γγAtγt A
A

A

ss

A sssss
A

===⇒=






== γ
=

γ ˆ:
ds

d
 

(A-3) 

This is of course also valid for points, as indicated in brackets. 

A.2.1 Reference Frames and Time Derivatives 

Every vector can be expressed (i.e. its components) in different frames of reference. It is 
important to visualize that this is only ‘tool’ for humans to be able to conceive and handle 
vectors in an easier way. The application of reference frames does not change the actual 
vector. To emphasize this fact also in notation, the indication of the reference frame in which 
the components of a vector have to be understood, are indicated ‘outside’ (in contrast to an 
indication ‘at’ the vector as shown, cf. above) the vector by a lower-right index of the 
bracketed vector: 

 ( )K W KW
=ω T ( )K K

⋅ ω
������

 (A-4) 

The left-hand side indicates that the components of the kite’s rotational rates are given in the 
wind-reference frame. However, as they are measured by gyroscopes fixed to the kite, they 
are thus available in kite-fixed reference frame; they have to be transformed from K to W via 
the linear transformation matrix WTK, to be read from lower-right to lower-left. Theory on 
transformation matrices themselves is anticipated to be known and will not be treated here. 

As the transformation matrix can be interpreted as a function of consecutive rotations from 
one reference frame to another, and reference frames may rotate in respect to each other, 
the matrices are functions in time. Therefore their time dependency has to be regarded when 
differentiating. Let v be an arbitrary vector and A, B two reference frames:  

 ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )BBA
B
BBA

A
A

A

AAtBBAtBtBAAt

tBBAA

vTvTv

##vTvTv

vTv

⋅+⋅=
=⋅+⋅=

⋅⋅=

ɺɺɺ

ɺ:d
d

d
d

d
d

d
d

d
d

 (A-5) 
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The outer upper-right index denotes the reference frame, relative to which a vector has been 
differentiated. This can also be interpreted as the amount of which the components of the 
vector change as observed by a reference-frame-fixed observer. Left-multiplying Eq. (A-5) by 

BTA yields 

 ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )BB

BAB
B

BB
BAB

B

BBAAB
B
B

A
B

vωv

vωv

vTTvv

×+=
⋅+=
⋅+=

,

,~

ɺ

ɺ

ɺɺɺ

, (A-6) 

respectively in a reference-free version 

 ( ) ( ) vωvv ×+= ABBA ɺɺ . (A-7) 

Hence, the change of v relative to A (left-hand side) consists of a change of v as observed in 
B (1. term RHS) plus the relative rotation of B in respect to A (2. term RHS). Cf. section C.4 

for the ( )�⋅ -operation. 
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Appendix B: Reference Frames 

B.1 Overview 

Abbrev. Origin Definition X Definition Y Definition  Z 

EX Tether exit point 0 North (East) ⊥  to ground 

EG Tether exit point 0 EXx+  ( EXy− =West) EXz−  

W Tether exit point 0 Downwind ( ⊗ ) EGz+  

SE  M∈P  (Small-North) P
W

0
ρz ×  P0ρ−  

K Kite CG Main chord line  Left to right wingtip ( ⊗ ) 

KS IMU Main strut Left to right wingtip ( ⊗ ) 

Table B-1: Origins and definitions of reference fra mes 

Remarks 
1. All reference frames are right-handed 

2. The axis that results from applying the right-hand rule on two principle ones is 
denoted in brackets 

3. P0ρ  is the unit vector pointing from 0 to P, where P is on the unit sphere M 

4. If not denoted differently, SE without indication of the supporting point refers to the 

SE system at K0ρ , i.e. the projected kite position 

5. The KS (kite-sensor) reference frame is the IMU-reference frame and is only given for 
the sake of completeness, as it is barely used in this document. 

 

 

 

Figure B-1: Illustration of the three reference fra mes EX, EG and W   
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Figure B-2: Illustration of the small-earth with re ference frames W, K and SE; 
note that here 0SE SEθ φ= = has been assumed 

B.2 Small-Earth-Analogy 

While Figure B-1 illustrates the three reference frames EG, EX and esp. W at the tether exit 
point 0, in Figure B-2 the small-earth-analogy is visualized. Imagine a unit sphere wrapped 
around the tether exit point 0, then  

• this unit sphere is referred to as small earth, 

• the azimuth and elevation angles ξ, η correspond to longitude and latitude, 
respectively1, 

• the zenith, also denoted as small-north pole, corresponds to the earth’s north pole, 

• the tether force can be interpreted as the gravitational force. 

