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Abstract

The treatment of valvular heart disease has shifted from open-heart surgery towards
minimally invasive procedures. These procedures reduce procedural morbidity, mortality
and treatment cost while accelerating patient recovery. However as there is no direct view
or access to the affected anatomy, pre-operative planning in combination with procedural
guidance is crucial for a successful outcome. Thus non-invasive imaging in combination
with fast, precise and reproducible image analysis tools will become an essential part of
clinical practice. This thesis will concentrate on the two main aspects of minimally inva-
sive valve procedures: planning and guidance. We will present a novel dynamic patient-
specific model of the complete valvular apparatus in combination with a robust machine
learning framework to estimate the model parameters from computed tomography im-
ages. Advanced clinical measurements can be derived from our models and used for
diagnosis, patient selection, implant selection and sizing. In addition we provide an ad-
vanced planning framework for the aortic valve implantation procedure (TAVI) where we
combine a volumetric model estimation method with a virtual valve deployment frame-
work. Further we introduce a robust model-based fusion framework to fuse high-quality
pre-operative modalities with low-quality intra-operative images. In the first phase the
pre-operative modality will be used to improve the model estimation accuracy in the low-
quality intra-operative image. The second part involves developing novel multi-modal
model based registration approaches to register pre-operative and intra-operative images.
We employ robust machine learning techniques during the estimation. The methods are
extensively validated on a large number of patients from multiple medical centers around
the world. Both the planning and guidance frameworks have the potential to improve the
treatment outcome while lowering procedural risks and treatment costs.
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Zusammenfassung

Die Therapie von Herzklappenfehlern hat sich von offenen Herzoperationen auf minimal-
invasive Behandlungen verlagert. Diese reduzieren die Morbidität, Mortalität und Be-
handlungskosten währenddessen die Genesung vom Patienten beschleunigt wird. Jedoch
hat der behandelnde Arzt bei solchen Prozeduren keinen direkten Blick auf die betroffene
Anatomie. Deswegen sind Planung und interventionelle Führung essentiell für einen er-
folgreichen Eingriff. Nicht-invasive Bildgebungen in Kombination mit schellen, präzisen
und reproduzierbaren Bildverarbeitungsalgorithmen werden essenzieller Bestandteil des
zukünftigen klinischen Alltags werden. Diese Dissertation konzentriert sich deshalb auf
die beiden Hauptaufgaben von minimal invasiven Herzklappenbehandlungen: Planung
und interventionelle Führung. Wir präsentieren ein dynamisches, patientenspezifisches
Model vom gesamten Herzklappenapparat in Kombination mit einem robusten System
basierend auf maschinellem Lernen um das endgültige Model von Computertomogra-
phiebildern zu berechnen. Fortgeschrittene klinische Messungen können von unserem
Modell abgeleitet werden und zur Diagnose, Patientenselektion, Implantatselektion und
Messung herangezogen werden. Zusätzlich stellen wir ein Verfahren vor wobei die pop-
uläre minimal-invasive Aortenklappen-Intervention (TAVI) simuliert werden kann. Weit-
ers präsentiern wir eine neue Methode vor für die Fusion von hoch-qualitativen prä-
operativen und niedrig-qualitativen intra-operativen volumetrischen Bildern. In der er-
sten Phase werden die prä-operativen Bilder dazu benutzt die niedrig qualitativen inter-
ventionellen Modelle zu verbessern. Danach stellen wir zwei neue Methoden fr̈ die Reg-
istrierung von Multi-Modalen Bilder vor. Hierbei verwenden wir robuste modelbasierte
Methoden unter Zuhilfenahme von Methoden aus dem maschinellen Lernen. Alle vorgestell-
ten Methoden sind ausführlich auf einer grossen Anzahl von Patienten aus mehreren klin-
ischen Zentren quantitativ und qualitativ validiert worden. Beides die Planung und inter-
ventionelle Führung haben das Potential die jetzige Behandlung von Herzklappenfehlern
zu verbessern wobei das Risiko und die Behandlungskosten reduziert werden.
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1. Introduction

During the last two centuries life expectancy has more than doubled [4, 144] (see Figure 1.1
left). The major contributors were tremendous advances in living standards, nutrition and
medicine since the beginning of the industrial revolution in 1820. Especially advances in
medicine with novel therapies including drugs, surgery and novel screening technology
had a significant impact. Top leading diseases causing death changed frequently during
this time. Currently cardiovascular and cancer are the most prevalent diseases account-
ing for almost 50% of all deaths in the developed world (see Figure 1.1). Cardiovascular
diseases (Cardiovascular Disease (CVD)) are at the top with 500 000 deaths alone in the
United States. In addition to higher mortality rates compared to cancer, treatment costs for
CVD are significantly higher, 400 billion vs 250 billion.

(a) (b)

Figure 1.1.: (a) Life expectancy graph for the last four centuries in the developed world.
(b) Relative comparison of major causes of death in the developed world. The
statistics were retrieved from the Millenium Group Research [133].

1.1. Motivation

Valvular Heart Disease (Valvular Heart Disease (VHD)) is the most prevalent subgroup of
CVD, affecting 2.5% of the global population and requires yearly over 100,000 surgeries
in the United States alone and is a representative instance for the growing public health
problem provoked by CVD. Heart valve operations are the most expensive procedures
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1. Introduction

with the highest mortality rate, an average cost of $141,120 and 4.9% in-hospital death rate
[42, 14, 15].

Decisions in valvular disease management increasingly rely on non-invasive imaging
techniques. The quality of acquired information, as well as the accessibility and cost ef-
fectiveness of each medical imaging modality has significantly improved over the past
decades. Techniques like Computed Tomography (Computed Tomography (CT)), Trans-
esophageal Echocardiography (Transesophageal Echocardiography (TEE)) and Cardiovas-
cular Magnetic Resonance (CMR) imaging enable dynamic four dimensional scanning of
the beating heart over the whole cardiac cycle. In addition modern C-arm systems are
capable to acquire a three dimensional CT like modality within the operating room. Such
volumetric time-resolved data encodes comprehensive structural and dynamic informa-
tion, which however is seldom exploited in current clinical practice, due to its size and
complexity as well as the lack of appropriate medical systems that utilize the extensive
image information.

The progress in medical imaging is matched by important advances in surgical tech-
niques, bioprosthetic valves, robotic surgery and percutaneous interventions, which have
led to a twofold increase in the number of valve procedures performed in the United States
since 1985 [91]. According to Millennium Research Group (MRG), the global authority on
medical technology market intelligence, the United States heart valve market will grow
strongly through 2016, almost entirely as a result of the introduction of devices for percu-
taneous valve therapies [133]. The market will reach a value of over $1.5 billion by 2016.
Percutaneous or minimally invasive valve procedures tend to be less invasive, reduce pro-
cedural morbidity, mortality and the intervention cost while accelerating patient recovery.
Powerful computer-aided tools for extensive non-invasive assessment, intervention plan-
ning, guidance and follow-up quantification are mandatory to continuously decrease the
level of invasiveness, reduce the procedural risk and maximize effectiveness of the valve
therapy.

1.2. Aims

The focus of this thesis is to develop efficient, precise and reproducible image analysis
tools from non-invasive imaging modalities in order to enable future clinical applications
in the area of minimally invasive valve therapies. The main emphasis is on pre-operative
planning and intra-operative guidance. The following goals were pursued:

• Design an efficient mathematical model of the complete valular apparatus consist-
ing of the aortic valve (Aortic Valve (AV)), mitral valve (Mitral Valve (MV)), tricus-
pid valve (Tricuspid Valve (TV)) and pulmonary valve (Pulmonary Valve (PV)) as
well as the ascending aorta, which can capture complex anatomical, dynamical and
pathological variations.

• Develop a approach for fast and robust patient-specific parameter estimation for the

2



1.3. Contributions

complete valvular model (developed in previous Aim) from multi-phase CT images.

• Design a computational framework based on bio-mechanical models for advanced
planning for the current most significant minimal invasive procedure: Transcatheter
Aortic Valve implantation (TAVI).

• Develop a robust approach to register high-quality diagnostic data and low-quality
intra-operative data for guidance of minimal invasive valve procedures (e.g. Tran-
scatheter Aortic Valve Implantation - Transcatheter Aortic Valve Implantation (TAVI)).

1.3. Contributions

The major contributions of this thesis along with the corresponding publications:

• A hierarchical model of the complete valvular apparatus consisting of the aortic
valve (AV), mitral valve (MV), tricuspid valve (TV) and pulmonary valve (PV) was
proposed in [67] and [68] including the ascending aorta [70] which is able to cap-
ture complex anatomical and functional variation, including many valvular diseases.
Consequently efficient machine learning techniques are incorporated to estimate the
model parameters. In particular a new constrained Multi-linear Shape Model (cMSM),
conditioned by anatomical measurements, is introduced to represent the complex
spatio- temporal variation of the heart valves.

• A novel volumetric model for the aortic valve was proposed in [66] necessary for ad-
vanced planning for the TAVI procedure. We concentrated thus on a patient cohort
with severely stenotic aortic valves. Based on our previous segmentation approach
[67, 68] tissues within the aortic valve can be classified in one of the following cat-
egories: leaflet tissue, blood pool and calcification. In addition to intensity based
features we incorporated novel geometrical features to capture the spatial context of
each tissue in respect to the aortic valve anatomy.

• A computational modeling framework was developed to simulate the implant de-
ployment procedure for TAVI [71]. From a cardiac CT a geometrical model is ex-
tracted and used to personalize the bio-mechanical computational model. In corre-
spondence with a bio-mechanical model of the implanted device and corresponding
boundary conditions (e.g. tissue strain/stiffness parameters, ventricular pressure)
the deployment can be personalized. Thus different implant sizes and types can be
easily tested prior to the actual procedure.

• To guide minimal invasive cardiac procedures two novel techniques were devel-
oped. Firstly an algorithm was presented to extract accurate valve models from low-
quality contrasted intra-operative images by using additional pre-operative infor-
mation [69]. Hereby a learning based approach is utilized where both models of the

3



1. Introduction

same patient are estimated at once. Thus geometric models from low-quality inter-
ventional image can be improved by incorporating information from high-quality di-
agnostic images. The second guidance technique registers high-quality pre-operative
images with low-quality non-contrasted intra-operative images [142, 65] by exploit-
ing an efficient model based matching approach.

1.4. Outline of Thesis

The thesis consists of two major chapters, both focusing on minimally invasive proce-
dures. The third chapter focuses on developing novel parametrization and estimation ap-
proaches of the complete valve apparatus for diagnostic quantification of valve anatomy
and function and treatment planning. Further, a robust approach to guide minimally in-
vasive procedures is explored whereby hi-quality pre-operative data is fused with low-
quality intra-operative images in order to enable novel clinical guidance applications. A
brief description of the subsequent chapters follows:

Chapter 2: Background

In this chapter we introduced the clinical background and the relevant imaging systems
for cardiac diagnostic and interventional scanning. In the first part the main properties of
the cardiac anatomy, with an emphasis on the valves, are explained. In the second part the
importance of current diagnostic (CT, MRI, Ultrasound, IVUS, CTO) and interventional (C-
arm CT, Ultrasound) imaging modalities are explored in respect to planning and treatment
of valvular disease. In the last part we explore the current state-of-the art in medical image
analysis related to our problems in model segmentation and multi-modal registration.

Chapter 3: Pre-operative Modeling and Quantification

This chapter describes in detail the proposed physiological model of the complete valvu-
lar apparatus and its parameter estimation. First a unified mathematical representation is
introduced for all four heart valves and followed by the description of discriminative ma-
chine learning methods to estimate the model parameters. It is followed by improvements
of modeling accuracy by presenting volumetric segmentation methods for the aortic valve
for advanced intervention planning. In addition we utilize this approach in combination
with a bio-mechanical modeling framework to simulate valve therapy. Lastly we present a
model estimation approach from multiple modalities where we show that models in low-
quality interventional images can be improved by utilizing information from high-quality
pre-operative images.

Chapter 4: Intra-operative Guidance

In this chapter, a novel algorithmic framework is introduced to estimate the alignment be-
tween high-quality pre-operative images and low-quality interventional images. In con-

4



1.4. Outline of Thesis

trast to intensity based registration methods we propose a model based registration ap-
proach which has the properties of retrieving a robust, fast and application specific image
registration capable to cope with severe noise in the interventional setting.

Chapter 5: Conclusion

Finally we conclude in chapter 5 with a summary of the presented methods, their benefits
and impact in the clinical environment, as well as a future outlook.
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2. Background

Starting in the 16th century with Andreas Vasalisus the study of the heart started ac-
celerating. In the subsequent centuries the field continued the pathway of descriptive
anatomy and pathology, where many vividly depicted anatomy drawings surfaced such
as Leonardo da Vinicis (see Figure 2.1). In the 19th and 20th century major advances have
been made in the field of diagnoses and treatment of heart diseases. However the field
cardiology was formed in the 20th century when first diagnosis instruments - blood pres-
sure instrument, chest x-ray, the electrocardiogram (Electrocardiography (ECG)) were in-
troduced.

(a) (b)

Figure 2.1.: (a) Four-chamber view of the heart as illustrated by Leonardo da Vinci. Even
the thinner wall size in the right ventricle was depicted correctly. (b) The four
chamber view of the real heart from an ex-vivo specimen. Reproduced with
permission of the European Association for Cardio-Thoracic Surgery. Multi-
media Man Cardiothorac Surg doi:10.1510/mmcts.2006.002147.

In the subsequent sections the main anatomical and physiological properties of the car-
diovascular system will be given. It will be followed by a description of the most com-
mon pathological disorders and their current treatment options. Finally the main imaging
modalities for cardiac screening, intervention planning and guidance will be presented as
well as the current advances in medical image analysis technology.
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2. Background

2.1. Cardiovascular system

The cardiovascular circulatory system is composed of the heart, blood vessels and blood.
The heart acts as a pump and sends blood through elastic vessels called arteries, which
branch into smaller ones and transport oxygenated blood through the body. The arteries
divide finally into capillaries, with extremely thin walls, where oxygen, nutrients, minerals
and other substances can pass through to surrounding cells and tissue. Waste substance,
including carbon dioxide, flow from the tissue and cells into the blood for disposal. In
a symmetrical analogy to the arteries the capillaries join to form vessels that eventually
become veins. Thus they take blood back to the heart (see Figure 2.2 left).

(a) (b)

Figure 2.2.: (a) Diagram of the cardiovascular circulatory system. Vessels carrying oxy-
genated blood (usually arteries) are shown in red and those carrying deoxy-
genated blood (usually veins) are shown in blue. (b) Diagram showing the
systemic and pulmonary circulation.

In the pulmonary circulation (see Figure 2.2 right) the right side of the heart pumps
blood to the lung in order to oxygenate blood and then back to the left side of the heart.
In the systemic circulation, the left side of the heart pumps oxygenated blood through the
body tissues where it is depleted of oxygen and returned back to the right side of the heart.
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2.2. The Human Heart

2.2. The Human Heart

The heart is a powerful dynamic organ which pumps blood around the body’s vast vessel
network. It weights between 250 and 350 grams and is about the size of a fist. It consists
of two main parts, the left and the right heart, which are intrinsically divided into two
cavities, the atria and ventricles. Each side of the heart contains two valves regulating
the blood flow both within the atria and ventricle but also the flow between ventricle and
outflow vessels (see Figure 2.3).

Figure 2.3.: Illustration of the heart during the main 2 cardiac phases: diastole (left) and
systole(right).

The main power of the heart comes from the two lower chambers (ventricles) which
have thicker muscular walls then the upper chambers (atrias). The ventricle contracting
motion squeezes the blood into the arteries while the atrias act as passive reservoirs for
blood flowing from the main veins. The average frequency of the heart is 60 beats per
minute whereby each heartbeat can be divided into two main phases: systole and diastole.
These two phases can be subdivided further, constituting four phases for the entire cardiac
cycle: 1) relaxation (late diastole), 2) contraction of the atria (atrial systole), 3) contraction
of the ventricles (ventricular systole) and 4) relaxation (early diastole).

During relaxation the muscular walls of the heart relax, the atrial chambers expand
slightly as they fill with blood coming in under low pressure from the main veins. De-
oxygenated blood from the body comes into the right atrium, while oxygenated blood
enters the left atrium. Blood also flows from the atria into the ventricles, which are filled
with 80% of their capacity.

The sinusoidal node is located in the located in the upper part of the right atrium. It
sends electrical impulses which initialize the contraction phase. Impulses spread though
the atrial walls and simulate their cardiac muscle to contract. This squeezes the blood
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inside the atria through the atriventricular (mitral and tricuspid) valves into the ventricles
which walls remain relaxed.

During the contraction phase (ventricular systole), the most active stage of the heart-
beat, the thick cardiac ventricular muscle contracts, through the atrioventricular node.
This causes a rise in the ventricular pressure, which opens both the aortic and pulmonary
valves. Both valve are located at the outflow of the left and right ventricles.

In the relaxation phase the walls of the ventricles begin to relax, causing ventricular
pressure to reduce. Due to the higher pressure in the outbound arteries the aortic and
pulmonary valves close. This is preventing the back-flow of blood from the arteries into
the ventricles. As the ventricular pressure reduces on the atrioventricular valves (mitral
and pulmonary) the valves start to open. This reduces further the pressure in the atria,
allowing blood to enter from the main veins (see Figure 2.4).

Figure 2.4.: Diagram of the left heart during the cardiac cycle (Wikipedia).

10



2.3. Physiology of the heart valves

2.3. Physiology of the heart valves

Heart valves are structures within the human heart limiting the blood flow in one di-
rection. The valves open and close passively depending on pressure differences on each
side. They can be separated into two main groups: atrioventricular and semilunar valves
(see Figure 2.5). The atrioventricular valves, consisting of the mitral and tricuspid valve,
are thin structures composed of endocardium and connective tissue. They are located
between the atria and ventricles. The Semilunar valves are flaps of endocardium and con-
nective tissue reinforced by fibers to prevent the valves from turning inside out. As they
are shaped as a half moon they are called semilunar. They are located between the left
ventricle and the aorta (aortic valve) and the right ventricle and the pulmonary artery
(pulmonary valve).

Figure 2.5.: The valvular apparatus during diastole (left) and systole (right) consisting of
four heart valves: the aortic, mitral, tricuspid and pulmonary valve. Repro-
duced with permission from [26].

2.3.1. Aortic Valve

The central anatomical structures of the aortic valve consist of the aortic root and the three
aortic valve leaflets, also referred as cusps. The aortic root is a tubular structure connecting
the left ventricle outflow tract with the ascending aorta. Its function is to allow only for
unidirectional blood flow from the left ventricle to the ascending aorta.

The lowest ring on the aortic root is called the annulus. The annulus incorporates the
three hinge points where the three aortic valve leaflets are connected. The areas on the root
which correspond to the leaflets are dilated and called valvular sinuses.

The aortic valve leaflets are attached to the aortic root within the valvular sinuses. The
cusps form pockets with the lowest point called hinge. There are three hinge points, each
cusp contains one.The attachments of each cusp ascend on the valular sinus where they
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interlink at the level of the sinutubular junction forming the three commissures. Each cusp
contains two commissures. The center of the free edge of the leaflet is refereed as the leaflet
tip, consisting of a thicker fibrous tissue (see Figure 2.6).

(a) (b) (c)

Figure 2.6.: (a) Diagram of the aortic valve located between the left ventricle and the as-
cending aorta. (b) the aortic valve anatomy during diastole. (c) Unfolded view
of the aortic valve anatomy emphasizing the three leaflets (cusps). Reproduced
with permission of the authors from [26].

Underneath the sinotubular junction the two coronary ostia are located. They supply
the left and right ventricle with oxygenated blood.

2.3.2. Mitral Valve

The central anatomical structures of the mitral valve consist of the two leaflets (anterior
and posterior), the annulus, the papillary muscles and the chordae tendineae. The mitral
valve is connecting the left atrium and the left ventricle and is supposed to prevent back-
flow of blood form the left ventricle to the left atrium during systole. The fibrous tissue on
the outer perimeter of the anterior and posterior leaflet is called the mitral valve annulus.

The anterior leaflet is semi-circular shaped and separates the ventricular inflow and out-
flow tracts. In contrast to its right-sided counterpart, the tricuspid valve, it also forms part
of the left ventricle outflow tract. The posterior is shaped as a crescent moon. Both leaflets
can be divided into subparts called scallops. The anterior is divided into A1, A2, A3 while
the posterior consist of the complementary scallops P1, P2, P3. In healthy patients both
leaflets have similar areas. The anterior leaflet has almost twice the height compared to
the posterior but only half of its annular length.

The commissures are cleft-like splits in the leaflet tissue and comprise the location where
the posterior and anterior leaflets join. Below the commissures are the two papillary mus-
cles, which arise from the left ventricular wall. Commissural chordae arise from each
papillary muscle and extend in a fan-like array to insert into the free edge of both leaflets
adjacent to the commissures (major commissures) or into two adjacent scallops of the pos-
terior leaflet (minor commissures) [55]. As the chordae tendineae insert into the free-edge
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and rough zone, they support the leaflets during systole to prevent prolapse (see Figure
2.7).

(a) (b) (c)

Figure 2.7.: Diagram of the mitral valve located between the left atrium and the left ven-
tricle. (a,b) Top view of the mitral valve showing the anterior and posterior
leaflet during systole. (c) Unfolded view of the mitral valve emphasizing the
papillary muscles and chordae tendineae. Reproduced with permission of the
authors from [26].

2.3.3. Pulmonary Valve

The pulmonary valve is one of the two semilunar valves located between the right ven-
tricle and the pulmonary artery. The anatomical structure is similar to the aortic valve. It
consists of a pulmonary root and three leaflets (cusps). Unlike the aortic valve which is
continuously connected to the mitral valve the pulmonary and tricuspid valves are sepa-
rated by infundibular muscle [55].

Analogous to the aortic valve the pulmonary valve opens due to increased ventricular
pressure rise during systole. During diastole when the pressure in the right ventricle drops
significantly, and thus the pressure gradients invert, the pulmonary valve closes.

2.3.4. Tricuspid Valve

The tricuspid valve is one of the ventricular valves. It is located between the right atrium
and the right ventricle. The anatomical structure is composed of three aortic valve leaflets,
the annulus and the subvalvular apparatus.

It is comprised of the annulus, leaflets, chordae tendineae, papillary muscles and com-
missures. In contrast to the mitral valve the tricuspid valve consists of three leaflets: poste-
rior, anterior and septal leaflet. The anterior tricuspid leaflet is the largest and most mobile
while the posterior is the smallest. The posterior leaflet is the least mobile because of its
many chordal attachments.
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2.4. Pathology of Valvular Heart disease

There are several types of heart disease. Many affect one valve and can be observed on all
valves such as valvular stenosis and insufficiency [14, 184, 89].

Stenosis occurs when the valve opening is narrower than normal due to stiff or fused
leaflets. This causes the heart to pump blood through the small opening and results often
in heart failure. Valvular insufficiency also called regurgitation or incompetence manifests
when the valve is not closing properly. Thus blood will leak backwards across the valve.
In such cases the heart must work harder in order to compensate for the leaky valve [28,
187, 138, 25].

Congenital valve diseases affect mostly the aortic and pulmonary valve. Valves can be
insufficient in size, have malformed leaflets which are often not attached properly to the
annulus [82, 155]. Another congenital disease is the bicuspid aortic valve disease. Hereby
instead of the normal three leaflets or cusps there are only two. In many cases the valve is
unusually stiff causing stenosis or regurgitation [46].

Acquired valve diseases occur when valves which were once normal develop structural
changes due to infections or other types of diseases. Hereby multiple valves can be af-
fected. The most common forms are Rheumatic fever and Endocarditis [61, 60, 175, 38].
Rheumatic fever is caused by an untreated bacterial infection which usually occurs in chil-
dren. Often symptoms are not observer for 20-40 years when the heart valves become
inflamed, the leaflets stick together and become scarred, thickened and shortened. This
usually leads to insufficiency. The introduction of antibiotics has dramatically reduced the
number of this infection. Endocarditis occurs when bacteria enters the bloodstream and
attack the heart valves causing scarring. This can lead to regurgitation. The bacteria enter
the blood during surgery, dental procedures or severe infections.

Mitral valve prolapse is common, affecting 1-2% of the population. It causes the mitral
valve leaflets to flop back into the left atrium during systole. Prolapse also causes the
tissue of the valve to become abnormal and stretchy, causing insufficiency. However the
insufficiency is mild in most cases and does not cause serious symptoms and usually does
not require treatment.

Other cause of valve disease can include coronary artery disease, cardiomyopathy (thick-
ening of the left ventricle muscle), heart attack, hypertension and aortic aneurisms [7, 129,
12]. Many recent finding show that valvular disease is often correlated between valves
[177, 188, 109]. Thus understanding and quantifying the whole valvular apparatus is a
key prerequisite for precise and reproducible diagnosis of valvular disease.

2.4.1. Aortic Valve Stenosis and Insufficiency

In most cases aortic stenosis is caused by age-related progressive calcification of a normal
aortic valve (see Figure 2.8). Other causes include congenital bicuspid aortic valve and
acute rheumatic fever post-inflammatory.

The severity of aortic valve stenosis can be classified in four categories: 1) mild aortic
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stenosis ( <25 mmHg mean gradient and aortic valve area >1.5 mm2), 2) moderate aortic
stenosis (25-40 mmHg and 1.0-1.5 cm2), 3) severe aortic stenosis (>40 mmHg and <1 cm2)
and 4) critical aortic stenosis (>70 mmHg and <0.6 cm2)

(a) (b) (c)

Figure 2.8.: Examples of the aortic valve in CT with (a) bicuspid anatomy, (b) stenotic and
heavy calcified aortic valve and (c) dilated aortic valve.

The primary cause of aortic valve regurgitation is aortic root dilation. In about 15%
it is the cause of the innate bicuspid aortic valve and in another 15% cases are due to
an inflammatory disease such as endocarditis. Based on the hemodynamic implications
aortic insufficiency can be divided in two groups: acute and chronic insufficiency. Acute
aortic insufficiency is considered a medical emergency with high mortality rates caused by
endocarditis (see Figure 2.8).

2.4.2. Mitral Valve Stenosis and Insufficiency

Mitral valve stenosis is a disease characterized by a narrowing of the mitral valve orifice.
In most case it is a consequence from a primary rheumatic heart disease. Other rather
uncommon causes are calcification of the mitral valve leaflets and other forms of congenital
diseases. The normal mitral valve orifice is between 4-6 cm2. Mitral valve stenosis is
usually classified in three categories: 1) mild (mean gradient <5 mmHg and opening area
>1.5 cm2 during diastole), 2) moderate (mean gradient between 5-10 mmHg and opening
area of 1-1.5 cm2 during diastole) and severe (mean gradient of >10 mmHg and opening
area < 1 cm2 during diastole).

Mitral valve insufficiency is the most common form of valvular heart disease. Based
on the severity of the insufficiency it is usually separated in four groups classified based
on the regurgitation fraction. The regurgitation fraction is defined as the percentage of
the left ventricular stroke volume that regurgitates into the left atrium. The four groups
of mitral valve insufficiency are are: 1) mild (regurgitation fraction <20%), 2) moderate
(regurgitation fraction 20-40%), 3) moderate to severe (regurgitation fraction 40-60%) and
4) severe (regurgitation fraction >60%).
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2.4.3. Pulmonary Valve Disease

Pulmonary valve disease is primarily associated with congenital lesion often including the
right ventricular infundibulum. It is rarely associated with an infectious process such as
rheumatic fever or bacterial endocarditic. It can be pathologically affected in carcinoid
heart disease with resulting insufficiency or stenosis.

2.4.4. Tricuspid Valve disease

The tricuspid valve disease is often in association with or secondary to mitral or aortic
valve disease or left ventricular (LV) disease. In contrast to the aortic or mitral valve dis-
ease tricuspid valve disease is rarely treated and often ignored.

2.5. Treatment of Valve Disease

Depending on the severity of the valvular disease and the physical condition of the patient
there are three treatment options: 1) medication, 2) heart valve surgery and 3) minimally-
invasive or percutaneous procedures.

In some cases for patients with mild valvular heart disease medications can be an option.
Commonly prescribed medications for valvular heart disease include medications to open
blood vessels (vasodilators), medications to lower cholesterol (statins), medications that
reduce water retention (diuretics) and blood-thinning medications (anticoagulants). In
addition to patients with mild valular heart disease patients with extremely high risk-
scores, deemed inoperable, are usually treated with medications.

(a) (b) (c)

Figure 2.9.: (a) Carpentier-Edwards Bioprosthesis for the aortic valve, (b) The Carpentier-
Edwards Classic annuloplasty ring and (c) Edwards ETlogix annuloplasty ring.

Most patients with valvular heart disease undergo surgery. Since the 1950 and the in-
vention of the heart-lung machine the field of cardiac surgery was established. Repair and
replacement procedures are regularly performed on low and medium risk patients mea-
sured using the standard risk assessment scores STS and EUROSCORE 2 [156, 80, 105, 157].
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In the recent years a new way of treatment options has emerged. These procedures are
called minimally invasive or percutaneous interventions. With novel and catheter devices
with smaller footprint these procedures have received an exponential growth (see Figure
2.12). In comparison to standard surgical procedures these interventions can be utilized in
high-risk and inoperable patients.

Despite the tremendous advances in treatment options costs for valvular interventions
have been consistently high with an average cost of $ 141 200 per intervention and 4.9% in-
hospital death rate. Minimal invasive procedure have the potential to lower the interven-
tional cost constituting now more than 40% of all valvular interventions while the market
is still expected to grow till 2018 [133]. However as there is no direct view or access to the
affected anatomy pre-operative planning in combination with procedural guidance is cru-
cial for a successful outcome. Thus non-invasive imaging in combination with fast, precise
and reproducible image analysis tools will become an essential part of clinical practice to
assure a successful outcome.

2.5.1. Heart Valve Surgery

All valve surgeries are performed under general anesthesia. The surgeon makes a large
surgical cut in the breastbone to reach the heart and aorta. Most people are connected
to a heart-lung bypass machine. The heart is stopped during the intervention while the
heart-lung bypass machine replaces the heart function.

2.5.2. Valve Repair

Repair procedure are not widespread for every valve. The mitral valve repair procedures
are the most common. Patients are usually suffering from prolapse and severe regurgita-
tion caused either by dilating mitral valve annulus or defected chordae tendineae. In most
cases a ring prosthesis (annuloplasic) ring, such as the Carpentier-Edwards Classic annu-
loplasty ring, is applied to remodel the mitral valve annulus. The available annuloplasty
rings are rigid, flexible, complete, partial, and semi-rigid/flexible. Several objectives ex-
ist for annuloplasty, namely remodeling of the length and shape of the dilated annulus,
prevention of dilatation of the annulus, and support for the potentially fragile area after
partial-leaflet resection. Annuloplasty rings may have the potential for maintaining the
anatomical and physiological characteristics of the mitral annulus. In most procedures the
annuloplasty is combined with resections on the leaflets. In addition artificial chords, such
as Neochordae by Valtech Cardio or Yehuda, Israel, can be used to re-attached the leaflets
to the papillary muscles. Compared to mitral valve replacement the complexity of the pro-
cedure is very high and requires an experienced cardiac surgeon. Proper planning for this
procedure is crucial and image analysis with combined computational modeling can help
to improve procedural outcome, especially in lower volume clinical centers.

Aortic valve repair is seldom. In most cases it is associated with congenital disease such
as the Ross operation where the dysfunctional aortic valve is replaced with the functional
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pulmonary valve. However due to the high complexity of the procedure it is executed
solely in highly specialized centers. Other procedures include commissuroplasty, where
the valvular orifice can be narrowed in order to reduce aortic valve regurgitation.

Reconstructive surgical procedures for the right side valves are rare. For the tricuspid
valve surgical procedures include suturing, repair with flexible rings and complete remod-
eling rings. However the evaluation and treatment selection varies wildly between clinical
centers.

Valve Replacement

During the valve replacement the deficient valve is replaced by an artificial valve implant.
There are two main implant groups: mechanical valves and tissue valves. Mechanical
valves are more robust and last longer compared to tissue valves. However they contain
increased risk of blood clots and thus require the intake of anticoagulants for the rest of
a patients live. The tissue valves are usually made from animal valve tissue or animal
pericardial tissue. In some cases homografts are used where the tissue is provided by
human donors.

New bioprostetic aortic valves such as the Carpentier-Edwards bioprosthesis offers im-
provements such as reduced calcification risk, an improved fixation technique which min-
imizes alterations in the collagen waveform and increases leaflet compliance and mini-
mized tissue stress (see Figure 2.12).

