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Abstract

The increased interest in networked control systems has led to various paradigm shifts in the
design of digital controllers. The systems under consideration usually consist of a multitude
of small-scale integrated entities that share resources represented through common commu-
nication and computation capabilities. The efficient usage of these resources is a prerequi-
site for the successful operation of the control system. This fact has stimulated scientists to
look for advanced sampling schemes beyond the conventional periodic sampling scheme for
digital control to reduce resource consumption. Event-triggered sampling has impressively
demonstrated its superiority for control applications with communication constraints in the
feedback loop. Intuitively, the event-trigger only provides new data to the controller when
truly needed. This leads to a natural reduction in the resource consumption. Despite of its
evident benefits arising in many control applications, only a limited number of theoretical
results is available for the systematic analysis and synthesis of event-triggered control. This
urges the need for the development of novel methods that go beyond the classical theory
developed for periodically triggered control systems.

The present thesis addresses the endeavour for a better understanding of event-triggered
control in the context of optimal stochastic control. The design problem is formulated as a
team decision problem related to linear quadratic regulation, where the event-trigger and
the controller are regarded as individual decision makers. The co-design of event-trigger and
controller aims at the joint optimization of a common objective that takes into account the
communication constraints. Team decision problems are known to be challenging, as they
commonly do not allow to apply the standard mathematical tools from stochastic optimal
control, nor do they permit the development of efficient solution algorithms in general.
This fact necessitates a careful study of the problem structure to obtain innovative solution
methods.

The main contributions of this thesis can be divided into two parts. First, structural prop-
erties are found that arise in the underlying team decision problem for a single resource-
constrained feedback loop. Aside from being fundamental for conceiving the basic princi-
ples of optimal event-triggered control, the obtained characterization is crucial in the second
part of the thesis, as it enables the tractable design of optimal event-triggered controllers.
The second part develops efficient design methods for multiple event-triggered controllers
sharing a common communication network. Besides developing systematic design methods
for control systems with communication constraints, the event-triggered system is analyzed
with regard to aspects related to stability, performance, adaptability, and the decentraliza-
tion of the synthesis procedure.
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Zusammenfassung

Das wachsende Interesse an vernetzten Regelungssystemen hat zu mehreren Paradigmen-
wechseln im Entwurf von digitalen Regelungssystemen geführt. Vernetzte Regelungssyste-
me bestehen aus einer Vielzahl an kleineren, eigenständigen Funktionseinheiten, welche
üblicherweise auf gemeinsame Kommunikations- und Rechenkapazitäten zugreifen müssen.
Die effiziente Nutzung der beschränkten Ressourcen ist eine Grundvoraussetzung für den
erfolgreichen Einsatz dieser Regelungssysteme.

Diese Tatsache hat Wissenschaftler dazu motiviert, alternative Abtastschemata jenseits
konventioneller digitaler Regelungstechnik, in der Signale periodisch abgetastet werden, zu
erforschen. Die Überlegenheit ereignisbasierter Abtastsysteme gegenüber konventioneller
Methoden konnte dabei in einer Mehrzahl an Arbeiten empirisch belegt werden. Durch die
ereignisbasierte Abtastung wird neue Information erst dann bereitgestellt, wenn sie wirk-
lich benötigt wird. Dies führt zu einer natürlichen Senkung des Ressourcenverbrauches bei
gleichbleibender Regelgüte. Trotz der erwiesenen Vorteile in vielen Regelungsanwendun-
gen existieren nur vereinzelte theoretische Ergebnisse für eine systematische Analyse und
Synthese ereignisbasierter Regelungssysteme. Deshalb besteht ein großes Interesse an der
Entwicklung neuartiger Methoden, die über die klassische Theorie der periodisch abgetas-
teten Regelungssysteme hinausgehen. Die vorliegende Dissertation hat sich zum Ziel ge-
setzt, zu einem besseren Verständniss ereignisbasierter Regelungssysteme im Kontext von
mathematischer Optimierung beizutragen. Das Entwurfsproblem wird dabei als optimaler
Entscheidungsprozess in Gruppen formuliert, bei dem der Regler und der Ereignisgenerator
als individuelle Entscheidungseinheiten definiert sind.

Diese legen ihre Entscheidungsregeln so aus, dass eine gemeinsame Kostenfunktion, wel-
che die Ressourceneinschränkungen beinhaltet, minimiert wird. Das entstehende Optimie-
rungsproblem wird im Zusammenhang linear-quadratischer Regelung studiert. Selbst in die-
sem Kontext ist bekannt, dass sich im Allgemeinen das Lösen von optimalen Entscheidungs-
prozessen in Gruppen als schwierig heraustellt, da die mathematischen Methoden für den
optimalen Regelungsentwurf nicht anwendbar sind. Diese Tatsache erfordert eine innovative
Untersuchung der Problemstruktur, um effiziente Lösungsansätze zu entwickeln.

Die zentralen wissenschaftlichen Beiträge dieser Disseration gliedern sich in zwei Teile.
Im ersten Teil werden strukturelle Eigenschaften des zugrunde liegenden optimalen Ent-
scheidungsprozesses für einschleifige Regelungssysteme mit Ressourcenbeschränkungen in
der Rückkopplung aufgezeigt. Abgesehen von den gewonnenen Einsichten in die grund-
legenden Arbeitsprinzipien optimaler ereignisbasierter Regelungssysteme, nimmt die Cha-
rakterisierung eine entscheidende Rolle im zweiten Teil ein, da sie den Entwurf optimaler
ereignisbasierter Regelungen realisierbar macht. Im zweiten Teil werden effiziente Entwurfs-
methoden für mehrschleifige ereignisbasierte Regelungskreise über ein gemeinsames Kom-
munikationsnetz entwickelt. Darüberhinaus wird das ereignisbasierte Regelungssystem in
Bezug auf Stabilität, Regelgüte, Adaptivität und Dezentralisierung der Entwurfsmethodik
analysiert.
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1

Introduction

This chapter introduces the basic concept of event-triggered control. On the one hand, it
aims at illustrating the benefits of event-triggered sampling for control applications in the
presence of communication constraints in the feedback loop. On the other hand, it identifies
the major challenges and open questions that arise from the use of event-triggered sampling
with a particular emphasis on optimality. These two aspects are discussed in Section 1.1
and 1.2, respectively. In Section 1.3, the literature related to event-triggered control is
reviewed and its links to this thesis are highlighted. Eventually, an outline of this thesis and
its main contributions are described in Section 1.4.

1.1 The Principle of Event-Triggered Sampling in Control

Computer-controlled systems are commonly sampled periodically. By considering the evo-
lution of the system at its equidistant sampling times, the system can be described by dif-
ference equations with constant coefficients provided the initial continuous-time system is
time-invariant. For such discrete-time systems, a well-established theory exists that has been
used extensively in many application of digital control systems [ÅW11]. The advent of net-
worked control systems has however caused a rethinking in the design of sampling strategies
for such systems. Networked control systems are composed of a multitude of discrete embed-
ded systems that exchange information through common communication and computation
resources. These resources have commonly limited capabilities that may arise from band-
width limitations, restricted computational power, or energy constraints. Throughout this
thesis, we will abstract these limitations by communication constraints in the feedback loop.
Examples for networked control systems range from flexible manufacturing, multi-robot sys-
tems, and automated traffic systems to power grids and other distribution systems like HVAC

1



1 Introduction

ProcessController

Communication network

Event-trigger

measurementscontrol
inputs

Figure 1.1: Principle of event-triggered sampling for feedback control over a resource-
constrained communication network.

control (heating, ventilation, and air conditioning) for building automation and water flow
control. The increasing complexity of such systems with the ability to acquire and process an
almost unlimited amount of data from a multitude of networked sensors, urges the need for
an efficient usage of resources for real-time optimal decision making in these time-critical
systems.

With regard to control systems having resource constraints in their feedback loops, event-
triggered sampling constitutes a promising alternative compared to periodic sampling. By
only sampling when needed, event-triggered sampling naturally reduces the amount of data
to be processed. This is illustrated via the following example of a simple event-triggered
control system sketched in Fig. 1.1.

Consider the task of controlling a process through measurement feedback in order to
counteract the impact of disturbances. The event-trigger situated at the sensor node moni-
tors the current measurement output of the process and decides upon its evolution, whether
or not to update the controller by transmitting the current measurement over the resource-
constrained feedback link to the controller. The most common way of implementing an
event-triggered sampling strategy is to provide a new measurement to the controller when-
ever a tolerable threshold in the (possibly transformed) measurement space is surpassed. By
tolerating a certain amount of deviation when regulating the process, which is also inevitable
in periodically sampled systems, the control input is then adjusted accordingly only when
necessary. In that way, it can be imagined that the event-triggered sampling mechanism
leads to a reduction of sampling instances while maintaining a certain level of performance.

In the course of this thesis, we will formulate the design problem of event-triggered control
as an abstract optimization problem over a very general space of possible solutions that does
not take the above notion of event-triggered sampling into account. However, it will turn out
that the optimal solutions will allow very natural interpretations that resemble the intuitive
idea of event-triggered control just described.

It should be noted that a persistent monitoring of the current measurement is a substantial
requirement for the implementation of event-triggered controllers. This monitoring can
be performed continuously or in discrete-time. Throughout the thesis, we will focus on
event-triggered control in discrete-time. Aside from being more realistic in applications,
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1.2 Challenges in Optimal Event-Triggered Control

where sensor polling is performed periodically, several issues that need to be taken care of
in continuous-time, e.g. the potential occurrence of the Zeno-behavior, are directly avoided.
This lets us focus on the main issues arising in the optimal design of event-triggered control
under communication constraints.

1.2 Challenges in Optimal Event-Triggered Control

Along with the benefits of event-triggered sampling in resource-constrained feedback control
systems described in the previous section, several issues emerge in the analysis and design
of such systems that are not present in time-triggered control. As this thesis studies the op-
timal design of event-triggered control under communication constraints, it is subsequently
focused on the challenges arising in the context of optimality.

The optimal design problem for single-loop control systems with an information-
constrained feedback loop can be regarded as a two-person team decision problem, in which
the controller and the event-trigger take the role of individual decision makers aiming at the
optimization of a common objective [Rad62]. The distinguishing feature compared to com-
mon optimal control problems is that there is no central coordination of decisions, but both
decision makers need to take actions based on their individual information. The available
information differs between both decision makers, as the event-trigger has a continuous
access to current measurements, while the controller only receives data when an event is
triggered. What makes such class of problems challenging is that standard techniques of
stochastic optimal control theory like dynamic programming and the separation principle
are in general not directly applicable. Even for a simple linear system with quadratic cost,
it has been shown in [Wit68] that the optimal solution is hard to find when having two
decision makers with a distributed information pattern.

In particular, there are two phenomena that complicate the analysis of optimal event-
triggered control, which do not appear for the optimal control problems that are time-
triggered. These arise from the fact that one decision maker may signal the other decision
maker through its actions either in order to improve the information of the other decision
maker or in order to improve its own knowledge on the overall system state. For the under-
lying event-triggered control system, this can occur in two ways. First, signaling is naturally
present through the event-trigger that decides upon its own observed data whether or not
the controller shall obtain new state information. It should also be noted that by not send-
ing information to the controller, the event-trigger implicitly signals also information to the
controller depending on the choice of the event-triggering law. On the other hand, assum-
ing that the law of the event-trigger is fixed, the controller may invoke the event-trigger to
send another state update by choosing control inputs accordingly. This phenomenon is also
referred to as the dual effect of control. The term dual comes from the dual role of the
controller: (i) the controller affects the state evolution, and (ii) it can probe the system to
reduce its state uncertainty.
It should be remarked that both effects - signaling and dual control - do not occur in the
equivalent formulation for the design of optimal time-triggered controllers in the linear
quadratic framework. Signaling can not occur, as the sampling times are chosen before-
hand in the time-triggered sampling strategy, and therefore no additional information is
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contained in the timing variables. The dual effect of control is also not present, as the re-
sulting time-triggered system is a possibly time-varying linear system, in which the sampling
times can not be altered by the control inputs.
Though signalling and the dual effect can improve the system performance, they are in gen-
eral undesired, as they do not admit the development of efficient numerical algorithms for
optimal control, even not in the linear quadratic framework. The solutions are generally
non-linear and depend on the complete observation history. This usually forces the system
designer to resort to heuristic methods in order to tame the degree of freedom with regard
to the event-triggered control design.

The situation gets even more challenging when multiple control subsystems share a com-
mon communication network in their feedback loops. In addition to the issues emerging
for single-loop event-triggered systems, the shared resource which needs commonly to be
displayed as a sample-path constraint complicates the analysis and design of event-triggered
control algorithms for multi-loop systems considerably.
Since data transmission is event-driven and therefore is influenced by the physical process,
the communication system and the control system can not be analyzed independently from
each other, but there is a tight interaction between them. On the one hand, the fact that
the event-triggered control system operates in a decentralized fashion, in which events are
triggered based on local measurements, results in unpredictable delays and packet collisions
during data transmission in the feedback loop. On the other hand, the sample-path con-
straints reflecting the scarce communication resource pose a major challenge with regard
to the optimal design, because the resource limitations need to be satisfied at each time
step. These complications demand for suitable problem relaxations in the optimal design
formulation taking into account the difficulties arising from the loss of predictability and the
interaction between communication and control.

1.3 State of the Art

There are contact points to two main lines of research that are related to Part I and Part II
of this thesis. Besides having a tight connection to the study of the analysis and design of
event-triggered control, focusing in particular on the joint optimization of event-trigger and
control, this thesis shares also links to results of event-triggered scheduling algorithms in
networked control systems discussed at the end of this section.

In the following, results in event-triggered control are reviewed. Initiated by Karl Åström,
Bo Bernhardsson in [ÅB02] and by Karl-Erik Årzén in [Årz99], there is an increased inter-
est in event-triggered control to reduce the information flow in the feedback-loop for more
than a decade. Several research groups have demonstrated empirically that event-triggered
control is capable to reduce data processing significantly compared with traditional period-
ically sampled control methods, while maintaining the same level of system performance
[LL10; AMA+14; WL11; MT11; Tab07; HSVDB08; DH12; DFJ12; SDJ13; ZC10; WL09;
WL10; MUA12]. Event-triggering has proven to be successful in various domains, such
as control over communications [ÅB02; LL10; AMA+14; WL11; MT11], embedded real-
time control design [Årz99; Tab07; HSVDB08], distributed optimization algorithms [ZC10;
WL10; WL09; MUA12], and multi-agent systems [DFJ12; SDJ13].
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1.3 State of the Art

The synthesis of event-triggered controllers often takes an emulation-based approach,
which presumes a stabilizing continuous-time controller. The control inputs are chosen ac-
cording to this control law at triggering times and are kept constant in between triggering
times. The event-trigger is commonly defined as a threshold function depending on the cur-
rent state value and the discrepancy between the last sampled state and the current state
value. By using concepts from Lyapunov theory for hybird systems and input-to-state stabil-
ity, the event-trigger thresholds are chosen such that practical stability in terms of uniform
boundedness [LL10; HSVDB08], or even global asymptotic stability of the event-triggered
control system can be guaranteed [Tab07; WL11; MT11]. Similar to the emulation-based
concept for event-triggered control, existing algorithms for distributed optimization algo-
rithms and for multi-agent systems can be extended to use event-triggered message passing
between agents [ZC10; WL10; WL09; MUA12; DFJ12; SDJ13]. The events are commonly
triggered locally whenever the discrepancy between current and the sampled localized value
at an agent exceeds a threshold.

It can be summarized that the work on event-triggered control mentioned so far focuses
on maintaining convergence and stability when implementing an event-triggered sampling
strategy. As the results do not explicitly take into account the scarce resource in their design,
it is difficult for these works to assess the required computational and communicational
requirements beforehand that guarantee a certain level of performance. The system model
is also not capable of considering blocking and delaying effects due to the asynchronous
exchange of data when multiple event-triggers are used. Apart from these issues, a critical
point motivating this thesis is the open question, which controller will eventually be most
suitable within the event-triggered sampling framework. This question can not be answered
by the emulation-based approach as the controller needs to be chosen a priori.

A different approach for the event-trigger design, that is more closely related to this thesis
since it incorporates the limited resource, formulates the synthesis problem in the framework
of optimal stochastic control and estimation [XH04; Cog09b; RJJ08; RJ09a; RMB12; SL12;
WJJS13; RSJ13; IB10; LM11]. These works propose several ways for taking into account
the limited resource. There is either a constraint on the total number of transmission over
a finite time interval [RJJ08; RJ09a; RMB12; IB10], or an average sending rate constraint
[WJJS13], or the limited resource is incorporated as an additional communication penalty
in the cost function [XH04; Cog09b; LM11].

In [XH04; RMB12; IB10; LM11; SL12; WJJS13], the problem of event-triggered estima-
tion for linear systems is studied. Similar to the optimal event-triggered control problem,
this problem can be viewed as a two-person team problem with the decision makers being
the event-trigger and the estimator that obtains new information based on the event-trigger’s
decision. Several attempts have been made to by-pass the problems arising in the joint opti-
mization of the event-trigger and the estimator which have been mentioned in the previous
section. On the one hand, the work in [XH04] circumvents the problem of jointly optimizing
both decision makers by fixing the estimator to be the optimal linear state predictor. This
state predictor omits the additional information that arises from not sending information.
Not sending information can however be valuable information as it tells the estimator that
the state is within a certain region, where no event is triggered. On the other hand, the work
in [SL12; WJJS13] takes into account this information in order to design optimal estima-
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tors, while fixing the event-trigger. By assuming that the event-trigger is an even function
of the network-induced estimation error, it turns out that the optimal state estimator coin-
cides with the optimal linear predictor that does not take into account the information of
not having transmitted [RMB12; IB10]. Based on this symmetry assumption, the design
of the event-triggered estimator can be facilitated considerably, as it reduces to an optimal
stopping problem [RMB12] or an optimal control problem that can be solved by dynamic
programming [IB10]. By using result in majorization theory that have previously been ap-
plied in the joint optimization of paging and registration [HMY08], the authors in [LM11]
adapt this problem to the optimal event-triggered estimation problem for first-order systems
and show that symmetric event-triggers are indeed optimal. Following, a different approach
that generalizes the optimal design of event-triggered estimators, a similar result is derived
in this thesis in Chapter 3 that also underlines the importance of symmetric event-triggers.

In [RSJ13], it has been shown that there is in general a dual effect of control for a net-
worked system with a fixed event-triggered scheduler. This makes it hard to find the optimal
control strategy, even in the linear quadratic framework. However, the authors identify a
special class of event-triggers, in which the dual effect of control is not present and standard
techniques of stochastic control like the separation principle and certainty equivalence hold.
The class of event-triggers coincides with the symmetric event-triggering laws depending
only on the networked-induced error which have been introduced in the last paragraph for
event-triggered estimation.
In previously mentioned work, the control inputs are allowed to vary between sampling
times. Contrary to this, the work in [RJJ08; RJ09a] considers the case, in which the control
input is kept constant between sampling times. The problem is shown to be related to opti-
mal stopping time problems, which enable an analytical solution in certain cases. It should
be however remarked that by assuming a given control waveform between transmissions,
the optimal design of event-triggered controllers reduces to an optimal control problem with
a classical information pattern, see Section 2.3.1.

In summary, it can be observed that the joint optimization of event-trigger and control
or estimation has been addressed by several authors. Except of the results in [LM11], the
analysis of the underlying two-person team decision problem is accompanied by various
assumptions that by-pass the inherent complications arising through the dual effect of con-
trol and signaling between decision makers. In contrast to the previous work, one of the
objectives of this thesis is to keep the restrictions on the design space as little as possible.

While the majority of results studies event-triggered sampling for single-loop control sys-
tems, systems with multiple control loops over a shared network have attained only little
attention. Exceptions can be found in the works [CH08; HC10; BA11a; BA11b; BA11c] that
analyze event-triggered sampling in multi-loop control systems. Depending on the model
that represents the resource-constrained communication medium the authors draw differ-
ent conclusions. Using carrier sense multiple access schemes with priority or randomized
arbitration as proposed in [CH08; HC10], event-triggered sampling for data transmission en-
hances the control performance significantly compared with periodic transmission schemes.
On the other hand, the results in [BA11a; BA11b] suggest that time-triggered sampling out-
performs event-triggered sampling for slotted and unslotted ALOHA transmission schemes.
By a specific choice of the triggering rule inspired by [RJ09b], the sampling process can
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be modelled as a renewal process. This fact is then used extensively to analyze the perfor-
mance of the event-triggered scheduling mechanism. A more comprehensive work of the
same authors in [BA11c] that analyzes different protocols with event-triggered sampling,
shows that event-triggered schemes outperform time-triggered schemes for certain proto-
cols. In summary, these works indicate that there is a correlation of the performance of the
event-triggered sampling strategy with the sophistication of the communication protocol. It
should be noted that the analysis of the previously mentioned works is restricted to scalar
integrator dynamics driven by Brownian noise process, in which the state of the subsystem is
reset after a successful transmission. In this thesis, we are however interested in developing
design guidelines for event-triggered scheduling for the control of general linear systems.

1.4 Outline and Contributions

This thesis targets towards a fundamental understanding of optimal event-triggered control
under communication constraints. It studies the scientific questions of “what characteris-

tics do optimal event-triggered controllers have?”, “are there potential principles that allow a

problem decomposition of the co-design of event-trigger and controller?” “how can these princi-

ples be used for the efficient design of (near-)optimal event-triggered control algorithms?”. All
these questions will be addressed in the control design framework related to the well-known
linear quadratic regulation (LQR) problem. In order to analyze these issues, the thesis is
divided into two parts. The first part (Chapters 2-6) is concerned with structural proper-
ties of optimal event-triggered control systems with a single resource-constrained feedback
loop. Based on these results, Part II (Chapters 7-9) is devoted to the analysis and design of
multiple control loops sharing a common constrained resource.

Outline

Chapter 2 develops one of the core results in this thesis stating that the optimal control law
resulting in the joint optimization of event-trigger and controller has the certainty equiv-
alence property. This structural property of the controller makes the optimal design of
event-triggered controllers tractable with regard to numerical methods and with regard to a
further analysis. The certainty equivalence property reduces the problem into two subprob-
lems - the solution of a standard LQR problem, and the joint optimization of event-trigger
and estimator. The latter problem is discussed in Chapter 3 by introducing an iterative al-
gorithm alternating between the optimization of the event-trigger and the estimator. Built
upon the results obtained in Chapter 2, Chapter 4 and 5 analyze the structural properties
of the optimal event-triggered controller with regard to network degradations, such as time
delay and packet loss, and with regard to partial state information at the event-trigger, re-
spectively. Part I of this thesis is concluded with a stability analysis of the event-triggered
control system using results for stochastic stability of Markov chains in Chapter 6.

The asymptotic behavior of the multi-loop event-triggered control system over a shared
communication network is analyzed in Chapter 7 following the guidelines developed in
Chapter 6. In Chapter 8, the structural results for single-loop event-triggered control sys-
tems developed in Chapter 2-4 are used to develop decentralized event-triggered scheduling
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algorithms for multiple control loops sharing a common network. By introducing a dual
price exchange mechanism, the design method developed in Chapter 8 is adapted in Chap-
ter 9 so that the optimal event-triggered scheduler can be determined in a decentralized
fashion. Chapter 10 eventually gives a concluding discussion of the results in this thesis and
an outlook on open problems.

The links between the individual chapters are summarized in Fig. 1.2. In the following,
the major contributions within each chapter are outlined in more detail.

Chapter 2 Chapter 3 Chapter 4 Chapter 5

Chapter 7Chapter 6 Chapter 8 Chapter 9

Figure 1.2: Overview of relations between chapters.

Chapter 2: Structural Properties of Optimal Event-Triggered Control

This chapter investigates structural properties of optimal event-triggered controllers. The de-
sign problem is cast in the framework of stochastic linear quadratic regulation extended by
an additional communication penalty for closing the feedback loop. Due to the additional
communication penalty, a trade-off between control performance and the communication
rate must be found, which prevents trivial solutions of the joint optimization of controller
and event-trigger. In this chapter, we will observe that the special information pattern of the
decision makers being nestedness of the information available at the event-trigger and the
controller enables us to prove that one can not take advantage of the dual effect of control
in such problem setting. As a consequence, the optimal control law will have the structure
of a certainty equivalence controller. A controller is said to be a certainty equivalence con-
troller, if it takes the solution of the problem without communication penalty implying a
continuous availability of state information at the controller and by replacing the state by
its least-squares estimate. Besides its implications for the numerical computation of opti-
mal event-triggered controllers, this result can be regarded as an approval for the usage of
emulation-based approaches in the design of event-triggered controllers introduced in the
first paragraph of Section 1.3. This is simply because the certainty equivalence controller re-
flects exactly the emulation-based approach, as the control law is computed without taking
into account the event-triggering mechanism. The results in this chapter are partly based on
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the work in [MH09; MH13a], and section 5.7 of [GHJ+13]. A continuous-time version of
the main structural result can be found in [MH10a].

Chapter 3: Structural Properties of Optimal Event-Triggered Estimation

In this chapter, we focus on the joint design of event-trigger and estimator. An iterative
method is developed for the joint optimization of event-trigger and estimator for linear sys-
tems. The algorithm iteratively alternates between optimizing one decision maker while
fixing the other one. When the densities of the initial state and the noise variables are
symmetric and unimodal functions, it is shown for scalar systems that the solution of the al-
gorithm converges to a symmetric event-trigger and a Kalman-like estimator taking only the
latest received state information into account. This result coincides with results obtained in
[LM11], which uses majorization theory and rearrangement inequalities to show that there
always exists a symmetric threshold policy that outperforms an arbitrary event-triggering
law. Our approach gives an alternative line of proof for this result by analyzing the conver-
gence properties of the proposed iterative algorithm. When the noise distribution is assumed
to be multimodal, it also turns out that the proposed iterative method can yield a remark-
able decrease of the cost compared to an emulation-based approach, in which the estimator
takes the form of a linear predictor that assumes that transmission instants are statistically
independent of the state. The contributions presented in this chapter are based on the work
in [MH12b; MH12d].

Chapter 4: Event-Triggered Control under Communication Delays and

Packet Dropouts

In this chapter, the design of optimal event-triggered controllers is studied in the presence of
both time-delay and packet-dropouts in the feedback loop. As the information pattern of the
decision makers needs not to be nested, the optimal control law will generally not have the
certainty equivalence property found in Chapter 2. This motivates us to identify different
conditions for the communication model, where the nestedness property can be recovered.
One of the prerequisites for the communication model is an error-free acknowledgement
channel. It turns out that the certainty equivalence property can be assured, if either (i) the
acknowledgement channel is delay-free or (ii) the feedback link is error-free or (iii) intervals
between subsequent transmission times are restricted to be equal or greater than the round-
trip time. Inspired by these conditions, two suboptimal design approaches are developed.
The notion of suboptimality refers to the introduction of certain assumptions that enable
the calculation of optimal event-triggered controllers. The first approach assumes that the
event-trigger is idle for the duration of a round-trip time after transmitting information.
The second approach assumes that the controller is a certainty equivalence controller. In
contrast to the first strategy, there are no restrictions on the duration between subsequent
transmissions. The optimal event-trigger is shown to have finite memory, where the number
of past state values to be taken into account scales linearly with the round-trip time. The
results in this chapter are based on [MH10c; MH13b].
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Chapter 5: Structural Characterization of Event-Triggered Control with

Partial State Information

This chapter extends the structural results obtained in Chapter 2 to systems with partial
state information, in which state information can not be accessed directly, but only through
noisy measurements. It turns out that the certainty equivalence property is still valid in this
problem setup. Based on the certainty equivalence property, the least-squares estimators at
the controller and at the event-trigger are characterized. By fixing the control law, it turns
out that the event-trigger can not make use of the dual effect of control and the optimal
estimator is given by the Kalman filter. The least-squares estimator at the controller takes
the form of a biased linear predictor of the Kalman estimate resulting at the event-trigger.
Similar as in Chapter 2, the estimation bias can be determined beforehand and depends on
the choice of the event-triggering law. The structure of the optimal estimators allows us
to state that it suffices to transmit the Kalman estimate to controller in order to maintain
optimality. Based on these results, the optimal event-triggering law can be characterized as
a policy depending on the discrepancy of the least-squares state estimate at the controller
and at the event-trigger. The contribution of this chapter is partly based on the work in
[MH10b].

Chapter 6: Optimal Event-Triggered Control for Long-Run Average-Cost

Problems

Here, we study the design of optimal event-triggered controllers over an infinite horizon.
Among other formulations for infinite horizon costs, we focus in this chapter on the long-
run average-cost criterion, as our main interest lies in the behavior of the overall system in
the stationary regime and it gives us a direct interpretation of the communication penalty
as the average transmission rate. The average-cost formulation is particularly challenging,
as the dynamics of the underlying Markov chain takes a crucial role in the solution of the
average-cost criterion. In order to guarantee that the event-triggering law can be solved
by means of dynamic programming, we need to assert certain ergodicity conditions on the
Markov chain. By including a technical assumption on the event-triggering law, it is possible
to guarantee this condition, and we can conclude that the average-cost problem for the
optimal event-trigger design can be computed via value iteration. Furthermore, we analyze
the stability properties of the proposed event-triggered controller in terms of drift criteria
for Markov chains. It turns out that this notion offers appropriate mathematical tools to
address the issue of closed-loop stability of the event-triggered control system. Assuming a
stabilizing control law in the case of continuous transmission and a uniform bound on the
triggering threshold, we prove stochastic stability for ideal communication and we derive
sufficient conditions to guarantee stochastic stability in the presence of packet loss. The
stability analysis will give us key insights in order to study the asymptotic behavior of multi-
loop control systems sharing a common communication network in subsequent chapters.
The contribution of this chapter is partly based on [MTH11; MH13b].
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Chapter 7: Stochastic Stability of Multiple Event-Triggered Control

Systems

This chapter analyzes the stability properties of multiple event-triggered control systems
whose feedback loops are closed over a common communication network. The system un-
der consideration consists of several individual subsystems whose sensor information needs
to be sent over a shared communication link to the controller. An event-triggered scheduler
situated at the sensor node of each subsystem decides upon its local information whether to
transmit information. Due to the limited number of transmissions per time step, there is the
chance for contention among subsystems. In order to counteract potential collisions, we as-
sume a probabilistic collision resolution scheme, in which an arbitration mechanism selects
randomly which subsystem is permitted to transmit its sensor information to the controller.
What makes the analysis of such multi-loop system challenging is the tight interaction be-
tween the individual control loops and the communication system due to the event-triggered
nature of the scheduling mechanism. By making use of results in Chapter 6, sufficient condi-
tions for stability are derived. These conditions will relate the ratio between the availability
of the resource and the number of control loops with the open-loop system dynamics of each
control system. The results of this chapter are partly based on the work in [MH11; MH14].

Chapter 8: Optimal Event-Triggered Control over a Shared Network

The focus of this chapter is to develop an efficient algorithm for the design of decentralized
event-triggered scheduling of multiple control systems whose feedback loops are closed over
a common communication network. The design procedure is formulated as an average-cost
problem that aims at the minimization of a social cost criterion. By proposing a relaxed for-
mulation of the average-cost problem that allows us to circumvent the coupling of control
and communication in the design, the optimization problem becomes tractable as it can be
split into two levels: a local optimal control problem and a global resource allocation prob-
lem. While the results of Chapter 2-4 on optimal event-triggered control apply in the local
optimization problem, the global resource allocation problem can be studied by techniques
of convex analysis. Based on the stability analysis for the multi-loop system in Chapter 7,
it is further shown that the proposed bi-level approach is asymptotically optimal, when the
number of users approaches infinity. The contribution of this chapter is based on the work
in [MH11; MH12c; MH14].

Chapter 9: Price Exchange Mechanism for Event-Triggered Control

The design method developed in Chapter 8 needs to solve a global resource allocation prob-
lem that must incorporate information of every subsystem sharing the common communica-
tion resource. This might be inconvenient due to its difficulty of implementation when the
number of control loops is large, and it lacks of flexibility, as it needs to be rerun completely
whenever changes in the system occur. This motivates us to design a decentralized version
of the resource allocation algorithm, which is pursued in this chapter. By applying tech-
niques from distributed optimization and adaptive Markov decision processes, we develop
a dual price exchange mechanism, in which the distributed self-regulating event-triggers
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adapt their average communication rate to accommodate the global resource constraint.
Assuming the absence of contention, Almost-sure convergence properties of the distributed
event-triggered scheme are established by using a time-scale separation approach that de-
couples the process dynamics from the communication rate adaptation. In the case of con-
tention, stochastic stability in terms of Harris recurrence is verified based on the stability
conditions from Chapter 7. Aside from the development of a decentralized resource allo-
cation algorithm, this chapter clearly demonstrates the benefits of event-triggered sampling
with regard to the ability of adaptation which is crucial for the implementation of distributed
mechanisms. The contribution of this chapter is based on the work in [MH12a].
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Single-Loop Control
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2

Structural Properties of Optimal Event-

Triggered Control

In this chapter, we focus on finding structural properties of optimal event-triggered con-
trollers. The design problem is cast in the framework of stochastic linear quadratic regula-
tion extended by an additional communication penalty for closing the feedback loop. Due
to the additional communication penalty, a trade-off between control performance and the
communication rate must be found, which prevents trivial solutions of the joint optimization
of controller and event-trigger. The key result of this chapter is to show that one can not
benefit of the dual effect of control in such problem setting. As a consequence, the optimal
control law can be characterized by having the certainty equivalence property. This result is
enabled by the special information pattern of the decision makers being nestedness of the
information available at the event-trigger and the controller.

This chapter is structured as follows. First, the optimal design of event-triggered control is
formulated as a team decision problem related to linear quadratic regulation in Section 2.1.
In Section 2.2, it is then shown that the problem can be separated into standard optimal
control problems for the case of time-triggered sampling. Section 2.3 considers the design
of optimal event-triggered controllers for two different cases. In 2.3.1, we assume that the
control input is constant between transmissions. For this case, it turns out that the joint
optimization of controller and event-trigger can be cast as a standard optimal control. The
main result of this chapter is obtained in 2.3.2, which shows that the optimal control law
is a certainty equivalence controller, in the case of having no restrictions on the design of
controller and event-trigger.
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2 Structural Properties of Optimal Event-Triggered Control

2.1 Linear Quadratic Control under Communication

Constraints

The system under consideration is illustrated in Fig. 2.1 and consists of a process - , an
event-trigger + , a controller 0 , and a resource-constrained communication channel * . In
the following, we will pose the design problem in the framework of linear quadratic control
extended by a resource constraint that will be modeled as an additional communication
penalty in the cost function. The stochastic discrete-time process - to be controlled is
described by the time-invariant difference equation

xk+1 = Axk + Buk + wk, (2.1)

where A∈ !n×n, B ∈ !n×d . The variables xk and uk denote the state and the control input
and are taking values in !n and !d , respectively. The initial state x0 is a random variable
with finite mean and covariance Cx0

. The system noise process {wk} is i.i.d. (independent
identically distributed) and wk takes values in !n and is zero-mean and has finite covari-
ance matrix Cw. The random variables x0 and wk are statistically independent for each k.
Let (Ω,( ,P) denote the probability space generated by the initial state x0 and noise se-
quence W N−1, where N is the horizon of the problem considered. We call x0 and wk the
primitive random variables of the system. The statistics of the process - are known a-priori
to both decision makers, the event-trigger + and the controller 0 .

The event-trigger + situated at the sensor station has access to the complete state infor-
mation and decides, whether the controller 0 should receive an update over the feedback
channel * . The controller calculates inputs uk to regulate the process - .

Concerning our system model, it is needed to define the amount of information available
at the control station at each time step k. The output signal of the event-trigger, δk, takes
values in {0, 1} deciding whether information is transmitted at time k, i.e.,

δk =

!

1, measurement xk sent,

0, no measurement transmitted.

Therefore, the signal zk is defined as

zk =

!

xk, δk = 1,

∅, δk = 0.
(2.2)

As various steps of decisions are made within one time period k, a causal ordering is specified
by the following sequence in which the events within the system occur.

· · ·→ xk→ δk→ zk→ uk→ xk+1→ · · ·

We allow both decision makers – the controller and the event-trigger – to select their
actions upon their complete past history. Let the event-triggering law f= [f0, f1, . . . , fN−1]

and the control law γ= [γ0,γ1, . . . ,γN−1] denote admissible policies for the finite horizon N

with

δk = fk(X
k), uk = γk(Z

k).
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2.1 Linear Quadratic Control under Communication Constraints

Process -Controller 0

Communication network *

Event-trigger +

zk xkuk

δk

Figure 2.1: System model of the resource-constrained control system with process - , event-
trigger + , controller 0 , and communication channel * .

We assume that the mappings fk and γk are measurable mappings of their available infor-
mation X k and Zk, respectively.

We define the information available at the event-trigger and the controller at time step k as
the σ-algebra generated by X k and Zk, respectively. These are denoted by σ(X k) and σ(Zk).
We make the following crucial observation. For an arbitrary choice of laws γ and f, we have
σ(Zk−1) ⊂ σ(X k) because Zk−1 can be expressed as a measurable function of X k implying
that the information available at the controller can be recovered by the event-trigger. Since
we assume the control law to be deterministic, it can therefore be concluded that the control
inputs Uk−1 are known by the event-trigger at time k.

