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Abstract

In the present thesis the design and analysis process for tensile structures is dis-
cussed from a numerical point of view. The special characteristics of the load
bearing behavior of tensile structures introduce the necessity of adapted numeri-
cal methods for the individual design and analysis steps. The required governing
equations are formulated based on continuum mechanics. Therefore, standard nu-
merical strategies, e.g. the Finite Element Method, can be applied for the solution
of the governing equations. In addition, there are strong interactions between the
individual design steps. These interactions are discussed in detail and the effects on
the numerical results are presented.

Because of the slenderness of tensile structures external loads are only restrained
by in-plane stresses. Therefore, a feasible design has to be found which satisfies the
requirements from an engineering and architectural point of view. Based on a prede-
fined stress distribution and various boundary conditions, the shape of equilibrium
is evaluated in the design step of form finding. For the solution of this numerically
inverse problem, the Updated Reference Strategy is applied. After a detailed dis-
cussion of this method, an extension can be presented which is introduced as the
eXtended Updated Reference Strategy. The integration of elastic elements in a ten-
sile structure can be introduced as a hybrid structure. Based on this definition, the
effects on the numerical form finding process are discussed in detail for this type of
structures.

The shape of equilibrium is the basis for the subsequent design steps. In the struc-
tural analysis the behavior of the tensile structure based on external loads will be
evaluated. In this thesis the general numerical process for the transient and steady
state case is discussed. For the numerical modeling, different finite elements have
to be applied. Therefore, a set of typical elements are discussed in detail and a
general discussion on other types of elements is given. In addition, the special char-
acteristics of external loads w.r.t. large deformations of tensile structures are shown.

In general, tensile structures are double curved surfaces which introduce the ne-
cessity of a cutting pattern generation for the manufacturing. Based on the gen-
eral discussion of the underlying mechanical problem the principle of the Variation
of Reference Strategy is introduced. Here, the resulting stresses from the assem-
bly process and the intended stress distribution are minimized in order to evaluate
the cutting patterns. Besides the discussion of the solution process of the govern-
ing equations, the introduction of requirements from the manufacturing process is
shown. In addition, a discussion on the sensitivities of the cutting pattern generation
process is given.

The individual design steps can be combined to two principal design approaches.
The standard and the extended design approach are discussed in detail and the re-
spective effects on the numerical results are presented. The integration of elastic
elements in the presented design approaches is shown and a detailed discussion of
the effects on the numerical modeling for hybrid structures is given. Hence, an in-
tegrated numerical design and analysis process is introduced for the simulation of
arbitrary tensile structures.



Zusammenfassung

In der vorliegenden Arbeit wird der Entwurfs- und Berechnungsprozess von Mem-
brantragwerken aus numerischer Sicht betrachtet. Das besondere Lastabtragverhal-
ten von Membrantragwerken erfordert angepasste numerische Methoden fiir die
einzelnen Entwurfs- und Berechnungsschritte. Die beschreibenden Gleichungen wer-
den hierbei aus einer kontinuumsmechanischen Sichtweise abgeleitet. Dies ermog-
licht den Einsatz von numerischen Standardverfahren, wie der Methode der Finiten
Elemente, zur Losung der beschreibenden Gleichungen. Zusitzlich konnen Inter-
aktionen zwischen den einzelnen Entwurfs- und Berechnungsschritten identifiziert
werden. Diese Interaktion werden im Detail diskutiert und die sich hieraus ergeben-
den Effekte auf die numerischen Ergebnisse vorgestellt.

Auf Grund der extremen Schlankheit von Membrantragwerken erzeugen duflere
Lasten ausschlieBlich Spannungen in der Tangentialebene. Daher muss ein Ent-
wurf gefunden werden, der sowohl den Anforderungen aus ingenieurtechnischer
wie auch aus architektonischer Sicht geniigt. Basierend auf einem vordefinierten
Spannungszustand und verschiedenen Randbedingungen wird im Entwurfsschritt
der Formfindung die Gleichgewichtsfliche gefunden. Das hierbei vorhandene nu-
merisch inverse Problem wird mittels der Updated Reference Strategy gelost. Auf-
bauend auf der detaillierten Diskussion dieser Methode wird die eXtended Upda-
ted Reference Strategy als Erweiterung vorgestellt. Die Integration von elastischen
Strukturelementen in Membrantragwerke wird als hybride Tragwerke eingefiihrt.
Mit dieser Begriffsdefinition werden fiir diese Tragwerke die Einfliisse auf den nu-
merischen Formfindungsprozess im Detail diskutiert.

Die Gleichgewichtsfliche stellt die Basis fiir die weiteren Entwurfsschritte dar. In
der Strukturanalyse wird das Verhalten der Membrantragwerke bzgl. duf3erer Lasten
berechnet. In der vorliegenden Arbeit wird der allgemeine numerische Prozess hin-
sichtlich transienter und stationdrer Fille diskutiert. Fiir die numerische Simulation
werden hierfiir verschiedene Finite Elemente angewendet. Daher werden typische
Finite Elemente im Detail beschrieben und weitere in einer allgemeinen Diskussion
behandelt. Zusitzlich wird der Einfluss der groBen Verformungen eines Membran-
tragwerks auf die dufleren Lasten detailliert diskutiert.

Im Allgemeinen weisen Membrantragwerke eine doppelte Kriimmung auf, wel-
che die Notwendigkeit einer Zuschnittsermittlung fiir den Herstellprozess begriin-
det. Aufbauend auf der grundlegenden Diskussion der mechanischen Fragestellung
wird das Verfahren der Variation of Reference Strategy vorgestellt. Hierbei wird
der Unterschied zwischen den sich ergebenden Spannungen aus dem Herstellpro-
zess und den vordefinierten Spannungen minimiert, um die Zuschnitte zu ermitteln.
Neben der Diskussion des eigentlichen Losungsprozesses der beschreibenden Glei-
chungen, werden Nebenbedingungen, die sich aus dem Herstellprozess ergeben,
miteinbezogen. Erginzend werden die Sensitivititen des Prozesses der Zuschnitts-
ermittlung vorgestellt und diskutiert.

Die einzelnen Entwurfsschritte konnen prinzipiell zu zwei verschiedenen Entwurfs-
ansitzen kombiniert werden. Der gewohnliche und der erweiterte Entwurfsansatz
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werden detailliert diskutiert und die Effekte auf die numerischen Ergebnisse wer-
den dargelegt. Die Integration von elastischen Elementen in den Entwurfsansatz
wird aufgezeigt und die grundsitzlichen Effekte auf den numerischen Simulations-
prozess werden angegeben. Somit wird ein integraler numerischer Entwurfs- und
Berechnungsprozess fiir die Simulation von beliebigen Membrantragwerken vorge-
stellt.
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CHAPTER 1

Introduction

"Leichtbau ist eine Forderung unserer Zeit... Leichtbau muf; in immer stirkerem
Mapse fiir alle Bauteile gefordert werden, die aus knappen Baustoffen gefertigt wer-
den..." (engl. "Lightweight construction is a requirement of our time... Lightweight
construction has to be required increasingly for all structural components which are
made of limited building materials...") [Leo40]. This quote from Fritz Leonhardt,
one of the most important pioneers in modern civil engineering, was written in 1940
in a totally different social period. However, in the context of modern discussions
and needs for the construction of sustainable and efficient buildings the formulated
requirements are still valid. The principles published by Fritz Leonhardt can be
mentioned as milestones in modern lightweight design for all types of construction
methods in civil engineering [Web11]. Based on the requirements of Fritz Leon-
hardt different effects on the individual construction methods have to be discussed.
In general the main motivation is the minimization of material which is used to
build a certain structure. The most appropriate method to meet the requirement of
minimization of used material is that of tensile structures. Tensile structures are
lightweight structures, which combine optimal stress state of the material with an
impressive design vocabulary. In the following a brief introduction to this fascinat-
ing type of structures will be given to motivate a detailed discussion related to the
open questions in the numerical design and analysis of tensile structures.

1.1 Motivation

One of the most important innovations for the development of tensile structures
was around 60’000 B.C. [Hop07]. With the innovation of the needle, humans were
able to manufacture textiles and mesh works, which are used to cover the sleeping-
place or fire pit. In principle these were the first tensile structures. Of course, there
was still a long path ahead in developing a tensile structure of the sort that will be
discussed in the following chapters. More professional, and based on early "engi-
neering" experience built tensile structures are nomad living tents or roman tents
for military camps. Also small scale tents like canopies or awnings were important
sources of experience in the development of engineering methods for tensile struc-
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tures. Another not less important area of application for the progression of tensile
structures are sails for ships. All of these types of structures were the beginning of
experience and innovations for the modern state of the art methods for designing
tensile structures (cf. figure 1.1) The main advantage of tensile structures in antiq-

Figure 1.1: Early tensile structures (top left: Canopy on a bazaar in Bahrain
[Koc04]; top right: Sail ship [Ber05]; bottom left: Nomad tent [Rob96]; bottom
right: Figure of roman military tents [Koc04])

uity was the minimal weight effort for a certain application, due to their needs of
mobility, simple assembly and flexibility. Of course, these arguments are still valid
for modern tensile structures.

Through the centuries the applications of tensile structures didn’t change much.
They were mostly used for temporary tents and roofs. The limitation of permanent
applications, was due to the lack of appropriate materials, which have an acceptable
long term behavior. With the innovation of new materials for industrial products,
the possibilities for architectural tensile structures changed fundamentally. Materi-
als which were made of fabric and a protective coating, made tensile structures also
interesting for long term architectural buildings. Of course their advantage, in terms
of minimization of material needed, is still an interesting point in the current dis-
cussion on limited resources. New materials like PTFE (polytetrafluoroethylene),
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coated woven glass fibers or foils made of ETFE (ethylene tetrafluoroethylene) are
the most common materials in modern tensile structures. A detailed discussion on
current materials used in tensile architecture can be found in [Mor00], [Koc04],
[Sei08], [Kni+11].

Based on these new possibilities created by newly available materials, architects
and engineers have been started to think in new ways and applications. There are
many architects and engineers to be named who were responsible or had an impor-
tant impact on this development. However, the most outstanding contribution to
this type of structure was made by Frei Otto at the University of Stuttgart. Frei Otto
was consistently introducing the basic ideas of Fritz Leonhardt into tensile archi-
tecture. Most probably, without knowing his paper mentioned above. The work of
Frei Otto is discussed in detail in [OR95], [Sch90]. Some of the most important and
groundbreaking structures were designed by Frei Otto. The roof of the Olympic
stadium in Munich or the Tanzbrunnen at the Bundesgartenschau in Cologne are
just two examples of the impressive number of tensile structures which Frei Otto
was involved (cf. figure 1.2). Of course, there are many more pioneers who can be
named such as Richard Buckminster Fuller, Edmund Happold, Ludwig Stromeyer
or Jorg Schlaich. The groundbreaking work of these pioneers inspired modern ar-

Figure 1.2: Tensile structures designed by Frei Otto (left: Tanzbrunnen in
Cologne 1957 [Sch90]; right: Roof of the Olympic stadium in Munich 1972
(Architect: Behnisch & Partners) [Sch90])

chitects and engineers to design more challenging structures which are built all over
the world. The Expo-Axis in Shanghai or the Bangkok international airport are
examples of the current state-of-the-art tensile structures (cf. figure 1.3). Detailed
reviews of modern tensile architecture can be found in [Sei08], [Ber05], [Koc04],
[Kni+11], [Hop07], [Rob96], [Sch97].

Despite the innovations in modern materials, the design process for tensile struc-
tures were still mainly based on experiments and experience. The main merit of
Frei Otto’s work is the ability to transfer the experimental based models of a tensile
structure to the final real scale. The developement of numerical methods which were
appropriate for the design and analysis of these structures began with the design of
the Olympic stadium in Munich in 1972. The well known Force Density Method,
which was introduced by Klaus Linkwitz at the University of Stuttgart in 1971, was
the first numerical method fitted for the special requirements in the design process
of tensile structures [LS71]. As the Force Density Method is limited to cable nets,
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Figure 1.3: Modern tensile structures (left: Expo axis in Shanghai (copyright:
Knippers Helbig - Advanced Engineering); right: Bangkok international airport
(copyright: Werner Sobek Group GmbH))

in [HP72] and [Hau72] the principles for the analysis including cables and mem-
branes are presented. Most of the numerical methods, which were developed in
the following, are based on the ideas which were introduced in the Force Density
Method. The development of numerical methods for tensile structures based on the
Finite Element Method (FEM), introduced in the 1960s, were not continued in the
same intensity. The introduction of methods based on the FEM were done with
the application of the Dynamic Relaxation Method for tensile structures [Bar74],
[Bar88]. However, the development of appropriate numerical methods were not
as proceeding as experimental methods. Despite modern computational methods
there are still open questions in the numerical modeling of tensile structures. Form
finding, cutting pattern generation, transient load conditions (e.g. wind loads) and
appropriate material modeling introduce questions which have to be discussed. Ad-
ditionally, current tensile structures are more and more combined structures, where
the supporting frame and the tensile itself influence each other. Therefore, all of the
structural members have to be considered in one computational model. This intro-
duces additional efforts in the numerical modeling of the tensile structure. In the
following chapters a contribution to the available methods for the numerical design
and analysis of tensile structures will be done.

1.2 Objective and Outline

The objective of the present thesis is to contribute to the numerical modeling of the
design and analysis process of tensile structures. In contrast to "conventional" struc-
tures (e.g. steel frames, concrete slabs) the overall shape and the structural capacity
are strongly coupled in the case of tensile structures. In addition, the structural
behavior of tensile structures differs fundamentally from "conventional" structures
as they have a negligible bending stiffness. Due to that, appropriate and specific
computational methods have to be applied. As a consequence, the individual design
steps interact with each other and have to be understood as an integrated design and
analysis loop.

In general the design and analysis steps of a tensile structure can be divided into
form finding, structural analysis and cutting pattern generation [GB09]. In this the-

4
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sis the individual design and analysis steps are going to be discussed in a separated
from. For each step, adapted computational methods will be presented. The derived
governing equations for the individual task will be solved by the Finite Element
Method. Based on the discussion of existing approaches, improvements for all de-
sign steps are going to be depicted. The extensions for the available methods will be
purely derived from continuum mechanics and numerical optimization. Therefore,
it is ensured that the derived extensions are general and flexible for the application
of tensile structures. Because of the fact that modern tensile structures have to be
more and more computed together with the supporting frames, due to the structural
interaction, the impact of these "conventional" structural elements in the design and
analysis process is going to be discussed.

Based on the individual design and analysis steps, possible design loops will be
presented. In common practice the design of a tensile structure starts with identify-
ing a satisfying form from an architectural point of view. The solution of the form
finding problem is the underlying mechanical question. This step has to be repeated
until all architectural and engineering requirements are satisfied. Subsequent to the
form finding, the engineer is performing a structural analysis w.r.t. certain load
conditions (e.g. wind and snow load) which is followed by the decision about the
layout and the computation of the cutting patterns. The individual steps are repeated
as long as all of the architectural and structural requirements are fulfilled. From an
engineering point of view the natural requirements are the limit stress in the struc-
tural members, the supporting forces and the overall deflection of the structure.

In this design loop it is common practice to exclude the supporting frame during
the computation of the tensile structure and apply the resulting boundary forces to
the elastic supporting members. It is obvious, that this standard approach neglects
some important effects on the final structural behavior of the tensile structure, such
as the influence of the flexibility of the supporting frames or the change of stress
distribution due to the non-developability of the doubly curved shape. The integra-
tion of these influences leads to the extended design approach shown in figure 1.4.
Here, an integrated numerical design and analysis approach for tensile structures is
proposed. Because of this approach, a more accurate structural assessment can be
achieved. Of course, this extended design approach includes some difficulties for
the design process. For instance, to include the influence of the non-developability
into the structural analysis, the layout of the cutting patterns have to be set in an
early phase of the design process. In the present thesis the result of the two avail-
able design loops w.r.t. the final structural behavior of the tensile is going to be
discussed.

In addition to the discussion of the individual design loops and the included de-
sign steps, the definition of the demands at the transitions between the individual
design steps is a crucial discussion. At a first glance it seems that the requirements
at the interfaces between the individual design steps are clear and well defined, but
it will be shown that there are different possibilities of handling the requirements at
the interfaces from a mechanical point of view, which results in a different structural
response of the tensile structures.
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The present thesis will include a detailed discussion on the individual disciplines
which are needed to develop an integrated state-of-the-art numerical design and
analysis process for tensile structures. Starting with the discussion of the funda-
mentals from differential geometry and continuum mechanics, the individual design
steps are going to be presented and will result in a discussion of the overall design
loops and their consequences. The structure of the presented thesis is outlined as
follows:

Chapter 2 includes the fundamentals which are needed for the numerical descrip-
tion of tensile structures. In the beginning the basics from differential geometry will
be depicted in order to have the possibility of the mathematical description of sur-
faces in a 3 dimensional space. With the basics from the geometrical description of
tensile structures, the governing equations from continuum mechanics are derived.
In this chapter the main focus is on the governing equations for strains and stresses
for a geometrical nonlinear behavior of the structure. In addition, a discussion of
the currently used material models is given. Subsequently the governing equations
for the equilibrium in steady state and transient conditions will be derived and the
solution techniques in combination with time and space discretization will be de-
picted.

Chapter 3 describes the beginning steps of designing a tensile structure. Form find-
ing is the first step to a feasible design. As form finding is exclusively a design
step for tensile structures, an answer to the question What is form finding? will be
given. Based on the description of the underlying mechanical problem, a solution
technique, called the Updated Reference Strategy, introduced in [BR99], will be
presented. With the discussion and presentation of additional enhancements to this
method, e.g. handling of anisotropic prestress distributions, an extension towards
the mathematically consistent solution of the form finding problem will be intro-
duced. At the end, a discussion of the influence of the integrated form finding of
tensile and supporting structure completes this chapter.

