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Abstract— In this paper a novel stability condition is derived
for nonlinear networked control systems (NCS) with arbitrarily
large constant time delay. The proposed approach is based
on input-output models of the subsystems and the scattering
transformation, well-known from teleoperation systems analysis
with time delay. Passivity of the subsystems has been a
prerequisite for guaranteed stability in systems using the scat-
tering transformation. In this paper, the approach is extended
to non-passive, non-linear subsystems. The main idea is the
compensation of the non-passivity of the plant by excess of
passivity of the controller and vice-versa. A numerical example
demonstrates that even unstable plants can independently of
the constant delay be stabilized over the network.

I. INTRODUCTION

Due to the increasing complexity of control systems and
novel requirements, such as decentralized control, the tradi-
tional control architecture with point to point interconnection
between the plant and the controller is more and more
replaced by Networked Control Systems (NCS). In NCS
the plant and the controller are spatially separated and the
control loop is physically closed through the communica-
tion network as shown in Fig. 1. Compared to traditional
control architecture the use of NCS results, among others,
in decreased complexity and cost, easier maintenance and
system diagnosis, and higher flexibility. Until now specific
industrial networks, such as CAN and PROFIBUS, have been
mainly used in NCS. Recently, common purpose networks,
e.g. Ethernet-like, attract more attention mainly due to their
higher flexibility and significantly reduced cost.

However, the transmission of the controller and plant
output over a communication network introduces a time
delay into the closed loop system, which can be constant or
varying. In Ethernet-like networks the time delay depends
highly on the concurrent amount of traffic and there are no
guarantees for a maximum time delay. Furthermore, in each
case, the behavior of the time delay may change dynamically
as it depends on the network configuration, e.g. number of
nodes. It is well-known that time delay in a closed control
loop degrades the performance and can lead to instability.
The dynamic behavior of the time delay requires insensitive
methodologies with respect to time delay uncertainties in
order to guarantee good performance.
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Fig. 1. Networked control system architecture.

Various methodologies have been presented in order to
deal with the problem of the time delay in NCS. In [1] the
time delay is assumed to be bounded by the sampling period
and the stability is analyzed using hybrid system techniques.
Random time delays, also bounded by the sampling period,
are considered in [2], [3], a stochastic stability analysis is
performed and stochastic optimal control applied. A delay-
dependent approach based on Lyapunov stability with LMI
conditions is proposed in [4]. In the seminal work [5], [6]
an augmentation technique is applied to transform the time
delay system to an augmented discrete system without time
delay and a stability condition is presented for periodic time
delays. In [7] bounded random time delays are considered
and predictive control is applied.

A delay-independent analysis for NCS has been presented
in [8] using the notion of scattering transformation. The
scattering transformation is applied for the first time in a
control context to force feedback telepresence systems in [9],
[10] in order to face the problem of stability in the presence
of time delay. Using the concepts of passivity and network
theory, the derived control law is based upon the fact that
a system of interconnected subsystems is passive if each
of them is passive, and consequently stable. The scattering
transformation passivates the communication subsystem with
arbitrarily large constant time delay. However, in it’s original
version [9], [10] both, the plant and the controller, are
required to be passive.

In [8] the scattering transformation is applied for the first
time to NCS. A new delay independent stability condition is
presented extending the notion of scattering transformation
to non-passive systems. Contrary to other methodologies for
NCS [1]-[7], the design goals not only for stability and
performance, but also for insensitivity of the system with
respect to time delay uncertainties are set. In simulation and
experiment the proposed approach is insensitive to delay
uncertainties and outperforms typical approaches for time
delay systems like the Smith predictor and a PI controller.

However, like in most of the NCS literature a linear
time-invariant (LTI) system is considered. In this paper a
new delay independent stability condition is derived for the



general nonlinear case, extending scattering transformation to
non-passive, non-linear systems. Unlike common approaches
of non-linear systems with time delay which make use
or Lyapunov-Krasovskii of Razumikhin Theorem thereby
requiring a state-space representation of the system, in this
approach an input-output stability analysis is performed
based on the concepts of passivity and L2 gain. The proposed
approach can deal even with unstable plants as demonstrated
in a numerical example.