Let J0 be the control objective related to linear quadratic regulation over the finite hori-
zon N , i.e.,

J0 = xT
N
QN xN +

N−1
∑

k=0

xT
k
Qxk + uT

k
Ruk. (2.3)

The communication channel * takes the role of restricting or penalizing transmissions in
the feedback loop. This will be reflected in the optimization problem as follows. Define J+
to be the communication cost given by the number of transmissions, i.e.,

J+ =

N−1
∑

k=0

δk. (2.4)

We formulate the design problem of event-triggering law f and control law γ as the following
two-person team decision problem, where both decision makers have to find a trade-off
between the expected control cost and the expected communication cost. In other words,
we aim at finding the optimal f∗ and γ∗ that

inf
(f,γ)∈3

E
#

J0 +λJ+
$

(2.5)

with communication penalty λ > 0 and 3 being the set of all admissible policy pairs (f,γ).
For notational convenience, we define the cost function J(f,γ) for (f,γ) ∈ 3 to be

J(f,γ) = E
#

J0 +λJ+
$

. (2.6)
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2 Structural Properties of Optimal Event-Triggered Control

2.2 Optimal Time-Triggered Control

In this section, we are concerned with the optimal design of the time-triggered controller.
Time-triggered sampling implies that the decision whether to transmit a state update to the
controller must be made beforehand. Therefore, time-triggered sampling can be regarded
as a special case of event-triggered sampling, in which the sampling decisions must not de-
pend on the observation history. Let us denote the admissible time-triggered control policies
as 3T T defined by

3T T = {(f,γ) ∈ 3 | fk = const., k ∈ {0, . . . , N − 1}}. (2.7)

The corresponding design problem for determining the optimal time-triggered controller
can then be formulated as the following optimization problem.

inf
(f,γ)∈3T T

E
#

J0 +λJ+
$

. (2.8)

Let us fix an arbitrary triggering sequence fT T = [δ0, . . . ,δN−1] ∈ {0, 1}N and investigate
the corresponding optimal control law γ∗ stated by the following problem using Eq. (2.6).

inf
γ

J(fT T ,γ) (2.9)

The communication cost J+ is constant in this case, and it can therefore be omitted from
the optimization. What remains is the expected quadratic cost term E[J0 ]. Furthermore,
Eq. (2.2) can be written as a linear time-varying measurement equation

zk = Ck xk, Ck =

!

In, δk = 1,

0n, δk = 0.
(2.10)

As the process evolves according to a linear difference equation given by Eq. (2.1) and the
measurement equation given by Eq. (2.10) is also linear in the state xk and the costs are
quadratic in the state and the control input, we can conclude that the problem of finding
the optimal control law in Eq. (2.9) reduces to a standard linear quadratic control problem
without measurement noise [Ber05]. For such problem, the mathematical tools of stochastic
optimal control, such as dynamic programming and the separation principle can be applied.
In fact, the solution is given by a certainty equivalence controller consisting of a linear gain
and a Kalman estimator [Ber05]. A certainty equivalence controller is given by solving a re-
lated deterministic optimal control problem, where all primitive random variables are set to
their means, and by replacing the state variable by its least-squares estimate within the de-
terministic solution. We also say the optimal solution has the certainty equivalence property,
if the optimal controller is a certainty equivalence controller. As the corresponding deter-
ministic optimal control problem coincides with the deterministic LQR problem, the optimal
controller is linear and the control gains can be calculated recursively by a Riccati difference
equation. The least-squares estimate is given by the state itself, if a transmission occurs, or
is determined by the linear prediction, if no state update is received. We summarize these
results in the following proposition.
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2.2 Optimal Time-Triggered Control

Proposition 2.1. Let an arbitrary time-triggered transmission sequence fT T be fixed. Then,

the optimal solution of the optimization problem defined in Eq. (2.9) is given by the certainty

equivalence controller

uk = γ
∗
k
(Zk) = −LkE[xk|Zk], k ∈ {0, . . . , N − 1} (2.11)

with

Lk =
%

R+ BTPk+1B
&−1

BTPk+1A,

Pk = ATPk+1A+Q− ATPk+1B
%

R+ BTPk+1B
&−1

BTPk+1A,
(2.12)

where PN = QN and Pk ∈ !n×n is non-negative definite for k ∈ {0, . . . , N − 1}. The estimator

E[xk|Zk] is given by the following recursive form

E[xk|Zk] =

!

xk, δk = 1,

(A− BLk)E[xk−1|Zk−1], δk = 0,
(2.13)

with E[x0|Z0] = E[x0] for δ0 = 0.

Having obtained the optimal controller for a given transmission sequence, we focus now
on the calculation of the optimal time-triggered transmission sequence f∗

T T
. For that reason,

let εk be the estimation error at time k defined as

εk = xk − E[xk|Zk]. (2.14)

By using Lemma 6.1 in Chapter 8 of [Åst06] and a couple of reformulations whose details
can be found in the proof of Lemma 2.1, the cost function can be rewritten in the following
form.

J =λE[
N
∑

k=0

δk] + E[xT
0 P0 x0] + E[

N−1
∑

k=0

wT
k
Pk+1wk] + E[

N−1
∑

k=0

εT
k
LT

k
Γk Lkεk]

+ E[

N−1
∑

k=0

(uk + LkE[xk|Zk])TΓk(uk + LkE[xk|Zk)], (2.15)

where Γk is defined as

Γk = BTPk+1B+ R, k ∈ {0, . . . , N − 1}. (2.16)

Obviously, the second and the third term on the right-hand side of Eq. (2.15) are constant.
For a fixed time-triggered transmission sequence, we observe that the first term is constant.
In addition, it can be shown that εk is a random variable that is independent of the pol-
icy γ chosen, see for example lemma in [Ber05]. This gives the optimal control law γ∗ in
Eq. (2.11) for a fixed transmission sequence as already stated in Proposition 2.1. On the
other hand, only the first and the forth term are varying with different transmission se-
quences when assuming that the control law is given by Eq. (2.11). In order to calculate
the optimal time-triggered transmission sequence, we define the one-step ahead estimation
error ek by

ek = xk − E[xk|Zk−1]. (2.17)
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2 Structural Properties of Optimal Event-Triggered Control

From this definition, we have the following connection to the estimation error.

εk =

!

0, δk = 1,

ek, δk = 0.

The evolution of ek can be derived by

ek+1 = xk+1− E[xk+1|Zk]

= Axk + Buk + wk − E[Axk + Buk + wk|Zk]

= A(xk − E[xk|Zk]) +wk

= (1−δk)Aek + wk.

The remaining optimization problem has then the following form

fT T = arg inf
δ0,...,δN−1

E[

N−1
∑

k=0

(1−δk)e
T
k
LT

k
Γk Lkek +λδk],

s.t. ek+1 = (1−δk)Aek + wk. (2.18)

Since the triggering variable δk is chosen before execution, i.e., it is independent of ek, it
is possible to rewrite above optimization problem in order to apply dynamic programming.
For that reason, we define the error covariance

Φk = E[ekeT
k
].

The evolution of Φk is given by

Φk+1 = (1−δk)AΦkAT+ Cw, Φ0 = Cx0
.

Then, the optimization problem in Eq. (2.18) can be written as

fT T = arg inf
δ0,...,δN−1

N−1
∑

k=0

(1−δk)tr[Φk LT
k
Γk Lk] +λδk,

s.t. Φk+1 = (1−δk)AΦkAT+ Cw, Φ0 = Cx0
.

(2.19)

We observe that the initially stochastic optimization problem reduces to a deterministic op-
timal control problem with state variable Φk. This implies that the calculation of the optimal
time-triggered transmission sequence, f∗

T T
, can be performed by deterministic dynamic pro-

gramming [Ber05]. In summary, the optimal time-triggered controller within the set 3T T

can be calculated in two steps:

1. Obtain the optimal control gain Lk from the discrete-time Riccati equation in
Eq. (2.12).

2. Solve optimization problem Eq. (2.19) that yields the optimal transmission timings.

Inspired by this design approach, the more challenging problem of event-triggered transmis-
sion strategies is studied in the next section.
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2.3 Optimal Event-Triggered Control

2.3 Optimal Event-Triggered Control

What makes the derivation in the previous section appealing relies on the fact that the
cost function J defined in Eq. (2.6) is separable with respect to the control design and the
choice of the transmission times. This becomes evident when regarding Eq. (2.15) where
the summands either depend on the choice of the transmission times or on the choice of the
control input. When allowing the transmissions to be triggered by events rather than by a
priori fixed timings, the separation does not hold in the same way as for the time-triggered
mechanism. This is due to the fact that the estimation error εk is generally not independent
of the control law anymore when assuming a fixed event-triggering law f. In other words,
the controller is able to signal through the plant to the event-trigger that it may want to
receive another state update. Such signalling is called the dual effect of control, [BST74],
and refers to the dual role of control: (i) influencing the state evolution and (ii) decreasing
the estimation error. When the second phenomenon is not present, which is also referred
to as the absence of the dual effect, then the optimal control law is given by Eq. (2.11).
However, in the event-triggered case the dual effect is present in general, which implies that
the optimal control law will be a nonlinear function of the complete history Zk, which highly
depends on the choice of the fixed event-trigger.

Another approach that might be taken is the joint optimization of both the control law
and the event-triggering law as a team decision problem. But as the information available
at the controller and at the event-trigger differ, the optimization problem has a non-classical
information pattern, whose solution is very hard to find and no systematic algorithms are
available, even for simple cases [Wit68]. In fact, the joint optimization problem under
consideration falls into the category of sequential stochastic control problems, for which
a dynamic programming formulation is possible [Wit73]. But the value function must be
parameterized by the distribution of the state, which implies an infinite dimensional state
space, and the minimum is taken over all control laws rather than over the inputs. Obviously,
this formulation will unlikely reveal new insights either.

The aforementioned arguments suggest that only little can be said about the optimal
event-triggered controller that solves the optimization problem described in Eq. (2.5). Nev-
ertheless, we will observe in the following that it is possible to give a characterization of the
optimal event-triggered controllers. Before analyzing the general case, the following subsec-
tion considers the optimization over a special class of event-triggered controllers in which
the control inputs need to be constant between transmissions. It turns out that this special
class allows a formulation as a standard optimal control problem.

2.3.1 Event-Triggered Sampling with Zero-Order Hold Control

An interesting special case of event-triggered control is the class of zero-order hold con-
trollers that are constant between event-triggered transmissions. By extending the state
space accordingly, it will turn out that the optimization problem given in Eq. (2.5) can be
recast as a standard optimal control problem in the case of zero-order hold control. In order
to incorporate the fact that the control input remains constant between transmission times,
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2 Structural Properties of Optimal Event-Triggered Control

we extend the system dynamics by

uk =

!

uk−1, δk = 0,

u′
k
, δk = 1,

(2.20)

where u′
k
∈ !d is the new control input. Due to the zero-order hold element, the state space

needs to be extended by uk−1. The initial value of the control input, u−1, element can either
be part of the optimization problem or is given beforehand.

By considering the process dynamics defined in Eq. (2.1) and the zero-order hold element
defined in Eq. (2.20), we observe that the overall system can be regarded as a (δk, u′

k
)-

controlled Markov chain with state (xk, uk−1) driven by the i.i.d. noise process given by wk.
The ensuing question that needs to be addressed is whether the event-trigger and controller
have full state information. By assuming that u′

k
is a measurable function of its observation

history Zk, we can follow that past control inputs prior to time step k can be recovered at the
event-trigger. This implies that the event-trigger has full state information. However, this
is not the case for the controller, which does not have access to the process state xk when
δk = 0. But for δk = 0, the action u′

k
has no influence on the evolution of (xk, uk−1). This

implies that permitting the controller to have full state information also at δk = 0 will not
change the optimization problem.

Hence, we can conclude that the problem of optimal event-triggered control design de-
fined in Eq. (2.5) reduces to a standard optimal control problem that can be solved by
dynamic programming, when control inputs are restrained to be constant between transmis-
sions.

Rather than further investigating the explicit calculation of the optimal solution, we want
to point out by this example that the information pattern of the decision makers can be
crucial for the analysis of the underlying team decision problem. What made the formulation
as a standard optimal control problem possible was the fact that the problem could be posed
such that both decision makers were having the same information available reducing it to a
problem with a single decision maker.

2.3.2 The Certainty Equivalence Property of Event-Triggered Control

In this subsection, we return to the initial team decision problem formulated in Eq. (2.5). It
is shown that the control law of the optimal event-triggered controller in the set of admissible
laws 3 will be a certainty equivalence controller given by Eq. (2.11), i.e., it takes the same
form as in the time-triggered case. This result can be regarded as one of the central new
insights of this thesis concerning the design of optimal event-triggered controllers. The key
property that enables such result is the nested structure of the information pattern, since the
information available at the controller is a subset of the information available at the event-
trigger. The importance of nested information patterns has been demonstrated in [HC72]
for a different design problem, where it has been shown that the design of decentralized
controllers in the LQG framework yields linear solutions when the information structure is
partially nested. As pointed out in [HC72], it is also crucial to assert that the admissible laws
are deterministic, which is also assumed in this thesis by the definition of 3 . Intuitively
speaking, the reason for such assumption is to be able to recover the control inputs applied
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2.3 Optimal Event-Triggered Control

by the decision maker whose information is a subset of the information of the other decision
maker.

In order to establish the structural result, we introduce the formal concept of dominating
strategies in optimal control.

Definition 2.1 (Dominating policies). A set of policy pairs 3 ′ ⊂ 3 is called a dominating

class of policies for optimization problem (2.5), if for any feasible (f,γ) ∈ 3 , there exists a
feasible (f′,γ′) ∈ 3 ′, such that

J(f′,γ′)≤ J(f,γ),

where J is the cost function defined by Eq. (2.6) for the corresponding problem.

Once a dominating class of policies is found, the above definition implies that we can
restrict the solutions of the optimization problem to such policies. Subsequently, we show
that the set of policy pairs where the controller is a certainty equivalence controller denoted
by γ∗ is a dominating class of policies. A certainty equivalence controller is given by solving
a related deterministic control problem, where all primitive random variables are set to
their means, and by replacing the state variable by its least-squares estimate within the
deterministic solution. The remaining goal is to prove that for any pair (f,γ), we can find a
pair (f′,γ∗) whose costs are at most that of (f,γ).

In order to achieve this, we introduce a suitable reparametrization of the triggering law.
Given a policy (f,γ), we define another policy (g,γ)where g= {g0, . . . , gN−1} is the triggering
law, and gk is a function of {x0, W k−1}, such that

gk(x0, W k−1) = fk(X
k), k ∈ {0, . . . , N − 1},ω ∈ Ω, (2.21)

when both systems use the control law γ. As the control inputs Uk−1 are known at the
event-trigger at time k by the law γ due to σ(Zk−1)⊂ σ(X k), the variables {x0, W k−1} can
be fully recovered by the state sequence X k and vice versa. Therefore, the triggering law g
satisfying Eq. (2.21) always exists. On the other hand, this also implies that given (g,γ),
there is always a (f,γ) satisfying Eq. (2.21).

The next intermediate result states on the optimal control law for fixed g.

Lemma 2.1. Let the triggering law g be a function of primitive variables given by

δk = gk(x0, W k−1), k ∈ {0, . . . , N − 1}. (2.22)

If the triggering law g is fixed, then the optimal control law γ∗ minimizing J(g,γ) defined in

Eq. (2.6) is a certainty equivalence controller given by

uk = γ
∗
k
(Zk) = −Lk E[xk|Zk], k ∈ {0, . . . , N − 1} (2.23)

with Lk being the solution of the Riccati equation defined in Eq. (2.12).

Proof. Since g is fixed, the output δk is a random variable described by a function of prim-
itive random variables that is independent of the choice of the control law γ. This implies
that E[J+] is a constant for a fixed g. Thus, solving the optimization problem (2.5) for a
fixed g reduces to minimizing E[J0 ] over all admissible control laws γ. The resulting objec-
tive function is purely quadratic, and tools from stochastic control can be applied [Ber05].
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2 Structural Properties of Optimal Event-Triggered Control

Similarly to [Ber05], we first show that the estimation error, εk, at the controller defined
by Eq. (2.14) is a random variable that can be described as a function of primitive random
variables x0 and W k−1 which is independent of the control law γ. Let us fix a control law γ
and consider two types of systems: a forced and an un-forced system. In the first system,
control inputs are determined by the law γ and the system evolves by Eq. (2.1) and Eq. (2.2),
whereas the second system has zero-input and is given by

x̃k+1 = Ax̃k + w̃k,

z̃k =

!

x̃k, δ̃k = 1,

∅, δ̃k = 0.

We assume the primitive random variables are identical for both systems, i.e.,

x̃0 = x0, w̃k = wk, k = 0, . . . , N − 1. (2.24)

Since the triggering output δk is a function of primitive random variables defined by
Eq. (2.22) that is independent of γ, we have

δ̃k = δk, k = 0, . . . , N − 1.

Because of linearity, we can rewrite the systems into the following matrix-vector notation

xk = Fk x0+ GkUk−1+ HkW k−1,

x̃k = Fk x0+ HkW k−1,

where Uk−1, W k−1 are the augmented signal vectors and Fk, Gk, and Hk are appropriate
matrices constructed from A and B. As Uk−1 is measurable with respect to the information
pattern Zk, the conditional expectations are given by

E[xk|Zk] = Fk E[x0|Zk] + GkUk−1+ Hk E[W
k−1|Zk],

E[ x̃k|Zk] = Fk E[x0|Zk] + Hk E[W
k−1|Zk].

Hence, we obtain
εk = xk − E[xk|Zk] = x̃k − E[ x̃k|Zk].

Given the laws γ and g, it is trivial to show that there exists a bijective mapping between Zk

and Z̃ k. This implies that the σ-algebra generated by Z̃ k is identical to the σ-algebra gener-
ated by Zk. This is because the vectors δk and δ̃k are identical random variables, and

z̃k =

!

zk − GkUk−1, δk = 1,

∅, δk = 0,

while

z0 = z̃0, u0 = γ0(z0) = γ0(z̃0),

z1 =

!

z̃0+ G1γ0(z̃0), δ̃1 = 1,

∅, δ̃1 = 0,

u1 =

!

γ1(z̃0, z̃0+ G1γ0(z̃0)), δ̃1 = 1,

γ1(z̃0), δ̃1 = 0,
...
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2.3 Optimal Event-Triggered Control

Therefore, we can write
εk = x̃k − E[ x̃k|Z̃ k]. (2.25)

Since x̃k−E[ x̃k|Z̃ k] in Eq. (2.25) can be expressed in terms of primitive random variables
and is independent of the control law γ, we have showed that the estimation error εk is
given by a function of primitive random variables which is independent of γ.

Next, we use the identity to reformulate J0 defined by Eq. (2.3), see Lemma 6.1 of Chap-
ter 8 in [Åst06] that is given by

J0 =xT
0 P0 x0+

N−1
∑

k=0

(uk + Lk xk)
T(BTPk+1B+ R)(uk + Lk xk)

+

N−1
∑

k=0

wT
k
Pk+1(Axk + Buk) + (Axk + Buk)

TPk+1wk

+

N−1
∑

k=0

wT
k
Pk+1wk,

where Lk and Pk are given by Eq. (2.12). By taking expectation and incorporating indepen-
dence of wk with respect to xk and uk, we have

E[J0 ] =E[xT
0 P0 x0] + E[

N−1
∑

k=0

wT
k
Pk+1wk]

+ E[

N−1
∑

k=0

(uk + Lk xk)
TΓk(uk + Lk xk)],

where Γk is defined in Eq. (2.16). The first two terms are constant and can be omitted from
the optimization. After replacing xk with E[xk|Zk] + εk, we have

(uk + Lk xk)
TΓk(uk + Lk xk) =

=(uk + Lk E[xk|Zk] + Lkεk)
TΓk(uk + Lk E[xk|Zk] + Lkεk)

=(uk + Lk E[xk|Zk])TΓk(uk + Lk E[xk|Zk])

+ (uk + Lk E[xk|Zk])TΓk Lkεk + ε
T
k
LT

k
Γk(uk + Lk E[xk|Zk])

+ εT
k
LT

k
Γk Lkεk. (2.26)

By applying the tower property of conditional expectations, we obtain

E[(uk + Lk E[xk|Zk])TΓk Lkεk] =

= E[E[(uk + Lk E[xk|Zk])TΓk Lkεk|Zk]]

= E[(uk + Lk E[xk|Zk])TΓk Lk E[εk|Zk]].

The second equality is because uk = γk(Z
k) and E[xk|Zk] are measurable functions with

respect to Zk. In fact,

E[εk|Zk] = E[xk|Zk]− E[E[xk|Zk]|Zk]

= E[xk|Zk]− E[xk|Zk] = 0.
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Thus, the cross terms in Eq. (2.26) vanish and we obtain

E[J0 ] =E[xT
0 P0 x0] + E[

N−1
∑

k=0

wT
k
Pk+1wk] + E[

N−1
∑

k=0

εT
k
LT

k
Γk Lkεk]

+ E[

N−1
∑

k=0

(uk + Lk E[xk|Zk])TΓk(uk + Lk E[xk|Zk])]. (2.27)

As the first three terms are constant, we observe that E[J0 ] attains its minimum for γ∗ given
by Eq. (2.23). This concludes the proof.

Built upon this intermediate result, we obtain the following key theorem which is the main
result of this chapter.

Theorem 2.1. Let the system be given by Eq. (2.1) and Eq. (2.2). Then the class of policies

3CE ⊂3 defined by

3CE = {(f,γ∗) |γ∗k = −Lk E[xk|Zk], Lk given by (2.12)}

is a dominating class of policies for the optimization problem (2.5).

Proof. According to Definition 2.1, it suffices to show that for any feasible pair (f,γ) ∈ 3 ,
there is a feasible policy (f′,γ∗) ∈ 3CE whose costs are at most that of (f,γ).

Given a feasible pair (f,γ), there exists a feasible pair (g,γ) with gk being a function
of primitive variables that satisfies Eq. (2.21). This is because of the nestedness property
σ(Zk−1) ⊂ σ(X k). Condition Eq. (2.21) implies that for (f,γ) and (g,γ), we have identical
random variables uk and δk for k ∈ {0, . . . , N − 1} and therefore identical costs. In the same
way for the pair (g,γ∗), we can find a triggering law f′ being a function of X k, such that
both (g,γ∗) and (f′,γ∗) output identical random variables uk and δk for k ∈ {0, . . . , N − 1}.
Due to Lemma 2.1, we obtain

J(f,γ) = J(g,γ)≥min
γ

J(g,γ) = J(g,γ∗) = J(f′,γ∗).

Since (g,γ∗) is feasible, the pair (f′,γ∗) is also feasible. This concludes the proof.

Theorem 2.1 implies that one can not benefit from the dual effect of control in the joint
optimization problem (2.5). Intuitively, this can be reasoned by the observation that probing
the system by the controller to reduce its uncertainty about the state becomes redundant,
since the event-trigger takes complete control in providing information to the controller. Due
to the nested information pattern, any initiative for probing the system by the controller can
be accommodated by an appropriate adaptation of the event-trigger.

Aside from this fact, Theorem 2.1 facilitates the two-person decision problem defined in
Eq. (2.5) significantly. By considering the cost formulation in Eq. (2.27) and substituting the
control law (2.23) into the problem (2.5), we obtain the following optimization problem.

inf
f
E





N−1
∑

k=0

(xk − E[xk|Zk])T LT
k
Γk Lk(xk − E[xk|Zk]) +λδk]



 . (2.28)

This problem remains challenging, as the least-squares estimate E[xk|Zk] in the cost function
depends on the choice of the event-triggering law f. This implies that the mathematical tools
from stochastic optimal control are still not directly applicable. Above optimization problem
will therefore be studied in more detail in the subsequent chapter.
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2.4 Summary

2.4 Summary

We have considered the joint design of controller and event-triggered formulated in the
framework of team decision theory. By analyzing an extended version of the LQ problem,
we have been interested in structural properties of the optimal control law. The key result
of this chapter is that one can not benefit of the dual effect of control in such problem set-
ting. As a consequence, the optimal control law can be characterized by having the certainty
equivalence property. This result was enabled by the special information pattern of the deci-
sion makers being nestedness of the information available at the event-trigger and the con-
troller. Besides its advantages for the analysis and computation of optimal event-triggered
controllers that will also be crucial in the following chapters, this structural result underlines
the importance for a careful incorporation of the information pattern in the analysis of team
decision problems.

2.5 Bibliographical Notes

The results in this chapter are partly based on the work in [MH09; MH13a], and Sec-
tion 5.7 of [GHJ+13]. A continuous-time version of the main structural result can be found
in [MH10a]. The certainty equivalence property for the optimization problems also holds for
related control problems with communication constraints that distinguish themselves from
the previously considered problem in Eq. (2.5) by the way the communication constraint is
incorporated. Besides the results in Section 2.3.2, it has been showed in [MH13a] that The-
orem 2.1 is valid either when constraining the number of transmissions over the horizon N

or the expected number of transmissions.
In [RSJ13], it has been demonstrated that there is in general a dual effect of control

for a networked system with a fixed event-triggered scheduler. The authors show that the
dual effect of control is absent for symmetric event-triggering rules, in which the decision
function is even in the estimation error. This implies that standard techniques of stochastic
control like the separation principle and certainty equivalence hold in this special class of
event-triggers.

Similarities can be also found for optimal control under bit-rate limitations in the feed-
back loop. It is shown in [BM97; TSM04; NFZE07] that the certainty equivalence controller
is optimal within the LQG framework under such communication constraints for different
communication models. Finally, it should be stated that the case of joint optimization of
the time-triggered sampling sequence and control studied in Section 2.2 has also been
addressed in [MPD67; WA08] for optimal sensor querying and control. Within the LQG
framework with costly queries, it is found that the optimal control law has the certainty
equivalence property and the timings for queries can be determined offline by dynamic pro-
gramming [MPD67; WA08].
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3

Structural Properties of Optimal Event-

Triggered Estimation

We have observed in the last chapter that the optimal design of event-triggered controllers
in the framework of linear quadratic control can be split up into two subproblems – the
calculation of a certainty equivalence controller and the joint optimization of event-trigger
and estimator. The latter subproblem is the subject of this chapter. Similar to the previous
chapter, the estimator and the event-trigger are regarded as two decision makers of a team
decision problem, in which the cost function is composed of the mean squared error and a
communication penalty.

After having derived basic properties of the optimal estimator and event-trigger, an itera-
tive method is developed for the joint optimization of event-trigger and estimator for linear
systems. The algorithm iteratively alternates between optimizing one decision maker while
fixing the other one. Then, we restrict the analysis to first-order systems and analyze the
convergence properties of the iterative method. This lets us draw conclusions on the opti-
mal design of event-triggered estimators. On the one hand, when the densities of the initial
state and the noise variables are symmetric and unimodal functions, it is shown for scalar
systems that the solution of the algorithm converges to a symmetric event-trigger and a lin-
ear predictor that does not take the triggering law into account. This implies that one can
not take advantage of signaling information from the event-trigger to the estimator through
not triggering in this case. On the other hand, when the noise distribution is assumed to
be bimodal, it turns out that the proposed iterative method can yield a remarkable decrease
of the cost compared to an emulation-based approach, in which the estimator takes the
form of a linear predictor that does not take the triggering law into account. In the case
of bimodal distributions, the event-triggering rule resulting from the iterative algorithm is
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3 Structural Properties of Optimal Event-Triggered Estimation

commonly asymmetric and the estimator can improve its state uncertainty considerably by
incorporating the information of not having triggered.

This chapter can be outlined as follows. Section 3.1 introduces the optimal design problem
of event-triggered estimation as a least-squares estimation problem under communication
constraints. A basic characterization with respect to the optimal solution of the underlying
optimization problem is discussed in Section 3.2. Based on these properties, an iterative
algorithm is developed in Section 3.3 whose convergence properties are analyzed in Sec-
tion 3.4.

3.1 Least-Squares Estimation under Communication

Constraints

We consider the following linear process - driven by noise wk

xk+1 = Axk + wk, (3.1)

where xk takes values in !n and A∈ !n×n. The system noise wk takes values in !n and is an
i.i.d. random variable described by the probability density function φw, which is zero-mean
and has a covariance matrix Cw. The initial state, x0, is statistically independent of wk and
is described by density function φx0

, which has a finite mean E[x0] and a covariance matrix
Cx0

System parameters and statistics are known to both the event-trigger and estimator.
The system model is illustrated in Fig. 3.1. The process- outputs the state xk. The event-

trigger + decides upon its available information whether or not to transmit the current state
to the remote state estimator , . We define the output of the event-trigger as

δk =

!

1, update xk sent,

0, otherwise.

The communication channel between the process - and the state estimator , can be
viewed as a δk-controlled erasure channel whose outputs are described by

zk =

!

xk, δk = 1,

∅, δk = 0,
(3.2)

where ∅ is the erasure symbol. As it will be useful for subsequent analysis, we define the
last update time τk as

τk =max{κ|δκ = 1, κ< k} (3.3)

with τk = −1, if no transmissions have occurred prior to k. The variable τk can be described
by the following δk-controlled difference equation

τk+1 =

!

k, δk = 1,

τk, δk = 0,
τ0 = −1. (3.4)
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3.2 Basic Properties

Admissible event-triggers are given by measurable mappings of their past history to

δk = fk(X
k), k = 0, . . . , N − 1.

The estimator , outputs the state estimate x̂k and is given by measurable mappings gk

defined by
x̂k = gk(Z

k), k = 0, . . . , N − 1.

The design objective is to jointly design the event-trigger f= [f0, . . . , fN−1] and the estimator
g = [g0, . . . , gN−1] that minimize cost J defined by

J = E
f,g





N−1
∑

k=0

‖xk − x̂k‖2+λδk



 . (3.5)

The per-stage cost of J is composed of the squared estimation error ‖xk− x̂k‖2
2 and a commu-

nication penalty λδk. The weight λ > 0 determines the amount of penalizing transmissions
over the channel * .

Process - Estimator ,Communication network *

Event-trigger +

zkxk x̂k

wk δk

Figure 3.1: System model of the networked estimation system with plant - , event-trigger
+ , state estimator , and communication channel * .

3.2 Basic Properties

In this section, we are concerned with finding basic properties of optimal solutions of the
joint optimization defined in Eq. (3.5) that will facilitate the description of optimal event-
triggered estimators. We begin with a characterization of the optimal estimator given an
arbitrary event-trigger.

Proposition 3.1. For any event-trigger f, the optimal state estimator g∗ is given by the least-

squares estimator

x̂k = g∗
k
(Zk) = E

f[xk|Zk], k = 0, . . . , N − 1.

Proof. Fix an arbitrary event-trigger f. The communication penalty term E
f
+

∑N−1
k=0 λδk

-

is then constant and can be omitted from the optimization. In the remaining estimation
problem the mean squared error E

f
+

∑N−1
k=0 ‖xk − x̂k‖2

-

is to be minimized. The optimal

solution for this problem is given by the least-squares estimator E
f[xk|Zk], [Ber05]. This

completes the proof.
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3 Structural Properties of Optimal Event-Triggered Estimation

In the following, we introduce a time-variant translatory change of coordinates of the
state space evolution that will enable us to focus on the main issues involved in the joint
optimization of event-trigger and estimator. As the coordinate transformation at each time k

can be computed at the event-trigger and the estimator, the optimization problem remains
unchanged. Let us define the linear predictor x̂LP

k
by the following recursion

x̂LP
k
=

!

xk, δk = 1,

Ax̂LP
k−1, δk = 0,

(3.6)

for k ∈ {1, . . . , N − 1} and x̂LP
0 = E[x0]. The linear predictor can be regarded as the optimal

estimator, when having no information about the choice of the event-trigger f and assuming
that transmission instances are statistically independent of the state evolution. This also
implies that the linear predictor is optimal in the case, when transmission instances are
selected in advance.

Let us rewrite the optimization problem by defining the one-step ahead estimation error
of the linear predictor as

ek = xk − Ax̂LP
k−1, k = 1, . . . , N − 1 (3.7)

and e0 = w−1, where we define w−1 = x0 − E[x0]. The variable ek defines our new state to
be estimated and follows the recursion

ek+1 = hk(ek,δk, wk) = (1−δk)Aek +wk. (3.8)

Further, we define êk to be the least-squares estimate E[ek|Z̃ k], where z̃k is defined accord-
ingly as

z̃k =

!

ek, δk = 1,

∅, δk = 0.

The next proposition gives us further insights into the structure of êk.

Proposition 3.2. Let the event-trigger f be fixed. Then, the least-squares estimate of ek is given

by

êk =

!

ek, δk = 1,

αk(τk), δk = 0,
(3.9)

where τk is defined by Eq. (3.3) and αk(τk) is defined by

αk(τk)=E
f





k−1
∑

l=τk

Ak−l−1wl |δτk+1 = 0, . . . ,δk = 0



. (3.10)

Proof. Clearly, we have êk = ek for δk = 1, as ek ∈ Z̃ k. For δk = 0, τk is a sufficient statistics
for êk. The mapping αk is determined by applying recursively Eq. (3.8) with eτk+1 = wτk

.
This completes the proof.
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3.3 An Iterative Algorithm

The function α in Proposition 3.2 can be interpreted as a bias term to improve the state
estimate by incorporating additional information δτk+1 = · · ·= δk = 0 at time k.

It is straightforward to see that the estimation error ek − êk and xk − x̂k are identical
random variables for a fixed event-trigger f, as ek corresponds to a translatory coordinate
transformation of xk shifted by −Ax̂LP

k−1 which is known since the sequence δk−1 is measur-
able with respect to Zk. Therefore, our initial optimization problem with cost function J can
be rewritten as

inf
f
E

f





N−1
∑

k=0

(1−δk)‖ek −αk(τk)‖2+λδk



 . (3.11)

It can be observed that the running cost reduces to λ and is therefore independent of the
current αk in the case δk = 1. Because of the introduction of the state ek, the event-trigger f
is given by a mapping from Ek to {0, 1}. Since there always exists a bijection from X k to Ek

given the variables δ0, . . . ,δk−1, this change of variables does not put any restrictions on the
further analysis keeping in mind that any policy expressed in Ek can also be written as a
function in X k.

3.3 An Iterative Algorithm

What prevents a further study of the optimization problem (3.11) is the fact that the estima-
tion bias αk(τk) depends on the particular policy f chosen up to time k. Therefore, methods
like dynamic programming are not directly applicable to solve (3.11). In order to overcome
this burden, we broaden the optimization problem (3.11) by considering the variable αk as
a new decision variable being a function of τk. Then, the optimization problem is given by

inf
f,α

J (3.12)

with

J(f,α) = E
f





N−1
∑

k=0

(1−δk)‖ek −αk(τk)‖2+λδk



 . (3.13)

The optimization problem (3.12) enlarges the set of possible solutions compared to opti-
mization problem (3.11), because it omits the constraint for α given by Eq. (3.10). Because
of this fact, we can conclude that any optimal solution of problem (3.12) will also be optimal
for Eq. (3.11). By considering optimization problem (3.12), we are however able to specify
the structure of the optimal event-trigger, which is given by the following proposition.

Proposition 3.3. Let α be fixed. Then, for all k ∈ {0, . . . , N − 1} the variables ek and τk are a

sufficient statistics for the optimal event-trigger fk.

Proof. The evolution of the pair (ek,τk) can be regarded as a δk-controlled Markov process
defined by Eq. (3.4) and Eq. (3.8). The running cost of J at time k is a function of the
pair (ek,τk), input δk and noise wk. By [Ber05], this problem can be solved by dynamic
programming with (ek,τk) being the state, which is a sufficient statistics of the optimal
solution fk. This completes the proof.
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3 Structural Properties of Optimal Event-Triggered Estimation

Estimator , Event-trigger +

dynamic programming

least-squares estimation

Figure 3.2: Iterative scheme to calculate event-trigger + and estimator , .

Proposition 3.3 implies that the optimal event-trigger is a function of ek and τk. It can be
observed that for a fixed event-trigger f, the optimal map α can be calculated by Eq. (3.10).
On the other hand, for any fixed map α, the optimal event-trigger f can be calculated by
dynamic programming. We therefore define the running cost as

c
αk

k (ek,τk,δk) = (1−δk)|ek −αk(τk)|2+λδk,

and the Bellman operator as

6 αk

k Jk+1(·) = min
δk∈{0,1}

c
αk

k (·,δk) + E
#

Jk+1(ek+1,τk+1)|·,δk

$

.

The value function Jk being a function of the augmented state (ek,τk) is determined by
recursive application of the Bellman equation given by

Jk = 6
αi

k

k Jk+1

with JN ≡ 0, where the argument in the minimization yields the optimal event-trigger f and
we have

J(f,α) = E
f[J0(e0,−1)].

This observation motivates us to propose the following iterative procedure sketched in
Fig. 3.2, which alternates between optimizing f while fixing policy α and vice versa. Algo-
rithm 1 describes the iterative procedure. With slight abuse of notation, we declared τk as a
second subscript instead of an argument of αk.

As the cost J decreases or is at least kept constant in each step of the iteration, the se-
quence [(f0,α0), (f1,α1), . . .] produces a non-increasing succession of costs J .

3.4 Convergence Properties

In the following, we are interested in the convergence properties of the proposed iterative
algorithm for scalar systems. We will therefore restrict our analysis to linear first-order
processes - defined as

xk+1 = axk + wk, (3.14)
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3.4 Convergence Properties

Algorithm 1 Iterative procedure to calculate (f,α)
Require: α0

k,τk
∈ !, k = 0, . . . , N − 1,τk = −1, . . . , k− 1

1: i← 0

2: repeat

3: k = N , JN ≡ 0
4: repeat

5: k← k− 1
6: Jk←6

αi
k

k Jk+1

7: fi
k
(ek,τk) ∈ arg minδk∈0,1 c

αi
k

k (ek,τk,δk) + E
#

Jk+1(ek+1,τk+1)|ek,τk,δk

$

8: until k = 0
9: αi+1

k,τk
← E

fi
+

∑k−1
l=τk

ak−l−1wl |δk
τk+1 = 0

-

10: i← i + 1
11: until convergence

where a ∈ !− {0}. The system noise wk takes values in ! and is an i.i.d. random variable
described by the probability density function φw, which is zero-mean and has finite variance.
The initial state, x0 is statistically independent of wk and is described by density functionφx0

,
which has a finite mean E[x0] and a finite variance. As in the previous sections, we will study
the transformed system with state variable ek defined in Eq. (3.7). Additionally, it is assumed
that the density functions are symmetric around their means, i.e.,

φw(w) = φw(−w),

φe0
(e) = φe0

(−e)

for all w, e ∈ !. Rather than regarding α as a function of k and τk, we will interpret α as a
vector in !

1
2 N(N+1) by reindexing its entries appropriately.

The following definition of person-by-person optimality is an adaptation of the definition
for person-by-person maximization in [Rad62] to optimization problem (3.12).

Definition 3.1 (Person-by-person optimality). A solution (α∗, f∗) is called person-by-person

optimal, if

J(α∗, f∗)≤ J(α, f∗),

J(α∗, f∗)≤ J(α∗, f)

for all α ∈ !
1
2 N(N+1) and all admissible policies f.

The above definition means to say that the cost of a person-by-person optimal solution can
not be decreased by either changing the estimation bias α or by changing the event-trigger f
while fixing the other. Person-by-person optimality is a necessary condition for optimality,
since it would be otherwise possible to improve the solution by the iterative algorithm de-
fined by Algorithm 1. It can therefore be concluded that every fixpoint (f∗,α∗) in the iterative
algorithm is a person-by-person optimal solution of optimization problem (3.12).