In general, if analogies between the real world and the small earth shall be emphasized, the 
word ‘small’ is prepended (e.g. ‘small west’ to indicate the y-axis of the SE-reference frame). 

 

 

 

                                                
1 Note however that the azimuth is counted positive east-wards, in contrast to the longitude. 
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B.3 Rotation Sequences 

The three basic rotation matrices used in this chapter are: 

 

( ) ( ) ( )
















αα−
αα

=α
















αα−

αα
=α

















αα
α−α=α

100

0cs

0sc

,

c0s

010

s0c

,

cs0

sc0

001

ZYX TTT  (B-1) 

Sometimes it is useful having the following relations at hand: 

 ( ) ( )
( ) ( )α=α−

α−=α−
coscos

sinsin
 (B-2) 

B.3.1 Transformation between EX and EG 

B.3.2 Transformation between EG and W  

B.3.3 Transformation between W and SE  

 

( ) ( ) ( )
















η−ηξξη−
ξξ

ηηξξη−
=−⋅ξ−⋅η−= π

scscc

0cs

csscs

2YXYWSE TTTT  (B-5) 

B.3.4 Transformation between EX and K  

 ( ) ( ) ( )000 ψθ ZYXEXK TTTT ⋅⋅φ=  (B-6) 

► N.B.: This is the usual rotational sequence between an earth-fixed and a body-fixed rotation 
sequence as defined in e.g. [19].  

B.3.5 Transformation between SE and K  

 ( ) ( ) ( )SEZSEYSEXSEK ψθ TTTT ⋅⋅φ=  (B-7) 

► N.B.: Note the equivalence of Eq. (B-6) and (B-7). This stems from the fact that both EX and SE 
are reference frames of NED-type. 

 

( )
1 0 0

0 1 0

0 0 1
EX EG X π

 
 = = − 
 − 

T T  (B-3) 

 ( )WZEGW χTT =
 

(B-4) 
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Appendix C: Differential Geometry and Curves 

C.1 Parameterized Curves 

The following derivations are based on 3ℝ  resp. 2ℝ  for better comprehensibility, yet are valid 

also for higher-order domains. Let now γ(s) be a parameterized1 curve in 3ℝ  and P a point 
on γ: 

 ( )
( )

3:

P

s

s

→

= ≡P

γ

γ γ P

ℝ ℝ
 (C-1) 

Then the first derivative in respect to the parameter s is called tangent vector to γ:  

 d

ds
′= =γ γ t  (C-2) 

In general, (·)’ shall indicate a differentiation in respect to the parameter of the curve. Note 

that as long as s does not correspond to the arc-length of γ 1≠t . Hence if P is traveling at a 

velocity vP 

 
( )( ) 2

d d

d d
P P

T
P P

P P P
P P

s
s t s s

t s t

⋅∂= = = ⋅ → =
∂

t v t vγ
v γ t

t
�ɺ ɺ . (C-3) 

C.2 Properties of the Unit Sphere 

As the unit sphere plays a central role in this document, more attention shall be paid on the 
properties of it. As e.g. obvious from Figure B-2, the unit sphere is parameterized using the 
two angles ξ and η, which are called azimuth and elevation angles. Let 

 [ ] 2
2 2 2, : , 0,

T
S π π πξ η= ∈ = − + × + ⊂      q ℝ  (C-4) 

denote a pair of azimuth and elevation angles in the set S. Note the validity ranges. Each 
pair can be mapped to a point on the sphere M using the following mapping: 

 

( ) ( )

:

cos cos

sin cos

sin
W

S M

ξ η
ξ η

η

→

 
 = − = 
  

q ρ

P

P

 

(C-5) 

 

 

                                                
1 Not necessarily by its arc-length! 
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The result is a unit vector (ρ)W in wind-reference frame. Any vector can be mapped to the 
surface of the unit sphere by norming it: 

 [ ] [ ]1=== m
m

r

r
r
r

ρ  (C-6) 

The inverse mapping is given by  

 

( )( ) ( )
( )

1

1

1

1

:

tan

sin

y x

W
z

M S

ρ ρ

ρ

−

−
−

−

→

 −
 = =
  

ρ q
ρ

P

P
 (C-7) 

Norming ρ for the determination of η is actually dispensable as it is per definition a unit 

vector. However, under violation of the strict definition, it allows to map any vector r of 3ℝ  to 
S, skipping Eq. (C-6). 