This paper is organized as follows: Section II introduces
the notions of L2 stability, passivity and scattering transfor-
mation; a novel stability condition is given in Section III
together with the system description. Some observations
concerning passivity, L2 stability and the scattering trans-
formation are presented in Section IV. A numerical example
is presented in Section V, followed by conclusions in Sec-
tion VI.

II. THEORETICAL BACKGROUND

A. L2 Stability

Let ‖u‖L2 denote the L2 norm of a piecewise square-
integrable function u(·) : R+ → R

m with R+ is the set of
non-negative real numbers and R

m the Euclidean space
of dimension m. The truncation of u(·) up to the time t
is denoted by ut(·), and the extended space of Lebesgue
integrable functions by L2e.

A system is said to be finite gain L2 stable if there are some
constants γ,β ≥ 0 such that between the input u(·) ∈ L2e

the output y(·) ∈ L2e of the system the following inequality
holds [11]

‖yt‖L2 ≤ γ‖ut‖L2 +β ∀u, t ∈ [0,∞). (1)

The smallest possible value γ , for which a β exists, such
that (1) is satisfied, is the L2 gain of the system. The L2 stabi-
lity condition states, that each bounded L2 norm input signal
is mapped to a bounded L2 norm output signal.

B. Input-Feedforward-Output-Feedback-Passivity

A system is said to be Input-Feedforward-Output-
Feedback-Passive (IF-OFP) if
∫ t

0
u(τ)y(τ) dτ ≥ δ‖ut‖2

L2
+ ε‖yt‖2

L2
−E0, ∀t > 0,u ∈ L2e

(2)
holds, where u(τ)y(τ) represents the instantaneous power
input to the system, E0 is the initially stored energy in
the system, and δ ,ε ∈ R are constants. The above input-
output description can be seen as a generalization of the
passivity concept, i.e. if δ = ε = 0 then the system is passive,
meaning that it cannot generate energy. If δ = 0 and ε > 0
the system is called output feedback strictly passive and
if δ > 0 and ε = 0 input feedforward strictly passive. In both
these cases the system dissipates energy. If one or both of the
values δ ,ε are negative then there is a shortage of passivity in
the system. In other words, the system can generate energy,
but this energy is bounded by the squared L2 norm of the
input and/or the output signal.
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Fig. 2. NCS with scattering transformation.

One important feature of IF-OFP is that under certain
conditions it can guarantee stability of systems combined in
feedback interconnection, i.e. the next proposition holds

Proposition 1 [11]: A system comprising two subsystems
which satisfy (2) for some δi,εi, i ∈ {c, p}, combined in
feedback interconnection, is finite gain L2 stable if

εc +δp > 0 and εp +δc > 0.

What is interesting in the above case is that some of the δi,εi

can be also negative, as long as the above conditions are
satisfied. This is the case, where shortage of passivity of the
plant is compensated by the excess passivity of the controller,
or vice-versa.

C. Scattering Transformation

The scattering transformation is used in order to passivate
the communication network with arbitrary large constant
time delay. In case of time delay, the communication network
can be modelled as a time delaying two-port with time de-
lays T1, T2 in the forward and the backward path respectively,
as shown in Fig. 2.

The time-delaying two-port generates energy as shown
in [9], i.e. the passivity condition is violated. The scattering
transformation, placed in front and behind of the network,
see Fig. 2, is used in order to passivate the communication
network with the transformation equations given by

ul =
1√
2b

(uc +byc) ; ur =
1√
2b

(yp +bup) ;

vl =
1√
2b

(uc −byc) ; vr =
1√
2b

(yp −bup)
(3)

where b > 0, up,yp the plant input and output, yc,uc

the left side communication subsystem input and output
and ur,vr,ul ,vl the values transmitted over the communi-
cation channel. The indices (·)l , (·)r denote the lefthand and
righthand side of the communication channel. The value ul

is transmitted over the forward channel and arrives delayed
by the time delay T1 at the plant, now denoted by ur.
Analogously, the value vr is transmitted over the backward
channel with the time delay T2, hence

ur(t) = ul(t −T1) and vl(t) = vr(t −T2). (4)



The time delays are constant but arbitrarily large. The energy
balance for the two-port is now computed with the input and
output vectors respectively

uT = [yc − yp], yT = [uc up] (5)

and the reformulated transformation equations (3)

t∫

0

uT y dτ =
t∫

0

(uc yc −up yp)dτ

=
1
2

t∫

0

(u2
l −u2

r + v2
r − v2

l )dτ

=
1
2

t∫

t−T1

u2
l dτ +

1
2

t∫

t−T2

v2
r dτ ≥ 0 ∀t.

