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Abstract

In this thesis the quantum regime of nonlinear nanomechanical resonators in an
opto-electro-mechanical setup is investigated theoretically. The interaction of such
resonators with the light field inside a cavity has recently been employed to suc-
cessfully cool their motion to the quantum mechanical ground state. Typically, this
constitutes the precondition for investigations in that regime on the experimental
side and defines the scientific context of this work. The central aspect here is the
effect of an intrinsic mechanical nonlinearity, that is enhanced using electrostatic
gradient forces that act onto the resonator. This nonlinearity can be employed to
control the mechanical motion at the single phonon level. To demonstrate this, two
different concepts are developed. One of them concerns the preparation of nonclas-
sical steady states for the mechanical motion using appropriate laser drives for the
cavity. Furthermore, a concept for quantum information processing with nanome-
chanical qubits is introduced. It is shown how a universal set of quantum gates
can be implemented, where the interaction of multiple resonators with a common
optical cavity mode can be used to conduct a fundamental entangling gate.

Zusammenfassung

In dieser Arbeit wird das quantenmechanische Regime von nichtlinearen, nano-
mechanischen Resonatoren in einem opto-elektro-mechanischem Aufbau theoretisch
untersucht. Die Wechselwirkung solcher Nanoresonatoren mit dem Lichtfeld in
einer optischen Mikrokavität wurde kürzlich erfolgreich genutzt um ihre Bewegung
in den quantenmechanischen Grundzustand zu kühlen. Typischerweise stellt dies
eine Voraussetzung für Untersuchungen in diesem Bereich auf der experimentellen
Seite dar und definiert den wissenschaftlichen Kontext dieser Arbeit. Der zentrale
Aspekt hier ist der Effekt einer intrinsischen Nichtlinearität im mechanischen elastis-
chen Potential, welche mittels elektrostatischer Felder, die auf den Resonator wirken,
verstärkt wird. Diese Nichtlinearität kann genutzt werden um die mechanische Be-
wegung auf dem Niveau einzelner Phononen zu kontrollieren. Um dies zu demon-
strieren werden zwei verschieden Konzepte entwickelt. Ein Konzept beschäftigt
sich mit der Preparation von nichtklassischen Zuständen der mechanischen Bewe-
gung unter Benutzung passender Laseranregungen der optischen Kavität. Des Weit-
eren wird ein Konzept zur Quanteninformationsverarbeitung mit nanomechanis-
chen Qubits vorgestellt. Es wird gezeigt wie ein universaler Satz von Quanten-
gattern implementiert werden kann, wobei die Wechselwirkung mehrerer Nanores-
onatoren mit einer gemeinsamen Photonmode benutzt wird um ein fundamentales,
Verschränkung erzeugendes Gatter auszuführen.
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Introduction

A large part of today’s scientific research in the field of quantum mechanics and
in particular of quantum optics is driven by the idea of controlling small quantum
systems with a very high level of precision. Here, small is meant in the sense of
elementary, like single particles or single modes of a field. Various example systems
range from single photons over single trapped ions or atoms to solid state devices
like quantum dots and superconducting circuits. The motivation behind that ap-
proach is at least twofold. One goal has always been to implement precise exper-
imental tests of fundamental predictions of quantum mechanics, like for instance
loop-whole free tests of nonclassical correlations that arise from entanglement and
are quantified by Bell’s inequalities [1, 2]. But moreover, this approach of course
follows a very general and successful principle, that is understanding and control-
ling elementary building blocks in order to advance to more complex applications
and systems later on. One result of these later step are so called hybrid quantum
systems that nowadays exist in various combinations.

During the last decade, a very fundamental class of devices, formed by various types
of micro- and nanomechanical resonators, has approached the field of quantum
physics. To a large part, this development has been driven by the progress in the
top-down fabrication of structures on the micro- and nanoscale, including various
mechanical structures like strings, bars, and cantilevers. Those devices are used
in many technical applications. Some of them combine very high quality factors
with ultra low masses, which makes them suitable for detecting very small forces
[3, 4, 5]. The capability of mechanical resonators to couple to electromagnetic fields
in a broad frequency range is employed for example in electrical signal processing,
where they can serve as transducers or very precise frequency filters. These technical
applications motivated the fabrication of resonators with increasing quality factors
and frequencies and decreasing size.

The other important key developement was the progress in a relatively young sub-
field of quantum optics, that is the field of cavity optomechanics. This field is con-
cerned with the interaction of the light field inside an optical cavity with the motion
of mechanical resonators. For a recent review see [6]. While the idea that radiation
forces exerted by light can influence the motion of mechanical resonators has been
considered quite early [7], a significant interaction strength that overcomes thermal
driving forces that act onto the mechanical resonator was only reached much later.
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Only a bit more than ten years ago, the first optomechanical experiments started
to implement cavity assisted sideband cooling of mechanical motion [8, 9, 10], a
method that had been transferred from laser cooling of atoms and molecules. The
critial step that finally introduced mechanical resonators to the realm of quantum
mechanics was done when optomechanical experiments achieved cooling that was
sufficient to reach the ground state of mechanical motion [11, 12, 13].

This development and the implicated perspective for the field of quantum physics is
indeed outstanding. While mechanical resonators are the role model for the most
fundamental system studied both in classical and quantum physics, the harmonic
oscillator, they have always been associated to the classical world. This is because
even typical nanomechanical resonators consist of billions of atoms and in that sense
form a macroscopic body, whereas the rules of quantum mechanics have been de-
veloped to explain the world at the scale of single atoms. Consequently, unlike it is
for atoms, the classical description of nano- and micromechanical resonators proved
to be highly accurate in applications that have been considered before. The possi-
bility to study the motion of mechanical resonators near the groundstate now holds
manifold perspectives for further investigations. On a fundamental side, it promises
insight into fundamental questions concerning decoherence [14]. On a more tech-
nical side, mechanical resonators in the quantum regime have great potential for
hybrid quantum systems, since they can combine various coupling mechanisms to
different types of other quantum systems. For example, similar to their previously
mentioned use as transducers in classical signal processing, micromechanical res-
onators have already been considered as transducers between different quantum
systems for purposes in quantum information processing [15, 16].

It is well known, that introducing a nonlinear element to a quantum system is cru-
cial to be able to observe nonclassical effects. This is because in a linear system, the
expectation values of observables follow the corresponding classical equations of
motion [17]. A common way to characterize the nonclassicality of a quantum state
is given by considering its Wigner representation. This phase space distribution has
similarities to a classical probability distribution, but shows negative valued regions
for nonclassical states. For a linear system that is subject to classical drives and
embedded in a thermal environment, this Wigner distribution always shows a Gaus-
sian shape. This is also true for systems that are close to the ground state, so that
cooling a quantum system alone is not sufficient to observe nonclassical behaviour.
Accordingly, introducing nonlinearites to otherwise linear systems is a common ap-
proach in quantum mechanical experiments: In superconducting circuits, for exam-
ple, Josephson junctions are used as nonlinear elements to observe quantum effects.
Here, we investigate the quantum regime for a nonlinear nanomechanical resonator
in an opto-electromechanical setup. Thereby, the focus is set on generating and em-
ploying distinct nonclassical effects in the motion of the nanomechnical resonator.
The approach that is introduced in this thesis relies on different elements: The in-
teraction of the resonator with a laser driven optical cavity is neccesary to assure
the regime of few motional excitations, but it is also used as a control element to
induce more specific effects on the mechanical motion. Furthermore, electrostatic
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fields are used to apply gradient forces onto the resonator. This is a common tool
in the field of nanoelectromechanical systems (NEMS) that can be used to drive or
tune nanomechanical resonators via their polarizability [18]. Finally, a novel ele-
ment that is employed here, is a nonlinear contribution to the elastic potential of
the mechanical resonator. This mechanical nonlinearity is of central importance,
since it allows to resolve and address the individual energy levels of the mechani-
cal resonator. Technically, such an intrinsic nonlinearity exists for every mechanical
resonator, yet in most cases it is just too weak to be of any significance. While there
exist attempts to make the mechanical motion nonlinear by employing the coupling
to nonlinear ancilla systems [19, 20, 21], we here use a different approach: The
intrinsic nonlinear effects are enhanced by tuning the nanoresonator close to the
buckling instability [22, 23]. While the dynamics of a such a nonlinear nanome-
chanical resonator, sometimes also termed duffing oscillator, has been investigated
both in the classical and the quantum regime before [24, 25], the additional interac-
tion with an optical cavity is a novel aspect that can be used to exploit the nonlinear
mechanical character.

It is important to note, that in optomechanical systems the interaction between the
photons and the mechanical motion is already nonlinear itself, provided the op-
tomechanical interaction is strong enough. To reach such strong optomechanical
interactions is still challenging, yet a significant fraction of the current research in
the field is concerned with quantum effects that occur in this nonlinear interaction
regime [26, 27]. Here, we instead consider the regime of weak optomechanical
coupling, which leads to a regime where nonlinear contributions to the interaction
can be negelected. Besides the fact that this regime is much easier to attain, his
has the following advantages: First, we avoid that the relevant mechanical and op-
tical modes hybridize, so that the mechanical state can be characterised separately.
This is important since the goal is to produce and analyze quantum effects for the
resonator. Second, the ability to use the cavity as a control element relies on the lin-
earized interaction regime. For instance, also the previously mentioned laser cooling
technique works only in the weak coupling regime.

The combination of the cavity field and the electrostatic fields as control elements
on the one side and a nonlinear nanomechanical resonator capable of distinct non-
classical behaviour on the other side opens up diverse possibilities to investigate the
quantum regime of nanomechanical resonators. Following the general approach or
idea that has been described aove, this is demonstrated by elaborating two differ-
ent schemes: In the first scheme, we describe the preparation of nonclassical steady
states for a single mechanical resonator. Since the groundstate for mechanical mo-
tion has already been reached, this could be one possible next step to be imple-
mented in optomechanical experiments. The second scheme is a more advanced
application comprising several nanoresonators that act as nanomechanical qubits.
The qubits in that approach are formed by the two lowest energy levels for each
of the nanoresoantors, that are tuned to be stronly nonlinear. The availible con-
trol channels are found to be sufficient to implement fundamental quantum logical
operations on the resonators.
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The main part of this thesis is organized as follows: In chapter 1 the basic model
that describes the dynamics of the considered system is introduced. There, the em-
phasis is placed on motivating the basic concept of the optomechanical interaction
between the mechanical degree of freedom and a laser driven cavity. Furthermore,
standard formalisms to include damping effects are added to the description of the
dynamics. The existance of a mechanical nonlinearity does not modify the standard
optomechanical coupling mechanism so that in this chapter it is only introduced
rather shortly. However, understanding the physical origin of the nonlinearity and
its properties in a quantum description of the mechanical mode is a central aspect
in this thesis. Therefore, chapter 2 provides a detailed derivation of the mechan-
ical nonlinearity starting from elasticity theory for thin rods. In this chapter we
also describe the possiblity to tune the mechanical resonance frequency using the
electrostatic gradient fields. This aspect is important in this context since tuning is
used to enhance the quantum nonlinearity of the resonator drastically. In chapter
3, a possible implementation is introduced. This setup employs a high-Q micro-
toroid optical cavity and carbon nanotubes (CNT) as nanomechanical resonators.
The coupling mechanism in this combination differs from the standart optomechan-
ical coupling, but adapts the same shape in the mathematical description. This and
the corresponding optomechanical coupling strength is also derived in this chapter.
Furthermore, possible additional damping and decoherence sources that are specific
to this setup are discussed. In chapter 4 we introduce a scheme that allows for the
preparation of nonclassical steady states of a single nanomechanical resonator. As
this scheme is closely related to the previously mentioned laser cooling technique
for mechanical resonators, we start with a short sketch of its underlying principle
and its theoretical description. Then we motivate a common concept to distinguish
classical states from nonclassical states by considering their Wigner functions. The
description of the preparation scheme itself is followed by numerical results that
show significant nonclassical character. The chapter is closed with the discussion
of possible methods that allow to measure the prepared steady state. In the last
chapter of the main part, chapter 5, we introduce the fundamental concepts for the
implementation of quantum information precessing with nanomechanical qubits.
This includes a short introduction to the concepts of nanomechanical qubits, that
can be implemented in the regime of strong mechanical nonlinearities. Operational
schemes that are used to perform single qubits gates as well as an entangling two-
qubit gate follow. The expected performance of these quantum gates are discussed
at hands of numerical results and the chapter is closed with a brief comment on pos-
sible intialisation and readout schemes. The thesis is closed with a conlusion and
outlook. Details of calculations can be found in the appendix.
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Chapter 1

Model

1.1 Introduction

We want to start by introducing the basic model considered in the theoretical inves-
tigations that are presented in this thesis. The model considered here is gained by
a slight modification, or extension, of what is commonly used as a standard model
of optomechanics. Optomechanical systems exist in various implementations, but
the Hamiltonian that describes the optomechanical interaction is in most cases of
the same shape. This general Hamiltonian can be motivated in an illustrative way
by considering a paradigmatic setup that is shown in figure 1.1. The model is then
further developed by considering a macroscopic steady state amplitude for the light
field inside the cavity that is driven by a laser and subject to photon losses. This sce-
nario gives rise to an enhanced and linearized interaction that is commonly consid-
ered in the operation regime of optomechanical setups. After introducing a formal-
ism that includes the description of mechanical and optical damping, the mechanical
nonlinearity is added to the model.

x

ωm
ω(x)

Figure 1.1: Paradigmatic sketch of the standard optomechanical interaction. One
mirror of a two-sided cavity is attached to a spring. The position of the mirror
determines the cavity resonance frequency, while the radiation pressure inside the
cavity acts back on the movable mirror.
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Model

1.2 Paradigmatic optomechanical model

The standard optomechanical Hamiltonian describes the dispersive interaction be-
tween the light field inside a cavity and a mechanical resonator. Figure 1.1 shows the
paradigmatic picture that illustrates the optomechanical interaction: One mirror of
an optical cavity is attached to a spring, so that it is movable. The displacment X of
the mirror determines the resonance frequency ω(X ) for the light circulating inside
the cavity. For small displacements X , the cavity frequency ω(X ) can be linearized
so that the Hamiltonian of that system reads

H =

(
ω(X = 0) +

∂ω

∂X

∣∣∣∣
X=0

X
)
a†a+Hm

= ωca
†a+G0a

†aX +Hm (1.1)

= Hc +HI +Hm ,

where ωc is the free optical resonance frequency of a considered cavity mode that is
described by photon operators a and a†. The frequency shift per oscillator deflection
G0 = ∂ω/∂X constitutes a coupling strength between mechanical motion and the
optical field. If the mechanical partHm describing the spring is a harmonic oscillator
with frequency ωm � ωc, we have

H = ωca
†a+G0xZPMa

†a(b† + b) + ωmb
†b , (1.2)

where we also introduced phonon operators b† and b for the mechanical oscillator,
as well as its zero point motion xZPM. This shape of the optomechanical interaction
is very general and found in very different types of realizations [6]. Note that the
interaction part in this Hamiltonian is nonlinear, which makes this simple model
already quite rich in its dynamics. In order to observe effects of this nonlinear cou-
pling, the single photon-phonon coupling G0xZPM has to have a significant strenght,
which in most of the realised optomechanical systems is not the case. But the inter-
action between the resonator and the cavity can also be effectively described for a
large number of photons, which will be discussed in the following.

1.3 Laser driven cavity model

To further develop this model, we now have to consider an open system and include
photon losses as well as input fields for the cavity. In this section we concentrate on
the dynamics of a laser driven cavity as an open quantum system, which is used to
motivate a refined picture of the optomechanical interaction. Therefore, mechanical
damping will be introduced later.

Cavity losses usually originate from unavoidable imperfections in the mirror reflec-
tivity and absorbtion of photons. In addition, there needs to be an open port where
light can be injected into the cavity, which is usually done by a laser drive with a
frequency ωL that is tuned resonantly or close to the cavity resonance. Therefore
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one needs to distinguish at least two different loss channels. Here we want to label
the loss rate for the laser port by κex and the other loss rates by κ0. Usually the
light that exits the cavity through the laser port can be detected, since it decays into
known modes. This light can be used to gain information about the field inside the
cavity, while the photons that exit through other decay channels are usually lost.
There are several possibilites to describe the motion of the cavity including the laser
drive and the damping effects. One is the quantum Langevin equation for the cavity
field that reads

ȧ = −κ
2
a+ i∆a+

√
κexain +

√
κ0cin , (1.3)

where we introduced the total cavity decay rate κ = κex +κ0 and the laser detuning
∆ = ωL − ωc and applied a frame that rotates at the laser frequency. The effect
of light that enters the cavity is governed by the input fields ain for the laser mode
and cin for the other ports. Usually ain represents a coherent state for the laser with
| 〈ain〉 | =

√
Pin/~ωL for a laser input power Pin and cin simply represents vacumm

fluctuations of the other sourrounding photon modes that enter the cavity. The
outgoing fields have no influence on the cavity field. For the light that exits the
cavity at the laser port, the out going field is connected to the cavity field and the
input fields by the input-output relation [28]

aout = ain −
√
κexa . (1.4)

This relation is very useful to gain information about the cavity field by measurement
of the out going field. From equation (1.3) we find the steady state value for 〈a〉,
which is given by

〈a〉 =

√
κex 〈ain〉
−i∆ + κ

2

= α . (1.5)

Indeed, the steady state for the cavity is reached when the cavity losses and the
laser input are balanced, and the cavity is then in a coherent state |α〉 that contains〈
a†a
〉

= |α|2 photons. Since the relative phase between the cavity field and the
laser field is immaterial here, we choose for convenience a frame such that the Rabi
frequency

Ω = −2i
√
κex 〈ain〉 !

= 2

√
Pinκex

~ωL
(1.6)

is a real number, and therefore we can express the cavity background field by

α =
Ω

2∆ + iκ
. (1.7)

Since for a coherent state, the fluctuations are small compared to the coherent back-
ground, it is convenient to separate the fluctuations from the background both for
the laser input and for the cavity field by defining

δain = ain − 〈ain〉 , (1.8)

δa = a− α . (1.9)
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Model

From that we can derive the Langevin equation for the cavity fluctuations around
the coherent background which reads

δȧ = −κ
2
δa+ i∆δa+

√
κexδain +

√
κ0cin , (1.10)

showing exact the same structure as the original equation (1.3), only that the in-
put fields are all vacuum fluctuations now. Since the original photon operators
are completely replaced here, we will relabel the fluctuations δa → a, and treat
them like photons in a cavity that is only driven by vacuum fluctuations. This cor-
responds to simply shifting the photon operators by the coherent background am-
plitude a → α + a. Accordingly, we will also use the term “photons” instead of
“fluctuations” sometimes.

1.4 Enhanced optomechanical coupling

We can now return to the optomechanical system (1.2) and use the separation (1.9)
to study the interaction of the photon fluctuations of a laser driven cavity with the
mechanical resonator. After changing to a rotating frame at the laser frequency and
dropping constant contributions we find the shifted Hamiltonian

H ′ = −∆a†a+G0xZPM

[
|α|2 + α∗a+ αa† + a†a

]
(b† + b) + ωmb

†b . (1.11)

While the structure of the photon part is still the same, the interaction with the me-
chanical resoantor now has a different shape: First, we consider the contribution
∼ G0|α2|. This term represents a force of the macroscopic coherent background
field onto the resonator that displaces the resonator to a new equilibrium position.
In a subsequent chapter, we will introduce a possibility to compensate this term by
external forces acting on the resonator, so that we need not to further consider this
contribution. The second contribution ∼ G0(αa† + α∗a) describes the interaction of
the cavity fluctutations with the mechanical motion via the mechanical displacment.
Compared to the interaction with photons for the original photon field, this interac-
tion is enhanced by the background amplitude α. This allows to tune the coupling
strength between photons and mechanical motion via the background field α. The
third contribution ∼ G0a

†a corresponds to the interaction with the cavity without a
laser drive. For

〈
a†a
〉
� |α|2 we can neglect this contribution, which amounts to a

linearization of the optomechanical coupling. This condition is met, as long as the
rate of possible population of the photon fluctuations originating from the coupling
to the mechanical motion, is exceeded by a faster cavity decay rate. This condition
can be expressed as G2

0x
2
ZPM(2 〈nm〉 + 1) � κ2, where 〈nm〉 is the phonon number

in the mechanical mode. Here, we will only consider regimes where this condition
is met. With these transformations we can write the optomechanical Hamiltonian

H ′ = −∆a†a+

(
g∗m
2
a+ H.c.

