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Abstract— Communication time delay in a networked control
system (NCS) degrades the performance and may lead to
instability. For the first time the scattering transformation
is applied to NCS in order to guarantee stability in the
presence of arbitrarily large constant time delay. This approach,
initially derived from network theory and often used in bilateral
teleoperation with time delay, requires in its original version
all subsystems to be passive. In this paper a stability condition
is derived relaxing this restriction such that also non-passive
plants can be stabilized. The performance of the proposed
approach is superior over two standard approaches, the Smith
predictor and PI control in the presence of time delay uncer-
tainties. Experimental validation results are presented.

I. INTRODUCTION

With the ongoing development of advanced communica-
tion technologies communication networks become more and
more attractive for the signal transmission in control systems.
In such a networked control system (NCS) the plant and
the controller are spatially separated and the control loop
is closed physically through the communication network as
shown in Fig. 1. Compared to traditional control systems
with point to point connections the use of NCS results in
a decreased complexity and costs, easier maintenance and
system diagnosis, and higher reliability. Until now specific
industrial networks, such as CAN and PROFIBUS, have been
mainly used in NCS. Recently, common purpose networks,
such as e.g. Ethernet-like networks, attract the attention due
to their high flexibility.

However, the transmission of the controller and plant
output over a communication network introduces a time
delay into the closed loop system, which can be constant or
varying. In Ethernet-like networks the time delay depends on
the concurrent amount of traffic and there are no guarantees
on the maximum time delay. It is well-known that time delay
in a closed control loop degrades the performance and can
lead to instability.

The various stability conditions and the derived stabilizing
control methods known in the literature can be separated
into two categories, delay-dependent and delay-independent
approaches. In the first case an upper bound for the time
delay has to be assumed, and stability is guaranteed as long
as the time delay remains within this bound, while in the
second case stability is ensured for arbitrarily large time
delays.

Most of the methods developed for the analysis and
design of NCS are delay-dependent. In [1] the time delay
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Fig. 1. Networked control system architecture.

is assumed to be bounded by the sampling period and the
stability is analyzed using hybrid system techniques. Random
time delays, also bounded by the sampling period, are
considered in [2], a stochastic stability analysis is performed
and stochastic optimal control applied. A delay-dependent
approach based on Lyapunov stability with LMI conditions is
proposed in [3]. In the seminal work [4], [5] an augmentation
technique is applied to transform the time delay system to an
augmented discrete system without time delay and a stability
condition is presented for periodic time delays. The notion of
Maximum Allowable Transfer Interval (MATI) is introduced
in [6] denoting the maximum time interval between two
successive messages of each sensor for the system to remain
stable. A survey on recent NCS control methodologies is
presented in [7], further analysis and synthesis methods for
time delay systems can be found in [8].

In this paper a delay-independent approach is considered.
To the best knowledge of the authors for the first time
the scattering transformation is applied to NCS. Aiming
at stability of a time delay system this method has been
firstly applied to telepresence systems in [9] and extended
in [10]. Using the concepts of passivity and network theory,
the derived control law is based upon the fact that a system
of interconnected subsystems is passive if each of them is
passive, and consequently stable. The scattering transforma-
tion passivates the communication subsystem with arbitrarily
large constant time delay. However, in its original version
both, the plant and the controller, are required to be passive.
In this paper we will show that under certain conditions
a non-passive LTI plant can be stabilized independently
of the constant time delay. Furthermore we show that the
control performance gracefully degrades with increasing time
delay, i.e. is robust with respect to time delay variations and
uncertainties.

This paper is organized as follows: Section II introduces
the notions of passivity, positive real systems and scattering



transformation; a novel stability condition for non-passive
plants is derived in Section III followed by design aspects
and a performance comparison with standard approaches in
Section IV and experiments in Section V.

II. BACKGROUND

A. Passive and Positive Real Systems

The passivity property of a system’s element is a useful
tool for its stability analysis. An element is said to passive
if it does not generate energy, which means that given zero
energy storage at t = 0, the property

t
∫

0

Pin(τ)dτ =

t
∫

0

uT (τ)y(τ) dτ ≥ 0 ∀t > 0, (1)

holds, with Pin(τ) denoting the instantaneous power input
to the system, u(τ), y(τ) the input and output vectors. If
two passive systems are combined in parallel or feedback
connection the resulting system is still passive [11]. Thus,
by induction any combination of passive systems in parallel
or feedback connection is again passive.