 

C.2.1 Tangent Vectors to the Sphere 

This subchapter has mainly implementary purpose, as the correlations deduced enable to 
compute e.g. tangent vectors to the desired track in the azimuth and elevation space and 
then map them to the ‘real’ world by just a linear operation. This facilitates implementation of 
the controller in a programming language and in simulation environments.   

Assume ρ is parameterized itself, for now by an arbitrary value s. Then differentiating Eq. 
(C-5) in respect to s and evaluating at sA yields 

where AJ is the JACOBIAN at Aq, mapping tangential vectors between M and S. Explicitly, J 
can be found to be (omitting the supporting point for readability) 

 

SSESEWSEW η

η

ηξηξ

ηξηξ

hTTJ ⋅=
















−⋅=
















−
−−

= :

00

0cos

10

cos0

sinsincoscos

sincoscossin

, (C-9) 

where SEhS is the matrix of the scaling functions or factors (sometimes also referred to as 
LAMÉ-coefficients, however ambiguous) of the mapping defined in Eq. (C-5). It determines 
how the lengths of the base vectors of SE change as moved on M. Formally: 

 
( ){ }d d d

:
d d d

A

A A A A

ss s s
′= = ∇ ⋅ = ⋅q

q
ρ q J qP P  (C-8) 

 :SE S S M→h T  (C-10) 
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MT as usually denotes the tangential space to M, in which SE obviously lies. Although not 
square, SEhS can be inverted adding (in mind) a column [0,0,1]T corresponding to the third 
value, the radius of the unit sphere, which was omitted as not of interest here:  

 : ,

0 1 cos 0

1 0 0

S SE

S SE SE S

M S

η+

→
− 

= =  
 

h

h h

T

, (C-11) 

► N.B.: Note the relation to the metric tensor g, which can be defined as hhg ⋅= + . 

The purpose of these derivations comes clear from the following example. First note that the 
projected kite velocity vρ =ɺ  is tangential to M, following from 

 
ρρρρρρ ɺɺ ⊥⇒=⋅⋅→=⋅ 021 TT dt

d

. (C-12) 

Express ρ=(ρ)W in wind-coordinates and assume W to be inertial. Differentiation yields: 

 ( ) ( )W
W

W
W vJqqJv ⋅=⇒⋅= +ɺɺ  (C-13) 

This enables us to easily calculate the rates at which ξ and η change: 

 

SEx

y

SE

y

x

v

ηv
v

v
η








−
=
























 −
=









η
ξ

=
cos

0
001

0cos10

ɺ

ɺ
ɺq  (C-14) 

Moreover, we can calculate e.g. tangent vectors to the desired track in S and then map them 
to M, which facilitates implementation and reduces complexity. Also curvature can calculated 
in two-dimensional space and then translated to curvature in three-dimensional space, which 
leads to the next chapter. 

C.3 Curvature and Tangent Angle 

Let γ(s) be a curve in 3ℝ  parameterized by its arc length. Then the norm of the curvature is 
generally defined as: 

 κ ′= t   (C-15) 

In 2ℝ  also the sign of the curvature is defined [27], therefore 

 

3

0 1
,

1 0
κ ± −′  ⋅ ⋅= ∈ =  

 

t t

t

J
Jℝ  (C-16) 
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where JJJJ rotates a vector counter-clockwise by 90°. The inv erse of the curvature can be 

identified as the radius of the osculating circle to the curve, cf. also Figure C-1. Before 

moving to 3ℝ , a remark on the tangential angle to γ shall be given. 

 

Figure C-1: Change of the tangential angle in the p lanar case  

Let ϕ̂  be the angle between the tangential vector tP at P and an arbitrary fixed reference. 