)(
b† + b

)
+Hm , (1.12)
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where we introduced the enhanced optomechanical coupling gm = 2G0αxZPM. The
shifted Hamiltonian (1.12) describes the unitary time evolution of the optomechan-
ical system, but it lacks in describing damping of the cavity and the mechanical
motion. While we already introduced an open system for the cavity and used a
quantum Langevin equation to motivate the shifted picture for the photons, for our
calculations we will rather consider a quantum master equation to include damping
effects.

1.5 Quantum master equation

The loss sources for the cavity field have already been introduced in section 1.3.
Damping in nanomechanical devices is mostly caused by clamping losses [29], and
due to the relatively low mechanical mode frequencies, that range from kHz to a few
GHz, the occupation of the relevant bath modes has to be considered. To minimize
the effect of thermal vibrations of the environment that enter the nanoresonator,
optomechanical experiments are often conducted at very low tempertures below
1 K. However even at those temperatures, the relevant bath mode occupation is
well above unity. We introduce damping for the mechanical resonator and also for
the photons phenomenologically using Lindblad damping operators that act on the
system state ρ,

Dôρ = 2ôρô† − ô†ôρ− ρô†ô . (1.13)

The dynamics of the systems state ρ is then described by the corresponding master
equation for the open system

ρ̇ = −i
[
H ′, ρ

]
+
κ

2
Daρ+

γm

2
{(n+ 1)Dbρ+ nDb†ρ} . (1.14)

Here we introduced the mechanical decay rate γm, as well as the thermal occupation
of the relevant mechanical bath modes

n =
1

exp [~ωm/kBT ]− 1
(1.15)

The photon bath is considered to be in the groundstate with zero thermal photons,
which is a very good approximation for the considered temperatures kBT � ~ωc.

Note that the shifted Hamiltonian H ′ can also be derived by formulating the master
equation for the original Hamiltonian that still explicitly includes the laser drive.
That Hamiltonian reads

H = −∆a†a+
Ω

2
(a† + a) +G0xZPMa

†a(b† + b) +Hm (1.16)

where the laser drive is modeled using the Rabi frequency Ω introduced earlier. The
cavity part has the right form to reproduce the dynamics of equation (1.3) with the
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shifted input fields
√
κexain = iΩ/2 +

√
κexδain. Introducing the shift of the photon

operators a→ a+ α in the corresponding master equation

ρ̇ = −i [H, ρ] +
κ

2
Daρ+

γm

2
{(n+ 1)Dbρ+ nDb†ρ} . (1.17)

also leads directly to (1.14). Here the correct value for α can be found by requir-
ing that all terms that are linear in the fluctuations a, a† cancel out. However, the
fact that the shift α corresponds to the steady state amplitude of the cavity, is more
explicitly developed via the Langevin approach. The master equation (1.14) is the
common description of the optomechanical system that is used in many considera-
tions. It has the advantage that it is a linear model, which means that it involves no
terms that are of higher than second order in the system operators for photons and
phonons a and b. This fact makes it relatively amenable to analytical solutions. In
the next section we continue by introducing a extension of this model by considering
a novel kind of nonlinearity.

1.6 Nonlinear mechanical resonator

At this point the system decribed by (1.12) is linear, which means that the cor-
responding equations of motion in (1.14) can usually be solved analytically. The
central new aspect that we want to introduce here, is an additional nonlinear contri-
bution in the mechanical potential that until now has been asumed to be harmonic.
This additional contribution to the potential energy of the mechanical resonator is
the next higher order correction with respect to the deflection X . According to the
symmetry of the problem this correction is proportional to X 4. With that nonlinear-
ity the mechanical part reads

Hm = ωmb
†b+

λ

2

(
b† + b

)4
, (1.18)

where λ characterizes the strength of the nonlinearity with respect to single phonons.
The nonlinearity prevents finding an exact analytical solution of (1.14). Approxi-
mate solutions that exist in certain regimes will be derived in chapters 4 and 5 of
this thesis. The approximate solutions that are found analytically will be tested by
a numerical solution of (1.14). A numerical treatment aquires the system described
by ρ to be in a regime of very few exitations, so that the Hilbert space describing the
system can be truncated. For the mechanical resonator, this is not a natural regime,
as even at tempertures as low as several tens of milli Kelvin, the thermal occupation
is much larger than unity. Therefore we usually have to asume an initial state that
is precooled using cavity assisted sideband cooling. Then calculations are restricted
to the transient regime for timescales that are much smaller than the mechanical
relaxation time ∼ 1/nγm. Another possiblity is that parameters considered in a cal-
culation lead to a mechanical state with low excitation numbers, which has to be
checked for consistency in the results. For the photon fluctuations, the constraint to
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few excitations is met either by the weak couling regime gm < κ or if the mechanical
mode and the photon mode are sufficiently off resonant, |ωm −∆| � κ.

In some situations, we will consider several cavity modes or several mechanical res-
onators, which contribute to the Hilbert space dimension. The generalizatons of
(1.14) in these cases are straight forward and will be introduced in the respective
places. In the next chapter we will describe the nature and origin of the introduced
mechanical nonlinearity in detail, since this aspect is novel within the optomechan-
ical context.
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Chapter 2

The anharmonic nanomechanical
resonator

2.1 Introduction

The central object of interest in this thesis is the physics of the nanomechanical
resonator, especially regarding potential nonclassical behaviour or states. In subse-
quent chapters, we will formulate the mechanical resonator as a quantum object,
embedded in a quantum system and subject to quantum mechanical equations of
motion. A very important feature that will be brought to use is the existance of a
geometric nonlinearity in the deflectional modes of the nanobeam. This leads to
a nonlinear spectrum of motional excitations which is a prerequisite for the effects
that will be discussed.

However, this kind of nonlinearity is rarely considered in common optomechanical
models as its strength is typically too small to be resolved in an experiment as long
as no enhancement techniques are applied. To explain the origin of this geometric
nonlinearity, we will derive and formulate the classical equations of motion from
elasticity theory in section 2.2. Thereby, we start with the harmonic description,
also known as thin beam theory. We formulate it in a way that allows for an easy
extension, where the nonlinearity arises quite clearly as a consequence of geometric
constraints. We will find that the harmonic contribution to the potential is associated
with the energy cost of bending the nanobeam, while the nonlinear contribution is
associated with the energy cost of stretching the nanobeam. Streching naturally
arises if the clamping points at both ends of the rod are not allowed to move.

It is worth mentioning that there exists at least one different approach for deriving
the nonlinearity, that uses a more systematic expansion of the potential [23]. The
derivation given there uses a slightly different model regarding the boundary condi-
tions, which is that one of the end points is allowed to move so that the length of the
rod is conserved upon deflection. This leads to a considerably different strength of
the nonlinearity for the same beam geometry. However, for the physical realisation
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V

x

ω>0ω<0

Figure 2.1: Potential for the duffing oscillator. At the critical point ω = 0, the
oscillator enters the bistable regime. Here the nonlinear corrections restore stability
of the system.

of the nanobeam considered later, this model is not suitable.

After deriving the classical Hamiltonian for the nanobeam, we introduce a quanti-
zation of modes in section 2.3. The strength of the quantum nonlinearity, which is
basically the growth of energy level spacings with excitation number, is found to be
a tunable parameter. This is due to the fact that the spacial extension of phonons,
given by the zero point motion, can be enhanced by tuning the resonance of the
nanoresonator to lower frequencies. Larger amplitudes for single excitations then
lead to higher impact of the nonlinear contribution. After all, it is this tunability that
allows to access the regime of large enough nonlinearity, which all the applications
that are introduced in this theses rely on.

There exist different approaches to tune the resonance frequency of a mechanical
resonator. In [23, 30], tuning of the resonator has been included by additional
strain along the rod axis, where compressive strain leads to decrease and tensile
strain leads to increase of the mode frequencies. In the regime of high tensile stress
the nanobeam behaves like a string, and tuning the resonance frequency is analog
to tuning a guitar string. A different, particulary interesting regime is achieved
when the fundamental mode frequency vanishes upon compressive strain, leading
to the famous buckling instability, see figure 2.1. In this regime, only the nonlinear
contributions asure stability of the system.

Here we will follow a different physical approach for tuning the nanoresonator, since
the application of compressive strain to nanomechanical devices is probably very
challening in an experiment. In section 2.4, we introduce the concept of tuning and
driving with electrostatic gradient fields. Even though this approach is quite differ-
ent with respect to the physical implementation, the effect on the fundamental mode
motion is exactly the same, including the possible transition to the bistable regime.
As we will see, this approach provides a versatile tool to control the nanomechanical
motion, even at the level of single motional excitations.
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2.2 Elasticity theory for thin rods

2.2.1 Harmonic description

We consider the rod to be homogenous with constant mass line density µ along the
longitudinal axis, which we parametrize by x ∈ {0, L}, where L is the length of the
undeflected rod. Deflection in the transverse direction is then decribed by a field
y(x) with y(0) = y(L) = 0, as the end points are fixed, compare figure 2.2a). We
also consider thin rods, which means that the transverse dimensions of the rod like
width or radius are much smaller than the length of the rod and we are interested
in transverse oscillations with wavelengths that are much larger than the transverse
dimensions. Upon deflection, there will be regions inside the rod where the material
is stretched and some where it is compressed. Those regions are separated by a
neutral surface where the strain is zero, compare figure 2.2b). Small transverse
dimensions and small deflections asure that the local strain within a cross-sectional
plane can be linearized with respect to the distance from this neutral surface. From
the geometric sketch in figure 2.2b), we find for the local deformation

dl′/dl = (RCUR − ỹ)/RCUR , (2.1)

where dl is the height of a small length element along the rod and dl′ is the local
distance between the top and botton cross-section when that element is deformed.
RCUR = 1/y′′ is the local curvature radius and ỹ is the in plane co-ordiante parallel
to the direction of deflection so that

uxx(ỹ) =
dl′ − dl

dl
= ỹy′′ , (2.2)

with the local strain uxx(ỹ) in the longitudinal direction.

The harmonic description is based on considering only the bending energy of the
rod, which is usually perfectly valid for small deflections. The energy density is
given by

dE

dV
=

1

2
Y uxx(ỹ)2 , (2.3)

so that we find the Lagrangian for the deflectional motion

L(y(x, t)) =
µ

2

∫
dxẏ2 − Vb[y(x)] , (2.4)

with a kinetic part as well as the bending energy

Vb[y(x)] =
1

2

∫
Fκ2(y′′)2dx . (2.5)

The linear modulus or compressional rigidity F = Y A of the rod is given by the
Young’s modulus Y of the material times the cross-section area A. The area rigidity
κ2 = 1

A

∫
cross ỹ

2dA is given by the second moment of area Iy divided by the cross-
section area A. It is also equal to the ratio of bending rigidity Y Iy to compressional
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x

y(x)

dl′ dl

ỹ
uxx(ỹ) = (dl′ − dl)/dl = ỹ/RCUR

RCUR = 1/y′′

neutral surface

a)

b)

Figure 2.2: a): Sketch of a doubly-clamped beam with deflection described by dis-
placement field y(x). b) Local deformation of a deflected rod. The local strain uxx
is given by the distance to the neutral surface ỹ and the local curvature y′′ and
determines the energy density dE/dV = 1

2Y u
2
xx.

rigidity. The area rigidity depends on the shape of the cross-section, such that we
find κ = d/

√
12 for a rectangular cross-section of thickness d and κ = R/2 for a

circular cross-section of radius R. For the implementation of the nanobeam with
a carbon nanotube which will be considered later, the cross-section collapses to a
circle of radius R. By imposing a small wall width δ, we find κ = R/

√
2 for δ → 0.

The Lagrangian 2.4 leads to the equation of motion

µ∂2
t y + Fκ2∂4

xy = 0 . (2.6)

As this equation is linear in y and its derivatives, it leads to harmonic dynamics. The
implementation introduced later is best decribed by clamped boundary conditions
y′(0) = y′(L) = 0 for the rod. In that case (2.6) has the eigenmodes

φn(x) =
1

Cn

[
sin(νnx/L)− sinh(νnx/L)

sin(νn)− sinh(νn)
− cos(νnx/L)− cosh(νnx/L)

cos(νn)− cosh(νn)

]
, (2.7)

with frequencies

ωn = csκ
(νn
L

)2
, (2.8)

where cs =
√
F/µ is the phase speed of compressional phonons along the rod. The

νn are the roots of the transcendental equation cos (νn) cosh (νn) = 1, i.e. ν1 = 4.73.
The Cn are normalization constants chosen such that max {φn(x)}= 1. We choose
this normalization so that the coefficients in a mode expansion represent the maxi-
mum amplitudes of the deflection associated to each mode. With this normalization,
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the mode functions satisfy

µ

L∫
0

φn(c)φm(x)dx = δnmm
∗
n , (2.9)

where the m∗n are the effective mode masses. Numerical values for the lowest few
mode masses can be found in table A.2 in appendix A.1. Note that in [30], hinged-
hinged boundary conditions (y′′(0) = y′′(L) = 0) have been asumed in contrast
to the choise presented here, which leads to modes of shape ∼ sin(nπ/L) with
frequencies ∝ (nπ/L)2, where n counts the modes that all have mass m∗ = Lµ/2.
This however again does not correspond to the physical realisation considered later.

We now introduce the canonical momentum Π(x, t) = δL/δẏ(x, t), as well as the
expansion of the field into the modes

y(x, t) =
∑
n

φn(x)Xn(t) , (2.10)

which yields the Hamilton function of a harmonic oscillator for each mode

Hlin =
∑
n

( P2
n

2m∗n
+

1

2
m∗nω

2
nX 2

n

)
(2.11)

with the deflection Xn and mode momentum Pn = m∗n∂tXn for the n-th mode.

2.2.2 Nonlinear Extension

We now introduce corrections to this harmonic description by considering dynamical
stretching of the rod. Any nonzero displacement field y(x) changes the length of the
rod from the undeflected length L to a dynamical length Lt with

Lt =

L∫
0

√
1 + (y′)2dx ≈ L+

1

2

L∫
0

(y′)2dx , (2.12)

where we have used y′ � 1 for small deflections. Therefore the rod experiences a
(uniform) longitudinal strain uxx = (Lt − L) /L with energy

Vs[y
′(x)] =

1

2

∫ L

0
dx

∫
dA
(
Y u2

xx

)
=
F
8L

 L∫
0

(y′)2dx


2

. (2.13)

This energy cost leads to a restoring force that is O
(
X 3
)

in the deflection and
therefore leads to anharmonic dynamics. Inserting the mode expansion (2.10) and
adding this part to the Hamiltonian (2.11), we arive at the nonlinear Hamiltonian

H=Hlin +
F
8L

∑
i,j,k,l

MijMklXiXjXkXl , (2.14)
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where Mij =
∫ L

0 φ′i(x)φ′j(x)dx. Note that the nonlinearity leads to a coupling of
the harmonic modes as the dynamical stretching appears for all motional modes.
However, for small enough amplitudes, this effect can be small enough to justify the
isolated treatment of the fundamental mode, which then reads

Hm,0 =
P2

2m∗
+

1

2
m∗ω2

m,0X 2 +
β

4
X 4 , (2.15)

where we introduced the fundamental frequency ωm,0 and the effective mass of the
fundamental mode m∗ ≈ 0.3965µL. The anharmonicity is given by

β =
(M11L)2

2ν4
1 (m∗/µL)

m∗
ω2

m,0

κ2
≈ 0.060m∗

ω2
m,0

κ2
. (2.16)

To estimate the strength of the nonlinearity in that classical description, one can
compare the contributions to the restoring force (∂/∂X )V (X ). Using (2.16) we
find that the ratio of harmonic contribution to nonlinear contribution is given by

Fnonlin

Fharm
≈ 0.060

(X
κ

)2

, (2.17)

so that the anharmonic corrections are expected to become important if the ampli-
tude X approches the transverse dimension of the rod given by κ. In principle, this
regime can of course always be reached by driving the nanobeam to large ampli-
tudes. However, we are interested in the anharmonic quantum dynamics of the rod
and we will particulary concentrate on the few excitation regime, which in terms
of deflectional amplitudes usually translates into X � κ. To understand how the
nonlinear contributions can be still important in that regime, we need to consider
the quantized model of the system. The later will be introduced in the next section
where the strength of nonlinearity will be characterised in terms of contributing
energy scales in the spectrum.

2.3 Quantization of modes

In order to estimate the effect of the nonlinear contribution to the energy spectra of
the modes, we now turn to the quantum model of the anharmonic nanoresonator.
We quantize Hamiltonian (2.14) in the usual way by introducing bosonic mode
operators c†n and cn, given by

cn =
1

2xZPM,n
Xn +

i

~
xZPM,n Pn , (2.18)

satisfying the bosonic commutator relations[
cm, c

†
n

]
= δnm . (2.19)
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Here we introduced the zero point motion amplitudes xZPM,n =
√
~/2m∗nωn for

each mode. This leads to the quantum Hamiltonian

H =
∑
n

~ωnc†ncn +
∑
ijkl

~λ0
ijkl

(
c†i + ci

)(
c†j + cj

)(
c†k + ck

)(
c†l + cl

)
, (2.20)

with the quantum nonlinearity coefficients

λ0
ijkl =

F
8L~

MijMklxZPM,ixZPM,jxZPM,kxZPM,l . (2.21)

The nonlinear part couples modes of the same parity, where the coupling strength is
given by the nonlinearity. However, for the parameters considered later, the effects
of this coupling on the fundamental mode can be negelected, owing to low ambi-
ent temperatures where higher modes are in or close to the groundstate. A more
detailed analysis of the coupling effects are given in A.1.

Restricting the dynamics to the fundamental mode yields the quantized version of
(2.15)

Hm,0 = ~ωm,0b
†b+ ~

λ0

2

(
b† + b

)4
, (2.22)

where we have adapted b(†) = c
(†)
1 as the operator for the fundamental mode. Com-

paring also to the classical fundamental mode description (2.15) we find

λ0 = 2λ0
1111 =

β

2
x4

ZPM/~ . (2.23)

The additional index ’0’ in the frequencies ωm,0 and the nonlinearity parameter λ0

refers to the untuned resonator, which means those quantites only result from the
intrinsic elastic forces without any external forces applied to the resonator. In this
case, we find λ0 ≪ ωm,0 for most of the physical realisations of nanomechanical res-
onators commonly used in many experiments. For example for a 500 nm× 20 nm×
10 nm diamond bar we find ωm,0 = 1.93 GHz and λ0 = 2.83 Hz, which is typical
for bulk resonators at that scale. However, there are possibilities to enhance the
nonlinearity by tuning the resonance frequency of the nanoresoantor. If the res-
onator is tuned to lower frequencies ωm,0 → ωm by applying appropriate external
forces, the zero point motion of the resonator increases and so does the nonlinear-
ity λ0 → λ ∝ x4

ZPM ∝ ω−2
m . The frequencies ωm, λ shall than refer to the tuned

resonator.

In the next section, a tuning technique using electrostatic fields will be introduced
in detail.

2.4 Tuning and driving via gradient forces

Appling oszillating and stationary electric fields to manipulate and control devices or
physical systems on the nanoscale is a very common tool in experimental quantum
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physics. Examples reach from creating trapping potentials for single ions, molecules
and larger systems like BECs, over optical tweezers to grep dielectric nanoparticels
to electrostatic fields, where the field gradient exerts forces onto dielectric mate-
rials. The later are called gradient forces, as a constant electric field will have no
effect on an uncharged dielectric body. The majority of nanomechanical resonators
is fabricated from dieletric materials like for example Si, SiN or diamond. Here,
we describe the effect of suitably conducted electrostatic and radio-frequency gra-
dient fields, which are used to tune the resonator and, beyond that, to exert time
dependend driving forces.