Chapter 4 contains the description of the process of structural analysis. Begin-
ning with the governing equations for the structural analysis in transient and steady
state conditions, different finite elements will be formulated. The main focus in
this chapter is on the presentation of all required element types, which have to be
available for state of the art tensile structures. Based on benchmark examples, the
individual requirements for the structural analysis will be presented. Subsequently,
special effects from follower forces (e.g. wind loads) resulting in the formulation
of the equilibrium conclude this chapter.

Chapter 5 addresses the topic of cutting pattern generation. Here, the principal
problem of computing plane patterns for a doubly curved surface is addressed. The
main objective is to develop a doubly curved surface into a plane with the fewest
compromises possible w.r.t. the resulting stress distribution after the assembly of the
tensile structure. In this chapter a method based on ideas from structural optimiza-
tion [LWBO08] is going to be presented. Starting with a discussion of the principles
of the method, extensions to apply the method on state of the art tensile structures
will be presented. Additionally, a discussion of the sensitivity of the resulting cut-
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ting patterns w.r.t. different input parameters is included.

Chapter 6 contains the description of the different possible design loops. Besides
the basics of the individual design loops, a discussion of the results in the structural
response of the tensile structure is also included. A standard and extended design
loop are discussed from a mechanical point of view. Especially the different pos-
sibilities in describing the equilibrium through all the design stages. The influence
of including the supporting structures in the design loops will be discussed as well.
The special requirements on the numerical methods will be shown and the principal
results and differences from a mechanical point of view will be presented. A dis-
cussion of the requirements of the individual interfaces concludes this chapter.

Chapter 7 a collection of different projects, in which the presented methodologies
are applied will be shown. The principle applicability for the design and analysis of
tensile structures of the derived and introduced methods is presented.

Chapter 8 concludes the present thesis with a discussion of the introduced methods
for the design and analysis of tensile structures. Finally, pending research topics
will be reviewed to ensure that this thesis will be an inspiration for further research
on the topic of the numerical design and analysis of tensile structures.

Remark: All numerical results in the present thesis were obtained by the research
code Carat++.



CHAPTER 2

Fundamentals

In this chapter, the fundamentals for the geometrical and mechanical description of
tensile structures will be given. In the beginning there is a brief discussion of the as-
pects of numerical modeling. The geometrical description of surfaces in 3D-space
is an elementary topic to comprehend the mechanical behavior of tensile structures.
For this purpose a discussion of the most important definitions and equations from
differential geometry is included in this chapter. On this basis it is possible to de-
pict the mechanics of tensile structures. In general, they have small thickness and
undergo large deflections, which introduce the requirement to the underlying me-
chanical descriptions to be able to cover the full appearing kinematic. Hence, a brief
discussion of the most important content from tensor calculus for the description of
the mechanics of large deformations is included. Combining differential geometry
and tensor calculus, it is possible to introduce strains and stresses into continuum
mechanics to describe the behavior of tensile structures in an appropriate form. In
order to complete the discussion on the mechanical characteristics, some comments
on the material modeling are included as well. With the principles from differential
geometry and continuum mechanics, the governing equations for the equilibrium
will be derived. Based on a description for the discretization in time and space, a
solution technique for the obtained equilibrium equation is included in this chapter,
as well.

2.1 Numerical Modeling

The geometry of a tensile structure is embedded in the 3 dimensional space. There
are two main lengths L x and Ly which define the overall shape. The third length
defines the thickness Lz of the shape (cf. figure 2.1). In general, the thickness of
a tensile structure is much smaller in comparison to the other two main lengths and
is in general assumed to be constant all over the surface. The applied materials for
tensile structures are highly advanced and most adapted for the special application
of architectural applications. Fabric materials like PTFE or foils like ETFE have
an complex micro structure, containing fibers and coating in case of PTFE. From
a numerical point of view it would be possible to model the material in its details,
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Figure 2.1: Length-to-Thickness ratio for a tensile structure

starting from its micro structure and including this into the full scale computation of
the tensile structure [STT95], [KJS05], [XN11], [ZP06]. It is obvious that the effort
for the solution process of the resulting numerical model is highly time consuming.
The advantage from this approach is that the results are more detailed and precise.
The application of this approach is most appropriate if a detailed analysis of a small
scale structure has to be done. The simulation of car body parts made out of carbon
fiber reinforced plastics is just one example for the application of this approach. In
the case of architectural tensile structures this approach can’t be applied because
of the time effort required for the numerical solution process and the variation in
the material properties. It is more suitable to introduce models which are able to
describe the material behavior in a homogenized way. For this, the assumption is
introduced that for a certain piece of material the properties are constant all over the
volume.

With the assumption of a small thickness and a homogenized material it is pos-
sible to reduce the numerical model from a full continuum to a description of the
mid surface of the tensile structure [Bis+04]. In figure 2.2 the steps for the numer-
ical modeling of homogenization and dimension reduction are illustrated. For the
step of dimension reduction the following assumption is introduced additionally: If
measuring the stresses at a certain point through the thickness, the change will be
negligible. Hence, it is assumed that the stress doesn’t change through the thick-
ness. In general, this stress situation is called membrane stress state. Therefore,
tensile structures are often also described as membrane structures. In this thesis
both names are valid and understood as equivalent.It is also assumed that the tensile
structure has no bending stresses, as they would result in a change of the normal
stresses through the thickness.

2.2 Tensors

In this section an introduction to tensor calculus will be given. For the geometrical
and mechanical description of tensile structures, tensors are the most appropriate

10
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Physical Model

Homogenization

Dimension reduction

/ Homogenized model

Numerical model

Figure 2.2: Numerical modeling steps for a tensile structure

quantities. With the introduction of tensors in the governing equations it is possible
to reduce the complexity and state them in a compact form. The following content
from tensor calculus is not a complete discussion of the topic, just the most relevant
calculation rules will be depicted.

Of course, in the beginning the question arises "What is a Tensor?". The answer
to that question can be found in [Kds64]: Sdmtliche Grofien der Physik sind Ten-
soren (engl.: All physical quantities are tensors). Tensors in general are quantities
which can be represented by their individual values (here: coefficients) and their
directions (here: base vectors). For a detailed introduction to the topic of tensor
calculus, many sources are available (e.g. [Bet87]). In general, there is a distinction
between different types of tensors:

Zero-Order Tensor: Objects which consist of a scalar value without a certain di-
rection (e.g. density of a material, temperature, etc.)

First-Order Tensor: Objects which consist out of coefficients where each is re-
lated to a certain direction. For instance, a vector v is a first order tensor. It can be
given in terms of its coefficients v and the related directions e;. The directions of
the tensor are referenced as the base vector of the tensor. These can be understood
as the coordinate system in which the tensor is defined. It is important to state that
the tensor itself is invariant to the change of the coordinate system. In principle
the coordinate system can be chosen arbitrarily, but of course the coefficients of
the tensor are changing through the change of the coordinate system. Examples for
first-order tensors are geometrical vectors, force vectors, etc..

Second-Order Tensor: Objects which can be represented by coefficients and two

11
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base vectors. A second-order tensor T can be obtained by the dyadic product, or
tensor product, of the two vectors a and b:

T=a®b=(de)® (Ve;) =d'bte e =T e; ®e; 2.1
Here, the tensor product is introduced by ®. In equation (2.1) the vectors e; and e;
represents the Cartesian base vectors. For the example of the second-order tensor
T it would be stated that the tensor is defined in the dimension of the vectors a and
b [Hol00]. It is also possible to define the tensor T in terms of its coefficients and

base vectors. In the following example the mathematical operation related to the
tensor product is shown.

Example: The dyadic product of the tensors a and b can be computed as:

ax aibr  aibz aibs
a®b=|as [bl bo bg] = |as2b1 acby asbs
as asb1  aszbz asbs

Additionally, in equation (2.1) the Einstein summation convention is introduced
[BZ13], [Haz88]. According to the Einstein summation convention a summation
is carried out over an identical super- and subscript index appearing in the same
equation. In order to describe this operation the following example shall explain the
application of the Einstein summation convention.

Example: The Einstein summation convention is evaluated for the example:

3
Zaibi = aibi = Cblbl —+ a2b2 —+ a3b3

1=1

In the following chapters the assumption is made, that in case of Latin letters it will
be summarized from 1 to 3 (z € 1,2,3) and in case of Greek letters from 1 to 2
(a€1,2).

Higher-Order Tensor: Objects which can be represented by coefficients and n
base vectors. The resulting tensors are stated as nt"-order tensors (e.g. Elasticity
Tensor).

In order to distinguish between the different types of tensors, zero-order tensors
will be written in plain letters and all higher order tensors (e.g. first, second, etc.)
in bold letters. A further distinction is made between first order tensors, which will
be written in small letters, and higher order tensors, which will be written in capital
letters.

12
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2.2.1 Tensor Calculus

Based on the given definitions, tensors will be introduced in the geometrical and
mechanical description of tensile structures. For this purpose, detailed knowledge
of tensor calculus is required. Therefore, a basic introduction to the topic will be
given. Of course, this introduction just addresses the most important definitions
which are used in the following chapters. There exists a wide range of literature for
a detailed study of the topic. The later stated definitions and equations can be found
in [Alt12], [Hol00], [Par03], [Chal4], [K1i93], [Bas00], [BetO1] .

Summation and multiplication of tensors: The properties for the summation of
tensors are mainly coincident to the properties which are known from ordinary arith-
metic.

The commutative rule:
A+B=B+A 2.2)

In general, the dot product of tensors isn’t commutative:

AB # BA (2.3)
The associative rule:
(A+B)+C=A+(B+C) 2.4)
(AB)C = A(BC) (2.5)
Multiplication by scalars:
aA = (aA) = a(A) (2.6)

Single and Double Contraction of Tensors: The single and double contraction
are scalar products for tensors. It will be obtained by the scalar product of the base
vectors of the tensor.

Single contraction:

A-u= (Ai‘jei ® ej) . (ukek) = Aijukgjkei = Aijujei (2.7)
As aresult of the single contraction, the order of the tensor will be reduced by one.
In the example given in equation (2.7) it can be seen that the second order tensor A

will be transformed into a first order tensor by the single contraction.

Double contraction:
A:B=(A; ®ej): (B™en @ey)
= AYB™ (eiem)(ejen) (2.8)
= Aiijngimgjn = Am'ann = A”Bzg
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The order of the resulting tensor of a double contraction will be decreased by two.
For the given example in equation (2.8) the reduction of the second-order tensor A
by the double contraction with the second-order tensor A can be seen. The resulting
tensor is reduced to a zero order.

Calcualtion rules for dyads and contractions: For the derivation of the governing
equations in the later chapters, particular calculation rules for dyadic products as
well as for single and double contractions are applied. The following list of equa-
tions specify the most important rules which are used in the following chapters.

Calculation rules for dyadic products:

ARB#B®A 2.9
u(vew)=(uv)w (2.10)
(V) (wex)=(vw)u®x 2.11)
Calculation rule for single contraction:

(AB)" =BT A" (2.12)

Calculation rules for double contraction:
A:(BC)=(B"A):C=(AC"):B (2.13)
A:(B+C)=A:B+A:C (2.14)

For the special case that tensor A is symmetric:

A:B=A:BT (2.15)

Transformation of coefficients of tensors: In the later chapters all tensors are
represented in terms of coefficients and base vectors. For the derivation of the gov-
erning equations it is essential to be able to represent a tensor in different coordinate
systems w.r.t. different base vectors respectively. In order to be able to transform
tensors into different base systems, below a general approach for this purpose will
be illustrated. The basic idea behind the derived transformation rule is based on the
previous definition of a tensor (cf. section 2.2), which states that a tensor is invariant
w.r.t. the chosen coordinate system. The same tensor can be represented by differ-
ent coefficients and respective base vectors. In order to obtain the transformation
rule, a second order tensor A should be represented by two tensors with different
coefficients and base vectors.

The second order tensor A will be represented w.r.t. two different covariant base
vector systems u; @ u; and v; ® v;. Due to the equivalence of the tensor represen-
tation the tensor A can be obtained by the multiplication of the different coefficients
and the respective base vectors:

A=v"u@u; =v9v; Qv (2.16)
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If assuming that one representation of the tensor is already given (e.g. v*v; ® v; is
given) the coefficients of the second representation can be evaluated. The idea un-
derlying the derivation of the transformation rule is to cancel out the base vectors of
the unknown coefficients. This can be achieved by multiplying the equation (2.16)
with the counterpart of the base vectors from both sides (here the contravariant base
vectors u’ and u’). For the computation of the unknown coefficients, additionally
equation (2.22) and equation (2.10) have to be applied. Finally, the transformation
rule for the coefficients v* into u"’ can be formulated as follows:

uu™(u; @ uj)u” = v7u™(v; @ v;)u”
u (0™ u;)(uu") = v (u"v;) (v u’)
w576, = v (u"vy) (v u”)

™" = v (W) (v u”)

(2.17)

In the derivation of equation (2.17) the contravariant base vector as well as the
Kronecker Delta 67 are introduced. A detailed explanation of these quantities will
be given in the next section. It is obvious that this kind of methodology can be
applied to each kind of tensor transformation, whether it is a second-order tensor or
another kind of order. Hence, the derivation of more transformation rules won’t be
given here, as the same principle steps have to be carried out.

2.3 Differential Geometry of Surfaces in Space

The topic of differential geometry offers the possibility to describe surfaces in a
3 dimensional space in a mathematical closed form. Based on this representation,
different quantities of surfaces can be derived. They can be used in order to asses
the geometrical and mechanical behavior of the surface. The metric of the surface
is used in order to compute mechanical properties like strains. Additionally, the
curvature or the area content of the surface are important quantities for geometrical
and mechanical interpretation of the surface. In this section the principal funda-
mentals of differential geometry are formulated. Of course, the later definitions and
equations are just an extract of the wide content of differential geometry. In the
following descriptions the main focus is on the representation and investigation of
arbitrary surfaces in a 3 dimensional space. Beginning with the representation of
points, the mathematical description of surfaces will be obtained. Subsequently, the
investigation of the surface properties is included as well in this chapter.

A certain point in space P can be uniquely indicated by its position vector r. The po-
sition vector of the point P can be formulated in terms of the individual coefficients
z* and the respective base vectors e; as it is a tensor of first order (cf. figure 2.3).
In general, for the description of point P an arbitrary coordinate system could be
chosen. Here, the stationary global Cartesian coordinate system is used, which in-
dicates the Euclidean Space by the base vectors e; with ¢ € 1,2, 3. The position
vector r can be mathematically obtained by:

3
1 2 3 i i
r=xe +x°e+z°e3 = E z'e; =x'e; (2.18)
i=1
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1
ST er

Figure 2.3: Position vector r of point P in a cartesian coordinate system

In equation (2.18) again the Einstein summation convention is introduced in order
to simplify the mathematical expression for the representation of point P.

In principle it is possible to describe a surface in space by the definition of each
point on the surface explicitly. It is obvious that this approach of point-wise repre-
sentation of a surface has limitations, due to the fact that all points have to be tackled
by a single set of functions in the euclidean space. In order to describe arbitrarily
shaped surfaces in space it is advantageous to apply a parametric description of the
surface. The parametric representation of a surface can be understood as a net which
is superimposed over the given surface. In the parametric space a local coordinate
system is introduced. The local directions §* and 6% form an orthogonal coordi-
nate system in the parametric space. The net of parametric lines superimposed over
the surface are aligned w.r.t. to this local coordinate system. The parametric lines
won’t remain orthogonal after assembling it to the surface. Due to that property the
parametric description of a surface is also stated as a curvilinear representation of
the surface. In figure 2.4 the mapping of the parametric space into the euclidean is
illustrated. Of course, it is possible to define the point P in terms of the curvilinear
coordinate system ' and 6. In order to obtain the coordinates of a point P on the
surface in a 3 dimensional space the X,Y and Z coordinates have to be expressed in
terms of the surface parameters. To find the parametric representation of a surface
can be challenging as well. There is a wide range of literature that discusses this
topic [Bar10], [Car76], [Kre91], [Kiih06].