An important practical feature of the passivity formulation
is that it can be easily defined in the Laplace domain
for linear systems. A stable SISO, LTI system H( jω) is
passive [11] if and only if

Re{H( jω)} ≥ 0, ∀ω ≥ 0,

which means that the entire Nyquist plot of the system lies in
the right half plane. Another notion related with passivity is
positive realness. A SISO system H(s) is said to be positive
real (PR) if

Re{H(s)} ≥ 0, ∀σ ≥ 0, (2)

where s = σ + jω is the Laplace variable. A system is passive
if and only if it is PR. Thus, the notions of passivity and posi-
tive realness can be interchanged indiscriminately. Further, a
system H(s) is strictly positive real (SPR) if H(s−ε) is PR
for some ε > 0. Necessary conditions for a SPR system is
that it is strictly stable and

Re{H( jω)} > 0, ∀ω ≥ 0, (3)

i.e H(s) is strictly positive on the jω-axis. The major
difference between PR and SPR is that the first can tolerate
poles on the imaginary axis as long as they are simple and
the associated residues are real and non-negative.

B. Scattering Transformation

In case of time delay in the communication network the
bidirectional communication channel can be modeled as
a time delaying two-port with time delays T1, T2 in the
forward and the backward path respectively, as shown in
Fig. 2. The block Hp denotes the plant and Hc the controller,
both assumed to be SISO LTI systems. The blocks of the
scattering transformation are explained below.

The time-delaying two-port generates energy as shown
in [9], i.e. the passivity condition is violated. The scattering

Fig. 2. NCS with scattering transformation.

transformation is used in order to passivate the communica-
tion network with the transformation equations given by

ul =
1√
2b

(uc +byc) ; ur =
1√
2b

(yp +bup) ;

vl =
1√
2b

(uc −byc) ; vr =
1√
2b

(yp −bup)
(4)

where b > 0 is a tuning parameter that can be chosen
freely. Furthermore, the relation between the left and right
hand scattering variables is as follows ur(t) = ul(t −T1)
and vl(t) = vr(t −T2).

The energy balance (1) for the two-port is now computed
with the input vector uT = [yc − yp] and the output vec-
tor yT = [uc up], see Fig. 2 and the reformulated transforma-
tion equations (4) inserted
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(5)

The passivity condition (1) is satisfied, hence the commu-
nication two-port with constant time delay is passive, in
fact it is energetically lossless as the energy is stored in the
communication two-port for the time of transit and released
afterwards.

III. STABILITY

A. Stability with a Passive Plant and Controller

If the plant is passive, i.e. satisfies (1), then the sub-
system H2 comprising the plant and the communication
subsystem including the scattering transformation, see Fig. 2
is passive. Further, the controller Hc is assumed to be passive.
The two passive subsystems H2 and Hc are in feedback
interconnection, thus the closed control loop is passive and
consequently, under observability assumptions, stable. In



fact, all the passivity theorems [11] and the corresponding
stability results can be applied. The controller and the plant
can be either linear or non-linear, continuous or discrete
time, time-invariant or time-varying subsystems. The plant
parameters can be even uncertain as long as the plant
remains passive. However, the passivity requirements might
be too restrictive in real applications. In the following, a
sufficient condition for the stability is derived relaxing these
requirements.

B. Stability with a Non-Passive Plant or Controller

In this first approach the continuous time case is consi-
dered, the time delays T1, T2 are assumed to be constant but
arbitrarily large, the plant and the controller are LTI systems,
the scattering transformation (4) is applied with the structure
of the closed loop system presented in Fig. 2.
Theorem: If

K(s) =
1
b

b2Hc +Hp

1+HcHp
, (6)

where Hp denotes the plant transfer function, Hc the con-
troller transfer function, and b the tuning parameter of the
scattering transformation, is PR, i.e.

Re{K(s)} ≥ 0, ∀σ ≥ 0, (7)

then the closed loop system is stable independently of the
time delay. If condition (7) holds strictly, that is K(s) is
SPR (3), then the closed loop system is asymptotically stable.