We consider a pair of tip electrodes that are placed close to the resonator, at each
side within the deflectional plane, see figure 2.3. The electrostatic energy associated
with the electric fields per unit length along the rod is given by

W (x, y) = −1

2
[α‖E

2
‖(x, y) + α⊥E

2
⊥(x, y)] , (2.24)

where x, y are the co-ordinates along the resonator axis and the direction of its
deflection. E‖,⊥ are external field components parallel and perpendicular to the
beam axis and α‖,⊥ the respective screened polarizabilities. Note the minus sign
in W (x, y) which says that the gradient force points towards stronger fields. We
expand W (x, y) to second order in the displacement y (compare Appendix A.2) and
get an additional contribution to the Hamiltonian of the nanobeam that reads

Vel =V
(1)

el + V
(2)

el (2.25)

=

L∫
0

[
∂W

∂y

∣∣∣∣
y=0

y +
1

2

∂2W

∂y2

∣∣∣∣
y=0

y2

]
dx ,

where we dropped the displacement independent constant W (x, 0) which is irrele-
vant for the dynamics. Inserting the modes defined in equation (2.10) we get

Vel =
∑
n

FnXn +
1

2

∑
lk

WlkXlXk , (2.26)

with

Fn =

L∫
0

∂yW (x, y)
∣∣
y=0

φndx , (2.27)

Wlk =

L∫
0

∂2
yW (x, y)

∣∣∣
y=0

φlφkdx . (2.28)

The second order coefficients Wlk induce a weak coupling between modes of same
parity. Diagonalizing the combined quadratic potential Vb + V

(2)
el , we find that the

main effect is that the fundamental eigenfrequency is reduced to a smaller frequency,
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Figure 2.3: Resonator with electrodes modeled by point charges q, q′. a) |q| =
|q′|: The field profile (red) leads to an inverted parabola for the dielectric potential
(blue) around the equilibrium position. This potential effectively reduces the mode
frequency. b) |q| 6= |q′| At the position of the resonator, the lowest order of the
dielectric potential is linear, corresponding to external drive force.

see Appendix A.2. The higher mode frequencies are significantly less reduced and
corrections to the eigenmodes are found to be small enough to be neglected. This
allows us again to focus on the fundamental mode contributions F1 and W11 with
W11 < 0. It is convenient for later purposes to divide the dielectric potential into
static and time dependent parts, both for the first order and the second order con-
tributions

F1 = F s
1 + F1(t) (2.29)

W11 = W s
11 +W11(t) . (2.30)

The time dependend contributions can be used to apply temporary forces onto the
resonator, for example driving pulses, which will come to use and will be explained
in part 5. The static contributions will be used to tune the resonator. Here, the
contribution of W s

11 leads to the aforementioned reduction of the fundamental fre-
quency

ω2
m ≈ ω2

m,0 −
|W s

11|
m∗

. (2.31)

We shall refer to this effect as softening, since a lower frequency corresponds to a
rod with lower elastic modulus Y . Consequently, we want to introduce a quantity
called the softening factor ζ = ωm,0/ωm, which describes the relative amount of
frequency reduction and is useful to analyze the scaling of other physical quantities
that change upon softening. Note that for |W s

11| > m∗ω2
m,0, we enter the bistable

regime, or buckling regime, for the the nanobeam.

The contribution of F s
1 leads to a static deflection, or a shift of the equilibrium

position of the nanobeam. In the next chapter, we will introduce a setup where a
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nanobeam interacts with the photon field of an optical cavity. A side effect of this
interaction is a similar static deflection caused by radiation pressure of the photon
field. In that case, the force F s

1 can be chosen such that this unwanted effect is
compensated and the nanobeam remains undeflected.

The fundamental mode Hamiltonian including both static contributions is then given
by

Hm =
P2

2m∗
+

1

2
m∗ω2

mX 2 +
β

4
X 4 , (2.32)

which from now on will be refered to as the tuned Hamiltonian. In a phononic
description, this Hamiltonian reads

Hm = ~ωmb
†b+ ~

λ

2
(b† + b)4 , (2.33)

where the nonlinearity λ = ζ2λ0 is now increased by a factor ζ2 compared to the
untuned resonator (2.22). More generally, we find

λijkl =
√
ζiζjζkζlλ

0
ijkl , (2.34)

where ζi is the softening factor for mode i and usually ζi ≈ 1 for i > 1, compare
figure A.2. This can be easily understood with the increase of the zero point motion
xZPM by a factor

√
ζ for any mode. Note that within the given expansion of the

electric field energy, the classical nonlinearity parameter β does not change upon
softening.

For ζ � 1, it is convenient to express all mechanical observables in the energy
eigenbasis of (2.33), so that

Hm =
∑
n

En|n〉〈n| , X =
∑
nm

Xnm|n〉〈m| , (2.35)

where the energy eigenstates {|n〉} and energy levels En, as well as the displacement
matrix elements Xnm need to be determined numerically. In this regime, λ is not
necessarily a good measure for the physical nonlinearity, since λ diverges for ζ →∞.
The physical nonlinearity is the mismatch of the transition frequencies δ21 − δ10,
where δnm = En − Em. This quantity shows the ζ2-dependency as long as λ� ωm,
and saturates at a finite value for ζ →∞, compare figure 2.4.

For small nonlinearities λ � ωm, which follow from moderate softening factors, an
analytical expression can be obtained as the Hamiltonian (2.33) is approximately
diagonal in Fock basis. This can be seen by apply a rotating wave approximation in
the nonlinear part

Hm → H ′m = ~ω′mb†b+ ~
λ′

2
b†b†bb , (2.36)

where ω′m = ωm + 2λ′, λ′ = 6λ and the eigen-energies are given by

En ≈ n
(
~ω′m

)
+
n(n− 1)

2

(
~λ′
)
. (2.37)

In that regime, λ′ = δ21 − δ10 is the physical nonlinearity of the nanobeam.
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Figure 2.4: Typical spectrum (left column) and physical nonlinearity (right column)
plottet vs ωdiel. =

√
|W s

11|/m∗ which is proportional to the strength of the electric
softening field (top row) and vs softening factor ζ (bottom row). While the softening
factor ζ, as well as λ = ζ2λ0 diverges for ωdiel. → ωm,0, the spectrum saturates
towards the solution for a pure X4-potential. For larger fields, the resonator crosses
the buckling instability. The shape of the curves in these plots only depends on the
inital ratio λ0/ωm,0, but is otherwise universal. For larger initial nonlinearities, the
spectrum saturates faster. Here that initial ratio is λ0/ωm,0 = 0.32 × 10−3, which
corresponds to a CNT of 3 µm length (see next chapter).
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Chapter 3

Optoelectromechanical setup

3.1 Introduction

In the previous chapter, we have introduced the concept of the anharmonic nanome-
chanical resonator. In this chapter we want to describe a possible implementation
of such a nanoresonator, embedded in an optomechanical setup. This setup con-
stitutes a combination of devices that exist and have been used in experminents.
However the combination presented here is novel and demands a careful consider-
ation of certain aspects. The first component is of course a nanomechanical device,
which includes the resonator itself, as well as the electrodes for the gradient fields,
all integrated into a nanoelectromechnical system (NEMS) on chip. This topic will
be described in section 3.2. The second component is a laser driven, high-Q micro-
toroid optical cavity, described in section 3.3. The nanoresonator can couple to the
photons inside the micro toroid via the evanescent part of the photon field, thereby
establishing an optomechanical system. The coupling mechanicsm is described in
section 3.4. However, the combination of a high-Q optical cavity with conducting
electrodes on the NEMS chip nearby has to be investigated with care, since the
electrodes may interact with the evanescent photon field. This could lead to large
additional photon losses if the setup is designed in an unconvenient way. Aspects of
this difficulty are treated in section 3.5.

3.2 CNT and nanoelectromechanical chip

In order to investigate the quantum behaviour of a system, it is usually necessary to
keep thermal noise as small as possible. In most cases this means that one prefers a
regime where the ratio of environmental temperature to system frequencies kBT/~ω
is kept as small as possible. This already motivates to fabricate mechanical res-
onators with high frequencies, up to the GHz domain [31]. This can, for instance,
be achieved by using materials with high elasticity and small lengths. In addition,
by considering the scaling of the nonlinearity in (A.1), we conclude that the best
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option is to use devices with low mass and low transveral dimensions. All those
demands are excellently met by carbon nanotubes (CNTs). They feature an enor-
mous stiffness, a quality they share with the corrsponding “bulk material” diamond.
They are hollow and thus have a small mass and typical diameters for single walled
nanotubes are less then one nanometer. But beyond that, carbon nanotubes can
feature very high mechanical Q-factors [32], which is very important to successfully
maintain and observe possible quantum behaviour. Interestingly, the Q-factors of
CNTs have been found to depend on the ambient temperature, which results from
nonlinear damping [33, 34]. This means that the Q-factors at the single phonon
level may be even much higher than the Q-factors observed in the experiments.

On the experimental side, CNTs have been succesfully placed on SI-chips, in a way
that a fraction is suspended freely over a gap in the substrate, see figure 3.1. This
way it was possible to study the mechanical properties of deflectional modes [35,
36, 37, 38]. In [36], tuning of the mechanical resonance frequency using electric
fields was already applied, even though the tuning effect results from the fact that
the tube is pulled towards the ground plate, which induces tensile strain.

Here, a similar NEMS is proposed as a possible implementation of the system de-
cribed in this work. The nanomechanical chip consists of a single-walled CNT that
is mounted on a chip and is spanning over a gap. In addition there are tip elec-
trodes to supply dielectric gradient forces, that may be implemented by conducting
nanotubes. The electrodes and the CNT are arranged in a specific geometric align-
ment within the chip surface, see figure 3.2. This results from optimizing a tradeoff
between maximizing optomechanical coupling and avoiding additional losses in the
nearby optical cavity. Details of that will be discussed in sections 3.4 and 3.5.

We choose a (10, 0)-nanotube with radius R = 0.39 nm. The phase speed of com-
pressional phonons in such a nanotube is cs = 21× 103 m/s, so that we find ωm,0 =
20.6 MHz and λ0 = 2.24 kHz for a tube of one micrometer length. We choose the
(10, 0)-type, as this type has a relatively high polarizability α. Table 3.1 shows polar-
izability values for different types of nanotubes that have been taken from [39]. The
static polarisabilities for our choice of nanotube are α|| = 143 Å2 and α⊥ = 10.9 Å2,
where α|| (α⊥) is the polarisability parallel (perpendicular) to the tube axis. The
given values are screened polarizabilities per unit length, which have already been
used in section 2.4. A high polarizability is needed in order to maximize the sensitiv-
ity to tuning fields and the optomechanical coupling introduced in section 3.4. With
such a tube implementing the nanomechanical resonator, it is possible to enter the
buckling regime by applying softening fields. Figure 3.3a) shows a typical profile
for electric field strength along the rod axis, while figure 3.3b) shows how the field
strength reqired to enter the buckling regime depends on the length of nanotube.
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Figure 3.1: Picture of an experiment at Delft University, 2009 [36]: A carbon nan-
otube suspended over a gap in the substrate. The CNT has been excited into me-
chanical motion by the rf-field of a nearby antenna. A gate voltage Vg is used to tune
the mechanical resonance frequency. The oscillations have been monitored using a
dc current throught the nanotube.
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ϑ∗

V2

V1

ẑ

x̂
ŷ

Figure 3.2: Schematic sketch of the NEMS chip. The nanotube’s oscillation can be
tuned or driven by gradient forces that are produced by the electrodes (blue). The
special relative alignment is characterized by the optimized angle ϑ∗, see sections
3.4, 3.5 for details.

(n,m) R0 (Å) ∆g (eV) α⊥ (Å2) α|| (Å2)

(7,0) 2.73 0.48 6.47 83.0
(8,0) 3.15 0.57 7.80 104
(9,0) 3.58 0.17 9.32 1460
(10,0) 3.95 0.91 10.9 142
(11,0) 4.34 0.77 12.7 186
(12,0) 4.73 0.087 14.3 6140
(13,0) 5.09 0.72 16.3 224
(14,0) 5.48 0.63 18.4 279
(15,0) 5.88 0.041 20.3 11 100
(16,0) 6.27 0.61 22.9 326
(17,0) 6.66 0.53 25.2 395
(8,0)+(17,0) · · · · · · 25.8 499
(8,0)+(16,0) · · · · · · 23.6 427
(4,4) 2.71 (0) 6.41 (∞)
(5,5) 3.40 · · · 8.71 · · ·
(6,6) 4.10 · · · 11.6 · · ·
(7,7) 4.76 · · · 8.71 · · ·
(8,8) 5.45 · · · 14.7 · · ·
(9,9) 6.12 · · · 21.8 · · ·
(10,10) 6.78 · · · 26.1 · · ·
(12,12) 8.14 · · · 35.8 · · ·
(14,14) 9.50 · · · 47.2 · · ·

Table 3.1: Radius, band gap and transverse and longitudinal polarizabilities (per
unit length) of different carbon nanotubess, taken from [39].
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Figure 3.3: Electric fields for softening the fundamental mode: a) Typical field pro-
file. Since α|| � α⊥ we choose a configuration with charges q = q′ or ε = 0, so
that the maximum field is displaced from the middle of the nanotube and the field
points along the tube axis. b) The electric field maxima required to enter the buck-
ling regime, e.g. leading to ωdiel. = ωm,0, depending on the length of the tube.
Here we asumed a distance of 20 nm between electrodes and tube axis as well as a
(10, 0)-tube as described in the text.

3.3 Micro toriod cavity

In order to establish an optomechanical system, in addtion to the NEMS, we also
need an optical cavity that can be coupled to the nanomechanical motion. Here, we
choose a micro toroid optical cavity [40]. This is a resonator, which is essentially a
tiny disk with a toroidal shaped rim where the photons travel within a whispering
gallery mode (WGM) around the rim, see figure 3.4. These kind of optical resonators
feature very high Q-values at low optical mode volumes [41], which is favourable
for many applications. The cavity is driven by a laser field that is usually guided to
the cavity with an optical fiber. The fiber is tapered to a smaller diameter to asure
efficient coupling between fiber mode and cavity mode. This way the fiber-WGM
coupling rate κex can by far exceed other photon loss mechanicsm [42]. But the
most important feature is that the supported photon modes, similar to an optical
fiber, have an evanescent field fraction outside the rim. This provides a relatively
elegant way to establish coupling to different (quantum) systems via that evanescent
field [40, 43, 44], which for our NEMS system will be described in the next section.

The spacial shape of the evanescent field can be locally described by modelling
the rim as a straight cylindrical wave guide with radius ac. This approxiamtion is
good as long as the size of the object interacting with that field is considered to be
much smaller than the cavity. We introduce cylindrical co-ordiantes (r, φ, z) associ-
ated with the wave guide and consider TE0,n modes, as a transverse electric field
is advantagous regarding possible unwanted interaction with the NEMS electrodes,
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Figure 3.4: Left: Scanning-electron-microscopy image of a toroid micro cav-
ity. Picture taken from [41]. Right: To view of a toroid micro cavity
with an optical fiber. Picture taken from http://quantumoptics.caltech.edu/
qoptics_old/index.html

compare section 3.5. The corresponding transverse fields inside and outside the rim
are given by [45]

r < ac :

Br = −i
k||
γ2

∂Bz
∂r

, (3.1)

Eϕ = − ω
k||
Br , (3.2)

r > ac :

Br = −i
k||
κ2
⊥

∂Bz
∂r

, (3.3)

Eϕ = − ω
k||
Br , (3.4)

The axial field reads

Bz(r, z) = Bz(0)J0(γr)eik||z , r < ac , (3.5)

Bz(r, z) = ξ̃Bz(0)
K

(1)
0 (κ⊥r)

K
(1)
0 (κ⊥ac)

eik||z , r > ac , (3.6)

with the modified Bessel function K
(1)
0 and the Bessel function of first kind J0.

k|| is the wavevector component parallel to the waveguide axis and γ and κ⊥ are
the transverse wave vectors inside and outside the waveguide, respectively. The
wavevectors have to satisfy

k2
|| − κ2

⊥ =
(ω
c

)2
(3.7)

k2
|| + γ2 = n2

c

(ω
c

)2
(3.8)

The ratio of the field maximum inside the waveguide to the field at r = ac is given
by ξ̃ = Bz(ac)/Bz(0) ≈ 0.4 if acγ coincides with the first zero of J1(x), which is
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acγ ≈ 3.8. We further approximate the evanescent electric field for r > ac, using
2κ⊥ac � 1 and assume a frequency well above cutoff, so that k|| ≈ nck � 1/ac.
With these approximations, the evanescent field can be written

Eϕ(r) ≈ −i
ω

κ⊥
ξ̃Bz(0)

√
ac

r
e−κ⊥(r−ac)einkz . (3.9)

This expression for the evanescent field will be used for further calculations in the
next sections. Typical parameters values for the silica toroids considered here, are
the index of refraction of silicia nc = 1.44, an optical wavelength λc ≈ 1.1 µm, a rim
radius ac = 1.4 µm and the evanescent decay length 2π/κ⊥ ≈ (2πc/ω) /

√
n2

c − 1 ≈
λc.

3.4 Optomechanical coupling

The optomechanical coupling between the NEMS and the micro toroid is achieved
by placing the NEMS chip close to the cavity rim, inside the evanescent field. The
nanoresonator, as a dielectric subject to an external field, contributes an energy that
depends on the field strength. As the evanescent field decays exponentially with
distance to the rim, a displacement of the nanosoesonator results in a change of
energy. That change of energy can be interpreted as a shift of the cavity frequency,
which describes the influence of the nanoresonator onto the cavity dynamics, or
as an additional force acting on the nanoresoantor, which describes the backaction
of the cavity onto the resonator. To obtain the standart dispersive optomechani-
cal coupling, this energy is linearized about the equilibrium of the position of the
nanoresonator.

The dielectric energy of the nanoresonator inside an electric field is given by

Hc = −1

2

∫
~P (~r) · ~E(~r)dV , (3.10)

with the polarization ~P (~r) =←→α · ~E(~r) of the nanoresonator,←→α the screened polar-
izability tensor and ~E the external field. The integration is taken over the resonator
volume. For our implementation with a CNT, ←→α ≡ diag{α||, α⊥} and ~P (~r) is the
total polarization of the crossection at ~r and the integration is taken along the nan-
otube axis instead.

In order to estimate the strength of optomechanical coupling, we consider the quan-
tized electric field, which in the evanescent part is directed along ϕ̂

~E(~r) =

√
~ωc

2ε0
(a† + a)U(r)ϕ̂ , (3.11)

where we introduced photon creation and annihilation operators a† and a as well as
the normalized photon shape

U(r) =

√
ε(r)| ~E(r)|2∫

d~r′ε(r′)| ~E(r′)|2
. (3.12)
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We also introduce the optical mode volume

Vmode =

∫
dV
| ~E(r)|2
| ~Emax|2

, (3.13)

but neglect the small contribution of the evanescent part by integrating over the
rim volume only. With the electric field solution given in (3.2) we find for the field
maximum

| ~Emax| =
ω

γ
Bz(0)J1

(
γ
ac

2

)
≈ ω

γ

Bz(0)

1.72
, (3.14)

so that the shape of the photon mode can be expressed as

U(r) ≈ 1.72 ξ

nc

√
Vmode

√
ac

r
e−κ⊥(r−ac) . (3.15)

For the mode volume we find Vmode ≈ 0.5πa2
cLc and 1.72 ξ is the ratio of the field

at the waveguide surface to the maximum electric field inside the waveguide with
ξ = (γ/κ⊥) ξ̃.