For the description of point P the tensor representation can again be applied. Based
on this, the point P consists of coefficients and respective base vectors. In this case
the base vectors are the stationary global Cartesian base vectors e;. Due to the fact,
that the base vectors are constant, the parametric description just has to be included
in the respective coefficients. Based on this the parametric description of point P
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Parametric space

€1
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Figure 2.4: Parametric description of a surface

can be formulated as follows:

12 iipl 2 x(60,6%)
r(0',6%) = 2'(0",0%)e; = |y(6',6%) (2.19)
z(0*,6%)

With the parametric representation of the surface it is possible to introduce a local
coordinate system in each %)omt of the surface. By taking the partial derivative of
the position vector r(0*,#%) w.r.t. the surface parameters 0 and 62 the covariant
base vectors can be mtroduced

or(6',6%)
87 Tapr

or(01. ) (2.20)
827 Tog

The base vectors g1 and g» are tangential to the surface at each point. Due to
the change of the parameter lines the base vectors are changing depending on the
position in which they were computed. As the parameter lines aren’t orthogonal,
neither are the base vectors. In general, there have to be 3 base vectors in oder to
describe a full coordinate system in the Euclidean space (like in case of the global
Cartesian coordinate system e; to es). In principle the third base vector can be
chosen arbitrarily in the case of surfaces. In fact there are some advantages to align
the third base vector w.r.t. the surface normal n. Additionally, the assumption is
made, that the third base vector has the length of 1. Therefore, the third base vector
can be obtained by the normalized cross product of the in-plane base vectors g; and
8-
81 X 82

= =>="_=n 2.21
&7 e x g 2D
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At point P a further type of base vectors is defined. The contravariant base vectors
are reciprocal to the covariant base vectors [Hol00]. They are indicated with super-
script indices g* and they are a part of the tangential plane defined by the covariant
base vectors. Therefore, the third contravariant is aligned with the third covariant
base vector g® = gz. The scalar product of the different in-plane base vectors
fulfills the following condition:

o a1 fora=p
g ~g55g{0 fora # 8 222)

In equation (2.22) the Kronecker Delta §7 is introduced. It describes the relation
between the co- and contravariant base vectors. The previously defined properties
of the base vectors are illustrated in figure 2.5. By using the defined base vectors,

Tangential Plane

Figure 2.5: Co- and contravariant base vectors

an important quantity for the description of a surface in space can be defined. The
Metric Tensor contains all important surface properties like the area content, the
angles between the individual base vectors and the lengths of the base vectors. The
metric tensor, also called the first fundamental form, can be obtained by the scalar
product of the surface base vectors and the dyadic product of the same ones:

I=(g" g")ga ® 85 =980 @ g5

(2.23)
I=(ga-80)8" ®g" = gapg” © g”

The summation in equation (2.23) just has to be carried out by considering the
in-plane base vectors as the third base vector hasn’t any influence and does not in-
troduce additional information to the metric tensor. In general, the metric tensor can
be represented by a 3 x 3 matrix. As the third base vector is assumed to have the
length of 1 and is identical in the co- and contravariant representation, the metric
tensor can be reduced to a 2 X 2 matrix. In equation (2.23) the covariant metric
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coefficients g.g are introduced. They can be computed by the scalar product of the
covariant base vectors. The metric tensor can also be represented by the contravari-
ant metric coefficients g®*. They can be computed by the inverse of the covariant
metric coefficients:

B 911 912 -1 g1l gi2 !
[9 }:{921 gzz}z[gaﬁ] :{921 922] (2.24)

Applying the co- and contravariant metric coefficients, the co- and contravariant
base vectors can be transformed into each other:

8a = Jap gﬁ

N o8 (2.25)

g =9 83
One of the most important purposes of the metric coefficients is the evaluation of the
surface area content. In order to compute the surface area content the infinitesimal
area element has to be obtained. This can be done by the infinitesimal lengths dr1
and dr» along the parameter lines 6 and 62 respectively:

1 2
dr; = mdgl - g1d91
o0t
or (6", %) (2.26)
9 1 2
dr2 = 7862 do = deG

Based on equation (2.26) the infinitesimal area content da can be derived by the
parallelogram spanned by dr; and dr:

da = [|lg1 x g2/d0"d0* = /(g1 x g2)(g1 x g2)d0"d0” (2.27)

The achieved equation is defined as the Lagrange Identity. In [K1i93] an alternative
representation for the computation of the area content based on equation (2.27) is

given as follows:
da = \/g11922 — (g12)2d0" d6> (2.28)

By integration over the surface parameters ' and 2 the overall area content a can

be obtained:
a = /da = //\/guggz — (912)2d91d92 (2.29)
a 02 o1

In order to illustrate the application of equation (2.29), a simple example will be
presented in the following.

Example: With the derived equation (2.28) the area content of a plane rectangle
with side length a and b should be computed. It is obvious, that the result of the
calculation should lead to the well known solution Arectange = @ - b. In figure 2.6
the example is illustrated. The position vector for this example can be given as
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02

6* X

v

Figure 2.6: Example for the calculation of the area content of a rectangle surface

follows: L
0 a 1
<9 <1
r(0',6%) = 0%b for {8 <1
2z = const =7 =

With equation (2.20) the base vectors can be computed to:

ar(6*,6%) a
gr=——"= 0
007 0
_ox(0n0%) _ )Y
277 T,

Applying equation (2.29) the area content can be evaluated to:
101
A= // Va2b? —02d0'de* = a - b
0 0

It can be seen that the expected result for the area content is achieved.

The curvature has a major importance in the evaluation of surfaces. In principle,
the curvature can be understood as the deviation of a surface from a plane. In order
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to obtain the curvature the second fundamental form or Curvature Tensor has to be
evaluated:

k =basg® @ g” (2.30)

The coefficients of the curvature tensor b, in equation (2.30) can be obtained in
different ways [Bir10], [K1i93], [BK85]:

b= _g 9B
R 2.31)
0gao
bap = 89511

For the characterization of spatial surfaces the knowledge of the Gaussian Curva-
ture K is of importance. Based on the Gaussian curvature a classification of the
individual surfaces can be made [Hsi97]. A surface can be classified as

e eclliptic or synclastic, for (K > 0) or

e hyperbolic or anticlastic, for (K < 0) or

e parabolic or developable, for (K = 0).

The Gaussian Curvature can be expressed by the ratio between the determinants of
the first and second fundamental forms [LB73], [Bar10]:

_detlbag]  biibas — (b12)2

= = 2.32
det[gag]  g11922 — (g12)? (232)

An important characteristic of spatial surfaces is their developability. A surface
can be understood as developable if it can be developed into a flat situation with-
out compromises like strains or stresses. In other words each surface which can be
assembled from a flat configuration is developable. From a mathematical point of
view, if the Gaussian curvature vanishes (i.e. K = 0) the surface is developable.
In the following example a spherical surface will be investigated for its curvature
properties. It is obvious that the sphere contains to the non-developable surfaces, so
the Gaussian curvature should be unequal to zero.

Example: For the following spherical surface (cf. figure 2.7) the Gaussian curva-
ture will be evaluated. As surface parameters to describe each point on the surface,
the angles ' = ¥ and #* = ¢ will be chosen. The position vector R can be
evaluated by the two surface parameters and the radius r of the sphere.

rsin(0') cos(6?)
R = |rsin(6')sin(6?)

rcos(0")
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z
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Axis of Rotation

Surface parameters:
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Figure 2.7: Example for the calculation of the curvature of a sphere

With the position vector R the covariant base vectors of the surface can be calculated
with equation (2.20) and the surface normal with equation (2.21) respectively. The
covariant base vectors g1 and g of the tangential surface are given by:

cos(#1) cos(6?)
g1 = % =7 |cos(6") sin(6?)
—sin(6')
. 1\ - 2
R —sin(0") sin(6%)
g2 =~ =1 | sin(#")cos(#?)
062 0

The surface normal is computed as follows:

sin(6") cos(6?)
n = |sin(9')sin(6?)
cos(6)
Due to the normalization it turns out that the surface normal is independent of the

radius of the sphere. With the covariant base vectors the covariant metric coefficient
can be evaluated with equation (2.24). The metric coefficients are obtained by:

_[r? 0
Gob = 1o 42 sin?(0")
In order to compute the Gaussian curvature the coefficients of the curvature tensor

have to be evaluated by applying equation (2.30) based on the covariant base vec-
tors. Using the second relation of equation (2.31) the coefficients of the curvature
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tensor are computed by the scalar product of the first order derivative of the base

0
vectors w.r.t. the surface parameters 98 2nd the surface normal vector n. The first

065

order derivative of the covariant base vector w.r.t. the surface parameters is given
by:

[—sin(8") cos(62)]
% = | —sin(6") sin(6?)
| —cos(d') |
[— cos(#") sin(6?)]
og g cos(1 2
— = —= =71 cos(6") cos(6?)
002 ot I 0 |
[— sin(#') cos(6?)]
. sin( ) .
— =7 | —sin(#")sin(6?)
002 I 0 |

Using the evaluated first order derivatives of the covariant base vectors the coeffi-
cients of the curvature tensor can be obtained by:

b= |7 0
=10 —rsin?(0)

With the covariant metric and the curvature coefficients the Gaussian curvature can
be evaluated by applying equation (2.32):

1

r
It can be seen that the Gaussian curvature of the sphere is constant and unequal to
zero. From this mathematical approach the obvious result turns out, that a sphere is
non-developable.

2.4 Continuum Mechanics

The subject of continuum mechanics is applied for the description of the mechan-
ical behavior of structures in time and space. In general, the main task which will
be addressed by the continuum mechanics is the description of the occurring strains
and stresses of an elastic body. Continuum mechanics can be applied to various ap-
plications in engineering. In this section, an introduction with the focus on tensile
surface structures will be given. A detailed introduction into the general applica-
tion of continuum mechanics in a wide range of engineering tasks can be found in
[Meh97], [Bet01], [Alt12], [Hol00], [Bas00], [Par03],[Chal4], [Man13], [Mar94].
In the beginning of this section an introduction to the idea of different configurations
will be given. Based on this, the definitions for strains and stresses are obtained. For
the connection between strains and stresses, appropriate material models are intro-
duced. Integrating these definitions into the characteristic equations for the motion
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of an elastic body, it is possible to derive the equilibrium in time and space in the
strong and weak form. At the end of this section a discretization in time and space
will be introduced.

2.4.1 Configurations

The basis of the mechanical description of a tensile structure is the possibility to
introduce their large deformations into the governing equations. To be able to de-
scribe the full deformation of an elastic body, it has to be ensured that the position
of a defined material point can be identically given at a specific time t during the
deformation process. To provide this description of the deformation process two
individual configurations are introduced. The reference or material configuration is
defined as the starting point of the motion at ¢ = 0. The current or spatial configura-
tion is supposed to be the current position of the material point at { = tcyrrent. The
difference between these two configurations are indicated as the deformation of the
material point expressed by the displacement vector u (t = tcurrent). In figure 2.8
the individual configurations are illustrated for a certain point on a surface. At the
investigated point it is possible to evaluate the base vectors as shown in section 2.3.
Of course, the base vectors can be evaluated in both configurations. In the follow-
ing, the quantities which are defined w.r.t. the reference configuration are indicated
with capital letters and in the case of the current configuration with small letters.

Reference configuration

Current configuration

Figure 2.8: Reference and current configuration in continuum mechanics

In general, there are two ways of investigating the deformation process. The first
possibility is to investigate a certain surface point and observe what happens to it
during the deformation. This way of investigating the motion of a body is referred
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as the material or the Lagrangian description of motion. The second possibility is
to investigate a certain point in space and observe what happens at this specific point
as time changes. This method is referred as the spatial or Eulerian description of
motion. In the context of structural mechanics the Lagrangian description is most
appropriate for the formulation of the governing equations and will be used in the
following chapters as well. The Eulerian description is mostly applied in cases of
fluid dynamic problems. Based on the definition of the reference and current con-
figuration and the Lagrangian description of motion, the deformation of a specific
material point on the surface can be obtained by:

u(0',0%,t) = x(0",0%,t) — X(0",6%) (2.33)

With the possibility to describe the deformation of an elastic body at each time for
arbitrary large deformations the related quantities like strains and stresses can be
evaluated. Based on the description of the deformation process in the following the
governing equations and quantities will be derived.

2.4.2 Deformation Gradient

The deformation gradient transfers quantities from the reference to the current con-
figuration and vice versa. It can be derived by the mapping of a infinitesimal line
element in the reference configuration dX into the current configuration dx. A de-
tailed derivation of the deformation gradient can be found in [Alt12], [Hol00]. The
mapping between the configurations with the deformation gradient can be given by:

dx =F-dX (2.34)
The equation (2.34) can also be formulated by:

_dx

F=1x

(2.35)

Based on the chain rule and equation (2.35) a mapping between the base vectors of
the individual configuration can be derived:

_0Ox _ 0x 09X

& =55 ~oxae ¢ & (2:30)

Of course, with the deformation gradient a transformation for all types of base vec-
tors can be indicated [Hol0O0]:
i =F.-G;; g=F"T.G'
s ) & , o (2.37)
Gi:F7~gi; GZ:F ~gl

For the application of the defined transformation rules the knowledge of the defor-
mation gradient is essential. With equation (2.36) the evaluation of the deformation
gradient can be derived by:

g = (gj ® G]) -G, = gj5f =F -G (2.38)
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Based on the relation of equation (2.38) the following definitions for the deforma-
tion gradient can be given [Chal4]:

F=g:®G; F'=g'0G;

-1 i T i (2.39)
F =Gog; F =G og
The deformation gradient will be introduced for the general transformation of me-
chanical quantities in various cases. One important application is derived from
Nanson’s formula [Hol00]. Here, a relation between the infinitesimal surface ele-
ment in the reference configuration dA and in the current configuration da can be
obtained:
nda = detFF~"NdA (2.40)

In equation (2.40) the normal vector in the reference configuration is indicated by
N and in the current configuration by n. The determinant of the deformation gradi-
ent in equation (2.40) can be evaluated from the relation between the infinitesimal
volume elements [Par03]. With the assumption w.r.t. to the calculation of g3 from
equation (2.21) the determinant of the deformation gradient can be given by:

dv (g1 X g2)gs da
F=—=-_>2"/2° —
detE = 7 = (G x G2)Gs — dA

2.41)
From equation (2.40) and equation (2.41) it can be seen that there exists a transfor-
mation between the infinitesimal surface element in the reference and the current
configuration:

da = detFdA (2.42)

The deformation gradient itself describes the full deformation of a continuum body.
The process can be divided into two principle motions. First, each position vector of
a material point can be moved from the reference to the current configuration and
then be rotated into the final position. This decomposition is known as the Polar
Decomposition [Hol00]. It decomposes the deformation gradient in the Rotation
Tensor R and the Right Stretch Tensor U or Left Stretch Tensor v:

F=RU=vR (2.43)

As for every physical quantity, there exist principal directions for the deformation
gradient. They can be understood as a set of directions which remain orthogonal
during the deformation process. They can be obtained by an eigenvalue analysis
of the deformation gradient. The related eigenvalues are known as the Principal
Stretches which measure the elongation of the principal directions w.r.t. the defor-
mations. The deformation gradient can be given in terms of the principal stretches
and principal directions as follows:

3
F = Z)\knk ® Ny (2.44)
k=1

In equation (2.44) n,, are the principal directions w.r.t the current configuration
and N, w.r.t. the reference configuration. The principle stretches are given as A.
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The eigenvalue analysis causes some mathematical problems as the deformation
gradient is defined in the reference and the current configuration. To avoid this
kind of issue, another quantity can be introduced which is exclusively defined in the
reference configuration with the same eigenvalues and directions. The Right Cauchy
Green Tensor C provides the same eigenvalues and directions as the deformation
gradient, but with a complete definition in the reference configuration the solution of
the eigenvalue problem cause no mathematical issues. To evaluate the Right Cauchy
Green Tensor various possibilities are existing. In the following, the evaluation
of the Right Cauchy Green Tensor based on the definition from [Bas00], [Hol00],
[Par03] is stated:

3
C:CijGi®Gj :FTF:Z)\iNk(@Nk :g:gijGi(X)Gj (2.45)

k=1

The knowledge of the principal directions and principal stretches is crucial for the
formulation of nonlinear material models. The derivation of the governing equa-
tions for this kind of materials is often done in terms of the principal directions as it
is more convenient from a mathematical point of view. In section 2.4.5 the formu-
lation of a nonlinear material model in principal directions will be introduced.

2.4.3 Strains

In the previous section the deformation gradient was introduced. It is a quantity to
analyze the overall deformation process of a continuum body. Due to that the defor-
mation gradient also includes rigid body motions. For the structural behavior of a
continuum body the local deformations are decisive. Hence, the deformation gradi-
ent can’t be used to measure this local deformation. For this purpose, strains will be
introduced as mechanical quantities. In general, strains are not unique from a phys-
ical point of view, as they are defined as normalized local deformations w.r.t. a cer-
tain reference length. Due to this there exist various different strain measurements.
In general, the difference between the strains are based on their individual capabil-
ities for the description of large or small deformations. Typically, strain measures
for small deformations are misinterpret the rigid body motions to achieve a simple
representation in the respective equations. Another classification can be made due
to the magnitude of the strain itself. There are various measures which are able to
represent large deformations but are restricted to small strains. Just a few measures
are able to include large deformations as well as large strains. In general, the de-
formation process of tensile structures is characterized by large deformations but
small strains, which allows the application of a wide range of strain measurements.
In the following, different types of strain measurements which are appropriate for
both small and large strains will be introduced. For all of the presented types the
evaluation will be restricted to the in-plane parts, due to the assumption which were
made for the numerical modeling of tensile structures (cf. section 2.1).

Green Lagrange Strain: The Green Lagrange strain tensor E is a strain measure-
ment which is defined in the reference configuration. It is able to represents large
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deformations:
1 o
E= E(gaﬁ —Gap)G* @ G
1 7
= (F'F-1
o )

=51

(2.46)

1
= 5(Ai —1)N, ® Ng

Euler Almansi Strain: The Euler Almansi strain tensor e is a strain measurement
which is defined in the current configuration. Like the Green Lagrange strain it is
able to represent large deformations:

1 o
e=5(gap — Gap)g” ® g’
= %(I —FTF
(2.47)
= a7
1

1
:5( ‘ﬁ)“a®m

Hencky Strain: The Hencky strain tensor h is a strain measurement which is de-
fined in the current configuration. Due to the logarithm in the strain equation it can
cause some numerical issues during the analysis of a certain body:

h=IinU

3 (2.48)
= Z In(Aa)na @ ng

a=1

The Green Lagrange and Euler Almansi strain measurements are not independent
from each other. It is more the case that they are the same quantities from a different
perspective, as they are defined w.r.t. different coordinate systems. This can also be
seen by the identical coefficients of the two tensors:

(gop — Gap) (2.49)

[N

Eaﬁ =eas =

Due to this duality of the Green Lagrange and the Euler Almansi strain measure-
ments, there exist transformation rules which can be used to transfer between the
individual configuration descriptions. With a so-called Push-Forward-Operation,
indicated by x«, the Euler Almansi strain tensor can be obtained from the Green
Lagrane strain tensor:

e=x.(E)=F "EF ' (2.50)
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Likewise the transformation of the Euler Almansi strain tensor into the Green La-
grange strain tensor can be done with the so-called Pull-Back-Operation, indicated
by x: '

E=y,'(e) =F"eF (2.51)

2.4.4 Stresses

As in case of strains, stresses can be also defined w.r.t. different coordinate or base
vectors respectively. In the following, the derivation of different stress measure-
ments will be given. Considering a continuum body which is subjected to external
forces, by the definition of a sectional plane the body can be divided into two pieces.
The same internal surface forces are acting on both sectional planes. It is possible
to define a internal surface force Af which acts on the area As. Furthermore, it is
possible to define the surface normal n and the in-plane vector m in such a way that
Af, n and m are defining a plane. With these surface quantities it is possible to split
the force vector Af into its components of n and m. Thus the force components
Af,, and Af,, can be obtained as illustrated in figure 2.9. Based on the definitions

Figure 2.9: Force vector acting on a infinitesimal surface element
obtained from figure 2.9 it is also possible to define the ratio between the surface
force vector Af and the surface unit As:

Af

e (2.52)
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Considering the ratio from equation (2.52) in the limit state of vanishing surface
unit lima s—0, the so called traction vector can be obtained [Man13]:

. Af
t = lim

As—0 As 233)

Of course the limit state as described in equation (2.53) can be also applied to the
individual directions Af,, and Af,,, which then leads to the normal and shear trac-
tion vectors. An alternative evaluation of the traction vector can be obtained by
applying Cauchy’s stress theorem from a multiplication of the surface normal n and
a second-order tensor o:

t=on (2.54)

By applying the Cauchy’s stress theorem to the current configuration the second-
order tensor ¢ is defined as the symmetric Cauchy Stress Tensor:

o=0""g,®gs (2.55)

The Cauchy stress tensor is purely defined in the current configuration. Due to that
it represents the "true" physical stresses in the continuum body. In general, the stress
tensor includes stresses in all spatial directions, as it has to define the normal stresses
as well as the shear stresses. Based on the assumptions for the numerical modeling
of tensile structures, introduced in section 2.1, the Cauchy stress can be restricted to
the in-plane components. From a mechanical point of view, this situation is known
as the plane stress assumption, which includes the following:

e Normal stresses can be assumed to be constant throughout the thickness.

e The normal and shear stresses in the thickness direction (or perpendicular to
the surface) are zero or negligible.

e The tensile structure is fabricated of the same material throughout the thick-
ness.