Minimally Invasive Procedures

In recent years minimally invasive or percutaneus procedures have replaced surgical re-
pair and replacement [112, 99, 169, 93, 77, 177, 47]. These procedures offer the potential
to reduce procedural morbidity, mortality, and costs of valve treatment. Many patients
with systematic valular diseases were deemed as inoperable based on their risk assess-
ment (STS score, Euroscore 2, etc.). Thus they could not undergo regular valve repair and
replacement. Their only treatment option was blood thinning medication. Many of these
patients can however undergo minimal invasive procedures. They are establishing them-
selves as a viable alternative to standard open-heart surgery.

During a minimally invasive procedure an implant is delivered through a catheter in-
serted through a small incision point in the vascular system (e.g. femoral artery). The
procedures are executed in specialized operating rooms called Hybrid Operating Rooms
or Cath-labs equipped with advanced imaging technology such as Fluoroscopy and Trans-
esophageal Echocardiography (TEE). As there is no direct access and view to the affected
anatomy these imaging modalities are installed to guide the procedure.

One of the most prevalent minimally invasive procedures is the transcatheter valve im-
plantation (TAVI) where a replacement valve is delivered via a catheter using one of sev-
eral access methods: transfemoral, transapical, subclavian and direct aortic.

The first TAVI procedure was performed in 2003 by Alain Cribier and within one decade
the number of procedures increased to more than 50,000 implants done within 40 countries
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(a) (b) (c)

Figure 2.10.: (a) The Edwards SAPIEN balloon-expandable valve. (b) The new SAPIEN XT.
(c) The Medtronic CoreValve.

[34]. Many manufacturers such as Edwards Lifesciences (Irvine, California), Medtronic
(Minneapolis, Minnesota), St. Jude Medical (St. Paul, Minnesota), Boston Scientific Inc.
(Natick, Massachusetts), Direct Flow (Santa Rosa, California), JenaValve (Munich, Ger-
many) etc. have released multiple devices with European CE marks and some have gained
also the FDA approval. The two most popular implants are the SAPIEN and COREVALVE.
The Edwards SAPIEN balloon-expandable valve incorporates a stainless steel frame, bovine
pericardial leaflets and a fabric sealing cuff. The new version of the SAPIEN valve (SAPIEN
XT) uses a cobalt chromium alloy frame and is compatible with lower profile delivery
catheters. The Medtronic CoreValve incorporates a self-expandable frame, porcine peri-
cardial leaflets, and a pericardial seal.

Other popular minimal invasive valve procedures include the mitral valve MitraClip
system (Abbott Vascular, Santa Clara, CA, USA) where a selective group of patients can be
treated. The prolapsed mitral valve, often caused by a broken chordate string, is repaired
using a clip stitching the anterior and posterior leaflet (see Figure 2.11).

2.6. Imaging Modalities

2.6.1. Computed Tomography

Computed tomography or a CT scan (also known as CAT scan) is an imaging technique
that uses a high amount of ionizing radiation in conjunction with an reconstruction algo-
rithms to recover a high-quality 3D diagnostic image of the patients internal anatomy. It
can be utilized to fully evaluate both cardiac structure and function. Advances in the recent
decades have allowed for a more complete evaluation of both stationary structures, such as
the thoracic aorta, as well as rapidly moving structures such as the heart valves. Usually
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(a) (b) (c) (d) (e)

Figure 2.11.: (a) Lotus valve (Boston Scientific), (b) Direct Flow valve (DirectFlow), (c) Por-
tico valve (St. Jude Medical), (d) Engager valve (Medtronic Inc., Minneapolis
Minnesota), (e) JenaClip valve (JenaValve).

cardiac acquisitions were combined with an Iodine based contrast agent in combination
with ECG gating to ameliorate the effect of blur caused by cardiac motion. However with
the new scanner generation such as the Siemens SOMATOM Definition Flash CT, Siemens
Healthcare, Forchheim, Germany can acquire a temporal resolution of 75 milliseconds and
require 0.6 seconds for a complete thorax scan at a radiation dose of 1 millisievert (mSv).
This is done without ECG gating, increasing the efficiency, patient convenience and low-
ering the cost per exam. These advances in spatial and temporal resolution have helped
in the evaluation of cardiac structures including coronary veins, pulmonary veins, atria,
ventricles, aorta and the valvular apparatus (see Figure 2.12).

Computed tomography has gained a lot of interest in the advent of minimally invasive
procedures [168]. For TAVI CT is currently the standard planning modality. Both implant
type and size will be selected based on the patient anatomy measured from CT. In contrast
to other modalities such as ultrasound patient specific parameters are more accurate [143].

(a) (b) (c)

Figure 2.12.: (a) CT - SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Ger-
many. (b) Complete heart scan with contrast on the left side. (c) Volumetric
reconstruction of the aortic valve clipped at the valvular sinuses level.
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2.6.2. Angiography and Radiography

Radiography is an imaging technique where electromagnetic ionizing radiation is used
to visualize the human body. In the context of cardiac imaging a chest X-ray can give
information about the size and the configuration of the heart and the great vessels and
also on the lung fields and vessels. It is a routine cardiac investigation procedure with
very low radiation exposure.

Fluoroscopy, a term invented by Thomas Edison, provides a moving projection radio-
graphs with lower ionizing radiation and thus quality. In combination of contrast agent it
allows to observe soft tissue movement or to guide interventional procedures. Angiogra-
phy involves the usage of fluoroscopy to visualize the cardiovascular system. An iodine-
based contrast with high density is utilized to view the vessels under X-ray in order to find
stenosis, aneurisms and valvular leakages.

Modern C-arm systems such as the Siemens zeego, Siemens Healthcare, Forchheim, Ger-
many, offer the ability to acquire a CT like 3D acquisition called DynaCT (or 3D C-arm CT)
in the operating room. During a 5 second and 200deg sweep 512 projections are acquired
and a 3D volume can be reconstructed similar as computed tomography. Several acquisi-
tion protocols can be utilized to visualize specific parts of the vascular system. For TAVI
a specialized protocol was designed to visualize both the aortic valve structure and the
ascending aorta where contrast agent is injected at the level of the aortic valve annulus in
combination with rapid pacing [94] during the C-arm sweep. Combined with advanced
segmentation algorithms this image can be used to guide TAVI procedures (see Figure
2.13).

The largest drawbacks of DynaCT are the ionizing radiation which is usually larger than
CT. In addition the contrast agent can be responsible for kidney failures and the usage of
rapid pacing is putting additional stress on the patient during the intervention.

(a) (b)

Figure 2.13.: a) C-arm X-ray - Artis zee Ceiling-mounted system, Siemens Healthcare,
Forchheim, Germany. (b) Fluoroscopic image of the heart with contrast con-
centrated in the aorta.
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2.6.3. Echocardiography

Echocardiography is a routine exam used for quantification, diagnosis, management and
follow-up examination of patients suspect of cardiovascular disease. An ultrasound ma-
chine transmits sound pulses into a patient’s body using an array or matrix mounted on a
transducer probe. These high-frequency sound pulses, usually ranging from 1 to 5 MHz
travel through the patient’s body, eventually hitting boundaries between tissues and re-
flecting back to the transducer probe. The tissue boundaries may be between soft tissue
(connecting or surrounding organs) and fluids, such as blood, or between soft tissue and
bone. Using the reflected signal and sophisticated reconstruction algorithms either 2D or
3D images can be extracted. Based on the type of probe and acquisition position used
there are 2 main scan types of echocardiography for cardiology application: Transthoracic
echocardiogram (Transthoracic Echocardiography (TTE)) and Transesophageal echocar-
diogram (TEE).

Transthoracic echocardiogram (TTE), or cardiac ultrasound is known as standard echocar-
diogram. In this case, the echocardiography transducer (or probe) is placed on the chest
wall (or thorax) of the subject, and images are taken through the chest wall. This is a non-
invasive, highly accurate and quick assessment of the overall health of the heart. Smaller
structures such as the heart valve can also be assessed but the imaging quality is limited
(see Figure 2.14).

Transesophageal echocardiogram (TEE) is an alternative way to perform an echocardio-
gram. A specialized probe containing an ultrasound transducer at its tip is passed into the
patient’s esophagus. This allows image and Doppler evaluation from a location directly
behind the heart. This is known as a transesophageal echocardiogram, or TOE (TEE in the
United States). Transesophageal echocardiograms are most often utilized when transtho-
racic images are suboptimal and when a more clear and precise image is needed for as-
sessment. This test is performed in the presence of a cardiologist, registered nurse or ul-
trasound technician. Conscious sedation and/or localized numbing medication, may be
used in order to make the patient more comfortable during the procedure (see Figure 2.14).

Compared to other diagnostic modalities ultrasound is almost risk-free and cost efficient
diagnostic modality. Thus, it is the most common diagnostic test in cardiology.

The drawbacks of echocardiography is its low signal to noise ration in combination with
a relative small field of view.

2.6.4. Magnetic Resonance Imaging

Magnetic resonance imaging (Magnetic Resonance Imaging (MRI)) is an imaging tech-
nique where a powerful magnetic field, either 1.5 T or 3T, radio-frequency pulse is emitted
and absorbed by patient’s hydrogen nuclei. This process can be measured and transformed
into images (see Figure 2.15).

Static and dynamic images can be generated to assess many diseases and conditions,
including coronary heart disease, heart failure, heart valve problems and congenital heart
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(a) (b) (c)

Figure 2.14.: (a) Siemens SC2000 ultrasound machine, (b) TTE four chambers image of the
heart, (c) TEE volumetric reconstruction of the mitral and aortic valves.

defects. The advantages of MRI is the high contrast between soft tissues whereby no con-
trast agent is necessary. Contrast agent, such as gadolinium, might be injected during
cardiac MRI, which increases the contrast in the heart and blood vessels on the MRI pic-
tures. This contrast agent often is used for people who are allergic to the dyes used in CT
scanning.

The largest advantage compared to CT and X-ray is that MRI does not emit any ioniz-
ing radiation and is thus almost risk free. The main disadvantage is the acquisition time
which is usually 4-8 times higher than CT. In addition the acquisition protocol is complex
compared to CT and requires an experienced user.

(a) (b) (c)

Figure 2.15.: (a) MRI - Siemens Somatom Spectra, Siemens Healthcare, Erlangen, Germany.
(b) Heart image including the left ventricle and aorta. (c) Volumetric recon-
struction of the right ventricular outflow tract and pulmonary arteries.

23



2. Background

2.6.5. Intravascular ultrasound

Intravascular ultrasound (Intravascular ultrasound (IVUS)) is an imaging technique where
a miniaturized ultrasound probe is attached to the end of a catheter (see Figure 2.16). With
a diameter of 9F (3mm) the catheter can be inserted in small blood vessels in order to
assess plaque and stenosis. The main application is coronary artery disease where the
IVUS catheter is used to determine the amount of plaque built up at any particular point
in the epicardial coronary artery wall (see Figure 2.16).

Compared with angiography it has several advantages. The most prominent is the visu-
alization of plaque. Angiography can underestimate the infarction risk as increased plaque
deposits will not be visible due to the simultaneously vessel diameter increase. In addi-
tion IVUS can be used to visualize multiple overlapping arterial segments. The catheter
can also be used to assess the effects of stenosis treatments such as angioplasty and the
results of medical therapy over time.

The major disadvantages of IVUS are the risk associated with catheterization and the
increased examination time and its associated costs.

(a) (b) (c)

Figure 2.16.: (a) acquired image using IVUS of the coronary arteries, b) IVUS catheter, c)
diagramm of IVUS working principle.

2.6.6. Optical coherence tomography

Recently, Optical Coherence Tomography (Optical Coherence Tomography (OCT)) has
emerged as one of the most promising imaging modalities for cardiac diagnosis, especially
for the coronary vessels due to its excellent image quality and small catheter dimension.
OCT uses reflected light to create cross sectional images of the vessel (see Figure 2.17).

Compared with IVUS it offers an axial resolution 100x higher, 15 µm compared with 150
µm. In addition the probe size is half the size of the IVUS. During the acquisition the blood
must be removed as it would cause multiple light scattering and attenuation. However
new acquisition protocols have also emerged with non-occlusive techniques. Complica-
tions are seldom, though can include ischemia, arrhythmias and thrombus formation.
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(a) (b)

Figure 2.17.: (a) Console OCT LightLab M3CV system (b)OCT appearance of a drug elud-
ing stent 9 months after implantation. The amplified image shows two struts
not opposed to the vessel wall.

2.7. Overview of Medical Image Analysis

Medical image analysis is an interdisciplinary field at the intersection of computer science,
mathematics, engineering and medicine. The most general objective is to develop mathe-
matical and computational algorithms to solve problems pertaining to medical images and
their use for biomedical research and clinical care. One of the main goals is to extract clini-
cally meaningful information from medical images. The field can be separated into several
broad categories: segmentation, registration, image reconstruction, physiological model-
ing etc. In this thesis we focus on the topic of image segmentation and registration in the
context of minimally invasive valve procedures. In the next three sections a short review
of segmentation, computational modeling and registration algorithms will be provided.

2.7.1. Image Segmentation

Segmentation is the process of partitioning an image into different regions or segments. In
medical imaging, these segments often correspond to different anatomies such as organs.
Based on the method employed a classification in three broad categories can be made: atlas
based approaches, model based approaches and interactive segmentation methods.

Atlas based approaches rely on a small set of training data where the anatomy of interest
is manually segmented by an expert. During test time the unseen image will be registered
to an annotated reference image and the annotation will be propagated from the reference
frame to the new image. In the area of cardiology, Rikxoort et al. proposed an atlas-based
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segmentation approach for the heart chambers and the aorta [186]. Hereby multiple at-
lases are registered to a target image. The final segmentation of the target is obtained by
propagating atlas labels to the target image. The multiple propagated labels are combined
using spatially varying decision fusion weights. Sabuncu et al. presented a label fusion
approach within the area of atlas based segmentation [159], in which a weighted voting
is formulated in terms of minimizing the total expectation of labeling error, and in which
pairwise dependency between atlases is explicitly modeled as the joint probability of two
atlases making a segmentation error within a particular region. This probability is approx-
imated using intensity similarity between a pair of atlases and the target image in a local
neighborhood.

Model based segmentation methods use a parametrization of the anatomy of interest.
This can be achieved by using bounding boxes, landmarks or surface boundary points.
Two of the most common shape-based techniques are Active Shape Models [33] and Active
Appearance Models [32]. The active shape models try to fit a shape to an example of the
object in a new image. Thereby an iterative approach is pursued whereby an alternating
strategy is utilized: 1) find an update for each point in a small neighborhood in the current
shape based on the image 2) update the model parameters to best match to these new
found positions. Several approaches of this technique have been successfully applied in
the area of medical imaging [40, 158, 185].

Machine learning techniques have been successfully applied to medical imaging prob-
lems since more than a decade [124]. However in recent years the usage of such tech-
niques has proliferated, especially in the field of object detection and segmentation. With
large medical databases become available, discriminative learning methods with semantic
constraints have proven to be the solution of choice to solve estimation problems in high
dimensional spaces. Challenging detection and segmentation tasks in images with low
signal-noise ratio containing artifacts and signal dropout (such as TEE) became feasible.
Georgescu et al. [58] introduced a boosting based approach to segment the left ventricle
from challenging 2D ultrasound images. The usage of Marginal Space Learning was in-
troduced by Zheng [205] as an efficient way of learning high dimensional problems by
operating in spaces of increasing dimensionality. Thus a segmentation of multiple organs
can be achieved within seconds with a high accuracy [205]. Criminisi et al. [35, 103, 59]
proposed several approaches to locate multiple organs in CT images by using Random
Forrests. Pauly et al. [148] utilized a random ferns based regressor to predict bounding
boxes of organs from MRI images. Lindner et al. proposed a random forest approach with
a statistical shape model to segment the Proximal Femur from X-ray images [114].

Several methods have been proposed which advance the model parametrization in com-
parison to the Active Shape Models [33]. Zhu et al. introduced a new shape representation
based on multi-linear models [209, 210]. In this framework the temporal and geometri-
cal shape information would be modeled independently in contrast to standard statistical
shape models. The method was demonstrated on left ventricle segmentation from both
MRI and [209] echocardiography [210]. Several techniques employ non-linear manifold
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learning to describe both the temporal and spatial variation of shapes [201, 127]. Yang
et al. derived the temporal components and dynamics of the heart model explicitly from
patient scans by Motion Manifold Learning [201].

In the context of cardiovascular diseases many groups in medical image analysis have
been focusing on the construction of patient-specific anatomical models from well estab-
lished diagnostic modalities (e.g. CT and MRI) to aid disease analysis and treatment plan-
ning [68, 97, 211, 9, 3]. Zheng et al. proposed an efficient method based on machine learn-
ing techniques to extract patient-specific models of the heart chambers from CT. Within
three seconds detailed geometrical models of the left ventricle, left atrium, right ventricle
and right atria can be extracted [205]. Fritz et al. proposed a framework to segment the
left and right cardiac ventricle using a combined bi-temporal statistical model [54]. Berg
et al. [192] proposed a segmentation method of a geometric cardiac model including the
four cardiac chambers and the trunks of the connected vasculature, as well as the coronary
arteries and a set of cardiac landmarks from cardiac CT. A mean model based on an atlas
is used with a consecutive refinement step where the model is personalized.

In the context of valvular disease management, Grbic et al. [68], Ionasec et al. [88] and
Waechter et al. [195] proposed the modeling of the aortic valve from cardiac CT. Models
of the mitral valve from MR have been proposed by Linte et al. [115]. Burlina et al. [23]
proposed an interactive algorithm based on thin-tissue detection and level-set deformable
models to identify the mitral valve and the left ventricle endocardium in 3D TEE images for
an automated and efficient mitral valve assessment. Schneider et al. proposed a complex
pipeline to automatically delineate the MV from 3D+t TEE images. The method relied
on mitral annulus detection and tracking [166], leaflet segmentation of the open valve
[164] and leaflet tracking using a deformable model that handled contacts and chordae
stresses [165]. Temporal resampling of 3D+t TEE images acquired on multiple heartbeats
was proposed to improve temporal consistency [167].

An increased holistic view of the heart, demanded by clinicians is in perfect accordance
with the tremendous scientific effort worldwide, such as the Virtual Physiological Human
project [30], geared towards multi-scale physiological modeling and simulation, which
will promote personalized, preventive and predictive healthcare. However, the majority
of cardiac models to date focus on representation of the left or right ventricle [54], the left
and right atrium [205], while few model the left side valves but none explicitly handles the
entire valve apparatus including the right side valves. A critical component for patient-
specific computational models of the entire heart and realistic cardiovascular simulations,
which was not reported yet in the literature, is a personalized and complete representation
of the valvular apparatus. This would allow for personalized bio-mechanical simulations
using patient-specific geometry.

Interactive segmentation methods are a popular technique in medical image analysis
where the user provide some information, such as a seed region or rough outline of the
region to segment. An algorithm can then iteratively refine such a segmentation, with or
without guidance from the clinician [64, 36].
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2.7.2. Intra-operative guidance/Registration

Delivering high-quality pre-operative data, or anatomical models derived from the images
using segmentation algorithms such as 2.7.1, into the operating room to guide cardiac ther-
apy is highly desirable for minimally invasive procedures, where the target anatomy is not
directly visible in the intra-operative images. Thus overlays of 3D anatomical structures
based on pre-operative data can provide valuable information for interventional naviga-
tion and guidance. High-quality pre-operative 3D information is routinely acquired for
diagnostic and planning purposes by means of Computed Tomography, Magnetic Reso-
nance Imaging (MRI) or Echocardiography. Aligning these with intra-operative data is a
key goal in interventional guidance. Registration algorithms are an ideal tool to achieve
this goal.

Registration is a process that searches for the correct alignment of multiple images and
bringing them into the same reference coordinate system. In clinical practice it is used to
combine complementary information from multiple images, evaluate temporal changes in
longitudinal studies or characterize a population group. The registration approaches can
be classified into mono-modal, multi-modal, point or feature based, intensity based, rigid,
deformable, pair-wise and simultaneous registration algorithms. For detailed treatment of
the subject we refer to chapter 4, reviews and surveys in literature [125, 92, 151, 126, 137].

Within the Hybrid operating rooms modern C-arm systems can acquire fluoroscopy
(2D) and 3D C-arm CT (3D) images. Many groups use 3D-2D registration algorithms in
order to align the pre-operative image with the intra-operative setting. However, direct 3D
pre-operative to 2D fluoroscopy image registration is difficult to solve, especially within
the intra-operative setup that does not allow for user interaction or time consuming pro-
cessing. Linte [115] proposed to use pre-operative CT images and extract models which
will be registered with intra-operative images. Major limitations are the required tracking
equipment and the semi-automatic delineation of the mitral annulus. Other methods rely
on fiduciary markers to achieve 3D/2D registration. Lang [44, 115, 108, 117, 150] proposed
a real-time approach to fuse TEE and fluoroscopy by placing markers on the TEE probe.

C-arm CT [110] is emerging as a novel imaging modality that can acquire 3D CT-like vol-
umes directly in the operating room in the same coordinate system as the 2D fluoroscopy
images, which overcomes the need for 2D/3D registration [45, 146]. For most procedures,
the patients are older and the added radiation compared to fluoroscopy is not a major con-
cern. Instead, a safe and successful execution of the procedure is the dominating factor
[122].

Some methods work directly on the C-arm CT images [206] to extract patient-specific
models and overlays for procedure guidance, eliminating the need for pre- and intra-
operative image fusion completely. However, acquiring high-quality, contrasted, and mo-
tion compensated (using rapid-pacing) C-arm CT images is not feasible for all patients.
Instead, a much simpler protocol, which acquires non-contrasted, non-ECG-gated C-arm
CT volumes can be performed to serve as a bridge between 3D pre-operative images and
2D live fluoroscopy.
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Multi-modal 3D/3D registration algorithms can be utilized to align the pre-operative
image with the C-arm CT volume. In Wells et al. [200, 191], mutual information is used
to cope with intensity inconsistencies between CT and MR. The authors of [212] proposed
a novel similarity metric, which incorporates prior knowledge of previously registered
images. In [119], an atlas-based approach was presented to track the myocardium and left
and right ventricles from MR data. The registration is used to align the cardiac atlas to
the patient data. However, these methods are computationally expensive, and without the
appropriate guidance of a shape prior likely to converge into local minima.

2.7.3. Computational Modeling

Simultaneously researchers are developing detailed computational models of valve biome-
chanics driven by the growing prevalence of valvular heart disease. This tools would
enamble the next generation of clincal application for advanced intervention planning.

Quantifying valve function, by computing measurments from geometrical models ex-
tracted from non-invasive imaging (see section 2.7.1), might not be sufficient to plan the
optimal treatment for a specific patient. Mechanical insights are necessary to predict how
pathological valve dynamics will be modified after intervention. Furthermore, a com-
prehensive understanding of the valve physiology is crucial in order to design long-term
treatments that do not alter normal valve and heart function. To address these questions,
several computational models of valve physiology have been proposed. Since the pioneer-
ing work of Kunzelman et al. [107], several models have been proposed and new insights
on the valve function have been obtained. Two categories of computational valve models
can be distinguished: structural models and fluid-structure interaction (FSI) models. Struc-
tural models aim to simulate the biomechanics of MV apparatus without directly consid-
ering the blood that flows across it. The standard approach is to use finite-element models
(FEM) to solve the dynamics equation of valve anatomy, surface pressure and boundary
conditions [107, 106].

Especially in the context of minimally invasive procedures such as Transcatheter Aortic
Valve Implantation (TAVI) [194] or the Mitra Clip procedure. During intervention plan-
ning for minimally invasive procedure simulating different procedural options such as
different device types, sizes and implant position can help the clinician to select the op-
timal treatment for a particular patient. For the mitral valve several constitutive laws of
mitral leaflets have been proposed to simulate the mitral valve biomechanical properties,
from simple isotropic linear elasticity to more complex anisotropic and non-linear hyper-
elasticity [153, 163, 193, 104, 154, 153, 193, 172, 1]. Fluid-structure interactions have also
been investigated to study the impact of the blood flow on valve closure [43]. Most of these
models have been developed on synthetic or ex-vivo anatomies. Patient-specific anatomies
and boundary conditions are starting to be used [173] but they require tedious manual
delineations from medical images, which makes the necessary large-scale validations in
patients very difficult. Recently, a first patient-specific simulation of MV annuloplasty
has been presented [173]. In respect to the TAVI procedure, the authors in [196], computed
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TAVI deployment on a patient-specific anatomy calculated from CT images. They obtained
promising results with a non-linear, hyper-elastic model of aortic apparatus. In [24], finite
element modeling was employed to calculate the stresses on an Edwards Sapien implant
to predict stent rupture. Similarly, in [181], the authors investigated the radial force gener-
ated by Medtronic - CoreValve and Edwards Sapien device.

2.8. Conclusion

The heart is a complex organ which pumps the blood throughout the blood vessels by
repeated, rhythmic contractions. Its essential components are the heart valves which reg-
ulate the blood flow during the cardiac cycle. Dysfunctions on each of the heart valve
have severe implications on the patients health. In fact valvular heart disease is the largest
subgroup among all cardiovasclular diseases. Despite advancements in medication and
interventional valve therapy remains the most expensive and riskiest among all cardio-
vascular procedures. Within the last decade novel minimally invasive treatments have
emerged. They have the potential to reduce procedural morbidity, mortality, and costs
of surgical valve replacement or repair while accelerating patient recovery. However as
there is no direct view or access to the affected anatomy pre-operative planning in com-
bination with procedural guidance is crucial for a successful outcome. During the last
decade each medical imaging modality has improved with respect to the acquired image
quality, as well as the accessibility and cost effectiveness. Techniques like Transesophageal
Echocardiography (TEE), cardiac Computed Tomography (CT) and Cardiovascular Mag-
netic Resonance (CMR) imaging, enable now dynamic four dimensional scanning of the
beating heart. In addition modern C-arm systems are capable to acquire a three dimen-
sional CT like modality within the operating room. Thus non-invasive imaging in com-
bination with fast, precise and reproducible image analysis tools will become an essential
part of clinical practice to assure a successful outcome. In this context, this thesis offers a
novel modeling and guidance paradigm of minimally invasive procedures, which aims to
consolidate medical knowledge about the valvular apparatus and substantially benefit the
entire clinical management of valvular heart disease patients.

30



3. Quantification and pre-operative modeling

In the context of treatment of valvular heart disease, quantification and treatment plan-
ning are crucial parts of the clinical workflow. In most cases diagnostic and non-invasive
volumetric imaging data is available to support the diagnosis and pre-operative planning.
Complex patient-specific models extracted from the images can be used to extract precise
and reproducible measurement used during intervention planning and quantification of
valve morphology and function. Our goal is to automate this process and extract anatom-
ical information from the volumetric data without user interaction. This technique can
advance the current clinical workflow of interventional planning, improve procedural out-
come, while reducing interventional risk.

Furthermore a novel volumetric model for the aortic valve will be presented in section
3.6 necessary for advanced planning for the TAVI procedure. We thus concentrated on a
patient cohort with severely stenotic aortic valves. Tissues within the aortic valve can be
classified in one of the following categories: leaflet tissue, blood pool and calcification. In
addition to intensity based features we incorporated novel geometrical features to capture
the spatial context of each tissue with respect to the aortic valve anatomy. Based on the
volumetric model, a computational modeling framework is developed to simulate the im-
plant deployment procedure for TAVI [71]. From a diagnostic CT a geometrical model can
be extracted and used to personalize the bio-mechanical computational model.

Finally we propose an algorithm to extract accurate valve models from low-quality con-
trasted intra-operative images by using additional pre-operative information [69]. Hereby
a learning based approach is utilized where both models of the same patient are estimated
at once.

3.1. Physiological Model of the Heart Valves

In this section we introduce the complete heart valves model, which includes the aortic,
mitral, tricuspid and pulmonary valves, and captures their morphological, functional and
pathological variations. To reduce anatomical complexity and facilitate effective estima-
tion, the heart valve model is represented on three abstraction layers [66, 68, 71, 67, 72]
:

• Global Motion Model: which represents the global location and motion of each
valve.

• Anatomical Landmark Model: representing the motion of the corresponding anatomic
landmarks.
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• Complete Valve Model: which parameterizes the full anatomy and dynamics of the
valves using dense surface meshes.

3.1.1. Global Motion Model

The global dynamic variation of each valve is parameterized through a similarity transfor-
mation in the Euclidean three-dimensional space, which includes nine parameters.

Bt = {(cx, cy, cz) , (αx, αy, αz) , (sx, sy, sz)} t ∈ 1 . . . T (3.1)

(cx, cy, cz) is the translation, (αx, αy, αz) the quaternion representation of the rotation, (s1, s2, s3)

the similarity transform scaling factors and the time variable t is capturing the temporal
variation during the cardiac cycle.

3.1.2. Anatomical Landmark Model

A set of 33 anatomical landmarks, described in the next paragraph, are used to parametrize
the complex and synchronized motion pattern of all valves, which explains the nonlinear-
ities of the hemodynamic movements. Thereby, each landmark is described by a time-step
trajectory T in a three dimensional space, normalized by the temporal dependent similar-
ity transform B:

Ln (B) = {l1, l2, . . . lT } n ∈ {1 . . . 33} li ∈ R3 (3.2)

3.1.3. Complete Valve Model

The final valves model is completed with a set of 13 dense surface meshes. Each mesh is
sampled along anatomical grids of vertices defined by the landmarks:

Vq (L,B) = {~v1, ~v2, · · · , ~vK} q ∈ {1 . . . 13} ~vi ∈ R3 (3.3)

where ~vi are the vertices, and K is the total number of vertices of mesh q. Each anatomical
landmark has a fixed correspondence on the parametrized surface mesh.

Aortic valve

Four surface structures represent the aortic valve: aortic root, left coronary leaflet, right
coronary leaflet and non coronary leaflet. The aortic root connects the ascending aorta to
the left ventricle outflow tract and is represented through a tubular grid (see Figure 3.1).
This is aligned with the aortic circumferential u and ascending directions v and includes
36 × 20 vertices and 1368 faces. The root is constrained by six anatomical landmarks, i.e.
three commissures and three hinges, with a fixed correspondence on the grid. The three
aortic leaflets, the L-, R- and N-leaflet, are modeled as paraboloids on a grid of 11 × 7

vertices and 120 faces (see Figure 3.5(c)). They are stitched to the root on a crown like
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(a) (b) (c)

(d)

Figure 3.1.: Global motion and anatomical landmark model of the aortic valve. The simi-
larity transform is represented as a bounding box around the aortic valve esti-
mated from 4D cardiac CT. (a) Perspective view; (b) Long Axis; (c) Short Axis;
(d) Landmarks relative to the anatomical location illustrated in long and short
axis from an example CT study.

attachment ring, which defines the parametric u direction at the borders. The vertex cor-
respondence between the root and leaflets along the merging curve is symmetric and kept
fixed. The leaflets are constrained by the corresponding hinges, commissures and tip land-
marks, where the v direction is the ascending vector from the hinge to the tip.
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(a) (b) (c)

(d)

Figure 3.2.: Global motion and anatomical landmark model of the mitral valve. The simi-
larity transform is represented as a bounding box around the mitral valve esti-
mated from 4D cardiac CT. (a) Perspective view; (b) Long Axis; (c) Short Axis;
(d) Landmarks relative to the anatomical location illustrated in long and short
axis from an example CT study.

Mitral valve

The mitral valve is composed of 7 landmarks including 3 trigons, 2 commissures and 2
leaflet tips (see Figure 3.2). The leaflets separate the left atrium and left ventricle hemody-
namically and are connected to the endocardial wall by the saddle shaped mitral annulus.
Both are modeled as paraboloids and their upper margins implicitly define the annulus.
Their grids are aligned with the circumferential annulus direction u and the orthogonal
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(a) (b) (c)

(d)

Figure 3.3.: Global motion and anatomical landmark model of the pulmonary valve. The
similarity transform is represented as a bounding box around the pulmonary
valve estimated from 4D cardiac CT. (a) Perspective view; (b) Long Axis; (c)
Short Axis; (d) Landmarks relative to the anatomical location illustrated in long
and short axis from an example CT study.

direction v pointing from the annulus towards leaflet tips and commissures (see Figures
3.5(b) and 3.5(d)). The anterior leaflet is constructed from 18×9 vertices and 272 faces while
the posterior leaflet is represented with 24×9 vertices and 368 faces. Both leaflets are fixed
by the mitral commissures and their corresponding leaflet tips. The left / right trigons and
the postero-annular midpoint further confine the anterior and posterior leaflets, respec-
tively.
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(a) (b) (c)

(d)

Figure 3.4.: Global motion and anatomical landmark model of the tricuspid valve. The
similarity transform is represented as a bounding box around the tricuspid
valve estimated from 4D cardiac CT. (a) Perspective view; (b) Long Axis; (c)
Short Axis; (d) Landmarks relative to the anatomical location illustrated in long
and short axis from an example CT study.