The following proposition shows that α∗ = 0 together with its resulting optimal event-
trigger denoted by f∗ is a person-by-person optimal solution.
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3 Structural Properties of Optimal Event-Triggered Estimation

Proposition 3.4. Let the initial state e0 and the noise process {wk} have symmetric distribu-

tions. Then α∗ = 0 is a fixpoint of the Algorithm 1. The policy of the event-trigger f∗ that

corresponds to α∗ is an even mapping of ek and is independent of τk for every k = 0, . . . , N − 1.

Proof. Let us choose the map α0 to be 0 for all k and all τ in the initialization of Algorithm 1.
The cost function J reduces then to

J(f,α0) = E
f





N−1
∑

k=0

(1−δk)|ek|2+λδk





where ek evolves by the recursion (3.8). Therefore, the resulting optimal f0
k

is only a func-
tion of ek for all k = 0, . . . , N − 1. In the following, we first show that the application of
the Bellman operator 6 0

k
preserves symmetry of the value function Jk+1 for any k. Given

an even value function Jk+1, the conditional expectation E
#

Jk+1(ek+1,τk+1)|·,δk

$

preserves
symmetry for both δk = 0 and δk = 1. Adding the cost c0

k
(·,δk) also preserves symmetry,

because the sum of two even functions is again even. Taking the pointwise minimum of
two even functions yields an even function. Therefore, an even function remains even after
application of the Bellman operator. As JN ≡ 0 is an even function, it follows by induction
that every value function Jk is even for k ∈ {0, . . . , N − 1}. This implies that the f0

k
resulting

in the first iteration step from Algorithm 1 is an even mapping of ek, if α0 = 0.
Next, we calculate α1 assuming f0

k
being an even function of ek for k ∈ {0, . . . , N − 1}.

Let φek |τ be defined as the density function of the conditional probability distribution of ek

given τk and δk = 0, when using event-trigger f0. The definition of φek |τ yields the following
calculation of α1

k,τ.

α1
k,τ =

∫

e∈!
e ·φek |τ(e)de.

For k = 0, φek |τ is determined by truncating the density function φe0
of the initial state e0 at

all (e,τ), where f1
0 takes a value of 1 and by normalizing the resulting function, i.e.

φe0|τ(e) =
φe0
(e) · (1− f0

0(e,τ))
∫

e∈!
φe0
(e) · (1− f0

0(e,τ))de
. (3.15)

Since φe0
and f0

0 are even functions, we conclude that φe0|τ is even and therefore we
have α1

0,−1 = 0. Along the same lines, we can show that φek |k−1 is even and α1
k,k−1 = 0

for k ∈ {1, . . . , N − 1} by replacing φe0
with φw in Eq. (3.15). For a constant τ, the condi-

tional density function φek |τ evolves by the recursion

φek+1|τ(e) =
( 1
|a|
φek |τ(

(·)
a
) ∗φw)(e) · (1− f0

k
(e,τ))

∫

e∈!
( 1
|a|
φek |τ(

(·)
a
) ∗φw)(e) · (1− f0

k
(e,τ))de

.

It can be observed that this recursion preserves symmetry of the conditional density func-
tion φek |τ, as f0

k
is an even function. Therefore, we have shown that α∗ = 0 is a fixpoint of

Algorithm 1, which completes the proof.
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3.4 Convergence Properties

3.4.1 Symmetric Unimodal Distributions

A natural question arising from Proposition 3.4 is whether the person-by-person optimal
solution α∗ = 0 with its optimal event-trigger f∗ is also the globally optimal solution. We
partly answer this question in the following by assuming that the distributions are unimodal.

Definition 3.2 (Unimodality). A distribution in ! is called unimodal, if there exists w0 ∈ !
such that the density function of the distribution φ(w) is a non-increasing function for
w ≥ w0 and a non-decreasing function for w ≤ w0.

This additional assumptions enables us to state the following useful convergence property
of Algorithm 1.

Theorem 3.1. Let the initial state e0 and the noise process {wk} have symmetric and unimodal

distributions. Then, α∗ = 0 is a globally asymptotically stable fixpoint of Algorithm 1.

Proof. By considering the evolution of αi as a dynamical system evolving over variable i,
the asymptotic behavior of the iterative Algorithm can be analyzed by means of Lyapunov
stability theory and it is shown that α∗ = 0 is a globally asymptotically stable equilibrium
point. The details of the proof can be found in Section 3.7.

As the iterative Algorithm 1 produces a sequence of pairs (fi,αi) whose costs are non-
increasing with increasing i, we conclude that 0 is the optimal choice for α, when noise
distributions are symmetric and unimodal according to Theorem 3.1. The optimal state esti-
mator of xk is then given by the linear predictor in Eq. (3.6) and is therefore independent of
the choice of the event-trigger f. The distribution of the initial state x0 must be also symmet-
ric and unimodal, but its mean E[x0] can be chosen arbitrarily. Hence, the symmetry axis of
the distribution of x0 need not to be at zero. In order to determine the optimal f∗, dynamic
programming must only be applied once with α= 0. Therefore, the joint design approach in
the case of symmetric densities can be considered as an independent design of event-trigger
and estimator.
This result is in accordance with [LM11] and constitutes an alternative way by analyzing the
asymptotic behavior of Algorithm 1 to prove that symmetric event-triggering laws are opti-
mal in the presence of symmetric unimodal distributions. Moreover, the iterative algorithm
may be applied to arbitrary distributions that are absolute continuous. Although α= 0 is a
fix point of the Algorithm 1 by Proposition 3.4 assuming symmetric density functions, the
next section shows that an independent approach given by α= 0 can be outperformed by
Algorithm 1 by almost 50%. Hence, we can conclude that symmetry of the densities is not
sufficient to show that the independent design is optimal. Therefore, additional assumptions
are required to show that the independent design is optimal. In the case of Theorem 3.1 such
requirement is given by the unimodality assumption of the density functions.

It is an open question whether Theorem 3.1 is also valid for higher-order systems. Neither
the use of majorization theory in [LM11] nor our iterative approach allow a direct exten-
sion to the case of multi-dimensional systems. Therefore, we will henceforth assume that
Theorem 3.1 is also true for higher-order systems, which implies that the linear predictor
defined in Eq. (3.6) is the optimal state estimator. This will give us the opportunity to derive
further results for optimal event-triggered control systems in the follow-up chapters without
restricting our attention to first-order systems.
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3 Structural Properties of Optimal Event-Triggered Estimation

3.4.2 Symmetric Bimodal Distributions

In the following, we study the solutions obtained from the iterative methods for the case of
bimodal noise distributions. This subsection intends to outline the benefits of the proposed
iterative algorithm by numerical examples. It will demonstrate how the event-trigger and
the estimator can benefit from signaling through the absence of triggering.

Besides, it validates the obtained results for unimodal noise distributions. We compare
the solutions obtained from the iterative algorithm with the optimal symmetric event-trigger
having a linear predictor, i.e. assuming α = 0. Suppose the process defined by Eq. (3.14)
with a = 1, a communication penalty λ= 0.5 and the distribution of the initial state and the
system noise are identical and defined by the density functions φe0

and φw as

φe0
= (µ,σ) = φw(µ,σ) =

1
2
φ* (µ,σ) +

1
2
φ* (−µ,σ)

with

φ* (µ,σ) =
1

9
2πσ2

e−
(x−µ)2

2σ2 .

In the special case of µ = 0, we retrieve the normal distribution. In order to facilitate
comparability between different distributions, we choose µ ∈ [0, 1) and set

σ =
0

1−µ2

that yields an identical variance of 1 for all µ ∈ [0, 1). In the limit µ→ 1, the noise process
degrades to a Bernoulli process taking discrete values {−1, 1} with probability 1

2
. Various

density functions for different µ are sketched in Fig. 3.3a.
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Figure 3.3: (a) Various bimodal/unimodal density functions with zero-mean and identical
variance of 1 composed of two Gaussian kernels shifted by ±µ. (b) Performance
comparison for a horizon N = 10. The degree of unimodality 1− µ (1 for zero-
mean Gaussian and 0 for Bernoulli process with discrete parameters in {-1,1}) is
drawn on a logarithmic scale.
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Figure 3.4: Event-trigger policy f (scaled by 0.007) resulting from the iterative Algorithm 1
with initial noise distribution φw, µ = 0.95, horizon N = 1 and initial choice
α0

0 = 0.1. The algorithm converges to α0 = 0.95 and an asymmetric event-
trigger f(x0) = 1{[0.25,0.65]}c(x0).

We observe that for µ < 0.8 the peaks of the bimodal density function are less distinctive.
Therefore, we can not expect that large gains of the iterative procedure can be attained
compared with the optimal symmetric solution for µ < 0.8. A performance comparison of
the iterative procedure and the optimal symmetric event-trigger is drawn in Fig. 3.3b for
a horizon N = 10 and various µ. The initialization for the iterative procedure is chosen to
be α0 ≡ 0.1. As expected the costs are almost identical for µ ∈ [0, 0.8]. This also validates
Theorem 3.1, since φw is unimodal for sufficient small choice of µ. For µ > 0.8 a rapid per-
formance improvement can be observed. In the limit µ→ 1, the costs are reduced by a factor
of 45% by the iterative procedure compared with the optimal symmetric event-trigger. This
may seem surprising, because the cost function as well as the noise distribution are all even
functions. Fig. 3.4 gives an illustrative explanation of such significant performance improve-
ment for N = 1 and µ= 0.95. With an initial value α0

0 = 0.1, the iterative algorithm con-
verges to α0 = 0.95 and an asymmetric event-trigger policy f(x0) = 1{[0.25,1.65]}c(x0), whereas
the optimal symmetric event-trigger is given by f(x0) = 1{[−0.7,0.7]}c(x0). The event-trigger
and estimator resulting from the iterative procedure have therefore an implicit agreement, if
no state update is sent over the resource-constrained channel. In that case, no transmission
indicates the estimator that the state x0 is situated at the right peak resulting in the esti-
mate α0. In contrast to that, the linear predictor defined in Eq. (3.6), which is optimal for
the symmetric event-trigger, is independent to the choice of the threshold of the symmetric
event-trigger and the noise-distribution.

3.5 Summary

By considering the joint optimal design of state estimator and event-trigger as a two-player
problem, we were able to develop an efficient iterative algorithm, which alternates between
optimizing the estimator while fixing the event-trigger and vice versa. The iterative method
shows special properties in the case of unimodal and symmetric distributions of the uncer-
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3 Structural Properties of Optimal Event-Triggered Estimation

tainty. In this situation it is shown that the optimal event-triggered estimator can be obtained
by a separate design and is given by a linear predictor and a symmetric threshold policy. This
result is along previous results and offers an alternative line of proof for showing that such
separate design is optimal in case of symmetric unimodal distributions.

In the case of symmetric and bimodal distributions, the iterative procedure offers a sys-
tematic method, which leads to asymmetric event-triggers and biased estimators that out-
perform symmetric threshold policies.

Similar properties of the iterative method are likely to hold as well in the case of multi-
dimensional systems, but a conclusive derivation for higher-order systems is still an open
issue.

3.6 Bibliographical Notes

The contributions presented in this chapter are based on the work in [MH12b; MH12d].
The implication of Theorem 3.1, that the estimation bias is zero implying that symmetric

event-triggering laws are optimal in the presence of symmetric unimodal distributions, has
also been proven in [LM11]. The authors in [LM11] make use of majorization theory and
the Riesz rearrangement inequality [HLP52] in order to arrive at this result. In fact, the
proof follows a similar guideline used for a closely related problem that studies the joint
optimization of paging and registration policies in mobile networks [HMY08]. The consid-
eration of the asymptotic behavior of Algorithm 1 constitutes an alternative way to prove
that symmetric event-triggering laws are optimal for first-order systems. Besides the work
in [HMY08], iterative methods for the solution of team decision problems, in which one
policy is optimized while the others are fixed, has also been applied for the study of opti-
mal solutions of the Witsenhausen’s counter-example [KGOS11] and for the joint design of
source-channel-relay mappings [KS10] and is also the basic idea of the Lloyd–Max algorithm
for vector quantization [GG92].

3.7 Proof of Theorem 3.1

Proof. First, we define the following time-variant transformations of ek and αk,τk
by

yk =
1
ak

ek, k = 0, . . . , N − 1,

βk,τk
=

1
ak
αk,τk

, k = 0, . . . , N − 1,

τk = −1, . . . , k− 1.

By this transformation, the running cost and the Bellman operator are defined by

ĉ
βk

k (yk,τk,δk) = (1−δk)a
2k|yk − βk,τk

|2+λδk,

6̂ βk

k Ĵk+1(·) = min
δk∈{0,1}

ĉ
βk

k (·,δk) + E
#

Ĵk+1(yk+1,τk+1)|·,δk

$

.
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The optimization problem (3.12) can then be restated by replacing J with Ĵ defined by

Ĵ(f,β) = E
f





N−1
∑

k=0

ĉ
βk

k (yk,τk,δk)



 .

The event-trigger fk is a function of yk and τk, where yk evolves by

yk+1 = (1−δk)yk + vk, y0 = e0.

with vk =
1
ak wk and the evolution of τk is given by Eq. (3.4). It is easy to see that the

distribution of vk is again unimodal and symmetric. In the following, we adapt Algorithm 1
to the transformed system. We consider β i as a vector in !

1
2 N(N+1) that evolves by the

procedure defined by Eq. (3.16). By this view, β i is the state of a non-linear time-invariant
discrete-time system described by

fi = arg min
f

Ĵ(f,β i),

β i+1
k,τ = E

fi





k−1
∑

l=τ

vl |δτ+1 = 0, . . . ,δk = 0



 .
(3.16)

In order to analyze the asymptotic behavior with increasing i, we introduce the following
Lyapunov candidate V (β i) defined by

V (β i) = ‖β i‖∞.

In order to show that V (β i) is decreasing with respect to i, we establish several auxiliary
results. For notational convenience, let β i

∞ be defined as

β i
∞ = ‖β

i‖∞.

What we want to show first is that for every event-trigger fi resulting from Eq. (3.16) for a
given β i, we have

fi
k
(β i
∞+∆,τ) = 0 =⇒ fi

k
(β i
∞ −∆,τ) = 0,

∀∆ ≥ 0, k = 0, . . . , N − 1,τ= −1, . . . , k− 1.
(3.17)

The validity of above implication is shown by induction starting with k = N − 1. We fix a β i

and apply dynamic programming to obtain fi. Because of ĴN ≡ 0, the value function ĴN−1 is
then given by

ĴN−1(y,τ) = min
δ∈{0,1}

ĉ
β i

N−1
N−1 (y,τ,δ).

Note that the running cost exhibits the symmetry property

ĉ
β i

k

k (β
i
k,τ+∆,τ,δ) = ĉ

β i
k

k (β
i
k,τ−∆,τ,δ), ∀∆ ∈ !,δ ∈ {0, 1}

with τ= −1, . . . , k− 1 and the monotonicity property

0≤∆1 ≤∆2 =⇒ ĉ
β i

k

k (β
i
k,τ+∆1,τ,δ)≤ ĉ

β i
k

k (β
i
k,τ+∆2,τ,δ)
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for δ ∈ {0, 1} and τ= −1, . . . , k−1. Both properties are preserved after taking the minimum
over δ implying that they are also valid for ĴN−1. Therefore, we obtain

ĴN−1(β
i
∞+∆,τ)≥ ĴN−1(β

i
∞ −∆,τ), ∀∆ ≥ 0 (3.18)

with τ= −1, . . . , N−1. For∆≤ β i
∞−β

i
k,τ, inequality (3.18) is valid due to the monotonicity

property of ĴN−1. In case of ∆> β i
∞ − β

i
k,τ, we have

ĴN−1(β
i
∞ −∆,τ)

= ĴN−1(β
i
∞ − β

i
k,τ+ β

i
k,τ−∆,τ)

= ĴN−1(β
i
k,τ+ (β

i
k,τ− β

i
∞+∆,τ)

≤ ĴN−1(β
i
∞+∆,τ).

The second equality is due to the symmetry property and the inequality is due to the mono-
tonicity property as

β i
k,τ ≤ β

i
k,τ+ (β

i
k,τ− β

i
∞+∆)≤ β

i
∞+∆.

By knowing that the value function ĴN−1 = λ is constant for all pairs (y,τ), when δN−1 = 1,
we have

fi
N−1(β

i
∞ −∆,τ) = 1 =⇒ λ = ĴN−1(β

i
∞ −∆,τ)≤ ĴN−1(β

i
∞+∆,τ)

=⇒ JN−1(β
i
∞+∆,τ) = λ

=⇒ fi
N−1(β

i
∞+∆,τ) = 1.

Next, we show that by applying the Bellman operator will preserve the inequality given by
Eq. (3.18). Assume, we have

Ĵk+1(β
i
∞+∆,τ)≥ Ĵk+1(β

i
∞ −∆,τ), ∀∆ ≥ 0 (3.19)

with τ= −1, . . . , k− 1. We want to show statement (3.19) implies

Ĵk(β
i
∞+∆,τ)≥ Ĵk(β

i
∞ −∆,τ), ∀∆ ≥ 0 (3.20)

with τ= −1, . . . , k− 1. The Bellman equation is

Ĵk = 6̂
β i

k

k Ĵk+1.

For all pairs (y,τ), where the argument of the minimization in 6̂ β
i
k

k yields δk = 1, Ĵk is
constant. This also implies that Ĵk takes its maximum for these pairs. In the following, we
are interested in outcomes for Ĵk in case of δk = 0. Along the same lines as for ĴN−1, we

obtain for the running cost ĉ
β i

k

k

ĉ
β i

k

k (β
i
∞+∆,τ,δ)≥ ĉ

β i
k

k (β
i
∞ −∆,τ,δ), ∀∆ ∈ !,δ ∈ {0, 1} (3.21)

with τ= −1, . . . , k− 1. We rewrite Ĵk+1 to

Ĵk+1 = ĴSYM
k+1 + ĴREM

k+1
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with

ĴSYM
k+1 (y,τ) =

!

Ĵk+1(y,τ), y ≤ β i
∞,

Ĵk+1(β
i
∞+ (β

i
∞ − y),τ), y > β i

∞,
(3.22)

ĴREM
k+1 (y,τ) = Jk+1(y,τ)− ĴSYM

k+1 (y,τ). (3.23)

By the assumption (3.19), we have

ĴREM
k+1 (y,τ)

!

= 0, y ≤ β i
∞,

≥ 0, y > β i
∞.

(3.24)

Taking the expectation of Ĵk+1 given δk, yk and τk, gives either a constant function over
(yk,τk) for δk = 1 or is given by convolution with the density function of vk for δk = 0
denoted byφ. By assumption the density functionφ is symmetric and unimodal. By linearity
of the convolution operator, we follow

E
#

Ĵk+1|·,τk,δk = 1
$

= JSYM
k+1 (·,τk) ∗φ + JREM

k+1 (·,τk) ∗φ. (3.25)

For the first term of Eq. (3.25), we observe that symmetry is preserved, i.e.,

(JSYM
k+1 (·,τk) ∗φ)(β i

∞+∆) = (J
SYM
k+1 (·,τk) ∗φ)(β i

∞ −∆) (3.26)

for ∆ ∈ !. On the other hand due to Eq. (3.24) and

φ(y − (β i
∞+∆))≥ φ(y − (β

i
∞ −∆)),∆≥ 0, y ≥ β i

∞,

we have for any ∆ ≥ 0

(JREM
k+1 (·,τk) ∗φ)(β i

∞+∆)≥ (J
REM
k+1 (·,τk) ∗φ)(β i

∞ −∆). (3.27)

Summing up the terms and taking the minimum to obtain Ĵk, we obtain statement (3.20)
by using Eqs. (3.21), (3.26) and (3.27). By induction, statement (3.20) is valid for
all k = 0, . . . , N − 1. Along the same lines as for N − 1, we follow Eq. (3.17) from the
statement in Eq. (3.20). Equivalently to Eq. (3.17), it can be showed that

fi(−β i
∞ −∆,τ) = 0 =⇒ fi(−β i

∞+∆,τ) = 0,

∀∆ ≥ 0, k = 0, . . . , N − 1,τ= −1, . . . , k− 1.

Let φ i
yk|τ

be defined as the density function of the conditional probability distribution of yk

given τk and δk = 0, when using event-trigger fi. The definition of φ i
yk|τ

yields the following
calculation of β i+1

k,τ

β i+1
k,τ =

∫

y∈!
y ·φ i

yk|τ
(y)d y.

By assuming an event-trigger fi that satisfies statement (3.17), we show inductively that

φ i
yk|τ
(β i
∞+∆)≤ φ

i
yk|τ
(β i
∞ −∆), ∀∆ ≥ 0,

k = 0, . . . , N − 1,τ= −1, . . . , k− 1.
(3.28)
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For k = 0, φ i
yk |τ

is calculated by truncating the density function φy0
of the initial state y0 at

all (y,τ), where fi
k

takes a value of 1 and by normalizing the resulting function, i.e.

φ i
y0|τ
(y) =

φy0
(y) · (1− fi

0(y,τ))
∫

y∈!
φy0
(y) · (1− fi

0(y,τ))d y
.

As φy0
is an even and unimodal function, we have

φ i
y0|τ
(β i
∞+∆)≤ φ

i
y0|τ
(β i
∞ −∆), ∆≥ 0, fi

k
(β i
∞+∆,τ) = 0.

For all (y,τ) with fi
k
(β i
∞+∆,τ) = 1, we have

φ i
y0|τ
(β i
∞+∆) = 0,

which trivially validates inequality (3.28). Similarly as for k = 0 and τ= −1, we can prove
the validity of Eq. (3.28) for k ∈ {1, N−1} and τ= k−1 by replacing the density functionφy0

by the density function φvk−1
of the noise variable vk−1. By assuming that inequality (3.28)

is satisfied for time step k, we prove that Eq. (3.28) holds for k + 1 for an arbitrary k ∈
{0, . . . , N −2} and fixed τ ∈ {−1, . . . , k− 1}. For a fixed τ, the density function φ i

yk |τ
(y) can

be calculated by the recursion

φ i
yk+1|τ

(y)=
(φ i

yk|τ
∗φvk

)(y) · (1− fi
k
(y,τ))

∫

y∈!
(φ i

yk|τ
∗φvk

)(y) · (1−fi
k
(y,τ))d y

. (3.29)

As having already been observed for Ĵk+1, the convolution of φ i
yk|τ

with φvk
preserves the

inequality (3.28). With the same arguments as for k = 0, we follow that

φ i
yk |τ
(β i
∞+∆)≤ φ

i
yk |τ
(β i
∞ −∆), ∆ ≥ 0

implies

φ i
yk+1|τ

(β i
∞+∆)≤ φ

i
yk+1|τ

(β i
∞ −∆), ∆ ≥ 0,

which concludes the induction. Inequality (3.28) implies that β i+1
k,τ ≤ β

i
∞. Similarly, it can

be showed that β i+1
k,τ ≥ −β

i
∞. In fact, it is straight forward to see that the inequalities are

strict for all β i
∞ <= 0 and therefore the Lyapunov candidate V decreases with increasing i for

all β <= 0. Hence, the iterative procedure defined in Eq. (3.16) converges to 0 for any initial
condition of β . By transforming β back into the initial state space system, we can conclude
the proof.
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4

Event-Triggered Control under Communi-

cation Delays and Packet Dropouts

Until now, the communication network in the feedback loop has been primarily considered
as a resource-constrained entity. Once, the event-trigger decides to transmit data to the
controller, it is assumed that the communication network guarantees to convey the data
instantaneously. However, such assertion can not be supposed in many practical commu-
nication systems, where data messages are delayed or even get lost. This motivates us to
study the design of optimal event-triggered controllers in the presence of both time-delay
and packet-dropouts in this chapter.

Our first concern addresses the question whether the structural properties obtained in pre-
vious chapters carry over to the case of imperfect communication over the feedback loop. As
the information pattern of the decision makers needs not to be nested anymore, the optimal
control law will generally not have the certainty equivalence property found in Chapter 2.
This encourages us to identify different conditions for the communication model, where
the nestedness property can be recovered. One of the prerequisite for the communication
model is an error-free acknowledgement channel. It turns out that the certainty equivalence
property can be assured, if either (i) the acknowledgement channel is delay-free or (ii) the
feedback link is error-free or (iii) intervals between subsequent transmission times are re-
stricted to be equal or greater than the round-trip time.
Inspired by these conditions, two suboptimal design approaches are developed. The notion
of suboptimality refers to the introduction of certain assumptions that enable the calculation
of optimal event-triggered controllers. The first approach assumes that the event-trigger is
idle for the duration of a round-trip time after transmitting information. The second ap-
proach assumes the controller to be a certainty equivalence controller. The design of the
event-triggering rule can be cast in the framework of optimal control problems with partial
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4 Event-Triggered Control under Communication Delays and Packet Dropouts

state information. It turns out that this problem implicitly needs to estimate potential packet
dropouts. Furthermore, the optimal event-trigger is shown to have finite memory, where the
number of past state values to be taken into account scales linearly with the round-trip time.

This chapter can be outlined as follows. In Section 4.1, the design problem and the
communication model under consideration is introduced. Section 4.2 identifies conditions
for the communication model under which the certainty equivalence property of the optimal
controller can be recovered, and it develops two suboptimal design approaches. The efficacy
of the suboptimal solutions for the event-triggered controller is evaluated numerically in
Section 4.3.

4.1 Linear Quadratic Control over Delayed and

Intermittent Feedback Loops

The design problem can be regarded as an extension of the LQ problem under communica-
tion constraints introduced in Section 2.1. Besides the resource-constraint that is taken care
of in the optimization problem, the communication network* in the feedback loop may de-
lay or intermit transmitted data. The complete model of the networked control system (NCS)
is illustrated in Fig. 4.1. The control system consists of a process - , an event-trigger + and
a controller 0 . The stochastic discrete-time process - to be controlled is described by the
following time-invariant difference equation

xk+1 = Axk + Buk + wk, (4.1)

where A∈ !n×n, B ∈ !n×d . The variables, xk and uk denote the state and the control input.
They are taking values in !n and !d , respectively. The system noise wk takes values in !n

and is an i.i.d. zero-mean Gaussian distributed sequence with covariance matrix Cw. The
initial state, x0 is Gaussian with finite mean E[x0] and covariance Cx0

.
The event-trigger output δk ∈ {0, 1} is defined as follows.

δk =

!

1, update is sent,

0, nothing transmitted.

The system model for the communication system is given by an erasure channel in the
forward link. When δk = 1, packet dropouts are modeled as a Bernoulli process {qk}k
defined as

qk =

!

1, update successfully transmitted,

0, packet dropout occurred,

with packet dropout probability β = P[qk = 0|δk = 1] and qk takes a value of 0, if δk = 0.
We assume a TCP-like communication protocol. The main feature of TCP-like communication
protocols is that a binary acknowledgement is sent over the reverse link to the event-trigger,
whenever a packet has been transmitted successfully. It is assumed that the reverse link is
error-free. Most point-to-point protocols for wired connections fulfill this assumption. For
example, the CAN-Bus protocol achieves such behavior by letting each transmitting node
compare its priority with the other nodes that want to access the bus. Forward and reverse
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link delay packets by the duration of T1 and T2, respectively. Both, T1 ≥ 0 and T2 ≥ 1 are
assumed to be known apriori. If only upper bounds on these delays are known, a buffering
approach can be used to obtain constant time-delays equal to the bounds and the subsequent
analysis can still be carried out.

Let (Ω,( ,P) denote the probability space generated by the random variables x0, W N−1

and QN−1 over the horizon N . These variables are the primitive random variables of our sys-
tem under consideration. System parameters and statistics are known to the event-trigger
and controller. Besides having the information Qk−T1−T2 from the acknowledgement chan-
nel, the event-trigger + situated at the sensor side has access to the complete observation
history X k and decides, whether the controller 0 should receive an update.

If the event-trigger decides to update the controller, it transmits the current state over the
erasure channel with delay T1 to the controller. The received signal at the controller can be
defined as

zk+T1
=

!

xk, δk = 1∧ qk = 1

∅, otherwise
(4.2)

with z0 = · · · = zT1−1 = ∅. The admissible policies for the event-trigger and the controller at
time k are defined as Borel-measurable functions of their past available data, i.e.,

δk = fk(X
k,Qk−T1−T2),

uk = γk(Z
k).

Let 3 be the set of all admissible policy pairs (f,γ) over the horizon N , where the
event-triggering policies is given by f = { f1, f2, . . . , fN−1} and control policies is given
by γ= [γ1,γ2, . . . ,γN−1]. The cost function is defined as

J(f,γ) = E



xT
N
QN xN +

N−1
∑

k=0

xT
k
Qxk + uT

k
Ruk +λδk



 , (4.3)

where the weighting matrices Qn,Q ∈ !n×n are positive semi-definite and R ∈ !d×d is positive
definite. The positive factor λ can be regarded as the weight of penalizing information
exchange between sensor and controller.

Then, the design objective is to find the pair (f,γ) ∈ 3 that minimizes the cost function J

inf
(f,γ)∈3

J(f,γ), (4.4)

where J is defined in (4.3).

4.2 Design Approach

This section is divided into three parts. In Section 4.2.1, conditions for the communication
network * are derived that enable a structural characterization of the optimal solution
with regard to the certainty equivalence property introduced in Chapter 2. These structural
properties allow an efficient calculation of the optimal event-trigger. As the conditions for
the communication system are generally not satisfied, we develop two different suboptimal
design procedures, a waiting strategy and a dropout estimation strategy, which are discussed
in Section 4.2.2 and 4.2.3
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PSfrag replacements

qk−(T1+T2)

qk

T1

T2

Process -Controller 0

Communication network *

Event-trigger +

zk xkuk

δk

Figure 4.1: System model of the NCS over delayed and intermittent feedback loops with
plant - , event-trigger + , controller 0 and a resource-constrained communica-
tion system * . The forward link is an erasure channel and the reverse link
carries the acknowledgement. The links have transmission delays T1 and T2,
respectively.

4.2.1 Certainty-Equivalence-Preserving Communication Models

The main property that has allowed us to characterize the optimal solution of the LQR
problem under communication constraints in Chapter 2 was the nested information pattern
of the event-trigger and the controller. Because data transmission has been assumed to have
no delays and packet dropouts, the information available at the controller is a subset of
the information available at the event-trigger. This implies that it is possible to recover the
applied control inputs and include these explicitly in the decision of the event-trigger. This
property has enabled us to prove that the certainty equivalence controller is optimal for the
considered problem in Chapter 2.

However, the assertion of the nestedness property does generally not hold anymore for the
communication model introduced in the previous section. The possibility of packet dropouts
introduces another source of information that is first perceived at the controller, and becomes
available at the event-trigger with delay. Therefore, the controller has additional information
that is not available at the event-trigger.

In the following, we seek for a generalization of Theorem 2.1 that includes degradations
of the data transmission in the feedback loop. Let us formally revise the nestedness property.
The information pattern is said to be nested when the information at the controller repre-
sented by the σ-algebra σ(Zk−1) generated by the information available at the controller
at time k − 1 is embedded in the σ-algebra σ(X k,Qk−T1−T2) generated by the information
available at the event-trigger at time k. Together with the concept of dominating strategies
introduced in Definition 2.1, we state the following key theorem that will enable us to iden-
tify conditions for the communication network such that the certainty equivalence controller
is optimal.
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Theorem 4.1. If the information pattern is nested, i.e.

σ(Zk)⊂ σ(X k,Qk−T1−T2),

then the set 3 CE = {(f,γCE)| f is an admissible event-triggering policy} is a dominating class of

policies, where γCE is given by

uk = γ
CE(=0

k
) = −Lk E[xk|Zk] (4.5)

with Lk being the solution of the Riccati equation defined in (2.12).

Proof. Suppose that we are given an admissible pair (f,γ) ∈ 3 . Because of the hy-
pothesis σ(Zk−1) ⊂ σ(X k,Qk−T1−T2), we can define a reparameterized event-triggering
law g = {g1, g2, . . . , gN−1} with gk being a function of the primitive random variables
{x0, W k−1,Qk − T1− T2} such that

gk(x0, W k−1,Qk−T1−T2) = fk(X
k,Qk−T1−T2), k ∈ {0, . . . , N − 1} (4.6)

when both systems are using a control law γ. The function g always exists, since the se-
quence of control inputs Uk−1 can be recovered by the information X k,Qk−T1−T2 due to the
nestedness property. This implies also that x0, W k−1 can be fully recovered from X k given
Qk−T1−T2 and vice versa. Therefore, the event-triggering law f can always be replaced by g
and vice versa because of the hypothesis of the theorem. First note that both the pair (f,γ)
and (g,γ) produce identical random variables uk and δk and therefore yield the same cost J .

In the following, we fix the event-trigger g and aim at finding the optimal law γ∗ minimiz-
ing J . Lemma 2.1 has already addressed this issue in Chapter 2. Because of Lemma 2.1, we
attain the minimum by choosing γ to be γCE defined in Equation (4.5).

Summarizing these results, we obtain

J(f,γ) = J(g,γ)≥ inf
γ

J(g,γ) = J(g,γCE) = J(f′,γCE), (4.7)

where f′ satisfies Eq. (4.6) when assuming the control law γCE. The statement in Eq. (4.7)
states that for any given pair (f,γ) ∈ 3 , we find another pair (f′,γCE) where J(f,γ) ≥
J(f′,γCE). Therefore, we have shown that the set of solutions given by (f′,γCE) is a domi-
nating class of policies. This concludes the proof.

Based on the above theorem, we are able to obtain conditions for the communication
system, where the set of pairs 3 CE is a dominating class of policies. These conditions are
given by the following three propositions.

Proposition 4.1. Let T1 ≥ 0 and T2 ≥ 1. If the packet dropout probability β is 0, then 3 CE is

a dominating class of policies.

Proof. In case of β = 0, we observe that {qk}k is deterministic and does not carry any
information. As the data Zk−1 can be reconstructed by X k through Eq. (4.2), the information
pattern is nested. By applying Theorem 4.1, the proof is complete.

Proposition 4.2. Let β ∈ [0, 1] and T1 ≥ 0. If the delay T2 is equal to 1, then 3 CE is a

dominating class of policies.
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Proof. In case of T2 = 1, we are able to reconstruct Zk by Eq. (4.2), as the event-trigger
has the data Qk−T2−1 and X k are available at time k. Applying Theorem 4.1 concludes the
proof.

In order to formulate the next proposition, we define the number of unacknowledged
packets in the communication system denoted by Mk as

Mk =

k−1
∑

l=k−T1+T2

δl

In TCP-like networks it is common to bound Mk by a so-called TCP window size [Tan02].
The next proposition shows that setting the TCP window size to 1 enables separation.

Proposition 4.3. Let β ∈ [0, 1], T1 ≥ 0 and T2 ≥ 1. If the communication system only allows

one unacknowledged packet, i.e. Mk ≤ 1 for all k ≥ 1, then 3 CE is a dominating class of

policies.

Proof. Suppose the event-trigger decides to transmit information at time k1, i.e. δk1
= 1. The

subsequent sequence of δk is predefined as [δk1
, . . . ,δk1+T1+T2−1] = [0, . . . , 0]. Therefore, no

decision are taken at the event-trigger during this period. At time step k1+T1+T2, the event-
trigger may again decide to transmit information. But as δk = 0 for k ∈ {k1, . . . , k1 + T1 +

T2−1}, the event-trigger knows the history Qk1+T1+T2−1 and is able to reconstruct Zk1+T1+T2−1

by the information available at the event-trigger. In case no transmissions occurred prior to
time k the same arguments hold, as δl = 0 for l ∈ {0, . . . , k− 1} By using Theorem 4.1, we
find that 3 CE is a dominating class of policies.

The results in Proposition 4.3 motivate us to propose a special class of event-triggered
controllers, which is studied in the following section.

4.2.2 Waiting Strategy

The main idea of the waiting strategy is to wait for the acknowledgement before sending the
next message to the controller. Setting the TCP window size to 1 enforces the event-trigger
to wait for the length of a round trip time T1 + T2, before transmitting again information.
The benefits of such approach are two-fold. Waiting for the acknowledgment before sending
the next packet enhances predictability of the event-trigger for communication and dimin-
ishes the possibility of congestion in the communication network. Second, such restriction
facilitates the solution of the optimization problem by reducing it to numerically tractable
subproblems. Besides the structural property due to Proposition 4.3, it turns out that the
optimal event-trigger is described by a decision function in !n that can be found by value
iteration.

Based on Proposition 4.3, we restrict our attention to find the optimal solution in 3 CE

that satisfies Mk ≤ 1 for all k ≥ 0. Therefore, the remaining problem reduces to finding

inf
f

J+ , s.t. Mk ≤ 1, (4.8)
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where

J+ = E





N−1
∑

k=0

(xk − x̂0
k
)TΓk(xk − x̂0

k
) +λδk



 (4.9)

with x̂0
k
= E[xk|Zk] and Γk as defined in Eq. (2.16). In order to embed the constraint

Mk ≤ 1 into the system evolution, we define the following variable sk representing the state
of the communication network

sk+1 =







T1+ T2− 1, δk = 1∧ sk = 0,

sk − 1, δk = 0∧ sk > 0,

0, δk = 0∧ sk = 0,

(4.10)

with s0 = 0 and the following modified interconnection relation which differs from Eq. (4.2)

zk+T1
=

!

xk, δk = 1∧ qk = 1∧ sk = 0,

∅, otherwise.
(4.11)

Equation (4.11) implies that even if δk = 1, the update will be blocked, when sk > 1.
This reflects exactly the behavior of the waiting strategy, as choosing δk = 1 when sk > 0,
will have no effect on the system evolution, although the communication penalty λ is paid.
Therefore, the optimal event-triggering law always selects δk = 0 for sk > 0.

Since the least-squares estimate x̂0
k
= E[xk|Zk] depends explicitly on the choice of f as

shown in Chapter 2, the optimization problem (4.8) can not be formulated in the framework
of dynamic programming directly and remains hard to solve. Nevertheless, it has been
shown in Theorem 3.1 of Chapter 3 that symmetric event-triggering laws are optimal in the
presence of symmetric unimodal distributions. However, a rigorous proof in the general
case for higher-order systems does not exist. Nevertheless, we assume in the following that
this symmetry property is also present for any arbitrary higher-order system. When using
symmetric event-triggering laws, it then turns out that the least-squares estimate x̂0

k
is given

by a linear predictor defined by

x̂0
k+T1
=

!