We insert the quantized electric field (3.11) into the Hamiltonian (3.10) and apply
a linearization of U2(r) around the equilibrium position of the nanoresonator. This
linearization is valid since the typical deflectional amplitude of the nanoresonator
on the order of the zero point motion xZPM is much smaller than the evanesent
decay length 1/κ⊥. We also neglect the deflectional mode shapes of the resonator
and for convenience asume the same field for entire nanobeam volume, so that the
integration along the tube axis directly translates into the nanotube length Ltube.
Thus, by comparing the result to (1.1), we extract the optomechanical coupling rate

G0 ≈ 3.0
ωcα||κ⊥Ltubeξ

2

n2
cε0Vmode

e−2κ⊥dCcorr . (3.16)

Here, we also neglected the contribution of the perpendicular fields since α⊥ � α||.
The geometric alignment of nanotube has been accounted for in the correction factor
Ccorr, where Ccorr = 1 would correspond to situation where the nanotube is aligned
along the electric field vector, and the direction of deflection is aligned in radial
direction, which is the along the electric field gradient. However, the deflectional
plane for the fundamental mode of the nanoresonator is the plane of the NEMS chip
surface, which at the point of closest distance d is necessarily the tangential with
respect to the rim co-ordinates, compare figure 3.5. To still achieve linear coupling,
the resonator has to be displaced from the closest point, which is described by the
angle ϕ and the actual distance is d′ = (ac + d)/ cosϕ − ac. The orientation of
the nanotube within the NEMS plane is described by the angle ϑ, where ϑ = 0
corresponds to an orientation along the rim axis ẑ. It is helpful to introduce the
relevant directions, which are the alignment of the nanotube êtube, the direction of
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Figure 3.5: Geometrical arrangement of the setup. a) The orientation of the nan-
otube within the chip plane. b) The position of the resonator has to be displaced
from the point of closest distance to the cavity wave guide (yellow) d to d′ to allow
for linear coupling. The angles ϑ∗, ϕ∗ are optimized to maximize the optomechani-
cal coupling rate.

its deflection êdefl. and the directions ϕ̂ and r̂ of the evanescent field and its gradient,

êtube = sinϑŷ + cosϑẑ , (3.17)

êdefl. = cosϑŷ − sinϑẑ , (3.18)

ϕ̂ = − sinϕx̂+ cosϕŷ , (3.19)

r̂ = cosϕx̂+ sinϕŷ . (3.20)

Now perfect alignment between nanotube and electric field êtube · ϕ̂ = 1 leads to
êdefl. · r̂ = 0 and vice versa. Including the imperfect alignments, the correction factor
reads

Ccorr = e−2κ⊥(d′−d) (êtube · ϕ̂)2 (êdefl. · r̂) (3.21)

≈ e−2κ⊥(d+ac)(secϕ−1) sin2 ϑ cosϑ cos2 ϕ sinϕ . (3.22)

This correction factor is maximized for sin2 ϑ∗ = 2/3 and ϕ∗ ≈ 1/
√

2κ⊥(d+ ac) ≈
0.24 (see A.3), resulting in 1/Ccorr ≈ 17.7 for a refracting index nc = 1.44.
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3.5 Setup specific loss mechanisms

3.5.1 Cavity losses induced by NEMS electrodes

In this section, we describe the influence of the NEMS electrodes onto the photon
field inside the cavity, regarding possible additional loss channels. As electrodes
have to be conducting, it is a natural concern that either absorbtion, which is due to
induced currents inside the electrodes, or scattering can have a significant impact on
the cavity finesse. Here, we show that for sufficiently good alingment, those effects
lead to additional loss rates that are smaller than the intrinsic photon losses that also
exist without the electrodes. One crucial aspect is the transverse dimension of the
electrodes, which has to be much smaller than the wave length of the evanescent
field. This leads to a strong suppression of higher scattering modes of the electrode.
We will discusses different possible loss channels, being scattering by the electrodes,
dipole scattering by the gap between the two electrodes and absorption in the elec-
trodes. Each of these loss channels can be characterized by a respective finesse Fi,
so that by asuming independent channels the total resulting cavity finesse is given
by

1

F =
∑
i

1

Fi
. (3.23)

If a calculated finesse Fi proves to be much larger than the original, intrinsic finesse
F0 ∼ 106, the corresponding contribution to the cavity losses can be neglected. for
each loss channel, the finesse will be determined as the ratio of incident power to lost
power, where the later is scattered or aborbed. Therefore we start by formulating
the incident fields and the incident power.

Incident field and incident power

We model the electrodes as metallic cylinders of radius R with R � 1/κ⊥, that are
aligned along the axis of the wave guide with a small misalignment angle θ. In
addition to the cylindrical co-ordinates (r, φ, z) introduced for the wave guide, we
now introduce cylindrical co-ordinates (r′, φ′, z′) for the electrode, so that ẑ · ẑ′ =
cos θ, see figure 3.6. We express the incident evanescent field (3.9) at the electrode
in the electrode co-ordinates, which translates as

E
(in)
z′ (z′) = ẑ′ · ϕ̂ Eϕ

∣∣
r′=0

. (3.24)

We asume E
(in)
z′ (z′) to be constant inside the cross-section of the electrode. This

field component along the electrode axis is the only relevant, since the transverse
fields are completely determined by the wave equation for the scattering modes.
The origin of the prime co-ordinates lies at (−d−ac, 0, 0) and directions translate as

ẑ′ = sin θŷ + cos θẑ (3.25)

ϕ̂ = − sinϕx̂+ cosϕŷ . (3.26)
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Figure 3.6: Relative orientation of the co-ordinate systems of the wave guide (r, φ, z)
and the eletrode (r′, φ′, z′) .

For points on the electrode, represented by ẑ′-axis, we find

r =

√
(d+ ac)2 + z′2 sin2 θ , (3.27)

cosϕ =
d+ ac

r
, (3.28)

z = z′ cos θ . (3.29)

For our further calculations it is convenient to express the incident field via its
Fourier transform

E
(in)
z′ (k′) =

∫ ∞
−∞

E
(in)
z′ (z′)e−ik′z′dz′ , (3.30)

which can be evaluated using an approximation for the Fourier integral (see A.4) to
yield

E
(in)
z′ (k′) ≈ −iω

κ⊥

√
2πac

κ⊥
ξ̃Bz(0)e−κ⊥de(d+ac)nck−k′

|θ| , (3.31)

where we used cos θ ≈ 1 and sin θ ≈ θ for a small misalignment angle θ � 1. This
Fourier component of the input field is maximized for k′ = k, which can be used as
an upper bound for E(in)

z′ (k′). Next, we want to estimate the incident power which
is the amount of energy per time that passes the rim cross-section. This power is
identical to the circulating power in the cavity, which can be calculated from the
solution (3.5) using the Poynting vector S = E∗ϕBr/µ0, which yields

PI =

∫
dA · |S| ≈ 0.51

cnc

µ0

(
kac

γ

)2

|Bz(0)|2 . (3.32)

Scattering losses

We estimate an upper bound for the scattering losses by modelling the electrodes
as perfectly conducting cylinders, as this maximizes the scattering. We expand the
scattered field into solutions of the wave equation in cylindrical coordinates for the
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electrode. As the radius of the electrode R is much smaller than the wavelength
of the incident field λ, all contributions are supressed like (R/λ)4, as can be seen
by a Taylor expansion of the corresponding cylindrical harmonics, except s-wave
scattering of TM modes, for which the supression is only logarithmic.

We determine the scattered field by use of the boundary condition

Ez′(r
′ = R,ϕ′, z′) = E

(in)
z′ + E

(s)
z′ = 0 (3.33)

at the surface of the electrode. The transverse fields of TM solutions for the scattered
field with z′-dependence exp (ik′z′) are given by

~E
(s)
⊥ = i

k′

k2 − k′2∇⊥E
(s)
z′ , (3.34)

~H
(s)
⊥ = cε0

k

k′
ẑ′ × ~E

(s)
⊥ , (3.35)

where k is the wave vector in vacuum. Since we focus only on s-wave scattering,
the scattered field reads

E
(s)
z′ (k′) ∝ H(1)

0

(√
k2 − k′2r′

)
, (3.36)

with k′2 < k2. For k′2 > k2 the solution is evanescent and does not contribute the
scattered power. After fixing the amplitude in (3.36) with the boundary condition
(3.33), we apply the inverse Fourier transform to find the spatial scattered field

E
(s)
z′ (r′, ϕ′, z′) ≈ −

k∫
−k

dk′

2π
E

(in)
z′ (k′)

H
(1)
0 (
√
k2−k′2r′)

H
(1)
0 (
√
k2−k′2R)

eik
′z′ . (3.37)

Now the scattered power can be calculated by integrating the scattered energy flux
across a cylinder with infinite radius R∗ → ∞ that enwraps the electrode, from
which we find an upper bound for the scattered power (see A.4), given by

Ps .
πcε0

2| ln(2kR)|max
{∣∣∣E(in)

z′ (k′)
∣∣∣2}∣∣∣∣

|k′|≤k
(3.38)

The maximum of the incident field in that expression is found for k′ = k, and by
using d � ac and ac ∼ λ = 2π/k in (3.31), we can estimate the finesse associated
to scattering losses by

Fs &
enc

√
n2

c − 1

πξ2
ln

(
λ

4πR

)
e

4π nc−1
|θ| , (3.39)

where we again used the field reduction factor ξ introduced earlier. For the cavity
parameters introduced earlier and an electrode radius of R = 10 nm, as well as a
misalignment of θ = 10◦, this still results into Fs > 4 · 1015.
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Dipole scattering from the gap

Here, the gap of size D between the two ends of the eletrodes that are facing each
other at the nanoresoantor, is modelled by a radiating dipole that is induced by the
incident field. To get an upper bound for the induced dipole, we model the gap by a
perfectly conducting sphere of radius D/2. The induced dipole is then given by [45]

p ∼ π

2
ε0D

3E
(in)
ϕ′ cosϑ∗ , (3.40)

leading to the amount of power lost via dipole radiation

Pg .
π

48
ε0ck

4D6

(
ωξ

γ
|Bz(0)|

)2

e−2κ⊥d′ cos2 ϑ′∗ . (3.41)

This can be again compared to the incident power leading to a lower bound for the
finesse associated to the gap

Fg &
4.5

π5

nca
2
cλ

4

D6ξ2
e2κ⊥d′ . (3.42)

For a gap of D = 40 nm, we thus find Fg & 1.3 × 109, which still much larger then
the intrinsic finesse.

Absorption losses

Absorption losses are generated by induced currents in the electrodes. We consider
transparent electrodes with conductivity σ. Here σ is a 2D-conductivity that for
CNTs is bound by a maximum value given by σmax = 8 e2/h [46]. Therefore we
asume a conductivity σ = σσmax with σ < 1. The lost power is then given by

Pa =
1

2

∞∫
−∞

dz′<
{
I∗E(in)

z′

}
, (3.43)

where the current in the electrode is given by I = 2πRσE
(in)
z′ . Evaluating the ab-

sorbed power (3.43) and relating it to the incident power (3.32) leads to a finesse

Fa &
e2κ⊥d

32παFξ2σ

√
κ⊥ac

π

ncac

R sin θ
, (3.44)

with the fine structure constant αF ≈ 1/137. Evaluating Fa shows that absorption
is the dominant additional loss effect. For an asumed conductivity σ = 1/20 and an
improved alignment precision of θ = 3◦, as well as an electrode radius R = 2.5 nm,
we still find Fa & 3.7× 107.
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3.5.2 Mechanical decoherence induced by electrical noise

With the presented setup, we want to enable the observation and usage of quan-
tum effects in the mechanical motion. A natural effect that always complicates the
observation and use of quantum effects is decoherence due to coupling of the quan-
tum degree of freedom to the surrounding environment. In common nanomechan-
ical resonators, including nanotube resonators, the dominant source of damping
and decoherence are clamping losses [29]. Here, we are addressing the motion of
the nanotube via electric gradient fields using the polarizability of the tube. Usu-
ally, when nanosystems are sensitive to electrical fields, various sources of electrical
noise have to be faced and overcome by experimentalists. Here, we show that in our
setup, the most common noise sources, which are voltage noise in the electrodes
(Johnson-Nyquist noise) and fluctuating charges on the chip surface (1/f -noise),
are negligible compared to the well known clamping losses. This is mainly because
the CNT is not charged and the sensitivity to electric fields is due of the polarisability
only, so that applied fields need to be rather large to affect significantly affect the
resonator motion. We calculate the decoherence rates corresponding to the specific
noise spectra by

Γi =
x2

ZPM

~2
SδFi(ωm) , (3.45)

where the noise spectra are given by the force fluctuations δFi acting on the res-
onator

SδFi(ω) = Re

∞∫
0

dτ 〈δFi(τ)δFi(0) + δFi(0)δFi(τ)〉 eiωτ . (3.46)

The electric field gradient force acting on a resonator can be expressed by

Fel. =
α

2

∂

∂X

∫
E2dl ≈ αaE

(
E

a

)
, (3.47)

where we estimated the field gradient at a distance a from the electrode by E/a
and used the fact that the field mainly acts on the nanotube in a region of length
a � L. For an electric field with fluctuations associated to different independent
sources E +

∑
i δEi, the force fluctuations are then given by

δFi ≈ 2αEδEi . (3.48)

Thus, the resulting decoherence rates read

Γi ≈
x2

ZPM

~2
SδFi = 4

x2
ZPM

~2
α2E2SδEi , (3.49)

where the SδEi are the noise spectra for the different electric field fluctuations.
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Johnson-Nyquist noise

For Johnson-Nyquist noise [47], we have fluctuating voltages δU with

SδU ' 4kBTR and thus SδE ≈ SδU/a2 , (3.50)

for an ambient temperature T and an electrode resistance R. For our setup we find
ΓδU/R < 10−2 Hz/Ω at T = 20 mK, which is well below the mechanical damping
γmn ≈ 0.1 kHz for a large range of possible resistances.

1/f -noise

The origin of 1/f -noise is usually associated with surface charge fluctuations in the
device. An electric field noise density SE(ω/2π = 3.9 kHz) ≈ 4 V2m−2Hz−1 has
been measured at T = 300 K and at a distance of 20 nm between a charged res-
onator and a gold surface [48]. For a scaling SE(ω) ∼ T/ω [48, 15] this cor-
responds to SE ≈ 2 · 10−7 V2m−2Hz−1 for our conditions with T = 20 mK and
ωm/2π ≈ 5.2 MHz. For the associated decoherence rate we thus find Γ1/f < 0.15 Hz,
which is again well below the mechanical damping γmn.
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Chapter 4

Stationary nonclassical states

4.1 Introduction

One major goal in the field of quantum physics in general, that has led to large
efforts on the experimental side and has always come along with fundamental theo-
retical questions, is the preparation of different physical systems in distinct quantum
states. This reaches from photons over single atoms, ions or molecules to larger sys-
tems like condensates. In 2012 two experimental physicists, Serge Haroche and
David Wineland, recieved the nobel price “for ground-breaking experimental meth-
ods that enable measuring and manipulation of individual quantum systems” [49],
which the both developed in their respective fields, being cavity quantum electrody-
namics with single atoms and experiments with trapped ions [50, 51].

But also in the field of optomechanics, during the last decade there has been large
progress towards introducing mechanical resonators into the realm of quantum
physics. The efforts, that in large parts have been technical improvements in the
top-down fabrication of micro- and nanomechanical resonators, have been rewarded
only in the recent few years, where different experimental groups reported that they
have reached the quantum regime of mechanical motion [52, 19, 11, 12, 13]. The
quantum regime is the regime of only few excitations, which means that the res-
onator is close to the quantum ground state. This sets the stage for further investiga-
tions in this regime. One natural next step is the controlled preparation of different
classes of quantum states. Clearly, the interest in the preparation of quantum states
for single ions or atoms is already large, even though there is no doubt that these
systems behave according to quantum mechanics. For nanomechanical systems, the
situation is different, since quantum behaviour in these devices is something totally
new to be observed. Therefore the controlled preparation of nonclassical states in
these systems should be of even larger interest. The scheme that was proposed in
[53] and will be presented here is meant to contribute to this goal.

In most of the above mentioned experiments, the quantum regime was reached by
applying resolved sideband cooling of the mechanical resonator [54, 55]. This tech-
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Stationary nonclassical states

nique is similar to laser cooling of ions or atoms, where photons scattering from the
target are used to extract quanta of motional energy. The scheme that is presented
here, works in a similar way and the theory can be understood in close analogy
to the sideband cooling technique used in optomechanical experiments. However,
involving a nonlinear nanomechanical resonator, causes richer dynamics that re-
solves individual mechanical energy eigen states. Therefore this chapter is orga-
nized as follows: In section 4.2 a brief introduction to sideband cooling is given.
After that, in section 4.3, a short introduction to Wigner functions is given. They are
used to demonstrate an important connection between nonlinear quantum systems
and noncassicality. In 4.4 we turn to the aforementioned scheme, which involves
the derivation of a reduced equation of motion for the nonlinear nanoresonator, its
steady state solution, as well as a analytic and numerical results. Finally, methods
to measure the quantum state of the mechanical resonator are presented in section
4.8.

4.2 Sideband cooling of mechanical motion

Here we give a short introduction of cavity-assisted sideband cooling of nanome-
chanical resonators. This procedure is a necessary preliminary step before applying
any of the schemes introduced later. It brings the nanomechanical resonator from a
thermal state with many excitations to the quantum regime of few excitations. Note
that also numerical calculations that operate in a Hilbert space that is represented
by Fock states or energy eigen states can only be carried out in this regime, so that
a pre-cooled state is always asumed in the calculations. Furthermore, the scheme
presented in this part, can be viewed as an extention of the sideband cooling scheme
presented in [54] to the case of a nonlinear resonator.

The coupled system of cavity and mechanical resonator is described by an open
quantum system and the motion of the systems state is governed by the master
equation (1.14), where we asume a harmonic mechanical resonator here, using the
system Hamiltonian (1.12). In the weak optomechanical coupling regime gm � κ,
the cavity degree of freedom can be adiabatically eliminated [54, 56], since in the
shifted picture the cavity remains in the ground state

〈
a†a
〉
� 1. This elimination

leads to a reduced master equation for the mechanical motion, that reads

µ̇ ≈ − i

~

[
ωmb

†b, µ
]

+
1

2
(γm [n+ 1] +A−)Dbµ+

1

2
(γmn+A+)Db†µ , (4.1)

with the reduced mechanical state µ, the thermal occupation of mechanical bath
modes n = 1/(exp[~ωm/kBT ]) at temperature T and the cooling (heating) rates
associated to the cavity

A± = g2
m

κ

4 (∆∓ ωm)2 + κ2
. (4.2)

This equation describes perturbative cooling for ∆ = −ωm. In the resolved side-
band regime κ < ωm, the total cooling rate Γ = A− − A+ can overcome heating by
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|0〉
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κκ

∆
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a) b)

Figure 4.1: Illustration of the cooling process. a): A red detuned laser photon with
energy ~(ωc−ωm) can only enter the cavity by absorbing the energy of one phonon.
Therefore the laser resonantly drives the transition |0, n〉 → |1, n−1〉, where the first
entry is the photon number and the second the phonon number. The photon decays
quickly |1, n − 1〉 → |0, n − 1〉 so that the whole cycle is |0, n〉 → |0, n − 1〉. b) The
sidebands have to resolved κ < ωm so that only the cooling process is adressed and
A− � A+.

the environment nγ and the steady state of the resonator is a thermal state with a
reduced occupation nf = nγm/(Γ + γm), which corresponds to a thermal state at a
lower temperature. The process of cooling can be regarded as successive absorption
of phonons by photons that enter the cavity and immediately (with respect to me-
chanical timescales) decay again, thereby transporting mechanical energy out of the
system, see figure 4.1.

Wether the groundstate has been reached, can be measured from the output power
spectrum of a resonant probe laser (∆ = 0), which shows red and blue detuned
sideband peaks. The relative weights of the blue and red sideband peaks, corre-
sponding to up and down converted photons, is given by nf/(nf + 1) [54]. The blue
detuned sideband peak vanishes when approaching the groundstate nf → 0, since
up-converting photons aquires the absorption of phonons, which is of course not
possible if the resonator is already in the motional groundstate. This sideband ef-
fect has been used in experiments to identify the mechanical resonators in (or close
to) the mechanical groundstate [12, 52]. But while successfully cooling into the
motional ground state is the first step, it is not sufficient to verify distinct quantum
behaviour of the cooled mechanical motion. We want to elaborate on this important
aspect in the next section.

4.3 Wigner functions, nonclassicality and nonlinearity

In this section we want to introduce the concept of the Wigner function as a phase
space distribution that entirely represents the quantum state of a particle or a mode
[57]. This representation has the advantage that it is capable of providing a nice
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visualisation of a quantum state and a quite intuitive interpretation of some fea-
tures of the state. One aspect we will be looking at here very briefly, is a possible
classification of quantum states with respect to nonclassicality, that uses the Wigner
representation. Using this classification one can then demonstrate a very important
connection between the excistance of nonlinearities in a quantum system and its
possibilities to aquire nonclassical states.

The Wigner function for a certain quantum state ρ is defined by

W (x, p) =
1

π~

∞∫
−∞

dy〈x− y|ρ|x+ y〉e−2ipy/~ (4.3)

where |x〉 is the position eigenstate for the position x and p is the momentum. It
contains the same information as the density operator ρ and satisfies∫ ∞

−∞
dpW (x, p) = 〈x|ρ|x〉 , (4.4)∫ ∞

−∞
dxW (x, p) = 〈p|ρ|p〉 , (4.5)∫ ∞

−∞
dx

∫ ∞
−∞

dpW (x, p) = 1 , (4.6)

so that W (x, y) has similarities to a classical probability distribution. There exist dif-
ferent phase space distributions to describe a quantum state like the for instance the
P and Q distributions, but the Wigner distribution can be considered to be closest to
a classical probability distribution, since it is a real function that is normalized and
bound from below and above. The only striking feature that prevents from replacing
it by a classical distribution is the fact that the Wigner function can have negative
regions for certain quantum states. This is in accordance with the uncertainty prin-
ciple of quantum mechanics, since the probability for a quantum particle to be at
an exact location with an exact momentum at the same time is inherently prevented
from being a physical quantity to be measured. But it restricts any interpretation
as a classical probability distribution in the general case. In general, single points
of the Wigner function can not be interpretated easily by a physical quantity. The
entire Wigner distribution however, is physical in the sense that it can be measured
using homodyne schemes, including negative regions. To do so, the complete infor-
mation of a quantum state is collected by determining the (positive) distributions for
all quadratures Xθ = cos θx + sin θp, a process that is called quantum state tomog-
raphy. Then the Wigner function and thus the density operator can be obtained by
mathematical transformation of the results [58]. By the argumentation given above,
one can define nonclassicality of a quantum state by the appearance of negative re-
gions in the Wigner function [59, 60], which is today a widely accepted convention
1.