Based on the plane stress assumption the stresses of the tensile structure can be re-
stricted to the in-plane or tangential surface stresses. This restriction can be seen in
equation (2.55) as the summation just includes the in-plane stress coefficients and
the in-plane base vectors. Due to that, the Cauchy stress tensor includes 4 in-plane
stress values. In figure 2.10 the remaining stresses for a tensile structure are illus-
trated for an infinitesimal surface element dA. It can be seen that the stress distribu-
tion purely acts w.r.t. the tangential directions of the surface. Due to that, this stress
situation is also defined as the membrane stress situation. As a consequence tensile
or membrane structures restrain external load situations, like dead or snow load,
exclusively by in-plane stresses, which explains the necessity of deformation of the
structure in order to align components of the internal stresses with the external load.

It is also possible to apply the Cauchy stress theorem to the force vectors in the

reference configuration [Hol0O]. For this purpose the transformation of the surface
elements based on equation (2.40) has to be done. As a result of this transformation,
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021 = 012

Figure 2.10: Tangential surface stresses

the 1. Piola Kirchoff stress tensor can be obtained. The 1. Piola Kirchoff stress ten-
sor is a non-symmetric second order tensor which is defined in both reference and
current configuration:

P = detFoF " = detFo’g, @ Gs = P*’g, ® Gg (2.56)

For the 1. Piola Kirchoff stress tensor one of the base vectors are defined in current
configuration. In the mechanical description of tensile structures it is advantageous
when the stress quantity is just defined in the known and constant reference con-
figuration. For this purpose the 2. Piola-Kirchhoff stress tensor is introduced. The
symmetric second order tensor is purely defined in the reference configuration and
can be obtained from the Cauchy stress tensor with the following transformation
rule [Hol0O0]:

S = detFF 'oF 7 = detFo™’ G, ® Gg = S G, ® G (2.57)

It is important to note that the 2. Piola-Kirchhoff stress tensor represents a me-
chanical quantity which is only introduced for the simplification of the governing
equations and the robustness of the solution process. In contrast to the Cauchy stress
tensor its value has no direct physical meaning.

2.4.5 Material Modeling

In the previous sections the governing equations for different types of strains and
stresses are given. In general, these quantities are not independent from each other.
A deformation of an elastic body is represented by the occurring strains. Of course
due to the deformation, stresses will be occurring as well. The relation between the
stresses and strains is described by the material model. As an example, a simple 1D
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tension test is chosen for the illustration of the relation. If one takes a piece of fabric
and stretches it, while the deformation and the applied force will be measured, the
result will be a stress-strain diagram which is illustrated in figure 2.11. In case of
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Figure 2.11: Stress-Strain-Diagram for a 1D tension test

a simple 1D tension test the stresses can be obtained by the ratio between the force
and the cross section area as defined in equation (2.52). It can be seen that even for
this simple example different possibilities in evaluating the stress are present. If the
stress is evaluated w.r.t. the initial (or reference) cross section A the stress-strain
diagram differs fundamentally from the case if the current cross section a is used.
For simplicity, it is assumed in this example that in the beginning of the deformation
the two curves of the individual stresses are coincident.

In general, in the stress-strain diagram two different regions can be identified. The
linear part and the nonlinear part. In order to describe the relation between stresses
and strains for both cases, linear and nonlinear, for the general case an incremental
equation can be obtained [Hol00]:

dS=C:dE (2.58)
In equation (2.58) dS and dE are the increments in stresses and strains for the ref-

erence configuration. The link between them is done by the so-called Elasticity
Tensor C which is a fourth order tensor. In the case of linear material behavior, the
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incremental relation between stresses and strains doesn’t change during the over-
all deformation process. Due to that, the elasticity tensor doesn’t change during
the deformation, which leads to the integrated form of equation (2.58) for linear
elasticity:

S=C:E (2.59)

It is obvious that the elasticity tensor can’t remain constant for a nonlinear material
behavior. Therefore, for nonlinear materials just the incremental representation is

valid: oS
C=_— 2.60
OE (260
In principle, for each hyperelastic material there exist a strain energy function W.
Based on this function a more general approach to derive the elasticity tensor can
be given. The second order derivative of the strain energy function w.r.t. the Green
Lagrange strain tensor define the elasticity tensor C:

PwW
C=_——= 2.61
OEOE 2.61)
A detailed discussion of the evaluation of the elasticity tensor based on a strain en-
ergy function is presented in [Chal4], [Par03], [Bas00], [Hol0O0].

A common representation of the elasticity tensor is based on the curvilinear base
vectors in the reference configuration G;. In this thesis the elasticity tensor will
always be defined based on the curvilinear coordinate system. Additionally, this
representation allows the application of all derived continuum mechanical transfor-
mation rules. For example, to transform the elasticity tensor from the reference
to the current configuration, a push-forward operation can be used as defined in
[Hol00]. The elasticity tensor in the reference configuration in curvilinear coordi-
nates can be given as:

C=0""G;®G;®G,L® G (2.62)

Applying the push forward operation describes the elasticity tensor in the current
configuration:

1
" detF

In the following, different material models will be discussed which are the most
commonly used models for the numerical modeling of tensile structures. The de-
scription of the material models will be given in terms of the assumptions which
were described in section 2.1, where the plane stress assumption is the most im-
portant one. Therefore, all of the stress components in the normal or thickness
direction can be neglected, which reduces the needed summation index to two (—
indices from 1 to 2).

c Cgivg @gr @ g (2.63)

St. Venant-Kirchhoff: The St. Venant-Kirchhoff material model is the extension
of the well known Hooke’s law for large deformations with the limitation to small
strains. It can be used for the modeling of linear elastic isotropic materials. An
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application of the St. Venant-Kirchhoff material modeling is the simplified simu-
lation of foils (e.g. ETFE-Foils) [Mor07], [Sch09], [MBO02]. It is described by two
individual numbers, the Young’s modulus E and the Poisson’s ratio v. A detailed
discussion on the two parameters can be found in [Man13]. The coefficients of the
elasticity tensor for the St. Venant-Kirchhoff material law can be given by:

CHP = AGE + u (GTGP + GG
5 (2.64)

Ev
ith A= —— d [ —
wi and p= 5 )

1—v2
The constants \ and p are defined as the Lamé constants.

Miinsch-Reinhardt: The Miinsch-Reinhardt material law is an extension of the
St. Venant-Kirchhoff material law for orthotropic fabrics [MR95]. The assumption
behind the material law, is that the different fiber directions are interact with each
other but don’t have an influence on the shear stiffness of the material. As it intro-
duces fiber orientations in the governing equations, the material law is just valid in
the defined fiber orientation F';. Due to that, a principle orientation has to be defined
on the surface of the tensile structure. Additionally, the original form of the material
law is given in Voigt notation w.r.t. the local cartesian coordinate system defined
by the fiber directions. Due to that a transformation into the curvilinear coordinate
system has to be done. In the following, the Miinsch-Reinhardt Material law will
be given in terms of the previously defined tensor notation. Herein, the material
law is transformed into the fiber directions of the fabric based on the transformation
principle defined in equation (2.17) applied for a fourth-order tensor:

0P = 5 (GF.) (G F)(GF,) (G Fy)

C‘,llll — 1
1-— MHisHsk

612222 _ ;Eé
_ _ 1
Cll22 — 02211 _ N

1-— MksHsk H F
01212 — 02121 — 6_11221 —_ 02112 — G
C‘,others =0

The Miinsch-Reinhardt material law is based on various individual parameters. The
shear modulus G, the Young’s modulus for the individual fiber directions F and
E and the Poisson’s ratios between the fiber directions s and psi. Due to the
forced symmetry in the material law the following condition holds:

sk _ Mks

- 2.
Ex B, (2:66)

The indices k and s are defining the individual fiber directions. In woven textiles
a distinction between the warp (deutsch: Kette) and weft or fill (deutsch: Schuss)
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direction is made. The warp direction is aligned with the straight fibers of the fab-
ric. The weft fibers are woven around the warp fibers. Detailed discussions on
the production of woven fabrics can be found in various literature focusing on the
manufacturing of textiles. For a review focusing on architectural textiles, refer to
[Koc04], [Sei08] and [Kni+11]. The Miinsch-Reinhardt material law represents
the basis for various methodologies for the case of orthotropic material properties.
These extensions are trying to avoid the deficiencies of the original definitions of
the Miinsch-Reinhardt material law (e.g. [KWKO7] and [GLO09]).

Ogden: The Ogden material law was introduced for the simulation of rubber like
materials [Ogd97]. It is appropriate to model large deformations in combination
with large strains. Therefore, it can be used for the modeling of isotropic materi-
als like foils. The Ogden material law is based on the assumption of hyperelasticity
which enforces the formulation of a strain energy function W [Hol00]. By applying
equation (2.61) the elasticity tensor can be obtained by the second order derivative
of the strain energy function w.r.t. the Green Lagrange strain tensor.

There exist various applications and descriptions of the Ogden material law in engi-
neering. The principal reference for the description of the material law can be found
in [Ogd97]. The derived strain energy function of the Ogden material is based on
the assumption of an incompressible body which doesn’t change volume during the
deformation. Based on this assumption in [Ogd97] the strain energy function is
given by:
Mo ar ar apr
W (\) = Z - ST 4+ AS" +A57 — 3 (2.67)

In equation (2.67) the quantities p, and «.. represent the material constants which
have to be defined for the application of the Ogden material law. The in-plane
principal stretches A1 and A2 can be evaluated based on the Cauchy Green tensor
given in equation (2.45). The third principal stretch A3 can be achieved by the
formulation of the incompressibility condition:

As = (M)t (2.68)

Substituting equation (2.68) into equation (2.67) the strain energy function for the
Ogden material for the application of surfaces can be obtained by:

W)= 57 AT+ A7 + (A1h2) ™" — 3] (2.69)

In general, the elasticity tensor for the Ogden material can be achieved by taking
the derivative of the derived strain energy function. In equation (2.69) the assump-
tion for plane stress, which is done for tensile structures, still misses. In [GT92] the
governing equations for the Ogden material for the application of tensile structures
are given. The obtained elasticity tensor is defined in the principle directions. Due
to that a transformation into the curvilinear coordinate system has to be made as
already described for the Miinsch-Reinhardt material model.

From the definition of the strain energy function it can be seen that the elasticity
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tensor can’t be constant during the deformation process as it is depending on the
principal stretches. Due to that, the evaluation of the elasticity tensor has to be
repeated in each time step of the deformation. Additionally, the relation between
stresses and strains is just valid in the incremental form given in equation (2.58)
or equation (2.60), which has to be considered in the derivation of the governing
equation for the deformation process.

For the validation of the given material law for rubber-like materials in [Ogd97]
a comparison with the experimental data from [Tre44] is proposed. In the follow-
ing, the simple example of a membrane strip which is subjected to a tension force
at the tip will be presented. Due to the boundary conditions of the example, a ho-
mogeneous stress distribution is achieved in the example. The investigated example
is illustrated in figure 2.12. The material properties for this example are defined in

Material properties:
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Figure 2.12: Example of a tension test described by Treloar in [Tre44]

[Ogd97] in order to fit the material model to the rubber used in the experiments. In
the experiment of Treloar the membrane strip was stretched to approximately eight
times the initial length. It is obvious that in this example large strains have to be
included in the mechanical description of the experiment. In figure 2.13 the results
of the described example are illustrated. It can be seen that the numerical results
and the experimental data coincide, even for large strains.

The Ogden material offers an efficient and versatile material model for the appli-
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Figure 2.13: Tension test with an Odgen material model for the experimental
data from Treloar

cation of isotropic fabrics. However, the Ogden material isn’t widely used in the
modeling of tensile structures. The reason for that can be identified by the missing
material parameters for isotropic materials used in the context of tensile structures.
The available material properties are more based on the well known and widely
used linear isotropic approach based on the Young’s modulus £ and Poisson’s ratio
v. Additional to the Ogden material model, there exists a number of related laws
for the material modeling. The Mooney-Rivilin and the Neo-Hoooke material model
can also be used for the modeling of isotropic material and are special cases of the
Ogden material law [Hol0O].

Multi-linear elastic: The multi-linear elastic material model is trying to adopt the
nonlinearity of the material by an extension of the linear elasticity defined in case
of St. Venant-Kirchhoff. The basic idea of the material model is to evaluate an
equivalent strain situation €. based on the current strains at a certain point in the
tensile structure and the Poisson’s ratio . Based on the assumption of plane stress,
the equivalent strain can be obtained by the relation given in [Lin09]:

1
[(1-v+ VQ) (e11 +€22)> =3(1 —v)? (e11822 — (512)2)] 2

(2.70)
Therefore, the 2 dimensional strain situation is reduced to a 1 dimensional repre-
sentation of the strains. For the evaluation of the equivalent strain, the content of
the Green Lagrange strain tensor has to be transformed from the curvilinear coordi-

1

o= —r
1—12
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nate system to a local Cartesian one, as equation (2.70) refers to the assumption of
the Voigt notation. With this one-dimensional strain, the equivalent stresses can be
evaluated on the basis of a monoaxial stress-strain diagram obtained by experiments
for the certain material as illustrated in figure 2.14. In this stress-strain diagram the
individual linear sections are defined by specific points o; and ;. For the individual
sections a related Young’s modulus E; can be evaluated.

Based on the multi-linear elastic stress-strain diagram and the equivalent strain, it
is possible to evaluate an equivalent stress o. This can be done by the computation

Equivalent
stress oe
A
O |
(24> R T E3
Ol —E> :
Ey Ee
ago : . .
€o €1 €2 Ee Equivalent
strain €,
Figure 2.14: Multi-linear stress-strain curve
of an equivalent Young’s modulus F. as given by:
m
o > [Ei(ei —€im)] + Emyi (€ — €m)
E. (e.) = 6—6 ==L . with gc > e
e e
2.71)

The equivalent Young’s modulus describes the ratio between o and .. Based on

the equivalent Young’s modulus the current elasticity tensor C can be evaluated by
the scaling of the initial elasticity tensor C (FE1) with the ratio of the equivalent

E. (ee)
E

1
calculation of the 2. Piola-Kirchhoff stress from the Green-Lagrange strains can be
obtained by:

Young’s modulus to the initial Young’s modulus . By applying this, the

S(ee) = LEEEEE)C (E1):E=C:E 2.72)
1

To validate the presented multi-linear elastic material, the simulation of a burst test
of an ETFE-foil membrane will be done. The experiments of the burst test are
presented in [Sch09] and [Sch+07]. In figure 2.15, the experiment is illustrated
and defined in both top figures. In the experiment, the pressure of the membrane
cushion was increased until the membrane burst. In order to quantify the defor-
mations, which are occurring during the inflation, an optical measurement system
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was applied. The obtained deformations are illustrated in figure 2.15. For the com-
parison of the numerical results with the experiments, two simulations were done.
The first simulation is based on the introduced St. Venant-Kirchhoff material model
with the material properties defined for the initial situation with the Young’s mod-
ulus £ = E; and the Poisson’s ratio v. The second simulation is based on the
introduced multi-linear elastic material model. In figure 2.15 it can be seen that
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Figure 2.15: Example for a burst test with a ETFE foil

the results for the presented multi-linear elastic material model show a good agree-
ment to the experimental data. Of course, the application of this material model
is restricted to small strains in the structures as it is based on the Green Lagrange
strains. Due to that, this material model isn’t appropriate for the simulation of large
strain situations.
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Further material models: Summarizing the presented material models it can be
stated that there are still limitations from the material modeling point of view for
tensile structures (e.g. creep, plasticity, etc.). Currently, there are various number
of new material models which have been developed for the application of tensile
structures. One of the most interesting developments at the moment is the approx-
imation of the stress-stain relation with non-uniform rational B-splines (NURBS)
surfaces to create a response surface. For this purpose a defined set of experiments
has to done in order to ensure that a reasonable interpolation of the experimental
data by the NURBS surfaces can be obtained. The basic idea behind this approach
is to obtain a mathematically closed description of the stress-strain diagram to be
able to evaluate the derivatives of the stresses w.r.t. to the strains. The derivatives of
this surface are the individual values of the elasticity tensor. A detailed discussion
of this approach can be found in [GBOS], [Coel2] and [WWB12].