AT1 xk −
∑T1−1

m=0 AT1−m−1BLk+m x̂0
k+m

, δk = 1∧ qk = 1∧ sk = 0,

(A− BLk+T1−1) x̂
0
k+T1−1, otherwise,

(4.12)

with initial condition

x̂0
k
= (A− BLk−1) · · · (A− BL0)E[x0], k = 0, . . . , T1− 1. (4.13)

Given the above state estimator at the controller and the definition of sk, the optimization
problem (4.8) can be written as

inf
f
E





N−1
∑

k=0

(1− 1{0}(sk)qkδk)e
T
k
(AT1)TΓkAT1 ek +λδk





ek+1 =
4

1− 1{0}(sk)qkδk

5

Aek + wk, e0 = x0− E[x0],

(4.14)
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where the evolution of sk is given by Eq. (4.10). The variable ek can be considered as the
estimation of a one-step ahead prediction at the controller assuming a time-delay T1 = 0.
It is interesting to see that this variable is crucial for the event-trigger for arbitrary time-
delay T1. Another important property that is attributed to the waiting strategy is that the
signal ek can be calculated at the event-trigger, whenever sk = 0. For sk <= 0, it is easy to
see that δk = 0. Therefore, the optimization problem can be viewed as an optimal control
problem with full state information [ek, sk]. Such problem can be solved numerically in the
framework of dynamic programming by applying value iteration.

In summary, we have developed a numerically tractable algorithm for determining the op-
timal event-triggered controller. By restricting the optimal policies to a waiting strategy, the
initial optimization problem with distributed information pattern reduces to the calculation
of control gain Lk given by (2.12), a least-squares estimator defined by Eq. (4.12) and the
solution of a dynamic program stated in Eq. (4.14).

4.2.3 Dropout Estimation Strategy

The waiting strategy discussed in the last section is certainly suboptimal, as there are circum-
stances, where another update should be sent, although the outstanding acknowledgement
has not been received yet. For example, this would be the case, if a significant state distur-
bance is observed, while the event-trigger has to wait. This fact motivates us to relax the
waiting strategy and allow update transmissions before an outstanding acknowledgement
has been received.

In the following, we restrict our attention to policies in 3 CE. In other words, the control
law is assumed to be the certainty equivalence controller γCE given by Eq. (4.5). We assume
a linear predictor as the suboptimal state estimator which is similar to (4.12) that does not
take into account the event-triggering law, i.e.,

x̂0
k+T1
=

!

AT1 xk −
∑T1−1

m=0 AT1−m−1BLk+m x̂0
k+m

, δk = 1∧ qk = 1,

(A− BLk+T1−1) x̂
0
k+T1−1, otherwise,

(4.15)

with initial conditions given by Eq. (4.13). The above state estimator differs from (4.12)
merely by its independence of sk.

Based on the least-squares estimator (4.15), finding the optimal event-trigger is the solu-
tion of the following optimization problem

inf
f
E





N−1
∑

k=0

(1− qkδk)e
T
k
(AT1)TΓkAT1 ek +λδk





ek+1 =
4

1− qkδk

5

Aek + wk, e0 = x0− E[x0].

(4.16)

Although the above optimization problem differs only slightly from the dynamic program
for solving the optimal waiting strategy given by (4.14), there is a major burden in solving
problem (4.16), as the variable ek is generally not perfectly known at the event-trigger.

It should be noted that the cases of no packet dropouts, i.e. β = 0, or one-step delayed
acknowledgement channel, i.e. T2 = 1 and T1 = 0, constitute special situations, where ek

can be fully recovered at the event-trigger. Due to Proposition 4.1 and 4.2, respectively, the

52



4.2 Design Approach

optimal event-triggered controller (f∗,γ∗) is given by γ∗ = γCE with a state estimator given
by Eq. (4.15) and f∗ is the solution of the dynamic program stated in Eq. (4.16).

Problems with partial state information can be restated as problems with perfect state
information by considering the information available as the current state as described in
chapter 5 in [Ber05]. As the information state = +

k
increases with time, such approach is not

suitable for the above infinite horizon problem. Due to this fact, we need to reduce the data
in = +

k
to its essential quantities, which are known as sufficient statistics. The main feature

of a sufficient statistic = red
k

is that the optimal policy f∗ can be rewritten as

f∗
k
(= +

k
) = f̃k(= red

k
).

A well known sufficient statistic is given by the conditional distribution Pek |= +k
for the above

problem with partial state information, see also section 5.4 in [Ber05].
The subsequent paragraph is concerned with the calculation of Pek|= +k

. Such problem can
be posed in the framework of optimal filtering of discrete-time Markov jump linear systems,
which is studied in [CFM05], with unknown discrete mode qk and observation Pek |= +k

. In
this case it is well known that the optimal nonlinear filter can be described by a bank of
Kalman filters, which requires exponentially increasing memory and computation with time
[BSL93]. However, the event-trigger receives a delayed version of the discrete mode qk

through the acknowledgement channel. Based on results by [MB11], such additional infor-
mation leads to nonlinear filters that require merely finite memory and their computation
has a polynomial complexity that does not increase over time. This fact is stated formally in
the subsequent lemma.

Lemma 4.1. A sufficient statistics for the optimal event-trigger f ∗ solving the optimization

problem (4.16) is given by the information

= red
k
= {ek−T1−T2+1, X k

k−T1−T2+1,δk
k−T1−T2+1},

where = red
k
= {e0, X k} for k < T1 + T2. The information = red

k
is measurable with respect

to {X k,Qk−T1−T2}.

Proof. The initial value of ek is given by x0 − E[x0] and is therefore known by the event-
trigger, i.e. σ(= red

k
) ⊂ σ(X k) for k ≤ T1 + T2 − 1. On the other hand, = red

k
= {e0, X k} is the

complete information available at the event-trigger at time k ≤ T1 + T2 − 1. This implies
σ(= red

k
) = σ(X k) for k ≤ T1+ T2− 1.

For k ≥ T1+ T2, the event-trigger obtains additional information Qk−T1−T2 that enables us to
determine ek−T1−T2+1 from the difference equation of ek defined in the optimization problem
(4.16), where the noise sequence W k−T1−T2 can be recovered from knowledge of X k−T1−T2+1

and the control inputs Uk−T1−T2 .
As the sequence δk−1 is known at the event-trigger, the state ek conditioned on δk−1 has the
Markov property , i.e. given the current state ek and the sequence δk−1, the future evolution
of ek is statistically independent of past observations. Therefore, we obtain

Pek|= red
k
= Pek |{X k ,Qk−T1−T2} (4.17)

As Pek |{X k ,Qk−T1−T2} is in general a sufficient statistics for problems with partial state informa-
tion {X k,Qk−T1−T2}, Eq. (4.17) implies that = red

k
is also a sufficient statistics. This completes

the proof.
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The resulting event-trigger is called dropout estimation strategy as it internally estimates
the unknown discrete modes that have not been acknowledged at the event-trigger in order
to determine the conditional distribution of ek. This suggests that Pek |= +k

is given by a finite
set of point masses increasing with T2. For the calculation of the conditional distribution,
we define the discrete mode ik at time step k as

ik = qkδk =

!

1, successful state update,

0, no update.

We also define the probability matrix of ik conditioned on δk as

6 =
6

1 0
1− β β

7

which satisfies

P[ik = j|δk = l] = 6l+1, j+1, j, l ∈ {0, 1}.

In the following, we assume that T1 = 1 for illustrative purposes, but the main principles for

computing Pek |= red
k

also carry over to arbitrary forward delays T1. We further define x̂
0 ,ik−1

k−T2
k

as the state estimate at time k given the sequence ik−1
k−T2

with initial condition x̂0
k−T2

. The term

x̂
0 ,ik−1

k−T2
k can be calculated recursively by Eq. (4.15). By defining the estimator as

x̂0
k+1 = g( x̂0

k
, xk, ik) =

!

Axk − BL x̂0
k

, ik = 1,

(A− BL) x̂0
k

, ik = 0,

we then obtain for T1 = 1

x̂
0 ,ik−1

k−T2
k = g(·, xk−1, ik−1) ◦ · · · ◦ g( x̂0

k−T2
, xk−T2

, ik−T2
)

According to [MB11], we then have

Pik−1
k−T2
|= red

k
=

α(ik−1
k−T2

,= red
k
)

∑

ik−1
k−T2
α(ik−1

k−T2
,= red

k )

where
∑

ik−1
k−T2

denotes the sum over all possible permutations of ik−1
k−T2

, i.e.
∑

ik−1
k−T2

=
∑1

ik−T2=0 · · ·
∑1

ik−1=0 and

α(ik−1
k−T2

,= red
k
) =

T2−1
∏

t=0

6δk−t−1+1,ik−t−1+1pk−t(xk−t)

where pk−t(·) is probability density function of the conditional probability distribution of
xk−t given {xk−t−1, ek−T2

, ik−t−1
k−T2
}, which is described by the multivariate normal distribution

* (Axk−t−1− BL x̂
0 ,ik−t−2

k−T2
k−t−1 , Cw). Finally, we obtain Pek |= red

k
by computing the points

ek = xk − x̂
0 ,ik−1

k−T2
k
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which have a probability Pik−1
k−T2
|= red

k
. The number of point masses can be reduced by tak-

ing into account that α(ik−1
k−T2

,= red
k
) is zero whenever ik−t−1 = 1 and δk−t−1 = 0, which

corresponds to 61,2 = 0. Hence, the number of point masses depends on the number of
transmission attempts during a round trip time. In case no transmissions occurred during
this period, we recover the waiting strategy as there is no ambiguity for ek with probability
one.

In contrast to the initial problem stated by (4.16), the information state = red
k

does not
increase in time, but is bounded by the round-trip time T1 + T2. Therefore, finding the
optimal event-trigger f is feasible for practical implementation in the case of infinite horizon
problems with a moderate round-trip time.

4.3 Numerical Performance Comparison

In this section, we conduct several Monte Carlo simulations in order to evaluate the quality of
the proposed suboptimal algorithms numerically. In the following we consider the following
four triggering mechanisms:

1. the waiting strategy derived in Section 4.2.2

2. the dropout strategy derived in Section 4.2.3

3. the optimal time-triggered policy

4. the optimal event-triggered policy with instantaneous dropout information Qk−1.

It should be noted that the last mechanism listed in the above list serves as a lower bound
for the performance analysis.

Suppose a scalar process - defined by (4.1) with A = 1, B = 1 and variances Cw = 1,
Cx0
= 1 and mean E[x0] = 0. The cost function J is defined by (4.3), where Q and R

are selected apriori to Q = 1 and R = 5. Subsequently, we analyze the performance with
respect to diverse settings of the communication network. We consider three different packet
dropout probabilities β ∈ {0, 0.25, 0.5}, a forward delay T1 = 1 and two different reverse
delays T2 ∈ {1, 2}.

The time-triggered strategy does not need an acknowledgement channel and is therefore
independent of T2. The optimal transmission timings of the time-triggered controller are cal-
culated by the deterministic dynamic programming algorithm described in Section 2.2. It is
straight forward to show that Proposition 2.1 also holds for the case of Bernoulli-distributed
packet dropouts. This implies that the optimal time-triggered control law is a certainty
equivalence controller.

For the calculation of the optimal event-triggered policy with instantaneous dropout in-
formation Qk−1, Proposition 4.2 applies and we can therefore assume that the set of policies
given by 3 CE is a dominating class of policies. As in the previous sections, we also assume
that the estimator at the controller will be given by the linear predictor defined in Eq. (4.15).
Furthermore, the variable ek defined in Eq. (4.16) is known at the event-trigger at time k.
Therefore, the solution of optimization problem (4.16) can be solved directly by dynamic

55



4 Event-Triggered Control under Communication Delays and Packet Dropouts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

 

 
Lower bound
Time−triggered
Waiting strategy (T2=1)
Waiting strategy (T2=2)

Dropout estimation

JCOMM

J M
S
E

Figure 4.2: Performance comparison in the absence of packet dropouts.

programming, which will then yield a lower bound. It should be noticed that this bound is
not tight for non-zero packet dropout probability β and T1 + T2 ≥ 2. It can not be attained
by any event-triggered controller, as it imposes that the event-trigger guesses qk at any time
step k+ 1 correctly with probability 1.

Due to these observations, we can conclude that all four considered triggering mechanisms
will have the same form of controller that is given by Eq. (4.5) with identical linear gains Lk

computed by Eq. (2.12). The difference with regard to performance among the approaches
is reflected in J+ defined by Eq. (4.9). The objective function J+ consists of a weighted mean
squared error JMSE per time step given by

JMSE =
1
N
E





N−1
∑

k=0

(xk − x̂0
k
)TΓk(xk − x̂0

k
)





and the communication penalty JCOMM per time step which is defined as

JCOMM =
1
N
E





N−1
∑

k=0

δk



 .

Subsequently, we are interested in the trade-off curves between JMSE and JCOMM that are de-
termined through varying the weight λ. The numerical results are illustrated in Fig. 4.2 for
the case without packet dropouts and in Fig. 4.3 for different packet dropout probabilities
and different reverse delays in the communication system. Both figures draw the achiev-
able cost pairs [JMSE, JCOMM] for varying communication penalty λ, where cost pairs with
JCOMM close to 0 corresponds to large λ and pairs with a transmission rate JCOMM close to 1
corresponds to a vanishing λ.

In all depicted scenarios in Fig. 4.2 and 4.3, the dropout estimation strategy outperforms
the optimal time-triggered scheme and approaches the lower bound very closely. For the
case of no packet dropouts depicted in Fig. 4.2, i.e. β = 0, the dropout estimation strategy
is equal to the lower bound, as both optimal solutions coincide, because qk is deterministic
in this case. The waiting strategy also outperforms the optimal time-triggered scheme and
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Figure 4.3: Performance comparison with different packet dropout probabilities β and re-
verse delays T2.

deviates only slightly from the lower bound for low transmission rates. Figure 4.2 and 4.3
also reveal the natural upper bound on the communication cost JCOMM given by 1

T1+T2
for the

waiting strategy. Evidently, the dropout estimation strategy shows better performance than
the waiting strategy at the cost of additional computations due to the filtering procedure.

4.4 Summary

In this chapter, we have attested that the optimal design of event-triggered control is a chal-
lenging problem, if having both time delays and packet dropouts in the feedback loop. This
becomes evident when taking into account that these communication degradations lead to
a fully distributed information structure of the decision makers. Opposed to previous chap-
ters, such information structure prohibits the assumption of a nested information pattern,
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in which the information at the controller is a subset of the information available at the
event-trigger. However, by using an acknowledgement channel, we were able to identify
conditions for the communication system that enable a structural characterization of the
optimal triggering and control policies. The structural properties allow an efficient optimal
design of the event-triggered controller. The conditions may not hold in general for the
communication system, but restrictions on the communication protocol can recover these
conditions, as observed in the proposed waiting strategy. Despite of these restrictions, which
facilitate the design procedure significantly, numerical simulations indicate that both subop-
timal algorithms – the waiting strategy and the dropout estimation strategy – outperform
time-triggered control systems, while marginally deviating from a lower bound on the sys-
tem performance.

Furthermore, the observations made in this chapter will be taken into account in Chapter 8
when choosing the model of the communication network that is shared among the feedback
loops of the multiple control systems.

4.5 Bibliographical Notes

The results in this chapter are based on [MH10c; MH13b]. The usage of a TCP-like com-
munication protocol for data transmission in an unreliable feedback control loop has been
studied in [SSF+07]. This work additionally considers an unreliable link from the controller
to the process. Rather than designing triggering rules for data transmission over resource-
constrained feedback channels, the focus is on the compensation of packet dropouts in this
link and the analysis of UDP-like communication protocols for NCSs.
The work in [XH04] studies the design optimal event-triggered estimation with commu-
nication constraints and time delays. Similar to the optimization problem formulated in
Eq. (4.16), it also shows that the event-triggering rule is a function of the one-step ahead
estimation error irrespective of the forward delay T1.
Finally, the estimation of the dropouts studied in Section 4.2.3 is related to optimal state
estimation for Markovian jump linear systems with delayed mode observations studied
in [MB11].
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5

Structural Characterization of Event-

Triggered Control with Partial State Infor-

mation

In previous chapters, it has been assumed that the event-trigger has complete state informa-
tion. In many situations, the complete state can however not be accessed directly and only
noisy measurements correlated to the state variable are available. This chapter studies the
optimal design of event-triggered controllers related to the framework of linear quadratic
Gaussian (LQG) control in the presence of noisy state measurements. It turns out that the
structural results obtained in Chapter 2 carry over to the case of noisy state measurements.
In particular, it is shown that the certainty equivalence property is still valid in this problem
setup. Based on the certainty equivalence property, the least-squares estimators at the con-
troller and at the event-trigger are characterized. By fixing the control law, it turns out that
the event-trigger can not make use of the dual effect of control and the optimal estimator is
given by the Kalman filter. The least-squares estimator at the controller takes the form of a
biased linear predictor of the Kalman estimate resulting at the event-trigger. Similar as in
Chapter 2, the estimation bias can be determined beforehand and depends on the choice of
the event-triggering law. The structure of the optimal estimators allow us to state that it suf-
fices to transmit the Kalman estimate to controller in order to maintain optimality. Based on
these results, the optimal event-triggering law can be characterized as a policy depending on
the discrepancy of the least-squares state estimate at the controller and at the event-trigger.

This chapter is organized as follows. The design problem posed as an extended version
of the linear-quadratic-Gaussian control problem is introduced in Section 5.1. Section 5.2
gives a characterization of the optimal solutions and studies the form of the optimal control
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law, the optimal state estimators, and the optimal event-triggering rule. The results are
summarized in Section 5.3

5.1 Linear-Quadratic-Gaussian Control under

Communication Constraints

We consider the following stochastic time-invariant discrete-time system -

xk+1 = Axk + Buk + wk,

yk = C xk + vk,
(5.1)

where A∈ !n×n, B ∈ !n×d and C ∈ !m×n. The variables, xk, uk and yk denote the state, the
control input and measurement output and are taking values in !n, !d and !m, respectively.
The system noise wk and measurement noise vk take values in !n and !m, respectively, and
are i.i.d. zero-mean Gaussian distributed sequences with covariance matrices Cw and Cv,
respectively. The initial state, x0 is Gaussian with mean E[x0] and covariance matrix Cx0

.
Let (Ω,( ,P) denote the probability space generated by the primitive random variables de-
fined by the initial state x0 and noise sequences W N−1 and V N−1 over the horizon N . We
assume that system parameters and statistics are known to both the event-trigger and the
controller.

The event-trigger + situated at the sensor side has access to the complete observation
history and decides, whether the controller 0 should receive an update over the network
denoted by * . The information send over the network is determined by the filter ? . The
controller calculates inputs uk to regulate process - . The system model is illustrated in
Fig. 5.1.

The event-trigger output δk ∈ {0, 1} is defined as follows:

δk =

!

1, update is sent,

0, otherwise.

The received data, zk, at the controller is defined as

zk =

!

HkỸ k, δk = 1

∅, δk = 0
(5.2)

with Hk being a linear mapping with respect to the observation history Y k defining the linear
filter ? . The linear filter ? can take many different forms. It can for example output only
the current measurement yk, or it can also output the complete observation history Y k. It
should also be noted that filter? can also be the Kalman filter, as this filter is linear, where
we assume that the influence of the applied control inputs uk have been compensated for
notational convenience. Let

τk =max{l|δl = 1, l < k}
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5.2 Structural Characterization

Process - Filter ?Controller 0

Communication network *

Event-trigger +

zk ykuk

δk

Figure 5.1: System model of the NCS under noisy state measurements with plant - , fil-
ter? , event-trigger + , controller 0 and communication network * .

be the last time step, where an update has been transmitted. In case no transmission has
occurred, we define τk = −1. The admissible policies for the event-trigger and the controller
at time k are defined as Borel-measurable functions of their past available data

δk = fk(Y
k),

uk = γk(Z
k).

The design objective is to find admissible event-triggering policies f and control policies γ
that minimize the finite-horizon criterion

J(f,γ) = E



xT
N
QN xN +

N−1
∑

k=0

xT
k
Qxk + uT

k
Ruk +λδk



 . (5.3)

The weighting matrices Q, QN are positive definite and R is positive semi-definite. The
positive factor λ can be regarded as the weight of penalizing information exchange between
sensor and controller.

5.2 Structural Characterization

This section is divided into three subsections. First, we investigate the form of the optimal
controller in Section 5.2.1. This urges us to characterize the least-squares state estimators
at the event-trigger and controller, which is studied in Section 5.2.2. It is also found that the
least-squares estimate at the event-trigger contains all important information to be transmit-
ted to the controller. This fact enables a characterization of the optimal filter? at the sensor
side. Finally, the obtained results allow us to specify the form of optimal event-triggers in
Section 5.2.3.
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5 Structural Characterization of Event-Triggered Control with Partial State Information

5.2.1 Certainty Equivalence Property

We will heavily rely on the key fact that the σ-algebra of Zk−1 is a subset of the σ-algebra
of Y k given any admissible mappings f and γ. Similar as in 2.3.2, this nestedness property
of the information structure allows us once more to compensate the applied control inputs
in order to express the event-trigger as a function of the virtual measurements that are
produced for the corresponding unforced system.

Let us define the measurements ỹk obtained at the event-trigger for the unforced system
as

ỹk = yk −
k−1
∑

m=0

CAk−m−1Bum. (5.4)

Given any sequence of control inputs Uk−1, the information Ỹ k is a measurable bijective
mapping of Y k. As past control inputs can be recovered at the event-trigger due to the
nestedness property, an event-trigger f that takes actions upon the information Y k can as
well be expressed by another admissible mapping denoted as g depending on Ỹ k for all
k ∈ {0, . . . , N −1}. The next lemma gives a statement on the optimal control law for fixed g.

Lemma 5.1. Let δk be given as a function

δk = gk(Ỹ
k), k ∈ {0, . . . , N − 1},

where ỹk is the measurement of the unforced system defined in Eq. (5.4). If the triggering law g
is fixed, then the optimal control law γ∗ minimizing J(g,γ) defined in Eq. (5.3) is a certainty

equivalence controller given by

uk = γ
∗
k
(Zk) = −Lk E[xk|Zk], k ∈ {0, . . . , N − 1} (5.5)

with Lk being the solution of the Riccati equation defined in Eq. (2.12).

Proof. Due to the fact that the sequence of δk is independent of the sequence of control
inputs for each sample path ω ∈ Ω when g is fixed, the term E

+

∑N−1
k=0 λδk

-

in Eq. (5.3) is
constant and can be omitted from the optimization. Similar to the proof of Lemma 2.1, we
show that the estimation error εk = xk−E[xk|Zk] can be expressed as a function of primitive
random variables which does not depend on the policy γ being used. We fix a policy γ and
consider two types of systems: The forced system model is given by Eq. (5.1), whereas the
unforced system model with zero inputs is related to the definition in Eq. (5.4) and reads

x̃k+1 = Ax̃k + w̃k, ỹk = C x̃k + ṽk.

We assume both have the same evolution of primitive random variable, i.e.

x0 = x̃0, wk = w̃k, vk = ṽk, k = 0, . . . , N − 1.

The received signal at the controller is given by Eq. (5.2) for the forced system and

z̃k =

!

HkỸ k, δ̃k = 1

∅, δ̃k = 0
(5.6)
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5.2 Structural Characterization

for the unforced system. Due to linearity, we can rewrite the forced and the unforced to the
following form

xk = Fk x0+ GkUk−1+MkW k−1

x̃k = Fk x0+MkW k−1

where Fk, Gk and Mk are appropriate matrices constructed from A, B and k. As Uk−1 is
measurable with respect to the information pattern Zk, the conditional expectations are

E[xk|Zk] = Fk E[x0|Zk] + GkUk−1+Mk E[W
k−1|Zk]

E[ x̃k|Zk] = Fk E[x0|Zk] +Mk E[W
k−1|Zk]

Therefore, we have

εk = xk − E[xk|Zk] = x̃k − E[ x̃k|Zk] (5.7)

The output vector Ỹ k of the unforced system can be expressed by

Ỹ k = Y k − RkUk−1 = C Fk x0+ SkW k−1+ TkV k−1 (5.8)

where Rk, Sk and Tk are appropriate matrices. As the outputs of the event-trigger g are a
function of primitive variables that is independent of the control law chosen, we state

δ̃k(ω) = δk(ω) and τ̃k(ω) = τk(ω), k = 0, . . . , N − 1. (5.9)

Hence,

Z̃ k = [Hτk+1 Ỹ τk+1 ,∅, . . . ,∅] = [Hτk+1 Y τk+1 − Hτk+1Rτk+1
Uτk+1−1,∅, . . . ,∅]. (5.10)

Given the control sequence Uk−1, we observe that the information Z̃ k can be regarded as a
bijective mapping with respect to Zk. Therefore, Eq. (5.10) implies that E[ x̃k|Zk] = E[ x̃k|Z̃ k]

and we conclude from Eq. (5.7) that

εk = x̃k − E[ x̃k|Z̃ k].

Accordingly, the estimation error εk is a function of the primitive random variables that is
independent on the control policy used. By rewriting the cost function in Eq. (5.3) in the
same way as in Eq. (2.15), we have

J =λE[
N
∑

k=0

δk] + E[xT
0 P0 x0] + E[

N−1
∑

k=0

wT
k
Pk+1wk] + E[

N−1
∑

k=0

εT
k
LT

k
Γk Lkεk]

+ E[

N−1
∑

k=0

(uk + LkE[xk|Zk])TΓk(uk + LkE[xk|Zk)], (5.11)

where Pk is the solution of a Riccati equation, Lk is the linear control gain, both defined in
Eq. (2.12), and Γk = BTPk+1B + R. Due to the fact that the first four terms take constant
values with respect to the admissible control laws, we observe that the controller γ∗ defined
in Eq. (5.5) minimizes J . This completes the proof.
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5 Structural Characterization of Event-Triggered Control with Partial State Information

The result in Lemma 5.1 for the event-trigger g can be used to characterize the optimal
control law of the original problem in terms of dominating class of strategies, see Defini-
tion 2.1. This is summarized in Theorem 5.1.

Theorem 5.1. Let γ∗ be the certainty equivalence controller defined in Eq. (5.5). The set of

policies (f,γ∗) with f being an admissible event-triggering rule is a dominating class of policies

for minimizing the cost function J defined by Eq. (5.3).

Proof. Given a feasible pair (f,γ), there exists a feasible pair (g,γ) with gk being a function
of primitive variables which outputs the identical random variable δk as the event-triggering
rule fk for all k ∈ {0, . . . , N − 1}. The existence of g is guaranteed because of the nestedness
property of the information pattern. This implies that for (f,γ) and (g,γ), we also have
identical random variables uk for k ∈ {0, . . . , N − 1} and therefore identical costs. In the
same way for the pair (g,γ∗), we can find a triggering law f′ being a function of X k, such that
both (g,γ∗) and (f′,γ∗) output identical random variables uk and δk for k ∈ {0, . . . , N − 1}.
Assuming γ∗ to be the certainty equivalence controller defined in Eq. (5.5), we obtain the
following relation due to due to Lemma 5.1.

J(f,γ) = J(g,γ)≥min
γ

J(g,γ) = J(g,γ∗) = J(f′,γ∗).

Since (g,γ∗) is an admissible law, the pair (f′,γ∗) is also an admissible policy. This concludes
the proof.

As the laws (f,γ∗)with γ∗ being the certainty equivalence controller establish a dominating
class of policies due to Theorem 5.1, we can restrict our analysis to such form of event-
triggered controllers in the following.

5.2.2 Optimal Filter Design

It has been shown in the last section that the optimal controller is a certainty equivalence
controller consisting of linear gains Lk that can be computed in advance and a state estima-
tor E[xk|Zk]. The aim of this subsection is two-fold. On the one hand, we study the form
of the estimator at the controller given by E[xk|Zk]. On the other hand, we aim at a com-
pressed form of the information that needs to be transmitted to controller without omitting
valuable data. This goal is pursued by an appropriate design of the filter ? at the sensor
side.

For notational convenience, we define

x̂+
k|k = E[xk|= +k ],

x̂+
k|k−1 = E[xk|= +k−1],

x̂0
k|k = E[xk|Zk]

with x̂+0|−1 = E[x0] and the error covariance matrices

Σ+
k|k =E[(xk − x̂+

k|k)(xk − x̂+
k|k)

T],

Σ+
k|k−1 =E[(xk − x̂+

k|k−1)(xk − x̂+
k|k−1)

T].
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5.2 Structural Characterization

Lemma 5.2 (State estimation at the event-trigger). The least-squares state estimator at the

event-trigger is linear and can be computed recursively by the Kalman filter

x̂+
k|k = Ax̂+

k−1|k−1+ Buk−1+Σ
+
k|kCTC−1

v
(yk − CAx̂+

k−1|k−1− CBuk−1) (5.12)

independently of the scheduling law chosen.

Proof. Fix a scheduling law f. Due to the nestedness property, it can be assumed that the
control inputs Uk−1 are known at the event-trigger. Hence, we have

x̂+
k|k = E[xk|Uk−1, Y k].

Given the control inputs Uk−1, the state xk and past observations Y k are jointly Gaussian.
This is due to the fact that the primitive random variable are Gaussian and xk and yk are
linear functions of them. Therefore, the least-squares estimator E[xk|Uk−1, Y k] is linear and
can be computed by the Kalman filter given by Eq. (5.12), see [Ber05].

As a consequence of Lemma 5.2, it is interesting to note that the event-trigger can not
improve its state estimate by probing the system through its variables δk. Therefore, we can
state that there is no dual effect of control for the event-trigger.

As it will be useful for further study, the one-step ahead prediction can also be computed
recursively by

x̂+
k|k−1 = Ax̂+

k−1|k−1+ Buk−1

with x̂+0|−1 = E[x0]. The covariance matrix Σ+
k|k appearing in Eq. (5.12) is computed in

advance by

Σ+
k|k = Σ

+
k|k−1−Σ

+
k|k−1CT(CΣ+

k|k−1CT+ Cv)
−1CΣ+

k|k−1

Σ+
k+1|k = AΣ+

k|kAT+ Cw, Σ+0|−1 = Cx0
.

In the following, our analysis is devoted to both the structural properties of the least-
squares estimator at the controller and the amount of valuable information that is to be
transmitted in order to obtain the best least-squares estimate at the controller. This valuable
information is determined in terms of sufficient statistics and is determined by the choice
for the filter ? at sensor side. The maximal amount of information that can be sent is
given by the complete observation history at the event-trigger, Y k. In fact, it suffices to send
only the observations that have not been transmitted yet. In the following, it is assumed
that the sequence Y k

τk+1 is transmitted to the controller whenever δk = 1. However, we will
eventually observe that this information can be condensed to the least-squares estimate at
the event-trigger.

Determining the optimal state estimator at the controller x̂0
k|k turns out to be a more

difficult task, as (i) it is dependent on the scheduling law and (ii) non-Gaussian observations
are to be incorporated. This is because sending no update is still valuable information for
the controller. Despite these difficulties, it is possible to give a characterization of x̂0

k|k stated
in the following lemma.
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5 Structural Characterization of Event-Triggered Control with Partial State Information

Proposition 5.1 (State estimation at the controller). Let the event-triggering law f be fixed,

let γ∗ defined in Eq. (5.5) be the control law and let the filter ? output the sequence Y k
τk+1 at

time k. Then, the optimal state estimator at the controller takes the recursive form

x̂0
k|k =

!

x̂+
k|k, δk = 1,

(A− BLk) x̂
0
k−1|k−1+ατk ,k, δk = 0,

(5.13)

where the bias term ατk,k ∈ !n depends on the event-triggering law f.

Proof. In case of δk = 1, we have controller and event-trigger have the same information,
i.e. the sigma algebra of Zk is identical to that of Y k. This implies that x̂0

k|k = x̂+
k|k for δk = 1.

Let rk denote the innovation process at the event-trigger defined as

rk = yk − C x̂+
k|k−1.

It is well-known that the innovation is zero-mean and rk is uncorrelated with respect to past
observations Y k−1, see [KSH00]. As rk and Y k−1 are jointly Gaussian, this also implies that
these variables are statistically independent.
Assume that τk ≥ 0 and δk = 0. By Eq. (5.12), the least-squares estimate at the event-trigger
can expressed as follows

x̂+
k|k = Ak−τk x̂+τk|τk

+ Fk,τk
Uk−1
τk
+ Gk,τk

Rk
τk+1.

where Fk,τk
and Gk,τk

are appropriate matrices. We can use the above expression of x̂+
k|k in

order to compute E[xk|Zk] by

E[xk|Zk] = E[ x̂+
k|k|Z

k]

= E[Ak−τk x̂+τk|τk
+ Fk,τk

Uk−1
τk
+ Gk,τk

Rk
τk+1|Z

k]

= E[Ak−τk x̂+τk|τk
|Y τk ,τk] + E[Fk,τk

Uk−1
τk
|Y τk ,τk] + E[Gk,τk

Rk
τk+1|Z

k,τk]

= Ak−τk x̂+τk|τk
+ Fk,τk

Uk−1
τk
+ E[Gk,τk

Rk
τk+1|τk] (5.14)

The third equality follows from linearity of the conditional expectation and the fact that the
random variables Y τk and τk are measurable with respect to Zk. The last equality is due
to the fact that the estimate x̂+τk|τk

is measurable with respect to Y τk , the fact that Uk−1
τk

is
measurable with respect to Zk, and the fact that the innovation rj is statistically independent
of past observations Y j−1 with j ∈ {τk + 1, . . . , k}. By defining

αi,i+1 =E[Gi+1,i ri+1|τi+1 = i],

αi,i+ j =− (A− BLk)αi,i+ j−1+ E[Gi+ j,iR
i+ j
i+1|τi+ j = i],

(5.15)

for i ∈ {0, . . . , N−2} and j ∈ {2, . . . , N− i−1}, we can write Eq. (5.14) in the recursive form
defined by Eq. (5.13). The same result can also be proven for τ = −1. This completes the
proof.

As in Chapter 3, the estimation bias ατk ,k can be interpreted as a correction term to
enhance the state estimate at the controller, when incorporating additional information
δτk
= · · · = δk = 0 that depends on the choice of the event-triggering rule f. In that sense,

Proposition 5.1 can be regarded as the extension of Proposition 3.2 to systems, in which only
noisy measurements are available.
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5.2 Structural Characterization

As a side result of Proposition 5.1, it can be seen from Eq. (5.13) that it suffices to transmit
the state estimate x̂+

k|k instead of the complete sequence Y k
τk+1. We summarize this fact in the

following proposition.

Proposition 5.2 (Optimal design of filter ? ). The least-squares estimate x̂+τk|τk
and the

last transmission time τk are a sufficient statistics for the least-squares estimation of xk at the

controller.

Hence, we can conclude from Proposition 5.2 that the filter ? with linear filter gains Hk

can be implemented recursively by the Kalman filter defined in Eq. (5.12). This is advan-
tageous from a technological point of view, because it roughly states that the amount of
information to be transmitted is independent of the time elapsed between two subsequent
transmissions. Furthermore, only x̂+

k|k needs to be stored at the filter ? . In the following,
we will assume that the filter? outputs the least-squares estimate x̂+

k|k.

5.2.3 Structure of the Optimal Event-Trigger

Based on the preceding results with regard to the structure of the optimal controller, the
state estimators, and filters, we investigate the form of the optimal event-triggering law in
this subsection.

By taking the optimal control law γ∗ given by Eq. (5.5) and Theorem 5.1 into account, we
obtain the following optimization problem that determines the optimal event-triggering law
for optimization problem (5.3), when considering Eq. (5.11).

inf
f
E

+
N−1
∑

k=0

(xk − x̂0
k|k)

TΓk(xk − x̂0
k|k) +λδk

-

, (5.16)

The fact that x̂0
k|k is dependent on the event-triggering law f restrains us from applying

the dynamic programming algorithm to problem (5.16). Proposition 5.1 states that this
dependence appears within the parameters ατk ,k. Let us denote the cost function as

J+ (f) = E

+
N−1
∑

k=0

(xk − x̂0
k|k)

TΓk(xk − x̂0
k|k) +λδk

-

.

When fixing an event-triggering policy f, we are able to calculate bias terms ατk ,k by
Eq. (5.15). Subsequently, we proceed the other way round by fixing arbitrary bias terms
ατk ,k and calculating the optimal f for such configuration. We will obtain properties for the
resulting event-triggering law f that are independent of the specific configuration of ατk ,k.
Through this approach, we obtain further insights into the structure of the optimal event-
triggering law. It should be noted that the optimal control policy γ∗ is fully determined,
when fixing parameters ατk ,k. This implies that the problem reduces to a classical optimal
control problem with partial state information. The following theorem is the key observation
for the structural characterization of the optimal event-trigger.

Theorem 5.2. Let ατk ,k be fixed for all k,τk ∈ {0, . . . , N − 1}. Then, the estimation discrepancy

defined as

ek = x̂+
k|k − E[xk|Zk−1,δk = 0] (5.17)
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5 Structural Characterization of Event-Triggered Control with Partial State Information

and the last transmission time τk are a sufficient statistics for the optimal event-triggering law fk

for all k ∈ {0, . . . , N − 1} with regard to optimization problem (5.16).

Proof. For notational convenience, we define

‖xk − x̂0
k|k‖

2
Γk
= (xk − x̂0

k|k)
TΓk(xk − x̂0

k|k).

Assume x̂0
k|k be given by Proposition 5.1 with fixed ατk ,k for all k and τk. Fix an arbitrary

event-triggering law f and apply the tower property to the expectation in Eq. (5.16).

J+ (f) = E

+
N−1
∑

k=0

E[‖xk − x̂0
k|k‖

2
Γk
+λδk|Y k]

-

Let us inspect the expected running cost defined by c(Y k) = E[‖xk − x̂0
k|k‖

2
Γk
+ λδk|Y k]. By

adding and subtracting x̂+
k|k inside the norm of

c(Y k) = E

+

‖xk − x̂+
k|k + x̂+

k|k − x̂0
k|k‖

2
Γk
+λδk|Y k

-

= E

+

‖xk − x̂+
k|k‖

2
Γk
+ 2( x̂+

k|k − x̂0
k|k)

T(xk − x̂+
k|k) + ‖ x̂

+
k|k − x̂0

k|k)‖
2
Γk
+λδk|Y k

-

.