1Note that the situation becomes more difficult for multipartite systems, where nonclassical cor-
relations still can exist between the subsystems, even if the composite Wigner function is Gaussian
[61].
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To discuss the connection between nonlinearities in a system and nonclassicality, it
is convenient to introduce a certain class of quantum states called Gaussian states.
They are called Gaussian since their Wigner distribution is a Gaussian function.
Thermal states, sqeezed states and coherent states belong to this class, compare first
row of figure 4.2. Coherent states are considered closest to a classical picture as
they have minimum uncertainty and their Wigner function is closest to a classical
point in phase space. One important aspect of Gaussian states is their time evolu-
tion in linear systems. One can show that any initial input state that is Gaussian
remains Gaussian if the considered system is linear and driven only with classical
fields. This means that the Hamiltonian has no terms higher than second order in
the involved operators. This can be understood by considering the dynamics of the
Wigner function of the system, which in that case is given by a linear Fokker-Planck
equation. Therefore also the dynamics of Gaussian states can be described by clas-
sical equations of motion for a probability distribution. In particular, it follows that
groundstate cooling of a mechanical mode, which comprises a linearized optome-
chanical coupling, is not sufficient to obtain a nonclassical quantum state.

Different classes of quantum states are for example Fock states or macroscopic su-
perpositions states, sometimes called Schrödinger cat states. These states are con-
sidered highly nonclassical and are usually difficult to prepare in an experiment.
They all show distinct negative regions in the Wigner representations, see figure
4.2.

In order to obtain nonclassical states from the dynamics of a system, a nonlinear
element has to be introduced into a quantum system. In some systems, like for
instance microwave resonators, this was achieved by coupling to nonlinear ancilla
systems [21, 62, 20]. For optomechanical systems, nonlinearities naturally arise in
the strong optomechanical coupling regime, where the coupling term becomes non-
linear, compare (1.2). Here, we instead choose a different approach by using the
intrinsic nonlinearity of the nanomechanical resonator while the coupling remains
linear. This has the advantage that the possibility to drive transitions in the mechan-
ical spectrum in a controlled way, as it is also applied in sideband cooling scheme,
is preserved. In the next section we will describe how this can be exlpoited.

4.4 Preparation of nonclassical states

While the successful cooling of a mechanical resonator close to the ground state is
the starting point for observing quantum effects, the cooled state itself still has to
be considered a classical state. This fact is underpinned by the fact that the Wigner
function for any thermal state and even for the ground state is a non-negative Gaus-
sian function. Here, we introduce a scheme to prepare a mechanical resonator in
a distinct nonclassical steady state, using an enhanced mechanical nonlinearity as
introduced in part 2. The mechanical nonlinearity is the necessary ingredient in this
scheme to prepare non-Gaussian states. The nonclassicality is then identified by a
negative Wigner function.
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a) d)

b) e)

c) f)

Figure 4.2: Wigner functions for different quantum states. The states in the left
column are classical Gaussian states, the ones in the right column are nonclassical
states: a) The vacuum state |0〉. A coherent state |α〉 is obtained by displacing
the vacuum state by (<[α],=[α]) along the normalized (x, p) axes. b) A squeezed
quadrature state. c) A thermal state at Temperature kBT = 5 ~ω which corresponds
to nth ≈ 4.5 excitations. d) Fock state |1〉 e) Fock state |2〉. f) A cat state

√
1/2(|α〉+

| −α〉) with α = 5.
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The scheme works in close analogy to the sideband cooling technique introduced
above, but there are some differences: Instead of only one cavity mode, we here
involve several laser driven cavity modes, labeled by an index j, that interact with
the mechanical resonator. Furthermore we add the nonlinearity to the mechanical
part, so that the Hamiltonian for that system reads

H =
∑
j

−∆ja
†
jaj +

∑
j

(gm,j

2
a†j + H.c.

)(
b† + b

)
+ ωmb

†b+
λ

2
(b† + b)4 . (4.7)

Here we introduced the multiple cavity modes j = 1, 2, . . . described by photon
operators aj that are each coherently driven by laser with a detuning ∆j = ωL,j −
ωc,j . We already used the shifted representation for the photons (compare chapter
1) and the linearized optomechanical couplings at strengths gm,j = 2αjG0xZPM,
with αj = Ωj/(2∆j +iκj) being the steady state coherent amplitde in cavity mode j,
Ωj the laser drive Rabi frequency and κj the photon decay rate of that mode. Note
that we already asumed a tuned resonator. This means that the nonlinearity λ is
tuned to a sufficient strength by using gradient fields and the static deflection of the
resonator due to the cavity field is compensated by choosing F s

1 = −~G0|α|2.

The cavity decay as well as the mechanical damping at rate γm are described by the
master equation

ρ̇ = −i [H, ρ] +
∑
j

κj
2
Dajρ+

γm

2
{nDbρ+ (n+ 1)Db†ρ} (4.8)

For the following analysis it is convenient to apply a rotating wave approximation
for λ� ωm so that the mechanical part reads

Hm → H ′m = ω′mb
†b+

λ′

2
b†b†bb . (4.9)

with ω′m = ωm + 2λ′ and λ′ = 6λ, compare (2.36). In this approximation the eigen
states of the resonator remain Fock states |n〉. Applying the Heisenberg picture for
the mechanical operators already reveals Fock state resolved dynamics, since

eiH′mtbe−iH′mt =
∑
n

e−iδntbn , (4.10)

where we introduced the projectors bn =
√
n|n − 1〉〈n|, as well the transition fre-

quencies δn = (En − En−1)/~ = nλ′. Note that since the transition frequencies
now depend on the Fock number n, the shape of the mechanical damping terms
as considered in (4.8) can only be an approximate description. The details of the
mechanical damping actually depend on the bath model one considers in deriving
the Lindblad form. Here we neglected any frequency dependence in the microscopic
couplings between bath modes and resonator and considered only one number for
the thermal occupation of bath modes, which is the thermal occupation n at the
tuned mechanical frequency ωm. However, the impact of the differences between
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possible damping models on the results are expected to be small enough to be ne-
glected within this analysis. In fact, calculations using different thermal occupations
n(δn) for the slightly different transition frequencies δn have been done. Relative de-
viations from calculations with the model (4.8) were found to be well below 10−3.
Because of this. and also since the main focus here is not the analysis of damping
mechanisms, we do not further address that interesting topic and in particular do
not consider a model that describes nonlinear damping.

4.5 Reduced master equation

Now we want to carry out an adiabatic elimination of the photon mode, wich can be
done for gm,j � κj . We also asume gm,j � nγm, necessary for groundstate cooling
and κ < λ′, which we want to call the resolved nonlinearity regime in analogy to the
resolved sideband regime for κ < ωm. In deriving a reduced master equation for the
mechanical motion, we follow the projection operator technique [56]. Do to so it is
convenient to write the master equation (4.8) in terms of the Liouville operator L

ρ̇(t) = L(t)ρ(t) (4.11)

with

L(t) = ζ2L0 + ζL1(ζ2t) + L2(ζ2t) . (4.12)

Here we split the Liouvillian into parts that are associated to different timescales in
the dynamics. The later are labeled with a dimensionless parameter ζ � 1, that
will be used for a systematic expansion. The fastest time scale, labeled by ζ2, is the
mechanical motion and the cavity motion, where the timescale is set by ωm ≈ |∆|
and κj . The slowest time scale is set by mechanical damping nγm and in between
there is the timescale of the optomechanical coupling, labeled by ζ, for which we
have nγm � gm,j � κj . As we will find, the separation between L0 and L1 leads to
the Born-Markov approximation for ζ → ∞. The different parts of the Liouvillian
therefore read

L0ρ =
∑
j

{
i
[
∆jaj

†aj , ρ
]

+
κj
2

[
2ajρaj

† − aj†ajρ− ρaj†aj
]}

, (4.13)

L1(ζ2t)ρ =
∑
n

[
eiζ2δntL(+)

1n + e−iζ2δntL(−)
1n

]
, (4.14)

L2(ζ2t)ρ =
γm

2

∑
n,m

[
(n+ 1)eiλ(n−m)ζ2tD−nmρ+ ne−iλ(n−m)ζ2tD+

nmρ
]
. (4.15)
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Here, we changed to an interaction picture with respect to H ′m, where the nonlin-
earity is responsible for the separation of terms involving different Fock states

L(+)
1n = −i

∑
j

[(
g∗m,j

2
aj + H.c.

)
b†n, ρ

]
, (4.16)

L(−)
1n = −i

∑
j

[(
g∗m,j

2
aj + H.c.

)
bn, ρ

]
, (4.17)

D−nmρ = 2bnρb
†
m − b†mbnρ− ρb†mbn ,

D+
nmρ = 2b†nρbm − bmb†nρ− ρbmb†n . (4.18)

We now define projection operators P and Q by

Pρ = Trc{ρ} ⊗ ρ(th)
c , Q = 1− P , (4.19)

where the thermal state for cavity modes is given by

ρ(th)
c =

⊗
j

ρ
(th)
c,j , ρ

(th)
c,j =

1

nc,j + 1

∞∑
n=0

[
nc,j

nc,j + 1

]n
|n〉〈n|c,j , (4.20)

and can be taken as the vacuum state (nc,j = 0) for each cavity and the trace Trc{.}
is taken over all cavity modes. We call Pρ the relevant part of the system, which is
the mechanical state, and Qρ is called the irrelevant part. Using the projections P
and Q in (4.11) it is possible to derive a closed equation for the relevant part, see
A.5 for details. Using certain assumptions about the initial state of the system at
t = 0, this leads to the Nakashima-Zwanzig equation [56, 63]

P ρ̇ = PL(t)Pρ+ PL(t)

t∫
0

dτT+

[
e
∫ t
0 dτ ′QL(τ ′)Q

]
T−
[
e−

∫ τ
0 dτ ′′QL(τ ′′)Q

]
QL(τ)Pρ(τ) .

(4.21)
This equation is exact so far. We now apply the limit ζ → ∞ and keep only the
lowest nontrivial order in 1/ζ, see A.5. In this limit all fast rotating terms drop out
which amounts to a RWA. Inserting (4.14) we get

P ρ̇ = PL̃2Pρ+
∑
n

n

PL(+)
1n

∞∫
0

dτ ′eiδnτ ′eL0τ ′QL(−)
1n Pρ+ H.c.

 , (4.22)

with L̃2 containing only the non rotating terms

L̃2ρ =
γm

2

∑
n

[
(n+ 1)Dbnρ+ nD

b†n
ρ
]
. (4.23)
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The integral contains the cavity two-time correlations, which can be seen by insert-
ing the definitions of L0,L(±)

1n and by applying the projection P, which yields

PL(+)
1n

∞∫
0

dτ ′eiδnτ ′eL0τ ′QL(−)
1n Pρ =

=
∑
j

(
−
∣∣gm,j

∣∣2
2

) ∞∫
0

dτeiδnτTrc

{[
Xjb

†
n, e
L0τ
[
Xjbn, µ⊗ ρ(th)

c

]]}
. (4.24)

Here we introduced the density operator for the mechanical mode µ = Trc {ρ},
and the cavity-quadratures Xj =

(
α∗jaj + αjaj

†
)
/
√

2|αj |. Note that this expression
is of second order in the optomechanical couplings gm,j , which corresponds to the
Born approximation. Since within the interaction picture, the mechanical operators
evolve much slower than the integrand decays due to the loss part in L0, the me-
chanical operators can be pulled out of the trace and the integrals. This corresponds
to the Markov approximation. The remaining integrals over the cavity correlation
function can be expressed by defining

Gj(ω) =

∞∫
0

dτeiωτTrc

{
Xje

L0τXjρ
(th)
c

}
=

1

−2i(ω + ∆j) + κj
, (4.25)

where the integral has been evaluated using the correlations functions for the free
cavity. Note that all contributions that correspond to cross correlations between the
cavity modes Trc

{
Xie

L0τXjρ
(th)
c

}
with i 6= j drop out. With this definition, (4.24)

becomes

. . . = −
∑
j

|gm,j |2
2

{
Gj(δn)

[
b†n, bnµ

]
−G∗j (−δn)

[
b†n, µbn

]}
. (4.26)

Now all those contributions in (4.22) can be rearranged to Lindblad form and after
changing back to the Schrödinger picture we find a reduced master equation for the
mechanical motion that reads

µ̇ =− i

H ′m +
∑
n,j

(
∆n,+

m,j b
†
nbn + ∆n,−

m,j bnb
†
n

)
, µ

+

+
1

2

∑
n


∑

j

An−,j + γm (n+ 1)

Dbnµ+

∑
j

An+,j + γmn

D
b†n
µ

 . (4.27)

This master equation governs the motion of the mechanical state, where the main
influence of the laser driven cavity modes is found by additional Lindblad terms
proportional to the transition rates

An±,j =
|gm,j |2

2
<
{
Gj(∓δn)

}
= g2

m,j

κj
4(∆j ∓ δn)2 + κ2

j

. (4.28)
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Figure 4.3: Illustration of the state preparation process for a nonlinear mechanical
resonator, compare also figure 4.1. a) By adjusting the laser detuning for each
cavity mode, specific transitions in the mechanical spectrum can be adressed. b)
The nonlinearity λ′ has to be resolved by the cavity linewidths κj .

In close analogy to the sideband cooling scheme these rates dominate over the me-
chanical dampling rate γm, while the small spectral shifts

∆n,±
m,j =

|gm,j |2
(
∆j ± δn

)
4(∆j ± δn)2 + κ2

j

, (4.29)

have no further relevance in this context and can be neglected compared to the order
of ωm. The dissipators D

b
(†)
n

describe the incoherent population transfer between
neighboring Fock states |n〉 ↔ |n − 1〉. To be able to address specific transitions
selectively by choosing the detuning resonantly to the corresponding sideband, we
need the resolved nonlinearity κj < λ′, compare figure 4.3.

4.6 Steady state solution

Here we derive relations that describe the stationary state of the mechanical res-
onator. This state remains stable as long as the driving lasers are on and the envi-
ronmental temperature can be kept stable. The energy eigen states of the resonator
within the RWA (4.9) are Fock states and the Liouvillian associated to the reduced
master equation (4.27) maps a state µ that is diagonal in Fock basis on to another
diagonal state. Thus, the steady state for that reduced master equation can be found
using the ansatz

µ =
∑
n

Pn|n〉〈n| , (4.30)
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for a diagonal density matrix µ. For this ansatz the unitary part vanishes, so that we
need to solve

0 =
∑
n

[∑
j

An−,j + γm [n+ 1]

Pn

(
bnb
†
n − b†nbn

)

+

∑
j

An+,j + γmn

Pn−1

(
b†nbn − bnb†n

)]
. (4.31)

Thus, the coefficient of |n〉〈n| for each n in the sum has to vanish, which leads to
the steady state relations

Pn
Pn−1

=

∑
j
An+,j + γmn∑

j
An−,j + γm [n+ 1]

≡ F (n) . (4.32)

These relations together with
∑

n Pn = 1, which follows from normalization, deter-
mine the steady state of the mechanical oscillator. It can be calculated numerically
by introducing a cutoff number n0, satisfying

∑∞
n=n0+1 Pn � 1, using

P0 =

[ ∞∑
n

n−1∏
i=0

F (i+ 1)

]−1

≈
[
n0∑
n

n−1∏
i=0

F (i+ 1)

]−1

(4.33)

and calculating the other Pn successively using the recursion relation (4.32). Note
that for lasers switched off, the An±,j vanish and we obtain relations characterising
a thermal state at the bath temperature. If instead we let λ → 0, the ratio Pn/Pn−1

becomes n-independent, implying a thermal state at a different temperature de-
pending on the laser detunings and amplitudes.

4.7 Results

By looking at the relations (4.32), it becomes clear that in contrast to the sideband
cooling scheme, the steady state can not be a thermal state any more, since for
thermal states, Pn/Pn−1 does not depend on n. The Fock state resolved structure of
the reduced master equation now suggests to choose the laser detunings such that
a Fock state |n〉 is prepared. Here, n has to be a small number to be consistent with
the RWA (4.9). Fock states with n > 0 are highly nonclassical states, which can be
nicely illustrated by their Wigner representation, see figure 4.2. Fock states with an
odd excitation number n show a negative dip at the origin. The minimum value
there is ~W (0, 0) = −2/π, which is the minimum value that can be reached for any
quantum state.

In order to obtain a steady state close to a Fock state |n〉, it turns out that at least
three different laser driven cavity modes are needed. Two modes are used to drive
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the transitions |n−1〉 → |n〉 and |n+1〉 → |n〉 in a balanced manner. In order to
stabilize the system in the regime of single phonons, we need a third cavity mode
driving the transition |n+ 2〉 → |n+ 1〉 to suppress the occupation of states |n′〉
with n′ > n + 1. This is achieved by choosing the laser detunings ∆1 = δn, ∆2 =
−δn+1 and ∆3 = −δn+2, respectively, where the driving strength Ωi has been chosen
equally for all lasers.

Using more than three cavity modes, even mixtures of Fock states can be created.
Figure 4.4 shows results that have been calculated using (4.32) and by solving for
the steady state of the entire system described by (4.8). For the numerical analysis
of the full system, the involved level spacings δn have been calculated by numerical
diagonalization of Hm and the applied laser detunings ∆j have been adjusted to
these values. This is necessary since the corrections of the rotating terms in the
nonlinear part to the RWA energies are already comparable to the linewith κ for
these parameters. Note that the approximation of the eigen states by Fock states
|n〉 is still good, since the corrections for the states are second order in the small
parameter λ/ωm, while the corrections to the energies are first order.

The parameters that have been used in the calculations correspond to a CNT nanores-
onator of length Ltube = 1 µm with a unsoftened frequency ωm,0/2π = 20.7 MHz
that has been tuned by a softening factor ζ ≈ 4.0 down to ωm/2π = 5.23 MHz.
The enhanced nonlinearity is then λ′/2π = 209 kHz and we asumed a mechanical
Q-factor of Qm = 5× 106. The ambient temperature is T = 20 mK which is in reach
of dilution refrigerators. The cavity is a micro toriod as described in section 3.3 with
circumference Lc ≈ 1.47 mm and a finesse Fc = 3× 106. The total photon loss rate
is then given by the sum of losses into the fiber at rate κex and the intrinsic losses
that are given by

κ0 =
2πc

ncLcFc
, (4.34)

where we asumed subcritical coupling of κex = 0.1κ. This gives a total cavity
linewidth of κ/2π = 52.3 kHz which resolves the nonlinearity κ < λ′. At an
input power of Pin = 1.2 W an enhanced optomechanical coupling strength of
|gm,j |/2π = 20.9 kHz and an absorbed power of Pabs = 10.8 µW is reached for each
applied laser. The absorbed power Pabs is the power that reaches into the cooling
chamber through the intrinsic cavity losses and is given by

Pabs = ~ωc|α|2κ0 ≈
κ0κex

∆2 + κ2/4
Pin . (4.35)

The negativity of the Wigner function for the single phonon Fock state reaches
2~W (0, 0) = −0.53 which is about 83% of the minimal attainable value −2/π. For
more moderate parameters L = 1.7 µm, ζ = 3.3, which implies ωm/2π = 2.13 MHz,
λ′/2π = 85.5 kHz for the nanobeam, as well as Fc = 2 × 106, Lc ≈ 1.80 mm,
Pin,1/2 = 22 mW, Pin,3 = 44 mW, Qm = 1.5 × 106 and T = 30 mK, one still finds a
significant negative peak of depth 2~W (0, 0) = −0.15.
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Figure 4.4: Steady state results for the parameters given in the text and for the given
Detunings. Left: Occupation probabilities Pn and the state preparation fidelites. The
results have been calculated by solving for the steady state of the reduced master
equation (RME) using (4.32) and are compared to the exact result for the full master
equation (4.8) (FME). Right: The corresponding Wigner functions.
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4.8 Readout methods

Here we introduce two methods to measure the prepared stationary state. Both
methods benefit from the fact that the prepared states are stationary and in principle
can be stable for as long as needed to collect enough data necessary to reconstruct
the mechnical state ρ. The first method is similar to the detection scheme used in
sideband cooling experiments, where the cooled temperature can be read off the
side bands in a power spectrum. It represents a generalization of that scheme to the
case of a nonlinear mechanical resonator. The characteristic power spectrum for the
cooling scheme can for example found in [64]. The second scheme is a quantum
state tomography scheme that has also been adapted for a nonlinear resonator. It
allows to reconstruct the characteristic function of the mechanical state, which in
turn allows to calculate the Wigner distribution and hence the mechanical state.