2.4.6 Equilibrium

The motion of a body can be described based on Newton’s Second law. It states
that the sum of all acting forces on a body has to be in equilibrium with the change
of linear momentum. Taking into account as acting forces, the volume and surface
forces, the Cauchy first equation of motion can be derived. Based on the Cauchy
first equation the motion of a body can be described in a global and local form. In
the local form it can be given by:

dive + pb — p‘%’ =0 (2.73)

In equation (2.73) o represents the stress state in the body, p the density, b the ap-
plied body forces and v defines the velocity of the body. Additionally, the derivative
w.r.t. time, indicated by t, is introduced:

d(e) _ -
= (2.74)

The equilibrium given in equation (2.73) is known as the strong form, as the equilib-
rium has to be satisfied in each single point of the body. In general it is not possible
to find a solution for the deformation u which satisfies the equilibrium equation in
the strong form. In order to solve the equilibrium equation, a Galerkin method (or
weighted resiudal) is applied [Zie00], [Fin72]. Therefore, the original equilibrium
equation will be multiplied with a weighting function 7 and will be integrated over
the current volume v. By using the variation of the displacements as the weighting
function = du the known Weak form of the equilibrium is achieved:

oW = / (diva’ + pb — p%) dudv =0 (2.75)

The introduced variational or virtual displacements du in equation (2.75) can be
chosen arbitrarily, as at the solution of the equilibrium the equation in brackets will
be equal to zero. The weak form given in equation (2.75) will be reformulated in
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the following, in order to obtain the governing equation for the equilibrium.
With the identity introduced in [Par03]

(dive) du = (divedu) — o : Viu (2.76)
and using the Gaussian divergence theorem

/(divadu) dv = /no&uda 2.77)

v a

the negative weak form can be rewritten in a separated form:

—0W = f/no'éudaJr/o' : Vdudvf/ pbéuvar/pcjl—:dudv =0 (2.78)

a v v v

The relation from equation (2.78) is also known as the Principle of virtual work.

With the identity from [Mid02]:
o:Viéu=o:de (2.79)

the weak form of the equilibrium can be given in the individual parts related to the
internal virtual work W+, the external virtual work 0Wez; and the time related
parts dWayn.

Internal virtual work:

—OWint = /0' : Vudv = /0' : dedv (2.80)

v v

External virtual work:

—OWezt = —/no’éuda—/pbéudv (2.81)

a v

Dynamical virtual work:

—Wayn :/p%dudv (2.82)

v

Principle of virtual work:
— W = _5Wint — (SWdyn - 6Wezt =0 (283)

By considering the Lie-Time derivative, which can be derived from the equality of
the principle of virtual work in the reference and the current configuration [Hol00],
for the variation of the Euler-Almansi strain tensor

Se=F TSEF~! (2.84)
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and the relation for the transformation of the integration from current to reference
configuration, defined in equation (2.42), the internal virtual work can be given in
terms of the reference configuration:

—OWint = /0' : dedv

- /detFa: (F_TcSEF_l) av
J

(2.85)
- /detF (F_laF_T) . SEdV

4
:/S:(SEdV
i

In general, tensile structures are assumed to be thin. Due to this assumption, the part
in the external virtual work w.r.t. the body forces b can be neglected. Furthermore
with the relation between the current density p and the reference density pg by

p = detFpo (2.86)

the principle of virtual work defined in the reference configuration can be given in
the well known form:

—oW = /S 1 0EdV + /po%5udV — /q(n)éuda =0 (2.87)
\4 v a

In equation (2.87) the surface pressure no is interpreted as an external surface load-
ing q(n). In the analysis of tensile structures this part includes the external loading
like dead, snow or wind load. A discussion on this part in the weak form of the
equilibrium can be found in [Die09].

With the equilibrium representation from equation (2.87) it is possible to evalu-
ate the motion of a tensile structure if a external load is applied or from a more
general point of view, if a certain boundary condition is applied. As the equilibrium
is still given in continuous form, for the solution a representation of the deformation
for the complete structure should be achieved. It is obvious that for the general case
such a description can’t be found. Additionally, the included time dependency in-
troduces a further complexity for the direct solution of the equilibrium equation. In
order to be able to solve the equilibrium equation a discretization in time and space
will be introduced in the following.

2.5 Discretization in Time and Space

The derived equation for the equilibrium from section 2.4.6 has the major variables
space (in terms of the deformation u) and time (in terms of time ¢). In general, it
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is not possible to solve the equilibrium equation in a global sense, as the number of
unknowns would be infinite. The problem is to find an appropriate deformation field
which satisfies the equilibrium condition from equation (2.87) for all times ¢. In
order to solve the equilibrium condition, the spatial and time fields are discretized.
In the following the discretization for space and time are described.

2.5.1 Space discretization

The discretization in space is also known as the Finite Element Method [Bat96],
[Bet97], [Hug00], [MMOO0], [Sch84], [Wri08], [Zie00], [AM88a], [AM88c], [AMS88b],
[Ofia09], [Onal3]. Here, the unknown fields like deformation, stresses, geometry,
etc. will be locally approximated by a patch of elements which provides a math-
ematical description of the unknowns for its region. The elements do not overlap
each other and discretize the overall surface. In figure 2.16 an example for a surface
is given, which is discretized by a certain number of elements. Here, for the expla-
nation of the concept, one four-noded finite element is shown as an example. With

Reference configuration

Current configuration

€1

Figure 2.16: FEM discretization of a surface

the concept of the finite elements it is possible to reduce the set of unknowns to a
finite number as the surface is described by the finite number of nodes and elements
of the discretization. Using the finite elements, the unknown spatial fields can be
given w.r.t. to the nodal deformations @, by using the shape functions NV, of the
element. In general, the deformation in one element is a linear combination of the
nodal deformations:

Mnodes
u(0',0%,t) ~ 6(0',6%,t) = > Nity(6",6% 1) (2.88)

i=1
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2.5 Discretization in Time and Space

If using the concept of isoparametric elements, the geometry will be discretized in
the same way as the deformation. Due to that the geometry in reference and current
configuration, can be given by:

Tnodes

X(0',60%) = X(0',0°) = > NiXy(6",6%) (2.89)

Tnodes

x(0',6%,t) ~ %(0",6°,1) Z Ni%i(0,6°,1) (2.90)
For the four-noded element, the shape functlon can be formulated as follows:

Ni(0",6°) = 4(1+9)(1+92)

Na(0,6%) = i(1—9)(1+92)
=300 (=) @9
Ni(0',60%) = i(1+9)(1—9"‘)

with 6' € [-1;1] and 6° € [-1;1]

In general, the solution based on the FEM will result in an approximation of the
correct results, due to the introduced discretization of the unknown fields. The
exactness of the results can be improved by two approaches: (i) Increasing of the
number of elements. This method is known as the h-method. (ii) Increasing of
the polynomial degree of the applied finite elements. This method is called as the
p-method. In this thesis, the applied finite elements will be limited to three- and
four-noded elements based on linear shape functions, due to their advantage in the
context of numerical effort for the governing equation.

2.5.2 Time discretization

For the discretization in time the Newmark-Time-Integration scheme is used [New59].
Therefore, the time relation of the deformation and the derivatives (e.g. velocity and
acceleration) are approximated by the already known previous time step. The only
remaining variable in the discretization is the deformation in the next time step. To
discretize the time, the overall time integration is divided in certain time increments
At. In general, the velocity and acceleration are quantities which can be derived
from the deformation itself. So in classical dynamics the velocity and acceleration
are given as the time derivatives of the deformation. Velocity v can be given as the
first order time derivative from the deformation u:

__du

Todt
Acceleration a can be given as the first order time derivative from the velocity a or
as the second order time derivative of the deformation u:

dv

= — =1 2.
a - u (2.93)

=u (2.92)

44



2 Fundamentals

The Newmark-Time-Integration uses approximated fields for velocity and accelera-
tion which have at least the displacement from the next time step n+1 as unknowns:
[Unt1 — up] — 7 g ﬁl'ln 1= 53 BAtun
.. 1 [ ] 1 . 1-24..

Un+l = 525 (Unt+l — Up| — 77 Un — Un
T oA Pt BAL 28

. v
Upi1 = 7o
pat (2.94)

A further approximation for the equilibrium equation is made by the midpoint ap-
proximation from Chung and Hulbert [CH93], where all quantities in the equilib-
rium equation are transformed to a certain intermediate time. This is achieved by
the introduction of the approximation factors oy and oup:

un+1 am — (1 - am) un+1 + amun
Unti-a; = (1 —af) Wnt1 + oy,
(2.95)
Unti—a; = (1 —af)Unt1 +aru,
(

React,n+1—af 1-— af) ext,nt+1 T afRext,n

2.5.3 Linearization of the Equilibrium Equation

With the approximation in time and space from section 2.5 the equilibrium equation
can be given in terms of the finite number of nodal deformations u; for the next time
step n + 1. In order to solve the equilibrium equation, the virtual displacements can
be linearized in terms of the nodal virtual displacements. The linearization can be
given by:

= Uy 2.96
aa, (2.96)
Therefore, the principle of virtual work can be evaluated in terms of the residual
forces:

ow

_aiéunn#»l = RT,7L+16ur,7L+l =0 (297)
ur,n+1

As the virtual displacements are arbitrary, equilibrium is only satisfied if the residual
forces R; n+1 are equal to zero. Due to that the equilibrium equation can be given
in the residual form:

Rr n+1 —/S 8E un+1)dv+/p0un+1 Qam 8un+1 dV
Bur n+1 ou Ur,n+1

Vv

—/q(n)Mda =0

aur,n+1

(2.98)

a

In Order to solve the equilibrium equation, a Newton Raphson scheme is used.
Therefore, the equilibrium equation is expand by a Taylor-Series expansion where
just the first term is taken into account:

8Rr,'n+1

L[N an :an
(Rrnt1) 1+ I

Al g1 =0 (2.99)
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When rearranging equation (2.99) the incremental nodal deformation Aus ,+1 can
be computed by the linear system of equations, which is defined by the derivative of

Rr,n+1

the residual forces , also known as tangential stiffness matrix K, and the

aus n+1
actual residual forces R, 1. With the incremental nodal deformation Awug n41

the overall nodal deformation u; »+1 can be updated:
Ui n+1 = Uin + Aui’nﬁ»l (2.100)

The process of solving equation (2.99) and updating the overall deformations has to
be repeated until the residual equation is fulfilled to a certain accuracy.
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CHAPTER 3

Form Finding

The first step in the numerical design and analysis of tensile structures is to find a
shape which satisfies the requirements from an architectural and engineering point
of view. For each structure, the choice of the shape has a fundamental influence on
its structural behavior. Due to their special load carrying properties, tensile struc-
tures differ fundamentally from conventional structures in this process. The main
difference between tensile and conventional structures is the absence of bending
stiffness, due to the thin membrane material. As already described in section 2.1
the mechanical behavior can be characterized with the plane stress assumption, by
neglecting the out-of-plane stresses. A tensile structure restrains external loads just
based on the in-plane stresses. The limitation in the structural response on the in-
plane stresses introduces special requirements into the design process. The shape
can not be set arbitrarily as can be done within certain limits for conventional struc-
tures. The shape has to be found. The design steps of structural analysis and cutting
pattern generation, as illustrated in figure 1.4, are based on the shape and the pre-
stress evaluated in the process of form finding. Therefore, without form finding, as
a center step, no closed design loop for tensile structures can be developed.

For the solution of the form finding, different methodologies have been developed
in the past. They range from experimental to numerical methods, differing in the
quality and exactness of their results.. In the beginning of this chapter the principle
question What is form finding ? will be discussed. Here the discussion will be based
on examples from everyday life to illustrate the underlying problem. From this intu-
itive explanation, the governing equations for the numerical description of the form
finding problem will be derived and a solution technique presented in [BR99] will
be introduced. The discussion on a general existence of a solution represents the
basis for the description of various extensions to the originally developed method.
Additionally, the effects of the inclusion of conventional structural elements in de-
sign process will be discussed in the end of this chapter.
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3.1 What is form finding?

3.1 What is form finding?

The term form finding can be defined in various ways depending on the type of
investigated structure. In case of tensile structures it can be defined as follows
[DWB10]:

Form finding is the task to find the shape of equilibrium with respect to given surface
stress state o and natural (e.g. edge forces) or geometrical (e.g. clamped edges)
boundary conditions.

In this definition it is implied that the surface stress state o is given and the re-
spective shape of equilibrium will be evaluated. The prescribed stress state is not
naturally given for the process of form finding. Based on an example the principle
necessity of prescribing a certain quantity will be discussed. Additionally, it will be
shown that there are different possibilities in the choice of predefined parameters.
As an result of this example it will be shown that the surface stresses are the most
suitable quantity for the prescribed value.

Considering a clothesline which is assembled between two trees, the deformation
illustrated in figure 3.1 when the laundry is put in place, will be obtained. For this

equivalent structural mechanical system

Figure 3.1: Equilibrium of a clothesline (top [Ber05])

example an equivalent structural model can be defined. The laundry is abstracted
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by the distributed line load ¢ and the stresses in the cable can be derived from the
support forces V and H. The deformation in the center of the clothesline f can be
evaluated by the equilibrium of forces. Based on experience it is well known that
the deformation of the clothesline will be reduced if the intensity of the horizontal
force H is increased. So from a general point of view this experience implies the
answer to the question: What is form finding? The form of the shape of the tensile
structure is related to the acting forces and stresses. This physical experience can
also be expressed by means of equations.

For the evaluation of the governing equations, the equivalent structural model, il-
lustrated in figure 3.1, has to be considered. The clothesline, or rod in terms of
structural mechanics, is supported on both sides in the vertical direction which re-
sults in the vertical reaction forces V. These forces are purely dependent on the
vertical acting forces g (or the laundry). The horizontal forces H have to be defined
and they are dependent on the amount of prestress which can be applied to the rod.
The maximum deformation in the middle of the rodis directly linked to the amount
of applied horizontal forces, as the governing equation for the mid-deformation can
be derived to be:
_al

=53
It is also interesting to note, that the connection exists in both directions. If the
prestress is fixed in the cable (so H has to be prescribed), the geometry can be
directly evaluated. The other way around, if the geometry is fixed (so f has to be
prescribed) the prestress can be obtained. It is obvious that prescribing the deforma-
tion (or geometry) can result in unphysical solutions. For instance, if one defines the
deformation f to be zero, the prestress has to be infinite. Therefore, it is more ap-
propriate to prescribe the prestress to ensure that the final solution remains physical.
From a theoretical point of view, both approaches are feasible and can be applied
in principle. From a practical point of view, the definition of the prestress is more
suitable as it ensures that as long as state of the art technical solutions and materials
are used, a feasible design will be achieved.

3.1)

Another example is a bubble-like structure. Examples for bubbles can be found
everywhere in reality (e.g. balloons, lather, soap bubbles, etc.) as illustrated in fig-
ure 3.2. Again an intuitive experience exists for such kinds of structures. In the
following, the soap bubble example painted by Jean-Baptiste-Siméon Chardin will
be discussed. The size of the bubble is directly connected to the intensity of the
pressure inside the bubble. The phenomena of the bubble can also be expressed by
a simple relation between forces and geometry. The Young-Laplace Equation can
be used to describe the mechanical behavior of the bubble:

ni1 n9

R TR pL 3.2)
In equation (3.2) the principle relation of a curved surface at a certain point is de-
scribed. Here, the equilibrium is given w.r.t. two principal directions on the surface.
In general, at a certain point these two principal directions have individual unique
principal radii R, and R which can be evaluated by an eigenvalue analysis of the
curvature tensor from equation (2.30). In the surface there exists a stress field nq
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3.1 What is form finding?

Figure 3.2: left: Jean-Baptiste-Siméon Chardin - The Soap Bubble [HT96];
right: Frei Otto - Soap films at the IL University Stuttgart [OR95]

and n2 which corresponds with the principal directions. The pressure p inside the
bubble is constant and perpendicular to the surface. The described relations from
equation (3.2) are illustrated in figure 3.3. Here, the Young-Laplace Equation is
shown on a segment of the sphere like bubble. With the assumption of isotropic

Figure 3.3: Equilibrium in a bubble like structure

prestress (n1 = n2 = n) and of an ideal sphere (R1 = R2 = R) equation (3.2) can
be stated in the simplified form:

_2'n
pPL

R (3.3)

In equation (3.3) the relation between geometry and acting forces and stresses can
be seen again. If one reduces the pressure inside the bubble, the radius (and in
consequence the size of the bubble) will be increased and vice versa, if a constant
prestress is assumed.

50



3 Form Finding

The discussed examples, the clothesline and the bubble-like structure, describe in
terms of both experiences and equations the relation between the geometry and the
acting stress state in the structure. Because of this coupling between geometry and
mechanics, the shape of a tensile structure can’t be defined as in case of conven-
tional structures. The process of designing or finding the final form is known as
the form finding analysis. In the following sections the principle mechanical de-
scription of the problem will be given and the solution for various applications is
introduced.

3.2 Numerical form finding of tensile structures

In the previous section, a definition of the term form finding for tensile structures
has been introduced. In this section the general description from a mechanical point
of view will be given. As already described, the main shaping parameter for a tensile
structure is the prestress. The relation between the defined prestress and the geom-
etry can be given through the equilibrium equation as defined in equation (2.80)
and equation (2.81). The dynamic part can be neglected as the form found shape
is independent of any inertia effects. The equilibrium equation is formulated in the
current configuration as the described prestress should satisfy the equilibrium in the
final state. The starting point of the form finding process is the definition of the
final prestress oo. The geometry which satisfies the equilibrium condition w.r.t. the
defined prestress field is stated as the Shape of Equilibrium. In order to find this
shape, the equilibrium equation can be formulated based on the chosen prestress
state:

—0W = t/ao : deda — /q(n)&uda =0 (3.4)

a a

From equation (3.4) it can be seen that the numerical form finding problem is inde-
pendent on any material property, as the surface stresses are predefined independent
from the deformation. Additionally, external loads are considered as well, as q(n)
defines the external load acting in a certain direction. Form finding is an inverse
procedure compared to conventional structural analysis. In form finding first the fi-
nal state of stresses is predefined and the related shape of equilibrium is determined.
Material properties are introduced in a second step when the stresses are released
to evaluate the cutting pattern. In contrast, with standard analyses, the undeformed
geometry together with the material are given and the final geometry is determined
by elastic deformations.