Since the estimators x0
k|k and x+

k|k are measurable with respect to Y k and δk and due to the
fact that the state xk and the estimator x+

k|k do no depend on δk, we have

E

+

2( x̂+
k|k − x̂0

k|k)
T(xk − x̂+

k|k)|Y
k
-

= 2( x̂+
k|k − x̂0

k|k)
T
E

+

xk − x̂+
k|k|Y

k
-

= 2( x̂+
k|k − x̂0

k|k)
T
E

+

xk − x̂+
k|k|Y

k
-

= 2( x̂+
k|k − x̂0

k|k)
T
9

E

+

xk|Y k
-

− x̂+
k|k

:

= 0.

Then, we arrive at the following expression of for the expected running cost.

c(Y k) = E

+

‖xk − x̂+
k|k‖

2
Γk
|Y k
-

+ E

+

‖ x̂+
k|k − x̂0

k|k)‖
2
Γk
+λδk|Y k

-

.

Substituting this expression into the cost function and applying the tower property reversely,
we obtain

J+ (f) = E

+
N−1
∑

k=0

‖xk − x̂+
k|k‖

2
Γk
+ ‖ x̂+

k|k − x̂0
k|k)‖

2
Γk
+λδk

-

=

N−1
∑

k=0

E

+

‖xk − x̂+
k|k‖

2
Γk

-

+ E

+
N−1
∑

k=0

‖ x̂+
k|k − x̂0

k|k)‖
2
Γk
+λδk

-

=

N−1
∑

k=0

tr[ΓkΣ
+
k|k] + E

+
N−1
∑

k=0

‖ x̂+
k|k − x̂0

k|k)‖
2
Γk
+λδk

-

.
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where we observe that the first summation is a constant that is independent of f and can
therefore be omitted from the optimization. Hence, the optimization problem defined in
Eq. (5.16) can be formulated as follows

inf
f
E

+
N−1
∑

k=0

‖ x̂+
k|k − x̂0

k|k‖
2
Γk
+λδk

-

(5.18)

Next, we observe that the x̂+
k|k − x̂0

k|k = 0 whenever δk = 1. Consider the estimation error ek

defined in Eq. (5.17). Because of its definition, the optimization problem can be rewritten
as

inf
f
E

+
N−1
∑

k=0

(1−δk)‖ek‖2
Γk
+λδk

-

(5.19)

Subsequently, the evolution of the error signal ek is derived. For δk = 1, we have

ek+1 = x̂+
k+1|k+1− E[xk+1|Zk,δk+1 = 0]

= Ax̂+
k|k + Buk +Σ

+
k+1|k+1CT(yk+1− CAx̂+

k|k − CBuk)− Ax̂+
k|k − Buk −ατk,k (5.20)

For δk = 0, we have

ek+1 = x̂+
k+1|k+1− E[xk+1|Zk,δk+1 = 0]

= Ax̂+
k|k + Buk +Σ

+
k+1|k+1CT(yk+1− CAx̂+

k|k − CBuk)− Ax̂0
k|k − Buk −ατk,k (5.21)

Summarizing Eqs. (5.20) and (5.21) yields

ek+1 = (1−δk)Aek −ατk ,k +Σ
+
k|kCT(yk+1− CAx̂+

k|k − CBuk) (5.22)

The state estimate x̂+
k|k is obtained by Eq. (5.12) and the evolution of τk is given by

τk+1 =

!

τk, δk = 0,

k, δk = 1.

As the innovation process yk+1−CAx̂+
k|k−CBuk of the Kalman filter defined in Lemma 5.2 is

a white noise process [KSH00], it can be observed that the process (ek,τk) is a δk-controlled
Markov chain. Because of the Markov property and the form of the optimization problem
defined in Eq. (5.19), the optimal event-trigger f∗ can be solved by dynamic programming
with (ek,τk) being the state of the system. This concludes the proof.

Having fixed the estimation bias ατ,k for all τ and k, Theorem 5.2 suggests that the optimal
control problem defined by Eq. (5.16) with partial state information given the information
state Y k can be converted to an optimal control with full state information (ek,τk). This has
a significant impact on the numerical complexity for finding the optimal event-triggering law
for a fixed estimation bias, as the complexity of the dynamic programming algorithm does
not grow with horizon N , but primarily depends on the state dimension n of the process.
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Figure 5.2: System structure of the optimal event-triggered controller for process - .
The certainty equivalence controller 0 is given by linear gains Lk and least-
squares (LS) estimator generating x̂0

k|k. Kalman filter ? generates the least-
squares state estimate x̂+

k|k. The element denoted by T corresponds to a one-
step delay element, whereas the least-squares estimate that outputs x̂@

k|k =

E[xk|Zk−1,δk = 0] is a copy of the least-squares estimator at the controller.

Because of the above theorem and the form of the evolution of ek and optimization prob-
lem (5.19), it also follows from Theorem 3.1 in the case of first-order single-input single-
output systems that the optimal choice for the estimation bias ατk ,k is zero. This is due to
the fact that the noise distributions have density functions as Gaussian kernel functions that
are symmetric and unimodal. This implies that the optimal event-trigger fk merely depends
on ek at time k and is given by a symmetric threshold function in this case. For higher-order
systems, the iterative method developed in Chapter 3 can be used to determine the optimal
optimal event-trigger f and the optimal estimation bias α. Although numerical simulations
suggest that the optimal estimation bias α is also identical to 0, a mathematical proof for
higher-order systems remains an open issue.

5.3 Summary

This chapter has addressed the problem of characterizing optimal event-triggered controllers
in the framework of LQG control under costly observations. It has turned out that many
properties obtained in previous chapters for perfect state observations carry over to systems
with partial state information. Figure 5.2 summarizes the obtained structural results for the
optimal event-triggered control system minimizing cost function defined in Eq. (5.3). Due
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to Theorem 5.1, the optimal control law has the certainty equivalence property. Therefore, it
consists of the linear control gains Lk, k ∈ {0, . . . , N −1} that can be computed by Eq. (2.12)
and a least-squares estimator x̂0

k|k. The least-squares estimator x̂0
k|k characterized by Propo-

sition 5.1 takes the form of a biased linear predictor whose bias can be determined before-
hand and depends on the event-triggering rule. Based on the structure of the least-squares
estimator, Proposition 5.2 shows that the Kalman estimate x̂0

k|k contains all valuable infor-
mation to be transmitted to the controller. Furthermore, the optimal event-trigger depends
on the difference between the state estimates at controller and event-trigger defined by ek

in Eq. (5.17), which is shown in Theorem 5.2. This characterization enables the systematic
design of optimal event-triggered controllers. For the case of first-order single-input single-
output systems, Theorem 3.1 derived in Chapter 3 can be applied, which implies that the
optimal choice for the estimation bias ατk ,k is zero. For higher-order systems, the iterative
method developed in Chapter 3 can be used to determine the optimal optimal event-trigger f
and the optimal estimation bias α.

As already mentioned in Chapter 3, a detailed characterization of the optimal bias term α
with regard to higher-order systems is however an open issue that needs to be considered in
future investigations.

5.4 Bibliographical Notes

The contribution of this chapter is partly based on the work in [MH10b]. There exists merely
a limited number of results that are concerned with performance-related results for event-
triggered output feedback systems. The analysis methods developed in [HDT13] are capable
to derive stability properties and A2-gain performance guarantees for output-based event-
triggered controllers. The work in [LL14] studies the dynamic output feedback systems
with event-triggered communication for weakly coupled sensor-to-controller and controller-
to-actuator links. The obtained near-optimal event-triggered control scheme resembles the
obtained optimal structure in this chapter.
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6

Optimal Event-Triggered Control for

Long-Run Average-Cost Problems

In this chapter, we consider the design of optimal event-triggered controllers over an infinite
horizon. The focus is on the minimization of the average per-stage cost in the long-run,
where the running cost is given by a quadratic control cost term and a communication
penalty similarly as in Chapter 2. Though being underselective [HL89], the long-run aver-
age cost is the favored criterion in many applications, in particular in communication and
queuing networks [EV89; ABFG+93]. Underselective means that there may exist two poli-
cies, which differ with respect to their performance in the first k time steps, but eventually
converge to the same stationary behavior and therefore yield the same average cost. Hence,
the optimization problem does not distinguish between these two policies and is therefore
underselective. Among other formulations for infinite horizon costs, we also prefer the long-
run average-cost criterion, since we are primarily interested in the behavior of the overall
system in the stationary regime and it gives us a direct interpretation of the communica-
tion penalty as the average transmission rate. Furthermore, the underselective nature of the
average cost problem will turn out to be an advantage from the point of view of adaptive
control in Chapter 9. This is because the event-trigger can adjust its law according to a price
whose optimal value is learned over time during execution of the scheduling mechanism.

The average-cost problem raises challenges that have not appeared in either previous
chapters focussing on finite horizon problems or other optimal control problems over an
infinite horizon such as problems with discounted cost criterion. Opposed to these prob-
lems, the dynamics of the underlying Markov chain takes a crucial role in the solution of
the average-cost criterion. In order to guarantee that the event-triggering law can be solved
by means of dynamic programming, we need to assert certain ergodicity conditions on the
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6 Optimal Event-Triggered Control for Long-Run Average-Cost Problems

Markov chain. By including a technical assumption on the event-triggering law, it is possi-
ble to guarantee this condition, and we can conclude that the average-cost problem for the
optimal event-trigger design can be computed via value iteration. Furthermore, we analyze
the stability properties of the proposed event-triggered controller in terms of drift criteria for
Markov chains, which are defined in Appendix B. It turns out that this notion offers appro-
priate mathematical tools to address the issue of closed-loop stability of the event-triggered
control system. Assuming a stabilizing control law in the case of continuous transmission
and a uniform bound on the triggering threshold, we prove stochastic stability for ideal
communication and we derive sufficient conditions to guarantee stochastic stability in the
presence of packet loss. The stability analysis will give us key insights in order to analyze
the asymptotic behavior of multi-loop control systems sharing a common communication
network studied in subsequent chapters.

This chapter can be outlined as follows. The average-cost problem for the optimal event-
triggered control design is introduced in Section 6.1. Sections 6.2 and 6.3 address the
structural properties and the optimal solution of the event-trigger, respectively. A stability
analysis for the case of perfect communication and the case of packet dropouts is conducted
in Section 6.4.

6.1 Long-Run Average-Cost Problem Formulation

The following problem formulation for the optimal event-triggered design over an infinite
horizon is based on the problem statement introduced in Chapter 2 for finite horizon prob-
lems. The long-run average cost can be regarded as the limiting case of the finite horizon
problem, where the horizon N goes to infinity while the costs are normalized by N .

Let us consider the following stochastic discrete-time process to be controlled defined by
the time-invariant difference equation

xk+1 = Axk + Buk + wk, (6.1)

where A∈ !n×n, B ∈ !n×d . The variables xk and uk denote the state and the control input
and are taking values in !n and !d , respectively. The initial state x0 is a random variable
with finite mean and covariance Cx0

. The system noise process {wk} is i.i.d. (independent
identically distributed) and wk takes values in !n and is zero-mean Gaussian distributed with
covariance matrix Cw that has full rank. The random variables x0 and wk are statistically in-
dependent for each k. Let (Ω,( ,P) denote the probability space generated by the primitive
random variables x0 and noise sequence {wk}. The output signal of the event-trigger, δk,
takes values in {0, 1} deciding whether information is transmitted at time k, i.e.,

δk =

!

1, measurement xk sent,

0, no measurement transmitted.

Therefore, the signal received at the controller, that is denoted by zk, is defined as

zk =

!

xk, δk = 1,

∅, δk = 0.
(6.2)
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6.2 Structural Properties

We allow both decision makers to choose their actions upon their complete past history. Let
the event-triggering law f= {f0, f1, . . .} and the control law γ= {γ0,γ1, . . .} denote admissible
policies. Hence, we have

δk = fk(X
k), uk = γk(Z

k).

We assume that the mappings fk and γk are measurable mappings of their available infor-
mation X k and Zk, respectively. Let 3 be set of the admissible policy pairs (f,γ). A policy f
is said to be stationary, if it is time-homogeneous, i.e., f= [f′, f′, . . .].

The design objective is to find optimal (f∗,γ∗) ∈ 3 that minimize the long-run average
cost criterion

J = lim sup
N→∞

1
N
E





N−1
∑

k=0

xT
k
Qxk + uT

k
Ruk +λδk



 , (6.3)

whose per-stage cost is composed of a quadratic control cost term xT
k
Qxk + uT

k
Ruk and a

communication cost term λδk. The weighting matrix Q is positive definite and R is positive
semi-definite. The positive factor λ penalizes the information exchange between sensor and
controller. Opposed to previous chapters that have considered finite horizon problems, we
additionally assume that the pair (A, B) is controllable and the pair (A,Q

1
2 ) is observable

with Q = (Q
1
2 )TQ

1
2 . These assumptions will guarantee that an optimal solution with finite

costs exists.

6.2 Structural Properties

The techniques used in Section 2.3.2 to prove that the optimal control law for the considered
finite horizon problem has the certainty equivalence property do not rely on the fact of a
finite horizon. The only issue that formally needs to be taken into account in the average-
cost case is the possibility of infinite costs for certain choice of (f,γ) ∈ 3 . These kind
of laws can be however be excluded from our consideration due to the controllablilty and
observability assumptions. As we know that the pair (f′,γCE) with f′ ≡ 1 and γCE being the
certainty equivalence controller defined in Eq. (6.4) yields finite costs, the set of policies
3CE = {(f,γCE)| f admissible} will always have a member yielding finite costs. Therefore,
the results for the finite horizon problem discussed in Section 2.3.2 carry over to the case of
infinite horizon. This fact is summarized in the following theorem.

Theorem 6.1. Let the system be given by Eq. (6.1) and Eq. (6.2). Let the certainty equivalence

control law be defined by

γCE
k
(Zk) = −L E[xk|Zk], k ∈ {0, 1, . . .} (6.4)

with

L = −(BTPB+ R)−1BTPA,

P = AT(P − PB(BTPB+ R)−1BTP)A+Q.
(6.5)

Then the set of policies 3CE ⊂3 defined by

3CE = {(f,γCE) ∈ 3 }

is a dominating class of policies for the minimization of the average cost defined in Eq. (6.3).
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6 Optimal Event-Triggered Control for Long-Run Average-Cost Problems

Because of the above theorem, we can restrict our attention to control policies that have
the certainty equivalence property. This implies that the problem of minimizing J defined in
Eq. (6.3) reduces to the optimization of the event-trigger f. As already observed at the end
of Chapter 2, the least-squares estimate E[xk|Zk] depends on the particular choice for the
event-trigger f. Therefore, a direct application of dynamic programming is still prohibited,
although there is only one decision maker. We circumvent this problem by assuming that
the estimator E[xk|Zk] does not take the side information into account that arises from not
sending data to the controller. By this assumption, we can conclude from Section (3.2)
that the estimation bias defined in Eq. (3.10) vanishes. Therefore, the event-trigger f is
symmetric and the estimator can be written as

E[xk|Zk] =

!

xk, δk = 1,

(A− BL)E[xk−1|Zk−1], δk = 0,
(6.6)

According to Theorem 6.1 and by defining the one-step ahead estimation error ek as

ek = xk − (A− BL)E[xk−1|Zk−1] (6.7)

with e0 = x0− E[x0], the optimization problem that minimizes cost (6.3) reduces to

inf
f

lim sup
N→∞

1
N
E





N−1
∑

k=0

(1−δk)e
T
k
Γek +λδk



 , (6.8)

where

Γ= LT(R+ BTPB)L. (6.9)

As derived in Section 3.2, the one-step ahead estimation error ek evolves by the following
difference equation

ek+1 = (1−δk)Aek +wk, k ≥ 0. (6.10)

Therefore, it can be observed that the process {ek} evolves according to a δk-controlled time-
homogeneous Markov chain. This implies that the optimization problem defined in Eq. (6.8)
is an average-cost optimal control problem where known techniques from stochastic optimal
control can be applied.

6.3 Optimal Event-Trigger Design

In this section, we are interested in finding the optimal event-trigger that is given by solving
the optimization problem defined in Eq. (6.8). We define the running cost as

c(ek,δk) = (1−δk)e
T
k
Γek +λδk

and introduce the so-called dynamic programming operator 6 as

6 h(ek) = min
δk∈{0,1}

#

c(ek,δk) + E[h(ek+1)|ek,δk]
$

. (6.11)

In order to simplify the following analysis, we introduce the following technical assumption
on the event-triggering laws f.
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6.4 Stability Analysis

(A1) The event-triggering law f satisfies

fk(ek) = 1, ‖ek‖2 > M ,

with M > 0 for all k ≥ 0.

Assumption (A1) does not impose a severe restriction on the scheduling laws, as the
bound M can be chosen arbitrarily large. What can be noted first from the above assumption
is that the running cost ck is uniformly bounded with regard to the inputs δk and the error
ek.

The following average-cost Bellman equation gives us an optimality criterion for the solu-
tion of the AC problem defined in Eq. (6.8).

h∗(ek) + J∗ = 6 h(ek) for all ek ∈ !n. (6.12)

Suppose that Assumption (A1) holds true and assume that there exists a bounded mea-
surable function h∗ and constant J∗, such that the AC Bellman equation (6.12) is satisfied.
According to [HL89], we then have

inf
f

J+ (f)≥ J∗

and if f∗ is a stationary solution which is the solution of the minimization of the right-hand
side of (6.11), then f∗ is optimal and J+ (f∗) = J∗.

There arise two questions for the solution of the AC Bellman equation (6.12). The exis-
tence of a solution for the AC Bellman equation (6.12) and the convergence of the value
iteration. The value iteration applies the Bellman operator recursively on the function h(ek)

in order to converge to the optimal h∗(ek). After each step, the function needs shifted ac-
cordingly in order to yield bounded solutions.

The questions can be answered by establishing certain ergodicity conditions on the dy-
namics of the δk-controlled Markov chain. A specific requirement defined in the condition
3.1(4) in [HL89] related to the total variation norm has been proven in [XH04] to hold,
which implies the existence of a solution and the convergence of value iteration. Therefore,
we can conclude that the optimal event-trigger can be computed by value iteration based on
Assumption (A1).

6.4 Stability Analysis

In this section, we aim at analyzing the asymptotic behavior of the event-triggered closed-
loop system. The controller is assumed to be given by Eqs. (6.4) and (6.6), while the
event-trigger f is assumed to be stationary and satisfies Assumption (A1) introduced in the
previous section. We distinguish between two scenarios: (i) perfect communication and (ii)
packet loss in the feedback loop. The first case will discussed in the following and continues
the preceding analysis, whereas the presence of packet loss needs us to alter the definition
of the received signal in Eq. (6.2) in Section 6.4.2 accordingly.

With regard to the notion of stability of the closed-loop system, we focus on concept of
ergodicity of Markov chains introduced in Appendix B.
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6 Optimal Event-Triggered Control for Long-Run Average-Cost Problems

6.4.1 Perfect Communication

The closed-loop system evolves according to the following difference equation with the aug-
mented state (xk, ek) ∈ !2n.

6

xk+1

ek+1

7

=

6

A− BL (1− f(ek))BL

0 (1− f(ek))A

7

·
6

xk

ek

7

+

6

wk

wk

7

with appropriate initial condition x0 and e0 = x0 − E[x0]. We directly observe that the
overall closed-loop system has a triangular structure, in which the state xk does not affect
the evolution of ek. Furthermore, it can be stated that the stochastic process (1− f(ek))BLek

has a uniform bounded support for every k because of Assumption (A1). As the matrix
(A− BL) is Hurwitz [Åst06], because of the controllablilty and detectability assumption
in Section 6.1, it suffices to analyze the asymptotic behavior of the estimation error ek,
from whose properties we can infer the behavior of the overall closed-loop system. We also
observe that the control gain L may not be the optimal gain resulting from the solution
of Eq.(6.5), but it suffices to assume that L is a stabilizing feedback gain.

The next theorem shows how drift criteria can be applied to prove closed-loop stability of
the evolution of the estimation error ek.

Theorem 6.2. Suppose ek evolves according to the Markov chain defined by Eq. (6.10) with

δk = f (ek), and suppose that f satisfies Assumption (A1). Then, the Markov chain ek is ergodic.

Proof. In the following, we will make use of the Foster’s criterion for stochastic stability
stated in Theorem B.3 of the appendix and Aperiodic Ergodic Theorem stated in Theo-
rem B.4. Due to the fact that the noise process wk is Gaussian with Cw > 0, we can conclude
that the Markov chain ek is ϕ-irreducible with ϕ being the standard Lebesgue measure.
Moreover, it can be observed from section 5.3.5 in [MT93] that any compact set in !n is also
small. Furthermore, we can also conclude from the absolute continuity of the distribution
of wk that the Markov chain is strongly aperiodic. What remains to be shown is that we
can find a small set B and Lyapunov candidate V where V is a real-valued non-negative
function in !n, such that the drift ∆V defined in B.10 satisfies Foster’s criterion defined in
Theorem B.3, which is restated here.

∆V (ek)≤ −1, for all ek ∈ !n\B. (6.13)

By supposing that V (ek) = ‖ek‖2
2 and @ = {ek ∈ Cn |‖ek‖2 ≤ M}, we have

∆V (ek) = E[V (ek+1)|ek]− V (ek)

= E[‖(1− f(ek))Aek + wk‖2
2|ek]−‖ek‖2

2.

Due to Assumption (A1), we conclude for ek /∈ @

∆V (ek) = E[‖wk‖2
2|ek]−‖ek‖2

2

= tr[Cw]−‖ek‖2
2.

By choosing B = @ ∪ {ek ∈ Cn |‖ek‖2 ≤
0

tr[Cw] + 1}, the drift condition defined in
Eq. (6.13) holds and we can conclude that the Markov chain is positive Harris recurrent.
As the chain is also strongly aperiodic, we conclude that it is ergodic due to the Aperiodic
Ergodic Theorem stated in Theorem B.4. This completes the proof.
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6.4 Stability Analysis

6.4.2 Presence of Packet Loss

In this section, we aim at deriving sufficient conditions in order to prove stability of the
closed-loop system in the presence of packet loss. Therefore, we need to extend the defini-
tion for the received signal by the following equation.

zk =

!

xk, δk = 1∧ qk = 1

∅, otherwise
(6.14)

where the packet dropouts are modeled as a Bernoulli process {qk}k defined as

qk =

!

1, update successfully transmitted,

0, packet dropout occurred,

with packet dropout probability β = P[qk = 0|δk = 1] and qk takes a value of 0, if δk = 0.
Similar as in Chapter 4, the event-trigger receives an acknowledgement, whenever a packet
has been transmitted successfully. We assume that the acknowledgement is transmitted
instantaneously and error-free. Accordingly, we adapt the estimator defined in Eq. (6.6) by

E[xk|Zk] =

!

xk, δk = 1∧ qk = 1,

(A− BL)E[xk−1|Zk−1], otherwise.
(6.15)

The evolution of the one-step ahead estimation error can then be defined as

ek+1 = (1− qkδk)Aek + wk, k ≥ 0. (6.16)

By the same arguments as in Section 6.4.1, we can restrict our analysis to the evolution of ek.
Then, we obtain the following stability condition summarized in the subsequent theorem.

Theorem 6.3. Suppose ek evolves according to the Markov chain defined by Eq. (6.16) with

δk = f (ek), and suppose that f is stationary and satisfies Assumption (A1). If the packet

dropout probability β satisfies

β <
1

‖A‖2
2

, (6.17)

then, the Markov chain ek is ergodic.

Proof. Along the same lines as in the proof of Theorem 6.2, it can be shown that the Markov
chain is ϕ-irreducible and aperiodic. Furthermore, it can also be assumed that compact
sets are small. Hence, it remains to show that the drift criterion (Foster’s criterion in The-
orem B.3) in Eq. (6.13) can be satisfied by an appropriate choice for V and B. Define
@ = {ek ∈ Cn |‖ek‖2 ≤ M} and assume that ek /∈ @ . Because of Assumption (A1), the drift
for the Lyapunov candidate V (ek) = ‖ek‖2

2 can be written as

∆V (ek) = E[V (ek+1)|ek]− V (ek)

= E[‖(1− qk)Aek + wk‖2
2|ek]−‖ek‖2

2

= E[‖(1− qk)Aek‖2
2|ek] + E[‖wk‖2

2]−‖ek‖2
2

= E[‖(1− qk)Aek‖2
2|ek] + tr[Cw]−‖ek‖2

2,
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where the second last equality is due to the statistical independence of wk with respect to ek

and qk. The statistical independence of qk and ek implies

∆V (ek) = E[(1− qk)]‖Aek‖2
2+ tr[Cw]−‖ek‖2

2

≤ E[(1− qk)]‖A‖2
2‖ek‖2

2+ tr[Cw]−‖ek‖2
2

As we assume that δk = 1, the expectation on the packet dropout yields

E[(1− qk)] = P[qk = 0|δk = 1] = β .

Therefore, we obtain the following inequality for the drift

∆V (ek)≤ (β‖A‖2
2− 1)‖ek‖2

2+ tr[Cw].

By taking the hypothesis of Theorem 6.3 defined by Eq. (6.17) into account, we define the
compact set

@ ′ =

!

ek ∈ !n

;

;

;

;

;

‖ek‖2 ≤

<

tr[Cw] + 1

1− β‖A‖2
2

=

.

By defining B = @ ∪ @ ′, the drift criterion in Eq (6.13) is satisfied. Due to the strong
aperiodicity of the Markov chain, the chain is also ergodic by Theorem B.4. This completes
the proof.

6.5 Summary

In this chapter, we have seen that the structural properties developed for finite horizon
problem in previous chapters carry over to the case of infinite horizon with the average-cost
criterion. The introduction of the technical assumption (A1) that puts a uniform bound on
the triggering threshold has enabled us to compute the optimal event-triggering policy by
value iteration. Furthermore, this condition has allowed to prove stability of the closed-loop
system in a straight-forward manner by the application of drift criteria for Markov chains.

The ideas developed in this chapter will be crucial in the design and analysis of event-
triggered mechanisms in the subsequent chapters. The techniques developed in the stability
proof in Sections 6.4.1 and 6.4.2 will be in particular useful in the stability analysis of the
multi-loop system studied in the follow-up chapter. Furthermore, we will also rely heavily
on the properties obtained in Sections 6.2 and 6.3 for the average-cost problem with regard
to the optimal event-triggered control design for multiple control loops sharing a common
communication resource studied in Chapters 8 and 9.

6.6 Bibliographical Notes

The contribution of this chapter is partly based on [MTH11; MH13b]. The analysis of the
average-cost Bellman equation for the underlying optimization problem in Section 6.3 is

80



6.6 Bibliographical Notes

partly based on the results in [XH04]. Inspired by this work, we have adapted their assump-
tion on the admissible event-triggering laws having bounded triggering thresholds. In order
to overcome the curse of dimensionality of dynamic programming, several authors have pro-
posed suboptimal algorithms [Cog09a; LWL13]. In these works, the event-triggering law is
computed by approximate dynamic programming through approximating the value function
by either quadratic or polynomial functions.
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Multi-Loop Control
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7

Stochastic Stability of Multiple Event-

Triggered Control Systems

This chapter analyzes the stability properties of multiple event-triggered control systems
whose feedback loops are closed over a common communication network. The system under
consideration consists of several individual subsystems whose sensor information needs to
be sent over a shared communication link to the controller. An event-triggered scheduler
situated at the sensor node of each subsystem decides upon its local information whether to
transmit information. Due to the contention-based communication scheme that only allows
a limited number of transmissions per time step, there is the chance for collisions among
subsystems. In order to counteract potential collisions, we assume a probabilistic collision
resolution scheme, in which an arbitration mechanism selects randomly which subsystem is
permitted to transmit its sensor information to the controller. What makes the analysis of
such multi-loop system challenging is the tight interaction between the individual control
loops and the communication system due to the event-triggered nature of the scheduling
mechanism.

By making use of results in Chapter 6, sufficient conditions for stability are derived. These
conditions will relate the ratio between the availability of the resource and the number of
control loops with the open-loop system dynamics of each control system.

This chapter is organized as follows. In Section 7.1, the mathematical system model is
introduced, which describes the subsystem control model and the communication model.
The stability analysis of the event-triggered multi-loop system is addressed in Section 7.2.
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7 Stochastic Stability of Multiple Event-Triggered Control Systems

7.1 System Model of the Multi-loop Control System

Figure 7.1 shows the structure of the considered networked control system (NCS). It com-
prises of N independent subsystems whose feedback loops are closed over a shared com-
munication network. The i-th subsystem consists of a process - i, a controller 0 i, which is
implemented at the actuator, and a sensor , i. In the following, we first describe the control
model of the subsystems and introduce then the considered communication model.

7.1.1 Subsystem Control Model

The process- i to be controlled by the ith subsystem is described by the following difference
equation.

x i
k+1 = Ai x i

k
+ Biui

k
+wi

k (7.1)

with Ai ∈ !ni×ni , Bi ∈ !ni×di for i ∈ {1, . . . , N}. The state x i
k

and the control input ui
k

are
taking values in !ni and in !di , respectively. The noise process wi

k
takes values in !ni and

is independent and identically distributed with wi
k
∼ * (0, Ci) where Ci has full rank. The

initial state, x i
0, i ∈ {1, . . . , N} is a random variable with a symmetric distribution around

its mean and has a finite second order moment. The statistics of the random variables and
the system parameters within a subsystem are known to the controller as well as to sensor
station.

zi
k

x i
k

ui
k

0 1

- 1

, 1

, 2

- 2

0 2 , N

- N

0 N

qi
k−1

shared communication network

Figure 7.1: System model of the NCS with N control systems closed over a shared com-
munication network with processes - 1, . . . ,- N , sensors , 1, . . . ,, N and con-
trollers 0 1, . . . ,0 N .

At any time k the scheduler , i situated at the sensor decides, whether a transmission slot
should be requested to transmit the current state of subsystem i to the controller 0 i. There-
fore, an event occurs within a subsystem i at time k when a transmission slot is requested.
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Further, it is assumed that control inputs may not be constant in between of successful trans-
missions and the controller 0 i may adjust the control inputs based on past updates.

Similar to Part I of this thesis, the request for a transmission of the ith subsystem at time k

is defined by the triggering variable δi
k

which takes the following values.

δi
k
=

!

1, request for transmission,

0, idle.

We represent the arbitration mechanism of the communication network by the random vari-
able qi

k
taking values

qi
k
=

!

1, allow transmission,

0, block transmission.

Then, the received data at the controller 0 i denoted as zi
k

is defined by

zi
k
=

!

x i
k
, δi

k
= 1∧ qi

k
= 1

∅, otherwise
(7.2)

It is assumed that the controller takes the following form.

uk = −Li
E
>

x i
k
|Zi

k

?

. (7.3)

We assume that each loop is stabilized with the state feedback controller in Eq. (7.3) in case
of ideal communication. Therefore, we assume that each Li is chosen such that the closed-
loop matrix

4

Ai − Bi Li
5

is Hurwitz for i ∈ {1, . . . , N}. Similar as in Eq. (6.6), the controllers
are updated by a linear predictor, in case of a blocked data transmission request, i.e.,

E
>

x i
k
|Zi

k

?

=

!

x i
k
, δi

k
= 1∧ qi

k
= 1,

(Ai − Bi Li)E
>

x i
k−1|Z

i
k−1

?

, otherwise,
(7.4)

with the initial condition E
>

x i
0|Z

i
0

?

= E[x0] for δi
k
= 0 or qi

k
= 0.

7.1.2 Communication Model

What has been left open to be defined in the introduction of the system model in Sec-
tion 7.1.1 is the choice for the triggering variable δi

k
and the arbitration variable qi

k
at each

subsystem i, i ∈ {1, . . . , N}. Inspired by the results in Part I of this thesis, we assume that the
event-trigger depends on the networked-induced estimation error ei

k
defined as

ei
k
= x i

k
− (Ai − Bi Li)E

>

x i
k−1|Z

i
k−1

?

.

The estimation error ei
k

evolves according to the following difference equation.

ei
k+1 =

%

1− qi
k
δi

k

&

Aiei
k
+wi

k
. (7.5)
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with ei
0 = x i

0 − E[x0]. We consider a TCP-like communication network that instantaneously
acknowledges the event-trigger at the sensor whether a transmission has been successful.
Therefore, the estimation error ei

k
is known at the event-trigger at time k. This implies

that its decision whether to transmit can directly depend on ei
k
. The event-triggering law is

assumed to be stationary and defined by the measurable mapping fi, i.e.,

δi
k
= fi(ei

k
), , i ∈ {1, . . . , N}.

We adopt Assumption (A1) introduced in Section 6.3 for the case of multiple event-triggers
as follows.

(A2) The event-triggering laws fi satisfies

fi(ei
k
) = 1, ‖ek‖2 > M i,

with M i > 0 for all i ∈ {1, . . . , N}.

Due to bandwidth limitations the number of transmission slots per time step denoted
by c is constrained If there are more requests than available transmission slots at time k,
then the arbitration mechanism within the communication system selects c subsystems that
may transmit information. All other subsystems are blocked and are informed instanta-
neously that their request has been rejected. The arbitration mechanism does not prioritize
subsystems, i.e., in case of arbitration, the subsystems are chosen with identical probabil-
ity. Therefore, the probability distribution of [q1

k
, . . . , qN

k
] conditioned on the requests δi

k
,

i ∈ {1, . . . , N} is time-invariant and has the following property.

P[qi
k
= 1|δi

k
, i ∈ {1, . . . , N}] =







1,
∑N

i=1δ
i
k
≤ c,

c
∑N

i=1 δ
i
k

, otherwise,
(7.6)

for subsystem i with δi
k
= 1 and

q1
k
(ω) + · · ·+ qN

k
(ω) = c

for all sample paths ω ∈ Ω for which δ1
k
+ · · · + δN

k
≥ c. From the definition of qi

k
, we

can observe that this model differs significantly from the model of qk used to model packet
loss in Chapter 4 and Section 6.4.2, where qk has been assumed to be i.i.d. and Bernoulli
distributed. However, the stability analysis conducted in Section 6.4.2 will serve as a starting
point for proving stability of the multi-loop event-triggered control system.

7.2 Stochastic Stability

In this section, we study the asymptotic analysis of the aggregated multi-loop system. After
establishing the Markov chain of our interest, Theorem 7.1 will state a sufficient condition
for stochastic stability in terms of ergodicity.
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The closed-loop system evolves according to the following difference equation with the
augmented state (xk, ek) ∈ !2n.
6

x i
k+1

ei
k+1

7

=

6

Ai − Bi Li (1− qi
k
fi(ei

k
))Bi Li

0 (1− qi
k
fi(ei

k
))Ai

7

·
6

x i
k

ei
k

7

+

6

wi
k

wi
k

7

, i ∈ {1, . . . , N}

with appropriate initial condition x i
0 and ei

0 = x i
0 − E[x i

0]. Within each subsystem, we ob-
serve that the dynamics has a triangular structure, in which the state x i

k
does not affect the

evolution of ei
k
. Furthermore, it can be stated that the stochastic process (1− qi

k
fi(ek))B

i Liei
k

has a uniform bounded support for every k because of Assumption (A2). Because of the
assumption that the matrix (Ai − Bi Li) is Hurwitz, it suffices to analyze the asymptotic be-
havior of the augmented estimation error ek = [e

1
k
, . . . , eN

k
]T, from whose properties we can

infer the behavior of the overall closed-loop system.
By incorporating the evolution of ei

k
defined in Eq. (7.5), the definition of the event-

triggering rule fi and the definition of the random variable qi
k

for i ∈ {1, . . . , N}, it can
be concluded that ek is a time-homogeneous Markov chain. Therefore, the tools for the
stochastic stability of Markov chains can applied to study its asymptotic behavior.

The following theorem states a sufficient condition that guarantees stochastic stability for
the multi-loop control system. It shall be noted that this condition is established separately
for each subsystem and does not put requirements on the scheduling behavior of the other
subsystems. Therefore, even if a malicious subsystem is continuously requesting for trans-
mission, stochastic stability can still be guaranteed.

Theorem 7.1. Suppose ek = [e
1
k
, . . . , eN

k
] evolves according to the Markov chain defined by

Eq. (7.5) with δi
k
= f i(ei

k
) satisfying Assumption (A2). If the ratio between the number of

available slots and the number of loops, c

N
satisfies

c

N
> 1−

1

‖Ai‖2
2

, for all i ∈ {1, . . . , N}, (7.7)

then the Markov chain ek is ergodic.

Proof. As the noise wi
k

is Gaussian distributed with positive definite covariance matrix Ci,
we observe that the transition kernel yields an absolute continuous distribution for any state
e irrespective of the choice of fi, i ∈ {1, . . . , N}. Similar as in the proof of Theorem 6.3, it
can be concluded that the Markov chain ek is ϕ-irreducible and strongly aperiodic, and that
all compact sets are small.

We will use Foster’s criterion defined in Theorem B.3 and the Aperiodic Ergodic Theorem
defined in B.4 in the appendix.
Consider the Lyapunov candidate

V (ek) =

N
∑

i=1

‖ei
k
‖2

2. (7.8)

Define the compact set @ as

@ =
@

ek ∈ !n1+···+nN |‖ei
k
‖2 ≤ M i, i ∈ {1, . . . , N}

A
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Further, we define the drift within a subsystem as

∆iV (ek) = E
>

‖ei
k+1‖

2
2

;

; ei
k

?

−‖ei
k
‖2

2

Due to the choice of V and the linearity of conditional expectation, the above definition
implies

∆V (ek) =

N
∑

i=1

∆iV (ek).

Consider two cases for calculating an upper bound on the drift∆iV (ek) of subsystem i. First,
let ‖ei

k
> M i‖. The statistical independence of wi

k
with respect to qi

k
and ek, the fact that

wi
k

is zero-mean Gaussian with covariance matrix Ci, and Assumption (A2) allows us to
simplify ∆iV (ek) as follows.

∆iV (ek) = E
>

1− qi
k

;

; ei
k

?

‖Aiei
k
‖2

2+ tr[Ci]−‖ei
k
‖2

2

The expression E
>

1− qi
k

;

; ei
k

?

describes the average probability that a request of subsystem
i is blocked. Because of the definition of qi

k
, we have the following upper bound by Eq. (7.6)

E
>

1− qi
k

;

; ei
k

?

≤ 1−
c

N
.

Therefore, the drift can be bounded by

∆iV (ek)≤
BC

1−
c

N

D

‖Ai‖2
2− 1

E

‖ei
k
‖2

2+ tr[Ci] (7.9)

for ‖ei
k
‖2 > M i. In the case of ‖ei

k
‖2 ≤ M i, we have the following uniform bound

∆iV (ek)≤ |‖Ai‖2
2− 1|

%

M i
&2
+ tr[Ci]. (7.10)

From Eqs. (7.9) and (7.10), it follows immediately that the drift is uniformly bounded within
any bounded set in !n1+···+nN .