The passivity condition, (2) for δ ,ε = 0, is satisfied, hence
the communication two-port with constant time delay is
passive.

III. STABILITY ANALYSIS

A. System Description

We consider a system consisting of a SISO plant and a
SISO controller, see Fig. 2. The plant is described by a
mapping hp from the plant input up to the plant output yp

hp : L2e → L2e,

with the energetic input-output behavior described by (2)
with δp, εp, and Ep,0, i.e.
∫ t

0
up(τ)yp(τ) dτ ≥ δp‖up,t‖2

L2
+ εp‖yp,t‖2

L2
−Ep,0 ∀t > 0.

(6)
Analogously, the controller input-output behavior is de-
scribed by a mapping hc from the control error e = w−uc, w
being the desired value and uc the lefthand side output of the
communication channel, to the output yc

hc : L2e → L2e,

with the energetic input-output behavior described by (2)
with δc, εc, and Ec,0.

The plant is connected to the controller by the commu-
nication subsystem including the communication network
described by (4), with constant but arbitrary large time
delays T1, T2 and the scattering transformation given by (3).
Without loss of generality we assume that there is no energy
initially stored in the communication, hence

ur(t) = 0 ∀t ∈ [0,T1); vl(t) = 0 ∀t ∈ [0,T2). (7)

The subsystem h1, see Fig. 2, is defined to be the mapping
from the input ur to the output vr of the right part scattering
transformation, i.e. h1 contains the plant and right hand
scattering transformation. The subsystem h2 is defined to be
the mapping from the input yc to the output uc of the left
side of the communication subsystem, i.e. h2 contains the
plant and the whole communication subsystem.

B. Preliminaries

Before presenting the stability results we will give a
corollary and introduce a notion in accordance to finite
gain L2 stability (1), both necessary for the ongoing analysis.

Corollary 1: In IF-OFP systems (2) without loss of generality
we can consider

εδ ≤ 1/4

Proof: If δε > 1/4 degenerate cases occur. There are two
cases to consider : (a) δ ,ε > 0, and (b) δ ,ε < 0. In the first
case, using the square complement, (2) can be reformulated
to

λ (t) =
∫ t

0

(
εy− u

2

)2
+u2(δε − 1

4
)dτ ≤ εE0

which cannot be satisfied for any system and each u,
since λ (t) can grow indefinitely depending only on the
input signal u if (δε −1/4) > 0. Analogously, in the second
case (b) the reformulation of (2) leads to λ (t) ≥ εE0. This is
true for any pair u(τ),y(τ) since εE0 ≤ 0 and λ (t) ≥ 0, thus
does not impose any restriction to the system input-output
behavior.

In accordance to finite gain L2 stability (1) we will denote
as finite gain L2 square stable, a system satisfying

‖yt‖2
L2

≤ γ2‖ut‖2
L2

+β 2 ∀u, t ∈ [0,∞). (8)

for some β ,γ > 0. Condition (8) is necessary and suffi-
cient for finite gain L2 stability. Sufficiency can be seen
by taking the square root of (8) and substituting inequal-
ity

√
a2 +b2 ≤ a+b, a,b > 0 in the right part of (8). Neces-

sity can be seen by taking the square of (1) and substituting
inequality (a+b)2 ≤ 2a2 +2b2. However the gains in (1), (8)
are not the same.

C. Stability with Passive Plant and Controller

If the plant is passive, using the sign notation of the input
and output vectors given in (5), h2 can be seen as feedback
interconnection of passive subsystems (plant and passivated
communication subsystem) and is thus passive. Further, the
controller hc is assumed to be passive. The two passive
subsystems h2 and hc are again in feedback interconnection,
thus the closed loop is passive and consequently, under
observability assumptions, stable for arbitrary large constant
time delay. In fact, all the passivity theorems [11] and the
corresponding stability results can be applied. The controller
and the plant can be either linear or nonlinear, continuous
or discrete time, time-invariant or time-varying subsystems.
The plant parameters can be even uncertain as long as the
plant remains passive. However, the passivity requirements
might be too restrictive in real applications.