Pulmonary valve

The representation of the pulmonary valve is compounded out of four structures: pul-
monary trunk, left facing leaflet, none facing leaflet and right facing leaflet (see Figure
3.3). The pulmonary trunk emerges out of the right ventricular outflow tract, supports
the pulmonary valves and its three leaflets and ends at the level of the pulmonary artery
bifurcation. The grid, which spans the pulmonary trunk surface, is aligned with the cir-
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cumferential u and longitudinal direction v of the valve. It includes 50 × 40 vertices and
3822 faces confined through the pulmonary commissures, hinges and the RV trigon. The
attached L-, R- and N- leaflets, are modeled as paraboloids along the annulus circumfer-
ential direction u and vector v pointing from the corresponding hinge to the leaflet tip (see
figure 3.6(c)). Each includes 11 × 7 vertices and 120 faces bounded by the associated two
commissures, hinge and tip.

Tricuspid valve

The function of the tricuspid valve is to regulate the blood flow from the right atrium to
the right ventricle, staying closed during systole and opened during diastole. The model
is constrained by four surface geometries (annulus, septal-, anterior- and posterior leaflet)
(see Figure 3.6(d)) and six anatomical landmarks (three commissures and three leaflet tips
as illustrated in Figure 3.4) which are corresponding to vertices on the meshes. The tricus-
pid annulus is represented as a surface mesh constrained by the three commissures.

The tricuspid leaflets are modeled as hyperbolic paraboloids and implicitly describe the
tricuspid annulus. Their grids are spanning along the annulus circumferential direction u
and the perpendicular vector v pointing for the annulus towards the corresponding leaflet
tip, and consist out of 22 × 14 vertices and 546 faces. Each leaflet is constrained by the
corresponding two commissures and one leaflet tip (see Figure 3.6(d)) .

3.2. Discriminative machine learning techniques

Estimating the parameter of the complete heart valve model is a challenging task. Due to
the large number of parameters within the complete valvular model Vq (L,B), the complex
morphology and function of the valves and the limiting imaging quality and resolution,
robust tools must be employed. Given a large quantity of training data is available, super-
vised discriminative machine learning techniques have been shown to be very effective in
this setting. In many areas of computer vision such as object detection, categorization and
segmentation methods based on supervised discriminative machine learning techniques
are consistently outperforming other methods.

Based on a volumetric image I , the discriminative model can be formulated in a prob-
abilistic framework to approximate the posterior probability P (Vq (L,B) |I). In contrast
to generative models which require to model the joint probability distribution across the
parameter space, discriminative models approximate the conditional probability distribu-
tion. Even though generative models have several advantages such as a higher flexibility
to model and express complex relationships between observer variables and target vari-
ables their performance on classification tasks is usually worse than discriminative models
[95, 90, 16]. In addition in many cases it is not possible to model the joint probability across
the high-dimensional parameter space and thus discriminative approaches are the only vi-
able alternative.
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(a) (b)

(c) (d)

Figure 3.5.: Anatomical Landmark Model and Complete Valve Model of the aortic valve,
mitral valve, pulmonary valve and tricuspid valve.

Within our supervised approach an annotation database is used to train a discrimina-
tive classifier (boosting, support vector machines, randomized trees) on a set of image
features. The goal of the classifier is to discriminate between positive and negative exam-
ples. Throughout our work we use Boosting as the classification technique. In section 3.2.1
we explain the main properties of Boosting as all of our methods described in this thesis
are based on this framework. Further the image features which are used as input to the
boosting classifier are described in section 3.2.2.

3.2.1. Boosting

Boosting is a supervised machine learning algorithm. The main idea is to compose a strong
classifier from a group of weak classifier. The only restriction of the weak classifier per-
formance is that the classification result has to be slightly better than random guessing.
However as the weak learners are seen as complementary, when combined into the strong
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(a) (b)

(c) (d)

Figure 3.6.: Anatomical Landmark Model and Complete Valve Model of the aortic valve,
mitral valve, pulmonary valve and tricuspid valve.

classifier the classification is well-correlated with the true classification task.
Based on a training set {(x1, y1), ..., (xN , yN )}, where xi belongs to a certain domain X ,

and yi is a binary label set Y = {−1, 1} the boosting algorithm selects a group of weak
learners {h1, ..., hl}, with hi : X → Y , in order to generate a strong classifier D(x).

While the boosting framework is generic, most algorithms realizing the principle of
boosting share the following properties. An iterative process is used to select the weak
learners. When they are selected, they are re-weighted according to the weak learners ac-
curacy in respect to the classification task. After a weak learner is selected, the training
data is re-weighted: examples that are misclassified gain weight while examples that are
classified correctly lose weight.

The first version of the algorithm was proposed by Robert Schapire and Yoav Freund
[51]. However the weights of the weak learners were not adaptive. Current boosting
techniques differentiate in the way they re-weight training data and the weak learners.
AdaBoost is the most popular as it was the first algorithm that could adapt the weak
learners [162]. However, there are many more recent algorithms such as LPBoost [197], To-
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Figure 3.7.: Isolated surface components of the aortic and mitral models with paramet-
ric directions and spatial relations to anatomical landmarks: (a) aortic root,
(b) aortic leaflets, (c) aortic-mitral in end-systole, (d) anterior mitral leaflet, (e)
posterior mitral leaflet and (f) aortic-mitral in end-diastole.

talBoost [198], BrownBoost, MadaBoost [41], LogitBoost [53], and others. Many boosting
algorithms fit into the AnyBoost framework, which shows that boosting performs gradient
descent in function space using a convex cost function.

In the next two chapter the Adaboost and the Probabilistic Boosting Tree (Probabilistic
Boosting Tree (PBT)) will be presented. Throughout the thesis the PBT will be used as the
main classification technique.

AdaBoost

AdaBoost, short for Adaptive Boosting, was first presented by Yoav Freud and Robert
Shapire [51]. During training AdaBoost adapts the reweighing schema to both the weak
learner and the input training data. Within the iterative approach weak learner are selected
based on their ability to perform the classification task better than random guessing. Even
if the weak learner is worse than random guessing by negative re-weighting it can still be

40



3.2. Discriminative machine learning techniques

Figure 3.8.: Isolated surface components of the tricuspid and pulmonary models with
parametric directions and spatial relations to anatomical landmarks: (a) tri-
cuspid leaflet, (b) tricuspid annulus and leaflets, (c) tricuspid-pulmonary in
end-diastole, (d) pulmonary trunk, (e) pulmonary leaflets and (f) tricuspid-
pulmonary in end-systole.

adopted. AdaBoost generates a new weak classifier in each of a series of T rounds . In
each round, a distribution of weights is updated that indicates the importance of training
examples in the data set for the classification. The weights of each incorrectly classified
example are increased, and the weights of each correctly classified example are decreased.
Thus in the next iteration the new learner focuses on the hard examples. The algorithm is
shown in Figure 3.9.

It is shown that AdaBoost is less susceptible to the over-fitting problem than most learn-
ing algorithms and thus shows a good generalization performance. In addition the num-
ber of parameters is small compared to other algorithms. In addition the scaling of the
input space is not important. Thus in contrast to other learning algorithms the individual
dimensions of the input space do not need to be scaled.
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Input

• m labeled samples {(x1, y1), ..., (xN , yN )}where xi ∈ X , yi ∈ Y = {−1, +1}

• distribution D over the examples

• weak learning algorithm producing weak hypothesis h

• number of iterations 1 . . . T

Initialization

• normalize the distribution D over m samples D1(i) = 1/m for i = 1, ...,m

Main Loop, for t=1,. . . ,T

• Train weak learner using sample distribution Dt

• Get weak hypothesis ht : X → {0, +1}with error
εt = PiDt(i) [ht(xi) 6= yi]

• Choose αt = 1
2 ln
Ä
1−εt
εt

ä
• Update:

Dt+1(i) =
Dt(i)

Zt
×
®
e−αt : if ht(xi) = y1
e−αt : if ht(xi) = y1

=
Dt(i)exp(−αtyiht(xi))

Zt

where Zt defines the partitioning function (or normalization factor) chosen thatDt+1

will be a probability distribution.

Output:

•

H(x) = sign

(
T∑
t=1

αtht(x)

)
(3.4)

Figure 3.9.: The adaptive boosting (AdaBoost) algorithm introduced by Freund and
Schapire in [51].

Probabilistic Boosting Tree

There are several problems with the AdaBoost algorithm. First, though it asymptotically
converges to the target distribution, it may need to pick hundreds of weak classifiers. This
happens when the error rate εt approaches 1/2. Second, the order in which features are
picked in the training stage is not preserved. The order of a set of features may corre-
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spond to high-level semantics and, thus, it is very important for the understanding of
objects/patterns. Having a tree structured classifier can preserve the feature order.

In contrast the Probabilistic Boosting Tree (PBT) constructs a binary tree structured clas-
sifier where each node represents a strong boosting classifier, composed of a group of weak
classifiers. Thus instead of putting all the weak classifiers together into a single strong
classifier, a divide-and-conquer approach is used to approximate the target posterior dis-
tribution by data augmentation (tree expansion). See Figures 3.10, 3.11, 3.12 and 3.13 for
more details.

During training the PBT algorithm recursively constructs a binary tree. At each node,
a strong classifier is learned using the standard boosting algorithm. The training samples
are divided into two new sets using the learned classifier, the left and the right, which
are used to train a left sub-tree and right sub-tree respectively. The variable εt is used to
control the over-fitting problem. Samples falling within the range of (12 − εt;

1
2 + εt) are

confusing ones and will be used in both the left and the right sub-trees for training. By
reducing the number of input samples the complexity of the problem is reduced as well
which leads to a better decision boundary. Thus samples are naturally divided into sub-
groups. Figure 3.11 shows an example of how a tree is learned and the training samples are
divided. Samples which are hard to classify are passed down leading to the expansion of
the tree. Clustering of positives and negatives is naturally performed. Since each tree node
is a strong classifier, it can deal with samples with complex distribution. There is no need
to pre-specify the number of clusters. The hierarchical structure of the tree determines the
clusters according to different levels of discrimination.

The testing stage is analogous with the training stage. Figure 3.13 gives the details of
how to compute the approximated posterior p(y|x). At the root node of the tree, it gathers
the information from its children nodes and reports an overall approximated posterior
distribution. This algorithm can also be turned into a classifier which makes hard decision.
After computing p(+1|x) and p(−1|x), one can decide to go into the right or left sub-trees
by comparing p(+1|x) and p(−1|x). The empirical distribution q(y|x) contained at the leaf
node of the tree is then passed back to the top node of the tree. Once a PBT is trained, the
p(+1|x) can be used as a threshold to balance between precision and recall. In contrast, a
traditional cascade approach needs to train different classifiers based on different precision
requirements.

3.2.2. Image Based Features

In the context of classifying objects within medical images the PBT classifier is used in com-
bination with image features. The weak learner within each tree node represents features
extracted from the volumetric medical images. From a large pool of image features which
are associated with each sample the boosting algorithm selects the most discriminative one
to separate the samples in a positive and negative group.

In recent decades several image features have been developed. Most of them were in-
troduced in the area of computer vision used for a specific group of applications which
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Input

• A training set S = {(x1, y1, w1), ..., (xN , yN , wN )}; xi ∈ χ, yi ∈ {−1,+1} ,∑1wi = 1

• Tree maximum depth L and confusion tolerance ε, e.g. ε = 0.1

• compute empirical distribution q̂(y) =
∑
iwiδ(yi = y)

Main Loop

• Exit if current tree depth is L

• From the training set S learn a strong classifier using a boosting algorithm with T
weak classifiers and early exit εt > θ, e.g. θ = 0.45

• Initialize empty sets Sleft and Sright

• For each (xi, yi) compute the probability q(+1|xi) and q(−1|xi) from the learned
strong classifier

• if q(+1|xi)− 1
2 > ε then (xi, yi, 1)→ Sright

• else if q(−1|xi)− 1
2 > ε then (xi, yi, 1)→ Sleft

• else (xi, yi, q(+1|xi))→ Sright and (xi, yi, q(−1|xi))→ Sleft

• Normalize all the sample weights in Sright and repeat procedure recursively

• Normalize all the sample weights in Sleft and repeat procedure recursively

Figure 3.10.: The probabilistic boosting-tree training as introduced by Zhuowen Tu in [179]

require specific properties: computation speed, invariance to rotation and scale changes,
robustness to noise, discriminative power etc. Features such as Haar-like features were in-
troduced by Viola and Jones [190]. They constructed a boosted cascade of simple classifiers
based on Haar-like features that measure vertical, horizontal, central, and diagonal varia-
tions of pixel intensities. Later features such as scale-invariant feature transform (SIFT) in-
troduced by David Lowe [120] had many advantages such as orientation, scale invariance
and robustness to illumination changes. However the computation time was significant
compared to simple intensity based methods. Later multiple methods were introduced
to improve the computational performance such as speeded up robust features (SURF)
[10] or histogram of gradients (HOG) [39] features. However both still require significant
computation time.

In our case speed is a crucial factor. Being able to perform classification within millisec-
onds is important for many clinical applications, especially in the context of interventional
guidance. Thus we use two main types of features with high computational performance:
3D-extensions of the Haar-like features (see 3.2.2) and steerable features (see 3.2.2).
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Figure 3.11.: Illustration of the probabilistic model of the tree. The circles are AdaBoost
classifiers, the squares contain the empirical class distribution. Each tree node
is a strong classifier. Figure from Tu [179].

Haar-Features

Haar-Features owe their name to their intuitive similarity with Haar wavelets. They were
first introduced in computer vision for face detection by Viola and Jones [190]. Hereby
the main goal was to extract robust features efficiently and use them for object detection.
These features are defined as the difference between sums of neighboring image regions,
see Figure 3.16.

The sum of image values i(x′, y′) on a rectangle (x0, y0]× (x1, y1] can be computed as:

A =
∑

x0<x′≤x1

∑
y0<y′≤y1

i(x′, y′) (3.5)

It is computationally expensive, since its complexity depends on the rectangle size. By
using the integral image I as an intermediate array A can be computed efficiently (see
Figure 3.14 and 3.15). Thus the integral image value at the pixel (x, y) is defined as the sum
of the original image values on the rectangle [0, 0]× [x, y].

I(x, y) =
∑

0<x′≤x1

∑
0<y′≤y1

i(x′, y′) (3.6)

The integral image is computed in one pass over the image using the recurrence
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Figure 3.12.: Illustration of how the sample set is separated by the nodes. The first node is
trained on all samples. It splits the set into two subsets that may overlap, and
the child nodes are trained on these subsets. Red and blue points correspond
to the specific class. Figure from Tu [179].

Compute pN (y|x) the posterior distribution at a tree node N

• Compute qN (+1|x) and qN (−1|x) at level N from corresponding strong classifier

• pN (y|x) = q(+1|x)pright(y) + q(−1|x)pleft(y)

• If q(+1|x)− 1
2 > ε then pright(y) = pright(N)(x, y) and pleft(y) = qleft(N)(y)

• Else if q(y + 1|x)− 1
2 > ε then pright(y) = qright(N)(y) and pleft(y) = pleft(N)(x, y)

• Else pright(y) = pright(N)(x, y) and pleft(y) = pleft(N)(x, y)

Figure 3.13.: The probabilistic boosting-tree testing as introduced by Zhuowen Tu in [179]

c(x, y) = c(x, y − 1) + i(x, y) (3.7)

I(x, y) = I(x− 1; y) + c(x, y) (3.8)
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Figure 3.14.: Haar-based rectangular features used for face recognition. The features are
the sum on the values on the gray region minus the sum on the white region.

with

c(x,−1) = I(−1, y) = 0; (3.9)

where c(x, y) is called the cumulative row sum (see Figure 3.15). Thus, one can compute
A in constant time using only four references (lookups) to the integral image:

A = I(x1, y1)− I(x1, y0)− I(x0, y1) + I(x0, y0) (3.10)

Figure 3.15.: Left: Integral image representation. Right: The four references used to com-
pute the image values on the gray area.

Thus once the integral image is computed a specific haar feature can be computed with a
fixed amount of lookups in the integral image. For a sliding window classification this is an
efficient way to compute features. This makes them suitable for real-time 2D applications
and in the context of medical imaging it offers the ability to detect anatomies in large 3D
images within milliseconds.

Steerable-Features

Global features, such as 3-D Haar-like features, are effective to capture the global informa-
tion (e.g. position, orientation and scale) of an object. To capture the orientation informa-
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Figure 3.16.: Examples of rectangle 3D Haar features. The sum of the pixels which lie
within the white rectangles are subtracted from the sum of pixels in the grey
rectangles.

tion of a sample or hypothesis, one would need to either rotate the volume or the feature
templates. However, using Haar features this process would be time consuming. In order
to test a specific orientation of a sample the complete volume would need to be rotated (re-
sampled) and the integral image would need to be recomputed. Steerable features which
are defined locally, represent features such as image intensities or local gradients, which
are fast to evaluate but lose the global information of the whole object.

Steerable features can capture the orientation and scale of the object while being effi-
cient. In order to compute them a few points are sampled from the volume under a spe-
cific sampling pattern (see Figure 3.17). A few local features for each sampling point (e.g.,
voxel intensity and gradient) are extracted from the original volume. The novelty of our
steerable features is that the orientation and scale information is embedded into the dis-
tribution of sampling points, while each individual feature is locally defined. Instead of
aligning the volume to the hypothesized orientation, the sampling pattern is steered. Fig-
ure 3.17 shows how to embed a hypothesis in steerable features using a regular sampling
pattern (illustrated for a 2-D case for clearance in visualization). Suppose we want to test
if hypothesis (x, y, z, ~αx, ~αy, ~αz, sx, sy, sz) of the similarity transformation of the object is
correct. A local coordinate system is defined to be centered at position (x, y, z) (Figure 3.17
a)) and the axes are aligned with the hypothesized orientation ~αx, ~αy, ~αz (Figure 3.17 b)). A
few points (represented as + in 3.17) are uniformly sampled along each coordinate axis in-
side a box. The sampling distance along an axis is proportional to the scale of the shape in
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that direction (sx, sy, sz) to incorporate the scale information (Figure 3.17 c)). The steerable
features constitute a general framework, in which different sampling patterns [204, 201]
can be defined.

At each sampling point, we extract a few local features based on the intensity and
gradient from the original volume. A major reason to select these features is that they
can be extracted fast. Suppose a sampling point (x, y, z) has intensity I and gradient
g = (gx, gy, gz). The tree axes of object-oriented local coordinate system are nx, ny and
nz . The angle between the gradient g and the z axis is α = arccos(nz · g), where nz · g
means the inner product between two vectors nz and g. The following 24 features are ex-
tracted: I ,

√
I , 3
√
I ,I2,I3,logI ,‖g‖, √g, 3

√
g, ||g||2,||g||3,log||g||, α,

√
α, 3
√
α,α2,α3, logα, gx, gy,

gz , nx · g,ny · g,nz · g. In total, we have 24 local features for each sampling point. The first
six features are based on intensity and the remaining 18 features are transformations of
gradients.

(a) (b) (c)

Figure 3.17.: Steerable sampling pattern aligned with an example hypothesis
(x, y, ~αx, sx, sy) for a two-dimensional problem. Sampling location are
defined as ’+’. (a) Pattern centered at (x, y). (b) Pattern oriented with ~αx. (c)
Pattern scaled along the axes proportional to (sx, sy).

3.2.3. Training, Testing and Space Marginalization

In our discriminative learning approach parameter estimation involves searching a do-
main Ω for the most parameter values with the maximum posterior probability using a
classifierD. Assuming an abstract model parametrization x and an input image I , the task
can be formulated as:

arg max
x

p(x|I) = arg max
x

D(x, I), x ∈ Ω (3.11)

The framework is comprised of two phases: training and testing. The classifierD is con-
structed during an offline training phase. It is used to verify samples from the parameter
search space and to find the optimal solution in the following testing phase.
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Training: The objective of the training stage is to learn a classifierD from a given training
set. This comprises out of pairs of labeled parameter instances (x, y), y ∈ {+1,−1} and
includes positive (x,+1) and negative (x,−1) samples. Positive and negative examples
are obtained from a set of images associated with a ground truth annotation (I, x). Positive
samples are located in close proximity to the ground truth parameters, which is associated
with a a distance measure d and threshold value δs for its deviation:

y =

®
1 if d(x, x) < δs
−1 otherwise

(3.12)

Weak learners h are employed to model the target distribution. Those are constructed
from a pool of image features parametrized by the model:

h(x, f, δf ) =

®
1 if f(x) < δf
0 otherwise

(3.13)

Examples of features f relevant for our work were presented in section 3.2.2. The threshold
δf are chosen during learning such that the minimum number of training samples are
misclassified. Single weak learners h do not produce satisfactory classification results.
Therefore, as illustrated in section 3.2.1, boosting algorithms are employed to select key
weak learners and aggregate them to build a strong classifier D.

Testing: The objective of the testing stage is to identify the highest probable parameter
values in a predefined search space domain Ω. The search domain is usually discretized
by a set of hypotheses H. The learned classifier D exhaustively computes the posterior
probability for each sample (or hypothesis) and ranks each sample. The final result is
either the top ranked sample or an aggregation of the top N samples. Exhaustive search
provides robustness against local minima and assuming that the true solution is captured
inH, it also provides the optimal parameter estimation.

However, the exhaustive search strategy can become computationally expensive as its
complexity increases exponentially with the dimensionality of the target parameters, which
makes the estimation of high-dimensional parameters intangible. For instance, the prob-
lem of estimating the similarity transformation of an object in a three-dimensional Eu-
clidean space, where the model has nine parameters dim(x) = 9 (3 for translation, 3 for
rotation and 3 for scale) and if each dimension of the search domain Ω is discretized by
only 10 values, the number of hypotheses to be tested is |H| = 109.

To overcome this limitation, marginal space learning is employed, which drastically re-
duces the search domain while improving classification performance.

Marginal Space Learning: In order to avoid sampling the complete domain Ω we build
upon the assumption that most of the posterior distribution over the parameter space is
clustered in a small region of the high-dimensional space spanned by the parameters in x.
This observation is exploited within the Marginal Space Learning (Marginal Space Learn-
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ing (MSL)) framework [205], which breaks the original domain Ω into subsets of marginal
spaces with increased dimensionality:

Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn = Ω (3.14)

where dim(Ω1) � dim(Ω) and dim(Ωk) − dim(Ωk−1) is small. A search in Ω1 with
a detector D1 learned in this marginal space finds a subspace C1 ⊂ Ω1, which contains
only the most probable parameter values and discards the rest of the space, such that
|C1| � |H1|. Another stage of training and testing is performed in the extended Ce1 =

C1 ×H2 ⊂ Ω2 to obtain a restricted marginal space C2 ⊂ Ω2. The procedure ends when the
final dimensionality of Ω is reached. In practice, the optimal arrangement for MSL sorts
the marginal spaces in a descending order based on their variance. Learning parameters
with low variance first will increase the overall precision of the detection.

3.3. Shape Regularization

Incorporating prior knowledge about the shape of interest is important to assure the seg-
mentation result lies within the same domain as the training cases. In most segmentation
algorithms the estimation can be divided in two main parts: data term and regularization.
The data term deforms or updates the current model according to the current image. How-
ever this shape can be highly irregular and not resemble the model from the annotation
database. To bring the shape into the domain of the annotations regularization is neces-
sary. Many parametric and non-parametric methods have been developed to achieve this
goal.

3.3.1. Statistical Shape Models

Statistical shape models were propose by Cook [33]. They represent linear models used
to efficiently represent the variation of a specific shape both across the temporal domain
and across patient population. In our case the shape is the point distribution model of the
complete valvular apparatus.

The first stage involves aligning all shapes. This means the final model should capture
the variations within the shapes by removing the Euclidean similarity transform between
the shapes. As mentioned in chapter 3.1 our model consist of 11 surfaces. The first require-
ment is that all shapes have point correspondence and all shapes must contain the same
number of shape points. An instance of Ak, with Nk vertices ~pAk ∈ R3 is represented as
3×Nk element vector X :

X = (p1x, . . . , p
Nk
x , p1y, . . . , p

Nk
y , p1z, . . . , p

Nk
z )T (3.15)

As our shapes need to be considered invariant to Euclidean similarity transformations
within a reference coordinate system to which all shapes are aligned we applied the Gen-
eral Procrustes Analysis (Generalized Procrustes Analysis (GPA)) [63] algorithm to achieve
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this task. Although analytical solutions exists [83], the most popular approach to shape
alignment is the GPA. The task is defined as optimization problem of each shape, relative
to the mean:

D =
∑
‖ Xi −X ‖

2 (3.16)

where, Xi is a shape vector from a training set of S samples and X the mean shape of
this training set defined as:

X =
1

S

S∑
i=1

Xi (3.17)

Two arbitrary shapes X1 and X2, with their center of gravity at the origin, are aligned
with respect to the scale s and rotation R parameters by minimizing the following equa-
tion:

arg min
s,R

D(s,R) = arg min
s,R
‖ Ts,R(X1)−X2 ‖2 (3.18)

where the optimal solution is provided by the sum of squared differences between the
points of X2 and transformed points of X1. The iterative solution to the GPA includes four
steps:

1. Set an initial estimation of the mean shape, e.g. X1

2. Align all shapes X1, . . . , XS with the current mean shape using Eq. 3.18

3. Re-estimate mean from aligned shapes with Eq. 3.17

4. If estimated mean has changed re-iterate from step 2.

Convergence is assumed if the current mean does not change significantly with respect
to the previous estimation. Initially, all shapesX1, . . . , XS are translated into the origin and
scaled such that |X| = 1, which will cause their alignment on a hypersphere after scale
and rotation minimization. To avoid non-linearities and simplify the shape distribution
description, the minimization is performed on the tangent space in respect to the mean. A
simple approach to achieve this is to scale each shape with 1

Xi·X
after step 2.

The initial shape space, which is the set of all shapes X1, . . . , XS , spans a space of di-
mensionality k × n = 3 × Nk. After adjusting for translation, scale and rotation, which
removes k, 1 and 1/2k(k − 1) dimensions respectively, the dimensionality of the aligned
subspace is equal to kn− k − 1− k(k−1)

2 [160, 37].
Using the aligned training set of shapesX1, . . . , XS , a model of their distribution enables

generation of new plausible shapes and, vice-versa, examination of new shapes for plau-
sibility. The goal is to model p(X) using a linear model X = M(ρ), where the parameter
vector ρ lies in a lower dimensional space. An effective approach to dimensionality reduc-
tion is the Principal Component Analysis Principal Component Analysis (PCA). Assuming
a Gaussian distribution of the population with the variance equal to:
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ΣX =
1

S

S∑
i=1

(Xi −X)(Xi −X)T (3.19)

each shape can be approximated using the mean shape X and highest ranked eigenvec-
tors φi, correspondent to largest eigenvalues λi of ΣX :

X ≈ X + Φρ , ρ = ΦT (X −X) (3.20)

where the vector ρ contains the model parameters, Φ is the matrix formed by the first t
column Eigenvectors of the symmetric covariance matrix ΣX . To enforce plausible shape
generation with respect to the training set, ρi is bound by ±3

√
λi. The dimensionality of

the model parameter vector ρ is equal to the number of Eigenvectors retained [171, 96, 131].

3.4. Patient-Specific Model Estimation

A hierarchical estimation approach is utilized to deduce model parameters, introduced in
the previous section from 4D cardiac CT images. First, robust machine learning techniques
are applied to estimate the global valves and anatomic landmarks parameters introduced
in Eq. 3.1 and 3.2. Second, we present a novel anatomical constrained Multi-linear Shape
Model (cMSM), which effectively captures the complex spatio-temporal variation of all
valves. Finally, the cMSM is applied in a learning-based framework to estimate the com-
plete valve model described in Eq. 3.3.

3.4.1. Global Motion estimation

The global motion estimation is formulated as a classification problem in order to estimate
Bt for each time step t independently from the corresponding volumes I(t). The probabil-
ity p(B(t)|I(t)) can be modeled by a learned detectorD, which evaluates and scores a large
number of hypotheses for Bt. To avoid an exhaustive search along a nine-dimensional
space of Bt we apply the Marginal Space Learning framework [205] and decompose the
original parameter space into a subset of increasing marginal spaces:

Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn = Ω (3.21)

The nine-dimensional space described by the similarity transform in a three-dimensional
Euclidean space is decomposed as follows:

Σ1 = (cx, cy, cz)

Σ2 = (cx, cy, cz, ~αx, ~αy, ~αz)

Σ3 = (cx, cy, cz, ~αx, ~αy, ~αz, sx, sy, sz) (3.22)

where Σ1 represents the position marginal space, Σ2 the position + orientation marginal
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space and Σ3 the position + orientation + scale marginal space, which coincides with the
original domain. Detectors are trained using the Probabilistic Boosting Tree using Haar-
like and Steerable Features for each marginal space D1, D2 and D3, and Bt is estimated
by gradually increasing the dimensionality. As described in [205], the 100 highest scored
candidates are retained in Σ1, 50 in Σ2 and 25 in Σ3, such that the smallest subgroup which
is likely to include the optimal solution is preserved.

To obtain a temporally consistent global location a RANSAC estimator is employed. To
suppress temporally inconsistencies, we assume a constant model for the cardiac motion,
which drives the global movement of the entire valvular apparatus. From randomly sam-
pled candidates, the one yielding the maximum number of inliers is picked as the final
motion. Inliers are considered within a distance of σ = 7mm from the current candidate
and extracted at each time step t. The procedure is applied for each valve separately, in
order to obtain the resulting time-coherent similarity transform Bt assuming small dis-
placements between consecutive frames.

3.4.2. Landmark Location and Motion Estimation

The landmarks parameters are estimated within the Marginal Space Learning framework [205]
using an algorithm called Trajectory Spectrum Learning (TSL), similar to [87]. Hereby the
landmark motions are represented in the frequency domain instead of the Euclidean space.
Therefore the motion estimation problem is formulated as spectrum learning and detection
in the trajectory space. The object localization and motion estimation, referred traditionally
as detection and tracking are solved simultaneously.

The trajectory Ln (B) of each landmark can be uniquely represented by the concatenation
of its discrete Fourier transform (DFT) coefficients

~sj = [~sj(0), ~sj(1), · · · , ~sj(n− 1)] (3.23)

obtained through the DFT equation:

~sj(f) =
n−1∑
t=0

Ln (B) (t)e
−j2πtf

n (3.24)

where ~sj(f) ∈ C3 is the frequency spectrum of the x, y, and z components of the trajectory
Ln (B), and f = 0, 1, · · · , n − 1. A trajectory Ln (B) can be exactly reconstructed from the
spectral coefficients ~sj applying the inverse DFT:

Ln (B) =
n−1∑
f=0

~sj(f)e
j2πtf
n (3.25)

By decomposing the full trajectory space into orthogonal subspaces defined by generic
bases, such as the Discrete Fourier Transform (DFT), the obtained representation is shown
to be compact especially for periodic motions, such as the movements of the heart valves.
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This resulting compact representation allows efficient learning and optimization in its
marginal spaces. In the training stage, local features are extended in the temporal do-
main to integrate the time coherence constraint. Thereby simple gradient and intensity
information is extracted from the image forming three-dimensional features F 3D. As the
motion of the landmarks is assumed to be locally coherent, F 3D is applied in a temporal
neighborhood t − T to t + T . The final value of the Local-Spatial-Temporal (LST) feature
is the result of time integration using a set of linear kernels τ , which weight the spatial
features F 3D according to their distance from the current frame t.

As described earlier the landmark trajectory is represented in the frequency space. Due
to their periodic motion a small set of the frequency components is sufficient to repre-
sent their motion. These frequency subspaces Σ(k) are efficiently represented by a set of
corresponding hypotheses H(k) obtained from the training set. The pruned search space,
restricted to ζ frequency components, enables efficient learning and optimization:

Ωr−1 = H(0) ×H(1) × . . .×H(r−1), r = |ζ| (3.26)

The training algorithm starts by learning the posterior probability distribution in the marginal
space Ω0. Subsequently, the learned detector D0 is applied to identify high probable can-
didates C0 from the hypothesesH(0). In the following step, the dimensionality of the space
is increased by adding the next spectrum component. For each marginal space Σk, corre-
sponding discriminative classifiers Dk are trained on sets of positives and negatives. The
Local-Spatial-Temporal (LST) features are selected via the Probabilistic Boosting Tree to
form the strong classifier Dk.