4.8.1 Output power spectrum

We analyze the output of an additional weak probe laser ain that resonantly drives
an independent cavity mode, while the preparation lasers are on. The output power
spectrum for the light of that probe laser that is scattered back into the fiber is given
by

S(ω) =
1

2π

∞∫
−∞

dτe−i(ω−ωL)τ
〈
aout

†(t+ τ)aout(τ)
〉

SS
, (4.36)

where the output field aout is related to the input field by the input-output relation
[28]

aout = ain −
√
κexa . (4.37)

The dynamics of the intra cavity field in that probe mode can be described by a
quantum Langevin equation for the shifted photon operators

ȧ = −κ
2
a− i

gm

2

(
b† + b

)
+
√
κexδain(t) +

√
κ0cin(t) , (4.38)

where we introduced the vacuum fluctuations for the input laser δain and the photon
environment cin that is also in a vacuum state. We also neglected again the nonlinear
contribution for |α|2 �

〈
a†a
〉
. This equation of motion is solved by

a(t) = a(0)(t)− i
gm

2

t∫
0

e−
κ
2

(t−τ)
[
b†(τ) + b(τ)

]
dτ (4.39)

where a(0)(t) is the solution for the decoupled cavity mode which is obtained for
gm = 0 in equation 4.38 and which includes the input fields. After changing to the
Heisenberg picture (4.10), the steady state motion of the mechanical operators is
slow compared to the photon decay. Therefore in this picture, they can be pulled
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out of the integral and the upper integration limit can be extended to infinity for a
quickly decaying integrand. After changing back to the original picture, we find

a(t) ≈ a(0)(t)− i
gm

2

∑
n

[
bn(t)

iδn + κ/2
+ H.c.

]
(4.40)

Besides the contributions to the main line at ω = ωL, the spectrum shows sideband
peaks due to the imprint of the mechanical motion onto the photons inside the cavity
as described by equation (4.40). The corresponding relevant contributions are given
by the mechanical two-time correlatin functions, which can be evaluated using the
reduced master equation (4.27). They read〈

b†n(t+ τ)bn(t)
〉

SS
= e[iδn−γneff/2]τnPn , (4.41)〈

bn(t+ τ)b†n(t)
〉

SS
= e[−iδn−γneff/2]τnPn−1 , (4.42)〈

b†n(t+ τ)b†n(t)
〉

SS
= 0 , (4.43)

〈bn(t+ τ)bn(t)〉SS = 0 , (4.44)

where we neglected the contributions of the ∆n,±
m as they induce only a small shift

of the peak positions. Using 〈A(t− τ)B(t)〉SS = 〈A(t+ τ)B(t)〉∗SS for the negative
time integration part, we obtain

S(ω 6= ωL) =
∑
n

κex|gm|2
4δ2
n + κ2

[Ln(ω + δn)nPn−1 + Ln(ω − δn)nPn] (4.45)

with Lorentzian sideband peaks at ω = ωL ± δn,

Ln(ω) =
1

π

γneff/2

[ω − ωL]2 +
(
γneff/2

)2 . (4.46)

The weight of these sideband peaks is proportional to the respective occupations
Pn, compare figure 4.5. The effective linewidth in the spectrum is broadened by the
presence of the preparation lasers and reads

γneff =
∑
j

{
n
(
An−,j +An+,j +An−1

−,j +An+1
+,j

)
+An+1

+,j −An−1
−,j
}

+γm(2n+ 1)(2n−1) .

(4.47)
For levels with Fock numbers n that interact with the state preparation lasers, this
linewidth is of the order of several g2

m,j/κ. However for small Fock numbers one still
finds γneff < λ′, so that the sideband peaks can be resolved.

The ratios Pn/Pn−1 can now be determined by measuring the integrated peak inten-
sities I(ω) at positions ω − ωL = ±δn. From equation (4.45) we find

I(δn)

I(−δn)
=

Pn
Pn−1

. (4.48)
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These ratios have to be measured until a Fock number n0, above which it is clear
that there is no more influence by the laser drives. In this Fock number regime the
ratios are given by the thermal condition

Pn
Pn−1

= e−β(En−En−1) , n > n0 . (4.49)

In order to determine the occupations from the measured ratios one has to calculate
P0, which is given by

P0 =

1 +
P1

P0
+
P1

P0

P2

P1
+ . . .+

P1P2 . . . Pn0

P0P1 . . . Pn0−1
+
∑
n′>n0

Pn′

P0

−1

. (4.50)

The contributions above n = n0 can be estimated∑
n′>n0

Pn′

P0
=
Pn0

P0

∞∑
l=1

e−β(En0+l−En0) (4.51)

and should satisfy
∑

n′>n0
Pn′ � 1 to give a reliable result. The ratio Pn0/P0 is

known from the measurement and an upper bound for the sum
∑

n′>n0
Pn′ can

be found by ignoring the nonlinear contribution to the energy. This results into∑
n′>n0

Pn′ < nPn0 , while the actual result can be much smaller than that.

4.8.2 Quantum state tomography

Now we turn to the second way to determine the steady state properties. This
method applies a state tomography of the output light field of a weak probe laser
at several detunings. The full quantum state information of the output can be used
to reconstruct the mechanical state. The different detunings can be implemented at
once by choosing multiple lasers driving different cavity modes, or by measuring the
output for different detunings one after the other. We start again from the Langevin
equation (4.38), but now involving a finite detuning ∆j . In the steady state limit its
solution reads

aj(t) =

t∫
0

e(i∆j−κj/2)(t−τ)
[
−i
gm,j

2
(b†(τ) + b(τ)) +

√
κexδain,j(τ) +

√
κ0cin(τ)

]
dτ ,

(4.52)
where we kept the contributions of the fluctuations explicit this time. Note that
those equations of motion for the cavity modes are each given in an interaction
picture with the respective laser frequencies. In that picture the coherent shift αj is
a constant. Along the same lines that brought us from equation (4.39) to (4.40), we
find

aj(t) =− igm,j

∑
n

[
Gj(δn)bn(t) +Gj(−δn)b†n(t)

]
+ 2Gj(0)

[√
κexδain,j(t) +

√
κ0cin(t)

]
. (4.53)
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Figure 4.5: Red (left column) and blue (right column) sidebands of the output
power spectrum of a weak probe laser measuring different steady states. The steady
states are shown in the inset and correspond to the ones in the first column of
figure 4.4, which are close to the Fock states |1〉, |2〉 and |3〉. Since the respective
state preparation lasers are active, the levels that interact with the state preparation
lasers show a broadened linewidth γneff . The peak intensities contain the information
about the steady state occupations Pn.
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Here we used the definition for Gj(ω) given in (4.25). In the following we merge
the cavity fluctuations δain,j and cin(t) for convenience and express them by a single
operator √

κexδain,j(t) +
√
κ0cin(t)→ √κj c̃in,j . (4.54)

It is straight forward to see that this does not affect the results that are following. If
we choose the detuning ∆j = −δn, we can negelect the contributions proportional
to b†n(t), since Gj(δn) � Gj(δn) =. Together with the Input-Output-relation (4.37)
the output field corresponding to a distinct laser mode reads

aout,j = ain,j −
√
κex

(
aj(t) + αj

)
(4.55)

≈ ain,j −
∑
n

Anjbn − Bj c̃in,j −
√
κexαj , (4.56)

with

Anj = i
gm,j

2

√
κex

i(∆j + δn)− κj/2
, Bj =

√
κexκj

i∆j − κj/2
. (4.57)

Here we have neglected only the contribution proportional to b†n(t). In the case of
well resolved nonlinearity, Anj is approximately diagonal if we choose detunings
∆j = −δj with j = {1, 2, 3 . . .}. If Anj as a matrix is invertible, we get

b =
∑
n

bn =
∑
n,j

(
A−1

)
nj

[
ain,j − aout,j −

√
κexαj − Bj c̃in,j

]
. (4.58)

This linear relation allows for the reconstruction of the mechanical state. To show
that, we consider the characteristic function χ(ξ) of quantum state, which is defined
by

χ(ξ) = Tr
{

eξc
†−ξ∗cρ

}
= Tr {D(ξ)ρ} , (4.59)

with the shift operator Dc(ξ) = exp{ξc†− ξ∗c} and where c and c† are the operators
for the considered mode. The Wigner function is given by the complex Fourier
transform of the characteristic function

W (α) =
1

π2

∫
d2ξχ(ξ)eξ

∗α−ξα∗ . (4.60)

Using equation (4.58) in the characteristic function for the mechanical mode, we
find

χm(ξ) = Tr {Db(ξ)ρ} = Tr
{

eξb
†−ξ∗bρ

}
= Tr

∏
j

Dain,j (ξ̃j)Daout,j (−ξ̃j)Dc̃in,j (−ξ̃jB∗j )e−
√
κexξ̃jα

∗+
√
κexξ̃∗jαρ


=
∏
j

χin,j(ξ̃j)χout,j(−ξ̃j)χc̃in,j (−ξ̃jB∗j )e−
√
κexξ̃jα

∗+
√
κexξ̃∗jα . (4.61)
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where we introduced
ξ̃j =

∑
n.j

(
A−1

)
nj
ξ . (4.62)

The characteristic functions of the input fields and the cavity fluctuations are given
by the known functions for the coherent state of the lasers |αL,j〉 and the vacuum
state, respectively. They read

χin,j(β) = e−
|β|2

2 eα
∗
L,jβ−αL,jβ

∗
, χc̃in,j (β) = e−

|β|2
2 . (4.63)

The characteristic functions χout,j of the output fields can be measured using homo-
dyne detection schemes and therefore the mechanical state can be reconstructed.
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Chapter 5

Quantum information processing

5.1 Introduction

The concept that has been introduced in the last chapter is intended as a tool to ex-
plore the nature of mechanical motion in devices that are much larger than typical
or “well-established” quantum systems. Therefore its application hopefully supports
investigations of rather fundamental character in the field of “macroscopic” quan-
tum systems. Nevertheless, a large part of nowadays investigations that concern the
design and control of individual quantum systems aims at the realization of very
well defined technical benchmarks. Those benchmarks are set by the requirements
for performing quantum simulation and quantum computation [65], and have be-
come a common criterion for the evaluation of the state of the art in the different
respective fields. At the same time, high-Q micro- and nanomechanical resonators
are also subject to investigations with a much more technical focus. For example,
their outstanding quality factors and the ability to couple to electromagnetic fields in
a large frequency range via their polarizability have also been used for approaches
to logic elements in classical information processing [66, 67]. If we look at carbon
nano tubes, in spite of significant difficulties that are associated with precise and
controlled integration of many nanotubes in the design of a chip, it was posssible to
build a functional computer based on 178 CNT-transistors very recently [68]. The
functionality of that approach does not rely on the mechanical properties of the
CNTs, but it gives a promising perspective for the feasibility of on-chip applications
comprising a larger number of CNTs.

Here, we want combine those qualities with the concept of a mechanical nonlinear-
ity to introduce elementary ideas for quantum information processing with nanome-
chanical qubits [69]. The quantum information in this approch is stored in the mo-
tion of nonlinear nanomechanical resonators. To be able to work as qubits, they are
cooled to the groundstate and are tuned into the nonlinear regime, compare section
2.4. While there exists a similar approach to nanomechanical qubits that works in-
side the buckling regime [70], we here do not rely on a charged resonator, which
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makes it much less susceptible to electrical noise, compare section 3.5. Quantum
information is processed using the previously introduced gradient forces, as well as
optomechanical coupling to a common cavity mode. In order to address only those
specific transitions that are needed for the different gate operations, the electrostatic
gradient fields are used to individually tune each resonator to a suitable frequency.
The further explanations are organized as follows: In section 5.2, we introduce the
concept of nanomechanical qubits. In section 5.3, we explain the implementation
of single qubit operatios, while in section 5.4 we continue with a fundamental en-
tangling gate. In section 5.6 a brief sketch of a possible initialisation and a readout
scheme is given. In sectio 5.5 we finally present numerically obtained results for the
gate performance together with a discussion.

5.2 Nanomechanical Qubits

The original definition of a qubit is a two level system formed by two states that are
usually labeled by |0〉 and |1〉. A perfect qubit can be interpreted as a system with
an infinite nonlinearity, where the third and all higher levels have effectively disap-
peared. A less restrictive, but more practical definition for a qubit is a system, that
is controlled in such a way that only two distinct levels are populated, or contribute
to the dynamics of a system, while other levels may exist but can be neglected. One
prominent example are superconducting qubits, where a nonlinear element, being
the Josephson junction turns an originally harmonic superconducting circuit into a
system that can be used as a qubit [71]. Here, we introduce a similar approach to
establish a nanomechanical qubit. To do so, we tune the nanoresonator to show a
sufficiently large enough nonlinearity λ, compare figure 5.1, using the static parts
of the tuning fields given in section 2.4, equation (2.30). Usually in this regime, the
eigen states and energies of the resonator have to be determined numerically and
it is convenient to express all observables in the energy basis, also compare section
2.4. The qubit states are then formed by the ground state |0〉 and the first excited
state |1〉 and the qubit energy is ~δ10. The effective nonlinearity is then rather given
by δ21 − δ10. Provided the nanoresonator is initially in the ground state, quantum
gates can be applied to one or multiple qubits without leaving the manifold of the
qubit states. In the following, concepts for single qubit rotations and a two qubit
entangling gate are introduced.

5.3 Single Qubit Gates

A universal set of single qubit gates is given by rotations about all three axes of
the Bloch sphere representing the qubit state. The rotations are generated by the
Pauli-matrices

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
, (5.1)
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Figure 5.1: A nanomechanical qubit is formed by tuning the nanobeam to be
strongly nonlinear. The qubit states are then formed by the two lowest energy levels.

A rotation about an angle φ around an axis j is then obtained by implementing an
operation exp[−iφ/2σ̂j ] that is applied to the current state of the qubit, which is
represented by the states(

1
0

)
= |1〉 ,

(
0
1

)
= |0〉 . (5.2)

Naturally, this is implemented by the unitary time evolution exp[−iHGt/~] with a
gate Hamiltonian HG(t) that is designed to have the shape of the respective Pauli-
matrix. For the discussion of gate operations on the qubits it is convenient to choose
the interaction picture for the tuned mechanical mode, in which the qubit state
is time independent if no gates are applied. Then the only contributions to the
Hamiltonian are the time dependent gate pulses that are conducted by the time
dependent parts of the gradient fields as introduced in section 2.4, equations (2.29)
and (2.30).

We start with rotations about the z-axis. A σ̂z-rotation corresponds to a relative
phase shift between the two qubit states and is obtained by temporarily tuning the
qubit to a different frequency, i.e. adding the time dependend second order contri-
bution ∼W11(t)X 2 to the dielectric potential, compare equations (2.26) and (2.30).
Considering the operator X 2 in the rotating frame using the representation (2.35)
we find

X 2 ≈
(∑

n

X2
0n|0〉〈0|+

∑
n

X2
1n|1〉〈1|+ . . .

)
, (5.3)

where we dropped fast rotating terms and focus only on the qubit subspace. Note
that for a nonlinear resonator, there are nonzero higher off-diagonal matrix elements
like X03, X05, . . ., but the sum

cm =
∑
n

X2
nm , (5.4)
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always converges. Thus, by subtracting an irrelevant constant (c0 + c1)/2 we find

X 2 ≈
(
c0 − c1

2
|0〉〈0|+ c1 − c0

2
|1〉〈1|+ . . .

)
≈ c1 − c0

2
σ̂z . (5.5)

The temporary change of the qubit frequency can be expressed by δ10 → δ10 +δ1
10(t).

Using first order perturbation theory it can be approximated by

δ1
10(t) ≈ 1

2
W11(t)

[
〈1|X 2|1〉 − 〈0|X 2|0〉

]
=

1

2
W11(t)(c1 − c0) . (5.6)

Thus, if
∫
δ1

10(t)dt = φ, the resonator collects a phase shift φ during the gate opera-
tion and we find

e−i
∫

1
2
W11(t)X 2dt/~ ≈ e−iσ̂zφ/2 ≡ [φ ]z . (5.7)

In contrast, rotations about the σ̂x- and σ̂y-axis are conducted using a time de-
pendend gradient force F̃1(t). This force is modulated at the qubit frequency δ10,
F1(t) = cos(δ10t+θ)F̃1(t), to drive the transition between the qubit states. Thus, we
find for that contribution to the dielectric potential

F1(t)X = cos (δ10t+ θ) F̃1(t)X01

(
eiδ10t|1〉〈0|+ e−iδ10t|0〉〈1|+ . . .

)
≈ F̃1(t)

X01

2

(
cos θσ̂x + sin θσ̂y

)
, (5.8)

where we again dropped fast rotating terms. Here we rely on the nonlinearity that
causes the transition |1〉 → |2〉 that leads out of the qubit sub space to be off resonant
with respect to the drive. Note that for a single σ̂x or σ̂y rotation, the phase θ is
irrelavant, since it leads only to a global phase factor. Only for multiple successive
σ̂x or σ̂y rotations, the relative phase θ in the gate pulses becomes important. With
that in mind, we find for θ = 0 and

∫
dtF̃1(t) = φ/X01

e−i
∫

dtF1(t)X ≈ e−iσ̂xφ/2 ≡ [φ ]x , (5.9)

and for θ = π/2 and
∫

dtF̃1(t) = φ/X01

e−i
∫

dtF1(t)X ≈ e−iσ̂yφ/2 ≡ [φ ]y . (5.10)

5.4 A Two-Qubit Entangling Gate

In order to implement an entangling two-qubit gate, we employ the interaction of
the qubits with a common cavity mode that is driven by a far off resonant laser drive.
The Hamiltonian that describes this scenario reads

H = −~∆a†a+ ~
√

2G0|α|Xc(
∑
j

Xj) +
∑
j

Hm,j . (5.11)
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where we labeled the different resonators or qubits by an index j. Again we already
asumed tuned resonators. This means that the effects of the static gradient fields,
which is softening and the compensation of static deflection due to the cavity field,
are already included in Hm,j . Furthermore, for the purpose of implementing a two
qubit gate we asume that two qubits, e.g. those with indices j = 1, 2, are tuned to
the same qubit frequency ωG (“gate qubits”), while all the other qubits are tuned to
a different frequency ωS (“saved qubits”).

For a large detuning ∆ � {ωG, ωS}, there are no resonant processes between the
qubits and the cavity fluctuations and so the later remain in or close to the ground
state. This allows to eliminate the photon fluctuations adiabatically which yields an
effective interaction Hamiltonian

Heff(t) ≈ 1

i~
HI(t)

t∫
t0

HI(t
′)dt′ , (5.12)

where HI(t) is the interaction part of the Hamiltonian (5.11) in an interaction pic-
ture with respect to H0 = −~∆a†a +

∑
j Hm,j . For an derivation of the effective

Hamiltonian see appendix A.6. Evaluating equation (5.12) and dropping fast rota-
tiong terms, we find separate effective interactions between gate qubits and saved
qubits

Heff ≈ HG +HS , (5.13)

where

HG = ~
∑
nm

2∑
i,j=1

G2
0|α2|X2

nm,j

∆− δmn,j
|n〉〈m|i |m〉〈n|j , (5.14)

HS = ~
∑
nm

∑
i,j>2

G2
0|α2|X2

nm,j

∆− δmn,j
|n〉〈m|i |m〉〈n|j . (5.15)

For an inital state where all resonators are in the manifold of the qubit states |0〉 and
|1〉 we can neglect terms involving higher excitations, which allows to adapt this
Hamiltonian to the form

HG = ~
g2

G∆

2(∆2 − ω2
G)

(
σ̂+

1 σ̂
−
2 + H.c.

)
+ ~

2∑
i=1

φG

2
σ̂z,i , (5.16)

HS = ~
∑
i>j>2

g2
S∆

2(∆2 − ω2
S)

(
σ̂+
i σ̂
−
j + H.c.

)
+ ~

∑
i>2

φS

2
σ̂z,i . (5.17)

Here we introduced the coupling strength gG/S = 2G0|α|XG/S, where XG/S is the
matrix element X01 for gate qubits and saved qubits, respectively. For small non-
linearity λ→ 0, this corresponds to the previously used coupling strength gm, since
X01 → xZPM. The operators σ̂±j are given by

σ̂±j =
1

2
σ̂x,j ± iσ̂y,j . (5.18)
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P H O T O N S

PHOTONSPHOTONS

a) b) c)

Figure 5.2: a) Multiple nanoresonators interacting with a single cavity mode. b)
Illustration of the effective interaction. The interaction is of XiXj type and is medi-
ated by the cavity background field. Since the cavity fluctuations do not exchange
energy with the resonators, any energy change caused by the deflection of one res-
onator is compensated by causing forces onto the other resonators. c) By tuning
the resonators to different frequencies, isolated sets of interacting qubits can be de-
fined. This is used to single out pairs of qubits that are subjected to two-qubit gate
operations.