Let the compact set B take the form

B =
F

ek ∈ !n1+···+nN

;

; ‖ei
k
‖2 ≤ di, i ∈ {1, . . . , N}

A

.

The appropriate choice for the values of di, i ∈ {1, . . . , N} is discussed in the following. By
the hypothesis of Theorem 7.1, we see that the first term of the bound given in Eq. (7.9)
is negative. Therefore, the bound obtained by Eq. (7.10) can be considered as a uniform
bound for the drift corresponding to a subsystem. By restricting the compact set B such that
B ⊃ @ , we ensure that at least one of the subsystems tries to send information over the
communication network. This implies that there is at least one subsystem for which we have
a ∆i satisfying the upper bound given by Eq. (7.9). Assume that the ith system requests for
transmission implying that inequality (7.9) holds. Then, by choosing di as

di =

√

√

√

√

1+ tr[Ci] +
∑

j <=i

%

|‖Aj‖2
2− 1|

4

M j
52
+ tr[C j]

&

%

1− c

N

&

‖Ai‖2
2− 1

for all i ∈ {1, . . . , N},

we can guarantee that the drift ∆V (ek) will not exceed −1 for all ek ∈ B. Hence, all asser-
tions of the Foster’s criterion are satisfied, which implies that the Markov chain is positive
Harris recurrent. As the Markov chain is strongly aperiodic, we conclude that it is also
ergodic due to Theorem B.4. This completes the proof.
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7.3 Summary

7.3 Summary

Here, we have introduced the system model of multiple independent control systems whose
feedback loops are closed over a shared communication network. Our focus has been on the
stability analysis of the overall system that uses a decentralized event-triggered scheduling
mechanism. What has made the analysis of such multi-loop system challenging is the tight
interaction between the individual control loops and the communication system due to the
event-triggered nature of the considered scheduling mechanism. By making use of results
in Chapter 6, we were able to derive sufficient conditions for stability. These conditions
relate the ratio between the availability of the resource and the number of control loops
with the open-loop system dynamics of each control system. It can be observed that the
stability condition in Theorem 7.1 does not put any constraints on the scheduling behavior
of the other subsystems. This implies that stochastic stability can still be guaranteed, even if
a malicious subsystem is continuously requesting for transmission.

7.4 Bibliographical Notes

The results of this chapter are partly based on the work in [MH11; MH14]. The stability
analysis is built upon drift criteria developed for Markov chains in uncountable spaces that
can be found in [MT93]. By strenghtening the drift criterion used in this chapter, it is ad-
ditionally shown in [MH11; MH14] that the second-order moment of the network-induced
estimation error is bounded in its stationary regime.
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8

Optimal Event-Triggered Control over a

Shared Network

In this chapter, we develop an efficient algorithm for the design of multiple event-triggered
controllers whose feedback loops are closed over a common communication network. By
assuming the system model introduced in Chapter 7, the design procedure is formulated as
an average-cost problem that aims at the minimization of a social cost criterion. The consid-
ered cost function is composed of the summation of the LQ costs of each subsystem within
the communication network.
We propose a relaxed formulation of the average-cost problem that allows us to circum-
vent the coupling of control and communication in the design. The optimization problem
becomes tractable as it can be split into two levels: a local optimal control problem and
a global resource allocation problem. While the results of Chapter 2-4 on optimal event-
triggered control apply in the local optimization problem, the global resource allocation
problem can be analyzed by techniques of convex analysis. The local optimal control prob-
lem computes a Pareto frontier of operation points within each subsystem that represents
the trade-off between control performance and resource consumption in terms of the trans-
mission rate. The trade-off curves are taken into account by the global resource allocation in
order to assign the transmission rate to each subsystem. The rate eventually determines the
optimal operation point of the event-triggered controller within each subsystem. Based on
the results on stochastic stability for the multi-loop system in Chapter 7, we show that the
proposed bi-level approach is asymptotically optimal, when the number of users approaches
infinity.

This chapter is organized as follows. In Section 8.1, we review the system model for the
multi-loop system sharing a common communication network. The bi-level design approach
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8 Optimal Event-Triggered Control over a Shared Network

is discussed in Section 8.2. Section 8.3 evaluates the numerical efficacy of the bi-level ap-
proach.

8.1 Problem Formulation

In the following, we briefly review the system model that has already been introduced in
the previous chapter. This will then lead us to the design problem for the event-triggered
controllers that is formulated as a social cost minimization.

The system is composed of N independent control subsystems that share a common com-
munication network. Each subsystem i needs to regulate a process described by the differ-
ence equation

x i
k+1 = Ai x i

k
+ Biui

k
+wi

k
, i ∈ {1, . . . , N}, (8.1)

with Ai ∈ !ni×ni , Bi ∈ !ni×di . The state x i
k

and the control input ui
k

are taking values in !ni

and in !di , respectively. The noise process wi
k

takes values in !ni and is independent and
identically distributed with wi

k
∼ * (0, Ci). The initial state, x i

0, i ∈ {1, . . . , N} is a random
variable with a symmetric distribution around its mean and has a finite second order mo-
ment. The statistics of the random variables and the system parameters within a subsystem
are known to the controller as well as to sensor station.

At any time k the scheduler situated at the sensor decides based on its state observations,
whether a transmission slot should be requested to transmit the current state of subsystem i

to the controller. Therefore, an event occurs within a subsystem i at time k when a trans-
mission slot is requested. The request for a transmission of the ith subsystem at time k is
defined by the variable δi

k
which takes the following values.

δi
k
=

!

1, request for transmission,

0, idle.

We represent the arbitration mechanism by the random variable qi
k

taking values

qi
k
=

!

1, allow transmission,

0, block transmission.

The probability distribution of [q1
k
, . . . , qN

k
] conditioned on the requests δi

k
, i ∈ {1, . . . , N} is

time-invariant and has the following property.

P[qi
k
= 1|δi

k
, i ∈ {1, . . . , N}] =







1,
∑N

i=1δ
i
k
≤ Nslot

Nslot
∑N

i=1 δ
i
k

, otherwise,
(8.2)

for subsystem i with δi
k
= 1 and

q1
k
(ω) + · · ·+ qN

k
(ω) = Nslot
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for all sample pathsω ∈ Ω for which δ1
k
+· · ·+δN

k
≥ c. The received data at the ith controller

at time k is denoted by zi
k

and is defined by

zi
k
=

!

x i
k
, δi

k
= 1∧ qi

k
= 1

∅, otherwise
(8.3)

Every subsystem i, i ∈ {1, . . . , N}, possesses an individual cost function J i which is given
by the average-cost

J i = lim sup
T→∞

1
T
E





T−1
∑

k=0

x i,T
k Qi

x
x i

k
+ ui,T

k Qi
u
ui

k



 . (8.4)

The weighting matrix Qi
x

is positive definite and Qi
u

is positive semi-definite for each

i ∈ {1, . . . , N}. We assume that the pair (Ai, Bi) is stabilizable and the pair (Ai,Q
i, 1

2
x ) is de-

tectable with Qi
x
= (Q

i, 1
2

x )
TQ

i, 1
2

x . We define the individual average transmission rate of the ith
subsystem by

r i = lim sup
T→∞

1
T
E[

T−1
∑

k=0

δi
k
], (8.5)

which also takes the form of an average-cost criterion with values in the closed inter-
val [0, 1].

The design objective is to design control and scheduling laws that minimize the social
cost V that is given by the average of the individual costs , i.e.,

J =
1
N

N
∑

i=1

J i. (8.6)

The control law γi = {γi
0,γi

1, . . .} that reflects the behavior of the controller 0 i at sub-
system i is described by the mappings γi

k
, k ∈ {0, 1, . . .}. Admissible laws are measurable,

causal maps of the available observations, i.e.,

ui
k
= γi

k
(Zk,i),

where Zk,i is the observation history until time k of subsystem i. The policy of the scheduler
is given by fi = {fi

1, fi
2, . . .}. The map fi

k
is defined as

δi
k
= fi

k
(X k,i,Qk−1,i),

where fi
k

is measurable with respect to the observation history {X k,i,Qk−1,i}. The set of
admissible policies (fi,γi) is denoted by 3 ET. The scheduling laws in 3 ET are only using
local information {X k,i,Qk−1,i} in order to determine whether a slot for transmission is to
be requested. Time-triggered schedulers constitute a special case within 3 ET, as the map
fi
k

is independent of {X k,i,Qk−1,i} for any k, i.e., time-triggered schedulers are elements of
{0, 1}∞.
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8 Optimal Event-Triggered Control over a Shared Network

Therefore, the set of admissible time-triggered scheduling laws denoted by 3 TT can be
considered as a subset of 3 ET

Furthermore, by allowing that the decisions of the schedulers may depend on all measure-
ments {X k,1,Qk−1,1, . . . , X k,N ,Qk−1,N}, we obtain a centralized scheduling structure. Let3 CEN

denote the set of admissible centralized schedulers. It can be observed that the decentral-
ized event-trigger policies in3 ET is also contained in3 CEN. Hence, we obtain the following
relationship among the three scheduling structures.

3 TT ⊂3 ET ⊂3 CEN.

It implies that the cost J of the optimal decentralized event-triggered law in 3 ET is lower
bounded by the optimal centralized scheduler and upper bounded by the minimal costs of
the optimal time-triggered scheduler. We will return to the analysis of the optimal time-
triggered and the optimal centralized scheduling laws when evaluating the performance of
the developed scheduling mechanism in Section 8.3.

In the following, we are interested in finding the optimal decentralized scheduling law fi

and control law γi that minimizes the social cost J , i.e.,

inf
(fi,γi) ∈ 3 ET

i ∈ {1, . . . , N}

J . (8.7)

8.2 Design Approach

In this section, we develop an approximative design method for the decentralized event-
triggered controller related to the optimization problem (8.7). This section is divided into
five subsections. In Section 8.2.1, the approximative bi-level formulation that divides the
original optimization problem into a local and global optimization problem is introduced.
The structural properties of the solution of the local problem are studied in Section 8.2.2. In
Section 8.2.3, the resulting global optimization problem is discussed. The issue of computa-
tional complexity of the approximative bi-level approach is addressed in Section 8.2.4, and
the optimality properties are analyzed in Section 8.2.5.

8.2.1 Approximative Bi-Level Formulation

Although the coupling between subsystems is solely caused by the resource limitation, de-
termining the optimal event-based control system that solves (8.7) is a hard problem. The
reason for this is secondarily given by the fact that the number of subsystems might be large,
but is rather due to the distributed information pattern. Besides the distributed information
pattern, the impact of the bandwidth limitation is another complicating factor.

In contrast to time-triggered scheduling schemes, it is in general not possible to guar-
antee that a transmission request will be approved or not for decentralized event-triggered
scheduling with resource constraints. Despite of the non-determinism due to the contention-
based communication network, we will observe a significant performance improvement of
the event-triggered scheme compared with a time-triggered scheme in Section 8.3.
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8.2 Design Approach

However, in order to still obtain a systematic approach to find the event-triggered con-
trollers that minimize J in Eq. (8.7), we introduce the following approximation. Thereby,
the hard constraint that c transmissions are allowed at maximum at each time k is weak-
ened and we require merely that the average number of transmissions per time step is upper
bounded by c. Then, the average rate constraint can be stated as

N
∑

i=1

r i ≤ c.

With this rate constraint, the approximative optimization problem can be stated as a bi-level
optimization problem. Both levels are coupled through the average transmission rates r i, i ∈
{1, . . . , N}. After assigning an upper bound, r̄ i, on the transmission rate to each subsystem
i, the first level of the optimization problem is given by

J i,∗(r̄ i) = inf
(fi,γi) ∈ 3 ET

r i ≤ r̄ i

J i(γi, fi) (8.8)

where x i
k

is the state evolving by (8.1) and it is assumed that in contrast to (8.3) every
request is permitted, i.e.,

zi
k
=

!

x i
k
, δi

k
= 1,

∅, otherwise.

It should be noted that above optimization problem can be solved locally in each subsystem
for a given r̄ i, i.e., assuming a given rate distribution, the optimization problems in (8.8)
for i ∈ {1, . . . , N} are completely decoupled from each other. The second level of the opti-
mization problem determines finally the optimal transmission rate distribution among the
subsystems and is given by

J̄∗ = inf
r̄1, . . . , r̄N

∑N

i=1 r̄ i ≤ c

1
N

N
∑

i=1

J i,∗(r̄ i) (8.9)

Thus, the resulting bi-level approach has a hierarchical structure, where the second level
can be considered as the global coordinating layer assigning resources to the first layer,
where the optimization problem is solved locally in each subsystem, see Fig. 8.1.

8.2.2 Local Design Problem

In this section, we focus on the solution of the local design problem that is stated in the
optimization problem (8.8). It can be immediately observed that this problem is closely
related to the problem of optimal event-triggered control design studied extensively in Part
I. Instead of having an additional cost penalty, the communication constraint is reflected by
the average rate constraint r i ≤ r̄ i. We will see in the following that this difference will play
a minor role in the form of the optimal solution of optimization problem (8.8) as many of
the results of Part I carry over to such case.

The subsequent theorem sheds light on the form of the optimal control law γi,∗.
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8 Optimal Event-Triggered Control over a Shared Network

Theorem 8.1 (Certainty Equivalence Property). Let (Ai, Bi) be stabilizable and (Ai,Q
i, 1

2
x )

detectable. Then, the form of the optimal control law γi,∗ of optimization problem (8.8) for

subsystem i is given by

ui
k
= γi,∗

k (Z
k,i) = −Li

E[x i
k
|Zk,i], (8.10)

where the linear gain Li can be calculated equivalently to Eq. (6.5)

The stabilizability and detectability assumptions in the above theorem ensure that the
stabilizing gain Li resulting from Eq. (6.5) exists. Similar to Theorem 2.1 in Chapter 2 and
Theorem 6.1 in Chapter 6, the above theorem shows that the certainty equivalence property
holds for the optimal control law γi,∗ of each subsystem i. The proof follows the same line
of argumentation as in the proof of Theorem 2.1, where the details for the case with the
average transmission constraint can be found in [MH13a]. Theorem 8.1 enables a number
of further simplifications.

When taking into account that the distributions of the noise variables are symmetric, then
it is shown in Theorem 3.1 in Chapter 3 for first-order systems that the optimal scheduling
law fi,∗ is a symmetric threshold function of the estimation error. Subsequently, it is also
assumed that this also valid for higher-order systems for the sake of convenience. The
optimal estimator can then be stated similarly to Chapter 3 as

E[x i
k
|Zk,i] =

!

x i
k
, δi

k
= 1,

(Ai − Bi Li)E[x i
k−1|Z

k,i], otherwise,
(8.11)

with E[x i
0|z

i
0] = 0 for zi

0 = ∅. As in Chapter 4, we remark that the first condition in above
distinction of cases is extended to δi

k
= 1∧ qi

k
= 1 for the original communication network.

By defining the estimation error ei
k

by

ei
k
= x i

k
− E[x i

k
|Zk−1,i],

the determination of the optimal scheduling law can be regarded as a constrained Markov
decision process [Alt99]. The Markov state ek ∈ !ni evolves by the time-invariant difference
equation model

ei
k+1 = gi(ei

k
,δi

k
, wi

k
) = (1−δi

k
)Aiei

k
+wi

k
(8.12)

Subsystem 1

(f1,γ1)

Subsystem 2

(f2,γ2)

Subsystem N

(fN ,γN)

Global resource allocation
(r̄1, r̄2, . . . , r̄N)

· · ·

J1,∗(·) r̄1 J2,∗(·) r̄2 JN ,∗(·) r̄N

Figure 8.1: Bi-level design of the multi-loop event-triggered control system with a local
event-triggered control design in each subsystem (Level 1) given by Eq. (8.8)
and a global resource allocation (Level 2) given by Eq. (8.9).
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with initial condition ei
0 = x i

0− E[x i
0].

Substituting the optimal control law γi,∗ of Theorem 8.1 into the costs J i, we obtain the
following stochastic optimal control problem.

inf
fi ∈ 3 M

r i ≤ r̄ i

J i,, (8.13)

with

J i,, = lim
T→∞

1
T
E





T−1
∑

k=0

(1−δi
k
)ei,T

k Qi
e
ei

k





where Qi
e
= Li,T(Qi

u
+Bi,TPiBi)Li. The set3 M denotes the set of all Markov policies, which is

defined as the set of all measurable maps from !ni to {0, 1}. Considering the optimal control
law γi,∗ with the optimal estimator given by (8.11), we have the following relationship
between the original optimization problem (8.8).

J i(γi,∗, ·) = J i,, (·) + tr[PiC i].

The expression tr[PiC i] is constant and can therefore be omitted in the optimization prob-
lem (8.13).

In order to simplify the analysis of solving (8.13), we restate the technical assump-
tion (A2) introduced in the previous chapter.

(A3) The event-triggering laws fi ∈ 3 M satisfies

fi(ei
k
) = 1, ‖ei

k
‖2 > M i,

with M i > 0 for all i ∈ {1, . . . , N}.

Assumption (A3) does not impose a severe restriction on the scheduling laws, as M i can
be chosen arbitrarily large for each subsystem. On the one hand, it follows from above
assumption that the running cost (1−δi

k
)ei,T

k Qi
e
ei

k
is uniformly bounded. On the other hand, it

has been shown in [XH04] that the resulting Markov chain satisfies the ergodicity condition
3.1(4) in the textbook [HL89] that ensures the existence of a solution for the Average Cost
Bellman Equation and the convergence of the value iteration, see also Appendix C. The
constrained Markov decision process (8.13) under Assumption (A3) is formulated as an
optimization problem without constraints by taking a Lagrangian approach that results in

inf
fi∈3M

J i,, +λr i. (8.14)

The non-negative weight λ can be regarded as the Lagrange multiplier of the constrained
Markov decision process (8.13), [Alt99]. If λ is fixed, the optimization problem (8.14)
becomes a standard stochastic optimal control problem that can be solved by value iteration
as for example shown in [Ber07]. The resulting optimal scheduling policy is a threshold
policy of the estimation error ei

k
.
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8 Optimal Event-Triggered Control over a Shared Network

Instead of the direct determination of the optimal solution together with the optimal La-
grange multiplier, we regard above optimization problem as the scalarization approach as in
[BV04] of the corresponding multi-objective optimization problem with cost vector [J i,, , r i].

For any λ ∈ [0,∞), we obtain a Pareto optimal point in the J i,, -r i-plane. It is easy to show
that the coordinates [J i,, ,∗, r i,∗] are monotone in λ, i.e., J i,, ,∗ is monotonically increasing
in λ and r i,∗ is monotonically decreasing in λ.

From the continuity of the difference value function in λ that follows from chapter 3.5 in
[HL89], and the absolute continuity of the stationary distribution of the fi-controlled Markov
chain we can conclude that [J i,, ,∗, r i,∗] is continuous in λ. Therefore, the scalarization
approach in (8.14) yields the desired function J i,∗(r̄ i) that results from the set of Pareto
optimal points.

8.2.3 Global Resource Allocation

The function J i,∗(r̄ i) is convex and monotonically decreasing in r̄ i. This implies that the
global optimization problem in the second level defined by (8.9) is a convex resource al-
location problem. This is a well-studied optimization problem in the literature on convex
optimization, for which many efficient solution algorithms exist, such as in [BV04; SS07].

8.2.4 Computational Complexity

For the calculation of the Pareto frontier in the first level of the bi-level approach as discussed
in Section 8.2.2, we need to solve a dynamic program for different values of λ. This can
be accomplished by a sequence of value iterations for subsystems with a moderate state
dimension. For higher-order systems, there exist approximative methods, e.g., as developed
in [Cog09a] that reduces the problem to a sequence of semidefinite programs. The solution
of the algebraic Riccati equation for the optimal control law in (8.10) can be computed
in polynomial-time. Therefore, it does not represent a computational burden for higher-
dimensional systems. It should be noted that the Pareto frontier can be determined offline
for each subsystem without having to take the system parameters of the communication
network into account.

The solution of the global resource allocation problem with N design parameter in the sec-
ond level discussed in Section 8.2.3 is a convex optimization problem, which can be solved
efficiently. Hence, the optimal solution can also be computed for a large number of subsys-
tems. However, if we encounter the situation in which subsystems are frequently attached
and detached to the shared communication network, a global solution algorithm may not
be desirable. Apart from other benefits, this will be the motivation for the introduction of a
decentralized adaptive mechanism in order to determine the decentralized event-triggers in
Chapter 9.

8.2.5 Asymptotic Optimality

In the following, we focus on the analysis of the approximative bi-level approach developed
in subsection 8.2.1, when the number of subsystems, N , approaches infinity. A design ap-
proach is said to be asymptotically optimal, when the costs of the solution approaches the
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8.2 Design Approach

optimal costs arbitrarily close for a sufficiently large N . The relevant system parameters of
subsystem i are summarized in the 4-tuple . i = {Ai, Bi,Qi

x
,Qi

u
}. In order to compare the

control performance between the aggregated systems with increasing N , we scale the com-
munication network accordingly such that the ratio c/N stays constant. It is also assumed
that there is a finite number of subsystem classes denoted by N̄ , i.e., . i ∈ {. 1, . . .. N̄}
for all i ∈ {1, . . . , N}. The number of subsystems in a subsystem class is scaled with in-
creasing N , such that their ratio between each other remains constant. This assumption im-
plies that it suffices to consider subsystems of a subsystem class . j separately with a fixed
slot assignment of c j ≤ c. We also assume that we have chaoticity in equilibrium [Gra00]
which corresponds to the exchange of the limits of time and the number of subsystems,
i.e., limk→∞ limN→∞ = limN→∞ limk→∞. In the following analysis, we therefore consider that
the system is in its stationary regime and consider the limit when N approaches ∞. The
subsequent theorem gives a statement about the optimality properties of the approximative
design approach.

Theorem 8.2. Let Assumption (A3) hold and let the stability condition in Eq. (7.7) be sat-

isfied. Then, the solution of the bi-level optimization problem defined by (8.8) and (8.9) is

asymptotically optimal with respect to the optimization problem given by (8.7).

Proof. First, note that the optimal cost J̄∗ resulting from the second level optimization given
by (8.9) are a lower bound of the original optimization problem. This is because the hard
rate constraint to be satisfied at each time step is relaxed by merely restraining the average
total transmission rate. In the following, we show that the deviation from the optimal cost J̄∗

because of the actual hard rate constraint becomes arbitrarily small for sufficiently large N .
As already mention above, it suffices to restrict ourselves to a multi-loop control system
composed of identical subsystems. It follows from the convexity of the function J i,∗(r̄ i)

resulting from (8.8) that the assigned individual average transmission rates are identical.
Therefore, the transmission rate is given by r i = c/N for each subsystem i, N ∈ {1, . . . , N}.

Next, we observe that the event of a request of a subsystem relatively to its most recent
successful transmission can be regarded as a renewal process. This process is identical with
a system without hard rate constraint as the blocking behavior of the arbitration mechanism
is removed. Due to Theorem 7.1 from Chapter 7, it follows from Assumption (A3) and
condition (7.7) that the resulting Markov chain characterizing the aggregate behavior is
ergodic for any N . This implies that there exists a stationary distribution of the Markov state
which implies that the renewal process is aperiodic and recurrent.

Therefore, we have

r i = lim
k→∞

P[δi
k
= 1|last transmission successful].

Because of the law of large numbers, we conclude that for N → ∞ and k → ∞ with
constant ratio r i = c/N , we have

lim
N→∞

lim
k→∞

1
N

N
∑

i=1

δi
k
= r i.
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8 Optimal Event-Triggered Control over a Shared Network

Hence, the ratio of subsystems that are reset converges weakly to 1. Therefore, by letting
ε→ 0 and N →∞, we converge to the optimal cost J̄∗ resulting from (8.9) by continuity of
r̄ i with respect to J∗,i. This implies that the design method described by (8.8) and (8.9) is
asymptotically optimal.

8.3 Numerical Results

In this section, the proposed event-triggered approach is evaluated and compared with the
time-triggered and the centralized approach. In order to facilitate the presentation, we
restrict our attention to scalar subsystems.

First, suppose we have identical subsystems with parameters

. i =. = (1, 1, 1, 0).

The communication network has a ratio between available transmission slots and the num-
ber of subsystems of c/N = 0.2. The Pareto optimal cost region [J i, r i] for a subsystem
with parameters . including the rate constraint is drawn in Fig. 8.2. We observe that J i

is a decreasing and convex function with respect to r i. For identical subsystems, there is
a substantial simplification in the global resource allocation problem performed in the sec-
ond level as all subsystems attain the same transmission rate, i.e., the optimal transmission
rate is given by r i,∗ = 0.2. The optimal cost point is attained at [J i,∗, r i,∗] = [1.54, 0.2] by
an event-triggered scheduling policy fi,∗ that is given by δi

k
= 1{[−1.7,1.7]}c(e

i
k
). The optimal

control law gain Li is given by 1.
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Figure 8.2: Pareto frontier of a subsystem with system parameters . = (1, 1, 1, 0). The ver-
tical line indicates the rate constraint.

Figure 8.3 compares the cost of the decentralized event-triggered scheme with the optimal
time-triggered scheme and the optimal centralized scheduling shows the cost per subsystem
for various numbers of identical subsystems N with c/N being constantly at 0.2. The costs
for N ∈ {5, 25, 100, 250, 500} are determined through Monte Carlo simulations with a time
horizon of T = 10 000. The optimal control law for both the optimal time-triggered scheme
and the optimal centralized scheme are given by ui

k
= −Li

E[x i
k
|Zk,i] with Li = 1. In the
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optimal time-triggered scheme, time slots for transmission are assigned successively. Sub-
systems transmit information periodically with transmission period N

c
, where we assume that

N is a multiple of 5. In the case of identical subsystems, the optimal centralized scheduler
selects at each time step k the c subsystems with maximum magnitude |ek| whose feedback
loop are then closed. Such kind of protocol can be realized by prioritize the medium access
through |ek| which has also been done in [WYB02]. It should be noted that this scheduler
can be regarded as a lower bound on the performance that can be achieved over the commu-
nication networks. In the case of heterogeneous multi-dimensional systems, it remains an
open problem how to realize centralized schedulers without gathering the state information
of all subsystems.

We observe in Fig. 8.3 that the cost of the optimal decentralized scheduling algorithm
approximates this lower bound very closely and outperforms the optimal time-triggered
scheme significantly. On the other hand, it can be seen that the costs converge to the asymp-
totic costs for N →∞ very rapidly. Already for N ≥ 100, the performance gap is less than
10%.
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Figure 8.3: Numerical comparison of time-triggered (TT), event-triggered (ET) and central-
ized schemes for a multi-loop control system with homogeneous subsystems
. = (1, 1, 1, 0) and c/N = 0.2.

Next, we consider a heterogeneous system, where we have two different kinds of sub-
systems occurring at the same amount. The system parameters are . 1 = (1.25, 1, 1, 0)
and . 2 = (0.75, 1, 1, 0) and the communication network has a ratio of c/N = 0.5. We note
that the stability condition (7.7) in Theorem 7.1 is satisfied for the underlying subsystems.

Having obtained the Pareto curves from the first level optimization for both subsystems
sketched in Fig. 8.4, the resource allocation problem given by (8.9) determines the optimal
rate pair. The dashed line in Fig. 8.4 depicts the mean cost per subsystem J as a function
of r1 for N = 2 without collisions. It can be seen that the total cost J is convex with respect
to r1 and it is minimized at the rate pair [r1, r2] = [0.6, 0.4] taking a value of 1.07. The
optimal control gain is given by Li = Ai for both subsystems and the scheduling laws are
threshold policies, where δ1

k
= 1{[−0.5,0.5]}c(e

1
k
) for . 1 and δ2

k
= 1{[−0.95,0.95]}c(e

2
k
) for . 2.

Concerning the performance in the presence of the shared network, we consider the mean
costs J depicted in Fig. 8.5 for N ∈ {2, 10, 50, 100, 250, 500}. The optimal time-triggered
scheme involves a brute-force search over all possible combinations of transmission times. To
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Figure 8.4: Solid lines: Pareto frontiers of two different subsystems with system parameters
. 1 = (1.25, 1, 1, 0) and . 2 = (0.75, 1, 1, 0). Dashed line: Total cost J(r1) =
1
2
(J1(r1)+J2(r2)) and constraint 1

N
(r1+ r2)≤ 0.5. The optimal rate pair is given

at [r1, r2] = [0.6, 0.4] with total cost J = 1.07 for the two subsystems without
collisions.

keep this combinatorial problem numerically tractable, we restricted the admissible trans-
mission scheme to be periodical for subsystems . 2. The optimal periodical transmission
scheme is then given by [δ1

0,δ1
1,δ1

2, . . .] = [1, 1, 0, . . .] and [δ2
0,δ2

1,δ2
2, . . .] = [0, 0, 1, . . .] with

period 3. A lower bound is given by J = 1.07 from the relaxed optimization problem that
assumes no contention. As can be regarded from Fig. 8.5, this lower bound is approached
with a gap of less than 3% for N ≥ 100 and the time-triggered scheme is outperformed for
every N .
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Figure 8.5: Numerical comparison of time-triggered (TT) and event-triggered (ET) schemes
for a multi-loop control system with heterogeneous subsystems of two classes
. 1 and . 2 and c/N = 0.5.
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8.4 Summary

8.4 Summary

This chapter has shown that decentralized event-triggered control constitutes an attractive
design approach for multiple feedback loop systems over a common communication net-
work. The proposed design method manages to establish a compromise between computa-
tional complexity and overall performance that circumvents to take the complex behavior of
the contention-based network into account. It also demonstrates how the theoretical results
from Part I of this thesis can be applied for the development of multiple event-triggered
controllers taking into account a shared resource.

Despite the decreased predictability and a close interaction between control and commu-
nication in contrast to time-triggered control schemes, the gain from the proposed event-
triggered control scheme is an increased level of robustness and a significant improvement
on the control performance for the shown examples.

8.5 Bibliographical Notes

The contribution of this chapter is based on the work in [MH11; MH12c; MH14]. The fact
that the certainty equivalence property holds for the optimal solution of the local optimiza-
tion problem (8.8) with an average rate constraint is shown in [MH13a].
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9

Price Exchange Mechanism for Event-

Triggered Control

The bi-level design method developed in Chapter 8 needs to solve a global resource allo-
cation problem that must incorporate information of every subsystem sharing the common
communication resource. This might be inconvenient due to its difficulty of implementation
when the number of control loops is large. It also lacks of flexibility in case of frequent
changes in the system as the global resource allocation needs to be rerun completely when-
ever subsystems are attached or detached from the communication network. This motivates
us to design a decentralized version of the resource allocation algorithm in this chapter. We
develop a dual price exchange mechanism, in which the distributed self-regulating event-
triggers adapt their average communication rate to accommodate the global resource con-
straint. This will be achieved by analyzing the dual problem of the constrained average-cost
problem stated in the previous chapter. As already indicated in the introduction of Chap-
ter 6, we will benefit from the underselective nature of the average-cost criterion, since it
allows us to learn the optimal pricing variable during execution.

The introduction of the pricing mechanism yields however another source of dynamics
intertwined with the overall multi-loop control system that requires a careful treatment.
By using a time-scale separation approach that decouples the process dynamics from the
communication rate adaptation, we will be able to derive stability conditions and we will
establish almost-sure convergence properties of the distributed event-triggered scheme. The
stability and convergence issues are investigated by using the theory of stochastic stability
for Markov chains and methods from stochastic approximation.

Aside from the development of a decentralized resource allocation algorithm for the multi-
loop system, this chapter clearly demonstrates the benefits of event-triggered sampling with
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9 Price Exchange Mechanism for Event-Triggered Control

regard to the ability of adaptation that is crucial for the implementation of distributed mech-
anisms.

This chapter is organized as follows. In Section 9.1, we review the multi-loop control
system and introduce the extended architecture of the communication network that enables
an adaptation mechanism for the schedulers. In Section 9.2, the pricing mechanism for
the decentralized event-triggered control system is developed and its stability, convergence,
and numerical properties are analyzed in Section 9.3. Numerical simulations conducted in
Section 9.4 show the effectiveness of the approach and illustrate the convergence properties.

9.1 Problem Statement

The aim of this section is two-fold. First, we review the multi-loop control system and
the design problem introduced in the previous section. Second, we introduce an extended
architecture of the communication network that enables an adaptation mechanism of the
event-triggered schedulers.

Figure 9.1 depicts the networked control system (NCS) under consideration that shows N

independent control subsystems whose feedback loops are connected through a shared com-
munication network. A control subsystem i consists of a process - i, a controller 0 i that is
implemented at the actuator and a sensor , i. The process - i is given by a controlled time-
homogeneous Markov chain with state xk taking values in !ni and evolving by the following
difference equation

x i
k+1 = Ai x i

k
+ Biui

k
+ wi

k
, (9.1)

where Ai ∈ !ni×ni , Bi ∈ !ni×mi . The control input ui
k

is taking values in !mi . The system
noise wi

k
takes values in !ni at each k and is i.i.d. with wi

k
∼ * (0, Ci) being zero-mean

Gaussian distributed with covariance matrix Ci. The initial states x i
0, i ∈ {1, . . . , N}, have a

distribution whose density function is symmetric around its mean value E[x i
0] and has finite

second moment.
At any time k the scheduler , i situated at the sensor decides, whether a transmission slot

should be requested to transmit the current state of subsystem i to the controller 0 i. There-
fore, an event occurs within a subsystem i at time k when a transmission slot is requested.
Further, it is assumed that control inputs may not be constant in between of successful trans-
missions and the controller 0 i may adjust the control inputs based on past updates. Due
to bandwidth limitations the number of transmission slots denoted by c is constrained and
event-triggers must be designed at the sensors that judge the importance of transmitting an
update to the corresponding controller. In order to make the problem setting non-trivial we
assume that

1≤ c ≤ N .

If there are more requests than available transmission slots at time k, then the arbitration
mechanism within the communication system selects c subsystems that may transmit in-
formation. All other subsystems are blocked and are informed instantaneously that their
request has been rejected. The arbitration mechanism does not prioritize subsystems, i.e.,
in case of arbitration, the subsystems are chosen with identical probability. The request for
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a transmission of the ith subsystem at time k is defined by the variable δi
k

which takes the
following values.

δi
k
=

!

1, request for transmission,

0, idle.

We represent the arbitration mechanism to resolve contention by the random variable qi
k

taking values

qi
k
=

!

1, allow transmission,

0, block transmission.

The probability distribution of [q1
k
, . . . , qN

k
] conditioned on the requests δi

k
with i ∈ {1, . . . , N}

is time-invariant and has the following property.

P[qi
k
= 1|δi

k
, i ∈ {1, . . . , N}] =







1,
∑N

i=1δ
i
k
≤ c,

c
∑N

i=1 δ
i
k

, otherwise,
(9.2)

for subsystem i with δi
k
= 1 and

q1
k
(ω) + · · ·+ qN

k
(ω) = c

for all sample pathsω ∈ Ω for which δ1
k
+· · ·+δN

k
≥ c. The received data at the controller 0 i

at time k is denoted by zi
k

and is defined by

zi
k
=

!

x i
k
, δi

k
= 1∧ qi

k
= 1

∅, otherwise
(9.3)

Each subsystem i ∈ {1, . . . , N} has an individual cost function J i given by the linear
quadratic average-cost criterion

J i = lim sup
T→∞

1
T
E





T−1
∑

k=0

x i,T
k Qi

x
x i

k
+ ui,T

k Qi
u
ui

k



 . (9.4)

The weighting matrix Qi
x

is positive definite and Qi
u

is positive semi-definite for each i ∈

{1, . . . , N}. We assume that the pair (Ai, Bi) is stabilizable and the pair (Ai,Q
i, 1

2
x ) is detectable

with Qi
x
= (Q

i, 1
2

x )
TQ

i, 1
2

x .
As it will take a central role in the subsequent analysis, we define the individual request

rate r i of the ith subsystem by

r i = lim sup
T→∞

1
T
E[

T−1
∑

k=0

δi
k
], (9.5)

which also has the form of an average-cost criterion.
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λ̂k, qi
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Figure 9.1: System model of the NCS with N control systems closed over a shared com-
munication network with processes - 1, . . . ,- N , sensors , 1, . . . ,, N and con-
trollers 0 1, . . . ,0 N . The network manager sends an acknowledgement qi

k−1 to
each subsystem i and broadcasts the variable λ̂k.

It is assumed that the sensor and the controller of the ith subsystem merely have knowl-
edge of the local system parameters. These are Ai, Bi, Ci, the distribution of x0, and Qi

x
, Qi

u

of Eq. (9.4).
The control law γi = {γi

0,γi
1, . . .} reflecting the behavior of controller 0 i is described by

causal mappings γi
k

of the past observations for each time step k, i.e.,

ui
k
= γi

k
(Zk,i), (9.6)

where Zk,i is the observation history until time k of subsystem i. We distinguish between
two classes of schedulers fi = {fi

0, fi
1, . . .} resulting from two types of network managers. In

the first case, the network manager broadcasts a fixed parameter λ initially and the static

event-triggered scheduler is then given by

δi
k
= fi,λ

k (X
k,i,Qk−1,i), (9.7)

where X k,i is the state history of subsystem i. It should be remarked that we will usually
omit λ for notational convenience. In the second case, the network parameter λ̂k changes
over time k and the scheduler adapts its law w.r.t. to λ̂k, i.e.,

δi
k
= fi,λ̂k

k (X
k,i,Qk−1,i). (9.8)

The parameter λ̂k itself is given by a causal mapping fk of the past transmission history, i.e.,

λ̂k = πk(δ
1
0, . . . ,δN

0 , . . . ,δ1
k
, . . . ,δN

k
).

The mapping πk represents the adaptation mechanism of the network manager to the cur-
rent traffic and will be specified later in more detail. The laws described by Eq. (9.8) are
referred to as adaptive event-triggered schedulers.
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9.2 Design via Distributed Optimization

The design objective is to find the optimal control laws γi and optimal scheduling laws fi,
i ∈ {1, . . . , N} that minimize the social cost given as an average-cost criterion. The social
cost is defined by the sum of the individual costs J i of each subsystem. Therefore, the
optimization problem can be summarized as follows.

inf
(fi,γi) ∈ 3 ET

i ∈ {1, . . . , N}

N
∑

i=1

J i, (9.9)

where 3 ET is the set of admissible policy pairs that are defined either by Eqs. (9.6), (9.7) or
Eqs. (9.6), (9.8).