D. Stability with Non-passive Plant or Controller

In [8] it is shown that the scattering transformation can
guarantee stability even if the plant or the controller are
non-passive LTI systems. Here, the more general, nonlinear
case is considered and it is shown how shortage of passivity



of the plant can be compensated by excess of passivity
of the controller and vice-versa, so that stability can be
guaranteed independently of delay even for non-passive,
nonlinear plants. More specifically the following theorem
holds:

Theorem 2: If

δc + εp > 0, εc + εpb2 > 0, in case α = εpb− δp

b
< 0

and

δc +
δp

b2 > 0, εc +δp > 0, in case α ≥ 0

where b > 0 the scattering transformation parameter, the
closed loop system with the scattering transformation the
plant and the controller, is finite gain L2 stable.

Proof: For the proof Proposition 1, the scattering transfor-
mation equations (3) and some mathematical manipulation
are applied. Substituting the right part of the reformulated
equations (3) in (6), for the h1 subsystem seen in Fig.2 holds

(1− δp

b
− εpb)‖ur,t‖2

L2
− (1+

δp

b
+ εpb)‖vr,t‖2

L2
≥

α
t∫

0

2urvrdτ −2Ep,0 ∀t > 0,
(9)

Two cases are to consider depending on the sign of α .
In case α < 0 inequality u2

r + v2
r ≥ 2urvr by multiplication

gives 2urvrα ≥ (u2
r + v2

r )α and by substituting in the right
part of (9) we get

(1−2εpb)‖ur,t‖2
L2
− (1+2εpb)‖vr,t‖2

L2
≥−2Ep,0, ∀t > 0.

(10)
If α ≥ 0, inequality 2urvr ≥−u2

r − v2
r

gives 2urvrα ≥−(u2
r + v2

r )α and like before by substituting
in the right part of (9) we get

(1− 2δp

b
)‖ur,t‖2

L2
− (1+

2δp

b
)‖vr,t‖2

L2
≥−2Ep,0, ∀t > 0.

In the next, first the case where α < 0 is considered.
From α < 0 and Corollary 1 it is easy to see that |εpb| < 1/2
so 1−2εpb > 0 and 1+2εpb > 0. By taking further into
account that the constant time delay operator satisfies (8)
for gain γ = 1, i.e. accordingly with assumption (7)

‖ur,t‖2
L2

≤ ‖ul,t‖2
L2

,

‖vl,t‖2
L2

≤ ‖vr,t‖2
L2

, ∀t > 0,

holds, it follows that

(1−2εpb)‖ul,t‖2
L2
− (1+2εpb)‖vl,t‖2

L2
≥−2Ep,0. (11)

Equation (11), by substituting the left part of the scattering
equations gives for the h2 subsystem seen in Fig. 2

t∫

0

ycucdτ ≥ εpb2‖yc,t‖2
L2

+ εp‖uc,t‖2
L2
−Ep,0

Thus, for the subsystem h2, with input yc and the out-
put uc, (2) holds with δ = εpb2,ε = εp. In case α ≥ 0,

following a similar procedure, it is proved that for h2, (2)
holds for δ = δp and ε = δp/b2. The proof is completed by
applying directly to the above Proposition 1.

Concluding the above, it is seen that if (2) holds for the
plant for some δp,εp, then for the subsystem h2, (2) also
holds, with δ = εpb2 and ε = εp, or δ = δp and ε = δp/b2

depending on the sign of α .

Remark 1: The effect of the scattering transformation
is to preserve the input output behavior of the plant as
described by (2) to the subsystem h2, independently of the
constant time delay, but for more conservative values than
the initial δp,εp. This result comes from the fact that the
scattering transformation transforms an IF-OFP system to a
system described by (8). The arbitrary large time delay does
not change this gain in (8) since the constant time delay
operator satisfies also (8) with γ = 1. Then, applying the
left part of the scattering transformation the subsystem h2

is described again by (2) but for more conservative values
than the initial δp,εp. The time delay operator could be
replaced by any other with gain γ = 1 in (8), and the above
analysis should be exactly the same. The exact relation
between the δ ,ε and γ will be given in the next section.