In order to estimate the final trajectory of a landmark we start from the zero-spectrum
and incrementally estimate the magnitude and phase of each frequency component ~s(k).
At stage k, the corresponding robust classifier Dk is exhaustively scanned over the poten-
tial candidates Ck−1 × H(k). The final trajectory is reported as the average of all elements
in Cr−1.

3.4.3. Constrained Multi-linear Shape Model

Multilinear modeling enables the decomposition of a shape space in a temporal and spatial
component in contrast to active shape models (ASM) where both are coupled. In this sec-
tion we present a Multi-linear Multi-linear Principal Component Analysis (MPCA) (Multi-
linear Principle Component Analysis) and Multi-linear Independent Component Analysis
(MICA) (Multi-linear Independent Component Analysis) shape model of all valves which
is conditioned by anatomical measurements.

Shape Space. In order to construct the shape model, all shapes V are aligned by calculating
the mean sequence model and aligning them using General Procrustes Analysis (GPA).
This transform is utilized to align all shapes in the sequence. The normalized shapes are
represented as third-order tensors D ∈ R(S×T×P), where S is the number of patients, T is
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the frame number inside a multi phase sequence and P represents the number of shape
points. The final third-order tensors D is constructed as follows:

D = Z ×1 Upatient ×2 Umotion ×3 Upoints (3.27)

where Upatient is representing the patient modes, Umotion the motion modes, Upoints the
points modes and Z the core tensor. As mentioned by Zhu et al. [210] the motion sub-
space due to its non-Gaussian distribution is decomposed using ICA and the patient and
points space using PCA. We use the fixed point algorithm to perform the Independent
Component Analysis ([85]). Thereby the equation 3.27 is modified by introducing the
linear static transformation W.

D = Z ×1 Upatient ×2 UmotionW−1W ×3 Upoints

= (Z ×2 W)×1 Upatient ×2 UmotionW−1 ×3 Upoints

= S ×1 Upatient ×2 Cmotion ×3 Upoints (3.28)

Constrained Model Estimation. A crucial step in our hierarchical model estimation algo-
rithm is to advance from one model hierarchy layer to the next finer. This step is especially
important when moving from the anatomical landmark representation to the dense sur-
face mesh models. Instead of using a warping technique, like the thin-plate spline inter-
polation, to map a mean mesh model to the location of the landmarks we use a Bayesian
approach to estimate the dense surface meshes from meaningful clinical measures. A set of
anatomical measurements M (m1,m2, . . . ,mR) extracted from the non-linear valve model
used to condition a surface parametrization Vq (~v1, ~v2, . . . , ~vK) [13]. In the context of the
aortic valve root V1 three measurements are used: 1) inter-commissure distance, 2) hinge-
leaflet tip distance and 3) inter-hinges distance (see figure 3.18).

(a) (b) (c) (d)

Figure 3.18.: Anatomical measurements extracted from the aortic valve anatomical land-
marks model (a) inter-commissures distance, b) hinge-leaflet tip distance and
c) inter-hinge distance) in order to constrain the full surface model d). The
green points are representing the aortic valve commissures, the purple point
the hinges and the red the leaflet tips.
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3.4. Patient-Specific Model Estimation

Figure 3.19.: Diagram depicting the estimation process of the complete valve model during
a full cardiac cycle.

Assuming the joint multivariate distribution (Vq |M) follows a Gaussian distribution a
conditioned surface VMq , containing the anatomical measurements M, can be estimated as
follows:

VMq = µVq + ΣVqM Σ−1MM (M− µM) (3.29)

where µVq is the mean surface parameterization from all training sets of the valve surface
Vq, µM the mean of the measurements M in the training set, ΣVqM the covariance matrix
between Vq and M. The constrained surface VMq is used to reconstruct the dynamic motion
surface model of the whole sequence. Therefore we first estimate the patient modes upatient

and then use them to reconstruct Vq (L,B).

upatient = VMq T−1(1) T = S ×2 Cmotion ×3 Upoints (3.30)

where T−1(1) is the pseudo-inverse of the tensor T flattened along Z Z ∈ 1, . . . , T modes and
Cmotion the Z dimensional motion modes. The complete surface model for the complete
sequence can be extracted by a tensor multiplication:

Vq (L,B) = S ×1 upatient ×2 Cmotion ×3 Upoints (3.31)

3.4.4. Complete Valve Model Estimation

The final stage in our hierarchical model estimation algorithm is the estimation of the com-
plete surface model Vq (L,B). The shape model of each valve is first initialized in the
End-Diastole (ED) and End-Systole (ES) phases of the cardiac cycle using anatomical mea-
surements M defined between the landmarks L1 · · ·L33. In the case of the aortic valve the
shape is conditioned using three anatomical measurements extracted from the previously
estimated landmark model: M = {m1,m2,m3}(m1-inter-commissure distance, m2-hinge-
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commissure plane distance, m3-hinge-commissure plane angle). The initialized model
is refined using a boundary detector D learned using the probabilistic boosting-tree [179]
and steerable features [50]. The detector D evaluates hypotheses for each discrete bound-
ary point along its corresponding normal direction. The new boundary points are set to the
hypotheses with maximal probability. To guarantee physiologically compliant results, the
final model for each frame is obtained after projecting the estimated points to the multi-
linear shape space described in section 3.4.3. Thereby the multi-linear shape space is used
as a parametric space limiting the variability of the final shape model. Starting from the
estimation results in the ED and ES phases, model parameters can be predicted in the
remaining frames by utilizing the multi-linear shape model as described in section 3.4.3.
Thus an initialization of the models is available in the remaining frames of the sequence
and it is conditioned on the estimation results in the ED and ES frames. Starting from
the neighboring frames tED+1, tED−1, tES+1, tES−1 the initialization is refined using the
boundary detector D and the result projected to the parametric multi-linear shape space.
Thereby the patient specific modes upatient are updated and thus the predictions in the
remaining frames are more accurate as the variability or the dynamic shape model was
reduced. The procedure is repeated until the full 4D model is estimated for the complete
sequence (see Figure 3.19).

3.5. Experimental Results

The accuracy of the proposed method is evaluated using cardiac CT data sets from patients
affected by a large spectrum of cardiovascular and valvular heart diseases. Among the
included pathologies are: regurgitation, stenosis, prolapse and aortic root dilation. The
ECG gated cardiac CT sequences included multiple volumes per cardiac cycle, where each
volume contains 80-350 slices with 153× 153 to 512× 512 pixels. The in-slice resolution is
isotropic and varies between 0.28 to 1.00mm with a slice thickness from 0.4 to 2.0mm. The
imaging data set includes 64 cardiac CT studies (640 volumes) which were collected from
several medical centers around the world. Using heterogeneous imaging protocols, cardiac
CT exams were performed with Siemens Somatom Sensation or Definition scanners. Each
sequence was acquired over one cardiac cycle and consisted of ten volumes. Only data
sets which contained a contrast agent and all valves were visible were used. In order to
keep the radiation dose low during the acquisition most of the data sets had one peak
dose at either the ED or ES phase and a low dose during the rest of the cardiac cycle.
Therefore the best visibility of the valves was during the peak dose phase and a moderate
quality during the remaining cycle. The ground-truth for training and testing was obtained
through an incremental annotation process. Therefore, each volume in our data set is
associated with an annotation obtained through an expert-guided process that includes
the following steps:

• the anatomical landmark motion model is manually determined by placing each
anatomical landmark (see section 3.1.2) at the correct location in the entire cardiac
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cycle of a given study. From the annotated anatomical landmark model, the global
dynamic motion model Bt is determined as described in section 3.1.2.

• the complete valve model is initialized through its mean model placed at the cor-
rect image location, expressed by the thin-plate-spline transform estimated from the
previously annotated anatomical landmark model (see section 3.1.3).

• the annotation of the complete valve model is manually adjusted to delineate the
true valves boundaries over the entire cardiac cycle (see section 3.4.4). Complex re-
sampling algorithms specialized for each valve were developed to ensure temporal
and spatial consistency during the annotation process.

In addition each evaluation is done using three-fold cross validation.
An inter-user experiment was conducted on a randomly selected subset of sixteen stud-

ies for the aortic and mitral valve. The patient-specific landmark valve models Ln (B) were
manually fitted by four experienced users. The ground-truth was assumed to be the mean
of the four user annotations. A landmark error of 1.53mm ± 0.93 for the aortic valve and
1.97mm± 1.4 for the mitral valve was observed.

The performance of the global dynamic motion estimation, Bt, described in section 3.4.1,
is evaluated in two distinct experiments. First, the overall detection precision is quantified
at the box corners of the detected time-dependent similarity transformation. The aver-
age Euclidean distance between the eight bounding box points, defined by the similarity
transform parameters {(cx, cy, cz)i, (~αx, ~αy, ~αz)i, (sx, sy, sz)i} and the ground-truth box is
reported. Table 3.1 illustrates the mean errors and corresponding standard deviations dis-
tributed over the four valves. Examples of estimation results are given in Figure 3.20.

(a) (b) (c) (d)

Figure 3.20.: Examples of global dynamic motion estimation in cardiac CT: (a) aortic valve,
(b) mitral valve, (c) pulmonary valve, (d) tricuspid valve.

In a second experiment, the accuracy of the individual detection stages is investigated.
Absolute differences between estimated and ground-truth parameters of the position, ori-
entation, and scale are reported in table 3.2. The 80% column represents the 80th percentile
of the error values. Please note that in order to speed up the algorithm, the estimation of
the global location and rigid motion is always performed on downsampled data with an
isotropic resolution of 3mm.
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Aortic Valve Mitral Valve Pulmonary Valve Tricuspid Valve

mean error [mm] 4.32 6.72 7.72 8.12
STD [mm] 1.90 2.21 2.3 3.2

Table 3.1.: Accuracy of the global location and rigid motion estimation, quantified from the
box corners and reported using the mean error and standard deviation distribu-
tion over each valve.

Mean / STD Median 80%
Position [mm] 3.09±3.02 2.33 3.23

Orientation [deg] 9.72±5.98 7.93 10.73
Scale [mm] 6.50±4.19 5.09 7.81

Table 3.2.: Accuracy of the global location and rigid motion estimation reported separately
for position, orientation and scale.

The accuracy of the anatomical landmark motion model, Ln (B), presented in section
3.1.2 is measured using the Euclidean distance between detected and corresponding ground-
truth landmark trajectories. Table 3.3 demonstrates the precision expressed in mean errors
and standard deviations, distributed over the four valves. Note that reported values are
obtained by averaging the performance of individual landmarks with respect to the cor-
responding valve. Examples of estimation results are given in Figure 3.21. The detection
was performed on volumes resampled to an isotropic resolution of 1.00mm. Thus our au-
tomated landmark estimation error (1.53mm for the aortic valve and 1.97mm for the mitral
valve) is slightly above (1.13mm for the aortic valve and 0.78mm for the mitral valve) the
intra-user variability error (1.53mm for the aortic valve and 1.97mm for the mitral valve).

Aortic Valve Mitral Valve Pulmonary Valve Tricuspid Valve

mean error [mm] 2.65 2.75 3.50 3.59
STD [mm] 1.50 1.19 2.53 2.55

Table 3.3.: Accuracy of the non-rigid landmark motion estimation, quantified by the Eu-
clidean distance and reported using the mean error and standard deviation dis-
tribution over each valve.

The accuracy of the algorithm in section 3.1.3 to estimate the comprehensive valvular
model, Vq (L,B), (see section 3.4.4) is evaluated by utilizing the point-to-mesh distance.
For each point on a surface Vq, we search for the closest point on the other surface to
calculate the Euclidean distance. To guarantee a symmetric measurement, the point-to-
mesh distance is calculated in two directions, from detected to ground-truth surfaces and
vice versa. Table 3.4 contains the mean error and standard deviation distributed over the
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(a) (b) (c) (d)

Figure 3.21.: Examples of the anatomical landmark motion estimation in cardiac CT: (a)
aortic valve, (b) mitral valve, (c) pulmonary valve, (d) tricuspid valve. The
colored points are showing the landmarks for each valve.

four valves. The detection of the comprehensive valves model was performed on volumes
resampled to an isotropic resolution of 1mm. Examples of estimation results are given in
Figure 3.22.

Aortic Valve Mitral Valve Pulmonary Valve Tricuspid Valve

mean error [mm] 1.22 1.32 1.35 1.40
STD [mm] 0.38 0.57 0.9 1.41

Table 3.4.: Accuracy of the comprehensive valve model estimation, quantified by the point-
to-mesh distance and reported using the mean error and standard deviation
distribution over each valve.

In the second experiment, we compare our new shape estimation approach with two
other methods. Thereby the error is measured as the point-to-mesh distance between
the estimated and ground-truth mesh. For all methods the estimation of the dynamic
global motion Bt and the anatomical landmark model Ln (B) is done as described in chap-
ter 3.1.2. The results, shown in Table 3.9 corroborate that our constrained ML PCA-ICA
shape estimation approach achieves best performance, compared to a regular ML PCA-
Independent Component Analysis (ICA) method and a standard frame-wise estimation
procedure (tracking by detection). Within three minutes a complete personalized dynamic
model of all valves is estimated with an average accuracy of 1.24mm. The full valvular
model together with the four chambers of the heart is illustrated in Figure 3.22 and 3.41.

Important clinical parameters are extracted from the personalized model in the right
heart. They include right-ventricle outflow tract (RVOT) radius, bifurcation radius, tricus-
pid valve area and a joint measurement of the two valves, the pulmonary and tricuspid
valve distance. Quantitative comparison is shown in figure 3.24 by comparing ground
truth measurements and the estimated, demonstrating a strong correlation.

Finally we show quantitative comparison between a patient suffering from aortic valve
regurgitation, a healthy patient and a post-operative patient who underwent a Ross oper-
ation. An important clinical measurement, the valvular area, extracted from the personal-
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Figure 3.22.: Examples of the complete valves model estimation in cardiac CT of all heart
valves during one cardiac sequence.

Figure 3.23.: Examples of estimated personalized model from a multiphase CT sequence.
The images are extracted from the end-systolic phase.
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Mean STD Median

Tracking by Detection [mm] 1.52 0.98 1.47
ML PCA-ICA [mm] 1.39 0.91 1.32

cML PCA-ICA [mm] 1.24 0.91 1.18

Table 3.5.: System precision for valve model estimation averaged over all valves for com-
prehensive surface assessment.

Figure 3.24.: Bland Altman plots for a) right ventricle output tract diameter, b) pulmonary
valve bifurcation diameter, c) tricuspid valve area and d) distance between
pulmonary and tricuspid valve. The ground truth measurements, derived
from the models annotated by clinical experts, were compared with measure-
ments derived from our automatically estimated models.

ized aortic and pulmonary valve model, demonstrated in figure 3.25, confirms a successful
outcome since no regurgitation is observed at the aortic valve.

Figure 3.25.: Measurements of aortic (AV) and pulmonary valve (PV) area obtained from
a patient with aortic valve regurgitaion (left), a healthy patient (middle) and
a post Ross operation patient (right). The red graph is representing the aortic
valve and the blue the pulmonary.

3.6. Tissue Characterization and Volumetric Model Estimation

For TAVI the interaction of calcification and leaflet tissue is an important predictor of post-
operative success [111]. Thus having the capability to delineate tissues within the aortic
valve from pre-operative data will advance the current clinical workflow for TAVI plan-
ning. In this chapter we propose an extension of the modeling framework presented in
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Figure 3.26.: Diagram showing the model estimation approach for the volumetric aortic
valve model consisting of 9 anatomical landmarksm (3 commissures, 3 hinges
and 3 leaflet tips), the aortic root surface M and the final volumetric aortic
leaflet models.

3.1. First we apply the current framework of the physiological surface model of the aor-
tic valve to a patient population of heavily stenotic AV patients. Afterward we propose a
novel segmentation method based on discriminative learning-based methods to delineate
the three tissue types within the aortic valve: blood pool, calcification and leaflet tissue.
Based on our segmentation several clinical applications can be developed. Especially the
association of calcium within the valve have been shown to have significant impact on the
two main complications associated with TAVI: para-valvular leakages and stroke [73, 111].

3.6.1. Multi-class tissue Classification

We formulate our problem as a 3-class classification. Within the aortic valve root M we
compute custom features xi for each sample voxel i (see section 3.6.1) and assign the sam-
ple to one of three classes: calcification CC , leaflet tissue CL and blood pool CB . We aim to
finding a learning modelH such that

H(xi) = yi yi ∈ {CC , CL, CB} (3.32)

where yi is the class label for voxel i. We utilize binary boosting classifiers using geometric
and appearance features to discriminate the voxels. In order to obtain the final class label,
1-vs-all approach is utilized. Herby the voxel i is assigned to the class with the maximum
probability response of the classifierH.
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Figure 3.27.: Left: Custom geometric and data features utilized to classify tissues within
the aortic valve root. Right: Classifier responses for different classes of tissues
overlayed on the extracted subvolume. The probability map for the blood
pool is overlayed on the blue channel, leaflet tissue in the red and calcium in
the green color channel.

Geometric and Data Features

We use geometric and data driven features xi ∈ R10 to discriminate the samples. For each
voxel distances to the previously estimated landmarks m are used as geometric features
and the image intensity at the current voxel position as appearance feature (see figure 3.26).

xi(0) = I(i) xi(j = 1 . . . 9) = ||i−mj || (3.33)

Training

In order to train the binary classifiers CC , CL and CB , each positive example xi is assigned
with a class label yi ∈ {CC , CL, CB} extracted from user annotations. The calcification
examples are generated by an expert user defining a volume specific threshold. Only
responses within the previously estimated aortic valve root model M were taken. The
ground-truth for the leaflet tissue position is extracted using a semi-automatic segmenta-
tion approach. The blood pool is assumed to be the remaining voxels when calcification
and leaflet tissue is subtracted from the whole set of voxels within the aortic valve root M .
Thus we train three binary classifiers: CC (calcium), CL (leaflets) and CB (blood pool) using
the probabilistic boosting tree [178]. The feature responses for each class CC , CL and CB
are shown in Figure 3.26.

Testing

First landmarks m and the point distribution model M are estimated. All pixels inside the
aortic valve are evaluated using the classifiers CC , CB and CL. The final voxel i is assigned
to the class label with maximum probability.
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3.6.2. Volumetric Leaflet tissue segmentation

The final volumetric segmentation of the leaflet tissue is formulated as a Markov random
field (MRF) and optimized using graph-cuts [18].

Graph cuts in image segmentation

Graph cuts were introduced by Boykov et al. [18, 19, 17, 20] and utilized to efficiently solve
many tasks in computer vision applications such as segmentation, image denoising and
stereo reconstruction. These problems can be formulated as an energy minimization task
and further reduced to instances of the maximum flow problem in a graph [17]. Using the
max-flow min-cut theorem [6] the solution can be found efficiently and corresponds to the
maximum a posterior of the estimate [101, 100]. Binary problems such as a segmentation
task (0-background and 1-foreground) can be computed exactly.

Figure 3.28.: A simple 2D segmentation example using graph-cuts for a 3 × 3 image from
Boykov [20]. The seeds are O = v and B = p. The cost of each edge is
reflected by the thickness of the edge. The regional term and hard constraints
define the costs of t-links. The boundary term defines the costs of n-links.
Inexpensive edges are attractive choices for the minimum cost cut. A globally
optimal segmentation satisfying hard constraints can be computed efficiently
in low-order polynomial time using max-flow/min-cut algorithms on graphs
([49, 62, 31]

Let A = (A1, . . . , Ap, . . . , AP ) be a binary vector whose components Ap specify binary
assignments to image pixels p ∈ P . Each Ap can be either object (1) or background (0).
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Thus vector A defines a segmentation. The soft constraints that we impose on boundary
and region properties of A are described by the cost function E(A):

E(A) = λ R(A) + B(A) (3.34)

where

R(A) =
∑
p∈P

Rp(Ap)

B(A) =
∑
p,q∈N

Bp,q δ(Ap, Aq)

and

δ(Ap, Aq) =

®
1 ifAp 6= Aq
0 otherwise

(3.35)

The coefficient λ ≤ 0 adjusts the relative importance of the region properties term R(A)

versus the boundary properties term B(A). The term R(A) assumes that the individual
penalties for assigning pixel p as an object and background,Rp(object) andRp(background),
are given. E.g. Rp(background) may suggest how a property of the pixel (e.g. intensity
value at its location or some other form of posterior probability of belonging to the back-
ground) fits into the overall object and background model (e.g. in the case of intensities the
histogram can be used). The term B(A) comprises the boundary properties of segmenta-
tion A. Coefficient Bp,q = 0 should be interpreted as a penalty for a discontinuity between
p and q. Usually Bp,q is large when pixels p and q are similar (e.g. in their intensity) and
Bp,q is close to zero when the two are dissimilar. The cost of Bp,q can also decrease as a
function of distance between p and q. Costs Bp,q may be based on local intensity gradient,
gradient direction, and other criteria. Using the min-max flow algorithm [49, 62] a globally
optimal binary segmentation can be computed by minimizing the energy in respect to the
hard constraints.

In the context of segmentation using graph-cuts an undirected graph G = 〈V,E〉 is de-
fined by a set of nodes (V ) and a set of undirected edges (E) that connect these nodes. An
example of a graph that we use in this section is shown in Figure 3.28. For each edge e ∈ E
the graph is assigned a non negative weight (cost) we. There are also two special nodes
called terminals. A cut is a subset of edges C ⊂ E such that the terminals become sepa-
rated on the induced graph G(C) = 〈V,E \ C〉. It is normal in combinatorial optimization
to define the cost of a cut as the sum of the costs of the edges that it severs

‖C‖ =
∑
c∈C

we (3.36)

Graph cut formalism is well suited for segmentation of images. In fact, it is completely
appropriate for 3 dimensional volumes. The nodes of the graph can represent voxels and
the edges can represent any neighborhood relationship between the pixels. A cut parti-
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tions the nodes in the graph. As illustrated in Figure 3.28, this partitioning corresponds
to a segmentation of an underlying image or volume. A minimum cost cut generates a
segmentation that is optimal in terms of properties that are built into the edge weights.
The technique is based on a well-known combinatorial optimization fact that a globally
minimum cut of a graph with two terminals can be computed efficiently in low-order
polynomial time [18, 19, 17, 20].

Leaflet segmentation

In the context of the volumetric aortic valve leaflet delineation the segmentation problem
can be viewed as a labeling process to label the voxel set Q by minimizing an energy
function:

E(L) =
∑
p∈Q

Dp(fp) +
∑

q∈N(p)

Vp,q(fp, fq) (3.37)

where E(L) is the energy, p and q are voxels, N is the neighborhood formed from the
vertex connectivity, Dp(fp) measures the cost of assigning the label fp to pixel p, and Vp,q
measures the cost of assigning the labels fp, fq to the adjacent pixels p, q.

The positive and negative seeds are used from the tissue classification stage. Voxels in
the regions outside the estimated aortic root model M are set as negative seeds. Voxels
classified as leaflet voxels and as calcified regions are set as positives. The binary solutions
assigns the uncertain voxels either as leaflet tissue or background. The final iso-surface
model of the leaflets is extracted from the classified voxels using the marching cube algo-
rithm [118]. The final volumetric model of the leaflets is shown in Figure 4.5.

3.6.3. Experimental Results

The accuracy of the proposed method was evaluated using 536 singe-phase CT data sets.
The data sets comprise a variety of cardiovascular diseases and due to different acquisition
protocols they have heterogeneous image quality, resolution and sizes. The ground-truth
for training and testing was obtained through an incremental annotation process guided
by experts, which include the manual placement of anatomical landmarks and delineation
of the aortic valve root surface. The volumetric models of the leaflets, calcification and
blood pool are segmented using a semi-automatic process. Our data set was splitted into
408 training and 128 test data sets. The reported numbers were performed on the test data
set.

First the landmark model m estimation error is computed for the most important land-
marks for the TAVI procedure, the commissures and hinge points. Euclidean distances of
the detected landmark points is compared to the expert annotation. The aortic root model
performance, containing a dense surface mesh M , is measured as the mesh-to-mesh dis-
tance. Results shown in Table 3.9 and qualitative evaluations in Figure 4.5 corroborate that
our estimation method works reliably and with high accuracy, even on low contrasted CT
volumes. Within six seconds a complete personalized volumetric model of the aortic valve
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Figure 3.29.: Examples of the automatic estimation of the aortic valve surface model M
for nine patient data sets. The upper row is showing short axis views of the
segmentation results and the bottom long axis views.

is estimated with an average accuracy of 1.30 mm.
The viewing orientation of a C-arm system is characterized by a primary and secondary

anatomic view angle. The primary angle (RAO/LAO) reports how much a C-arm has
been rotated to a patient’s right/left side (right anterior oblique/left anterior oblique).
The secondary angle (CRAN/CAUD) tells how much a C-arm has been angulated toward
a patients head (cranial) or feet (caudal) direction. In our experiments shown in table
3.9 we compared the CRAN/CAUD deviation at RAO/LAO=0 between our automated
estimation and ground-truth data. Based on the hinge plane which is defined by the three
aortic valve hinge points, the CRAN/CAUD angle can be computed automatically from
our model. In table 3.9 the automated angulation results are compared to the ground-truth.

One important clinical measurement can be extracted from the personalized model: aor-
tic root annulus radius. This parameter is consistently used by the physicians to determine
the proper size of the artificial aortic valve implant. The Bland Altman plot shown in Fig-
ure 3.30 demonstrates a strong correlation between the measurements extracted from our
personalized model M and the ground truth.
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Table 3.6.: System precision for the aortic valve model estimation. The evaluation is based
on landmark errors, aortic valve angulation error measured in C-arm machine
coordinates and full surface mesh-to-mesh error of the aortic root.

Mean STD Median

AV commissures [mm] 2.08 2.21 1.79
AV hinges [mm] 2.06 0.68 2.04

CRAN/CAUD, RAO/LAO=0 [mm] 3.98 3.47 2.90
AV root surface [mm] 1.30 0.31 1.20

The final validation is done by comparing the accuracy of our multi-class tissue clas-
sification with the ground-truth annotations. We compute the Dice similarity coefficient
DSC(A,B) = 2|A∩B|

|A|+|B| between the voxels inside the obtained segmentation and voxels
inside the manual segmentation for the leaflet tissue (Figure 3.30 middle) and the calcifi-
cation (Figure 3.30 right). We plot the Dice scores in respect to the tissue volume size in
Figure 3.30.

Figure 3.30.: Bland Altman plots for: Left: aortic root annulus radius. Middle: Dice score
for the aortic valve leaflet segmentation (DSC = 0.73). Left: Dice score for
the calcification segmentation inside the aortic valve (DSC = 0.79).

3.7. Biomechanical Modeling for TAVI planning

The most important decision during TAVI planning is selecting the proper implant type
and size. Due to the wide variety in device sizes and types and non-circular annulus
shapes, there is often no obvious choice for the specific patient. Most clinicians base their
final decision on their previous experience. As a first step towards a more predictive plan-
ning, we propose an integrated method to estimate the aortic apparatus from CT images
and compute implant deployment.

Starting from a clinical pre-operative 3D CT image (Figure 3.33), we automatically seg-
ment the aortic valve model using machine-learning algorithms and generate a patient-
specific anatomical model of the aortic valve suitable for simulations (Section 3.7.1). We
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Figure 3.31.: Diagram of the problem formulation showing the surface model M , anatomi-
cal landmarks m, transformation φ to map the intra-op image I2 to the pre-op
data I1.

Figure 3.32.: Diagram showing the estimation framework for the volumetric aortic valve
model, which consists of 9 landmarksm (3 commissures, 3 hinges and 3 leaflet
tips), aortic root and aortic leaflet volumetric models M , and aortic valve cal-
cifications C.

then apply the biomechanical model of the valve and the CoreValve implant (Section 3.7.2)
to compute device deployment for TAVI planning. Finally we compare the computed ge-
ometry of the deployed implant with a ground-truth annotation extracted from the post-
operative CT.

3.7.1. Parametrization and Estimation of Aortic Valve Morphology

Aortic Model Parametrization We propose a physiological and volumetric model of the
aortic valve capable to capture complex morphological and pathological variations. The
anatomical structures consist of nine landmarks including three commissures, three hinges,
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Figure 3.33.: Diagram showing our validation framework.

three leaflet tips, the aortic root, aortic leaflets and calcifications. To efficiently handle the
anatomical complexity, the model representation and corresponding parametrization is
constructed hierarchically using 1) a non-rigid landmark model m and 2) two volumetric
models M and C for the anatomy structure and calcifications respectively (Figure 3.32).
We utilize the same approach as mentioned in 3.6 to parametrize the model and estimated
the model parameters.
Implant Parametrization The CoreValve implant is modeled as a tubular mesh grid aligned
along the circumferential u and longitudinal v direction. We utilize a manual annotation
framework to fit the ground-truth implant model to the post-operative CT data.

3.7.2. Finite Element Model of the Aortic Valve and CoreValve

From the segmentation of M and C, we build a volumetric, tetrahedral mesh whose ele-
ments are automatically tagged according to the structure it belongs to (aortic root, leaflets,
calcification). The model is cut at the inflection of the aorta for computational efficiency
(Fig. 3.34). The volumetric mesh is then used to compute the deformation of the aortic
apparatus induced by the deploying implant. To that end, we solve the dynamics system:

M ~̈U + C ~̇U +K~U = ~Fc (3.38)

where M is the lumped mass matrix, calculated from the mass density of the tissue (ρt =

1070g/L) and of the implant (ρs = 6450g/L), K is the stiffness matrix, encoding material
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properties, C is a Rayleigh damping, whose coefficients for mass and stiffness matrix are
both equal to 0.1, ~U is the displacement of the nodes of the objects in the scene and ~Fc is
the vector gathering the external forces resulting from self-collisions and collisions with
the implant stent.
Tissue Model The aortic tissue is modeled with linear isotropic elasticity for computa-
tional efficiency, although our framework can easily accommodate for more realistic hyper-
elastic constitutive laws that better capture the non-linear behavior of aortic tissues. Pois-
son ratio ν and Young’s moduli E are defined per tissue type: Aortic root: E = 2MPa,
ν = 0.48; Aortic leaflets: E = 1MPa, ν = 0.48; Calcifications: E = 60GPa, ν = 0.3 [196].
Co-rotational FEM are employed to cope with large deformations.
CoreValve Model The CoreValve implant is modeled using a spring model whose stiffness
is calculated directly from the specifications of the device (Young’s modulus E = 75GPa).
To mimic the shape-memory deployment, the model is deformed according to springs de-
fined between the undeployed and deployed configurations (Fig. 3.34, right panel). The
stiffness of these springs, k = 1MPa (determined off-line), is the minimal stiffness neces-
sary to fully undeploy the implant when free from interactions of any neighboring struc-
tures.
Boundary Conditions The aortic apparatus is tethered to the left ventricle and the aorta.
To mimic the compliance of these neighboring organs, aortic annulus and aortic root are
tethered in space through springs whose stiffness is equal to 10MPa (Fig. 3.34).
Contacts Implant / valve contacts and valve self-contacts are modeled using sphere con-
tact models. For instance, for each vertex of the aortic root, a sphere of radius of 1 mm is
defined. As soon as a vertex of any object (implant / valve) enters the area defined by this
sphere, a spring of stiffness 100 kPa is added between the two vertices to avoid contact. A
contact friction of 0.1 is assumed based on [196]. The contribution of the contact forces are
gathered into the contact force vector ~Fc.
Implementation The model is implemented using the SOFA framework1. Spatial dis-
cretization is done using linear tetrahedra. An implicit Euler scheme is employed for time
integration as it is unconditionally stable.

3.7.3. Experimental Results

3.7.4. Evaluation of Implant Deployment Prediction

We then evaluated the complete framework on eleven patients, for whom pre- and post-
operative CT images where available. For these patients, the post-operative valve anatomy
and CoreValve implant was obtained through an incremental annotation process guided
by experts, which included manual placement of anatomical landmarks and delineation of
the valve surface and implant struts model. The preoperative anatomy was detected au-
tomatically, corrected by experts if needed, and meshed with an average tetrahedral edge-
length of ≈ 1.2 mm. For all patients, nominal tissue and implant parameters (Sec. 3.7.2)

1www.sofa-framework.org
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Computational Model CoreValve Model 

Aortic root 
tethering 

Aortic annulus 
tethering 

Deployed configuration 

Undeployed 
configuration 

Shape springs for 
stent deployment 

Figure 3.34.: Left: anatomical model estimated from the images. Colors encode the dif-
ferent anatomical parts, in red are the calcifications. Arrows indicate spatial
tethering. Right: CoreValve model. Thick black lines represent the strings
used to model shape-memory deployment.