The rate, at which ϕ̂  changes in time t, as P travels along γ can be determined with a 

geometric consideration from Figure C-1 for an infinitesimal increment in angle: 

 

1

d
ˆ ˆd P

P P
P

t
ϕ ϕ κ

κ −

⋅
= ⇒ = ⋅

v
vɺ  (C-17) 

As this formulation does not take into account the direction of the curve (cf. tP), a more 
proper formulation is 

 
ˆ :T P

P P P
P

vϕ κ κ
 

= ⋅ ⋅ = ⋅  
 

t
v

t �
ɺ . (C-18) 

In 3ℝ , the curvature is greater zero. It is defined as  

 

3
κ +′×

= ∈
t t

t
ℝ . (C-19) 

► N.B.: The cross product in Eq. (C-19) is a generalization of the JJJJ-operation in Eq. (C-16). 

Let for now s be the arc-length of γ, so that ( ) 1s s= ∀t , then 

 1

0 2

T d
ds

T

= ⋅

′ ′= ⋅ ⋅ ⇒ ⊥

t t

t t t t
 (C-20) 

An interesting fact is now the definition of a ‘straight’ curve. A straight curve is said to have 
no curvature, hence according to Eq. (C-15) its second derivate has to vanish. According to 

1
Pκ −  

( )sγ  

P 

Pv  

ˆdϕ

Pt  

dP t⋅v  
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(C-19) no side-wards ‘acceleration’ (cf. second derivative, centrifugal foce) is present. 
However, on a curved surface M – e.g. a sphere – this idea has to be changed, as the 
surface itself has a curvature. In fact, the total curvature k of a curve γ on M consists of [27] 
two components: 

• Normal curvate κn due to the curvature of the surface M itself and 

• Geodesic curvate κg due to the curvature of the curve in the tangential plane to M. 

Both correlate to each other via 

 2 2
g nk κ κ= + . (C-21) 

If we require now the total curvature of a ‘straight’ curve to consist only of the curvature of the 
embedding surface, 

 ! !

0n gk κ κ= ⇒ =  (C-22) 

it follows that the geodesic curvature of this curve has to vanish. Such a ‘straight’ curve is in 
general called a geodesic. The geodesic curvature at a point P is the curvature one would 
measure when projecting a curve onto the tangential plane TCM to the surface of M at C, see 

Figure C-2/right. Admittedly, this explanation is a rather technical one. For more detail see 
e.g. [27].  

 

Figure C-2: Visualization of the geodesic curvature at a sphere 

The geodesic curvature is, as the two-dimensional curvature was, signed, as it is determined 
in the tangent space TM of M and hence all techniques from above can be applied [27]. The 

determination of the turning angle ϕ  for curved surfaces however is not as straightforward 

and its derivation is not in the focus on this report. For details on the derivation see [38]. 
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The time derivative of the turning angle, as depicted in Figure C-2, can be found to be 

 cos

sin
x y

g g gv
ϕ

ϕ κ κ κ
ϕ

  
 = ⋅ − ⋅   

  

γ

�
ɺ  , (C-23) 

assuming a coordinate frame TPM on as depicted. κg
γ, κg

x and κg
y referrer to the geodesic 

curvatures of the curve and both tangential coordinate curves in the tangential plane to the 
surface at P, respectively. The x-coordinate path is a geodesic, hence it does not have a 
geodesic curvature. The geodesic curvature of any circle on the sphere is given by 

 2
cos1

tanC CrP
g g PP P

P

r

r
ηκ κ η=−

= → =○ ○ , (C-24) 

which follows from (C-21). rP shall be the radius of the circle at P. So for a unit sphere as 
shown Eq. (C-23) simplifies to: 

 ( )tan singvϕ κ η ϕ= ⋅ − ⋅γ

�
ɺ   (C-25) 

 

C.4 Miscellaneous  

C.4.1 Operators 

Cross Product 

The vector or cross product is defined via the #
~

-operation: 

 ( )� ( )3 3

1 2

1 3

2 3

: 3 , , :

0

0

0

SO

v v

v v

v v

⋅ → ∈

− 
 = − ⇒ ⋅ = × 
 − 

v w

v v w v w

ℝ ℝ

ɶ ɶ
 (C-26) 

Scalar Product 
The inner/dot/scalar product is at times denoted using the asterisk ٭  

 , :

:

n

T
i i

n

v w

∈
⋅ = ∗ = ⋅∑

v w

v w v w

ℝ
 (C-27) 

 