For the solution of the given problem in equation (3.4), the variation of the Euler-
Almansi strain tensor de has to be carried out in the internal virtual work. As
the variation can’t be straightforwardly evaluated, the Lie-Time derivative as intro-
duced in equation (2.84) has to be applied. Additionally, with equation (2.42) the
integration can be transfered into the reference configuration. The external part in
the principle pf virtual work will remain in the current configuration as the variation
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can be made in a straightforward manner for the deformations:

—6W =t / detFoo : FT6EF 'dA — / q(n)duda=0  (3.5)
A a
If introducing a discretization and linearization to equation (3.5), as described in

section 2.5.1 and section 2.5.3, the residual form of the form finding problem can
be given by:
E
R, = t/detFa’o : F*Tg
A

FldA — /q(n) 55 da=0  (3.6)

Uy

By substituting the second formulation of the Green-Lagrange strain tensor from
equation (2.46) in equation (3.6) the residuum can be obtained by:

T
R, = t/detFao : F <F_T8F + OF F_1>] dA — /q(n) O =0
A a

2 ouy our ou,
(3.7)
Based on equation (2.15) and equation (2.14) the residuum can be reformulated as
follows:
1 _rOF"\T oF __,
= Foo: |- F F A
R t/det oo |:2 << auT) —‘raur d
A
(3.8)
ou
- da =0
/ a(n) 5, -da
By applying equation (2.12), the residuum equation can be given by:
F
R, = t/detFa-g O pga - /q(n) O 10 =0 (3.9
Our Our
A a

In order to separate the derivative of the deformation gradient for the double con-
traction, based on equation (2.13) the residuum equation can be stated:

_ —-TY . OF i ou _
R, = t/detF (o-oF ) a4 /q(n) G da =0 (3.10)

A

If evaluating the double contraction of the derivative of the deformation gradient
and the transposition of the inverse deformation gradient, the residual forces can be
given in components as follows:

R, = t/detFag‘ﬂ <8ga gg) dA — /q(n) g“ da =0 3.11)
A

8ur Uy
a
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If applying a Newton-Raphson algorithm, as derived in section 2.5.3, the system
matrix has to be evaluated. For this purpose, the first order derivative of the residuum
equation has to be evaluated which gives the components of the stiffness matrix:

Kre :t/ 0 {detF (UOF_T) : a—FdA] _ [9aln) Ou 5y
A a

Ous " Ou Ous Ou,

The second part of equation (3.12) is related to the external forces. In general, the
second order derivative of the deformation should occur for the external forces as
well, but if applying the space discretization described in section 2.5.1 the term
8*u
Ou,O0us
mations (¢ = cont.) the remaining term will vanish from the system matrix as well.
This part in the system matrix, related to the external load, is stated as the Load
Stiffness Matrix. A detailed discussion on the evaluation of the load stiffness matrix
can be found in [Jru09], [Mok+99] or [SR84]. The first part, which is related to the
internal forces, can be given in components:

_ ddetF o5 (9ga 08P [ Og.
Kre = t/ < Ous % (aur g3> + detl Ous \ Our 8 )+
A

+ detFol? (gﬁa %)) dA

will vanish. It is obvious that, if the load is independent from the defor-

(3.13)

Trying to solve the given problem from equation (3.10) with the Newton-Raphson
algorithm, it turns out that the system matrix from equation (3.13) is singular for
deformations tangential to the surface. The reason for this deficiency originates
from the inverse character of the given problem where stresses in the deformed
configuration are given without considering material properties and strains. This
inverse character can be understood in comparison to standard structural analysis,
where the stresses can be evaluated from displacements by applying the material
law. In contrast to that, form finding already implies the stress in order to determine
the deformed geometry. From a continuum mechanical point of view that means
that stresses and strains are not related anymore. As a consequence, it turns out
that the position of the nodes on the surface can’t be evaluated uniquely since it
is possible to describe the same surface with differently shaped finite elements as
illustrated in figure 3.4. In other words the nodes can float freely on the surface.
Hence, the same surface can be described by an infinite number of discretizations,
which results in the singular system matrix. It turns out that the solution for the
form finding can’t be achieved directly as there exists no unique numerical solution
for this problem. Due to that, stabilization techniques have to be involved to solve
the problem numerically.

3.3 Stabilization of the inverse problem

In the past, various methods for the stabilization of the inverse problem of form
finding were developed. The methods applied by Frei Otto for the form finding on
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Figure 3.4: Arbitrarily deformed meshes for the same surface geometry

the basis of physical modeling like soap films or tulle models as illustrated in fig-
ure 3.5, can be understood as another approach for the stabilization (e.g. [WM95],
[OT62], [0S66]). Of course, the application of physical models was not motivated
from the knowledge of the inverse character in the numerical problem. Regard-
less, it represents a solution approach. From [HT96] the relation between soap film
models and minimal surfaces is defined by the minimization of the elastic potential,
which represents the equality of the governing equation from section 3.2 and the
soap film models introduced by Frei Otto.

As previously described, the direct solution of the elastic potential based on the
principle of virtual work results in a singular system matrix. The first numerical
solution approaches which prevented the singularity, were motivated by geodesy.
For the form finding of the roof of the Olympic stadium in Munich the well known
Force Density Method was introduced by Linkwitz and co-workers [LS71],[Sch74],
[Bub72], [Grii76] and [Sin95]. The original version of the force density method was
limited to the form finding of cable net structures. The extension to triangular mem-
branes was done by [Sin95], [MM98].
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Figure 3.5: Soap film (left) and tulle model (right) [Willl]

Based on the increasing relevance of tensile structures in modern architecture, more
methods for the solution of the form finding problem were developed. The Dynamic
Relaxation Method was first published by Day [Day65] from a general point of view
and the application to tensile structures by [Bar74], [Bar88], [Bar99], [Wak99],
[LL96]. Here, the stabilization of the inverse problem is achieved by applying the
time dependent version of the equilibrium from equation (2.87) and introducing ar-
tificial mass and damping effects. Starting from an arbitrary initial configuration,
the shape of equilibrium is achieved by a transient analysis. The drawback of this
method is to choose appropriate mass and damping coefficients in order to stabilize
the governing equation. Therefore, a high level of experience is needed for the ro-
bust application of the method. Nonetheless, the dynamic relaxation is successfully
used for the form finding of a large number of structures.

A further method based on a modified Newton-Raphson iteration is proposed by
[HP72], [Hau88a], [Hau88b], [HA82]. Here, the stabilization is achieved by a in-
consistent linearization of the residual equation. This results in a stiffness matrix of
full rank but as a consequence quadratic convergence is impossible.

In order to avoid the arbitrary choice of main quantities in the solution of the in-
verse problem in [BR99] a more general method is introduced based on a homotopy
mapping. The main advantage of this method is that it is consistently derived from
continuum mechanics. In the following section, principles of this method will be
illustrated and extensions for the general application will be discussed.

3.3.1 Updated Reference Strategy

The Updated Reference Strategy (URS) was introduced by Bletzinger [BR99] at
the University of Stuttgart. The URS introduces a mathematically based method
to stabilize the inverse problem that was discussed in section 3.2. The idea for the
URS is to apply a homotopy mapping [AG12] to stabilize the singular equation
system. For the stabilization, a related problem will be added to the original one,
which fades out the singularity. Therefore, equation (3.4) will be expanded by an
additional term which describes an alternative formulation of the internal virtual
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work:
—OW = — ()\5Worig + (1 - A) (SWmod) (3.14)

In equation (3.14) the first part of the equation is related to the singular original
problem from equation (3.4). The second part is a solvable related problem, which
stabilizes the overall equation. The homotopy factor A ensures the solvability. If
A = 1 the original problem is solved and on the other hand if A = 0 just the modi-
fied problem is solved.

The formulation of the stabilization term has to fulfill the requirement that it con-
vergences to the original problem if the correct solution is achieved. In order to
define an appropriate related problem, the equilibrium equation will be formulated
w.r.t. to a given reference configuration:

—0Wiod = t/SO : 0EdA (3.15)
A

For the stabilization term, the same linearization w.r.t. the unknown deformation
can be derived, which results in the residual form of the stabilization term:

Rr.mod :t/So . OB dA:t/sg" (ag‘* .g5> dA (3.16)
A A

Ou, Ouy

For the application of a Newton-Raphson algorithm for the solution, the system
matrix for the stabilization term can be given by:

2
Krs,mod = t/SO : oE dA = t/sgﬁ (aga . agﬁ) dA (3.17)
A A

OurOus Ou, Ous

For the evaluation of the governing equations for the stabilization term, the prestress
state So has to be defined. From a continuum mechanical point of view, it would be
possible to achieve the prestress in the reference configuration by a pull back oper-
ation as defined in equation (2.57). It is obvious, that if this would be applied to the
form finding equations, the original and the stabilization term would be equivalent
and the singularity still remains. To ensure the solvability of the modified internal
virtual work the assumption is done that the coefficients in the reference and the
current configuration are identical:

oof = §5° (3.18)

Due to this modification the two parts in equation (3.14) will be different and the
resulting system of equations can be solved. For the evaluation of the governing
equation of the modified internal virtual work, both a reference and a current con-
figuration have to be defined. The solution of the modified problem will correspond
with the optimal shape if the reference is identical to the current configuration. Of
course, this situation would result again in the singular state. From a mathematical
point of view, the results from the homotopy method will never end up in the final
solution, only an approximation can be achieved. This theoretical difference can be
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neglected in the application of the URS as the error can be reduced to the chosen
order of numerical accuracy.

It would seem that if it was possible to define an appropriate reference configu-
ration, the solution of the form finding could be achieved in advance. In general,
this is not the case. Therefore, in the URS the initial reference configuration will be
chosen arbitrarily. For this choice the boundary conditions have to be considered
(e.g. fixed points of the tensile structure). Based on this, the solution of the modi-
fied virtual work can be achieved by a Newton-Raphson method. It is obvious, that
the stabilization term will not fade out as long as the reference and the current con-
figuration will not coincide. Therefore, deformations at the nodes of the discretized
surface will occur. To ensure that the procedure will converge to the final form of
the tensile, the deformed shape is used as a new reference configuration. By up-
dating the reference configuration after each solution step, the method will finally
converge to the shape of equilibrium for an arbitrary choice of the homotopy factor
0< A<

As the choice of \ is arbitrary, it is also possible to choose a homotopy factor equal
to zero for all carried out form finding steps as suggested in [Lin09]. Of course,
this approach omits the need of predefining a computational quantity, but results in
the necessity of more form finding steps. If applying the full URS, the homotopy
factor has to be chosen for each form finding step. Depending on the quality of the
initially chosen reference configuration, the solution in the first form finding step
can be challenging for the applied solution algorithm by defining values for A close
to 1. Therefore, it is recommended to apply a small homotopy factor in the first
form finding step and increase it for the next steps. The general process of the URS
is illustrated in figure 3.6 for the form finding of the well known Scherk minimal
surface [Sch35].

3.3.1.1 Membrane element

The governing equations for the membrane element are already defined in sec-
tion 3.3.1. With the introduction of a discretization, finite elements for the form
finding of membranes can be derived. In general, all types of 2D finite elements can
be applied to discretize the governing equations.

For the evaluation of the residual forces and the system matrix for a membrane
finite element, the definition of a required prestress o has to be made. As defined
in equation (3.18) the coefficients for the Cauchy and the 2. Piola Kirchhoff stresses
are assumed to be identical. The derived residual forces and the system matrix for
the original and the stabilization term were based on the curvilinear form of the
stress tensors, defined as follows:

oo = agﬁga R gs
So=82"G, ® Gj (3.19)
with o0? = 557
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Form finding step 1

A1 =0.0
% =19 1 Equilibrium
detF # 1
Update Reference
Form finding step 2 l
A2 =0.2
apB 1 0 -—_
0 0 1 Equilibrium
detF # 1
Update Reference
Form finding step 3 1
A3 =0.4

Repeat the sequence of
ws 10 —, equilibrium iteration and
updating the reference
configuration until
detF = 1

Figure 3.6: Form finding process using the URS applied to the Scherk minimal
surface
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From a practical point of view, the definition of the coefficients of the curvilinear
prestress tensor is not straight forward, as the values have no direct physical mean-
ing. Therefore, the prescribed prestress will be applied based on a local Cartesian
coordinate system. If the derived equation for the form finding should be applied,
the prestress has to be transformed into the curvilinear coordinate system. For this
purpose various methods have been previously introduced. The main difference
between the suggested methods is the geometrical part, where the local Cartesian
coordinate system is defined on the curved 3D surface. In [Die09] a method lim-
ited to isotropic situations is introduced. A more general approach is presented in
[Lin09] and [WiicO7], where based on the definition of approximative directions in
a projection plane, the local Cartesian coordinate system is evaluated. In the fol-
lowing, the method described in [WiicO7] will be presented.

Consider a plane defined by the directions T and T as illustrated in figure 3.7.
With the intersection of this plane area and the tangential plane on the surface de-
fined by base vectors G1 and Go, the first local cartesian direction ’i‘l can be
defined. The line of intersection T can be evaluated by the cross product of the
surface normal T3 of the projection plane and the surface normal of the curved

surface Gs:

- T3 X G3
TH = ——— 3.20
' Ty % G (320

The direction T can be interpreted as the first prestress direction. The second
prestress direction can be obtained by the cross product of the surface normal Gs

and the first prestress direction T

'i‘1><G3

Ty= -5
IT1 x Gs||

(3.21)

The resulting local Cartesian coordinate system T, can be used to define the phys-
ical values of the prestress on the curved surface. In figure 3.7 this process of
defining the prestress directions is illustrated. With the prestress directions defined
by equation (3.20) and equation (3.21), the physical prestress values can be trans-
formed into the curvilinear coordinate system based on equation (2.17). The result-
ing transformation rule from the local cartesian coefficients SE)’B into the curvilinear
coefficients SgW can be given for the 2. Piola Kirchhoff stresses by:

S8 = 898 (Ta : G6) (Tﬁ : G”) (3.22)

This transformation can also be applied for the Cauchy stresses. But as the as-
sumption is introduced that the components of both, the Cauchy and the 2. Piola
Kirchhoff stresses are identical, this only has to be done for the reference configu-
ration. Of course, the transformation of the prestress into the curved surface has to
be done in each iteration step and for each integration point as the directions will
change constantly. Based on the transformed prestress coefficients the residuum
and the system matrix can be evaluated as already defined in equation (3.13) for the
original part and in equation (3.17) for the stabilization part.
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Tangential Plane

€3

€

Figure 3.7: Local Cartesian coordinate system for the definition of the physical
prestress values

3.3.1.2 Cable element

Cable elements are one dimensional elements which are applied to model all types
of cables in the tensile structure. For this type of finite element, the local coordinate
system is defiend by the cable axis. Additionally, the derived equations can be
simplified, as there is just one dimension to consider. The summation from the
governing equations for the form finding problem can be reduced to a fixed version
as just one base vector has to be considered. The residual forces for the original part
can be given by:

og ou
Rrog=A / detFop! ( (%i gl) dL — / q(n) . dl =0 (3.23)
L l
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Furthermore, the system matrix for the original part is obtained as follows:

. OdetF 11 Bgl 80'(%1 6g1
Krsoe = A Ous 70 (8ur 81 | + detF Ous \ Ou. E1
L

(3.24)

+ detFod! (ag1 agl) dr, — [ 2aln) ou

Ou, Oug Ou, Ouy

Of course, the stabilization part can also be reduced in case of cable elements. The
residual forces can be evaluated by:

R'r,mod = A/Sél (agl . g1> dL (325)
Our
L
Additionally, the system matrix in case of the stabilization part can be given as
follows:
Kromos = A / sir (98 081) gy (3.26)
Our Ous
L

In general, it is possible to introduce arbitrary 1D Finite Elements for the discretiza-
tion of the described equations for the original and stabilization term. An interest-
ing property of the stabilization term can be obtained in the case that finite elements
with linear shape functions are applied as illustrated in figure 3.8. For a linear cable

Figure 3.8: Linear cable Finite Element

element, the integration over the length can be reduced to a multiplication of the
function by the overall length of the element:

/(...)dL:(...)L (3.27)

L

Additionally, taking into account that with the transformation of the prestress into
the curvilinear coordinates by equation (3.22), applied for the one-dimensional case,
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the prestress in terms of the 2. Piola Kirchhoff stress can be given by:

So=25"'G1® G =S5'er ®e

= Sél = S'él (elGl)A(elGl) (3.28)
—ghign — 8731
— L0 - L2

Substituting equation (3.28) into equation (3.25) the residual forces for the stabi-
lization term can be given w.r.t. the cable forces [V, which are assumed to act along
the axial direction of the cable:

R, = AS3'L (@ -g1)
ou,

AS&I 8g1
_ . 3.29
17 9, & (3.29)

N (081
Our

L

gl) = Rr,force density

The last line in equation (3.29) includes the ratio between the cable force N and the
cable length L which is well known from literature as the Force Density ¢ = N/L
which was introduced by Linkwitz [LS71]. Therefore, it can be stated that the
URS, for the special case of A = 0, represents the generalization of the Force
Density Method. In contrast to the Force Density Method, the URS is consistently
defined for the 2-D states of stress as well and for arbitrary kinds of discretization
of membrane and cable elements.

3.3.1.3 Existence of a solution for the form finding problem

In the previous sections the governing equations for the solution of the inverse prob-
lem of the form finding by the Updated Reference Strategy were described. Based
on this, the formulation of appropriate Finite Elements was presented. It has been
shown, that the main input parameter for the evaluation of the shape of equilibrium
is the prestress distribution in the surface. In principle, the prestress can be defined
arbitrarily for the individual directions, as the equations were not simplified in the
description of the prestress. In fact, there is a discussion included in the description
of the membrane finite element about how to define the prestress directions on a
curved surface.

In general, there are three possible types of prestress definitions: (i) The prestress is
equal in the individual directions and on the overall surface — isotropic prestress;
(i1) The prestress is unequal in the individual directions, but constant along the sur-
face lines — constant anisotropic prestress; (iii) The prestress is unequal in the in-
dividual directions and non-constant along the surface lines — anisotropic prestress.

In the next sections there will be a discussion for which cases the individual pre-
stress definitions are appropriate. In this section the existence of a solution for the
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form finding based on different prestress definitions will be discussed from a math-
ematical point of view. The example which will be discussed in the following, on
the solvability for the different prestress types, was first presented in [Lin09].