Figure 3.35.: Automatic segmentation results of the aortic valve model M and calcification
C (red color) from pre-operative CT. The aortic root is shown in blue and the
R-, N-, L- leaflet are shown in green, purple and red respectively. The ex-
tracted models are accurately delineating the valve anatomy in the CT image.

were employed to evaluate the robustness of the predictions with respect to tissue prop-
erties. Simulation time step was dt = 1ms. The simulation was stopped when the overall
system reached an equilibrium.

Nine out of eleven cases had the aortic leaflets closed in the preoperative image. To
place the virtual CoreValve device, we artificially opened the leaflets by applying a pres-
sure of 80mmHg to their ventricular surface. Tissue and simulation parameters were kept
unchanged. Then, once the valve was open, the undeployed CoreValve was placed ac-
cording to the postoperative anatomy in order to reproduce as close as possible the real
intervention. More precisely, the post-to-pre rigid transformation T between the aortic
root model Mrootpost and Mrootpre was estimated using Procrustes alignment. Based on
that transformation, the undeployed implant model was mapped to the pre-operative data
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3.8. Interventional model estimation

with the same relative position as in the post-op data. The postoperative implant was also
registered to the preoperative data for evaluation purposes.

Figure 3.36 reports simulation results on four patients. Despite the nominal tissue pa-
rameters and the relative simplicity of the biomechanical model, the predicted deployed
implants were in close agreement with the actual postoperative outcome. More quanti-
tatively, the point-to-mesh error between the computed deployed implant struts and the
ground-truth implant annotation was of 1.73 ± 0.40 mm (Table 3.7). In addition we com-
pared implant diameter errors for several key locations along the tubular implant structure
(Table 3.8). As one can see, we could achieve precise results (1.32 mm error) for the annular
ring (ring ID 6), which is the critical area for TAVI intervention. Compared to the usual im-
plant gap of 3 mm between implant sizes, our precision has significant accuracy in clinical
practice.

Table 3.7.: Point-to-mesh distance between computed and ground-truth implant deploy-
ment configuration. The average error is 1.73± 0.40mm.

Patient Point-to-Mesh Error Patient Point-to-Mesh Error
01 1.77± 1.36mm 05 2.11± 1.57mm
09 1.00± 0.85mm 02 1.86± 1.39mm
06 1.54± 1.08mm 10 1.76± 1.30mm
03 2.36± 1.62mm 07 1.90± 1.26mm
11 1.21± 0.94mm 04 1.44± 1.31mm
08 2.07± 1.69mm

3.8. Interventional model estimation

With the new generation of interventional C-arm machines a 3D CT like modality can be
acquired in order to guide minimally invasive procedures. In addition several protocols
have been developed to acquire the vascular system using contrast agent [94]. One can
directly segment the aortic valve in the contrasted image [206]. However due to the limited
image quality and limited field of view the segmentation is usually less accurate compared
to models extracted from pre-operative modalities. By utilizing a method which estimates
the model in the intra-operative modality and pre-operative modality at the same time the
interventional model accuracy can be improved.

Our goal is to estimate a 3D patient-specific model M from volumetric multi-modal
datasets I1 and I2, where I1 is the pre-operative and I2 the intra-operative image, and the
transformation φwhich maps the intra-operative modelM2 to the pre-operative modelM1

(see Fig 3.31).
(φ̂, M̂) = arg max

M,φ
P (M,φ |I1, I2 ) (3.39)

φ = D A is composed of an affine- A and a non-linear warping transformation D. D is
modeling the small deformation of M due to respiration and uncertainties in the acqui-
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Table 3.8.: Average diameter error between computed and ground-truth implant model.
Precise results were achieved in the annulus region (ring ID 6) where the error
is far below the average 3mm gap between consecutive implant sizes.

Ring ID Diameter Error Ring ID Diameter Error
01 1.86± 1.44mm 06 1.32± 0.72mm
02 1.20± 0.80mm 07 2.77± 1.21mm
03 1.04± 0.55mm 08 4.10± 1.96mm
04 0.80± 0.58mm 09 2.68± 2.34mm
05 1.00± 0.84mm 10 3.60± 2.56mm

sition phase between the pre- and intra-operative data. The model M is represented as a
point distribution model. Using the transformation φ the pre- M1 and intra-operative M2

models can be computed: M = M1, M = D A M2 and M2 = A−1 D−1 M .

3.8.1. Method

In general, finding an optimal solution to Eqn. (3.39) is difficult and has high computa-
tional cost if we want to model complex anatomical structure such as in section 3.1. There-
fore we approximate the problem by expanding the formulation and exploiting mutual
independence. In addition a shape constraint term is added to restrict the estimated model
M in a shape space built from a database of annotations.

(φ̂, M̂) = arg max
M,φ

log (P (M |I1 ) · P (M |φ(I2) ) · P (M |I1, φ(I2) ) · P (M,φ |µ,Σ))) (3.40)

We infer all the probabilities in our formulations using robust learning based algorithms.
The first P (M |I1 ) and the second term P (M |φ(I2) define the independent model estima-
tions in the multi-modal images I1 and I2. As proposed in [88] a classifier is trained using
the probabilistic boosting tree and Haar-features to estimate the posterior probability. The
best model parameters forM are selected based on a joint probability term P (M |I1, φ(I2))

explained in chapter 3.8.2. The transformation φ is modeled as a warping transform with
Gaussian radial basis functions. The last term P (M,φ |µ,Σ) symbolizes a regularization
of the shape M and the transformation φ based on the learned statistical shape model de-
fined as a Gaussian distribution with the mean µ and the covariance matrix Σ learned from
manual annotations. Both the affine A and the non-linear transformation D are updated
in this stage. A bias is applied towards the pre-operative model M = M1 as the model
estimation is more robust in the pre-operative images. In our case I1 represents the CT
image and I2 the TEE and 3D C-arm CT image. Our aortic valve model is parametrized as
described in section 3.1.
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Patient 01 Patient 03 Patient 09

Figure 3.36.: Example of simulated implant deployment using our automatic volumetric
model estimation and our simulation framework. In transparent red is the
ground truth. Our model could predict CoreValve deployment based on pre-
operative image data only.

3.8.2. Similarity learning

The joint term P (M |I1, φ(I2)) in Eqn. 3.40 exploits the similarities between the models
from the multi-modality images. Similarity functions proposed in the current literature,
such as mutual information or cross correlation, could be used but as mentioned in [22]
learning the similarity for a specific problem yields better performance.

In our case, we selected to use the LogitBoost [52] algorithm instead of the PBT. As men-
tioned in [52] the LogitBoost algorithm (see Figure 3.38) minimizes the negative binomial
log-likelihood. In our context a data point x is an image pair x = (I1, φ(I2)). Transfered
to an boosted similarity score the goal of the classifier similarity function S(I1, φ(I2)) is
the probability of the class label y(I1, φ(I2)) having the posterior probability of 1, that is
S(I1, φ(I2)) = p(I1, φ(I2)).

We employ the Logitboost framework in order to train a cascade of strong classifiers.
Each strong classifier Fstrong consists of k weak classifiers Fweak which learn the similarity
between pairs of image patches IS1 ∈ I1 and IS2 ∈ I2, Fweak(IS1, IS2). The weak learners
are constructed based on Haar-like features [145, 147] extracted locally from rectangular
patches IS1 and IS2 from image slices sampled perpendicular to the tubular aortic root
surfaces M1 and M2. We parametrize the rectangle feature g by (r, c, dr, dc, t) where (r, c)

is the starting point of the rectangle, (dr, dc) is the height and width, and t is the feature
type. There are six feature types as shown in Figure 3.39. Given a rectangle feature g and
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Figure 3.37.: Example of simulated stent deployment using our automatic volumetric
model estimation and a standard machanical simulation framework. As we
only estimate the volumetric model of the aortic valve leaflets a standard non-
patient specific thickness of 1.4mm was assigned to the aortic valve root.

the image pair (I1, I2), we compute two feature responses g(I1) and g(I2) from the two
integral images associated with I1 and I2 respectively. The two local rectangles could have
different parameters; however we refrain from doing this because empirically this shows
no clear advantage but significantly increases training complexity.

The weak learner is modeled as a 2D piecewise constant function defined on a 2D feature
space by the feature responses of h(IS1) and h(IS1). The 2D feature space is separated in
equal rectangular non-overlapping regions. Therefore we quantize the feature responses
from both modalities in 64×64 bins whereby the values are scaled between the minimum
and maximum feature responses h(IS1) and h(IS1).

Fweak(IS1, IS2) =
B∑
b=1

C∑
c=1

βb,c Rb,c [h(IS1)× h(IS2)] (3.41)

where B and C are the bin numbers for the feature responses in each modality and βb,c
symbolizes the constant associated with the regionRb,c representing a bin in the 2D feature
space. As in [208] the optimal weights βb,c would be determined by fitting a least-squares
regression function. During detection a probability for each weak classifier is evaluated
by extracting Haar-features from pairs of image patches. The features are assigned to a
bin Rb,c based on the feature response and multiplied with the corresponding weight βb,c.
We empirically determine the interval boundary points by uniformly dividing the feature

78



3.8. Interventional model estimation

Input

• set of N labeled samples {(x1, y1), ..., (xN , yN )}

• distribution W over the examples

• weak learning algorithm WeakLearn

• number of iterations T

Initialization

• set the weight vector wli = W (i) = 1/N for i = 1, ..., N and the probability estimates
p(xi) = 1/2.

Main Loop, for t=1,. . . ,T

• compute working responses and weights:

zi =
yi − p(xi)

p(xi)(1− p(xi))
;

wi = p(xi)(1− p(xi)).

• fit the function fm(x) by a weighted least-squares (LS) regression of zi to xi with
weights wi.

fm(x) = argminf∈F (ε(f) =
N∑
i=1

wi(zi − f(xi))
2).

• Update F (x)← F (x) + 1
2fm(x) and p(x) via

p(x) =
exp(F (x))

exp(F (x)) + exp(−F (x))
.

Output: Classifier sign[F (x)].

Figure 3.38.: The two-class LogitBoost algorithm as introduced by Friedman in [52].

responses.
Given a weak learner Fweak that is associated with a feature h, the optimal weight βb,c

that minimizes the weighted LS cost f in 3.38 is the weighted response z of all data points
falling into the region

βb,c =

∑N
i=1 wi zi Rb,c [h(IS1)× h(IS2)]∑N
i=1 wi Rb,c [h(IS1)× h(IS2)]

(3.42)

where IS1, IS2 is the i-th training image pair. Figure 3.39 illustrates the fitting process.
Figure 3.39 left) and center) visualizes the field of wi × zi = yi − p(xi) = 1 − p(xi) for
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Figure 3.39.: Left and middle: illustrating the process of fitting a 2D piecewise constant
function. Left: illustrates the fitted 2D piecewise constant function.

all positives, where the color intensity corresponds to the value of w × z: the greener the
plus sign is, the less likely the data point x is positive. The diagonal structure in Figure
3.39 shows that the two feature responses of the positives are roughly same. Figure 3.39
visualizes the field of wi × zi = p(xi) for all negatives: the greener the circle sign is, the
less likely the data point x is negative. As shown in Figure 3.39 middle), the negatives
are characterized by a widely-dispersed nature. It shows the fitted 2D PWC function: the
constant coefficients βb,c along the diagonal lines are high, while offdiagonal ones are low.
For the step 2 in Figure 3.38, the weak function f with the smallest weighted LS cost ε(f)

is selected.
The use of nonparametric 2D PWC functions as weak learners is beneficial. Take the

1D case for example; 1D simple regression stumps that binarize the feature response are
often used as weak learners in the literature [176] . It is possible to verify that any 1D
PWC function can be constructed by combining multiple 1D simple regression stumps.
The similar holds for the 2D case. Such a combination strengthens the modeling power
of weak learners and consequently accelerates the training process. Empirical evidence
shows that the learning time is almost inversely proportional to the number of thresholds
used in the weak learner. One may argue that it brings the risk of overfitting. But boosting
combats the problem overfitting in terms of classification even when the weak learner
overfits. Further, in practice we smooth the fields of w× z and w before taking the division
to ameliorate the overfitting of the weak learner itself.

A cascade of l strong classifiers Fstrong is trained in order to determine the posterior
probability P (M |I1, φ(I2)) = S(IS1, IS2) of the similarity function.

3.8.3. Model-Based Fusion Approach

The first stage in our hierarchical model estimation algorithm consists of pre-aligning the
multi-modal images using the anatomical landmarks. The affine transformation A is es-
timated by obtaining a least-squares solution based on the independently detected land-
marksm1 from the image I1 andm2 from the image I2. The landmark detectors are trained
using the PBT classifier and Haar-like features. The surface M is initialized by learning a
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correlation model between measurements extracted from the landmarks m1 and the point
distribution model M , as described in [67]. The nonlinear warping transformation D is set
to identity. Based on A the model M can be projected to the image I2.

Figure 3.40.: Diagram showing the model based fusion approach for the estimation of the
model M and the transformation φ.

In the optimization phase we apply an iterative approach. We sample candidates N1

and N2 along the surfaces normals of M1 and M2, and evaluate the probability P (M |I1 )

for each candidate n1 ∈ N1 and P (M |φ(I2)) for each point n2 ∈ N2 using the learned
detectors. The joint probability P (M |I1, φ(I2)) is determined by training a boosting clas-
sifier, as in Section 3.8.2, to evaluate pairs of candidates. A cross product of the candidates
N1×N2 is constructed and the highest probable candidate pair (ni, nj) is selected by mul-
tiplying the single modality probabilities with the joint term.

(ni, nj) = arg max
ni,nj

(P (ni |I1 ) · P (nj |φ(I2)) · P (ni, nj |I1, φ(I2))) (3.43)

The estimated candidate pairs are used to update the models M1 and M2. The second step
of the iteration involves calculating the posterior probability P (M,φ |µ,Σ) of M and φ

based on the learned statistical shape models. This could be perceived as a regularization
to the shape M . Thereby M1 is projected to the PCA shape space using the largest 40
eigenvectors. φ is updated by computing the rigid transformationR based on the posterior
probability of the pairs (ni, nj). D is updated by obtaining a least-squares solution to
the warping transformation D̂ = arg min

∥∥T M2 −D−1M1

∥∥2 using radial basis functions.
Thereby the number of control points is much smaller than the number of shape points
M . The algorithm converges in a small number of iterations. Figure 3.40 demonstrates the
complete estimation approach.
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Figure 3.41.: Example of the joint aortic valve model estimation from pre- and intra-op
volumetric data. The left 2 images show fused CT-TEE data sets and the right
2 images show fused CT-3D C-arm CT data. The mapping of the intra-op
image I2 to the pre-op image I1 is done by the estimated non-linear transform
φ.

3.8.4. Experimental Results

The most relevant intra-operative modalities with 3D capabilities (3D C-arm CT and TEE)
in the OR environment were incorporated for evaluation. In total 56 volumes, 13 pairs of
CT-TEE data sets and 15 pairs of CT-3D C-arm CT data pairs were selected to demonstrate
the effectiveness of our method. This dataset was solely used for evaluation and not in-
cluded in training. The ground-truth annotations were obtained from clinical experts by
manually placing the anatomical landmarks in the pre- (m1) and intra-op (m2) images and
finally delineating the aortic valve surfaces M1 and M2.

As our algorithm depends on the automatic detection of the anatomical landmarks m1

and m2 during the initialization step in order to estimate the affine transform A we eval-
uate their detection performance on the test dataset. For training 160 separate landmarks
annotations in CT, 320 in TEE and 192 in 3D C-arm CT were used to train the landmark
detectors. The error is computed as the Euclidean distance between the automatic esti-
mation and the expert annotation. For the hinges we obtain an error of 2.40 ± 0.81mm in
CT, 2.56 ± 0.71mm in TEE and 2.30 ± 1.56mm in 3D C-arm CT and for the commissures
2.74±1.01mm in CT, 3.31±1.55mm in TEE and 2.98±1.44mm in 3D C-arm CT. The results
are shown in Table 3.9.

Table 3.9.: System precision for the estimation of aortic valve landmarks (commissures and
hinges) in CT, TEE and 3D C-arm CT.

aortic valve hinges aortic valve commissures
Mean STD Median Mean STD Median

CT [mm] 2.40 0.81 2.19 2.74 1.01 2.48
TEE [mm] 2.56 0.71 2.26 3.31 1.55 2.81

3D C-arm CT [mm] 3.59 1.17 3.47 3.79 1.02 3.82

The mesh-to-mesh error was computed between the ground-truth annotations and the
detected models in order to obtain quantitative results for the automatic surface estima-
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tion. Results shown in Table 3.10 confirm that our model-based fusion estimation approach
yields the best results among the studied approaches.

Table 3.10.: System precision for aortic valve surface model estimation in CT, TEE and 3D
C-arm CT. Comparison between our novel model-based fusion approach and
single modality estimations.

single modality estimation fusion approach
Mean STD Median Mean STD Median

CT-TEE [mm] 1.22 0.23 1.13 1.09 0.22 1.10
CT-3D C-arm CT [mm] 1.96 0.54 1.99 1.73 0.49 1.79

For TAVI the selection of the appropriate stent size and its positioning have clinical sig-
nificance. However in 3D C-arm CT the aortic valve annulus is not visible as the contrast
is injected at the cusp area. Fusing the 3D C-arm image with pre-op CT data would allow
the physician to properly examine the annulus area and enable accurate positioning of the
stent during the procedure. We evaluate the error for the aortic valve annulus ring circum-
ference, extracted from the estimated aortic valve model M , by comparing the result of
the independent detection in 3D C-arm CT image and our model-based fusion approach.
Quantitative and qualitative results are shown in Figure 3.42.

(a) (b) (c) (d)

Figure 3.42.: Bland-Altman plots for the aortic valve annulus circumference measurement
extracted from the model M with (a) independent detection in 3D C-arm CT
and (b) fusion of pre-op CT and 3D C-arm CT. (c) and (d) are showing short
and long axis views of the model M and the fused pre- and intra-op images
I1 + φ(I2).

3.9. Discussion

In this chapter we proposed several methods for quantification and pre-operative mod-
eling for minimally invasive valve procedures. First we presented a novel personalized
model for quantitative and qualitative evaluation of the complete heart valve apparatus
from multi-phase CT. It is capable to delineate the full anatomy and dynamics needed to
depict a large variation of valve pathologies, especially diseases affecting several valves.
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Its hierarchical approach using state of the art machine learning algorithms in combina-
tion with a constrained Multi-linear shape space enables patient specific model estimation
within three minutes and an accuracy of 1.24 mm. Our experiments showed that the auto-
matic estimation of the valve models are slightly above (1.13 mm for the aortic valve and
0.78 mm for the mitral valve) the inter-user variability. Considering that our detection was
done on 1mm resolution this means that the deviation is around one additional voxel apart
from the variability of the expert annotations. Data sets with low contrast agent, noise in
the data and low imaging quality were the main reasons for the performance gap between
the automatic estimation and the inter-user variability. As in most of our data sets the
contrast agent was more concentrated in the left side of the heart and thus the estimation
accuracy for the pulmonary and tricuspid valve was inferior to the aortic and mitral valve.

Additionally, we proposed an extension of this method for the aortic valve in the context
of pre-operative planning for TAVI. In addition to the parametrization and estimation of
the aortic valve model advanced evaluations necessary for comprehensive planning such
as calcification distribution assessment and tissue characteristics can be extracted from
our volumetric models. Thus, our method has the potential to enable novel clinical ap-
plications to address the two major drawbacks of current TAVI procedures (paravalvular
leakages and stroke) which are correlated with calcium quantity and distribution.

Afterward we proposed an integrated framework for personalized computation of TAVI
deployment. Our approach enables fully automated model extraction from pre-operative
CT data and patient-specific implant deployment simulations. We have demonstrated the
validity our framework to predict post-operative implant geometry on eleven patients un-
dergoing TAVI with pre- and post-operative data.

Finally we propose a novel approach to estimate comprehensive patient specific models
of the aortic valve by model-sensitive fusing of multimodal pre- and intra-operative data.
Fast and robust machine learning techniques are employed during the estimation exploit-
ing redundant and complementary information from the multimodal images. Thereby
high-quality patient-specific models are integrated into the imaging environment of oper-
ating rooms to guide cardiac interventions. Comprehensive quantitative and qualitative
experiments on the aortic valve modeling demonstrate the effectiveness of our approach
with an accuracy of 1.09mm in CT-TEE and 1.73mm in CT-3D C-arm CT.

Future work will continue to focus on the modeling side. One important extension will
be the inclusion of the subvalvular apparatus of the mitral and tricuspid valves. Although
critical in the clinical context, these structures are difficult to distinguish. Thus, patient-
specific parameters must be inferred from statistical models or by fusing additional imag-
ing information. The extension to a volumetric representation for the remaining valves
(MV, PV, TV), which models the tissue thickness is also of high clinical importance. Such
parameters could be estimated within the same discriminative learning framework.
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In the context of minimally invasive procedures, where the defected anatomy is not di-
rectly visible or accessible, guidance using different imaging modalities plays a key role
to ensure an optimal procedural outcome. Most interventional procedures are performed
within Hybrid operating rooms (ORs) where advanced imaging techniques, such as Fluo-
roscopy and TEE Ultrasound are available. Some approaches work solely on the interven-
tional imaging data to provide intra-operative guidance [136, 79, 57, 56] however this task
is extremely challenging because of the limited data quality of the intrerventional images.
Fluoroscopy provides only a projection image and thus there is no depth information, soft
tissue can only be seen with additional contrast injection which complicates the acquisi-
tion protocol. TEE ultrasound enables the visualization of soft tissue but its drawbacks are
a limited field of view (FOV) of the acquired image and the low signal-noise ratio.

Most methods used for interventional guidance however rely on pre-operative data
which is available due to the crucial planning step for interventional procedures. This data
is of high quality (CT, MRI) with a large FOV. As the acquisition procedure is standardized
for CT (including contrasted CT) and MRI, a high-resolution image containing both soft
tissue and bones can be acquired. In addition anatomical models can be extracted from
this image (see chapter 3) and used during guidance. Thus using the pre-operative images
the task of interventional guidance simplifies to aligning pre-opreative images (or derived
anatomy) to the lower quality interventional images. To solve this problem registration
methods can be utilized.

Within the last decade new interventional C-arm devices, such as the Zeego, allow to
acquire a CT-like 3D modality in addition to the standard 2D Fluoroscopy. This new
modality, 3D C-arm CT, has a lower resolution compared to CT and a significantly lower
signal-to-noise ratio. However it simplifies the problem of alignment from a 3D-2D to a
3D-3D problem. If alignment between the pre-operative modality and the intra-operative
3D C-arm CT is achieved both anatomical models and the pre-operative volume informa-
tion can be overlayed on the 2D Flouroscopic image as both are acquired within the same
coordinate system.

In the next sections the basic concept of image registration will be introduced. Fur-
thermore, the components of a state-of-the-art registration framework will be explained
followed by two novel methods to register images based on geometric models rather than
image intensities.
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4.1. Image-based Registration for Intra-Operative Guidance

The term "‘registration"’ means the establishment of a common coordinate system for dif-
ferent medical images. In our case the alignment of high-quality pre-operative data with
limited intra-operative data can be used to guide minimally invasive procedures. Detailed
introductions in the field of medical image registration can be found in [74] and in [11].
Another general review can be found in [125, 92, 151, 126, 137], where a categorization
of the existing registration methods is provided. A more recent review of specific 2D-3D
registration methods was presented in [128].

Depending on which information is used to align the images current registration meth-
ods can be separated into Image-based and Feature-based methods.

Image-based methods use the image intensities directly to compute the registration.
Sometimes the images are automatically pre-processed before the registration process starts.
In most cases these methods perform the registration automatically except for the pre-
alignment which can be manual. In some other cases manual masking of the area of inter-
est is important as a prerequisite for registration to avoid the sensitivity to local optima.

Feature based methods usually do not work on the image intensity directly. They rather
extract indirect information before the registration process starts. This information could
be points or surfaces. By aligning these points or surfaces the two modalities can be
brought into correspondence [5]. The points and their correspondence can be determined
using markers placed on the patients skin or implanted into the patients. The points can
also be defined by manually marking corresponding anatomical landmarks in all images.
The final alignment, in the case of a rigid alignment, can be determined in a closed-solution
form [182]. In the case that surfaces are extracted (manually or automatically) methods
such as ICP (iterative closest point) [203], the CPD (coherent point drift) [139, 140] or other
more robust variants can be utilized [65, 142]. Many methods extract the points [183] and
surfaces automatically, simplifying the process of alignment for the end-user. Recently
methods utilizing machine learning techniques have been proposed in order to eliminate
the manual interaction during registration [142, 102]. In the next sections we will introduce
the general registration concept and its components which are valid for most volumetric
based registration methods. We will then proceed to introduce our new method to fuse
pre-operative and intra-operative volumetric images [142].

4.1.1. General Formulation

We consider that images are defined as scalar vector functions:

I : Ω→ R (4.1)

Ω symbolizes the domain on which the image I is defined. Based on the location x ∈ Ω

the image intensity at this point is defined as i = I(x). The location x is usually expressed
in a Cartesian coordinate system (in our case three dimensional) and is either measured
in voxel coordinates (or physical units like mm where the spacing of the image is incor-
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Figure 4.1.: Overview of standard iterative registration workflow.

porated). As the image represents a discrete Cartesian grid, the image intensity can be
sampled only in this discrete locations. As registration algorithms need to evaluate the
image at non-discrete locations interpolation is needed (see Figure 4.1). The assumption
that interpolation is implicitly performed when required, allows us to use the definition of
images on a continuous domain Ω.

In the case that two images F andM are given the goal of the registration algorithm
is to find the optimal transformation model ~θ that maps points xM ∈ ΩM from the image
M into the points xF = ~θ(x) ∈ ΩF , such that the underlying anatomy is correctly aligned.
Most of the literature refers to F as the fixed image as its original domain is used and
M as the moving image because its location is evaluated depending on the transformation
model ~θ.

A registration algorithms tries to estimate the optimal parameters of the transformation
~θ in order to minimize a similarity measure S.

~θ∗ = arg max
~θ
S(F , ~θ(M)) (4.2)

where ~θ(M) symbolizes the transformation of the whole imageM. The similarity mea-
sure S assesses the quality of alignment with regard to the underlying anatomy from the
image F and the transformed image M. Due to the fact that the similarity measure is
defined on the irregular distribution of the underlying intensity values of the images no
elegant closed form solution can be derived to solve the optimization problem. Therefore,
the registration is usually an iterative process, as outlined in Figure 4.1.

4.1.2. Transformation Models ~θ

A variety of transformation models can be used in order to transform the moving image
M and bring it in alignment with the fixed image F . Figure 4.2 illustrates common trans-
formation types.

As our registration method will be utilized in the three dimensional space we start with
the notion of homogenous coordinates. It is a 3D-vector extended with a fourth coordinate
that is initially set to 1. In particular, it allows for the compact representation of all global
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3D transformations as a 4 × 4 matrix. Its full strength is deployed when it comes to pro-
jective transformations, see [170] or [76] for details. Homogenous coordinates are also the
standard notation in the area of computer graphics [48].

Rigid

A rigid transformation ~θRigid applies a translation and a rotation to each location on the
moving imageM. This type of transformation preserves all geometric properties such as
length, volume, parallelity etc. It has six degrees of freedom (DOF), three for translation
and three for rotation.

~θ(x) = R x+ t (4.3)

where t = (tx, ty, tz)
T ∈ R3 is a vector describing the translation and R is a 3 × 3 or-

thonormal matrix, where its transposed equals the inverse R−1 = RT . If homogenous
coordinates are used, a 4 × 4 matrix can be composed containing both the translation T

and rotational R parameters.

~θrigid =

Ç
R t

0 1

å
=

à
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

í
(4.4)

The three column vectors Ö
r11
r21
r31

è
,

Ö
r12
r22
r32

è
,

Ö
r13
r23
r33

è
(4.5)

are basis vectors of the rotated coordinate system, all have unit length and are orthogo-
nal to each other.

Parametrization of R using Euler Angles

An intuitive and common representation of 3D rotations are Euler angles, where the ro-
tation R is decomposed into three parts: rotation around the x-axis (φx), y-axis (φy) and
z-axis (φz).

Given a set of rotation angles φx, φy, φz the final rotation matrix R can be composed as
follows:

R = Rx(φx)×Ry(φy)×Rz(φz) (4.6)

where Rx(φx), Ry(φy) and Rz(φz) are defined as follows
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Figure 4.2.: Overview of common transformation models applied to a 2D object.

Rx =

Ñ
1 0 0

0 cos(φx) sin(φx)

0 − sin(φx) cos(φx)

é
Ry =

Ñ
cos(φy) 0 sin(φy)

0 1 0

− sin(φy) 0 cos(φy)

é
Rz =

Ñ
cos(φz) − sin(φz) 0

sin(φz) cos(φz) 0

0 0 1

é
If a rotation matrix R is given the Euler angles can be computed as follows

φx = tan−1
Å
r23
r33

ã
φy = tan−1 (r31)

φz = tan−1
Å
r12
r11

ã
where rij describes the i-th row and j-th column in the rotation matrix R. Another more

robust way to compute the angles is the following:

φz = tan−1R

Å
r12
r11

ã
φx = tan−1R

Ç
r31 sin(φz)− r32 cos(φz)

r22 cos(φz)− r21 sin(φz)

å
φy = tan−1R

Ç
−r13

r11 cos(φz)− r12 sin(φz)

å
Hereby only one type of inverse trigonometric operations (tan−1) is used and the first

computed Euler angle φz is used to derive the other two.

Parametrization ofR using Quaternion

Quaternions, also known as versors, are a common technique to represent orientations in
3D space. It has some advantages in comparison to Euler angles and rotational matrices.By
using quaternions the gimbal lock, which defines a degenerated state of the rotation where

89



4. Intra-operative guidance

two of the three axes are driven into parallel configuration, can be avoided. In contrast
to rotation matrices they provide better numerical stability. Thus a rigid transformation
can be represented as a vector [tx, ty, tz, qx, qy, qz, qw]T , combining the three translational
parameters and the four elements of the quaternion, describing a rotation in 3D space. A
quaternion q is defined as follows

q = iqx + jqy + kqz + q2

where the values of i, j and k have the following properties

i2 = −1, j2 = −1, k2 = −1

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j

Arithmetric operations associated with quaternions are similar to arithmetric operations
associated with complex numbers [84, 2]. Quaternions have to be normalized:

q2x + q2y + q2z + q2w = 1

q,x =
qx
|Q|

q,y =
qy
|Q|

q,z =
qz
|Q|

q,w =
qw
|Q|

|Q| =
»
q2x + q2y + q2z + q2w

If the quaternion is normalized the quaternion can been seen as a rotation around a specific
axis. Hereby the vector (q,x, q

,
y, q

,
z) represents the axis of rotation and φ represents the angle,

calculated as φ = 2 cos−1(q,w).

4.1.3. Affine Transformation

Affine transformation contain in addition to a rigid transformation shearing and non-
uniform scaling.

A(x) = HSRx+ t (4.7)

while H and S stand for

H =

Ö
1 hxy hxz
0 1 hyz
0 0 1

è
S =

Ö
sx 0 0

0 sy 0

0 0 sz

è
(4.8)

H represents a shearing matrix with three components: hxy, hyz and hxz . hxy defines the
shearing factor for the x − y dimension, hyz in the y − z dimension and hxz in the x − z
dimension. Thus the final affine transformation in 3D has 12 parameters (translation, rota-
tion, scaling and shearing). The final representation in the homogeneous form is defined
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as

Q = HSR; Aaffine =

Ç
Q t

0 1

å
(4.9)

4.1.4. Projective Transformation

In 3D, a projective transformation would map points from the 3D space to a 2D location.
The main application in the medical imaging domain of this transformation is 2D X-ray
Fluoroscopy, acquired during an interventional procedure. In most cases a mapping from
a pre-operative 3D modality (CT, MRI etc.) is defined through a 4 × 4 projection matrix.
As all entries are unconstrained in the worst case all 15 parameters need to be be estimated
[76], as the matrix is defined up to scale. In most clinical application the problem can be
simplified due to the fact that all X-ray machines are calibrated and its parameters can be
retrieved.