Proof: The proof is straightforward and follows from
computing the roots sr of the closed loop system. It is shown
that as long as K(s) is PR then the system has no roots in
the open right half plane.

From the reformulated equations of the scattering trans-
formation (4), the open loop transfer function HOL of the
system, i.e. the transfer function from the controller input e to
the output of the left part of the scattering transformation uc
in Fig. 2 is computed

HOL(s) = bHc(s)
1+ e−sT H1(s)
1− e−sT H1(s)

, (8)

with T = T1 +T2 the roundtrip time delay in the communi-
cation network and

H1(s) =
Hp(s)−b
Hp(s)+b

, (9)

the transfer function from ur to vr computed by means of (4).
The roots sr of the closed loop system are placed where

the equation HOL(sr) = −1 holds, thus substituting H1 (9)
in (8) yields

HOL(sr) = bHc(sr)
b+Hp(sr)

1+e−srT

1−e−srT

b 1+e−srT

1−e−srT +Hp(sr)
= −1,

and after some mathematical manipulation

−1+ e−srT

1− e−srT =
1
b

b2Hc(sr)+Hp(sr)

1+Hc(sr)Hp(sr)
= K(sr).

Now considering the real part of the transfer function K(sr)
that is defined according to (6), at the roots sr of the closed
system the equation

Re{K(sr)} = Re
{

−1+ e−srT

1− e−srT

}

=−Re
{ 1− e−2σrT − j2e−σrT sinωrT

(1− e−σrT cosωrT )2 +(e−σrT sinωrT )2

}

=− 1− e−2σrT

(1− e−σrT cosωrT )2 +(e−σrT sinωrT )2 ,

(10)

must hold. Lets assume K(s) to be PR (7). It can be easily
seen that in this case there exists no solution sr of (10)
for σr > 0 as the real part of K(sr) is always non-negative
then, while the right part of (10) is negative. Consequently,
the closed loop system has no roots in the open right half
plane, thus is stable. Furthermore, if K(s) is assumed to be
SPR, then (10) has no solution sr on the imaginary axis as
well, thus the closed loop system has no roots in the closed
right half plane, i.e. is asymptotically stable.

For the control design the tuning parameter b can be
chosen such that the stability condition (7) is satisfied.

C. Simulations
In order to test the validity of the above condition simula-

tions are conducted. A non-passive plant is considered with
the transfer function

Hp(s) =
20

(s+2)(s+10)
, (11)

and a PI controller

Hc(s) =
1.5(s+2)

s
, (12)

which guarantees a zero steady state error.
The influence of the tuning parameter b on the posi-

tive realness of K(s) (6) and thus the system’s stability
is investigated. From the Nyquist plot of K(s) in Fig. 3
it can be seen that the plot moves towards the right
half plane with increasing b. For b = 0.2 it crosses the
imaginary axis into the right half plane and continues to
move deeper into it. Thus, for b ≥ 0.2, K(s) is SPR, and
while b increases it becomes more robustly SPR. The
step response of the system for different values of time
delay T ∈ [150,300,1000]ms and different values of b are
depicted in Fig. 4. As expected the closed loop system
is stable for b = 0.2. In the first case (T = 150ms) the
system becomes unstable for approximately b = 0.18 while
in the other two cases (T = 300ms and T = 1000ms) at
approximately b = 0.16. In all step responses oscillations
can be observed, i.e. for b ≈ 0.2 there are roots close to
the imaginary axis. This indicates that the sufficient stability
condition (7) in the considered case is not conservative.

IV. PERFORMANCE

In the following, controller design aspects are discussed.
Main objectives are the achievement of a specified steady
state behavior and the robust closed loop performance in the
presence of time delay uncertainties. Further, a comparison
with standard approaches is performed.



A. Design Aspects

The transfer function of the closed loop system is com-
puted from Fig. 2 and the transformation equations (4) to
be

H(s) =
Yp(s)
W (s)

=
HcHp

1+HcHp

2e−sT1

K(1− e−sT )+(1+ e−sT )
, (13)

where K = K(s) is defined according to (6), W (s) is the de-
sired value, and Yp(s) the output of the plant, see Fig. 2. The
closed loop transfer function comprises two parts: the left
part is the closed loop transfer function without time delay
and scattering transformation, the right part incorporates the
effect of the time delay and of the scattering transformation
on the closed loop behavior.