9.2 Design via Distributed Optimization

This section focuses on the synthesis of the distributed event-triggered control system that
addresses the solution of the optimization problem (9.9). Inspired by the bi-level design
approach introduced in the previous chapter, we will study the synthesis problem with a re-
laxed communication constraint stated in Section 9.2.1. But instead of analyzing the primal
problem, we investigate the relaxed problem from the perspective of its dual problem. This
is the aim of Section 9.2.2 that applies ideas from dual decomposition and adaptive MDPs
in order to develop a distributed approach of the overall problem. This is in contrast to the
approach developed in Chapter 8 that needed to solve a global resource allocation problem.
A Lagrange approach is taken to formulate the dual problem of the relaxed problem. It en-
ables us to derive a dual price exchange mechanism that broadcasts a price for the resource
to each subsystem. An adaptive sample-path algorithm is proposed in Section 9.2.3 that
estimates the average total transmission rate to approximate the pricing gradient.

9.2.1 Problem Relaxation

We have already observed in Chapter 8 that determining the optimal event-based control
system that solves (9.9) is a hard problem though the coupling between subsystems appears
solely in the shared resource. In order to still obtain a systematic approach to find the event-
triggered controllers that minimize the social cost in (9.9), we follow the bi-level approach
introduced in the previous chapter. Thereby, the hard constraint that c transmissions are
allowed at maximum at each time k is weakened and we require merely that the total
average request rate is upper bounded by c. With the definition of the individual request
rate in Eq. (9.5), the total average request rate is defined as

y =

N
∑

i=1

r i. (9.10)

The relaxed optimization problem is given by the following constrained MDP.

inf
(fi,γi) ∈ 3 ET

i ∈ {1, . . . , N}

N
∑

i=1

J i s.t. y ≤ c. (9.11)
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As in Chapter 6, it should be noted that optimization problems with an average-cost crite-
rion are underselective [HL89]. Therefore, there may exist two policies, which differ com-
pletely with respect to their performance in the first k time steps, but eventually converge
to the same stationary behavior and therefore yield the same average cost in the long-run.
Hence, the optimization problem does not distinguish between these two policies. For the
purpose of this chapter, we will consider this feature as an advantage, as it allows us to de-
sign an adaptation mechanism for each subsystem that learns the appropriate transmission
rate that achieves the optimal performance.

9.2.2 Lagrange Approach

In the following, we define the Lagrangian function, introduced in [Alt99] for constrained
MDPs, by

A (f1, . . . , fN ,γ1, . . . ,γN ,λ) =
N
∑

i=1

J i +λ(y − c)

With this, we can rewrite the optimization problem given by (9.11) into the corresponding
dual problem

sup
λ≥0

inf
(fi,γi) ∈ 3 ET

i ∈ {1, . . . , N}

A (f1, . . . , fN ,γ1, . . . ,γN ,λ). (9.12)

The Lagrange multiplier λ can be interpreted as a penalty or price for the transmission rate.
Therefore, we sometimes refer to λ as the communication penalty or price. It should be
remarked that for the underlying problem strong duality holds, as it is shown in Chapter 8
that the primal problem is a convex optimization problem and Slater’s condition holds for
c > 0. By reordering the terms in A and using the definition of y in Eq. (9.10), we obtain

A (·,λ) =
N
∑

i=1

(J i +λr i)−λc.

For a fixed λ ≥ 0 and each subsystem i, the values of J i and r i only depend on the choice
of the local control law γi and the local scheduling law fi. Therefore, the minimization in
Eq. (9.12) can be stated as a separate local minimization within each subsystem for a fixed λ,
i.e.,

inf
(f1,γ1)∈3 ET

(J1+λr1) + · · ·+ inf
(fN ,γN )∈3 ET

(JN +λrN).

From the above formulation, we observe that the task of the network manager is to broadcast
the price λ in order to coordinate the local optimization problems.

The local optimization problems in the above expression are identical with the joint design
of control and scheduling for a single-loop system with a communication penalty in the
feedback loop studied in Part I. Therefore, the results from Chapters 2-6 can be used to
obtain a precise characterization of optimal local solutions for a fixed λ. In the following,
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9.2 Design via Distributed Optimization

we summarize the results. It is shown in Chapters 2, 4, and 6 that the certainty equivalence
controller is optimal. Therefore, the control law is given by

ui
k
= γi,∗

k (Z
k,i) = −Li

E[x i
k
|Zk,i], (9.13)

where the linear gain Li can be calculated equivalently to Eq. (6.5). The stabilizability and
detectability assumptions introduced in Section 9.1 guarantee that the stabilizing gain Li

resulting from Eq. (6.5) exists. When taking into account that the distributions of the noise
variables are symmetric, it is shown in Theorem 3.1 in Chapter 3 for first-order systems that
the optimal scheduling law fi,∗ is a symmetric threshold function of the estimation error.
Subsequently, it is also assumed that this also valid for higher-order systems for the sake of
convenience. The optimal estimator can be written as

x̂0 ,i
k|k = E[x i

k
|Zk,i] =

!

x i
k
, δi

k
= 1∧ qi

k
= 1,

(Ai − Bi Li)E[x i
k−1|Z

k−1,i], otherwise,

with E[x i
0|z

i
0] = E[x i

0] for δi
0 = 0. It should be noted that in the absence of contention, which

applies in the design stage, the first case in above estimator must be replaced by δi
k
= 1. It

should be noted that the optimal control law is independent of λ. Therefore, the control law
can be fully implemented prior to execution without additional knowledge. It also justifies
the fact that the network manager need not broadcast the price λ to the controllers 0 i,
i ∈ {1, . . . , N}.

By defining the estimation error

ei
k
= x i

k
− E[x i

k
|Zi

k−1],

the remaining problem to determine the optimal scheduling law fi,λ can be cast as the fol-
lowing MDP with state ei

k
, whose solution has been discussed in Section 6.3.

inf
fi,λ

lim
T→∞

1
T
E





T−1
∑

k=0

(1−δi
k
)ei,T

k Qi
e
ei

k
+λδi

k



+ tr[PiC i], (9.14)

where Qi
e
= Li,T(Qi

u
+Bi,TPiBi)Li and ei

k
is described as a δi

k
-controlled Markov chain evolving

by the following difference equation

ei
k+1 = (1−δ

i
k
)Aei

k
+ wk (9.15)

with initial condition e0 = x0 − E[x0]. The additional term tr[PiC i] is constant and can be
omitted from the optimization in (9.14). Optimal policies are therefore stationary mappings
of the estimation error ei

k
. Under Assumption (A3) introduced in Section 8.2.2 on the ad-

missible policies fi,λ, the above optimization problem can be solved by value iteration for
each λ.

In the remainder of this chapter, we restrict our attention to the aggregate error state
given by the individual errors ei

k
, which is defined as

ek = [e
1
k
, . . . , eN

k
]T.
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9 Price Exchange Mechanism for Event-Triggered Control

This is because the state x i
k

in subsystem i can be viewed as an isolated stable process
controlled by ei

k
, when considering the closed-loop system. This is discussed in more detail

in Section 6.4.
The resulting optimal scheduling law is a symmetric threshold policy and takes the fol-

lowing form for a first-order subsystem

δi
k
= fi,λ(ei

k
) = 1{[−di(λ),di(λ)]}c(e

i
k
) (9.16)

parameterized by the threshold di that depends on the price λ. This is because the value
iteration outputs a sequence of even and radially non-decreasing value functions [HMY08].
By varying λ ∈ (0,∞) in Eq. (9.14) different pairs of individual costs J i and transmission
rates r i are attained by the optimal fi,λ for each subsystem i ∈ {1, . . . , N}. In fact, it has
been shown in the previous chapter that the relation between optimal J i and r i ∈ (0, 1) is
described by a decreasing and strictly convex function, which is denoted by J i(r i) in the
following. Subsequently, we also assume that J i(r i) is twice continuously differentiable and
its curvature is bounded away from zero on (0, 1). Then, the optimization in (9.12) can be
rewritten as the dual formulation of a network utility maximization problem [SS07] with a
single link, i.e.,

max
λ≥0

min
r i ,i∈{1,...,N}

N
∑

i=1

J i(r i) +λ(y − c). (9.17)

It is well known that this problem has a unique solution for assigning the optimal transmis-
sion rates r i, i ∈ {1, . . . , N}. As there is only one link, it is also clear that there is a unique
λ∗ that solves (9.17). In the following, we aim at developing a distributed gradient method
that finds the optimal λ∗. Let g(λ) be defined as

g(λ) = min
r i ,i∈{1,...,N}

N
∑

i=1

J i(r i) +λ(y − c).

In [SS07], it is shown that the derivative of g(λ) with respect to λ is obtained by

∂ g(λ)

∂ λ
= y − c.

Therefore, the continuous-time gradient algorithm to solve the dual problem is given by the
following ordinary differential equation (ODE).

λ̇(t) = [y(t)− c)]+λ (9.18)

with an arbitrary initial value λ(0). The projection guarantees that the penalty λ(t) remains
non-negative at all times t and is defined as

[ξ]+λ =

!

ξ, λ > 0,

max(ξ, 0), otherwise.

The total request rate y(t) is defined as

y(t) =

N
∑

i=1

r i(t) (9.19)
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9.2 Design via Distributed Optimization

where r i(t) is the average request rate defined in Eq. (9.5) assuming that the price λ(t),
the controller γi,∗ given by Eq. (9.13) and the scheduling law fi,λ(t) obtained from (9.14)
are used. Taking into account the uniqueness of the optimal λ∗ for the considered problem,
it is shown in [SS07] that the differential equation (9.18) converges to λ∗ for any initial
condition λ(0).

In the following, we focus on the discrete-time version of Eq. (9.18) given by

λk+1 = [λk + βk(yk − c)]+ (9.20)

with an arbitrary initial value λ0 and step size βk > 0 for all k. Similar to the continuous-time
case, the total request rate is defined as

yk =

N
∑

i=1

r i
k

(9.21)

where r i
k

is the average request rate defined in Eq. (9.5) assuming the controller γi,∗ and the
scheduling law fi,λk are used. It should be noted that the discrete-time algorithm (9.20) can
be viewed as a numerical approximation of the ODE given by Eq. (9.18)

The complete algorithm can be summarized as a dual price exchange mechanism: after
broadcasting the price λk by a central network manager to all subsystems at time step k, each
subsystem adjusts its scheduling policy according to the local optimization problem (9.14)
with λk as the dual price. It is shown in [LL99] that the algorithm converges to the optimal
price λ∗ for sufficiently small βk.

The above gradient method is completely decoupled from the actual dynamics of the sub-
systems. Hence, the optimal price λ∗ can be calculated prior to the execution of the control
process and is spread to the subsystems that use the stationary event-trigger δi

k
= fi,λ∗(ei

k
)

for k ≥ 0.

9.2.3 An Adaptive Sample-Based Algorithm

The drawback of the gradient method in Eq. (9.20) is obvious. The total average transmis-
sion rate yk is not exactly known at time step k, as it is neither efficient to gather information
about every individual transmission rate r i from each subsystem at the central network man-
ager, nor it is feasible to determine yk through its empirical mean by letting T →∞. Instead,
we consider an estimate ŷk of the total request rate over a window length T0,k to approx-
imate the gradient in (9.20) at time k. While estimating ŷk, the price remains constant.
Hence, updates of the estimated price λ̂k occur after an estimation period T0,k which may
not be uniform. Therefore, the mapping πk representing the network manager introduced
in Section 9.1 is determined by

λ̂k+T0,k
= [λ̂k + βk( ŷk − c)]+ (9.22)

with an initial value λ̂0 ∈ !≥0, and k ∈ $, where the index set $ defines the set of update
times, i.e., $ = {

∑l

0=0 T0,0}l . In between updates, while λ̂k remains constant, the total
request rate yk is estimated by its empirical mean during that period, i.e.,

ŷk =
1

T0,k

k+T0,k−1
∑

0=k

N
∑

i=1

δi
0, k ∈ $.
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9 Price Exchange Mechanism for Event-Triggered Control

We will consider two different choices for the step size βk and the window length T0,k in the
following. The next subsection assumes that the step size and window length are constant,
whereas we assume in Section 9.3.2 that the step size decreases, while the window length
increases in time.

Figure 9.2 summarizes the mechanism of the complete adaptive event-triggered control
system by illustrating one particular subsystem and its interplay with the network manager.
In contrast to the design mechanism described at the end of Section 9.2.2, the price is not
determined prior to execution, but is continuously estimated within the network manager
for every time step k.

Process - iLS-
Estimator

LS-
Estimator

Li
k

Event-trigger

fi,λ̂k

zi
k

x i
k

ui
k

T

x̂
0 ,i
k|k

x̂
@ ,i
k|k

zi
k−1

ei
k

δi
k

δi
k
= 0

Network manager

λ̂k+T0,k
=[λ̂k+βk( ŷk− c)]+

Broadcast λ̂k

Figure 9.2: Complete structure of the adaptive event-triggered control system for subsys-
tem i. The event-triggered scheduler fi,λ̂k adapts its law according to the price λ̂k

which is broadcasted to each subsystem by a network manager. The element de-
noted by T corresponds to a one-step delay element, whereas the least-squares
estimate that outputs x̂@ ,i

k|k = E[xk|Zk−1,δk = 0] is a copy of the least-squares
estimator at the controller.

9.3 Analysis of the Adaptive Event-Triggered Control

System

Section 9.3.1 and9.3.2 address stability and convergence properties of the adaptive event-
triggered scheme, respectively. The implementation of the algorithm is discussed in Sec-
tion 9.3.3.
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9.3 Analysis of the Adaptive Event-Triggered Control System

9.3.1 Stability

Until now, stability was a minor issue, as no contention among subsystems has been con-
sidered due to the relaxed problem formulation that made the problem tractable. In this
section, we focus on stability properties of the aggregate system with an adaptive sample-
based event-triggered system in the presence of contention represented by the variable qi

k

for each subsystem i. We consider the adaptive sample-based algorithm in Eq. (9.22) with
constant step size β and constant window length T0. Under this assumption, the resulting
process can be viewed as a T0-sampled time-homogeneous Markov chain. The stability no-
tion used here is given by positive Harris recurrence, see Definition B.9 in the appendix. To
prove positive Harris recurrence for Markov chains with an uncountable state space, we use
Foster’s criterion defined in Theorem B.3.

In order to simplify the following analysis, we introduce the following two technical as-
sumptions. The first assumption is an adaptation of Assumption (A3) introduced in Chap-
ter 8 for a varying price λ.

(A4) For any λ ∈ !≥0, the scheduling policy of subsystem i satisfies fi,λ(ei
k
) = 1 for ‖ei

k
‖2 >

M i for some arbitrary M i, i ∈ {1, . . . , N}, where M i may depend on λ.

(A5) The function M i(λ) grows asymptotically at most linear in λ, i.e., Mi ∈ @ (λ).

These assumptions do not put severe restrictions on the admissible scheduling policies. On
the one hand, the bound M i in Assumption (A4) may be chosen arbitrarily large as in Chap-
ter 6 and 7. On the other hand, it is possible to weaken Assumption (A5) to higher growth
rates.

The next statement gives us a means to analyze the stability of the stochastic pro-
cess {ek, λ̂k}k in terms of positive Harris recurrence. We will make use of Theorem 7.1
derived in Chapter 7. The result in Theorem 7.1 gives a sufficient condition that guarantees
ergodicity for the aggregated system for a fixed price λ. In the case of a varying price λ, the
main idea is to find a sufficiently large window length T0, such that a time-scale separation
can be established between the dynamics within the subsystems and the dynamics of λ̂k.

Theorem 9.1. Let βk = β and T0,k = T0 be constant. If Assumptions (A4), (A5), and Eq. (7.7)

hold, then there exists a sufficiently large T̄0, such that the T0-sampled Markov chain {ek, λ̂k}k∈$
with T0 ≥ T̄0 is a positive Harris recurrent Markov chain.

Proof. The sampled Markov chain evolves by Eq. (9.22) and the evolution of the estimation
error ei

k
of subsystem i is given by

ei
k+T0
= (1− qi

k
fi,λ̂k(ei

k
))

k+T0−1
∏

l=k+1

(1− qi
l
fi,λ̂k(ei

l
))Aiei

k+1+

+

k+T0−1
∑

l=k

k+T0−1−l
∏

n=k+1

(qi
n
fi,λ̂k(ei

n
))Ak+T0−1−l wi

l
.

The subsequent stability analysis for Markov chains is mainly based on the tools introduced
in Appendix B. First, it can be seen that the chain is ϕ-irreducible. This is because of the
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9 Price Exchange Mechanism for Event-Triggered Control

absolute continuity of the Gaussian noise process wi
k

and the fact that Eq. (9.22) can be
viewed as a random walk on the half line with a probability of a negative drift greater than
zero, see Proposition 4.3.1 in [MT93].

We consider the following Lyapunov candidate

V (ek, λ̂k) = b1

N
∑

i=1

‖ei
k
‖2

2+ b2λ̂
3
k

(9.23)

with suitable b1, b2 > 0. It follows immediately that the drift for this choice of V is bounded
within any compact set. Based on the assertion of ϕ-irreducibility, we rely on the drift
criterion given by Theorem B.3 in the appendix. By the definition of the drift ∆ as in B.10,
we take the following form of the drift criterion given by Eq. (B.5): If the condition

∆V (ek, λ̂k)≤ −ε, (ek,λk) ∈ !n1+···+nN\B, (9.24)

where ε > 0 and B is a compact set, is satisfied, then the T0-sampled Markov chain
{ek, λ̂k}{k∈{0,T0,2T0,...}} is positive Harris recurrent.

Due to linearity of the conditional expectation, see Theorem A.1, we can split the drift
into N + 1 contributing terms given by

∆i = E[‖ei
k+T0
‖2

2|ek, λ̂k]−‖ei
k
‖2

2, i ∈ {1, . . . , N}

∆λ = E[λ̂2
k+T0
|ek, λ̂k]− λ̂3

k

In a first step, fix a price λ̂k and with it fix the individual bounds M i in Assumption (A4).
Subsequently, we focus on determining upper bounds on ∆i.

The conditional expectation in ∆i can be rewritten as

E[‖ei
k+T0
‖2

2|ek, λ̂k] = E[E[‖ei
k+T0
‖2

2|ek+T0−1, ek, λ̂k]|ek, λ̂k]

= E[E[‖ei
k+T0
‖2

2|e
i
k+T0−1, λ̂k]|ek, λ̂k],

where the first equality is due to the tower property of the conditional expectation stated
in Theorem A.1 and the second because of the Markov property of ek between the updates
of λ̂k. The statistical independence of wi

k
with respect to qi

k
and ei

k
and the fact that wi

k
∼

* (0, Ci) allows the following simplification.

E[‖ei
k+T0
‖2

2|e
i
k+T0−1, λ̂k]≤

≤ E[1− qi
k
|ek, λ̂k]‖Ai‖2

2‖e
i
k+T0−1‖

2
2+ tr[Ci]

Therefore, we have the following upper bounds

E[‖ei
k+T0
‖2

2|ek, λ̂k]≤

!

|‖Ai‖2
2|(M

i)2+ tr[Ci], ‖ei
k+T0−1‖2 ≤ M i

(1− c

N
)‖Ai‖2

2 E[‖e
i
k+T0−1‖

2
2|ek, λ̂k] + tr[Ci], ‖ei

k+T0−1‖2 > M i.
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In the second bound, we have used that E[1 − qi
k
|ek, λ̂k] describes the probability that a

request of subsystem i is blocked and is upper bounded by 1 − c

N
because of Eq. (9.2).

For notational convenience, let α = (1 − c

N
)‖Ai‖2

2. Proceeding inductively, we obtain the
following T0+ 1 bounds on the drift ∆i

∆i ≤ αt0 |‖Ai‖2
2|(M

i)2+

J

t0
∑

n=0

αn

K

tr[Ci]−‖ei
k
‖2

2, 0≤ t0 ≤ T0− 1, ei
k
∈ !n

i
(9.25)

∆i ≤ (αT0 − 1)‖ei
k
‖2

2+

J

T0−1
∑

n=0

αn

K

tr[Ci], ‖ei
k
‖2 > M i (9.26)

The condition in Eq. (7.7) guarantees that we can find an appropriate ε and a sufficiently
large compact set + such that the drift term

∑

i∆
i ≤ −h all ek /∈ + , where h can be made

arbitrarily large.
For the subsequent analysis, it should be noted that the drift term

∑

i∆
i can be uniformly

bounded from above as a function of M i for a fixed λ̂k. As a next step, we aim at finding an
upper bound on the drift ∆λ. We have from Eq. (9.22)

λ̂3
k+T0
=
%

[λ̂k + β( ŷk − c)]+
&3

≤
;

;λ̂k + β( ŷk − c)
;

;

3

= λ̂3
k
+ 3λ̂2

k
β( ŷk − c) + 3λ̂kβ

2( ŷk − c)2+β3| ŷk − c|3

≤ λ̂3
k
+ 3λ̂2

k
β( ŷk − c) + 3λ̂kβ

2N 2+ β3N 3

The first inequality is because [·]+ is non-expansive [Ber99]. Therefore, the drift term ∆λ

can be bounded by

∆λ ≤ 3λ̂2
k
β E[( ŷk − c)|ek, λ̂k] + 3λ̂kβ

2N 2+ β3N 3 (9.27)

What remains to be analyzed is the estimation of the gradient given by E[( ŷk − c)|ek, λ̂k].
Because of the ergodicity of the process {ek} for a fixed λ̂k due to Theorem 7.1, the empirical
mean of the total request rate converges to a biased estimate of yk, i.e, the empirical request
rate is given by

lim
T0→∞

1
T0

E[

k+T0−1
∑

l=k

δi
l
|ek, λ̂k] = η

i r i
k
, P -a.s.,

where ηi ≥ 0 denotes the deviation from the request rate r i
k

resulting in the absence of
contention among subsystems. In the following, we give an upper bound on ηi. For that
reason we define ρi

n
that counts the number of subsequent requests of subsystem i until

successful transmission and is then reset to 0 again. Formally, we define the increasing
sequences

{t1,n}n = {k|qi
k
δi

k
= 1},

t2,n =min(k|δi
k
= 1∧ k ∈ (tn, tn+1]), n≥ 1
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with t2,0 = 0. Then by setting ρi
n
=
∑t1,n

k=t2,n
δi

k
, we have

lim
T0→∞

1
T0

E[

k+T0−1
∑

l=k

δi
l
|ek, λ̂k] = lim

T0→∞

1
T0

E[
∑

n

ρi
n
|ek, λ̂k]

= lim
T0→∞

1
T0

E[
∑

n

E[ρi
n
|ek, λ̂k]|ek, λ̂k]

≤ lim
T0→∞

1
T0

E[
∑

n

N

c
|ek, λ̂k]

= r i
k

N

c

where the last inequality is due to the fact that the probability that a request of subsystem i is
granted is lower bounded by c

N
because of Eq. (9.2). The last equality is because the number

of elements of the sum is related to the delayed renewal process given by the requests
assuming no contention whose rate is r i

k
. Therefore, we have ηi ≤ N

c
. This implies for the

empirical total request rate ŷk

lim
T0→∞

E[ ŷk|ek, λ̂k] = ηyk, η≤
N

c
, P -a.s.,

As ŷk ≤ N for every ω ∈ Ω, almost sure convergence implies A1 convergence [Res98], i.e.,

lim
T0→∞

E[|E[ ŷk|ek, λ̂k]−ηyk||ek, λ̂k] = 0.

Continuing our analysis of ∆λ from Eq. (9.27), we obtain

∆λ ≤3λ̂2
k
β
%

(ηyk − c) + E[|E[ ŷk|ek, λ̂k]−ηyk||ek, λ̂k]
&

+

+ 3λ̂kβ
2N 2+ β3N 3.

By choosing λ̂k and T0 sufficiently large, yk and E[|E[ ŷk|ek, λ̂k]−ηyk||ek, λ̂k] become arbi-
trarily small. Due to Assumption (A5) and ∆i ≤ @ ((M i)2), we conclude that by choosing
b1, b2 accordingly, we can show that there exists a λ̄ > 0 such that for any λ̂k > λ̄ and any ek,
we have ∆V (ek, λ̂k) ≤ −ε, where ε > 0. On the other hand, for λ̂k ≤ λ̄, we can find a suf-
ficiently large compact set F such that for every ek /∈ F , we also have ∆V (ek, λ̂k) ≤ −ε.
By setting B =F × [0, λ̄], the drift condition in Eq. (9.24) is satisfied which concludes the
proof.

An explicit determination of a sufficiently large T̄0 that yields stability can be circumvented
by letting T0,k grow towards infinity for k → ∞, as done in the following. This is possible
because the upper bounds on the drifts determined in the above proof can be chosen to be
uniform in T0 ≥ T̄0 when taking into account the hypothesis of Theorem 9.1.

9.3.2 Convergence

Opposed to the previous analysis, diminishing step sizes βk and increasing window
lengths T0,k for the adaptive sample-based algorithm are considered in this subsection. With
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this, we are able to show almost sure convergence of the process λ̂k to the optimal solution
of the relaxed problem (9.11) in the case without contention. The absence of contention
implies that no transmissions are blocked and only an average resource constraint is con-
sidered. The main idea to show convergence comes from stochastic approximation [KY03]
and relates the limiting behavior of the stochastic process {λ̂k}k to the ordinary differential
equation given by Eq. (9.18). In the case with contention, we can not expect to obtain the
same results, as there is no immediate deterministic description that relates to {λ̂k}k, when
transmissions are blocked. However, the results in the absence of contention will serve as
an indicator for the convergence of the contention-based case for an increasing number of
subsystems N .

The next assumption gives a condition on the step size βk.

(A6) Assume that βk→ 0 as k→∞ with
∑

k∈$ βk =∞ and
∑

k∈$ β
2
k
<∞.

In order to show almost sure convergence {λ̂k}k in the absence of contention, the analysis
is split into two parts. In the first part, we show stability of the process by establishing a
recurrence property of {λ̂k}k. In the second part given by Theorem 9.2, a local analysis takes
over and ODE methods from [KY03] are used. In the local analysis, the process {λ̂k}k starts
from a neighborhood set around the optimal solution λ∗ and it is shown that while it enters
the set infinitely many times due to the recurrence property, it leaves such neighborhood
only finitely many times. This establishes the almost sure convergence result.

The first part is summarized by the following lemma.

Lemma 9.1. Let λ∗ be the solution of the relaxed problem (9.11) and let βk satisfy Assump-

tion (A6) and let T0,k → ∞. Under the absence of contention and the Assumption (A4), the

stochastic process {λ̂k}k evolving by Eq. (9.22) visits any small neighborhood of λ∗ infinitely

many times P-almost surely.

Proof. Consider the Lyapunov function

V (λ̂k) = (λ̂k −λ∗)2.

By Eq. (9.22), we have for k ∈ $

(λ̂k+T0,k
−λ∗)2 ≤ (λ̂k −λ∗)2+ 2β(λ̂k −λ∗)( ŷk − c) + β2N 2

where the inequality follows from the fact that [·]+ is non-expansive [Ber99].
Note that the T0-sampled stochastic process {ek, λ̂k}k∈$ is a time-inhomogeneous Markov

chain. We define for k ∈ $, the time-variant drift ∆kV as

∆kV = E[V (λ̂k+T0,k
)|ek, λ̂k]− V (λ̂k)

With this definition, we have

∆kVk ≤ 2β(λ̂k −λ∗)E[( ŷk − c)|ek, λ̂k] + β
2N 2

= 2β(λ̂k −λ∗)((yk − c)+

+ E[(E[ ŷk|ek, λ̂k]− yk)|ek, λ̂k]) + β
2N 2, (9.28)

where yk is defined in Eq. (9.21). Therefore, yk− c is the gradient ∂ g(λ)

∂ λ
at λ= λ̂k. Based on

this upper bound on ∆k, we take the following super-Martingale lemma as a condition for
Harris recurrence from [ZZC08].
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9 Price Exchange Mechanism for Event-Triggered Control

Lemma 9.2 ([ZZC08]). Suppose that there exists a set B ∈ !≥0 such that for all k ∈ $

∆kV ≤ −βkε+ vk, λk /∈ B, (9.29)

where ε > 0 βk satisfies Assumption (A6) and
∑

k |vk| <∞ P-almost surely. Then B is Harris

recurrent with respect to the process {λ̂k}k∈$.

By identifying vk = β
2
k
N 2 and taking Assumption (A6) into account, we observe that

∑

k ∈ $β
2N 2 <∞. Due to Assumption (A4), the Markov chain {ei

k
} is ergodic assuming a

fixed λ̂k. This implies that we have almost sure convergence of E[ ŷk|ek, λ̂k] to yk as T0,k→∞
due to 0≤ ŷk ≤ N . Therefore, we have

lim
k→∞

E[|E[ ŷk|ek, λ̂k]− yk)| |ek, λ̂k] = 0. (9.30)

By fixing the set B, where λ∗ is in the interior of B, we have an appropriate ε1 > 0 such that
(λ̂k − λ∗)((yk − c) < −ε1 for each λ̂k /∈ B due to the properties of the gradient ∂ g(λ)

∂ λ
. This

implies together with Eq. (9.30) that an ε can be found that satisfies Eq. (9.29) for every
neighborhood B of λ∗. This concludes the proof.

The subsequent theorem gives a statement on the limiting behavior of {λ̂k}k in terms of
almost sure convergence.

Theorem 9.2 (Absence of contention). Let λ∗ be the solution of the relaxed problem (9.11)

and let βk satisfy Assumption (A6) and let T0,k →∞. Under the absence of contention and the

Assumption (A4), the stochastic process {λ̂k}k evolving by Eq. (9.22) converges to λ∗ P-almost

surely for k→∞.

The proof of Theorem 9.2 can be summarized as follows. With the recurrence result of
Lemma 9.1, we can suppose that the process {λ̂k}k visits any neighborhood of λ∗ infinitely
many times. By constructing a continuous-time interpolation of {λ̂k}k that approximates the
ODE in Eq. (9.18), it is shown that the process can exit any neighborhood of λ∗ only finitely
many times due to the asymptotic stability of ODE in Eq. (9.18). Hence, we can conclude
almost sure convergence to λ∗. The details can be found in Section 9.7.

We have already observed in Section 8.2.5 that the asymptotic behavior of the contention-
based system under the stability condition (7.7) resembles that one without contention as
the number of subsystems grows. This suggests that the stochastic process {λ̂k}k converges
arbitrarily close to λ∗ for an increasing number of subsystems.

9.3.3 Implementation and Discussion

The implementation of the overall system is accomplished in two phases. In the first
phase, which is performed before execution and locally in each subsystem, the optimal con-
troller γi,∗ given by Eq. (9.13) is calculated and the mapping from price λ to the optimal
event-trigger fi,λ by solving (9.14) through value iteration. In the second phase, the network
manager adjusts the price accordingly to the total average transmission rate estimated given
by ŷk, which serves as an estimate to approximate the gradient ∂ g

∂ λ
. Unlike broadcasting

the price λ̂k by a network manager, it is important to note that a complete decentralized
adaptation mechanism can be realized when each subsystem is able to sense the amount of
requests directly. Then, the calculation of λ̂k can be performed locally in each subsystem.
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Figure 9.3: Mapping from price λ to the optimal symmetric scheduling law described by the
threshold di for subsystem class 1 with A1 = 1.25 and 2 with A2 = 0.75.

In contrast to a time-triggered scheduling mechanism, which needs a global combinato-
rial search at runtime to find the optimal scheduling sequence, the event-triggered scheme
allows therefore a tractable implementation. Apart from the fact that the adaptation mecha-
nism enables the distributed architecture, the local event-triggers are capable to adjust their
thresholds according to runtime changes that are often found in real applications. These
are for example given by adding or removing control loops during runtime, changes in the
resource constraint, or changes in the local system parameters.

9.4 Numerical Results

In the following, we revisit the numerical example introduced in Section 8.3. Suppose the
system comprises of N subsystems with two differing system parameters A1 = 1.25, B1 = 1,
Q1

x
= 1, Q1

u
= 0 and A2 = 0.75, B2 = 1, Q2

x
= 1, Q2

u
= 0. The initial state of the process 0 i

is given by x i
0 = 0 and the system noise is given by wi

k
∼ * (0, 1), i ∈ {1, . . . , N}. The

communication constraint is set to c = 1. The optimal control gain in Eq. (9.13) is given
by Li = Ai for each subsystem i, i ∈ {1, . . . , N}. The optimal scheduling laws for a fixed λ
of each subsystem is a symmetric threshold policy defined in Eq. (9.16) with threshold di,
i ∈ {1, . . . , N}. The optimal threshold for various fixed Lagrange multipliers λ is obtained by
value iteration for the average-cost problem in Eq. (9.14).

Figure 9.3 shows the mapping from λ to the optimal thresholds of both subsystems. It
should be noted that the determination of the mapping shown in Fig. 9.3 can be performed
offline and locally for each subsystem. Therefore, the computationally intensive part for
the determination of the optimal threshold can be accomplished before runtime. It can
be seen that the growth rate of di, i ∈ {1, 2} is at most linear in Fig. 9.3 which supports
Assumption (A5).

We suppose a decreasing step size βk and an increasing window length T0,k for the adap-
tive event-triggered scheduler with the adaptation mechanism for λ̂k given by Eq. 9.22). In
the lth update step, we have T0,· = {2, 4, 6, . . .} and {βk}k∈$ = {2, 1, 2

3
, 2

4
, 2

5
, . . .}. Note that βk
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Figure 9.4: Performance comparison of social cost J and limit price λ̂k for k→∞ for various
number of subsystems and c/N = 0.5.

satisfies Assumption (A6).
Figure 9.4a compares the social cost for the adaptive event-triggered scheduler, the static

event-triggered scheduler, the time-triggered case, and the optimal solution without con-
tention, which corresponds to the minimum of the relaxed problem in Eq. (9.11). Differ-
ent N are considered, where it is assumed that the ratio between subsystem classes remains
equal, and the capacity c grows with the number of subsystems, i.e., c/N = 0.5.

The static event-triggered scheme determines the optimal λ for the relaxed problem set-
ting beforehand and takes the stationary event-triggered schedulers fi,λ, i = {1, 2} that
coincides with the solution of the bi-level design in Chapter 8. The time-triggered sched-
uler has already been determined in Section 8.3 and is given by {δ1

k
}k = {1, 1, 0, 1, 1, 0, . . .}

and {δ2
k
}k = {0, 0, 1, 0, 0, 1, . . .}. The event-triggered schemes outperform the time-triggered

scheme. The social cost of the adaptive scheme is slightly below the static event-triggered
scheme. The cost obtained without contention takes a value of 1.07 and can be considered
as a lower bound for the optimal scheduling policy with contention. This lower bound is
slowly approached by the event-triggered schemes for increasing N . The fact that the social
cost of the event-triggered scheme approaches the relaxed problem setting is also observed
in Section 8.3 and can be reasoned by its convergence to a deterministic flow limit of the
aggregate system when N approaches infinity.

Figure 9.4b compares the obtained price λ̂k in the limit in the presence and in the absence
of contention for the adaptive event-triggered scheduler, and with the optimal Lagrange
multiplier λ∗ for the relaxed problem setting in Eq. (9.11). Obviously, the optimal λ∗ taking
a value of 0.48 remains constant for different N , as c/N = 0.5. We observe that in the case
of the adaptive event-triggered scheduler without contention, the price λ̂k converges to the
optimal λ∗. In the presence of contention, the price λ̂k converges to a value strictly above
the optimal price λ∗. It can also be observed that its deviation from λ∗ becomes smaller
when N increases.

Figures 9.5a, 9.5b, and 9.5c show the sample-path behavior of the adaptive algorithm
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Figure 9.5: Sample path of the normalized empirical total request rate ŷk, the normalized
empirical throughput s̃k, and the price λ̂k for different scenarios.

over a time-horizon of 2000 for the communication penalty λ̂k and the normalized empirical
total request rate ỹk for the case without contention, N = 2, and N = 20, respectively. The
normalized request rate ỹk is defined as

ỹk =
1
kc

k−1
∑

0=0

N
∑

i=1

δi
0.

Figures 9.5b and 9.5c show in addition the normalized empirical throughput s̃k defined as

s̃k =
1
kc

k−1
∑

0=0

N
∑

i=1

qi
0δ

i
0.

In the absence of contention, we observe that the price λ̂k converges to λ∗ = 0.48, while
the normalized total request rate converges to 1 which is in accordance with Theorem 9.2.
In the presence of contention, the price λ̂k takes in the limit a value of 0.6 and 0.497 for
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9 Price Exchange Mechanism for Event-Triggered Control

N = 2 and N = 20, respectively. It should be noted that the price λ̂k converges slowly a
stationary variable for N = 2 in Fig. 9.5b. The normalized request rate and throughput
converge to 1.05 and 0.8 for N = 2 and they converge towards 1.01 and 0.92 for N = 20.

As a concluding remark, it is interesting to observe that although the adaptive event-
triggered scheduling schemes have a significant gap to the maximal throughput, they out-
perform the time-triggered scheme (which is throughput optimal) significantly with respect
to the control performance as shown in Fig. 9.4a.

9.5 Summary

This chapter has demonstrated the capability of adaptive event-triggered scheduling for the
distributed design in resource-constrained multi-loop control systems. Based on a dual price
exchange mechanism, we have developed a framework for the synthesis of distributed event-
triggered control systems that share a common resource. By considering the relaxation
approach for the event-trigger design introduced in Chapter 8, it is shown that convexity
properties of the relaxed problem enable the application of dual formulations related to
network utility maximization. The distributed design is realized by local adaptive event-
triggers that adjust their thresholds according to the estimated price for the resource. The
use of a time-scale separation technique allows us to establish stability in terms of Harris
recurrence in the case of contention and almost-sure convergence of the aggregate adaptive
event-triggered scheme in the case without contention.