In figure 3.9 a surface of rotation is illustrated. It is defined by two fixed circles
at the top and the bottom with the radii R; and R». The distance between the radii
is defined by the height H and it is assumed that both are fixed boundary conditions.
In between there is a membrane surface which has the radial prestress o, and the
meridian prestress o,,. It is assumed that there are no shear stresses involved in the
form finding.

z

4 . .
| Axis of Rotation

Figure 3.9: Surface of rotation with anisotropic prestress

The geometry of the surface of rotation can be uniquely defined by the varying ra-
dius along the rotation axis 7(z) = r and the rotation angle . Therefore, the two
surface parameters can be identified by the angle of rotation ¢ = 6; and the posi-
tion along the rotation axis z = 6. Based on this, the geometry given in terms of
the position vector is defined as follows:

rcos(p)
x = [rsin(p) (3.30)
z
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The covariant base vectors can be evaluated by the partial derivative of the position
vector w.r.t. the surface parameters:

9 —rsin(p)
g1 =g =5 = | rcos(y)
(3.31)
o [recoste)
g2 =gm = 5 = |r=sin(y)
o 1

In equation (3.31) 7, indicates the derivative of the radius r(z) w.r.t. to the coor-
dinate z. For the evaluation of the solution of the form finding, the variation of the
Euler Almansi strains is needed as defined in equation (2.84). The variation of the
strains in the radial and the meridian direction can by obtained by:

Se1r = e, = ogr - gr

?T &r (3.32)
Sy = e, — 2B Bm

gm ° gm

In equation (3.32) the variation of the covariant base vectors is included, which can
be evaluated by:

—orsin(yp)
0g1 = 0gr = % = | drcos(p)
0
(3.33)
o [or-costo)
082 = 08m = 5 = or - s(;n(go)

Based on the derived equations, the formulation of the principle of virtual work
defined in equation (3.4) can be evaluated by:

—OW = t/oréer + omdemda

27
t// (order + omden) ||g1 X g2||dpdz
0

(or0er + omoem) ri/1 +12dz
or T 0T 5
(UT7+0m1+r2 ) ry/14+71r3dz=0

¥4

(3.34)

2t

2t

St~z T—=x °
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By applying integration by parts and the assumption that the boundaries of the sur-
face are fixed, the principle of virtual work can be rewritten as follows:

H
_ — / 2 _ _rre _
oW = 2t7r/ ory/ 1412 (O’m m) ordz =10 (3.35)

0

It is obvious that equation (3.35) can only be fulfilled if the term in the brackets will
be equal to zero. Therefore, the governing equation of the equilibrium of forces can

be given by:
o /1472 — [om—tz ) =0 (3.36)
’ V1+72 :

By taking the derivative and doing some algebraic operations (e.g. dividing the
equation by the radius ), the governing equation can be rewritten as follows:

2 1 T,
Or —0m)T | —F//——= | + Om,-—F/——
( m) 5 (']‘ /714»7“’22 m,z 1+r?z

1 1 Toas o (3.37)
+o, - T +7’,2z —Om (1 +T?z) =
—_—— ﬁ’_/
ko, m

The first line of equation (3.37) can be identified as the equilibrium in the in-plane
direction of the surface. The second line represents the out-of-plane equilibrium
and is identical to the Young-Laplace equation as defined in equation (3.2) with
the absence of an external pressure force. Due to that it is possible to formulate
two individual equilibrium requirements. In the in-plane direction the following
condition has to be satisfied:

2 1 Tz
Or —Om)T o | ——— | + om,———==0 3.38
( T <r\/1+r?z> V1712 ( )

In the out-of-plane the simplified Young-Laplace equation represents the equilib-
rium:
o Om
rkr mkm = —=—+ =——=0 3.39
o +o R, + R, ( )
Based on the derived equations it is possible to discuss the individual prestress char-
acteristics:

Isotropic prestress: o, = 0,, = const and o,,,. =0

It can be seen that in case of isotropic prestress the in-plane equilibrium equa-
tion (3.38) is always fulfilled, independent of the shape of the surface. From the
out-of-plane case the requirement is defined, that at each point of the surface the
radii in radial and meridian direction have to be equal and of opposite sign. Due to
that it can be concluded that in case of isotropic prestress definition, the resulting
surface has to have an anticlastic curvature. This has the result that all spatial tensile
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structures with isotropic prestresses are non-developable, except of the special case
of plane surfaces where one raduis tends to infinity.

Constant anisotropic prestress: o, # 0,, = const and oy, =0

By substituting the conditions for a constant anisotropic prestress definition into the
governing equations it turns out that it is impossible to satisfy the in-plane equi-
librium. The only exception is in the special case that the derivative of the radius
is equal to zero r . = 0, which results in a surface with constant radius over the
height (i.e. a cylinder). The out-of-plane equilibrium can be satisfied, as the radii
in radial and meridian direction are unequal at each point of the surface. Hence,
with the definition of a constant anisotropic prestress the shape of the surface can
be modified in an effective way, but it is impossible to achieve equilibrium in the
in-plane direction.

Anisotropic prestress: o, # 0., and op,,. # 0

With the definition of a non-constant prestress distribution along the surface lines
it is possible to satisfy the in plane as well as the out of plane equilibrium. Due to
that, as for the isotropic case, a unique solution for the form finding problem can be
achieved. It is obvious, that the definition of such a prestress situation introduces
some major difficulties, as the prestresses in the radial and meridian direction have
to fit to the derivative of the meridian direction to satisfy the in plane equilibrium
equation. Due to that, the general anisotropic case can’t be used effectively for the
definition of the prestress.

Summarizing the different effects from the prestress situations to the equilibrium
equations, the conclusion can be made that only in the case of the isotropic prestress
can a unique solution be achieved with an acceptable effort. In case of the constant
anisotropic prestress there doesn’t exist a solution for the form finding problem.
With the choice of a well defined general anisotropic prestress, a unique solution
could be found, but from a practical point of view this type of definition can’t be
applied in a straightforward fashion for the form finding. In the following, based on
this discussion the individual prestress situations will be described with the effects
on the governing equations as well as on the process of the URS. For anisotropic
situations an alternative possibility in defining the prestress will be presented.

3.3.1.4 Isotropic prestress

In case of an isotropic prestress the coefficients of the stress tensor are identical in
both local Cartesian directions. Additionally, the shear stresses are zero. Based on
this, the prestress tensor oo can be given in a simplified form:

o0 =0"g. ®gs =61 =5¢""g. ® gs (3.40)

In equation (3.40) the prestress tensor is defined as the product of the identity ma-
trix I and a scalar value & which can be understood as a stress intensity factor. For
this situation the assumption of equal prestress coefficients in the reference and the
current configuration can be reduced to the assumption that in both configurations
the stress intensity factors are equal ¢ = S. S and & represent the stress inten-
sity factors in the reference and current configurations, respectively. Therefore, the
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prestress for the stabilization part can be given by:
So=5"Ga®Gs=51=5GG,®Gs =5G’G, @G5  (3.41)

For the case of isotropic prestress it is possible to validate the derived governing
equations for the form finding problem. For the validation of this type of pre-
stress, soap film models as described in section 3.1 can be applied. The surfaces
which are found by soap film models will result in a minimal surface content within
given boundaries. The connection between the pure geometrical and the mechanical
model is the overall prestress in the surface, as minimal surfaces are characterized
by an isotropic stress distribution. For centuries mathematicians have worked on the
solution for minimal surfaces for different cases of boundary conditions [Diel0].
The experimental work of Joseph Plateau in the 19th Century was one of the most
important contributions to this research. Examples for minimal surfaces from math-
ematics are illustrated in figure 3.10.

From a mathematical point of view, the minimum of area content a can be derived
by the vanishing variation da:

da = 6/da =0 (3.42)
By applying Nanson’s relation defined in equation (2.40), the variation of the area
content can be formulated as follows:

Sa =20 / detFdA =0 (3.43)
A

The variation of the determinant of the deformation gradient can be given by [BR99]:
b (detF) = detFF~" : 6F (3.44)

Substituting equation (3.44) into equation (3.43), the variation of the area content
can be derived as follows:

da = / detFF~ T : SFdA =0 (3.45)
A

Applying the definitions for isotropic prestress from equation (3.40) to the derived
equation for the original part of the URS defined in equation (3.10), the principle of
virtual work can be given by:

—5W = t/detF (00F7) : 6FdA
A
— / detF (51F ") : 6FdA (3.46)

A
= ta/detFF—T :6FdA =0
A
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The comparison of equation (3.45) and equation (3.46) illustrates that the mechan-
ically motivated derived equations are identical to the geometrical equation except
for the scalar factor t&. Therefore, the solution of the form finding problem with
isotropic prestress, can be seen as identical to the solution for finding minimal sur-
faces. Of course, surfaces with an isotropic prestress definition aren’t exclusively

Figure 3.10: Minimal surfaces created by applying the URS (left: Schén minimal
surface; center: Scherk minimal surface; right: Helicoid;)

restricted to the application for mathematically motivated surfaces. Various of ex-
isting tensile structures are based on the assumption of isotropic prestress fields.
Certainly, one of the most prominent is the roof of the Olympic Stadium in Mu-
nich. Despite this structure being a cable net, the overall shape of the surface can
be found by the application of membrane elements. In figure 3.11 the numerical
recalculation of the form finding for the roof, based on the URS is illustrated.

Figure 3.11: Form finding result for the roof of the Olympic Stadium in Munich
(recalculation)

3.3.1.5 Anisotropic prestress

In section 3.3.1.3 it was discussed that in general, for a constant anisotropic pre-
stress definition, there exists no solution for the form finding problem. From a
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design point of view the restriction to isotropic prestress would result in a major
drawback for the application of tensile structures. Due to the fact that the result-
ing minimal surfaces are characterized by slightly curved areas, the potential of
ponding or snow accumulations is decisive. To prevent this surface characteristic in
common practice, the definition of anisotropic prestress is applied to generate suf-
ficiently curved shapes. As shown in section 3.3.1.3 the only possibility to achieve
anisotropic prestress is to accept variations from the intended prestress state and to
define a general anisotropic prestress.

To achieve the shape of equilibrium with a variation in the prestress field, various
methodologies are available. One of simplest methods is to limit the form finding
process to a fixed number of steps. This means that the process of solving the gov-
erning equations and the updating of the reference configuration will be defined in
advance. Of course, in each form finding step, deformations will be evaluated, as
the equilibrium can be never satisfied. Therefore, in each form finding step a differ-
ence between the predefined 2. Piola Kirchhoff stress So and the Cauchy stresses
o will remain. It is important to note that due to the solution of the equilibrium
in the URS, the current configuration in each intermediate form finding step is in
equilibrium w.r.t. the current Cauchy stresses o ... Based on this, the process for
the form finding of anisotropic prestressed tensile structures can be applied as fol-
lows: (i) Define an anisotropic prestress and a maximum number of form finding
steps; (ii) The current configuration in the last form finding step and the current
stresses o . represent the shape of equilibrium. The current Cauchy stresses can
be evaluated based on equation (2.57) as given as follows:

1 T

T cur = detFFSOF 3.47)
The approach of terminating the form finding after a certain number of steps will
introduce the drawback that the resulting surface is weakly defined, as the result
depends on the initial reference configuration and the number of form finding steps.
In order to introduce a possibility to have an influence on the final shape, methods
based on the results of the clothesline example in section 3.1 have been developed.
In the clothesline example it was shown that in principle either the prestress or the
final geometry can be predefined to solve the form finding problem. In [WBO05],
[WiicO7] and [LB10] a method is introduced which enables the control of the form
finding for anisotropic prestress situations by geometrical constraints. Here, the
control of the geometry is achieved by controlling the distortion of the finite ele-
ments.

Distortion Control Method: The main idea of the distortion control method is
to control the mesh distortion of the finite elements. In principle, the method can
be described on the basis of the example of the clothesline from figure 3.1. In the
case of the clothesline, the maximum deformation f could be set to a fixed value. It
is obvious that in the case of tensile structures the overall shape can’t be defined in
advance by prescribing a few selected parameters. Therefore, the method uses the
maximum allowable deviation from the initial defined reference configuration. This
is achieved by the measurement of the distortion in terms of the principal stretches
which are defined in section 2.4.2.
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To control the distortion of the surface, a maximal allowable configuration of the
deformation will be defined. With this definition and the initially defined reference
configuration, the upper and lower bounds of the distortion are set. Based on these
definitions, the distortion control can be formulated in terms of continuum mechan-
ics by the maximum allowable deformation gradient Fy,,x. In each form finding
step the current total deformation gradient F, can be compared to the maximum
allowed deformation. The prestress values can be modified for the next step to en-
sure that the deformation will remain in the defined boundaries. In figure 3.12 the
individual configurations are illustrated.

In the distortion control method in each form finding step the principal stretches A,

Updated reference configuration Current configuration

SE T

Fmt
Maximal allowable configuration

Figure 3.12: Configurations for the distortion control method [Lin09]

Fmdx

Initial reference conﬁguratlon

are evaluated. Subsequently, these stretches are compared to the allowed extremes.
If one of them is violated, the prestress tensor has to be modified. The deformation
in a form finding step ¢ exceeds the allowed limits if:

)\’(Lx > Amax or )\;Ly < )\L - )\min (348)

If the principal stretch in a form finding step fulfills one of the conditions in equa-
tion (3.48), a modified prestress field for the next form finding step will be eval-
uated, which ensures that the distortion of the Finite Element will remain within
the defined boundaries. In order to evaluate the modified prestress, the maximum
allowable deformation gradient has to be computed. Therefore, the allowable de-
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formation gradient can be given by:
. . o
Fzmz\x = )‘;L)znza ® N,

Amax fOr AL, > Amax
N , 1 (3.49)
with A}, = for Ag, < 3

m
i, other cases

Additionally, the total deformation gradient between the initial and the current con-
figuration can be obtained by:

Fix = \anl, ® N, (3.50)

Based on the deformation gradients, the modified prestress field can be evaluated as
described in [WBO5]:

, i, N1 N=T , N\T
0-7’ detFmaX F[Zr)t (F:ndx) O'Z (andx) (onl)

mod = detFi, 3.51)
X2 dadg ooBini o pi '
M Aok o ®mnp

The modified prestress will be applied for the next form finding step. It is obvious,
that the modification of the prestress has to be made for each evaluation point of
the governing equations (e.g. Gaussian integration points). Therefore, the resulting
prestress distribution in the surface is highly nonlinear and deviates from the pre-
defined one. Because of this, the initially defined prestress can be understood as
an approximative guess of the resulting stresses. As the distortion control method
switches the major input from the prestress to the geometry, the governing equa-
tions can be reduced to the stabilization term from equation (3.14). This means that
the homotopy factor can be set to zero (A = 0).

In principle, the distortion control can be described as a restriction of the possible
geometrical design space. For example, if the maximum principal stretch is fixed to
1 (Amax = 1), the surface content has to remain equal as defined by the initial ref-
erence configuration. As a consequence, the final solution is now depending on the
initial guess of the form finding problem which is not arbitrary anymore as it has a
major influence on the final design. In figure 3.13 the result for different maximum
allowable stretches is illustrated for the case of a simple cylindrical example. It can
be seen that with decreasing Amax the resulting shape of equilibrium tends towards
the initial reference configuration.

Since the prestress is indirectly controlled by the adapted geometry the final stress
distribution has to be checked against allowable values concerning material proper-

ties and design practice.

For the discussion of the resulting prestress distribution the form finding for the
well known Chinese Hat will be discussed in the following [MM98], [RW04]. In
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Tnitial A = 1,10 mex 770

Configuration Amax = 1.00

Figure 3.13: Catenoid for different values of Amax

this example a top ring and a bottom ring are defined. The radii of these two rings
are different. The top ring has the radius Ry, = 4.0 and the bottom radius is defined
as Rpotom = 20.0. The initial reference configuration is defined as a cone between
the two radii. The initial predefined prestress will be isotropic and has a unit value.
The maximum allowable stretch is defined as 1.1. The resulting surface and the
prestress distribution in warp and weft directions is illustrated in figure 3.14. It can
be seen that the maximum stress ratio in radial and circumferential direction has a
ratio of approximately r = Owarp/0wert = 4.5. The resulting prestress distribution
is purely based on the definition of the allowable stretch and for other values the
result would differ from that illustrated. From a practical point of view it has to be
discussed if such a stress distribution can be realized. The task of introducing such
prestress values into the tensile structure has to be considered as well as the task of
finding a material which has a long term behavior such that the prestress distribution
can be kept over time. It has to be ensured that the material doesn’t compensate the
prestress towards an isotropic situation due to creep in time. The distortion control
method enlarges the design space for tensile structures, but the practicability has to
be discussed in each case.

3.4 eXtended Updated Reference Strategy (X-URS)

In the previous sections the Updated Reference Strategy was introduced. Addi-
tionally, different aspects of the solution process were included. The influence of
isotropic and anisotropic prestress definitions were discussed as well as the intro-
duction of the distortion control method to include geometrical constraints. In the
discussion of the form finding problem it can be seen that just for isotropic prestress
definitions a unique solution can be given and the application of the URS allows one
to approximate the shape of equilibrium up to small numerical deviations. However,
the homotopy factor has to be chosen for a defined number of form finding steps.
In the following, a modified version of the URS will be presented which is able to
evaluate the exact shape of equilibrium without defining a homotopy factor.