Furthermore we introduced the qubit frequency shifts φG/S that result from the
interaction with the cavity fluctuations. They are given by

φG/S = G2
0|α|2

∑
m

(
X2

1m

∆− δm1
− X2

0m

∆− δm0

)
G/S

, (5.19)

where the notation (.)G/S says that the bracket has to be evaluated with the respec-
tive parameters for gate qubits and saved qubits. These phase shifts are unwanted
but necessarily appear during an entangling gate operation. However the phase
shift parts commutate with the rest of the Hamiltonain. Therefore they can always
be reversed using local σ̂z operations after, or even during the gate operation, and
we will ignore their contribution for the rest of the analysis.

The shape of the Hamiltonian (5.16) is that of a swapping interaction. It preserves
the number of excitations and by applying it for a certain amount of time it imple-
ments an iSWAP-gate [72], which is a fundamental entangling gate. The interaction
strength can be tuned by tuning the optomechanical coupling gG(t) via the laser
input power. If the laser pulse shape is chosen such that the condition∫

g2
G(t′)dt′ = π

(∆2 − ω2
G)

∆
≈ π∆ (5.20)

is met, we find for the operation on the gate qubits

e−i
∫
HG(t′)dt′/~ =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 ≡ iSWAP (5.21)

However, during the gate operation the saved qubits experience a similar but of
course unwanted operation, compare figure 5.2. Since the relevant parameters for
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the saved qubits differ from those for the gate qubits, the corresponding operation is
some fraction of a generalized iSWAP-gate operation for multiple qubits. We denote
it with the symbol

e−i
∫
HS(t′)dt′/~ ≡ iSWAPn , (5.22)

that here represents an arbitrary number of saved qubits. In order to resolve this
problem, the iSWAP operation can be split into two steps of equal time duration,
where the second step is the time-reversed operation of the first step. This is
achieved by changing the sign of the laser detuning ∆ → −∆ in the second step,
which changes the sign of the Hamiltonians (5.16) and (5.17). The second inverse
operation restores the original state for the saved qubits. In order to prevent this to
happen for the gate qubits, local operations can be used. The entire gate operation
then reads

√
iSWAP

[π]z √
-iSWAP

[-π]z

iSWAPn (-iSWAP)n
=

iSWAP

(5.23)

Here, the
√
±iSWAP operation is achieved by the condition

∫
g2

G(t′)dt′ = ±π/2 ×
(∆2 − ω2

G)/∆. The identity for the gate qubits that has been used in (5.23) can be
easily understood by multiplying the corresponding matrix representations.

5.5 Results and discussion

In this section we present results for the gate fidelities that have been obtained by
numerical integration of the system dynamics. The nanomechanical resonators that
act as the qubits, as well as the cavity are subject to damping at rates γm and κ,
respectively. Therefore we consider the master equation

ρ̇ = − i

~
[H(t), ρ] +

κ

2
Daρ+

∑
j

γm

2

{
(n+ 1)Dbjρ+ nD

b†j
ρ

}
, (5.24)

with the system Hamiltonian

H(t) =− ~∆a†a+ ~
√

2G0|α(t)|Xc

∑
j

Xj

+
∑
j

Hm,j

+
∑
j

[
F1,j(t)Xj +

1

2
W11,j(t)Xj

]
, (5.25)
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where the local fields are switched off during entangling gates, F1,j ≡ 0,W11,j ≡ 0,
and the cavity drive is switched off during local gates, α ≡ 0. Note that the only
time dependent local fields that are active during entangling operations are the once
that are used to compensate the photon induced forces.

The effects of the single qubit gates and the iSWAP sequence (5.23) have been
calculated by numerical integration of the master equation (5.24). The elementary
gates are modelled by rectangular pulses for the relevant control parameters α(t),
F1,j(t), W11,j(t) where the gates duration and amplitude is chosen according to the
desired operation. Note that the numerical treatment includes the local σ̂z-gates
for the correction of the unwanted phase shifts φG/S during the entangling gates.
For the iSWAP gate, different initials states for the qubit register have been used,
with the cavity fluctuations being initially in the groundstate. Each qubit has been
modelled using the three lowest levels |0〉, |1〉, |2〉, where the third level is needed
since population of that level is important source of gate errors. The cavity has been
modeled by two levels. In the resulting final state, the cavity degree of freedom is
traced out to yield the state of the qubit register ρr. This state is compared to the
result ρi of the ideal operation by calculating the fidelity

F (ρr, ρi) = Tr

{√√
ρrρi
√
ρr

}
. (5.26)

The fidelity depends on the choice of initial state, where the lowest fidelity is typi-
cally obtained if the gate qubits are in the state |11〉. This state is most susceptible
to the unwanted transition |1〉 → |2〉. In order to give a reasonable measure for the
gate performance, we average over the results for a set of states involving of all pos-
sible basis states as initial states. To be sure that the gate preserves relative phases
in superpositions states, those states are explixitly chosen as ρ0 = |ψ0〉〈ψ0| with

|ψ0〉 =
1√
2

(|00 . . .〉+ |ij...〉) . i, j, .. ∈ {0, 1} . (5.27)

All this has been done for two qubits, which involves four initial states and with four
qubits, which involves 16 initial states. The results are shown in figure 5.3, where
the following parameters have been used: The qubits are formed by (10, 0)-CNTs of
radius R = 0.39 nm, and length L = 3 µm. The untuned frequency of the funda-
mental deflectional mode is then 2.3 MHz, which is tuned to a qubit frequency of
357 kHz using electrostatic fields with a maximum at the order of 2 V/µm, compare
figure 3.3. For the nonlinearity we then find δ21 − δ10 ≈ 110 kHz. Furthermore
we asumed a mechanical Q-factor of 5 × 106 for the qubits and an environmental
temperatur of T = 20 mK. For the cavity we asumed a finesse of 3 × 106, which
for a circumference of 97 µm gives an intrinsic photon loss rate of κ0 = 713 kHz.
Together with a fiber-cavity coupling rate of κex = 500 kHz, this gives an total cavity
linewidth of κ = 1.21 MHz. For the considered qubit parameters, we find an optimal
gate time TG = 8.9 µs for both local σ̂x,y-rotations and the

√
±iSWAP gates. This op-

timum results from a trade-off between unwanted excitation of the non-qubit level
|2〉 for too large coupling strengths on the one side and damping losses for too long
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gate times on the other side, compare figure 5.3 a) and equation (5.20). The field
strength for the local σx,y operations are then found at the order of 5× 10−4 V/µm.

The σ̂z-rotations can be performed much faster, so that the duration of the complete
iSWAP is approximately 2 TG. We considered a laser detuning of ∆ = (±)53 MHz
and the coupling strength that follows according to the condition (5.20) is gG =
1.22 MHz. This coupling strength is reached for a laser input power of Pin = 1.1 W
which produces heating in the device due to the absorbed power Pabs = 137 µW,
compare equation (4.35). Note that in contrast to section 4.4, here the large de-
tuning asures that the cavity fluctuations remain in the ground state, so that the
coupling strength may be comparable to κ. However, the interaction via the cavity
photons gives rise to an additional decoherence source for the qubits at a rate

A01 ≈ κ
(gG

∆

)2
. (5.28)

This is found by employing an adiabatic elimination of the cavity fluctuations to
derive the effective Hamiltonian (5.13), compare appendix A.7. Here it follows
A01 ≈ 0.63 kHz.

For these parameters we find an average gate fidelity of F = 0.92 for two qubits and
F = 0.86 for four qubits. Actually, the saved qubits in this example have not been
tuned at all, so that ωS ≈ ωm,0. This does not affect the scheme, since for negligible
nonlinearity, i.e. for harmonic “saved qubit” resonators we find

HS =
g2

m

2

∆

∆2 − ω2
m,0

 ∑
i>j>2

(b†ibj + H.c.) +
∑
i

(2b†ibi + 1)

 (5.29)

Therefore the unitary time evolution is also reversed for ∆ → −∆ even thought
non-qubit states may be populated temporarily during the gate.

The main obstacle that makes it difficult to reach higher gate fidelites are the avail-
able optomechanical coupling strengths. Since carbon nanotubes are still very tiny
objects compared to solid state nanomechanical resonators, their volume is small
compared to the optical mode volume. This can only be compensated by a large
coherent cavity field which leads to large amounts of circulating power inside the
cavity and is therefore limited. Furthermore the scheme performance relies on em-
ploying a relatively large laser detuning, which demands a large laser input power
especially for a high finesse cavity. As a consequence, the given example comprises
a relatively long CNT in order to increase G0 and also preferably a cavity with small
optical mode volume. The long CNT results into the very low qubit frequency which
is much more susceptible to thermal decoherence as one that is close to the GHz
regime. Furthermore, reducing the cavity length increases the intrinsic photon de-
cay rate κ0, compare equation 4.34. Therefore, in the given example, damping losses
are the dominant source of gate errors. Without damping, i.e. for κ = γm = 0, we
find F = 0.9861 for two qubits and F = 0.9860 for four qubits. This shows the
excellent scaling properties of the operational scheme in absence of damping. The
relatively large deviation between the two qubit results and the four qubits results
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in the presence of damping can be understood from the scaling properties of the
fidelity measure, which yields

F (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F1(ρ1, σ1)F2(ρ2, σ2), (5.30)

where here the gate qubits can be represented by ρ1, σ1 and the saved qubits by
ρ2, σ2. Since the dominant damping affects both parts in a similar manner, the error
E = 1 − F in the results for four qubits is approximately twice the error in results
for two qubits. The same effect can be also be seen very nicely in plot 5.3 a) around
TGωG ≈ 40, where the gate error for the single qubit rotations are approximately
half of that of the two qubit gate. Furthermore by finding the result F = 0.943 for
only κ = 0 and F = 0.961 for only γm = 0 for two qubits, one can conclude that in
this example mechanical losses and cavity losses are at the same order of magnitude.

The different plots can be further understood by considering the cavity induced
error rate (5.28). Upon changing any parameter, the ratio g2

GTG/∆ has to be fixed
to allow for a complete gate, compare equation 5.20. So by increasing the gate time
TG for fixed detuning ∆ in plot 5.3 a), the cavity induced error during one gate
does not change, while in contrast the mechanical damping error is increased and
dominates for long gate durations. Upon increasing the laser detuning in plot 5.3
b) for fixed TG, the cavity induced error scales as ∼ 1/∆, which can be seen in plot.
However the cost in laser input power that is needed to increase the coupling gG is
then proportional to ∆4 for otherwise fixed parameters, which drastically limits the
range of available detunings.

5.6 Initialisation and Readout

The qubit register can be initialized in the groundstate |000 . . .〉 for all qubits by
resolved sideband cooling. One possibility is to use one laser for each qubit, where
every qubit is tuned to a different qubit frequency. Another possiblity is to tune
all qubits to the same frequency and use just one laser drive. Then the register
of N resonators can be decomposed in N normal modes, where only the center
of mass mode

∑N
n=1Xn couples to the cavity and is cooled. However, using local

σz-rotations, the phase of single resonators can be changed Xi → −Xi, which in
effect interchanges the normal modes. In this way all normal modes can be cooled
successively to the groundstate which prepares the state |000 . . .〉.
After performing gate operations, the qubits can be read out using a shelving tech-
nique to determine whether a qubit is in state |0〉 or in state |1〉 [73, 74]. Here,
a cycling transition between |1〉 ↔ |2〉 using a cooling laser on |2〉 → |1〉 and a
coherent rf-drive with local gradient fields on those two levels is employed. The
cooling drive is only resonant to the |2〉 → |1〉 transition for a resolved nonlinearity
κ < δ21 − δ10. For the rf-drive at frequency δ21, the underlying priciple is exactly the
same as that of the previously introduced σx-gate, only that the drive is resonant
to the |1〉 ↔ |2〉 transition. Here, avoiding off-resonant transitions is achieved by a
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Figure 5.3: Gate errors E = 1 − F for local operations and the iSWAP-gate. The
example that is discussed in the text is marked by a red circle: a) Error as a function
of gate time TG. For the iSWAP operation, TG is the duration of the elementary√
±iSWAP gate. For short gate times, the interaction has to be strong, so that

higher mechanical levels are excited. In this regime the relevant RWA breaks down.
b) The gate performance increases for large detunings, as interactions with cavity
flucuations are reduced. However this demands increased coupling strengths, i.e.
input power for the cavity drive. c) Gate error as a function of cavity induced
decoherence controlled by κ (gG and ∆ are fixed). The interaction of the qubits
with the cavity gives rise to additional loss terms, see appendix A.7 for Details. d)
Gate performance as a function of the mechanical damping rate.
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|0c, 1m〉

|0c, 2m〉

|1c, 1m〉

A2
−

cos(δ2t)F1

Figure 5.4: Sketch of the qubit readout. The transition between the mechanical lev-
els |1〉 ↔ |2〉 is driven by a cooling drive that is resonant to that transition, compare
section 4.5, and by a coherent gradient force drive. If the qubit is projected into
state |1〉, a continious cyclic transition starts. The cooling drive |2〉 → |1〉 involves
the up conversion of laser photons by δ21 at rate A2

−. These photons can be detected.
If the qubit is projected into state |0〉, the drives are off-resonant so that there is no
cyclic transition and hence no converted photons.

weak enough drive, compare also the performance of the σx-gate in figure 5.3 a).
This causes a continious stream of up converted photons only if the resonator is
found in the state |1〉, compare figure 5.4. The upconverted photons can be de-
tected by measuring the corresponding sideband spectrum. A large enough number
of photons has to be collected before external damping destroys the intermediate
state, which requires κex|gm|2/κ2 � γn.

Unfortunately, both the initialization scheme and the readout scheme can not be
applied for the parameters of the presented example, since the condition of resolved
sidebands κ� ωG and κ� δ21 − δ10 is not met. Also further quantitative investiga-
tions of these schemes are yet do be done to estimate the corresponding fidelities.
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Conclusion and outlook

In summary, the findings that are presented in this thesis can be condensed to the
following statement: The concept of tuning nanomechanical resonators, and thereby
enhancing their nonlinearity to significant single phonon strength, opens a versatile
tool box for controlling and manipulating their motion in the quantum regime. This
ranges from the manipulation of a single nanobeam as applied in chapter 4 to im-
plementing interactions within an array or register of nanobeams as employed in
chapter 5. In all the presented results, the quantum nature of the nanomechani-
cal motion is inherent. This was explicitly demonstrated by the given steady state
results, where a negative Wigner function witnesses the nonclassical nature of the
motion of a single resonator. Necessarily, quantum behaviour is also incorporated
in the entanglement of different nanomechanical qubits as produced by the applica-
tion of the introduced iSWAP-gate. While here two different schemes have been
introduced, the employed control mechanisms could also be used to investigate
other interesting quantum effects, for example beyond the buckling transition for
the nanobeam. It is important to note that this generality is a consequence of in-
troducing the nonlinearity only within the mechanical degree of freedom instead of
relying on a nonlinear optomechanical coupling. Thereby the optical cavity remains
a “passive” control element in the sense that quantum aspects of its dynamics are
negligible.

A significant part of this thesis had its emphasis on details of a specific setup, that
could possibly be used to implement the introduced schemes. This includes details
like the optimization of the arrangement of the CNT and the electrodes on the NEMS
chip to optimize the optomechanical coupling strength as well as carefully consid-
ered concerns about possible cavity losses introduced by the electrodes. Further-
more one important goal was to optimize the parameters within the theory under
the constraint of feasable “external” parameters, since a demonstration of feasibility
or at least a good understanding of possible limitations are of course important for
the significance within the current context of the field. However unfortunately, re-
garding the introduced concept of quantum information processing, some questions
had to be left uncovered by the scope of this thesis. These are quantitative investiga-
tions of the initialisation and readout scheme, as well as details of a possible qubit
register setup. Yet, regarding the rather dynamic evolution of experimental tech-
niques in the fields of optomechanics, the respective nanofabrication and of course
also of CNT related techniques, the presented scheme is not necessarily restricted
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neither to the presented parameters nor even to the presented setup.

Another setup that has been employed to couple to the mechanical modes of CNTs
are superconducting circuits that operate in the microwave regime. Here, the nano
tube acts as a superconducting junction in a superconducting quantum interfer-
ence device (SQUID). Since deflections of the CNT change the area enclosed by
the SQUID, the flux through the SQUID is modulated and thus coupling to the
mechancial motion is achieved [75, 76]. In such a setup, the coupling rate could be
tuned by the strength of the magnetic field through the SQUID, and could potentially
exceed the coupling rates that are found in optomechanical setups.

Regarding the role of the anharmonic resonator, conventional nanoresonators that
are top-down fabricated from bulk material like, for instance SiN or even diamond,
are rather unfavorable candidates for the presented schemes, since their geometrical
nonlinearity is much smaller than that of a CNT. Yet an interesting alternative could
be found in graphene sheets. Their deflectional modes show properties similar to
CNTs, which are high frequencies due to the high elasticity and high Q-values that
even increase for small motional amplitudes [33]. The intrinsic mechanical nonlin-
earity of a graphene sheet should also be large, since the energy upon deformation
is dominated by streching of the sheet. Possible setups could use graphene sheets as
capacitor plates in superconducting micro wave circuits [11].
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Appendix

A.1 Corrections due to mode coupling

Here, we discuss the effects of the nonlinearity induced coupling between the nor-
mal modes of a nanobeam. This coupling leads to two different effects. One is
a potential shift of the fundamental mode frequency which can be absorbed in a
redefintion of ωm,0. The other is the tunneling of phonons between modes, poten-
tially leading to unwanted effects like additional losses. Here, we concentrate on the
second effect and show that the corresponging processes can be savely neglected.
Physically, tunneling between modes is supressed due to the large frequency gap,
which can be mathematically accounted for by corresponding rotating wave ap-
proximations. In order to estimate the strength of the mode coupling, we rewrite
the nonlinearity

λ0
ijkl =

~
32κ2m

 µ2L2M̃ijM̃lk√
m∗im

∗
jm
∗
km
∗
l νiνjνkνl

 . (A.1)

The parts in the brackets are numerical values that result from the shape of modes
only and do not depend on the physical quantities L, µ, κ. This can be seen from
substituting φ̃n(x̃) ≡ φn(Lx̃), which yields

M̃ij = LMij =

∫ 1

0
φ̃′iφ̃
′
jdx , (A.2)

m∗n = µL

∫ 1

0
φ̃2
ndx . (A.3)

Table A.1 shows some numerically obtained values for the bracket (A.1) that are
relevant for the fundamental mode. Table A.2 shows values for M̃ij and the effective
masses m∗n.

We can now estimate the weight of processes corresponding to terms c(†)
i c

(†)
j c

(†)
k c

(†)
l

in the multi mode Hamiltonian (2.20) This can be done by comparing those transi-
tion matrix elements to the respective energy spacings. The most relevant process
is tunneling between the fundamental mode (mode index n = 1) and the closest
mode of the same parity which ist the third lowest mode (mode index n = 3). In-
cluding the effect of softening, the corresponding ratio between coupling strength
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j�i 1 2 3 4 5

1 0.3024 — 0.1029 — -0.0512
2 — 0.4106 — -0.0848 —
3 0.1029 — 0.4498 — 0.0705
4 — -0.0848 — 0.4721 —
5 -0.0512 — 0.0705 — 0.486232

Table A.1: Numerically obtained nonlinearity induced mode coupling strengths
λ11ij/ in units of ~/(32κ2m). Only modes of same parity couple to each other. Diag-
onal entries correspond to density-density interactions while off diagonal elements
represent phonon tunneling.

j�iM̃ij 1 2 3 4 5

1 4.88 — 4.36 — −3.39

2 — 22.1 — −8.80 —
3 4.36 — 50.0 — 12.2

4 — −8.80 — 94.6 —
5 −3.39 — 12.2 — 132

m∗i /(µL) 0.3965 0.4790 0.5059 0.5514 0.4998

Table A.2: Geometric mode coupling parameters M̃ij and effective mode masses m∗n
in units of the physical resonator mass µL (bottom row).

and energy gap reads
λ1113

∆E13
≈ 0.34 ζ

3/2
1

5.4− 1/ζ1

(
λ0

ωm,0

)
, (A.4)

where 5.4ωm,0 is the frequency of the third mode for the considered boundary condi-
tions and 0.34 ζ

3/2
1 results from the ratio λ1113/λ

0
1111. Note that while the fundamen-

tal mode frequency is changed by the softening factor ζ1, the third mode’s change
in frequency can be neglected, compare figure A.2 a). In figure A.1, we show the
ratio (A.4) for a typical nanomechanical resonator. Also note that for ζ1 � 1 (A.4)
becomes insignificant as the physical nonlinearity saturates in that regime while the
given ratio does not. For an estimate of course also the phonon excitation numbers
in the respective modes have to be considered. Here, we restrict our analysis to the
regime close to the ground state, which can be achieved by sideband cooling for
the fundamental mode and by low enough ambient temperature kBT ∼ ~ω3 for the
higher modes. Therefore, this additional factor should be O (1).
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Figure A.1: Ratio of coupling strength over energy gap for as a figure of merit for
the most relevant tunneling process between fundamental mode and third mode of
the nanobeam. This example corresponds to a nanotube of 3 µm length.