Remark 2: Although in the case of a passive system
where δ = ε = 0 the b parameter does not affect the
energetic properties of h2 and can be chosen freely,
if δ ,ε 	= 0, b should be tuned appropriately in order to
guarantee stability.

Remark 3: With Theorem 2 not only non-passive plants can
be stabilized with the scattering transformation, but also
in case of a strictly passive plant, a non-passive controller
would be allowed, as it can be seen from Theorem 2 and
positive δp,εp. A non-passive controller should possibly lead
to less conservative design.

IV. IF-OFP, SQUARE L2 GAIN AND THE SCATTERING

TRANSFORMATION

The scattering transformation can be seen as a transfor-
mation between an IF-OFP system and a system described
by (8). As shown in Section III, assuming a system satis-
fying (2) for εpδp ≤ 1/4 and α < 0, after substituting the
right part of the reformulated scattering equations (3), (10)
is reached which can be rewritten as

‖vr,t‖2
L2

≤ 1−2εpb

1+2εpb
‖ur,t‖2

L2
+

2Ep,0

(1+2εpb)
, ∀t ≥ 0, (12)

where ur,vr is the input and output of the subsystem h1.
If α ≥ 0, by the same procedure we reach

‖vr,t‖2
L2

≤ 1−2δp/b

1+2δp/b
‖ur,t‖2

L2
+

2Ep,0

(1+2δp/b)
, ∀t ≥ 0,

(13)
Thus subsystem h1 satisfies (8) for γ2 = 1−2εpb

1+2εpb

or γ2 = 1−2δp/b
1+2δp/b depending on the sign of α . In the

case of a passive system, i.e. δp = εp = 0, γ = 1, if δp < 0



or εp < 0, γ > 1 and in case the system is strictly passive,
i.e. δp,εp > 0, γ < 1. Thus, the scattering transformation
transforms an IF-OFP system to a system described by (8),
and as the passivity becomes more or less strict, the gain γ
becomes smaller or larger respectively.

Going the other way around, the subsystem with input ul

and output vl , see Fig. 2, is considered which is assumed to
satisfy (8) for some γ,β ≥ 0. By substituting the left part of
the scattering transformation equations in (8) and after some
mathematical manipulation we get

t∫

0

ycucdτ ≥ b
2

1− γ2

1+ γ2 ‖yc,t‖2
L2

+
1
2b

1− γ2

1+ γ2 ‖uc,t‖2
L2
− β 2

1+ γ2

where yc,uc is the input and the output respectively, of
the subsystem h2. Thus, h2 satisfies (2) with δ = b

2
1−γ2

1+γ2

and ε = 1
2b

1−γ2

1+γ2 . So a system described by (8) is transformed
to an IF-OFP system and the smaller the gain is the more
strictly passive the system becomes. In case γ = 1 a passive
system is recovered which is the original case of the scatte-
ring transformation with passive subsystems.

Concluding the above, the scattering transformation trans-
forms a IF-OFP system to a systems described by (8) and
vice versa, and the smaller the gain is in (8) the more strictly
passive the system becomes.

V. NUMERICAL EXAMPLE

In the next we proceed with some simulations in order
to test the efficacy of the above analysis. A spring-mass-
damper system is considered, with nonlinear spring coef-
ficient K(x1) = 2x2

1 kgm/s2 where x1 is the displacement,
mass M = 1 kg and negative damping D = −4 kgm seen
in Fig. 3.

M D

K

x1

up

Fig. 3. Mass spring damper system with nonlinear spring coefficient and
negative damping.

The input up to the system is the applied force to the mass
and the output is the velocity of the mass. If x2 = dx1

dt is the
velocity, the state space equations become

ẋ1 = x2, ẋ2 = −2x3
1 +4x2 +up, yp = x2

The above system is initially unstable because of the negative
damper coefficient. The goal is to stabilize it through a
network with constant time delay. A zero input w = 0 is
considered in the controller and the initial conditions of the
plant are x1(0) = 0, x2(0) = 1.