4.1.5. Non-linear transformations

In contrast to the previously mentioned global transformations (rigid, affine and projec-
tive) non-linear or deformable transformation allow for modeling local transformations.
Such models can then be used e.g. to compensate for breathing motion, cardiac motion etc.
The field of non-linear registration has become an important research topic in the recent
decade [135].

In the case of deformable registration an transformation model is defined on a set of
control point, usually placed on a grid. The interpolation of the aligned moving image
to the fixed image is defined using basis functions such as Thin-Plate splines, B-Splines,
Radial basis functions etc. The amount of parameters is much larger than with the regular,
global transformation models. In most cases a gradient based optimization approach is
used to estimate the parameters.

In many non-linear registration methods a dense-field parametrization is utilized whereby
a deformation field ~u is used as a parametrization to map every voxel in the moving image
to the fixed image.

~θ(M(x)) = φ(M(x+ ~u(x)) u : Ω→ Ω (4.10)

In most instances an energy minimization formulation can be derived from the previous
formula:

S
Ä
F , ~θ(M) + αR(~u)

ä
(4.11)

Hereby S depicts the dissimilarity between the fixed image F and the transformed
moving imageM. R depicts the regularization factor on the deformation field ~u. It should
penalize unlikely physical deformations of the tissue.
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4.1.6. Similarity Measures

Usually there is no closed form solution in order to optimize the parameters of the transfor-
mation model [74]. Thus in most scenarios an iterative approach is used. In each iteration
a similarity measure S is used to compare the two images in respect with the current pa-
rameters ~θ of the transformation model. An ideal similarity measure should have its global
maximum when the fixed F and moving imageM are best aligned. In addition it should
smoothly approach the maximum while optimizing the transformation parameters and
should be insensitive to different types of noises and robust against smaller outliers.

In respect to the similarity measure S the general registration formulation can be refor-
mulated as

~θ∗ = arg max
~θ
S ({fy,my}) fy = F(~xy);my =M(~θ(~xy)) (4.12)

where fy defines the intensity in the fixed image F and mk the intensity in the moving
imageM at the transformed location ~θ(~xy).

The maximization of the similarity measure can also been seen as the minimization of an
error metric between the alignment of the two images which can usually be expressed as
the inverse or negative form of the similarity measure. Which specific similarity measure
should be used depends largely on the problem set and the underlying images which need
to be aligned. In the following section the most popular used similarity measures will be
explained.

Sum of Squared Differences (SSD)

The sum of squared differences (Sum of squared differences (SSD)) is an error measure-
ment which sums the squared differences of the image intensities between the two im-
ages. The error is minimal if the images are perfectly aligned and having similar intensi-
ties. Thus only modalities where the intensities between anatomies correspond in the two
images can be used in conjunction with SSD. In most cases this applies to images from the
same same modality [75] or similar modalities, such as CT and 3D C-arm CT [121, 113, 202].

It can be formulated as follows

SSD =
1

N

N∑
y=1

(fy −my)
2 (4.13)

where N represents the number of points in the region (or the whole image) where the
SSD error metric is evaluated. Even within the same modalities outliers can easily let the
method fail, such as different acquisition protocols (MRI) or different contrast phases and
types (CT). In addition the SSD is very sensitive to any type of noise except stationary
Gaussian noise.

A common modification to reduce the sensitivity to outliers is to us the Sum of Absolute
Differences (Sum of absolute differences (SAD)) instead of SSD:
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SAD =
1

N

N∑
y=1

|fy −my| (4.14)

The disadvantage of SAD is the non-differentiability at zero which makes it harder to com-
pute derivatives.

Normalized Cross-Correlation (NCC)

Normalized Cross-Correlation (Normalized Cross Correlation (NCC)) is a very common
technique used in signal processing to assess the similarity between two signals (wave-
forms). It computes the amount of linear correlation between the two signals by comput-
ing the product of their normalized values (mean is subtracted from the signal), divided
by their standard deviation.

NCC =
1

σiσj

N∑
y=1

Ä
fy − f

ä
(my −m) (4.15)

with f =
1

N

N∑
y=1

fy σf =

Ã
1

N

N∑
y=1

Ä
fy − f

ä2
(4.16)

with m =
1

N

N∑
y=1

jy σm =

Ã
1

N

N∑
y=1

(my −m)2 (4.17)

The arithmetic mean is used to compute f and m. Thus the final formula for the NCC is
defined as

NCC =

∑N
y=1

Ä
fy − f

ä
(my −m)Å√

1
N

∑N
y=1

Ä
fy − f

ä2ãÅ√ 1
N

∑N
y=1 (my −m)2

ã (4.18)

Normalized cross correlation has be widely used in mono-modal registration tasks [8,
21, 149, 81, 161]. The limitation is that in the common form a linear relationship between
the intensities of the two images is assumed.

Mutual Information

The mutual information metric exploits the property that if two images are correctly aligned
the amount of information in order to describe their representation is minimal.

MI =
∑
f

∑
m

PFM(f,m) log
PFM(f,m)

PF (f)PM(m)
(4.19)

whereby PFM symbolizes the joint probability distribution of the F andM image, and
PF and PM the marginal probability distribution of F and M respectively. Shannon
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entropy is a common method used as an indication for the amount of information needed
to represent an image:

H(F) = −
∑
i

PF (f) logPF (f) (4.20)

If the image contains only a constant value H(F) would be zero since p log p equals 0. The
maximum would be obtained if all the voxel have different values and thus the maximum
amount of randomness.

In the case of two signals (images) a joint representation can be derived using intensity
tuples from both images {fy,my} and their joint probability. The joint entropy of F and
M is

H(F ,M) = −
∑
f

∑
m

PFM(f,m) logPFM(f,m) (4.21)

In most cases the individual joint probability distributions are estimated using histograms.
Thus the final Mutual Information (Mutual Information (MI)) metric is computed as fol-
lows:

MI = H(F) +H(M)−H(F ,M) (4.22)

The value of the Mutual information is in the range [0 . . . Emax], where Emax is the max-
imum entropy of either of the two images. Normalizing the values [0 . . . 1] can be done
using the following formula:

MInormalized =
2MI

H(F) +H(M)
= 2− 2MI

H(F) +H(M)
(4.23)

Mutual information is well suited for multi-modal registration. Especially in the appli-
cation area of registering MRI and CT many commercially solutions are available [132, 123,
98].

4.1.7. Optimization Methods

The goal of the optimization of the optimization algorithm is to find the best parameter
vector of the transformation model ~θ that minimizes the value of a certain cost function F :

~θ∗ = arg min
~θ
F (~θ) (4.24)

As mentioned before usually no closed solution is available to determine the optimal trans-
formation parameters ~θ and a specific iterative scheme is applied to search within the pa-
rameter space. It terminates based on a specific abortion criteria, e.g. if the cost function
does not change over a specific number of iterations or falls below a certain limit. For im-
age registration, as the computation of the similarity measure is expensive (as it has to be
evaluated on the whole image), it is important to keep the number of iterations low and
enable fast convergence. In addition as the similarity measure depends on the image con-
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tent, it is usually non-linear. In the following we will describe three common subgroups
of optimization methods used for registration: 1) Non-gradient based, 2) Gradient based
and 3) Quasi-global methods.

4.1.8. Approximate optimization strategies

Hill Climbing is one of the simplest optimization methods. Based on the current estimate
of the parameters the cost function is evaluated for each parameter in a local neighbor-
hood. The best estimate is then chosen as the next parameter during the next iteration.
Thus the number of evaluations that have to be evaluated is 2N , where N is the number
of parameters (for a rigid transformation in 3D N would be 6). The algorithm terminates
if no better estimate can be obtained from the neighbors of the current parameter estimate.
In addition it is important to select an appropriate parameter scaling, such that the effect
of individual parameters on the cost function are in the same order of magnitude. Several
variants of this methods have been successfully applied for the image registration problem
[199, 174, 141].

Simplex Method is a simple and popular algorithm in linear programming [152]. In a 2
dimensional parameter space the simplex starts with 3 evaluations of the system response
(of the cost function) obtained with 3 different parameter settings. These 3 observations
correspond to the vertices of a triangle constituting the 1st simplex. In the 3-dimensional
space 4 initial observations are required defining a tetrahedral body. From the evaluation
of the response of each observation the position of next point to be evaluated ( parameter
values within next iteration step) is indicated by either reflection, expansion, or contraction
operations.

Powell algorithm starts at a given position in the parameter space, and minimizes the
cost function successively along certain directions. Therefore the problem is split up in
two parts: Finding the best directions in n-dimensional space, and doing efficient line
minimization on a new cost function with only one parameter.

4.1.9. Gradient based optimization strategies

If the gradient vector of F is available, it can be used as base for determining the next
steps, as done in the Gradient Descent or Conjugate Gradient methods. Based on a current
estimate of the parameters ~θk the update can be calculated as follows:

~θk+1 = λ
∂F (~θk)

~θk
(4.25)

Hereby λ is defining the learning rate. Many improvements have been proposed, espe-
cially with the motive to achieve faster convergence. Such methods are called Quasi-
Newton approaches where an estimate of the Hessian matrix of F is computed in order to
determine the update of ~θ.
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4.1.10. Quasi-global methods

Both non-gradient and gradient approaches have the tendency to be trapped in local min-
ima. In order to overcome this limitation Quasi-global approaches repeatedly start the op-
timization from different starting points in the parameter space, eventually choosing the
best result as the optimum parameters ~θ∗. In order to avoid local optima some methods
add noise to the cost function value, either purposely, or as byproduct of an randomized
cost function approximation. This results in a stochastic optimization approach.

4.2. Model-Based Registration using the Trachea Bifurcation
Model

In this chapter we introduce a novel method to estimate the transformation parameters ~θ
between the fixed image F andM by using geometric models. If the geometric models,
which either contain the anatomy of interest or anatomies which correlate with it, can
be robustly estimated from both images a transformation ~θ can be derived based on the
models and thus the two modalities can be brought into correspondence. As our goal is to
align a pre-operative CT and the interventional 3D C-arm CT for cardiovascular minimally
invasive procedures, we selected the trachea bifurcation model as our anchor anatomy.
The trachea bifurcation model is in close proximity to the heart, is seen on both modalities
without adding contrast agent and its location correlates well with the location of the heart
[29, 121, 189]. Thus based on the estimated trachea bifurcation models the modalities can
be aligned.

As we use the trachea bifurcation model as a surrogate anatomy to map the aortic valve
from the pre-operative CT to the intra-operative 3D C-arm CT, the modeling and auto-
mated estimation of the anatomy is a critical part of our framework.

4.2.1. Trachea Modeling and Estimation

The global position of the trachea bifurcation model is parametrized with a similarity
transformation in the three-dimensional Cartesian space, illustrated as a bounding box
in Fig. 4.3.

Θ = {(cx, cy, cz), (φx, φy, φz), (sx, sy, sz)} (4.26)

where (cx, cy, cz), (φx, φy, φz), (sx, sy, sz) are representing the position, orientation (as Euler
angles) and scale parameters. The parameters are estimated within the marginal space
framework. A probabilistic boosting tree classifier is trained based on Haar features for
position and steerable features for orientation and scale, as described in [205].

The next modeling layer consists of four landmarks which are defining key anatomical
properties of the trachea bifurcation model: The trachea airway bifurcation point tB , the
trachea lower-left airway branching point tLL, the trachea lower-right airway branching
point tLR and the trachea upper center airway point tT (see Figure 4.3). Using the prob-
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Figure 4.3.: The trachea bifurcation model. Left: Model showing the bounding box Θ,
anatomical landmarks: trachea airway bifurcation point tB , trachea lower-left
airway branching point tLL, trachea lower-right airway branching point tLR,
trachea upper center airway point tT and surfaces: trachea upper center airway
model TT , trachea lower-left airway model TLL and trachea lower-right TLR
airway model, trachea bifurcation face TF and back TB . Trachea bifurcation
model shown in CT and 3D C-arm CT (center). The right image is showing
the trachea bifurcation model with weights assigned to each vertex for pre-
operative to intra-operative mapping A: white - low significance, red - high
significance.

abilistic boosting tree classifier (PBT) and Haar features the location of each landmark is
learned independently.

The full geometry of the trachea bifurcation is modeled using five surface meshes con-
structed along rectangular grids of vertices: The underlying grid of each surface mesh is
spanned along two physiologically aligned parametric directions, ~u and ~v. The trachea
upper center airway model TT , the trachea lower-left airway model TLL and the trachea
lower-right TLR airway model are represented as a tubular grid with circumferential ~u and
ascending ~v directions including 36×20 vertices. The trachea bifurcation face TF and back
TB model are represented as paraboloids on a grid of 18 × 18 vertices. Every corner ver-
tex of the face (TF ) and back model (TB) has its corresponding vertex on the upper TT ,
lower-left TLL and lower-right TLR surface model. The shape model is estimated using the
non-rigid Marginal Space Learning framework. Hereby the search space is defined by the
first three modes (c1, c2, c3) computed from the statistical shape model. For each mode a
boosting classifier is trained using steerable features to distinguish correct hypothesis [205]
(see 3.2.3).

4.2.2. Fusion

Our goal is to estimate the rigid transformation ~θ consisting of a translation ~t~θ)and a rota-
tion ~φ~θ between the pre-operative CT F to the intra-operative 3D C-arm CTM:

~θ = (~φ~θ,
~t~θ) ; F = ~θ(M) (4.27)

Based on the detected trachea bifurcation meshes T1 and T2 a least squares solution is em-
ployed to estimate ~t~θ and ~φ~θ [182]. In order to minimize the mapping error in regard to the
anatomy of interest, the aortic valve, we estimate a weighting factor for each mesh point.
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Based on the aortic valve hinges (3 points) and the aortic valve commissures (3 points) a
ground-truth mapping ~θGT is estimated. Every intra-operative model of the trachea bifur-
cation T2 is transformed to the pre-operative using: T21 = ~θGT T2 and the variance of the
point-wise distance |T21 − T1| is computed. The weighting factor w(i) for each mesh point
is computed as:

w(i) = k
1

M

M∑
j=1

|T21(j, i)− T1(j, i)| i = 1 . . . N (4.28)

where N is the number of mesh points on the trachea bifurcation surface, M the number
of pair-wise mesh annotations and k a normalizing factor. The weights w are later used to
solve the weighted least squares mapping:

e2(~φ~θ,
~t~θ) =

1

N

N∑
i=1

∣∣∣∣∣∣w(i)−1 (T2(i)− T1(j, i))
∣∣∣∣∣∣2 (4.29)

The solution to this problem can be found in [182]. Fig. 4.3 shows the mean trachea bifur-
cation model with weights w assigned to each vertex.

4.2.3. Experimental Results

In order to validate the mapping ~θ from pre-operative CT to the intra-operative 3D C-
arm CT we used 28 patient pairs (56 volumes) for our quantitative experiments. The aortic
valve was annotated in the contrasted 3D C-arm CT. As we used contrasted intra-operative
data the aortic valve was visible and could be delineated manually. Additional 20 test
data sets, without pairs of pre-operative and intra-operative images were used to evaluate
the estimation performance of the trachea bifurcation model in both the pre-operative CT
and intra-operative 3D C-arm CT. All ground-truth annotations were obtained by experts
manually placing bounding boxes, anatomical landmarks in the pre- and intra-operative
images and finally delineating the surface of the trachea bifurcation and the aortic valve
model.

Model estimation

As our weighted mapping relies on the automatic detection of the trachea bifurcation
model T we first compare the estimation results on CT and 3D C-arm CT independently.
Each detector was trained based on the 28 training data and evaluated on 10 unseen vol-
umes. The accuracy on training and test data is shown in Table 4.1 and 4.2. We compared
the estimation of the bounding box Θ, the 4 bifurcation landmarks (tB , tLL, tLR, tT ) and
the combined mesh-to-mesh error from all 5 surfaces (TT , TLL, TLR, TF , TB).
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Table 4.1.: System precision for the estimation of the trachea bifurcation bounding box Θ
in CT and 3D C-arm CT.

Training Testing
CT C-arm CT CT C-arm CT

Center [mm] 1.90± 0.69 1.98± 0.80 3.20± 1.58 3.12± 2.46

Angle [deg] 3.21± 1.44 3.07± 1.26 8.08± 10.26 9.26± 7.90

Scale [mm] 3.41± 1.70 2.73± 1.36 2.65± 0.86 3.09± 0.73

Table 4.2.: System precision for the estimation of trachea bifurcation landmarks (tB , tLL,
tLR, tT ) and the surface (T = TT ∪TLL∪TLR∪TF ∪TB) in CT and 3D C-arm CT.

Training Testing
CT C-arm CT CT C-arm CT

tB [mm] 1.96± 0.63 1.86± 0.80 2.68± 1.08 3.30± 2.22

tLL [mm] 3.54± 1.47 3.62± 1.29 4.70± 1.39 4.14± 2.78

tLR [mm] 3.74± 2.19 3.70± 2.06 5.16± 2.95 5.52± 2.72

tT [mm] 3.22± 1.40 2.47± 1.21 4.30± 1.69 4.30± 2.01

T [mm] 0.82± 0.11 1.18± 0.52 0.87± 0.14 1.25± 0.62

Model fusion

In order to validate the accuracy of our mapping from the pre-operative CT to the intra-
operative 3D C-arm CT the aortic valve was detected in CT (see 3) and mapped to the intra-
operative modality using our weighted mapping function A. The estimation errors could
be assessed in Table 4.3. Figure 4.5 shows examples of fused volumes with the mapped
aortic valve model detected in pre-operative CT and mapped to the non-contrasted 3D
C-arm CT.

Table 4.3.: System precision for the estimation of aortic valve in 3D C-arm CT using the
mapping estimated from the detected surrogate trachea bifurcation models T1
and T2 and the weighted transform A.

Mean STD Median

AV Surface [mm] 7.57 3.22 8.22

Angulation [deg] 9.08 7.31 6.20

4.3. Model-Based Sparse Matching Fusion

In this section we propose an updated registration algorithm capable to register high-
quality pre-op data and low-quality intra-op data in the context of minimally invasive car-
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4. Intra-operative guidance

Figure 4.4.: Simplified workflow overview of the model based fusion approach.

Figure 4.5.: Example of the aligned pre-operative CT image I1 (red channel) with the intra-
operative 3D C-arm CT I2 (green channel) and the mapped aortic valve model.

diac procedures. Our fully-automatic method registers pre-operative CT (moving image
M) with intra-operative C-arm CT volumes (fixed image F), such that a target anatomy,
e.g. the aortic valve (AV), is aligned. The process is based on a personalized anchor
anatomical model AM of the pericardium extracted fromM, and a probability map F̃ de-
rived fromF , see Fig. 4.6. A set of optimal transformation parameters ~θ∗ that alignMwith
F is sought. The parameter vector ~θ = (~φ~θ,

~t~θ)
> represents a rigid transformation in 3D

space with ~φ~θ = (φx, φy, φz) denoting the Euler angles, and ~t~θ = (tx, ty, tz) the translation
along the axes of the coordinate system (x, y and z).
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4.3. Model-Based Sparse Matching Fusion

4.3.1. Pericardium Segmentation

Recently, Zheng et al. [207] presented an efficient and robust method for automatic heart
isolation in CT scans [207] by segmenting the pericardium, a double-layered membrane
surrounding the heart. Their technique consists of three main steps. First, the pose and
scale of the heart is estimated using marginal space learning (MSL) [205]. Second, a mean
shape generated from a large number of annotated pericardium meshes is aligned to the
estimated pose and scale. In a third step, the parameters are refined within the framework
of statistical shape models (SSM) [78] using a boundary detector based on the probabilistic
boosting tree (PBT) [179], followed by additional postprocessing. We use this method to
segment the patient-specific anchor anatomy AM (pericardium mesh) in M. Figure 4.7
shows intersections of a mesh extracted from a CT scan. The mesh is a closed triangulated
surface consisting of 514 vertices and 1024 triangles. Since AM is independent from intra-
operative information, the model segmentation can be performed prior to the intervention.
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Figure 4.6.: Fusion workflow overview.

4.3.2. Probability Map Extraction

The second data structure is a posterior probability map F̃ = p(AF | F) created from
F by evaluating a discriminative classifier on each voxel. We use a PBT classifier that
was trained to robustly delineate pericardium boundary regions AF in C-arm CT images
utilizing 3D Haar-like features [190] to ensure robustness and computational efficiency. In
collaboration with medical experts, we created a database DB = {(Vi,Pi) | i = 1 . . . nDB} of
ground-truth pericardium meshesPi on a set of nDB = 393 interventionally acquired C-arm
CT volumes Vi. For training, positive samples were generated with regard to the position
of the voxels corresponding to the vertices in the ground-truth annotations. The negative
samples for each tuple in the database (Vi,Pi) ∈ DB are based on randomly selected voxels
~x ∈ Vi, where the distance of ~x to all points in Pi exceeds a certain threshold. Figure 4.8
shows an exemplary probability map overlaid on axial volume slices.
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4. Intra-operative guidance

Figure 4.7.: Slices of a volumetric CT scan of the human torso (M) overlaid by the auto-
matically segmented pericardium mesh AM, the intersection of AM with the
plane corresponding to the visualized slice is shown in red color. Lower right:
3D rendered CT volume with 3D anatomical overlay (AM).

4.3.3. Initialization Estimation

One of the major drawbacks in numerical optimization is the need for a reliable initial
estimate, i.e. a point in the area of attraction of the global optimum, since without, the
method is prone to converge into a local optimum. In order to find such a stable initial-
ization ~θ0 = (~φ~θ0 ,

~t~θ0)>, our method recovers the offset ~t~θ0 betweenM and F . We neglect

the rotational error (~φ~θ0 = ~0), since it is rather small between the CT and the C-arm CT
scan due to the acquisition protocols being similar as the patients adopt almost identical
positions (lying on their back on the table) for both scans.
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4.3. Model-Based Sparse Matching Fusion

Figure 4.8.: Slices of the original C-arm CT volume (F) overlaid by the PBT-based proba-
bility map (thresholded), red color indicates high probability, blue colored and
transparent regions are rather unlikely to contain the pericardium boundary.
Lower right: Tilted frontal 3D rendering of the probability map.

Our solution is based on a concept from computer vision known as object localization,
which we formulate as a classification problem. The object is a single point, the center of
the pericardium in the C-arm CT scan, and we aim at locating its position. Therefore, we
trained a PBT classifier with Haar-features. In the detection phase, we evaluate the classi-
fier on each voxel and choose the voxel with the maximum probability. Robust detections
were achieved by following the idea of Auto-context [180], where a classifier is trained on
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4. Intra-operative guidance

the output of another classifier. The probabilistic information from F̃ is utilized as the in-
put for training and detection, instead of the intensities in F directly, since the probability
maps look similar for both contrasted and non-contrasted images, because the classifier for
F̃ was trained on both types of volumes. This means that the framework is not confused
by large magnitudes in intensity gradients, which appear especially in contrasted images
at, e.g., the boundaries of the left ventricle or the aorta. Thus, the method can be used with
or without contrast agent injected, constituting a major benefit of our work.

For each probability map, a positive training sample was generated for the voxel in
F̃ that is closest to the center of the corresponding annotation P ∈ DB (Sect. 4.3.2), result-
ing in nDB representatives of the positive class. Negative samples correspond to randomly
distributed voxels exceeding a certain distance threshold to the true center.

To summarize, the input to the object localizer is the probability map F̃ extracted from
F , and the output is a pericardium center hypothesis, i.e. the estimated position of the
pericardium center in F , say ~cAF . Let ~cAM be the center of AM. ~θ0 is then calculated as

~θ0 = (~φ~θ0 ,−~cAM + ~cAF )> . (4.30)

4.3.4. Optimization Strategy

Given a pericardium mesh AM, a probability map F̃ and a starting point ~θ0, the goal is to
refine ~θ to yield an optimal rigid transformation ~θ∗, such that the anchor anatomy (peri-
cardium), and thus also the target anatomy (aortic valve), is aligned in both images. This
process is incorporated into a numerical quasi-Newton minimization framework utilizing
the update rule of Broyden, Fletcher, Goldfarb and Shanno (BFGS) [116] for improved con-
vergence behavior and efficiency. We utilize the concept of multi-resolution optimization
by optimizing in a coarse-to-fine manner on various granularity levels of F̃ .

Objective Function

Our method iteratively refines a transformation ~θ, which eventually aligns the pericardium
in both images, and thus the aortic valve. The optimization problem is defined as

~θ∗ = argmin
~θ

f(~θ | AM, F̃) . (4.31)

The objective function f depends on the mesh AM and the probability map F̃ :

f(~θ | AM, F̃) =

∑
~p∈AM J(~θ(~p), F̃) · ψ(~θ(~p), F̃)∑

~p∈AM J(~θ(~p), F̃)
, (4.32)

where ~p denotes a vertex in AM and ~p′ = ~θ(~p) is that vertex transformed w.r.t. ~θ. The indi-
cator function J(~p′, F̃) evaluates to 1, if ~p′ is inside the physical boundaries of the volume
F̃ , otherwise it returns 0. ψ(~p′, F̃) returns a value that is inversely proportional to the
probabilistic prediction at the voxel ~x ∈ F̃ where ~p′ is located.
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4.3. Model-Based Sparse Matching Fusion

Gradient Computation

In steepest-descent based minimization, the gradient∇f is exploited to obtain the descent
direction in each iteration. Furthermore, the BFGS method relies on the gradient in order
to estimate an approximation of the inverse of the Hessian. Unfortunately, f is highly
complex and therefore does not allow for analytical derivations. Hence, we approximate
the gradient ∇̃f ≈ ∇f(~θ | AM, F̃) component-wise using the concept of finite differences:

∇̃fi =
1

‖δ‖
Ä
f(~θ + ~δi | AM, F̃)− f(~θ | AM, F̃)

ä
, (4.33)

where ∇̃fi denotes the ith component of ∇̃f . ~δi is a 6D offset vector where all components
are zero, except for the ith component ~δii , which is set to a particular step size. Despite
its asymmetric computation scheme, the gradient is sufficiently stable in this application.
For the translational components, ~δii equals half of the resolution of F̃ . This choice asserts
that (4.33) does not evaluate to zero, since a large portion of the points in AM transformed
w.r.t. ~θ will correspond to a different voxel ~x ∈ F̃ than their corresponding points trans-
formed w.r.t. ~θ + ~δi. Regarding the rotational components, we experimentally determined
that a spacing proportional to the resolution of F̃ (e.g. ~δii = 1◦ when resolution is 1 mm)
works properly. Finally, we scale the individual gradient components to equilibrate incon-
sistencies regarding the magnitude of translation and rotation.

While computing the translational gradient components is straightforward, rotation in
3D poses a major problem due to its inherent non-linearity and co-dependencies. We ad-
dress these issues by utilizing a linearization of rotation matrices ~R using a first order
approximation ~R′ as proposed by Mitra et al. [134]. With homogeneous coordinates, rigid
transformation turns into a linear problem and thus can be represented by a matrix-vector
multiplication with a matrix ~M~θ

= (~R~θ
~t~θ ), which concatenates rotation and translation

into one matrix and represents ~θ. Let ~R~θ be the Euler 3D rotation matrix

~R~θ =

á
cosφz −sinφz 0

sinφz cosφz 0

0 0 1

ëá
cosφy 0 sinφy

0 1 0

−sinφy 0 cosφy

ëá
1 0 0

0 cosφx −sinφx

0 sinφx cosφx

ë
. (4.34)

Its first-order approximation is given by

~R′~θ =

á
1 −φz φy

φz 1 −φx

−φy φx 1

ë
≈ ~R~θ . (4.35)

It is important to mention that ~R′~θ ≈
~R~θ only holds under small motion, i.e. when
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‖~φ‖2 → 0. Hence, we cannot use ~R′~θ for large angles without introducing errors. There-
fore, we compute the rotational components of ∇̃ using a composite transformation. First,
a point ~p ∈ AM is transformed w.r.t. the current estimate ~θ using the exact Euler-angle
representation to generate an intermediate point ~p′′. Second, ~p′′ is rotated according to the
minor rotation ~δi to yield ~p′ by making use of the linearization ~R′~θ from (4.35). Thus, we
get

~p′ = ~δi( ~p′′) = ~δi(~θ(~p)) . (4.36)

~p′ constitutes the first argument for the functions J and ψ in (4.32) when computing the
approximate rotational gradient components of ∇̃ using (4.33).

Multiple Resolution Approach

To compensate for potential initial coarse misalignment, we exploit the concept of multi-
resolution optimization. The optimizer’s area of attraction is synthetically augmented by
using low-resolution probability maps at first, since gradient computation as in (4.33) is
based on offset vectors ~δi whose component values are proportional to the resolution of
the volume. First, after convergence of a low-resolution optimizer using a low-resolution
probability map F̃ |coarse, a rough registration ~θ∗|coarse is determined. The next optimiza-
tion step is then performed using a resampled, finer representation of the probability
map F̃ |fine. The optimization w.r.t. F̃ |fine starts at ~θ|coarse and eventually yields ~θ∗|fine.
This process is repeated until a certain target resolution F̃ |finest is reached. The resulting
~θ∗ = ~θ∗|finest then constitutes the multi-resolution-optimal set of parameters. We consider
three different isotropic scales (4, 2, and 1 mm).

Weighted Sampling

Figure 4.9.: Visualization of the prior sampling regions for AM, dark/red colors depict
regions of sparse sampling, while bright/yellow regions are sampled more
densely during the optimization.
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Figure 4.10.: Energy curves of the optimizer, comparing the initial objective function
from (4.32) against the more sophisticated objective function leveraging prior
knowledge by performing a probabilistic sampling of AM from (4.37).

The classifier response (Sect. 4.3.2) is more reliable in some regions of the volumes com-
pared to others. For instance see Fig. 4.8, where the areas close to the left ventricle and right
atrium have high responses, while classification near the spine is noisy and the right ven-
tricle region shows low confidence. Robustness and accuracy of our method (Sect. 4.3.8)
could be improved significantly by incorporating prior knowledge into the optimization
procedure. Therefore, the surface mesh of the anchor anatomy AM is subdivided into small
regions ri ∈ AM with

⋃
i ri = AM and ri ∩ rj = ∅ ∀i, j : i 6= j. Each region ri is assigned a

patient-independent weight wri yielding a weight vector ~w = {wri | ri ∈ AM}. ~w increases
the influence of those regions that are likely to be located within a high confidence area in
F̃ , whereas a region that is noisy or often falsely classified gets penalized. This is achieved
by increasing the sampling rate of the pericardium mesh at regions ri with high weights
wri , while reducing the sampling rate for low wri regions. Gradient magnitude, as well
as the distance to the upper and lower boundary of the pericardium were most useful for
reliability predictions. Based on these observations and DB from Sect. 4.3.2, we computed
values for ~w (cf. Fig. 4.9).

Let g~w be a probabilistic function that returns three-dimensional points on the surface
of a given mesh according to the sampling probabilities defined by ~w. To incorporate the
prior knowledge into our framework, we extend the objective function f from (4.32) and
obtain:
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f(~θ |AM, F̃ , g~w) =

∑
~p∈g~w(AM) J(~θ(~p), F̃)·ψ(~θ(~p), F̃)∑

~p∈g~w(AM) J(~θ(~p), F̃)
. (4.37)

In Fig. 4.10, we compare energy curves for the optimizer with standard sampling against
energy functions of an optimizer that follows (4.37) with prior sampling for one exemplary
dataset. Starting at the estimated optimal point in parameter space, i.e. after registration,
the values for the plots are computed by either translating the pericardium in one direc-
tion (x, y or z) or rotating the pericardium around the vector defined by its center and
one of the coordinate axes and then evaluating the objective function f given the man-
ually misaligned AM and F̃ . Prior sampling significantly reduces noise and allows for
energy functions that are more smooth and provide large areas of attraction (convex re-
gions around the global optimum) with less local minima. For instance see Fig. 4.10(f),
where monotonicity significantly fails at -20 mm in the blue curve, while the red curve
(prior sampling enabled) stays nicely monotonous.

4.3.5. Experimental Results

4.3.6. Dataset and Error Measure

Clinical Dataset

We compiled a set of 95 corresponding clinical CT and C-arm CT volumes, each with
an isotropic resolution of 1 mm. 25 image pairs are native, while 70 were acquired with
contrast agent injected into the aorta. Medical experts annotated the pericardium in each
volume, 43 studies include annotations of the aortic valve (AV). The data is organized in a
database DBclinic = {(Vi, V̆i,Pi, P̆i,Ri, R̆i) | i = 1 . . . 95}. Vi, Pi and Ri denote ith CT volume,
its pericardium and AV annotation, respectively. Analogously, V̆i, P̆i and R̆i denote these
structures for the C-arm CT acquisition.