Looking at the steady state response s = 0 the right part
in (13) is equal to one

H(0) =
Hc(0)Hp(0)

1+Hc(0)Hp(0)
.

As long as the system satisfies the stability condition (7) the
time delay and the scattering transformation do not affect
the steady state behavior. Thus, concerning the steady state
error, the controller can be designed without considering the
time delay and the scattering transformation.

Primary objective is to design a controller which is robust
to different values of the time delay. The sensitivity function
with respect to the time delay T is

SH∗
T =

T
H∗

dH∗

dT
= − sTe−sT (K −1)

K(1− e−sT )+(1+ e−sT )
,

where H∗ = HesT1 represents the closed loop transfer func-
tion (13) without the purely time delay shifting part e−sT1 .
As long as K(s) is close to one the sensitivity function is
almost zero and consequently the system is robust to time
delay uncertainties. Thus, the design objective is to find a
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Fig. 3. Nyquist plot of K(s) for different values of b, the stability
condition (7) is violated for b = 0.01 (upper left plot), and marginally
satisfied for b = 0.2 (upper right plot).
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Fig. 4. Step responses for different values of b and roundtrip time delay T ,
stability for b = 0.2 independent of time delay.

controller and a parameter b such that K(s) ≈ 1 holds over a
broad frequency range. If exactly K(s) = 1 holds ∀s then (13)
reduces to

H(s) =
Hc(s)Hp(s)

1+Hc(s)Hp(s)
e−sT1 ,

which is the closed transfer function with zero time delay
in the loop, but the response shifted by the forward time
delay T1. Concluding the above, the overall design goal
is to find a controller and a value for b such that the
closed loop system without the time delay and the scattering
transformation has a satisfying response while K(s) ≈ 1 for
a broad range of frequencies.

B. Performance Comparison

The proposed control approach is compared with two
common design approaches for systems with time delay, the
Smith predictor and PI control. Of specific interest is the per-
formance robustness with respect to time delay uncertainties.
Both the compared approaches are delay-dependent, i.e. the
time delay has to be known for the control design which is
an unreasonable assumption in Ethernet-like networks.

Specifically, the integrating part of the PI controller, en-
suring a zero steady state error of the closed loop, inhibits
the delay-independent design, as the open loop transfer
function then cannot satisfy the delay-independent stability
condition |HOL|∞ < 1.

In the following a maximum roundtrip time delay
of T = 300 ms is assumed, further, the plant is given by (11).
For the scattering approach the controller Hc (12) is used,
ensuring a zero steady state error as long as the stability
condition (7) is satisfied, i.e. b ≥ 0.2, see Sec. III-C. The
parameter b = 1 is chosen according to the previous con-
siderations such that K(0) = 1 holds.

For the compared standard approach the PI controller (12)
is used with a gain k > 0 adapted to ensure stability with the
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Fig. 5. Step responses of the system with scattering approach, Smith
predictor, and PI controller for different value of time delay.

assumed maximum time delay

HPI
c (s) = kHc(s).

The gain is tuned heuristically such that a compromise
between the rise time and the overshoot is obtained.
For k = 0.45 the overshoot is less than 10% for T = 300 ms
which is considered to be acceptable in this case.

For the Smith predictor approach the controller Hc
from (12) is used to design the final controller

HSP
c (s) =

Hc(s)
1+Hc(s)Hp(s)[1− e−sT ]

,

where T = 300 ms represents the maximum time delay. Note,
that full knowledge of the plant is required for its design. In
case of exact plant and time delay knowledge the response
of the time delayed system with Smith predictor equals the
response of the system without time delay shifted in the time
axis by T .

The step responses for all three approaches are compared
for different values of time delay, the initially presumed time
delay T = 300 ms, and T ∈ [75, 150, 600] ms. The results
are shown in Fig. 5. As expected for the nominal time
delay T = 300 ms the Smith predictor achieves the best per-
formance with respect to rise time and overshoot. However,
with decreasing time delay the rise time of the PI controlled
and the Smith predictor system increases substantially, i.e.
the performance is degraded, while the controller with the
scattering transformation shows an increasingly better perfor-
mance. If the time delay goes to zero the step response tends
towards the response of the system without time delay and
no scattering transformation, see (13) for T = T1 = 0. For
higher time delays than expected, see Fig. 5 for T = 600 ms,
both the Smith predictor and the PI controller give high
overshoot and a high settling time, while the performance
of the scattering controller deteriorates gracefully.