Taking as a storage function V (x) = 2x4
1 +(1/2)x2

2
we have V̇ = −4x2 +upyp and by integrating

from 0 to t,
t∫

0
upypdτ ≥−4y2

p −V (x(0)), so (2)

is satisfied for δ = 0, ε = −4. A proportional
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Fig. 4. Response of the nonlinear plant for different values of the
controller k and the parameter b.

controller is also used, yc = kuc. For the proportional
controller ucyc = ku2

c = γku2
c + 1−γ

k y2
c for 0 < γ < 1,

thus (2) is satisfied for δc = γk, εc = 1−γ
k and 0 < γ < 1.

Because εpb−δp/b = −4b < 0, from Theorem 2, stability
of the closed loop system is guaranteed as long as

γk−4 > 0 (14)

and
1− γ

k
−4b2 > 0. (15)

Equation (14) gives k > 4 and 4/k < γ < 1 and (15) by
substituting the less conservative value for γ = 4/k, gives

b <

√
k−4
2k

. (16)

The response of the closed loop system with zero in-
put w = 0 is tested with a forward and backward time
delay of T1 = T2 = 250ms. Two values for the controller are
checked k = 8 and k = 20. The results are presented in Fig. 4.

In the first case, where k = 8, (16) gives b < 0.125. The
response is indeed stable for b = 0.124 as the velocity settles
to 0 and becomes unstable for approximately b = 0.24. In
the second case, (16) gives b < 0.1. The response becomes
unstable for approximately b = 0.14.

In the next the response of the system with and with-
out the scattering transformation are compared for the
above two different values of the controller and diffe-
rent values of the time delay. In the case where k = 8
and b = 0.124 four different values of the roundtrip time
delay are tested, T ∈ [50,100,150,500] ms divided in equal
parts in forward and backward time delay. The results are
presented in Fig. 5. From Fig. 5 it is seen that the closed
loop system without the scattering transformation is sensitive
to the time delay T . For T > 100ms the response is affected
significantly and for T ≥ 150ms it is unstable. On the other
hand the system with the scattering transformation, not
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Fig. 5. Response of the system with and without the scattering transfor-
mation for k = 8, b = 0.124 and different values of the time delay.
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Fig. 6. Response of the system with and without the scattering transfor-
mation for k = 20, b = 0.09 and different values of the time delay.

only remains stable independently of the time delay, but
it’s response is not much affected with the increase of the
time delay, even for large values, as seen in the last figure
for T = 500ms.

In Fig. 6 the results for the second controller, k = 20 are
presented. Again four values of the roundtrip time delay are
tested T ∈ [50,60,70,500] ms divided in equal parts in the
forward and backward time delay. With greater controller
gain the closed loop system without the scattering transfor-
mation is even more sensitive to time delay, as it becomes
unstable for approximately T = 70ms. The system with the
scattering transformation however, like before, gives a steady
response independently of the time delay. For large values
some oscillations appear, as seen for the case of T = 500ms.
In both cases, k = 8 and k = 20, x1 settles also to zero but
it is not shown here due to space limitations.

From the above it is concluded that the scattering trans-
formation can be used to control even unstable, non-passive

and nonlinear plants through a network, while stability is
guaranteed independently of the time delay. Furthermore,
in this case the response of the system with the scattering
transformation is not only stable, but it is not affected much
from variations of the time delay, thus the closed loop system
is insensitive to time delay uncertainties.

VI. CONCLUSIONS

In this paper a novel delay-independent approach for
nonlinear NCS is proposed using the scattering transfor-
mation. Recently, it has been shown that the scattering
transformation can be used in networked control systems in
order to guarantee independent-of-delay stability in the case
of non-passive, LTI plants. In this paper the more general
nonlinear case is considered and a novel independent of delay
stability condition is established. The underlying principle is
the compensation of the shortage of passivity of the plant
by excess passivity of the controller, and vice versa. The
connection between the IF-OFP, square L2 gain and the
scattering transformation is also given. In an example with a
unstable nonlinear mass-spring-damper system the proposed
approach not only guarantees stability independent of time
delay, but makes also the system insensitive to time delay
uncertainties.
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