Mesh-to-Mesh Error

Since our method is based on geometrical models and the clinical dataset includes ground-
truth annotations, quantitative evaluation is possible. Our results are based on a symmet-
ric mesh-to-mesh distance metric ε. Its implementation utilizes the point-to-triangle dis-
tance εp2t(~p,4) between a point ~p and a triangle 4. Let X, Y be two triangulated meshes
with equal amount of vertices. ε is defined as:

ε(X,Y)=
1

2

Ñ
1

‖X‖
∑
~p∈X

min
4∈Y

εp2t(~p,4)+
1

‖Y‖
∑
~p∈Y

min
4∈X

εp2t(~p,4)

é
. (4.38)
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where ~p ∈ X defines a vertex on the triangulated mesh X and ~p ∈ Y a vertex on the
triangulated mesh Y. Note, that (4.38) might underestimate misalignment tangential to
the surface. However, it is a fairly natural measure closely resembling visual assessment
by human experts.

4.3.7. Evaluation on Synthetic Data

In order to evaluate the convergence behavior of the numerical optimization method we
used synthetic data. We utilized the approach described by Mitra [134] of Funnels Of
Convergions (see figure 4.12) . Hereby we first computed a synthetic probability map
F̃synthetic = p(AF | F) based on a pericardium model placed AF in the center of the volume
F . This is achieved by computing a distance map based on the model AF and thresholding
within a certain distance d < n mm. The goal is to achieve high responses within a small
distance around the pericardium surface boundary. We added both Gaussian and salt and
pepper noise to approximate the appearance of the real probability map.

Afterward we rotated the ground-truth pericardium model (around the y-axis) and
translated (along the x-z plane) it to generate different initial positions. Figure 4.11 de-
notes the sampling pattern used to get the initial positions. The rotation angle is sampled
at 10 degree intervals, while the maximum radial translation of the pericardium was se-
lected in 10 mm interval (maximum of 30 mm). Please note that the mean initialization
error using our position detector trained using Auto-Context features is below 10 mm. We
apply our optimization strategy as described in 4.3.4 to align the transformed pericardium
model to the synthetic probability map. Hereby we determine the residual error after the
optimization procedure has completed as the Mesh-to-Mesh metric (4.3.6) between the
ground-truth model and the aligned after the optimization. We determined qualitatively
that a Mesh-to-Mesh error smaller than 5 mm is correlating with a successful outcome.

Finally we construct the Funnel Of Convergence Plots for our method (see figure 4.12).
Regions in black denote convergence to the correct solution. Our algorithm is found to
have a broad, and stable convergence funnel. Initializations within 30 mm and±40 degree
converge to the correct solution.

4.3.8. Evaluation on Clinical Data

Table 4.4.: AAE statistics [mm] ε(~θ∗(AM), P̆) after registration (#Studies=95)
Method Mean Std Median 80% 90% Max Min

Sparse Matching 5.48 1.82 5.22 7.26 7.88 10.40 1.93
Sparse Matching (no Prior Sampling) 7.20 3.79 6.63 8.85 10.36 33.47 2.11

Quasi-global Search 13.06 12.79 5.86 24.38 34.17 57.56 2.33
Quasi-global Search (masked) 13.69 19.82 7.03 16.40 37.56 139.74 2.11
ITK Registration Framework 20.87 25.05 8.56 33.12 44.34 125.92 2.57

ITK Registration Framework (masked) 26.20 25.53 18.26 45.72 59.55 125.92 3.04
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Figure 4.11.: Diagram explaining the funnel convergence plot. Each circle is describing
the convergence behavior of our registration method in respect to a certain
translational and rotational offset in respect to the ground truth. Black area
is symbolizing a small error in respect to the ground truth and white a large
error.

Table 4.5.: TAE statistics [mm] ε(~θ∗(R), R̆) after registration (#Studies=43)
Method Mean Std Median 80% 90% Max Min

Sparse Matching 4.67 1.94 4.22 6.54 7.29 8.83 1.24
Sparse Matching (no Prior Sampling) 6.14 3.54 5.56 8.47 9.44 22.35 1.18

Quasi-global Search 21.76 22.32 8.49 49.05 60.36 77.67 1.43
Quasi-global Search (masked) 13.72 19.73 5.25 18.29 37.50 79.80 1.02
ITK Registration Framework 34.02 42.77 9.54 65.21 95.27 161.12 1.21

ITK Registration Framework (masked) 37.86 36.59 28.32 70.73 80.66 161.12 1.07

We quantitatively evaluated our fusion approach on DBclinic with both, prior sampling
(Sect. 4.3.4) enabled and disabled. The first three rows in Table 4.4 show the anchor
anatomy alignment error (AAE) statistics, i.e. error statistics resulting from a compari-
son of the optimally transformed segmented pericardium ~θ∗(AM) and the ground-truth
annotation in the C-arm CT volume P̆. Table 4.5 shows the target anatomy errors (TAE),
i.e. a comparison of the transformed CT-based aortic valve ~θ∗(R) and its C-arm CT based
annotation R̆. From left to right, the columns contain the name of the analyzed method,
followed by error measurements in mm, starting with the mean error and standard devi-
ation, the 50th (median), 80th and 90th percentiles of the errors, as well as the maximum
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Figure 4.12.: Diagram showing the convergence behavior of our optimization method us-
ing the funnel convergence plot on synthetic data. Black area is symbolizing
a small error in respect to the ground truth and white a large error. Result
shows that we can recover offsets of ±40 degree and 30 mm robustly.

Table 4.6.: AAE statistics (contrasted only) [mm] ε(~θ∗(AM), R̆) after registration
(#Studies=70)

Method Mean Std Median 80% 90%
Sparse Matching 5.33 1.69 5.22 6.58 7.73

Sparse Matching (no Prior Sampling) 7.30 4.21 6.69 8.82 10.92
Sparse Matching (Initialization only) 6.15 2.16 5.67 7.35 9.75

Quasi-global Search 14.66 14.06 6.61 30.42 39.13
Quasi-global Search (masked) 13.49 20.15 6.70 16.40 42.88
ITK Registration Framework 22.59 28.02 8.41 41.48 55.21

ITK Registration Framework (masked) 25.70 24.43 19.26 44.70 59.93

and minimum error. The two most-right columns show the ratio of fail-cases, where we
defined a registration accuracy with an AAE (Table 4.4) or TAE (Table 4.5) greater or equal
than 2 cm as failed, and an adjusted mean, where we excluded the fail-cases.

With weighted sampling incorporated, a mean AAE of 5.48± 1.82 mm measured be-
tween the anchor anatomy (pericardium) is achieved. On the 70 contrasted and the 25
non-contrasted volumes, the AAE is 5.33± 1.69 mm and 5.91± 2.09 mm, respectively. Fur-
thermore, with a mean TAE of 4.67± 1.94 mm, the target anatomy (AV) is aligned prop-
erly. No fail-cases were observed for both anchor and target anatomy. When the patient-
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independent weighting is ignored, the mean errors increase significantly by more than
35% AAE and almost 50% TAE. One reason is that more outliers are generated, which
even leads to a fail-case and has a strong influence on the overall errors. In Fig. 4.15(a-d),
we depict representative qualitative fusion results from various datasets ∈ DBclinic.

4.3.9. Comparison to State-of-the-Art Registration Methods

We quantitatively compared our model-to-image registration to two state-of-the-art image-
to-image registration approaches. One might assume that when rather putting a stronger
focus on the anchor anatomy (pericardium) than using the entire image, the registration
results will improve. Therefore, we implemented an option to mask a region of interest
(ROI) in the pre-operative CT image (denoted as "Name-of-Method (masked)" in the result
tables below). Given such a mask image, the similarity metric only takes into account those
voxels in the CT volume, where the corresponding voxel in the mask is set to enabled. The
mask image is created by (i) automatic segmentation of the pericardium as described in
Sect. 4.3.1, (ii) converting the pericardium mesh into a binary image of the same size, spac-
ing and pose as the CT image, where voxels inside the mesh are set to enabled and all
the other voxels are set to disabled, and (iii) dilating the binary image (increasing the size
of the ROI) utilizing a spherical structuring element with a radius of 5 mm. Step (iii) en-
sures that the entire heart as well as a small area around it is included in the ROI. In our
experiments, this last step led to significant improvements in robustness, since especially
the bordering area between the pericardium and the lungs provides crucial information
that can improve the outcome of the similarity metrics (large gradient magnitudes and
homogeneous regions).

ITK Registration Framework

The first method utilizes the Insight Segmentation and Registration Toolkit (Insight Seg-
mentation and Registration Toolkit (ITK)), an open source medical imaging library [86].
Since intensities in the CT image and the C-arm CT image do not necessarily correlate,
the similarity metric is based on mutual information [130]. We use all voxels in the image
and 50 bins for the histogram as proposed by Mattes et al. [130]. Optimal transformation
parameters ~θ∗ITK were obtained by a multi-resolution optimizer for rigid versor transfor-
mations. The scales for the components of the versor were adjusted according to [86]. We
customized the maximum and minimum step lengths adaptively for each resolution, the
maximum number of iterations was set to 200, and we initialized the procedure by aligning
the centroid of both volumes. Results obtained running this framework on DBclinic are pre-
sented in the last two rows of Table 4.4 (anchor anatomy) and Table 4.5 (target anatomy).
The method fails for approximately 40% of the studies. However, since this framework is
not specifically designed to align the pericardia and no pre-processing was performed, the
large number is understandable. Many of the failures occurred for images with significant
differences in the size of the field of view between the CT and the C-arm CT acquisition.
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The mean error of 20.87 mm yielded by this framework is substantially larger than the er-
ror of our method, with a mean of 5.48 mm on the same datasets. A rigid registration is
computed in 501.9± 427.4 s, i.e. it takes more than eight minutes on average. Please note
that no optimizations w.r.t. runtime were implemented.

To increase the focus on aligning the pericardia, we repeated the experiment using an
image mask derived from the CT pericardium mesh as described above. In fact, for some
images, the alignment could be improved significantly. For instance, for one dataset the
AAE is reduced from 17.23 mm to 3.09 mm when utilizing the mask image. However, the
number of cases where the results get worse due to the masking prevail (sometimes the
AAE increases by an order of magnitude, e.g. from from 3.06 mm to 31.18 mm).

Quasi-global Search

The second method is a quasi-global knowledge-driven registration approach for thoracic-
abdominal CT and C-arm CT images designed for image-guided interventions [202]. It has
been proposed only recently. Given an intra-operative C-arm CT image, in the first step
they create three surrogate 2D images, so-called Anatomy Targeted Projections (ATP). An
ATP is a maximum-intensity-like 2D projection, which focuses on a specific anatomy or tis-
sue type (e.g. bone, soft tissue, etc.). This is achieved by projecting the intensity of the voxel
with the maximum likelihood of belonging to the targeted tissue type along each projec-
tion ray. The use of 2D ATPs instead of the 3D volume can reduce computational costs
significantly and thus allows for a large number of similarity metric evaluations within
a reasonable time frame. The authors chose an adaption of normalized mutual informa-
tion (NMI) as similarity metric. Second, multiple starting points in registration parameters
space are chosen to approximate a global search, motivated by the assumption that most
CT volumes have a larger field of view compared to C-arm CT images. In a third step,
the globally optimal candidate is selected by analyzing similarity values and gradients at
all starting points. Last, a local multi-resolution optimization is performed, yielding an
optimal set of rigid transformation parameters. The authors claim that their method is fast
and robust with low target registration and maximum registration errors on 20 datasets.

Quantitative results (Tables 4.4 and 4.5) show that on average, the AAE of the quasi-
global search is more than twice as large as the AAE of our method, and the TAE increases
from 4.67 mm to 21.76 mm. This indicates that finding a solution to the problem of align-
ing the pericardium in such heterogeneous images (varying field of view, contrasted and
non-contrasted images, etc.) from different modalities is hard and working with image
intensities directly might not be sufficient. However, while our learning-based method
works particularly well for the application described in this section, it is not well suited
for general-purpose registration. In contrast, the quasi-global search is not specialized for
a particular application, it is rather an approach designed for handling various registration
tasks from a larger problem domain. The observations regarding the quasi-global search
when using the pericardium mask are similar as for the ITK registration framework when
using the mask. On the one hand, there are datasets, where the alignment improves sig-
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nificantly (for an example see Fig. 4.15(e)), on the other hand, in many cases performance
decreases. Besides, masking can lead to individual excessive errors as high as 139.74 mm
(see Table 4.4), whereas the maximum error of the standard quasi-global search is below
60 mm. Although a smaller number of fail-cases is observed, the details discussed above
lead to a slightly higher mean AAE of 13.69 mm for the method with pericardium mask-
ing, compared to 13.06 mm without masking. Surprisingly, the TAE (see Table 4.5) in the
43 datasets where annotations of the aortic valve are available decreases from 21.76 mm
without masking to 13.72 mm with masking. This is due to the images in this specific sub-
set working better with pericardium masking (AAE = 11.17± 11.25 mm) compared to the
method without masking (AAE = 16.35± 13.26 mm). Furthermore, on our testing machine
(see Sect. 4.3.11), we measured a mean runtime of 2.484± 1.076 s until a rigid registration
is computed.

4.3.10. Inter-user Variability Study
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Figure 4.13.: Inter-user variability compared to performance of our method. The edges of
the boxes indicate 25th and 75th percentiles of the expert errors (AAE).

Ascribing a rational meaning to quantitative results is challenging. In most cases, the
true performance of a system would not only be measured in absolute terms but rather
relative to the manual performance of experts. Thus, we compared our method to the
individual performances of a group of nuser = 10 technical experts, who work on such
clinical data on a daily basis. The task we assigned to each of the users was to manu-
ally align ndata = 10 pairs of volumes (a subset of DBclinic, see Sect. 4.3.6). We provided
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them with a software tool that allows for adjusting rigid transformation parameters in a
convenient manner and visualizes their progress in real-time.

Let ~θji be the manually estimated transformation parameters of the ith user for the jth

pair of volumes. We compare the fit to the ground-truth C-arm CT annotation P̆j , i.e. we
compute the error ε(P̆j , ~θji(Pj)) between the manually annotated fixed C-arm CT peri-
cardium and the moving CT pericardium transformed w.r.t. the user’s manual transfor-
mation. Results are shown in Fig. 4.13. Our automated method exhibits lower errors than
the median user in 80% of all cases and shows high robustness with no outliers. There
exists only one pair of volumes, where the automatic fusion is inferior to more than 75% of
the users. Moreover, the users’ manual fusion time per data pair ranged from two to five
minutes, while our method takes less than two seconds on average (see Sect. 4.3.11), which
means a speedup of up to 99%. To conclude, with no fail-case and reliable performance,
our fully-automatic approach outperforms manual registration in terms of robustness, ac-
curacy and runtime.

4.3.11. Runtime Performance

Our method is designed to be used interventionally, resulting in a need for low compu-
tational costs associated with the registration. We conducted a runtime analysis on an
off-the-shelf consumer laptop with an Intel® Core™ i7-3720QM CPU @ 2.60 GHz with 4
cores (8 threads) and 8 GB of main memory. Our prototype is implemented in C++ utiliz-
ing OpenMP [27] for efficient parallel programming.

The average runtime for the entire process of estimating an optimal rigid transformation
~θ∗ as illustrated in Fig. 4.6 measured on DBclinic is 1.562± 0.286 seconds. Below, we briefly
discuss the runtime behavior of the four major components of the registration framework.
For a detailed overview see Fig. 4.14.

We observed that the runtime for the automatic model segmentation (Sect. 4.3.1) from
the pre-operative CT volume by Zheng et al. [207] scales linearly with the number of voxels
in the volume, ranging from 0.181 s for a scan consisting of 206×206×103 voxels to 1.70 s
for a volume with 497×497×278 voxels. On average over all CT volumes ∈ DBclinic, the
mean runtime is 0.451± 0.254 s.

The cost for generating a probability map (Sect. 4.3.2) is strongly correlated with the size
and resolution of the C-arm CT volume, since the classifier has to be evaluated on each
voxel. This is done in parallel on the CPU. Please note that this is a task that can be out-
sourced to the graphics processing unit (GPU), potentially resulting in a massive gain in
performance. For a typically sized volume of 240×240×180 mm3, probability map genera-
tion takes approximately 0.81, 1.94, 5.73 or 39.9 seconds for resolutions of 4, 3, 2 and 1 mm,
respectively. In our standard approach, we utilize the 4 mm classifier, i.e. on average, prob-
ability map generation accounts for 0.837± 0.088 seconds of the overall runtime.

The use of statistical object localization to estimate the initialization ~θ0 for the optimizer
(Sect. 4.3.3) plays only a minor role. We measured a maximum runtime of 24 milliseconds.

The last component is the iterative optimization (Sect. 4.3.4) with an average runtime of
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0.258± 0.042 s, which is mainly influenced by the number of objective function evaluations
and by the cost for resampling the probability map (multiple resolutions). The latter needs
to be done twice (4 mm→2 mm and 4 mm→1 mm resolution), consuming approximately
0.141 s. The evaluation of f and the approximate gradient computation ∇̃ is combined in
one function g. Averaged over DBclinic, g was called 144.7± 22.1 times (accumulated over
all granularity levels). Independent of the current resolution, the mean runtime of one call
is 0.81 milliseconds. Thus, the average cost of successive calls to g for one registration is
0.117 s.

Optimization
EE0.258E±E0.042EsPericardium

Segmentation
EE0.451E±E0.254Es

ProbabilityEMap
Extraction
EE0.837E±E0.088Es

Initialization
Estimation
EE0.015E±E0.003Es

Combined
  1.562 ± 0.286 s

Figure 4.14.: Relative / absolute runtime of the four major framework components.

4.4. Extensions

4.4.1. Extensions

In some clinical setting the acquisition protocol of the 3D C-arm CT is hard to achieve as it
requires a spin of 200 degree in a crowded hybrid operating room. Thus a robust fusion al-
gorithm (as seen in the previous section) which can work with limited angle reconstructed
3D C-arm CT is desired. In the next section we propose an extensions of our algorithm to
achieve this goal. We demonstrate how our method can be extended to cope with volumes
which are reconstructed using a 90 degree sweep (instead of a 200 degree).

4.5. Fusion with Limited-angle Tomosynthesis 3D C-arm CT

Prior weights can be used in order to facilitate registration with an intra-operative To-
mosynthesis volume, a volume that was reconstructed using only a constrained, reduced
range of C-arm angulations. Typical protocols for 3D C-arm CT acquisitions require pro-
jection images within an angular range of approximately 180 to 200 degrees. A Tomosyn-
thesis image is generated using a range of only, e.g., 90 degrees, without a change in the
sampling rate. The missing information introduces imaging artifacts in the reconstructed
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image (see Fig. 4.16), but harmful radiation exposure can be significantly reduced. An-
other clinical benefit is the fact that the Tomosynthesis protocol requires less time for the
intra-operative image acquisition and only a partial C-arm sweep.

Given the knowledge about the angles used to reconstruct the Tomosynthesis image, we
infer the regions in the volume that contain artifacts. In the probability map, those regions
are likely to be noisy and thus, the confidence of the individual probabilities is low. There-
fore, we reduce the influence of the points ~p that lie within those regions by adapting their
weight w~p accordingly. In practice, we compared each point in the ground-truth anno-
tations of medical experts in corresponding (same patient) C-arm CT and Tomosynthesis
images. Mesh points exhibiting high variance receive low weights, while points, whose
annotations are similar get higher weights assigned. We show that using our framework
and the adapted prior weights, the alignment of Tomosynthesis images with pre-operative
images is possible and that we achieve similar registration performance as with standard
3D C-arm CT scans.

The major part of our experiments is based on regular C-arm CT images, since currently
we only have access to a very limited number of pairs of corresponding CT and Tomosyn-
thesis volumes. Figure 4.17 depicts two pairs of fused volumes. The images on the left
show the registered CT and the complete 200 degree C-arm CT images. On the right, the
corresponding results using the Tomosynthesis volumes (90 degrees angular acquisition
range), instead of the regular C-arm CT images are shown.

4.6. Discussion

We presented two hybrid algorithms in order to align pre-operative CT and intra-operative
3D C-arm CT data in order to provide guidance to minimally-invasive cardiac procedures.

The first method uses the trachea bifurcation model as the anchor anatomy in order
to align the pre-operative and intra-operative image. Complex acquisition protocols of
contrasted 3D C-arm CT can be avoided as our method relies on the trachea bifurcation
model which is visible in both modalities without adding contrast. Fast and robust ma-
chine learning algorithms are employed to estimate the final model parameters which can
handle noisy intra-operative data. A weighted mapping transform is learned from training
data to minimize the estimation error of the anatomy of interest, the aortic valve.

The second method represents a novel sparse matching approach to fuse the pre-operative
anchor anatomy (in our case the pericardium) to the intra-operative setting. Data and
model uncertainties are learned and exploited during matching. Quantitative and qualita-
tive evaluation demonstrate a fast and accurate mapping of the anchor and target anatomy
(in the case of the TAVI procedure the aortic valve model) to the intra-operative modality.
In direct comparison with a state-of-the-art registration framework and a recently pro-
posed quasi-global, knowledge-driven fusion approach, our method outperforms both
in terms of robustness and accuracy regarding the targeted application. In addition the
pericardium, used as an anchor anatomy, is in closer proximity as the trachea bifurcation
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model (presented as the first method), we achieve more accurate results.
Furthermore, an inter-user variability study with ten users confirms that the accuracy

of our method lies within the confidence interval of the expert group. While computation
times of our method (1.6 s) and the quasi-global approach (2.5 s) are comparable, the ITK
registration framework is significantly slower, typically consuming five to ten minutes per
registration, similar to manual alignment done by experts.

The main limitation of our approach is the need for a large number of training datasets,
such that the classifier is able to create reliable probability maps for C-arm CT images
from a broad spectrum of potential scanners and acquisition protocols. Hence, a C-arm
CT database with manual annotations of the anchor anatomy is necessary, which contains
images acquired with and without contrast agent injected, images from different detectors
(size and resolution) and various fields of view.

Comprehensive patient-specific models can be estimated from high-contrast CT and
fused into the imaging environment of operating rooms to facilitate guidance in minimally-
invasive cardiac surgery, while meeting interventionally necessary constraints such as low
computation time, high accuracy and robustness against noisy data, partially visible mod-
els and imaging artifacts.
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(a) Study A: Contrasted CT and C-arm CT. Blue: mapped aortic valve from CT scan. AAE = 1.93 mm, TAE =
1.24 mm.

(b) Study B: Contrasted CT and C-arm CT. The pericardium segmented from CT is aligned to the C-arm CT.
AAE = 4.07 mm.

(c) Study C: Non-contrasted CT and C-arm CT. Green: ground-truth C-arm CT pericardium annotation, blue:
fused CT pericardium. AAE = 4.94 mm.

(d) Study D: Contrasted CT and non-contrasted C-arm CT. AAE = 6.11 mm.

(e) Study E: Contrasted CT and C-arm CT. Left: Quasi-global search, AAE = 40.17 mm. Right: Quasi-global
search (masked), AAE = 5.24 mm.

Figure 4.15.: (a-d) Representative qualitative results from several automatically registered
datasets. Yellow: intra-operative C-arm CT, gray: aligned high-quality pre-operative
CT overlay, others: anatomical models automatically extracted (from CT scan) or
annotated (based on C-arm CT), mapped into the joint coordinate system. The left
image in the row (d) illustrates that especially in non-contrasted C-arm CT images,
there are uncertainties involved in annotating the pericardium. It is not clear whether
the fused or the annotated pericardium fits better. Non-ideal annotations usually
increase the measured quantitative error. (e) Comparison method (Quasi-global
Search) without and with pericardium masking. In this case, masking improves the
result significantly.
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Figure 4.16.: Top: slices of volume reconstructed using regular 3D C-arm CT protocol (200
degrees) and corresponding probability map, bottom: slices of Tomosynthesis
volume (90 degree C-arm sweep) and corresponding probability map
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Figure 4.17.: Comparison of fusion of CT with C-arm CT (left), and CT with limited-angle
Tomosynthesis images (right). The CT volume is depicted in yellow, the C-
arm or Tomosynthesis image is depicted in grayscale.
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5.1. Summary

The main focus of this thesis was to develop fast, precise and reproducible image analysis
algorithms to assist the two main aspects of current minimally invasive valve procedures:
the pre-operative planning and the intra-operative guidance.

Valvular Heart Disease (VHD) is the most prevalent subgroup of CVD affecting 2.5%
of the global population and requiring yearly over 100,000 surgeries in the United States
alone and is a representative instance for the growing public health problem provoked by
cardiovascular diseases. Heart valve operations are the most expensive and the riskiest
cardiac procedures, with an average cost of $141,120 and 4.9% in-hospital death rate. In
chapter 2.8 we presented the current and upcoming non-invasive imaging modalities and
their invaluable impact on current clinical practice for diagnosis, treatment planning and
interventional guidance. We presented the limitation of the manual evaluation of these
images whereby the complexity and non-reproducibility of the results is commonly ob-
served. We advocated for the usage of advanced image analysis algorithms during the
clinical workflow to circumvent these disadvantage and facilitate fast, precise and repro-
ducible extraction of key measurements from image data in order to aid quantification,
treatment planning and interventional guidance.

In chapter 3 we proposed a novel physiological model of all heart valves to precisely
capture their morphological and dynamical properties. The model consists of three hi-
erarchy layers (first a global motion model, second the anatomical landmark model and
finally the full surface model). The hierarchical parametrization of our model allows for
the usage of efficient parameter estimation techniques. The algorithm used to estimate
these parameters is based on robust and fast machine learning algorithms in combination
with a constrained multi-linear shape space and enables patient specific model estimation
within three minutes and an accuracy of 1.24 mm from a multi-phase CT data set. Further
the automatic estimation error of the valve models are slightly above (1.13 mm for the aor-
tic valve and 0.78 mm for the mitral valve) the inter-user variability. Several extensions
were proposed. In section 3.6 a new volumetric representation of the aortic valve was
presented and the different tissues within the valve were classified (calcium, leaflet tis-
sue and blood pool) using a multi-label boosting classifier and an ensemble of geometric
and intensity based features. We further showed that based on the estimated volumetric
model several clinical applications can be supported, such as intervention planning for
TAVI. In section 3.7 we demonstrated that by using our estimated aortic valve model and
a standard simulation framework we can efficiently simulate device deployment for the
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TAVI procedure. The technology described can potentially advance the management of
patients affected by valvular heart disease by reducing clinical diagnosis costs (due to the
automation and reproducibility of results which could be obtained with our robust model
estimation techniques) and reduce risk of complications during minimally invasive pro-
cedures as advanced assessment and intervention planning can be performed before the
procedure.

Finally, in chapter 4 we presented a robust model based algorithm to align multi-modal
data. First we introduced a method where we first estimated geometric models using fast
and robust machine learning techniques from two modalities independently. Afterward
the alignment is done using a weighted mapping transform which is learned from training
in order to achieve optimal registration results. Second we introduce an improved version
where the complete model estimation is not necessary in the intra-operative modality. Us-
ing a novel sparse matching algorithm and a trained likelihood classifier to highlight the
anatomy of interest in the intra-operative image we can bring both modalities into cor-
respondence. The algorithm is ideally suited to the clinical application of guidance for
minimally invasive procedures.

5.2. Future Work

Physiological Modeling: The first option would be to build a generic representation con-
sisting of all cardiac anatomies. Thus the current model parametrization must be extended
to the heart chambers (left ventricle, left atrium, right ventricle and right atrium). Other
options would be to develop a better model parametrization of the current valve models.
More details of the valvular anatomy could be captured in this representations such as
the sub-valvular apparatus of the mitral valve, consisting of the papillary muscles and the
chordae tendae. In addition a volumetric representation of all the valves would be helpful.
Especially in the context of biomechanical simulation of valve repair, implant deployments
etc. it would provide more accurate boundary conditions than generic thickness values.

Non-linear Model-Based Fusion: The proposed Model-Based Fusion approach pre-
sented in chapter 4 is estimating a rigid transformation in order to align two modalities.
This method could be extended to allow for the estimation of non-linear deformations.
Therefore an updated transformation model must be used in combination with an effi-
cient optimization algorithm. Hereby the optimization should not be done using the im-
age intensities but rather using the more robust probability map which is generated by
training a classifier to enhance important structural information used during the matching
procedure and suppress anatomies which are not of interest.