In summary, the proposed control approach with the
scattering transformation is robust against time delay uncer-
tainties, while stability is guaranteed independently of the
amount of the time delay. Although the scattering is a delay-
independent approach contrary to the PI controller and the
Smith predictor, it performs well compared to the other two
controllers even for the initially presumed time delay.

V. EXPERIMENTAL RESULTS

The goal of the experiment is the position control of an
actuated 1DOF pendulum. The experimental testbed consists
of the 1DOF pendulum shown in Fig. 6 connected to a
PC running under RT Linux. The original design of the
pendulum can be found in [12].

The DC-motor torque is controlled over a PWM amplifier
operated under current control with the reference signal given
by a voltage from the D/A converter output of the I/O
board. The position of the lever is measured by an optic
pulse incremental encoder and processed by a counter on
the I/O board. The control loop including the controller,
the scattering transformation and the communication net-
work with constant time delay are implemented as MAT-
LAB/SIMULINK blocksets where standalone realtime code
is generated from. All the experiments are performed with a
sampling time interval of TA = 1 ms.

The plant is approximated by a transfer function whose
parameters are determined experimentally through a square
pulse response and consecutive least squares identification.
The identified transfer function from the input voltage to the
angle of the pendulum is given by 36/(s2 +10.15s). The
output of the plant is chosen to be a linear combination of
the position and the velocity in order to reduce oscillations,
so the final transfer function is given by

Hp(s) =
36

s+10.15
0.05s+1

s
.

The controller, designed with loop-shaping methods without
considering the time delay and the scattering transformation,
is given by

Hc(s) =
10(s+10.15)

s+14.311
.

Fig. 6. Experimental testbed
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Fig. 7. Frequency response of K(s)

For the above plant and the controller the equation K(0) = 1
gives b = 0.141. From the frequency response of K(s) in
Fig. 7 it can be seen that K(s) is PR according to the stability
condition (7) and up to a frequency of 4rad/s K(s) has a gain
of approximately one.

Because of the fact that the controller is biproper, an
algebraic loop is created consisting of the controller and the
left part of the scattering transformation, which cannot be
solved in discrete time. To overcome this obstacle a low
pass filter with unit gain and cut-off frequency of 1000 rad/s
is inserted just before the controller. With this filter K(s)
remains positive real and further the cut-off frequency of the
filter is high enough such that its effect on the response is
practically negligible.

In each experiment the pendulum starts from the upright
position, the desired position is given by a step function
with a final value of 0.2 rad. Four different values for the
time delay T ∈ [75, 150, 300, 600] ms are tested. The results
of the experiment are presented in Fig.8 showing that the
system is stable and robust to different values of the time
delay, as it deteriorates smoothly with the increase of the
time delay. Furthermore, the experimental and the simulation
results are close. The small difference between the simulation
and experimental results as well the steady state error in
some of the figures are due to unmodeled dynamics and non-
linearities of the plant such as friction, backlash and gravity
forces.

VI. CONCLUSIONS

In this paper a delay-independent control approach for
networked control systems (NCS) using the scattering trans-
formation is proposed. Compared to conventional control
techniques such as the Smith predictor or PI control the sta-
bility is guaranteed without knowing the time delay. A novel
contribution compared to the known scattering transforma-
tion is an extension for non-passive plants. Control design in
the presented approach is possible without assuming know-
ledge about the time delay, the controller can be designed
by any design methodology not considering time delay at
all and for negligible time delay the performance converges
to the non-delay design case. In a simulation example the
superior performance of the novel approach is compared to
conventional Smith predictor and PI control, in particular for
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Fig. 8. Experimental results: step responses of the pendulum for various
time delays

time delay uncertainties. A pendulum hardware-in-the-loop
experiment verifies the efficacy of the proposed approach
in experiments. Clearly, the proposed novel approach holds
greatest promise for NCS. Future work is to approach time-
varying time delay, packet loss, and non-linear systems.
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