9.6 Bibliographical Notes

The contribution of this chapter is partly based on the work in [MH12a]. There are sev-
eral links to recent results in the analysis and design of data networks. However, these
works need not take into account the dynamical properties of the information sources as
well as real-time requirements for controlling the processes over the network. On the one
hand, the decentralization of the overall optimization problem via dual decomposition in
Section 9.2.2 is closely related to congestion control in data networks [SS07]. On the other
hand, the distributed scheduler design developed in this chapter is also related to the anal-
ysis of throughput and utility maximization of random access algorithms in [ZZC08; JW10;
JSSW10; BMP08]. Similar as in this chapter, these works consider the joint design of sched-
uler and congestion control by optimizing a common objective function. Eventually, the
proof of Theorem 9.2 relies on the ODE approach developed in the field of stochastic ap-
proximation and is built upon ideas from Section 5.4 of [KY03].

9.7 Proof of Theorem 9.2

Before proving Theorem 9.2, we give the following definitions for the local analysis of the
process {λ̂k}k∈$. With slight abuse of notation, we redefine the index in the evolution
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9.7 Proof of Theorem 9.2

of {λ̂k}k∈$ by

λ̂n+1 = [λ̂n+ βn( ŷn− c)]+, (9.31)

where at each time n corresponds to a update time k ∈ $.
Because of the recurrence property due to Lemma 9.1, the ε1-ball with center λ∗ defined

as Fε1
(λ∗) is visited infinitely many times with probability 1. Moreover, we consider an-

other neighborhood Fε2
(λ∗) with ε2 > 2ε1. As λ∗ > 0, we further assume that the closed

ball Fε2
(λ∗) does not intersect with the origin. Subsequently, we consider the family of

sequences that start within Fε1
(λ∗) until they leave Fε2

(λ∗). As the gradient ŷn − c is
bounded within [−N , N] and we are interested in the limiting behavior for large n, the pro-
jection operator in Eq. (9.22) can be omitted. Furthermore, due to the fact that Fε2

(λ∗) is
a positively invariant set of the ODE (9.18), the projection operator can be discarded from
the subsequent analysis. Then, we rewrite the difference equation in Eq. (9.22) as

λ̂n+1 = λ̂n+ βn(yn− c) + βnξn (9.32)

where ξn is the error when estimating yn by the empirical mean ŷn, i.e.,

ξn = ŷn− yn. (9.33)

Because of ergodicity of the overall system without contention under Assumption (A4), we
have limn→∞ ξn = 0 P-almost surely. In order to give a continuous-time interpolation of
the discrete-time process (9.32) evolving within Fε2

(λ∗), we define the data points of the
interpolation at times

tn =

n−1
∑

0=1

βn.

with t0 = 0. For t ≥ 0, define m(t) to be the unique index n = m(t) such that tn ≤ t < tn+1.
Define the continuous-time interpolation λ̂0 of {λn}n by

λ̂0(t) = λ̂n, t ∈ (tn, tn+1)

and a shifted version of the interpolation by

λ̂n(t) = λ̂0(tn+ t).

We are now ready to prove Theorem 9.2 by the so-called ODE approach [KY03].

Proof of Theorem 9.2. Let Ω0 be the null set on which ξn defined in Eq. (9.33) does not
converge to zero or on which the process does not return to Fε1

(λ∗) infinitely often.
Fix ω ∈ Ω\Ω0.

Suppose that there are infinitely many escapes of {λ̂n(ω)}n from Fε1
(λ∗) to F c

ε2
(λ∗).

Then, there is an increasing sequence nk(ω) → ∞ such that nk is the last index at which
λ̂nk
∈F c

2ε1
(λ∗) before leavingF c

ε2
(λ∗).
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9 Price Exchange Mechanism for Event-Triggered Control

For s ≥ 0, we have the following piecewise constant interpolation of the discrete-time
process given by Eq. (9.32)

λ̂nk(s) = λ̂nk
(ω) +

m(tnk
+s)−1
∑

l=nk

βl(yl − c) + Bnk(s)

with Bnk(s) =
∑m(tnk

+s)−1

l=nk
βlξl . Due to the boundedness of the stochastic gradient ŷn− c, we

have βn( ŷn − c) → 0, which implies that the sequence {λ̂nk
}k converges to a point on the

boundary ∂F c
2ε1
(λ∗). It also implies that there is a T > 0 such that we have λ̂nk(ω, t) ∈

Fε2
(λ∗), t ≤ T for sufficiently large k. As ξn(ω) → 0, we also have Bnk(ω, t) → 0 for all

t ≤ T . Due to these results, it can be stated that the family of sequences {λ̂nk(ω, ·), 0 ≤ t ≤
T} is equicontinuous and bounded, and we have λ̂nk(ω, ·)0 ≤ t ≤ T}. By the Arzelà-Ascoli
theorem, we conclude that there exists a convergent subsequence of {λ̂nk(ω, ·), 0≤ t ≤ T}.

Let λ(ω, ·) be the limit of such convergent subsequence and let

ρnk(ω, t) =

∫ t

0

(y(s)− c)ds−
m(tnk

+t)−1
∑

l=nk

βl(yl − c), t ≤ T.

Because the sequences ρn(ω, t) and Bn(ω, t) vanish over finite time intervals for n → ∞,
we conclude that the convergent sequence λ(ω, ·) satisfies the ODE given by Eq. (9.18) for
t ≤ T with initial condition λ(ω, 0) ∈ ∂F c

2ε1
(λ∗) and |λ̂(ω, t)−λ∗|≥ 2ε1 for t ≤ T .

However, the right-hand side of Eq. (9.18) points in the interior of ∂F c
2ε1

) at ∂F c
2ε1

, and
λ(ω, ·) converges towards λ∗, which contradicts with the previous statement.

Therefore, our initial assertion does not hold and that there are only finitely many excur-
sions from Fε1

(λ∗). As ε1 can be chosen arbitrarily small, almost sure convergence to λ∗ is
guaranteed. This concludes the proof.
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10

Conclusions and Outlook

The increasing complexity of modern control systems with the ability to acquire an almost
unlimited amount of data from a multitude of networked sensors, urges the need for an
efficient usage of communication and computational resources. Event-triggered control can
be understood as an enabling technology to cope with the abundance of information in these
real-time decision making problems. In order to benefit from the event-triggered mechanism
at its full potential, it is necessary to conceive its fundamental working principles within the
feedback control system as much as they are known for time-triggered systems. This thesis
contributes to this endeavor by studying event-triggered control systems from the aspect of
stochastic systems and optimal control. The analysis is divided into two parts: single-loop
control systems with communication constraints in the feedback loop and multi-loop control
systems sharing a common resource.

The main achievement of the first part is a detailed characterization of the optimal co-
design of event-trigger and controller in the framework of linear quadratic control taking
communication constraints into account. What makes the optimal design challenging is the
non-standard information pattern of the decision makers given by the event-trigger and the
controller. The differing information available at the decision makers does not allow a direct
application of mathematical tools from stochastic optimal control, such as the separation
principle and dynamic programming. Despite of the complications arising from the possi-
bility of signalling between event-trigger and controller in this two-person team decision
problem, we were able to show that many standard results obtained for the time-triggered
version of the problem carry over to the case of event-triggered control. This fact is rather
surprising as issues such as signaling do not appear in the optimal design of time-triggered
control systems.
The core results of the structural characterization of optimal event-triggered controllers can
be summarized as follows. As a starting point for the study of optimal event-triggered con-
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10 Conclusions and Outlook

trol, it has been proved that the optimal solution of the controller takes the form of a cer-
tainty equivalence controller. This implied that the resulting optimal control law is linear
in its least-squares state estimate. The key property that allows such assertion is nested-
ness of the information pattern, i.e., the information available at the controller is a subset
of the information available at the event-trigger. As an implication of this result, it can
be observed that one can not benefit of the dual effect of control in such problem setting.
Furthermore, it is shown that the certainty equivalence property of the optimal control law
does not only hold in the case of perfect state feedback, but it is also valid in the case of
intermittent and delayed state information or noisy state measurements. Nevertheless, the
nestedness condition remains a prerequisite in all extensions of the problem setup. The
certainty equivalence property enables the reduction of the event-triggered control problem
into the optimal co-design of event-trigger and state estimator. When studying the joint de-
sign of event-trigger and estimator, there emerges another complicating feature that is not
present in time-triggered estimation: Not triggering an event can be valuable information
for the least-squares estimation of the process state. This fact implies that the measurement
information at the controller becomes non-Gaussian and – more importantly – depends on
the triggering rule. However, it turns out that the optimal state estimator takes the form of a
biased linear predictor that resembles the optimal time-triggered estimator. The estimation
bias in the linear predictor reflects the additional information obtained from not receiving a
new update from the event-trigger. Furthermore, it is shown that the optimal event-trigger
can be represented as a function of the network-induced estimation error and the time of the
last transmission. By analyzing the convergence properties of an iterative algorithm, which
alternates between optimizing the estimator while fixing the event-trigger and vice versa, we
were able to study the joint optimal event-triggered estimator in more detail. The iterative
method shows special properties in the case of unimodal and symmetric distributions of the
uncertainty. In the case of symmetric distributions, the event-triggered estimator given by
the unbiased linear predictor and the corresponding symmetric threshold policy is proven to
be person-by-person optimal. Person-by-person optimality can be considered as a necessary
condition for optimality. We have showed that this design is indeed optimal for first-order
systems in the case of unimodal and symmetric distributions. When having bimodal dis-
tributions, the iterative procedure offers a systematic method, which leads to asymmetric
event-triggers and biased estimators that outperform symmetric threshold policies. Similar
properties of the iterative method are likely to hold as well in the case of multi-dimensional
systems, but a conclusive derivation for higher-order systems is still an open issue. Even-
tually, the first part is completed with a stability analysis of the obtained event-triggered
control system, where we have observed that drift criteria are suitable tools for studying the
asymptotic behavior of the event-triggered system.
In summary, the structural characterization derived in the first part of this work admits
the development of tractable algorithms to compute the optimal event-triggered controller.
When assuming a first-order system with a symmetric unimodal distribution of the noise
process and the initial state, the co-design of event-trigger and controller can be fully char-
acterized and the synthesis problem decomposes into three standard subproblems of optimal
control and estimation: (i) the solution of an (algebraic) Riccati equation in order to obtain
the linear control gains, (ii) the determination of the linear least-squares estimator at the
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controller, and (iii) the solution of a dynamic program that yields the optimal triggering
thresholds for the event-trigger. In the general case, the coupling between (ii) and (iii) re-
mains unresolved, but the iterative algorithm developed in Chapter 3 serves as an adequate
method to seek for the optimal event-triggered estimator. Moreover, the existing literature
provides efficient approximative solutions of the dynamic program in (iii) for higher dimen-
sional systems.

Based on the results obtained in the first part, the aim of the second part of this thesis
is the analysis and the design of multiple control loops sharing a common communication
network. The main contribution is the development of efficient design guidelines for the
optimal co-design of control and communication. By introducing an approximative problem
setting, in which the path constraints modeling the limited capabilities of the communication
network are relaxed by an average rate constraint, we were able to formulate the co-design
problem as a constrained Markov decision process. Such problem relaxation allows the ap-
plication of the structural results derived in the first part for single-loop control systems with
communication constraints. It turns out that the resulting optimization problem splits into
two levels of optimization that are numerically feasible: a local optimal event-triggered con-
trol design related to the first part of this thesis and a global resource allocation problem.
The global resource allocation determines the optimal transmission rates of the individual
local control loops. The rates define the operation point of the corresponding event-triggered
scheduler that is determined locally in each control loop. On the one hand, it is shown under
some mild assumptions that the proposed bi-level design approach converges to the optimal
solution for an increasing number of loops and transmission slots. On the other hand, nu-
merical results indicate that the aggregate performance of the bi-level method deviates only
slightly from a lower bound already for a moderate number of control loops.
Furthermore, we were able to derive sufficient conditions for the stability of the result-
ing multi-loop control system. These conditions relate the ratio between the availability of
the resource and the number of control loops with the open-loop system dynamics of each
control system. Moreover, it has been observed that this condition can be checked locally
when knowing the the ratio between the number of transmission slots and the number of
subsystems. This adds robustness to the aggregate control system, as stability can still be
guaranteed, even if a malicious subsystem is continuously requesting for transmission.
Finally, the second part of this thesis demonstrates the capability of adaptive event-triggered
scheduling for the distributed design in resource-constrained multi-loop control systems.
Based on a dual price exchange mechanism, we have developed a framework for the syn-
thesis of distributed event-triggered control systems. The distributed design is realized by
local adaptive event-triggers that adjust their thresholds according to the estimated price for
the resource. The use of a time-scale separation technique allows us to prove stability in the
case of contention and almost-sure convergence of the aggregate adaptive event-triggered
scheme in the case without contention.

The second part can be summarized as follows. Despite the decreased predictability and
the close interaction between control and communication in contrast to time-triggered con-
trol schemes, we have shown that the proposed event-triggered control scheme yields simple
stability conditions, an increased level of robustness, and a significant improvement on the
overall control performance. Furthermore, the ability of adaptation of the event-triggered
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scheduling scheme enables a straight-forward implementation of distributed scheduling al-
gorithms.

10.1 Outlook

The research area of event-triggered control has attained increasing attention for more than
one decade from both practical and theoretical aspects. Several contributions towards a fun-
damental understanding of event-triggered sampling in the framework of linear quadratic
control have been made in this work. These results support the believe that event-triggered
control carries great promises for mastering the complexity of modern real-time decision
making problems. However, various open research questions in the area of event-triggered
control must be addressed in the future in order to comply with the expectation for its po-
tential.

Event-triggered control for general optimal control problems

This work has primarily focussed on optimal control problems related to linear quadratic
regulation. We were able to give a detailed description of the optimal solution when jointly
designing event-trigger and controller. This raises the question whether a similar charac-
terization can be obtained for general optimal control problems with communication con-
straints. Although it is unlikely that the majority of the results directly carries over to the
case of general optimal control problems, it is crucial to identify subclasses of optimal con-
trol problems and additional assumptions that enable an intuitive description of the optimal
event-triggered controller. Model predictive control methods that use online optimization
techniques seem to be an attractive approach that needs to be analyzed in more detail under
the paradigm of optimal event-triggered sampling.

Event-triggered sampling for distributed optimization and control

The initial motivation for event-triggered sampling has its roots in taming the complexity
of real-time decision making. Distributed optimization and control are another enabling
means that address the solution of complex large-scale problems. In order to develop effi-
cient algorithms for these problems in the future, tight links between these domains need
to be established. One reason for this comes from the fact that distributed algorithms com-
monly suffer from slow convergence rates which makes them less attractive for application.
However, it is believed that event-triggered sampling is capable to enhance convergence of
distributed systems, as it promotes the distribution of essential information while suppress-
ing redundant data.

Physical coupling among subsystems

Another open issue concerns the introduction of physical coupling among subsystems that
naturally arises in distributed control systems. Coupling between subsystems carries chang-
ing implications for the distributed event-triggered control system. The conventional anal-
ysis does not apply as measurement signals are not independent from with each other any-
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10.1 Outlook

more. The signal correlation implies that the local event-triggers must be designed carefully
as the triggering times may be highly correlated leading to a higher chance of collisions.
This also increases the demands on the stability analysis that need to be resolved.

Implementation in available communication protocols/processor schedulers

In this thesis, the model for the communication network was chosen to be generic. While this
made it possible to focus on the main issues of event-triggered scheduling and control, the
results are applicable to a wide range of resource constrained entities that are not limited to
communication systems. On the other hand, there have already been made several attempts
to implement event-triggered control methods in real communication protocols in an ad-hoc
fashion. What needs to be done in the future is to bridge the gap between both approaches
by appropriately modeling the communication system. The model needs to abstract the
main features of the resource constraint while allowing for the development of efficient
algorithms for the joint design of event-triggered scheduler and controller. This modeling is
not restricted to communication protocols but also applies to processor scheduling.
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A

Probability Theory

This appendix is intended to review some of the basic notions of probability theory. Rather
than being exhaustive, it is meant to familiarize the reader with the main principles used
throughout this thesis. The presentation follows the textbooks [Res98; Øks03; MT93].

A.1 Preliminaries on Measure Theory

In this section, we give a minimal set of measure-theoretic definitions needed for the con-
struction of a probability space.

Definition A.1 (Measurable Space). A tuple (G ,F(G )) with G being an abstract set of
points is said to be a measurable space ifF(G ) is a σ-algebra of G , i.e.,

1. G ∈F(G ),

2. if A∈F(G ) then Ac ∈F(G ),

3. if Ak ∈F(G ), k ∈ {1, 2, . . .} then
⋃∞

k=1 Ak ∈F(G ).

A topological space G is always endowed with the Borel σ-algebra F(G ). A Borel σ-
algebra is the smallest σ-algebra of subsets of G that contains all open subsets of G .

Definition A.2 (Measurable Function). Let (G 1,F(G 1)) and (G 2,F(G 2)) be two mea-
surable spaces. Then, a mapping h : G 1 → G 2 is said to be a measurable function if the
preimage h−1{B}= {x : h(x) ∈ B} satisfies

h−1{B} ∈F(G 1)

for all sets B ∈F(G 2).
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A measure on a measurable space is defined as follows.

Definition A.3 (Measure). A set function µ : F(G ) → [0,∞] on the space (G ,F(G ))
is said to be a measure if it is countably additive, i.e., if Ak ∈ F(G ), k ∈ {1, 2, . . .}, and
Ai ∩ Aj = I, i <= j then

µ(

∞
⋃

i=1

Ai) =

∞
∑

i=1

µ(Ai).

The measure µ is called a probability measure if µ(G ) = 1.

A.2 Random Variables

A probability space is defined by the triple (Ω,( ,P) where Ω is an abstract set of points, (
is an σ-algebra of Ω, and P is a probability measure on (Ω,( ).

Definition A.4 (Random Variable). Let (Ω,( ,P) be a probability measure and (G ,F(G ))
be a measurable space. A mapping x : Ω → G is said to be a random variable if x is a
measurable function from Ω to G , i.e.,

X−1(B) ∈ (

for all sets B ∈F(G ).

Given a random variable x in the probability space (Ω,( ,P), we define the σ-algebra
generated by the random variable x , denoted as σ(x), to be the smallest σ-algebra on which
x is measurable.

Suppose x is a random variable from (Ω,( ,P) to (G ,F(G )), and suppose h is a real-
valued measurable mapping from (G ,F(G )) to (!,F(!)). Then, h(x) is a real-valued
random variable on (Ω,( ,P), for which we define the expectation as

E[h(x)] =

∫

Ω

h(x(ω))P(dω).

A.3 Conditional Expectation

In this section, we give a formal definition for the conditional expectation in the notion of
the σ-algebras and state several useful properties that we refer to throughout the thesis.

Let the triple (Ω,( ,P) define a probability space. Let x : Ω → Cn be an integrable
random variable, i.e., E[|x |]≤∞. Suppose z be another integrable random variable defined
within the above probability space. Let J = σ(z) ⊂ ( denote the σ-algebra generated by
the random variable z. Then, the conditional expectation of x given z denoted by E[x |z] is
defined as follows:

Definition A.5 (Conditional Expectation). The conditional expectation E[x |z] is the (a.s.
unique) mapping from Ω to !n satisfying
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1. E[x |z] is measurable with respect to z,

2.
∫

Z
E[x |z]d P=

∫

Z
xd P for all Z ∈ J .

The existence and uniqueness of the conditional expectation E[x |z] can be shown by
applying the Radon-Nikodym theorem [Øks03]. Throughout the thesis, we make extensively
use of several calculation rules for the conditional expectation summarized in the following
theorem.

Theorem A.1. Suppose y : Ω → !n be another integrable random variable and let a, b ∈ !.

Then,

1. E[ax + b y |z] = aE[x |z] + bE[y |z], (Linearity)

2. E[E[x |z]] = E[x], (Total expected value)

3. E[E[x |y]|z] = E[x |z] if z is measurable with respect to y, (Tower property)

4. E[x |z] = E[x] if x is independent of z,

5. E[yT x |z] = yT
E[x |z] if y is measurable with respect to z.

The proofs of the above properties for the conditional expectation can be found
in [Øks03].

139





B

Markov Chains

In this appendix, we give a brief summary of the notions and tools for the analysis of Markov
chains in uncountable state spaces, which appear throughout this thesis. A comprehensive
study of Markov chains in uncountable state spaces can be found in the seminal book of
Meyn and Tweedie [MT93]. The subsequent definitions and theorems rely to a great extend
on the results of this book.

The study of Markov chains in uncountable state spaces is particular challenging as the
results developed for countable Markov chains can not directly be used if the state space is
uncountable. Nevertheless, by extending the definitions accordingly, it is shown in [MT93]
that most of the results regarding the asymptotic analysis of Markov chains can be recovered
for uncountable state spaces.

B.1 Preliminaries

We consider a stochastic process {xk} evolving in the state space G ⊂ !n equipped with
the Borel σ-algebra F(G ). First, we indicate how to construct the Markov chain {xk} as a
stochastic process in the probability space (Ω,( ,P) given an initial probability measure µ,
and a probability transition kernel P(·, ·) defined as follows.

Definition B.1 (Transition Probability Kernel). The function P = {P(x , A), x ∈ G , A ∈
F(G )} is said to be a transition probability kernel if

1. P(·, A) is a non-negative measurable function on G with respect to F(G ) for each
A∈F(G ),

2. P(x , ·) is a probability measure onF(G ).
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Both properties in the above definition are essential in order to define the probability
measure on( properly. It can be observed that there is a substantial difference when moving
from the countable to the uncountable sate space. The transition kernel P(·, ·) operates on
quite different entities with respect to the first and the second argument and can therefore
no longer be viewed as symmetric in its arguments in contrast to countable state spaces.

The following theorem shows how the probability space (Ω,( ,P) of the stochastic pro-
cess {xk} can be constructed.

Theorem B.1. Let µ be any initial measure on F(G ) and P(·, ·) any transition probability

kernel as given in Definition B.1. Then, there exists a stochastic process {xk} on the probability

space (Ω,( ,Pµ), where Ω = G∞, ( =
⊗∞

i=0F(G i). Pµ is the probability distribution on (
such that

Pµ(x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An) =

∫

y0∈A0

· · ·
∫

yn−1∈An−1

µ(d y0)P(y0, d y1) · · · P(yn−1, An)

(B.1)
for any n and sets Ai ∈F(G i), i = 0, . . . , n.

Proof. The existence of {xk} is a consequence of the Kolmogorov Extension Theorem for
construction of probabilities on topological spaces, see [Øks03].

Thus, we can now give a formal definition of a time-homogeneous Markov chain, see also
Chapter 3 in [MT93].

Definition B.2 (Markov Chain). A stochastic process on (Ω,( ) is said to be a time-

homogeneous Markov chain with transition probability kernel P(·, ·) and initial distribution µ
if the finite dimensional distributions of {xk} satisfy (B.1) for every n ∈ "+.

Having shown that a Markov chain is uniquely defined given its initial distribution and
transition probability kernel, we seek another expression than Eq. (B.1) that gives us a
succinct expression of the Markovian characteristic: The future evolution of the Markov
chain is independent of its given its present value. This is given by the following theorem,
see also Proposition 3.4.3 in [MT93].

Theorem B.2 (Markov Property). Let h : Ω → ! be a bounded, measurable function and

{xk} be a Markov chain on (Ω,( ) with initial distribution µ. Then, for n≥ 0

E[h(xn+1, xn+2, . . .) | x0, . . . , xn; xn = x] = Ex[h(x1, x2, . . .)]. (B.2)

Our subsequent characterization of Markov chains is often phrased in properties of the
(first) return time τA defined as follows.

Definition B.3 (Return Time). For any A∈F(G ), the return time τA on the set A is defined
as

τA :=min{n≥ 1 : xn ∈ A}.

We will also refer to the n-step transition kernel that is defined as

Pn(x , A) = Px(xn ∈ A), n ∈ "+, x ∈ G , A∈F(G ) .
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B.2 ϕ-Irreducibility and Small Sets

Roughly speaking, a Markov chain is said to be irreducible, if every part of the state space can
be reached in finite time independently of the initial state. This seemingly simple prerequi-
site for a chain has wide-ranging consequence for the analysis of the asymptotic behavior of
the Markov chain. Not until we can ensure irreducibility for a chain it will be reasonable to
discuss global stability properties of the chain.

The idea of irreducibility is much simplified in countable state spaces. The reason is due to
the symmetry of the transition kernel with respect to its arguments. Hence, one can define
the concept of communicating states, meaning that two distinct states can reach each other
in finite time with positive probability. Eventually, a Markov chain on a countable state space
is said to be irreducible if every pair of states communicates with each other.

Adopted from Chapter 4 in [MT93], an analogous notion of irreducibility for Markov
chains on uncountable state spaces is defined as follows.

Definition B.4 (ϕ-Irreducibility). Let ϕ be a measure on F(G ). Then, a Markov chain
{xk} is said to be ϕ-irreducible, if for all x ∈ G

ϕ(A)> 0⇒ Px(τA <∞)> 0

and ϕ is called irreducibility measure of {xk}.

We exclude the trivial measure, i.e., the measure which is zero for any A ∈ F(G ), from
possible irreducible measures on F(G ), since Definition B.4 would be a trivial statement
for this measure. Notice that the choice of an appropriate measures is left open. In fact,
there will be a lot of different possibilities. Intuitively, Definition B.4 guarantees that sets B

that are in some sense big enough (meaning that ϕ(B) > 0), are always reached from any
initial state with positive probability. This will be the sets of interest.

When specifying the stability criteria for general Markov chains in the next section, an
appropriate notion of so-called small sets introduced in Chapter 5 of [MT93] is needed that
are the counterpart of finite sets in Markov chains with a countable state space.

Definition B.5 (Small Sets). A set C ∈ F(G ) is called a small set if there exists an m > 0,
and a non-trivial measure νm onF(G ), such that

Pm(x , B)≥ νm(B) (B.3)

for all x ∈ C , B ∈F(G ).

In the following, we give a definition of aperiodicity as in Chapter 5 of [MT93].

Definition B.6 (Strong Aperiodicity). A Markov chain is said to be strongly aperiodic if
there exist a small set A with ν1(A)> 0 and ν1 satisfying (B.3) for m= 1.

Aperiodicity prevents the chain from having a cyclic behavior, i.e. the chain is admitted
to return to certain sets only at specific time points which occur periodically. A periodic
behavior is particularly undesirable when proving ergodicity properties of the Markov chain.
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It should be note that there exists a generalization of small sets called petite sets, which
are introduced in Chapter 5 of [MT93]. However, if the Markov chain is ϕ-irreducible and
(strongly) aperiodic, then every petite set is also small, see Theorem 5.5.7 in [MT93]. For
the purposes of this thesis, it is therefore sufficient to restrict our attention to the collection
of small sets within the state space G , as the Markov chains considered can be assumed to
be strongly aperiodic throughout this thesis.

B.3 Stochastic Stability

Here, we consider three different notions of stability: Harris recurrence, positive Harris
recurrence, and ergodicity. We take the following definition of Harris recurrence in terms of
the first return time τA, see [MT94].

Definition B.7 (Harris Recurrence). Let {xk} be a ϕ-irreducible Markov chain. Then, {xk}
is said to be Harris recurrent if

Px(τk ≤∞) = 1

for every x ∈ G and every A∈F(G ) with ϕ(A)> 0.

An alternative definition of Harris recurrence that is equivalent to that above is given as
follows, see also Chapter 9 of [MT93]: A Markov chain is Harris recurrent if every set A with
ϕ(A)> 0 is visited infinitely many times P-almost surely.

Adopted from Chapter 10 of [MT93], we define the invariant measure of a Markov chain
as follows.

Definition B.8 (Invariant Measure). Let π be a σ-finite measure onF(G ). Then, π is said
to be invariant if it has the property

π(A) =

∫

G
π(d x)P(x , A), A∈F(G ) . (B.4)

It is well-known that an invariant measure π exists if the Markov chain {xk} is Harris
recurrent. This leads us to a stronger notion of stability given by the next definition.

Definition B.9 (Positive Harris Recurrence). Let {xk} be Harris recurrent. Then, {xk} is
said to be positive Harris recurrent if the invariant measure π defined in Eq. (B.4) is finite.

Subsequently, we introduce the notion of drift criteria which resembles Lyapunov stabil-
ity theory for deterministic dynamical systems. The following definition can be found in
Chapter 8 of [MT93].

Definition B.10 (Drift). The drift operator ∆ for any non-negative measurable function V

on G is defined by

∆V (x) :=

∫

G
P(x , d y)V (y)− V (x), x ∈ G .
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With slight abuse of notation with regard of the conditional expectation, we often compute
the drift ∆V (x) by ∆V (xk) = E[V (xk+1)|xk] − V (xk) with xk ∈ G . The following drift
criterion related to Theorem 11.0.1 in [MT93] is a useful means to prove stochastic stability.

Theorem B.3 (Foster’s Criterion). Let {xk} be ϕ-irreducible. Then, {xk} is positive Harris

recurrent if there exists a small set C ∈F(G ) and a non-negative function V on G such that

∆V (x)≤ −1, x ∈ Cc, (B.5)

and ∆V is uniformly bounded on C.

The following theorem shows the correspondence of positive Harris recurrence and er-
godicity by assuming that the chain is aperiodic, see also Theorem 13.0.1 in [MT93].

Theorem B.4 (Aperiodic Ergodic Theorem). Let {xk} be ϕ-irreducible and strongly aperi-

odic. If {xk} is an positive Harris recurrent chain with invariant probability measure π, then

the chain is ergodic, i.e.,

‖Pn(x , ·)−π‖ → 0 (B.6)

as n→∞ for any initial state x ∈ G .

In the above theorem, ‖ · ‖ denotes the total variation norm defined as

‖µ‖= sup
A∈F(G )

µ(A)− inf
A∈F(G )

µ(A),

where µ is a signed measure onF(G ). In Theorem 13.0.1 of [MT93], a weaker notion than
strongly aperiodicity is used. However, the Markov chains considered in this thesis turn out
to be strongly aperiodic, which lets us resort to the above theorem.
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C

Dynamic Programming

Here, we review the basic principles of optimal stochastic control – the theory of optimal se-
quential decision making under stochastic disturbances. The presentation of the subsequent
sections follows the textbooks [Ber05; Ber07; HL89; HLL96].

C.1 Finite Horizon Problems

In the following, we consider a uk-controlled Markov chain described by the following dif-
ference equation model

xk+1 = fk(xk, uk, wk), k ∈ {0, 1, . . .} (C.1)

where the state xk takes values in G ⊂ !n, the input takes values in K (x) and the noise
process {wk} is i.i.d. and independent of the initial condition x0. The noise wk takes values
in some Borel space L with a common distribution φ. The function fk :G ×K ×L →G
is assumed to be a Borel measurable mapping for all k ∈ "+.

The control problem we are interested in is the minimization of the finite-horizon perfor-
mance criterion

J(π, x) = E
π
x
[cT (xT ) +

T−1
∑

k=0

ck(xk, uk)]

with ck as the running cost and cT as the terminal cost. Both are measurable non-negative
functions on their corresponding spaces. In general, it can be distinguished between ran-
domized and deterministic (pure) policies π. We are primarily focussed on deterministic
policies defined by the admissible set of policies 3 . The policy π can be chosen out of
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the set of admissible policies denoted by 3 that covers all measurable mapping of the past
observation history =k = {X k, Uk−1}, i.e.,

uk = πk(=k) (C.2)

By defining the value function J∗(x) as

J∗(x) = inf
π∈3

J(π, x), x ∈ G , (C.3)

we want to find a policy π∗ ∈ 3 , s.t.

J(π∗, x) = J∗(x), for all x ∈ G . (C.4)

The subsequent class of policies plays a crucial role in optimal control problems with full
state information.

Definition C.1 (Markov Policy). A policy π ∈ 3 is said to be a Markov policy if the law πk

is a measurable mapping with regard to the state xk for every k ∈ {0, . . . , N − 1}.

The following theorem adopted from Chapter 3 of [HLL96] states that the optimal solution
of problem can be solved by the dynamic programming algorithm defined in Eq. (C.5).

Theorem C.1 (Dynamic Programming Theorem). Let Jk with k ∈ {0, . . . , T − 1} be real-

valued functions on G defined recursively (backwards in time) as

JT (xN) = cT (xN),

Jk(xk) = min
uk∈K (x)

#

ck(xk, uk) + E[Jk+1( fk(xk, uk, wk))|xk, uk]
$ (C.5)

Suppose that these functions are measurable and suppose that there exists a deterministic

Markov policy π∗
k
(xk) that attains the minimum in (C.5) for k ∈ {0, . . . , N − 1}.

Then, the deterministic Markov policy π∗ = [π∗0, . . . ,π∗
N−1] is optimal and the value function

J∗ is given by

J∗(x) = J0(x) = J(π∗, x), for all x ∈ G .

The measurable selection condition discussed in Section 3.3 of [HLL96] guarantees that the
resulting policy yields a measurable selection of the optimal control inputs. This basically im-
plies that the measurability assertions in the above theorem hold and that the “inf”-operation
can be replaced by the “min”-operation in the dynamic programming algorithm. Through-
out the thesis, we are mainly concerned with a finite number of choices for the input that is
reflected by the triggering variable taking values 0 and 1. Therefore, the measurability issue
will be a minor problem and we can assume that a solution exists and conveniently take the
min-operator in the dynamic programming equation as given in Eq. (C.5)
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C.2 Problems with Partial State Information

Suppose the uk-controlled Markov chain defined in Eq. (C.1). However, instead of assuming
that the complete state xk is available to the decision maker, we suppose in the following
that the controller has merely access to the observations zk defined as

zk = hk(xk, vk), k ∈ {0, . . . , N − 1},

where the observation noise process {vk} is i.i.d. and takes values in a Borel measurable
space M and is independent of wk and x0.

The information available at the controller is now given by the observation history =k =

{Zk, Uk−1}. Subsequently, we aim at finding the optimal solution of Eq. (C.4) by reducing
the problem to an optimal control problem with full state information. We assume that the
admissible set of control inputs,K , does not depend on the state. We define the information

state recursively by the difference equation model

Ik+1 = (Ik, zk+1, uk), k ∈ {0, . . . , N − 2}

with I0 = z0. Considering Ik as our new state, we obtain the following expression for the
cost-to-functions Jk from Chapter 5 of [Ber05]:

Jk(Ik) = min
uk∈K

#

E[ck(xk, uk) + Jk+1( fk(xk, uk, wk))|Ik, uk]
$

, k ∈ {0, . . . , N − 2},

JT−1(IT−1) = min
uT−1∈K

#

E[cT−1(xT−1, uT−1) + cT ( fT−1(xT−1, uT−1, wT−1))|IN−1, uN−1]
$ (C.6)

In order to reduce the data that is truly necessary for obtaining the optimal control law,
we seek for so-called sufficient statistics which comprise all essential information needed for
control in the following sense. Suppose that there is a function Sk(Ik) of the information
state, such that the minimization of the right-hand side in Eq. (C.6) can be reformulated as

Jk(Ik) = min
uk∈K

Qk(Sk(Ik)) = J ′(Sk(Ik)). (C.7)

Then, the function Sk is said to be a sufficient statistic and the corresponding optimal control
law has the form uk = π

′
k
(Sk(Ik)) for k ∈ {0, . . . , N − 1}. Certainly, the identity function is a

sufficient statistic. Another important sufficient statistic for optimal control problems with
partial state information under the above assumptions on the noise models is the conditional
state distribution Pxk|Ik

of the state xk given the information Ik, see [BS78].
A stronger notion of sufficient statistics is the concept of certainty equivalence control.

A certainty equivalence controller is given by solving first the related deterministic optimal
control problem, where all primitive random variables are set to their “typical ” values.
Within the solution of the deterministic optimal control problem, the state variable is then
replaced by its “typical ” value based on the available information. The common choice for
“typical” values of the disturbances and estimate that is also assumed here is given by their
mean values E[wk] and the least-squares estimate E[xk|Ik], respectively.

The solution of an optimal control problem is said to have the certainty equivalence prop-

erty if the it takes the form of the certainty equivalence controller.
In the context of sufficient statistics, it can be concluded that the certainty equivalence

property implies that the conditional mean E[xk|Ik] is sufficient statistic of the optimal con-
trol problem.
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C.3 Long-Run Average-Cost Problems

Suppose a time-homogeneous version of the uk-controlled Markov chain defined in Eq. (C.1)
by dropping the index k of the function fk, and suppose the control law defined as in
Eq. (C.2) for k ≥ 0. In this section, we consider the problem of minimizing the long-run
average expected cost per time step, abbrev. average-cost (AC) criterion that is defined as

J(π, x) = lim sup
T→∞

1
T
E
π
x
[

T−1
∑

k=0

c(xk, uk)]

with the per-stage cost c(·, ·) being a measurable non-negative bounded function. A policy
π∗ is said to be (AC) optimal if it satisfies J(π∗, x) = J∗(x) for all x ∈ G , where the value
function J∗(x) is defined in Eq. (C.3).

The set of stationary policies within the class of Markov policies takes a crucial role for AC
optimal control problems.

Definition C.2 (Stationary Policy). A Markov policy π ∈ 3 is said to be a stationary

(Markov) policy if the laws do not depend on the time k, i.e., π= [π′,π′, . . .].

The following theorem adopted from Chapter 3 of [HL89] optimality conditions in order
to find the AC optimal policy π∗.

Theorem C.2 (AC Bellman Equation). Suppose there exists a constant j∗ and a real-valued

bounded measurable function h∗ such that

h∗(x) + j∗ = min
u∈K (x)

#

c(x , u) + E[h∗( f (x , u, w))]
$

, for all x ∈ G (C.8)

with w ∈ L having the distribution φ. Then, we have

1. infπ J(π, x)≥ j∗, for all x ∈ G

2. If π∗ = [π′,π′, . . .] is a stationary policy that minimizes the right-hand side of the AC

Bellman Equation given by Eq. (C.8), i.e.,

h∗(x) + j∗ = c(x ,π′(x)) + E[h∗( f (x ,π′(x), wk))], for all x ∈ G ,

then π∗ is AC optimal and J(π∗, x) = j∗ for all x ∈ G .

In order to ensure the existence of the solution for the AC Bellman Equation defined
by Eq. (C.8), several ergodicity conditions are introduced in Section 3.3 of [HL89]. The
majority of these conditions also guarantee the convergence of the value iteration

hi+1 = 6 hi, i ∈ {0, 1, . . .}, (C.9)

with h0 being an arbitrary real-valued bounded measurable function on G and 6 being the
Bellman operator defined as the right-hand side of Eq. (C.8), i.e.,

6 h(x) = min
u∈K (x)

#

c(x , u) + E[h∗( f (x , u, w))]
$

, for all x ∈ G .

An appropriate transformation that shifts hi vertically after each step may be necessary in
order to attain convergence.
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