3D-2D Model-Based Fusion: Using the Model-Based Fusion approach we could align
pre-operative modalities with the intra-operative 2D Fluoroscopic images. Thus a patient
specific anatomical model could be extracted from pre-operative data and integrated in
the intra-operative setting. It can be seen as a continuation of the method proposed in sec-
tion 4 to align a pre-operative image with mono and bi-plane fluoroscopic images. Thus
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the complex protocol to acquire the 3D C-arm CT used for registration can be avoided. In
addition to the initial alignment there is a continuous need to adjust the target anatomy
model used during guidance due to the breathing and cardiac motion during the interven-
tion. An algorithm must be developed which would compensate the current anatomical
model for cardiac and breathing motion in real-time.
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AV Aortic Valve. 2, 3, 63, 64, 100, 108, 111, 142

CT Computed Tomography. 2–4, 15, 19–21, 23, 26–31, 33–36, 53, 58, 59, 61, 62, 68,
70–76, 82–85, 91, 92, 94, 96–102, 108, 110, 112, 113, 115, 117, 118, 123, 139, 140, 142–144

CVD Cardiovascular Disease. 1

ECG Electrocardiography. 7, 20, 29, 58

GPA Generalized Procrustes Analysis. 51, 52, 55

ICA Independent Component Analysis. 61

ITK Insight Segmentation and Registration Toolkit. 112

IVUS Intravascular ultrasound. 24

MI Mutual Information. 94

MICA Multi-linear Independent Component Analysis. 55

MPCA Multi-linear Principal Component Analysis. 55

MRI Magnetic Resonance Imaging. 22, 23, 26–28, 85, 91, 92, 94, 140

MSL Marginal Space Learning. 50, 51, 101

MV Mitral Valve. 2, 3, 27, 29, 30, 84

NCC Normalized Cross Correlation. 93

OCT Optical Coherence Tomography. 24, 25, 140

PBT Probabilistic Boosting Tree. 40, 43, 77, 80, 97, 101, 103

PCA Principal Component Analysis. 52, 56, 61, 81

PV Pulmonary Valve. 2, 3, 63, 84, 142

SAD Sum of absolute differences. 92, 93

SSD Sum of squared differences. 92

137



Glossary

TAVI Transcatheter Aortic Valve Implantation. 3, 31, 63, 83

TEE Transesophageal Echocardiography. 2, 18, 22, 23, 26–28, 30, 76, 82–85, 140, 143

TTE Transthoracic Echocardiography. 22, 23, 140

TV Tricuspid Valve. 2, 3, 84

VHD Valvular Heart Disease. 1, 123

138



List of Figures

1.1. (a) Life expectancy graph for the last four centuries in the developed world.
(b) Relative comparison of major causes of death in the developed world.
The statistics were retrieved from the Millenium Group Research [133]. . . . 1

2.1. (a) Four-chamber view of the heart as illustrated by Leonardo da Vinci. Even
the thinner wall size in the right ventricle was depicted correctly. (b) The
four chamber view of the real heart from an ex-vivo specimen. Reproduced
with permission of the European Association for Cardio-Thoracic Surgery.
Multimedia Man Cardiothorac Surg doi:10.1510/mmcts.2006.002147. . . . . 7

2.2. (a) Diagram of the cardiovascular circulatory system. Vessels carrying oxy-
genated blood (usually arteries) are shown in red and those carrying deoxy-
genated blood (usually veins) are shown in blue. (b) Diagram showing the
systemic and pulmonary circulation. . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Illustration of the heart during the main 2 cardiac phases: diastole (left) and
systole(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4. Diagram of the left heart during the cardiac cycle (Wikipedia). . . . . . . . . 10
2.5. The valvular apparatus during diastole (left) and systole (right) consisting

of four heart valves: the aortic, mitral, tricuspid and pulmonary valve. Re-
produced with permission from [26]. . . . . . . . . . . . . . . . . . . . . . . . 11

2.6. (a) Diagram of the aortic valve located between the left ventricle and the
ascending aorta. (b) the aortic valve anatomy during diastole. (c) Unfolded
view of the aortic valve anatomy emphasizing the three leaflets (cusps). Re-
produced with permission of the authors from [26]. . . . . . . . . . . . . . . 12

2.7. Diagram of the mitral valve located between the left atrium and the left ven-
tricle. (a,b) Top view of the mitral valve showing the anterior and posterior
leaflet during systole. (c) Unfolded view of the mitral valve emphasizing
the papillary muscles and chordae tendineae. Reproduced with permission
of the authors from [26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8. Examples of the aortic valve in CT with (a) bicuspid anatomy, (b) stenotic
and heavy calcified aortic valve and (c) dilated aortic valve. . . . . . . . . . 15

2.9. (a) Carpentier-Edwards Bioprosthesis for the aortic valve, (b) The Carpentier-
Edwards Classic annuloplasty ring and (c) Edwards ETlogix annuloplasty
ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

139



List of Figures

2.10. (a) The Edwards SAPIEN balloon-expandable valve. (b) The new SAPIEN
XT. (c) The Medtronic CoreValve. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11. (a) Lotus valve (Boston Scientific), (b) Direct Flow valve (DirectFlow), (c)
Portico valve (St. Jude Medical), (d) Engager valve (Medtronic Inc., Min-
neapolis Minnesota), (e) JenaClip valve (JenaValve). . . . . . . . . . . . . . . 20

2.12. (a) CT - SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Ger-
many. (b) Complete heart scan with contrast on the left side. (c) Volumetric
reconstruction of the aortic valve clipped at the valvular sinuses level. . . . 20

2.13. a) C-arm X-ray - Artis zee Ceiling-mounted system, Siemens Healthcare,
Forchheim, Germany. (b) Fluoroscopic image of the heart with contrast con-
centrated in the aorta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.14. (a) Siemens SC2000 ultrasound machine, (b) TTE four chambers image of
the heart, (c) TEE volumetric reconstruction of the mitral and aortic valves. 23

2.15. (a) MRI - Siemens Somatom Spectra, Siemens Healthcare, Erlangen, Ger-
many. (b) Heart image including the left ventricle and aorta. (c) Volumetric
reconstruction of the right ventricular outflow tract and pulmonary arteries. 23

2.16. (a) acquired image using IVUS of the coronary arteries, b) IVUS catheter, c)
diagramm of IVUS working principle. . . . . . . . . . . . . . . . . . . . . . . 24

2.17. (a) Console OCT LightLab M3CV system (b)OCT appearance of a drug elud-
ing stent 9 months after implantation. The amplified image shows two
struts not opposed to the vessel wall. . . . . . . . . . . . . . . . . . . . . . . . 25

3.1. Global motion and anatomical landmark model of the aortic valve. The sim-
ilarity transform is represented as a bounding box around the aortic valve
estimated from 4D cardiac CT. (a) Perspective view; (b) Long Axis; (c) Short
Axis; (d) Landmarks relative to the anatomical location illustrated in long
and short axis from an example CT study. . . . . . . . . . . . . . . . . . . . . 33

3.2. Global motion and anatomical landmark model of the mitral valve. The sim-
ilarity transform is represented as a bounding box around the mitral valve
estimated from 4D cardiac CT. (a) Perspective view; (b) Long Axis; (c) Short
Axis; (d) Landmarks relative to the anatomical location illustrated in long
and short axis from an example CT study. . . . . . . . . . . . . . . . . . . . . 34

3.3. Global motion and anatomical landmark model of the pulmonary valve.
The similarity transform is represented as a bounding box around the pul-
monary valve estimated from 4D cardiac CT. (a) Perspective view; (b) Long
Axis; (c) Short Axis; (d) Landmarks relative to the anatomical location illus-
trated in long and short axis from an example CT study. . . . . . . . . . . . . 35

3.4. Global motion and anatomical landmark model of the tricuspid valve. The
similarity transform is represented as a bounding box around the tricuspid
valve estimated from 4D cardiac CT. (a) Perspective view; (b) Long Axis; (c)
Short Axis; (d) Landmarks relative to the anatomical location illustrated in
long and short axis from an example CT study. . . . . . . . . . . . . . . . . . 36

140



List of Figures

3.5. Anatomical Landmark Model and Complete Valve Model of the aortic valve,
mitral valve, pulmonary valve and tricuspid valve. . . . . . . . . . . . . . . 38

3.6. Anatomical Landmark Model and Complete Valve Model of the aortic valve,
mitral valve, pulmonary valve and tricuspid valve. . . . . . . . . . . . . . . 39

3.7. Isolated surface components of the aortic and mitral models with paramet-
ric directions and spatial relations to anatomical landmarks: (a) aortic root,
(b) aortic leaflets, (c) aortic-mitral in end-systole, (d) anterior mitral leaflet,
(e) posterior mitral leaflet and (f) aortic-mitral in end-diastole. . . . . . . . . 40

3.8. Isolated surface components of the tricuspid and pulmonary models with
parametric directions and spatial relations to anatomical landmarks: (a) tri-
cuspid leaflet, (b) tricuspid annulus and leaflets, (c) tricuspid-pulmonary in
end-diastole, (d) pulmonary trunk, (e) pulmonary leaflets and (f) tricuspid-
pulmonary in end-systole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9. The adaptive boosting (AdaBoost) algorithm introduced by Freund and Schapire
in [51]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10. The probabilistic boosting-tree training as introduced by Zhuowen Tu in [179] 44

3.11. Illustration of the probabilistic model of the tree. The circles are AdaBoost
classifiers, the squares contain the empirical class distribution. Each tree
node is a strong classifier. Figure from Tu [179]. . . . . . . . . . . . . . . . . . 45

3.12. Illustration of how the sample set is separated by the nodes. The first node
is trained on all samples. It splits the set into two subsets that may over-
lap, and the child nodes are trained on these subsets. Red and blue points
correspond to the specific class. Figure from Tu [179]. . . . . . . . . . . . . . 46

3.13. The probabilistic boosting-tree testing as introduced by Zhuowen Tu in [179] 46

3.14. Haar-based rectangular features used for face recognition. The features are
the sum on the values on the gray region minus the sum on the white region. 47

3.15. Left: Integral image representation. Right: The four references used to com-
pute the image values on the gray area. . . . . . . . . . . . . . . . . . . . . . 47

3.16. Examples of rectangle 3D Haar features. The sum of the pixels which lie
within the white rectangles are subtracted from the sum of pixels in the
grey rectangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.17. Steerable sampling pattern aligned with an example hypothesis (x, y, ~αx, sx, sy)

for a two-dimensional problem. Sampling location are defined as ’+’. (a)
Pattern centered at (x, y). (b) Pattern oriented with ~αx. (c) Pattern scaled
along the axes proportional to (sx, sy). . . . . . . . . . . . . . . . . . . . . . . 49

3.18. Anatomical measurements extracted from the aortic valve anatomical land-
marks model (a) inter-commissures distance, b) hinge-leaflet tip distance
and c) inter-hinge distance) in order to constrain the full surface model d).
The green points are representing the aortic valve commissures, the purple
point the hinges and the red the leaflet tips. . . . . . . . . . . . . . . . . . . . 56

141



List of Figures

3.19. Diagram depicting the estimation process of the complete valve model dur-
ing a full cardiac cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.20. Examples of global dynamic motion estimation in cardiac CT: (a) aortic
valve, (b) mitral valve, (c) pulmonary valve, (d) tricuspid valve. . . . . . . . 59

3.21. Examples of the anatomical landmark motion estimation in cardiac CT: (a)
aortic valve, (b) mitral valve, (c) pulmonary valve, (d) tricuspid valve. The
colored points are showing the landmarks for each valve. . . . . . . . . . . . 61

3.22. Examples of the complete valves model estimation in cardiac CT of all heart
valves during one cardiac sequence. . . . . . . . . . . . . . . . . . . . . . . . 62

3.23. Examples of estimated personalized model from a multiphase CT sequence.
The images are extracted from the end-systolic phase. . . . . . . . . . . . . . 62

3.24. Bland Altman plots for a) right ventricle output tract diameter, b) pulmonary
valve bifurcation diameter, c) tricuspid valve area and d) distance between
pulmonary and tricuspid valve. The ground truth measurements, derived
from the models annotated by clinical experts, were compared with mea-
surements derived from our automatically estimated models. . . . . . . . . 63

3.25. Measurements of aortic (AV) and pulmonary valve (PV) area obtained from
a patient with aortic valve regurgitaion (left), a healthy patient (middle) and
a post Ross operation patient (right). The red graph is representing the aortic
valve and the blue the pulmonary. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.26. Diagram showing the model estimation approach for the volumetric aor-
tic valve model consisting of 9 anatomical landmarks m (3 commissures, 3
hinges and 3 leaflet tips), the aortic root surface M and the final volumetric
aortic leaflet models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.27. Left: Custom geometric and data features utilized to classify tissues within
the aortic valve root. Right: Classifier responses for different classes of tis-
sues overlayed on the extracted subvolume. The probability map for the
blood pool is overlayed on the blue channel, leaflet tissue in the red and
calcium in the green color channel. . . . . . . . . . . . . . . . . . . . . . . . . 65

3.28. A simple 2D segmentation example using graph-cuts for a 3× 3 image from
Boykov [20]. The seeds are O = v and B = p. The cost of each edge is re-
flected by the thickness of the edge. The regional term and hard constraints
define the costs of t-links. The boundary term defines the costs of n-links.
Inexpensive edges are attractive choices for the minimum cost cut. A glob-
ally optimal segmentation satisfying hard constraints can be computed ef-
ficiently in low-order polynomial time using max-flow/min-cut algorithms
on graphs ([49, 62, 31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.29. Examples of the automatic estimation of the aortic valve surface model M
for nine patient data sets. The upper row is showing short axis views of the
segmentation results and the bottom long axis views. . . . . . . . . . . . . . 69

142



List of Figures

3.30. Bland Altman plots for: Left: aortic root annulus radius. Middle: Dice score
for the aortic valve leaflet segmentation (DSC = 0.73). Left: Dice score for
the calcification segmentation inside the aortic valve (DSC = 0.79). . . . . . 70

3.31. Diagram of the problem formulation showing the surface modelM , anatom-
ical landmarks m, transformation φ to map the intra-op image I2 to the pre-
op data I1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.32. Diagram showing the estimation framework for the volumetric aortic valve
model, which consists of 9 landmarks m (3 commissures, 3 hinges and 3
leaflet tips), aortic root and aortic leaflet volumetric models M , and aortic
valve calcifications C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.33. Diagram showing our validation framework. . . . . . . . . . . . . . . . . . . 72

3.34. Left: anatomical model estimated from the images. Colors encode the dif-
ferent anatomical parts, in red are the calcifications. Arrows indicate spatial
tethering. Right: CoreValve model. Thick black lines represent the strings
used to model shape-memory deployment. . . . . . . . . . . . . . . . . . . . 74

3.35. Automatic segmentation results of the aortic valve model M and calcifica-
tion C (red color) from pre-operative CT. The aortic root is shown in blue
and the R-, N-, L- leaflet are shown in green, purple and red respectively.
The extracted models are accurately delineating the valve anatomy in the
CT image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.36. Example of simulated implant deployment using our automatic volumetric
model estimation and our simulation framework. In transparent red is the
ground truth. Our model could predict CoreValve deployment based on
pre-operative image data only. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.37. Example of simulated stent deployment using our automatic volumetric
model estimation and a standard machanical simulation framework. As we
only estimate the volumetric model of the aortic valve leaflets a standard
non-patient specific thickness of 1.4mm was assigned to the aortic valve root. 78

3.38. The two-class LogitBoost algorithm as introduced by Friedman in [52]. . . . 79

3.39. Left and middle: illustrating the process of fitting a 2D piecewise constant
function. Left: illustrates the fitted 2D piecewise constant function. . . . . . 80

3.40. Diagram showing the model based fusion approach for the estimation of
the model M and the transformation φ. . . . . . . . . . . . . . . . . . . . . . 81

3.41. Example of the joint aortic valve model estimation from pre- and intra-op
volumetric data. The left 2 images show fused CT-TEE data sets and the
right 2 images show fused CT-3D C-arm CT data. The mapping of the intra-
op image I2 to the pre-op image I1 is done by the estimated non-linear trans-
form φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

143



List of Figures

3.42. Bland-Altman plots for the aortic valve annulus circumference measure-
ment extracted from the model M with (a) independent detection in 3D
C-arm CT and (b) fusion of pre-op CT and 3D C-arm CT. (c) and (d) are
showing short and long axis views of the model M and the fused pre- and
intra-op images I1 + φ(I2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1. Overview of standard iterative registration workflow. . . . . . . . . . . . . . 87
4.2. Overview of common transformation models applied to a 2D object. . . . . 89
4.3. The trachea bifurcation model. Left: Model showing the bounding box Θ,

anatomical landmarks: trachea airway bifurcation point tB , trachea lower-
left airway branching point tLL, trachea lower-right airway branching point
tLR, trachea upper center airway point tT and surfaces: trachea upper center
airway model TT , trachea lower-left airway model TLL and trachea lower-
right TLR airway model, trachea bifurcation face TF and back TB . Trachea
bifurcation model shown in CT and 3D C-arm CT (center). The right image
is showing the trachea bifurcation model with weights assigned to each ver-
tex for pre-operative to intra-operative mappingA: white - low significance,
red - high significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4. Simplified workflow overview of the model based fusion approach. . . . . . 100
4.5. Example of the aligned pre-operative CT image I1 (red channel) with the

intra-operative 3D C-arm CT I2 (green channel) and the mapped aortic valve
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6. Fusion workflow overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7. Slices of a volumetric CT scan of the human torso (M) overlaid by the au-

tomatically segmented pericardium mesh AM, the intersection of AM with
the plane corresponding to the visualized slice is shown in red color. Lower
right: 3D rendered CT volume with 3D anatomical overlay (AM). . . . . . . 102

4.8. Slices of the original C-arm CT volume (F) overlaid by the PBT-based prob-
ability map (thresholded), red color indicates high probability, blue col-
ored and transparent regions are rather unlikely to contain the pericardium
boundary. Lower right: Tilted frontal 3D rendering of the probability map. . 103

4.9. Visualization of the prior sampling regions for AM, dark/red colors depict
regions of sparse sampling, while bright/yellow regions are sampled more
densely during the optimization. . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.10. Energy curves of the optimizer, comparing the initial objective function from
(4.32) against the more sophisticated objective function leveraging prior knowl-
edge by performing a probabilistic sampling of AM from (4.37). . . . . . . . 107

4.11. Diagram explaining the funnel convergence plot. Each circle is describing
the convergence behavior of our registration method in respect to a certain
translational and rotational offset in respect to the ground truth. Black area
is symbolizing a small error in respect to the ground truth and white a large
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

144



List of Figures

4.12. Diagram showing the convergence behavior of our optimization method us-
ing the funnel convergence plot on synthetic data. Black area is symbolizing
a small error in respect to the ground truth and white a large error. Result
shows that we can recover offsets of ±40 degree and 30 mm robustly. . . . . 111

4.13. Inter-user variability compared to performance of our method. The edges
of the boxes indicate 25th and 75th percentiles of the expert errors (AAE). . . 114

4.14. Relative / absolute runtime of the four major framework components. . . . 116
4.15. (a-d) Representative qualitative results from several automatically registered datasets.

Yellow: intra-operative C-arm CT, gray: aligned high-quality pre-operative CT
overlay, others: anatomical models automatically extracted (from CT scan) or anno-
tated (based on C-arm CT), mapped into the joint coordinate system. The left image
in the row (d) illustrates that especially in non-contrasted C-arm CT images, there
are uncertainties involved in annotating the pericardium. It is not clear whether
the fused or the annotated pericardium fits better. Non-ideal annotations usually
increase the measured quantitative error. (e) Comparison method (Quasi-global
Search) without and with pericardium masking. In this case, masking improves
the result significantly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.16. Top: slices of volume reconstructed using regular 3D C-arm CT protocol
(200 degrees) and corresponding probability map, bottom: slices of Tomosyn-
thesis volume (90 degree C-arm sweep) and corresponding probability map 120

4.17. Comparison of fusion of CT with C-arm CT (left), and CT with limited-angle
Tomosynthesis images (right). The CT volume is depicted in yellow, the C-
arm or Tomosynthesis image is depicted in grayscale. . . . . . . . . . . . . . 121

A.1. Patent US 2013/0155064, http://www.freepatentsonline.com/20130155064.pdf131
A.2. Patent US 2013/0129174, http://www.freepatentsonline.com/20130129174.pdf132
A.3. Patent US 2013/0129173, http://www.freepatentsonline.com/20130129173.pdf133
A.4. Patent US 2012/0230568, http://www.freepatentsonline.com/20120230568.pdf134
A.5. Patent US 2012/0022843, http://www.freepatentsonline.com/20120022843.pdf135
A.6. Patent US 2013/0035596, http://www.freepatentsonline.com/20130035596.pdf136

145





Bibliography

[1] Ankush Aggarwal, Vanessa Aguilar, Chung-Hao Lee, Giovanni Ferrari, Joseph Gor-
man, Rober Gorman, and Michael Sacks. Patient-specific modeling of heart valves:
From image to simulation. In Sebastien Ourselin, Daniel Rueckert, and Nicolas
Smith, editors, Functional Imaging and Modeling of the Heart, volume 7945 of Lecture
Notes in Computer Science, pages 141–149. Springer Berlin Heidelberg, 2013.

[2] Simon L Altmann. Rotations, quaternions, and double groups. Dover Publications, 2005.

[3] A. Andreopoulos and J. K. Tsotsos. A novel algorithm for fitting 3-D active appear-
ance models: Application to cardiac MRI segmentation. In Proc. Scandinavian Conf.
Image Analysis, pages 729–739, 2005.

[4] Elizabeth Arias. United states life tables, 2003. National vital statistics reports: from the
Centers for Disease Control and Prevention, National Center for Health Statistics, National
Vital Statistics System, 54(14):1, 2006.

[5] Michel A Audette, Frank P Ferrie, and Terry M Peters. An algorithmic overview of
surface registration techniques for medical imaging. Medical Image Analysis, 4(3):201–
217, 2000.

[6] Yonatan Aumann and Yuval Rabani. An o (log k) approximate min-cut max-flow
theorem and approximation algorithm. SIAM Journal on Computing, 27(1):291–301,
1998.

[7] WG Austen, JE Edwards, RL Frye, GG Gensini, VL Gott, LS Griffith, DC McGoon,
ML Murphy, and BB Roe. A reporting system on patients evaluated for coronary
artery disease. report of the ad hoc committee for grading of coronary artery disease,
council on cardiovascular surgery, american heart association. Circulation, 51(4):5–
40, 1975.

[8] Brian B Avants, Charles L Epstein, Murray Grossman, and James C Gee. Symmet-
ric diffeomorphic image registration with cross-correlation: evaluating automated
labeling of elderly and neurodegenerative brain. Medical image analysis, 12(1):26–41,
2008.

[9] Z. Bao, L. Zhukov, I. Guskov, J. Wood, and D. Breen. Dynamic deformable models
for 3D MRI heart segmentation. In SPIE Medical Imaging, pages 398–405, 2002.

147



Bibliography

[10] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In Proc. European Conf. Computer Vision, pages 404–417, 2006.

[11] Jacob Beutel, Harold L Kundel, and Richard L Van Metter. Handbook of medical
imaging, volume 1: Physics and psychophysics. 2000.

[12] Linda K Bickerstaff, Peter C Pairolero, Larry H Hollier, L Joseph Melton, Hubert J
Van Peenen, and Kenneth J Cherry. Thoracic aortic aneurysms: a population-based
study. Atherosclerosis, 15:29, 1982.

[13] Rémi Blanc, Mauricio Reyes, Christof Seiler, and Gábor Székely. Conditional vari-
ability of statistical shape models based on surrogate variables. In Guang-Zhong
Yang, David Hawkes, Daniel Rueckert, Alison Noble, and Chris Taylor, editors, Med-
ical Image Computing and Computer Assisted Intervention, volume 5762 of Lecture Notes
in Computer Science, pages 84–91. Springer Berlin / Heidelberg, 2009.

[14] R. O. Bonow, B. A. Carabello, K. Chatterjee, A. C. Jr. de Leon, D. P. Faxon, M. D.
Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. Gara, R. A. Rourke, C. M.
Otto, P. M. Shah, and J. S. Shanewise. Acc/aha 2006 guidelines for the management
of patients with valvular heart disease: a report of the american college of cardiol-
ogy/american heart association task force on practice guidelines (writing committee
to develop guidelines for the management of patients with valvular heart disease).
Circulation, 114(5):84–231, 2006.

[15] Robert O Bonow, Blase A Carabello, Kanu Chatterjee, Antonio C de Leon, David P
Faxon, Michael D Freed, William H Gaasch, Bruce W Lytle, Rick A Nishimura,
Patrick T O’Gara, et al. 2008 focused update incorporated into the acc/aha 2006
guidelines for the management of patients with valvular heart diseasea report of
the american college of cardiology/american heart association task force on practice
guidelines (writing committee to revise the 1998 guidelines for the management of
patients with valvular heart disease) endorsed by the society of cardiovascular anes-
thesiologists, society for cardiovascular angiography and interventions, and society
of thoracic surgeons. Journal of the American College of Cardiology, 52(13):e1–e142,
2008.

[16] Guillaume Bouchard, Bill Triggs, et al. The tradeoff between generative and dis-
criminative classifiers. In IASC International Symposium on Computational Statistics
(COMPSTAT), pages 721–728, 2004.

[17] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(9):1124–1137, 2004.

[18] Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov random fields with efficient
approximations. In Computer vision and pattern recognition, 1998. Proceedings. 1998
IEEE computer society conference on, pages 648–655. IEEE, 1998.

148



Bibliography

[19] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimiza-
tion via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
23(11):1222–1239, 2001.

[20] Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary & region
segmentation of objects in nd images. In Computer Vision, 2001. ICCV 2001. Proceed-
ings. Eighth IEEE International Conference on, volume 1, pages 105–112. IEEE, 2001.

[21] Chaim Broit. Optimal registration of deformed images. PhD thesis, University of Penn-
sylvania, 1981.

[22] Alexander M Bronstein, Michael, Computer Science, Technion Israel, Fabrice Michel,
Nikos Paragios, Equipe Galen, and Inria Saclay Ile-de france. Data Fusion through
Cross-modality Metric Learning using Similarity-Sensitive Hashing. CVPR, pages
3594 – 3601, 2010.

[23] P. Burlina, C. Sprouse, D. DeMenthon, A. Jorstad, R. Juang, F. Contijoch, T. Abraham,
D. Yuh, and E. McVeigh. Patient-specific modeling and analysis of the mitral valve
using 3d-tee. Information Processing in Computer-Assisted Interventions, pages 135–146,
2010.

[24] C Capelli, GM Bosi, E Cerri, J Nordmeyer, T Odenwald, P Bonhoeffer, F Migliavacca,
AM Taylor, and S Schievano. Patient-specific simulations of transcatheter aortic
valve stent implantation. Medical and Biological Engineering and Computing, pages
1–10, 2012.

[25] Blase A Carabello. Mitral valve regurgitation. Current problems in cardiology,
23(4):197–241, 1998.

[26] Alain Carpentier, David Adams, and Farzan Filsoufi. Carpentier’s Reconstructive Valve
Surgery. Saunders, 2010.

[27] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering Computation). The MIT
Press, Cambridge, MA (US), first edition, 2007.

[28] A. Cheng, P. Dagum, and DC. Miller. Aortic root dynamics and surgery: from craft
to science. Philosophical transactions of the Royal Society of London. Series B, Biological
sciences, 362(1484):1407–1419, 2007.

[29] W Randolph Chitwood Jr, Joseph R Elbeery, and Jon F Moran. Minimally invasive
mitral valve repair using transthoracic aortic occlusion. The Annals of thoracic surgery,
63(5):1477–1479, 1997.

[30] Gordon Clapworthy, Marco Viceconti, Peter V Coveney, and Peter Kohl. The vir-
tual physiological human: building a framework for computational biomedicine.

149



Bibliography

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 366(1878):2975–2978, 2008.

[31] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander
Schrijver. Combinatorial optimization. John Wiley & Sons, Inc., New York, NY, USA,
1998.

[32] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE Trans.
Pattern Anal. Machine Intell., 23(6):681–685, 2001.

[33] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models: Their
training and application. Computer Vision and Image Understanding, 61(1):38–59, Jan-
uary 1995.

[34] Alain Cribier. Development of transcatheter aortic valve implantation (tavi): A 20-
year odyssey. Archives of cardiovascular diseases, 105(3):146–152, 2012.

[35] A. Criminisi, D. Robertson, E. Konukoglu, J. Shotton, S. Pathak, S. White, and K. Sid-
diqui. Regression forests for efficient anatomy detection and localization in com-
puted tomography scans. Medical Image Analysis, (0):–, 2013.

[36] Antonio Criminisi, Toby Sharp, and Andrew Blake. Geos: Geodesic image segmen-
tation. In Proc. European Conf. Computer Vision, pages 99–112. Springer, 2008.

[37] David Cristinacce and Tim Cootes. Automatic feature localisation with constrained
local models. Pattern Recognition, 41(10):3054 – 3067, 2008.

[38] Adnan S Dajani, Kathryn A Taubert, Walter Wilson, Ann F Bolger, Arnold Bayer, Pa-
tricia Ferrieri, Michael H Gewitz, Stanford T Shulman, Soraya Nouri, Jane W New-
burger, et al. Prevention of bacterial endocarditis recommendations by the american
heart association. Circulation, 96(1):358–366, 1997.

[39] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Con-
ference on, volume 1, pages 886–893 vol. 1, 2005.

[40] Marleen de Bruijne, Bram van Ginneken, Max A Viergever, and Wiro J Niessen.
Adapting active shape models for 3d segmentation of tubular structures in medi-
cal images. In Information Processing in Medical Imaging, pages 136–147. Springer,
2003.

[41] Carlos Domingo and Osamu Watanabe. Madaboost: A modification of adaboost. In
COLT, pages 180–189. Citeseer, 2000.

[42] Lloyd-Jones Donald, Adams Robert, Carnethon Mercedes, De Simone Giovanni,
Ferguson T. Bruce, Flegal Katherine, Ford Earl, Karen Furie, Go Alan, Greenlund
Kurt, Haase Nancy, Hailpern Susan, Ho Michael, Howard Virginia, Kissela Brett,

150



Bibliography

Kittner Steven, Lackland Daniel, Lisabeth Lynda, Marelli Ariane, McDermott Mary,
Meigs James, Mozaffarian Dariush, Nichol Graham, O’Donnell Christopher, Roger
Veronique, Rosamond Wayne, Sacco Ralph, Sorlie Paul, Stafford Randall, Stein-
berger Julia, Thom Thomas, Wasserthiel-Smoller Sylvia, Wong Nathan, Wylie-Rosett
Judith, and Hong Yuling. Heart disease and stroke statistics–2009 update: a report
from the american heart association statistics committee and stroke statistics sub-
committee. Circulation, 119(3), January 2009.

[43] D.R. Einstein, F. Del Pin, X. Jiao, A.P. Kuprat, J.P. Carson, K.S. Kunzelman, R.P.
Cochran, J.M. Guccione, and M.B. Ratcliffe. Fluid-structure interactions of the mitral
valve and left heart: Comprehensive strategies, past, present and future. Interna-
tional Journal for Numerical Methods in Biomedical Engineering, 26(3-4):348–380, 2010.

[44] P. Lang et al. Feature-based US to CT registration of the aortic root. In Proceedings of
SPIE Medical Imaging 2010, 2010.

[45] Rebecca Fahrig, Robert Dixon, Thomas Payne, Richard L. Morin, Arundhuti Gan-
guly, and Norbert Strobel. Dose and image quality for a cone-beam c-arm ct system.
Medical Physics, 33(12):4541–4550, 2006.

[46] Paul WM Fedak, Subodh Verma, Tirone E David, Richard L Leask, Richard D Weisel,
and Jagdish Butany. Clinical and pathophysiological implications of a bicuspid aor-
tic valve. Circulation, 106(8):900–904, 2002.

[47] Ted Feldman, Saibal Kar, Michael Rinaldi, Peter Fail, James Hermiller, Richard
Smalling, Patrick L Whitlow, William Gray, Reginald Low, Howard C Herrmann,
et al. Percutaneous mitral repair with the mitraclip systemsafety and midterm dura-
bility in the initial everest (endovascular valve edge-to-edge repair study) cohort.
Journal of the American College of Cardiology, 54(8):686–694, 2009.

[48] James D Foley. Computer graphics: Principles and practice, in C, volume 12110.
Addison-Wesley Professional, 1996.

[49] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[50] W.T. Freeman and E.H. Adelson. The design and use of steerable filters. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 13(9):891 –906, sep 1991.

[51] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

[52] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
a statistical view of boosting. Annals of Statistics, 28:2000, 1998.

151



Bibliography

[53] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the authors). The
annals of statistics, 28(2):337–407, 2000.

[54] D. Fritz, D. Rinck, R. Dillmann, and M. Scheuring. Segmentation of the left and right
cardiac ventricle using a combined bi-temporal statistical model. In SPIE Medical
Imaging, pages 605–614, 2006.

[55] Valentin Fuster, R Wayne Alexander, Robert A O’Rourke, R Wayne Alexander,
Robert A O’Rourke, Robert Roberts, Spencer B King, and Hein JJ Wellens. Hurst’s
the Heart, 2-Vol Set. McGraw-Hill Professional Publishing, 2000.

[56] Gang Gao, Graeme Penney, Nicolas Gogin, Pascal Cathier, Aruna Arujuna, Matt
Wright, Dennis Caulfield, Aldo Rinaldi, Reza Razavi, and Kawal Rhode. Rapid im-
age registration of three-dimensional transesophageal echocardiography and x-ray
fluoroscopy for the guidance of cardiac interventions. In Information Processing in
Computer-Assisted Interventions, pages 124–134. Springer, 2010.

[57] Gang Gao, Graeme Penney, Yingliang Ma, Nicolas Gogin, Pascal Cathier, Aruna
Arujuna, Geraint Morton, Dennis Caulfield, Jaswinder Gill, C Aldo Rinaldi, et al.
Registration of 3d trans-esophageal echocardiography to x-ray fluoroscopy using
image-based probe tracking. Medical image analysis, 16(1):38–49, 2012.

[58] B Georgescu, XS Zhou, D. Comaniciu, and A. Gupta. Database-Guided Segmenta-
tion of Anatomical Structures with Complex Appearance. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2,
pages 429–436. IEEE, 2005.

[59] Ben Glocker, Johannes Feulner, Antonio Criminisi, David R Haynor, and Ender
Konukoglu. Automatic localization and identification of vertebrae in arbitrary field-
of-view ct scans. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2012, pages 590–598. Springer Berlin Heidelberg, 2012.

[60] C Gohlke-Bärwolf, J Acar, C Oakley, E Butchart, D Burckhardt, E Bodnar, R Hall,
J-P Delahaye, D Horstkotte, R Kremer, et al. Guidelines for prevention of throm-
boembolic events in valvular heart disease. European heart journal, 16(10):1320–1330,
1995.

[61] Zehra Gölbasi, Özgül Uçar, Telat Keles, Ahmet Sahin, Kerim Çagli, Ahmet Çam-
sari, Erdem Diker, and Sinan Aydogdu. Increased levels of high sensitive c-reactive
protein in patients with chronic rheumatic valve disease: evidence of ongoing in-
flammation. European Journal of Heart Failure, 4(5):593–595, 2002.

[62] Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum flow
problem. Journal of the ACM (JACM), 35(4):921–940, 1988.

152



Bibliography

[63] C. Goodall. Procrustes methods in the statistical analysis of shape. Journal of the
Royal Statistical Society. Series B (Methodological), 53(2):285–339, 1991.

[64] Leo Grady. Multilabel random walker image segmentation using prior models. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Con-
ference on, volume 1, pages 763–770. IEEE, 2005.

[65] Sasa Grbic, Christian Gesell, R Lonasec, Matthias John, Jan Boese, Joachim Horneg-
ger, Nassir Navab, and Dorin Cotnaniciu. Model-based fusion of ct and non-
contrasted 3d c-arm ct: Application to transcatheter valve therapies. In Biomedi-
cal Imaging (ISBI), 2012 9th IEEE International Symposium on, pages 1192–1195. IEEE,
2012.

[66] Sasa Grbic, Razvan Ionasec, Tommaso Mansi, Bogdan Georgescu, Fernando Vega-
higuera, Nassir Navab, and Dorin Comaniciu. Advanced Intervention Planning for
Transcatheter Aortic Valve Implantation (TAVI) from CT using Volumetric Models.
2013 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2013.
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