A.2 Calculations for electrostatic tuning

Here, a short discussion of the expansion of the dielectric potential in (2.25) is pro-
vided. Furthermore calculations for the diagonalization of the potential including
the electrostatic fields are given.

Expansion of the electrostatic potential

The expansion (2.25) of the electrostatic energy around y = 0 is stopped after the
harmonic term, which is the second order in y. The elastic potential however has
been expanded further in order to obtain a nonlinear potential. Therefore, it is
indicated to check wether higher order terms in the dieletric potential would have a
significant influence on the nonlinearity.

The electrodes that provide the electric field are modeled as point charges q, q′,
compare figure 2.3. Here, we relabel the charges by q = Q + ε, q′ = Q − ε, so
that Q = 0 corresponds to an antisymmetric configuration and the field along the
nanobeam has only components perpendicular to the beam axis. In contrast for
ε = 0, we have a symmetric configuration and the field is directed parallel to the
tube. We asume that the point charges are placed at a distance y = ±d from the tube
next to the waist of the fundamental mode at x = L/2. Using this model we expand
the dielectric potential and compare the fourth order term to the elastic nonlinearity.
The resulting different order terms are quite complicated for the general case of that
model. Therefore we only consider the lowest order in (d/L) for d� L, which reads
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Vel ≈
3π

4d3

(
1

4πε0

)2 [
Qε(α|| + 3α⊥)

(X
d

)
− 1

16

(
Q2(17α|| + 41α⊥) + 5ε2(3α|| + 11α⊥)

)(X
d

)2

+
10

3
Qε(α|| + 3α⊥)

(X
d

)3

− 5

128

(
Q2(65α|| + 181α⊥) + 7ε2(9α|| + 29α⊥)

)(X
d

)4 ]
(A.5)

where we dropped the constant term. Note that the resonator length L dropped out
since for d � L only parts of the beam in the vicinity of the electrodes contribute
to the energy. That allows also to approximate the deflectional field y(x) by the
displacement X of the fundamental mode. In order to compare the relevant magni-
tudes, we consider a field strength that softens the nanobeam to the buckling point.
By neglecting the contribution of α⊥ � α||, this happens as soon as

17

16
Q2 +

15

16
ε2 ≡ 1

2
m∗ω2

m,0d
2 . (A.6)

As we do not intend to enter the bistable regime, this is an upper bound for the field
strength. Note that for the purpose of comparing different orders, we dropped the
common prefactor, so that the left and the right side in this equation have actually
different physical dimensions. That’s why we choose the “≡” sign. In order to justify
the neglect of the fourth order term in the elastic potential, we need

5 · 65

128
Q2 +

5 · 63

128
ε2

!� β

4
=

0.06

4

m∗ω2
m,0

κ2
d4 . (A.7)

Inserting m∗ω2
m,0 from (A.6) finally results into

κ2 !� 0.06

(
2
(

17
16 Q

2 + 15
16 ε

2
)

10
(

2 · 65
128 Q2 + 2 · 63

128 ε2
)) d2 (A.8)

which means κ2 � 0.012 d2 or κ � 0.11 d. This gives a lower bound for the elec-
trode distance d, as for smaller distances, nonlinear gradient forces have to be con-
sidered.

Diagonalization of the combined potential

In order to diagonalize the combined elastic and dielectric potential Vb + V
(2)

el , it is
conventient to change to a different normalisation of modes that the one given in
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Figure A.2: a) Typical behaviour for the mode frequencies subject to a softening
field. Only the fundamental mode frequency is significantly lowered. Solid lines are
obtained numerically by diagonalizing the harmonic potential, compare equations
(A.10). (A.11). The dashed line for the fundamental mode is obtained with the
approximation (2.31). b) Average deformation of modes 1 − F , where F is the
average of overlap

∫
dxφn(x)φ

′
n(x) between the unsoftened normal modes φn and

the softened normal modes φ
′
n.

(2.7) and (2.9). Instead we expand the displacement in modes that are normalized
to unity, compare also (2.10)

y(x, t) =
∑
n

φn(x)X n(t) , φn(x) =

√
m∗n
µ
φn(x) , X n(t) =

√
µ

m∗n
Xn(t) ,

(A.9)
In that description all mode masses are the same, which allows to diagonalize only
the harmonic potential part, given by

V (2) = Vb + V
(2)

el =
∑
lk

µ

2

[
ω2
l δlk +

1

µ
W lk

]
X lX k , (A.10)

=
∑
j

µ

2
ω′2j X ′

2
i , (A.11)

while the kinetic part does not change. Here we also adapted the normalization of
the coefficients Wlk, compare equation (2.28)

W lk =

L∫
0

∂2W (x, Y )

∂Y 2

∣∣∣∣
Y=0

φl(x)φk(x)dx =
µ√
m∗lm

∗
k

Wlk (A.12)

and introduced ω′j as the tuned eigenfrequencies obtained upon diagonalization.
For the parameters that are considered later, we find that the change in the mode
shape is negligible, e.g. X ′i ≈ X i, compare figure A.2. This means we can change
back to the original modes Xi and end up with the mechanical Hamiltonian for the
fundamental mode (2.32).
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A.3 Optimization of Ccorr

The geometric correction factor in (3.16) has to be optimized with respect to the
angles ϑ, ϕ. The correction factor factorizes Ccorr = C(ϑ)D(ϕ), so that the two
functions C and D kann be optimized independently.

By substituting x = sin2 ϑ, we find immediatly that C = x
√

1− x is maximized for
x∗ = sin2 ϑ∗ = 2/3, leading to C(ϑ∗) = 2

3
√

3
.

To optimize D(ϕ), we substitute x = secϕ and ã = 2κ⊥(d+ ac)� 1. Thus, we have

D(x) = eã
e−ãx

x3

√
x2 − 1 , (A.13)

D′(x) = eã
e−ãx

x3

[
x√

x2 − 1
− (ã+ 3)

√
x2 − 1

]
. (A.14)

Therefore, D is maximized if

(ã+3)x2
∗−x∗+(ã+3) = 0⇒ x∗ ≈

1

2ã
(±)

√
1 +

1

4ã2
≈ 1+

1

2ã
⇒ ϕ∗ ≈

√
1/ã , (A.15)

for which we find D(ϕ∗) ≈ 1/
√

eã and consequently Ccorr ≈ 0.23/
√
ã.

A.4 Calculations for electrode losses

Incident field and power

By using equations (3.24)-(3.29) in the Fourier expansion of the incident field, we
find

E
(in)
z′ (k′) =

−iω

κ⊥

√
ac(d+ ac)ξ̃e

−κ⊥dBz(0)

∞∫
−∞

dx
e−κ⊥(d+ac)(

√
1+x2−1+ik̃x)

(1 + x2)3/4︸ ︷︷ ︸
F

,

where we have substituted x = z′ sin θ/(d + ac) and k̃ = (k′ − nck cos θ)/(κ⊥ sin θ).
The integral F can be estimated by applying the method of steepest descents, using
κ⊥(d+ ac)� 1 and d ∼ κ−1

⊥ � ac, which yields

|F | ≈
√

2π/(d+ ac)κ⊥e−κ⊥(d+ac)|k̃| (A.16)

for |θ| � 1 and is maximized by k′ = k for small angles.

The calculation of the incident power involves the integral

ac=3.83/γ∫
0

rJ2
1 (γr)dr =

1

γ2

3.83∫
0

xJ2
1 (x)dx ≈ 1.19

γ2
. (A.17)
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Scattered power

We integrate the energy flux through the surface of a cylinder with radius R∗ → ∞
that encloses the electrode. The component of the energy flux perpendicular to the
cylinder surface for scattered wave with z′-dependence eik′z′ is given by

〈r̂′ · ~S〉 =
1

2
<{r̂′ · ( ~E × ~H)} =

1

2
<
{

icε0k

k′2 − k2

∂E
(s)
z′

∂r′
E

(s)
z′
∗
}
. (A.18)

We further use the far field and near field approximations

H
(1)
0 (x) ≈ i 2

π lnx x� 1, , (A.19)

H
(1)
0 (x) ≈

√
2/πx exp [i(x− π/4)] x� 1 , (A.20)

so that by using the abbreviation κ̃ =
√
k2 − k′2 we have at the cylinder surface

E
(s)
z′ (k′) ≈ −E(in)

z′ (k′)
2

π

1√
κ̃R∗

eiκ̃R∗

i 2
π ln(κ̃R)

, (A.21)

∂

∂r′
E

(s)
z′ (k′)

∣∣∣∣
r′=R∗

≈
[
iκ̃− 1

2R∗

]
E

(s)
z′ (k′) . (A.22)

The φ′-integration immediately gives 2πR∗, since the only scattering mode consid-
ered here does not depend on ϕ′. The integration along the electrode axis is carried
out in k′-space, so that we have

Ps = 2πR∗

k∫
−k

dk′

2π
〈r̂′ · ~S〉

=
π

4
cε0

k∫
−k

dk′

2π

k|E(in)
z′ (k′)|2√

k2 − k′2 ln2 [(k2 − k′2)R]
. (A.23)

An upper bound for the scattered power is given by substituting |E(in)
z′ (k′)| with its

maximum in {−k, k} and pulling it out of the integral, giving

Ps . πcε0max
{∣∣∣E(in)

z′ (k′)
∣∣∣2}∣∣∣∣

|k′|≤k
2

k∫
0

dk′
k

(k2 − k′2) ln2 [(k2 − k′2)R2]︸ ︷︷ ︸
I

(A.24)

The integral I can be estimated after some substitutions x = 1
2(1− k′

k ), u = lnx
ln(2kR) ,

and α = − ln(2kR)� 1 which transforms I to

I =
1

α

∞∫
(ln 2)/α

du

1− e−αu
[
u− 1

α ln(1− e−αu) + 2
] . (A.25)
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By taking now the limit α→∞, which corresponds to the sub-wavelength condition
for the electrode radius kR→ 0, we find

I ≈ 1

α

∞∫
0

du

(u+ 2)2
=

1

2| ln(2kR)| . (A.26)

Absorpted power

Using (3.24) in (3.43) we find

Pa ≈ πRσ
ω2

γ
ξ2ac sin θe−2κ⊥d|Bz(0)|2

∞∫
−∞

dx
e−2κ⊥(d+ac)(

√
1+x2−1)

(1 + x2)3/2︸ ︷︷ ︸
J

, (A.27)

where we again substituted x = z′ sin θ/(d + ac). The integral J can again be
estimated by the method of steepest decents for 2κ⊥(d + ac) � 1, which yields
J ≈ (κ⊥(d+ ac)/π)−1/2.

A.5 Derivation of the reduced master equation

Inserting the identity 1 = P +Q in (4.11) and projecting yields coupled equations
for the relevant and the irrelevant part

P ρ̇ = PLPρ+ PLQρ , (A.28)

Qρ̇ = QLPρ+QLQρ . (A.29)

The formal solution for the irrelevant part reads

Qρ = T+e
∫ t
t0
QL(t′)dt′

t∫
t0

dτT−e
−

∫ τ
t0
QL(t′′)dt′′QLPρ , (A.30)

where we asumed that the systems state at initial time t0 satisfies Qρ(t0) = 0. In-
serting this into (A.28) yields the Nakashima-Zwanzig equation (4.21). Some useful
properties of the projection operators are

P2 = P , (A.31)

Q2 = Q , (A.32)

PQ = QP = 0 , (A.33)

In combination with the parts of the Liouvillian we find

PL0 = L0P = 0 , (A.34)

PL2 = L2P , (A.35)

⇒ PLQ = PL1Q , (A.36)

QLP = QL1P . (A.37)
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Identity (A.34) follows since Pρ is a steady state solution of L0 and (A.35) follows
directly by pulling L2 out of the trace Trc{.}. We continue by expanding the inte-
grand in (A.30)

T+e
∫ t
t0
QL(t′)dt′T−e

−
∫ τ
t0
QL(t′′)dt′′

= T e
∫ t
τ QL(t′)dt′

= eζ
2QL0Q(t−τ)

[
1 +O

(
1

ζ

)]
, (A.38)

which can be done since ζ2L0 contains the dominating negative real part. In the
next step we substitute τ ′ = ζ2(t− τ) to get

P ρ̇ = P
[
ζL1(ζ2t) + L2(ζ2t)

]
Pρ+PL1(ζ2t)Q

ζ2t∫
0

dτ ′eL0τ ′QL1

(
ζ2t− τ ′

)
Pρ(t−τ ′/ζ2) ,

(A.39)
where we also applied the given relations (A.34)-(A.37). Now we apply the limit
ζ → ∞ for which all fast rotating terms drop out and using (4.14) we arrive at
(4.22).

The double commutator in (4.24) yields different variations of the photon two-time
correlations, where the operators can be reordered using the identies:

Xjρ
(th)
c,j =

[
ρ

(th)
c,j Xj

]†
, (A.40)

L0Ô
† =

[
L0Ô

]†
, (A.41)

⇒
[
eL0τρ

(th)
c,j Xj

]†
= eL0τXjρ

(th)
c,j . (A.42)

Identity (A.40) directly follows for Hermitian operators, (A.41) can be calculated
considering the definition of L0 and (A.42) follows from that. Note that one has to
be careful with expressions containing super operators, since (LÔ1)Ô2 6= L(Ô1Ô2).
Therefore expressions are evaluated using right-associativity if there are no brackets.
The correlation terms that appear are

Trc

{
Xje

L0τXjρ
(th)
c

}
=
〈
Xj

〉
ρ̃

(τ) , (A.43)

Trc

{(
eL0τXjρ

(th)
c

)
Xj

}
=
〈
Xj

〉
ρ̃

(τ) , (A.44)

Trc

{
Xje

L0τρ(th)
c Xj

}
=
〈
Xj

〉∗
ρ̃

(τ) , (A.45)

Trc

{(
eL0τρ(th)

c Xj

)
Xj

}
=
〈
Xj

〉∗
ρ̃

(τ) . (A.46)

Here we used the given identities and defined the expectation value with respect to
ρ̃(τ) = eL0τXjρ

(th)
c 〈

Ô
〉
ρ̃

(τ) = Trc

{
Ôρ̃(τ)

}
. (A.47)
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The time dependence of ρ̃(τ) and therefore of
〈
Xj

〉
ρ̃

(τ) can be calculated since

˙̃ρ = L0ρ̃ , ρ̃(0) = Xjρ
(th)
c . (A.48)

We can now calculate
〈
Xj

〉
ρ̃

(τ) using

∂t
〈
aj
〉
ρ̃

(τ) = (i∆j − κj/2)
〈
aj
〉
ρ̃

(τ) , (A.49)〈
aj
〉
ρ̃

(0) =
αj√
2|αj |

, (A.50)〈
a†j
〉
ρ̃

(0) = 0 , (A.51)

so that we find 〈
Xj

〉
ρ̃

(τ) =
1

2
e(i∆j−κj/2)τ (A.52)

from which equations (4.25) and (4.26) follow.

A.6 Derivation of Heff using an effective Schrödinger equa-
tion

The effective Hamiltonian (5.12) can be motivated by the derivation of an effective
Schrödinger equation. We consider a fast rotating interaction Hamiltonian,

HI(t) = eiH0t/~HIe
−iH0t/~ , (A.53)

where the fast time scale is in our example set by the laser detuning ∆� gG for the
photon mode that is part of H0 and the slow timescale is given by the optomechan-
ical couling at gG in HI. We consider the Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = HI(t)|ψ(t)〉 (A.54)

and its formal solution

|ψ(t)〉 = |ψ(t0)〉+
1

i~

t∫
t0

HI(t
′)|ψ(t′)〉dt′ , (A.55)

which we plug into the right side of (A.54) to get

i~
∂

∂t
|ψ(t)〉 = HI(t)|ψ(t0)〉+

1

i~
HI(t)

t∫
t0

HI(t
′)|ψ(t′)〉dt′ . (A.56)

We are now only interested in the dynamics of the slow time scales. As HI(t) is
fast rotating, we drop the first term and identify |ψ(t′)〉 ≈ |ψ(t)〉 as the fast oscilla-
tions leave the state nearly unchanged. This leaves us with an effective Schrödinger
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equation for the slow time scale from which we extract the effective Hamiltonian

Heff(t) ≡ 1

i~
HI(t)

t∫
t0

HI(t
′)dt′ . (A.57)

The lower integration limit amounts to an irrelevant intial value that only con-
tributes another fast rotating term.

A.7 Derivation of Heff by adiabatic eliminiation

The same result as above can be derived more rigorously by tracing out the cav-
ity degrees of freedom in the master equation description of the system, including
damping. In an interaction picture for the qubits this master equation reads

ρ̇(t) = L(t)ρ(t) , (A.58)

where we split the Liouvillian L(t) = L0 + L1(t) + L2,

L0 = i
[
∆a†a, ρ

]
+
κ

2
Da , (A.59)

L1(t)ρ = −i
√

2G0|α|
∑
nm,j

e−iδnm,jt
[
XcXnm,j |n〉j〈m|j , ρ

]
, (A.60)

L2 =
γm

2

∑
j

{
(n+ 1)Dbjρ+ nD

b†j
ρ

}
. (A.61)

We again consider the Nakashima-Zwanzig equation of motion for the relevant part,
compare section 4.5, equation (4.21)

P ρ̇ = PL(t)Pρ+PL(t)

t∫
0

dτT+

[
e
∫ t
0 dτ ′QL(τ ′)Q

]
T−
[
e−

∫ τ
0 dτ ′′QL(τ ′′)Q

]
QL(t)Pρ .

(A.62)
Following the same procedure as in section 4.5, we arrive at the equation corre-
sponding to equation (4.27) in that section

PL1(t)

t∫
0

dτ ′eL0τ ′QL1(t− τ ′)Pρ(t− τ ′) = (A.63)

−2G2
0|α|2

∑
ij

∑
nmlk

e−i(δnm,i+δlk,j)tXnm,iXlk,j

t∫
0

dτ ′e−iδlkτ
′× (A.64)

× Trc

{[
Xc|n〉i〈m|i,

[
eL0τ ′Xc

(
|l〉j〈k|j

)
,Pρ

]]}
. (A.65)
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After using again the cavity two-time correlation function (4.25), we can rearrange
the real parts and imaginary part of (A.65), contributing to the unitary time evolu-
tion and damping, respectively. The resulting reduced master equation for the state
of the qubit register reads

µ̇ ≈− i

~

∑
j

Hm,j + H̃G + H̃S, µ

+ L2µ

+
∑
nm

Anm
∑
ij

[
2|n〉〈m|iµ|m〉〈n|j − |n〉〈m|i|m〉〈n|jµ− µ|n〉〈m|i|m〉〈n|j

]
(A.66)

where

H̃G = ~
∑
nm

2∑
i,j=1

G2
0|α2|

(∆− δnm,j)X2
nm,j

(∆− δmn,j)2 + κ2/4
|n〉〈m|i |m〉〈n|j ≈ HG , (A.67)

H̃S = ~
∑
nm

∑
i,j>2

G2
0|α2|

(∆− δnm,j)X2
nm,j

(∆− δmn,j)2 + κ2/4
|n〉〈m|i |m〉〈n|j ≈ HS . (A.68)

and the cavity induced decoherence rates, similar to the cooling/heating rates in
section 4.5, are given by

Anm = 2G2
0|α|2X2

nm

κ

(∆− δnm)2 + κ2/4
≈
g2

G/Sκ

∆2
. (A.69)

The corrections to the effective Hamiltonian 5.13 are of order κ2/∆2 since

(∆− δnm)

(∆− δmn)2 + κ2/4
+

(∆ + δnm)

(∆ + δmn)2 + κ2/4
≈ ∆

∆2 − δ2
nm

(
1 +O

( κ
∆

)2
)
, (A.70)

and the cavity induced decoherence rates are small as long as κg2
G/∆

2 � ωG.
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