The eXtended Updated Reference Strategy (X-URS) modifies the singular prob-
lem in such a way, that the singular term is removed from the residual equation.
The idea is to split the residual forces into parts in order to identify the singularity.
Based on the separated form of the residuum it is possible to modify the governing
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Initial configuration Final configuration
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Figure 3.14: Warp and Weft stress for the Chinese Hat

equations to eliminate the problematic parts. Before the modification can be done,
the principle structure of the residuum derived in equation (3.4) and equation (3.16)
has to be discussed in detail. In the following the residual equation are discussed
without the presence of external forces, as this part does not change in comparison
to the original derivations. The overall residuum is given by:

RT:tA/O'():

= ARy oy + (1 — )\) Rrs, =0

Oe OE
8urda+t(1—)\)/So. SEaA=0
A

(3.52)

As already discussed in section 3.2 the singularity originates from the residual force
based on the original term R, . In more detail, the part of the force which points
in the tangential direction of the surface is responsible for the singularity in the
governing equation. In order to identify this part, it is important to note that the
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3.4 eXtended Updated Reference Strategy (X-URS)

residual force represents an unbalanced force at the node. As every other force,
the residuum can be split in individual parts aligned with certain directions. In this
case, the residuum will be split into components in the direction of the normal n and
the tangent t to the surface. In figure 3.15 the described split is illustrated. From

Figure 3.15: Separation of the residual force into normal and tangential direction

a mathematical point of view the split of the residuum force into certain directions
can be made by the projection of a vector onto another vector. Based on this math-
ematical operation, the part of the residual force which is aligned with the normal
direction can be obtained by:

R'=mn®n)R (3.53)

With the same operation, the part of the residual force which is aligned with the
tangential direction could be achieved. In order to avoid the direct evaluation of the
tangential direction, this part is obtained by the difference of the actual force and by
the one aligned to the normal:

R'=(I-n®n)R (3.54)

Based on the forces acting in normal and tangential direction the overall residual
force can be represented by the summation of the two separated parts at a certain
node of the finite element discretization. The rewritten governing equation of the
URS, based on equation (3.52), for every node can be given by:

R=X(Rj, +R;,) +(1— ) (RS, + Rg,) =0 (3.55)

Note, that at every node the 3-dimensional vector R is composed of the Cartesian
components R, as of equation (3.52) which refers to the spatial displacement pa-
rameters u,. With the separated representation of the residual form, as given in
equation (3.55), the part which causes the singularity in the system matrix can be
identified. The force aligned with the tangential direction based on the original part
Rf,o can be identified as responsible for the singularity. As already introduced,
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the second part in equation (3.55) is defined to stabilize the overall equation in the
tangential direction. It can be seen, that the stabilization part also effects the non-
singular normal force which defines the nodal position in space of the form found
geometry. The influence of the stabilization part on the normal direction decreases
the speed of convergence of the overall process. The separated form offers the pos-
sibility to only take into account the parts which are important in order to solve
the form finding problem. It is obvious, that the normal part of the original prob-
lem R, is crucial as it defines the nodal position in space. The tangential part of
the stabilization term Rtso is also needed in order to stabilize the overall problem.
The parts which can be neglected are the tangential part of the original problem
Rf,o as it causes the singularity and introduces no additional information to the
governing equation. The normal part of the stabilization problem Rg, can be ne-
glected as well, as it just slows down the overall convergence and also introduces no
additional information. Obviously, applying this modification would lead to a non-
singular problem. Due to that, the homotopy mapping is not necessary anymore.
This means, that the homotopy factor A can be neglected and the nonlinear problem
can be solved directly. Based on the described modifications, the governing equa-
tion for the eXtended Updated Reference Strategy can be given in the nodal form as
follows:

Rxuws = Ro, +Rs, = (m®n)Rys, + I-n®n)Rs, =0  (3.56)

From a theoretical point of view, the solution of the form finding problem with the
X-URS represents the analytical shape of equilibrium. It is important to note, that
this property only holds if no tangential mesh deformations are needed to achieve
the final solution. This is obvious, as the tangential part of the equation is purely
based on the stabilization term. This can be summarized as follows: The X-URS
solves the form finding problem in the normal direction exactly within the first form
finding step and approximates the in plane deformation as it is done in the force den-
sity method.

The introduced split of the governing equations can also be found for other types
of form finding methodologies. In the case of the dynamic relaxation in [BL03], a
similar idea is discussed.

For the separation of the residual equation, the normal vector at each node is in-
troduced. Of course, the normal vector of the current configuration has to be used
in order to describe the shape of equilibrium at the end of the nonlinear process.
By applying a Finite Element Method for the solution of the X-URS at each node,
there are as many normals as elements. In order to compute one single normal
vector for each node, an approximation of the true surface normal vector has to be
made. For this, an averaging of the individual normal vectors of the surrounding
finite elements at the node is necessary. In principle, the averaging can be done
by just summing up the individual normals and doing a normalization to ensure a
length of one for the normal vector. This basic idea of averaging doesn’t take into
account that the mesh size of adjacent elements could differ. In order to achieve a
most fitted approximation of the true surface normal the influence of different mesh
sizes has to be taken into account. In [LWBO7] the idea of a weighting factor for
the individual mesh normals is discussed. By multiplying the individual normals
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3.4 eXtended Updated Reference Strategy (X-URS)

n’, with a weighting factor wy,; the averaged surface normal at a certain node can
be obtained as follows:

Melem .
E w}”’l’l;C
=t (3.57)

nE = Melem
WiNG,

i=1

There exist various possibilities in choosing the weighting factor for the individual

nodal normals. In [Wak99] the weighting factor is given as the inverse of the area

content of the considered element. Based on this in [Lin09] the difference between

triangle and quadrilateral elements is additionally taken into account:
1

llgri,1i X g2l
1

4-||gri,1 X 8ri2ll

Wk, tria =
(3.58)
Wki,quad =

A detailed discussion on the influence of different weighting factors for triangular
meshes is presented in [UEG13]. Of course, the influence of the weighting factor
decreases if a regular mesh of the same element type is applied.

Due to the introduction of the mean normal vector in the governing equation, the
number of degrees of freedom for the nodal residual force will change. The in-
troduced mean normal depends on all degrees of freedom of the nodes which are
included into its evaluation. Due to that, for the computation of the system matrix,
in order to solve the nonlinear problem by a Newton-Raphson algorithm, the resid-
ual force at the node has to be derived w.r.t. to all nodes which are included in the
patch of elements. In figure 3.16, the influence on the residual forces at the nodes of
an element for the standard case and the patch case is illustrated. The residual forces

Standard Finite Elements Patch Finite Elements

A Considered Element
/\ Patch Element

o Considered Node

= Included Node

Figure 3.16: Patch of finite Elements to compute the mean surface normal

will be evaluated from the variation of the virtual work w.r.t. the nodal degrees of
freedom, like in the standard Finite Element case from figure 3.16. Evaluating the
elemental system matrix for the Newton Raphson method, the number of degrees
of freedom will be changed to those included in the patch.

The simplest form of deriving the system matrix for the solution with a Newton-
Raphson method is to stay in the form of nodal quantities. The resulting entities for

76



3 Form Finding

the system matrix of a certain node can be given by the derivative of the modified
residual forces w.r.t. the patch’s degrees of freedom:

ORo,

ORuws _ (o on
94, (8‘~®n+n®6J)R"°+(n® n)

on on
_(87®n+n®67u]>Rso+(I_n®n)7,

The resulting force vector has to be assembled into the system matrix. It is impor-
tant to note, that the three components of the residual force vector have to be derived
w.r.t. all nodal degrees of freedom in the patch. The resulting matrix has the dimen-
sion 3 X Ngofpach- For each node of an element, this type of matrix is achieved.
In principle it is possible to assemble all of the nodal matrices into a single matrix
which can be interpreted as the "elemental system matrix". As the number of rows
of the force vector and the nodal degrees of freedom are equal, the size of the result-
ing elemental system matrix iS ndof,element X Tdof,patch- Of course, this characteristic of
the elemental system matrix in the X-URS causes special assembling algorithms in
the context of the Finite Element Method. Another characteristic for this formula-
tion of the X-URS is w.r.t. to the symmetry of the system matrix. As the governing
equation is modified during the linearization, the resulting global system matrix
is non-symmetric. Due to that, special solvers, which are able to deal with non-
symmetric matrices are needed for the solution of the linear system of equations.
Of course, this characteristic originates from the choice of solution approach of the
X-URS. An alternative formulation can be described, which keep the symmetry of
the system matrix and make use of standard assembling routines. The modification
of the URS can also be applied for the incremental form of the residual equation,
which is defined as follows:

MKy + (1 = MKs,) Au= — (ARoy + (1 — M)Rs,)  (3.60)

The involved system matrices Ko, and Kg, are symmetric. It is possible to trans-
form equation (3.60) into the local directions defined by the surface normal n and
the tangential vectors t;. Related to this transformation the evaluated variables Au
are no longer aligned with the 3-dimensional spatial directions but with the local di-
rections aligned with the normal and the tangential vectors. The changed variables
will be indicated by Aq. The transformed equation system can be given such:

AT Ky, T+(1 - AT Ks, T | A= — | AT Ro, +(1 — ) T"Rs,
Kcro KSO Rcro RSO
(3.61)

In equation (3.61) T indicates the respective transformation matrix. Based on the
resulting local versions of the system matrices K, and Ksg,, which are still sym-
metric, the parts which are aligned with the normal and tangential vectors can be
again identified and separated. Therefore, it is possible to integrate the ideas from
the X-URS again in the solution of the form finding problem. For the numerical
process, the modified matrices can be transformed into the original spatial variables
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Au for the integration in standard Finite Element software. As neither the transfor-
mations nor the modifications influences the symmetry of the system matrices the
final equation system keeps symmetric as well. For the following examples the first,
non-symmetric, version of the X-URS formulation will be used, as no modification
on the matrix level has to be done.

As the X-URS solves the form finding problem without any compromises in the
normal direction, the final solution for the shape of equilibrium can be found within
one form finding step. To illustrate the principle behavior, the convergence of the
method will be discussed on the basis of the Schwarz minimal surface (see fig-
ure 3.17). The surface is discretized with 4 finite elements in order to reduce the
example to a single degree of freedom system, as for the middle node just verti-
cal displacements occur. For the correct solution of the form finding problem, the
residual equation should be zero for the final position of the middle node. In fig-
ure 3.17 the example for this investigation is illustrated. The final position of the

R,
(0/10/10) (10/10/0) I

(5/5//0)

(0/0/0) (10/0/10)

Figure 3.17: Schwarz minimal surface reference configuration; top view (left);
isometric view (right)

middle node in the final configuration can be given at the height of 5, which is in
the middle between the high and low points of the surface. This means for the dis-
placement of 5, the residual equation should be 0 if it is able to represent the final
solution. In figure 3.18 the residual forces for the Force Density Method (URS with
the special choice of A = 0), the Updated Reference Strategy for different choices
of X and the extended Updated Reference Strategy are illustrated. Here the individ-
ual residual forces are measured while varying the deformation. From figure 3.18 it
can be seen that only the eXtended Updated Reference Strategy is able to obtain the
correct solution within the first form finding step. As the residual forces are equal
to zero for the analytical solution of uw, = 5. All other methods have zero values
for the residual forces for a different displacement. Based on this, it is obvious why
additional form finding steps are needed to converge to the final solution for these
methods. The Force Density method shows the worst convergence within the first
form finding step, while the URS convergences to the final solution with increasing
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Figure 3.18: Residual forces for the Schwarz minimal surface with varying de-
formations for different form finding methods

homotopy factors A. It should be stated at this point, that the nonlinearity increases
from Force Density to X-URS. When applying the force density method to a form
finding problem in each form finding step, only a linear system has to be solved.
This advantage has the price of an increasing amount of form finding steps. In con-
trast the X-URS leads to a nonlinear problem in each form finding step but with a
decreased number (in the best case, just one) of necessary form finding steps.

The performance of the X-URS can also be seen on the example of the Catenoid
minimal surface illustrated in figure 3.19. For this example the convergence of the
deformation with different form finding methods is compared. Again the Force
Density Method and the Updated Reference Strategy are used for the comparison.
As the Catenoid is a minimal surface, the prestress is defined as o9 = ool and a
unit thickness is assumed. Based on the resulting convergence graphs in figure 3.20
it can be seen that the X-URS is able to solve the form finding problem within
one form finding step. In this example, the first form finding step is done based
on the force density method which ensures that all methods are going to start from
the same configuration. The URS with an optimized homotopy mapping converges
slower than the X-URS but still faster than the Force Density Method. Of course, it
has to be discussed if the savings in form finding steps is canceled by the increased
amount of iteration steps in one form finding step for the X-URS.

For this purpose in figure 3.21 the error for the individual analyses is shown w.r.t.
the overall iteration steps. Here, the error is defined for a certain point, where the

79



3.4 eXtended Updated Reference Strategy (X-URS)

80

Ra=10 % xzf(z)za-cosh(%)

N a = 7.4507109
Uana = 2.5492891

H =12

Figure 3.19: Catenoid minimal surface
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analytical deformation is known in advance. The error can be evaluated as follows:

_ |uanalylical - unumerical|

(3.62)
Uanalytical

It can be seen, that the X-URS needs the least number of iteration steps and is able
to achieve the analytical solution to machine precision. Both, the Force Density and
the URS, are just able to approximate the exact solution. Based on the comparison
of the Force Density and the URS it is interesting to note, that both methods need
the same number of iteration steps to achieve the almost same exactness. Of course,
the solution based on the URS can be optimized by modifying the choice of the
homotopy factor. The sequence of solution and update the reference configuration
are getting obvious in figure 3.21 for the URS.
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Figure 3.21: Error plot for the Catenoid minimal surface for the overall iteration
steps

As a more practical motivated example a 4 point tent will be discussed. The 4
point tent has a base length of 10.0 by 10.0 and a height of 10.0 as illustrated in
figure 3.22. The prestress in this case is again isotropic. The prestress in the edge
cables and the membrane has to be defined appropriately. Based on equation (3.3),
a relation for the prestress in the membrane and in the edge cable can be obtained:
N,
Reaple = —cavle (363)
o)

In equation (3.63) the cable forces Neapie and the membrane stresses o define the
curvature radius of the edge cable Rcape. In this example, the thickness of the
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membrane and the cross section area of the cable are set to unit values. In this case
the ratio is chosen as 20, which means that the resulting radius of curvature of the
edge cable is 20 as well. In figure 3.22 the example is illustrated. In figure 3.23 the

Initial Configuration Final Configuration
10/0/10
o(0/10/10) (10/0/10)
°
(10/10/0)
NC(] €
o Reavle = ol =20
(0/0/0) 7

Figure 3.22: 4 point tent

resulting convergence of the X-URS and the Force Density is shown. It can be seen
that the X-URS achieves a very good convergence behavior in comparison to the
Force Density Method. Obviously, the X-URS is not able to achieve the analytical
solution within the first form finding step. This can be explain by the needed mesh
deformation in the tangential direction related to the edge cables. As the X-URS
is restricted to the stabilization part in the tangential direction more form finding
steps have to be done to achiev the analytical solution. As the tangential part of the
X-URS is just related to the Force Density Method, the convergence is influenced
in such a way that the method can’t converge within the first form finding step. This
characteristic will occur every time if tangential mesh adaption is needed in order
to achieve the final solution.

3.5 Form finding of hybrid structures

In general, hybrid structures combine different structural elements with different
types of materials. The main characteristic of hybrid structures is that the individ-
ual structural elements are combined in such a way that their involvement in the load
bearing process happens in the most efficient manner. The best known example for
a hybrid structure is reinforced concrete slabs, where the concrete acts in pure com-
pression and the reinforcement acts in tension. As the concrete has a remarkable
capability of restraining compression stresses, it will usually crack in case of ten-
sion stresses. Due to that, the tension stress will be restrained by the reinforcement
where materials are used which are optimal for resisting tension stresses (e.g. steel,
carbon or glass fiber, etc.).
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Figure 3.23: Displacement convergence for the 4 point tent

In the case of tensile structures, the combination of purely tensioned membrane or
cable elements with elastic (or conventional) elements which can restrain all types
of forces can be defined as a hybrid structure. The motivation for the combination of
tensiles with conventional structural elements is that the resulting hybrid structures
have an improved structural capability and the design space will be increased as new
types of shapes can be achieved. Of course, the type of improvement differs from
application to application. It could vary from the dynamical response up to more
practical reasons like the overall area which can be covered by the tensile structure.
In figure 3.24 the combination of a membrane with edge cables (as the tensile part)
and a supporting arch (as the elastic part) is illustrated. A detailed discussion on the
possible applications for hybrid structures can be found in [Lie+13].

The most obvious implementation of a hybrid tensile structure is if the elastic mem-
bers are directly integrated in the surface. In the past, various structures have been
build on the basis of this type of process. In figure 3.25 two examples for these
types of structures are illustrated. In both cases the elastic elements are directly in-
tegrated in the membrane and influence the shape of the structure as well as modify
the structural behavior. Another type of hybrid tensile structure can be defined if
the elastic elements are outside of the tensile structure. For instance, flying masts or
supporting framework are typical applications. In figure 3.26 two examples of these
types of structures are illustrated. Here, the elastic elements are not directly inte-
grated in the membrane, they are attached externally. The impact on the structural
behavior is in principle the same for both types of structures. From a computational
point of view, the combination of tensile and elastic elements in the form finding
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Figure 3.24: Hybrid tensile structures

Figure 3.25: Hybrid tensile structures with integrated elastic members (left
[LK12]; right [Off10])
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Figure 3.26: Hybrid tensile structures with external elastic members (left
[Koc04]; right [Sei08])

introduces some special difficulties. For classical tensile structures, the process of
form finding tries to find the shape equilibrium for the prescribed prestress. As the
stresses are predefined, there is no relation between strains and stresses, which has
already been explained in the previous sections. In contrast, for elastic elements
the relation between stresses and strain are still valid as described in section 2.4.4.
Due to that the combination of elastic elements and form finding elements is not
straight forward form a mechanical point of view. The discussion of the effects on
the numerical modeling for hybrid tensile structures is given in detail in [DWB12],
[Die+13b] and [PB13].

For the form finding elements, the reference configuration is updated in each form
finding step. The reference configuration for the elastic elements stays the initially
defined configuration. In figure 3.27 the individual deformations for form find-
ing and elastic elements are illustrated. Whereas as the goal for the form find-

Uelastic Final configuration

Initial configuration

Ufofi,s

Ufofi,1

Figure 3.27: Configurations for form finding with integrated elastic elements

ing elements is that the deformation is equal to zero in the last form finding step,
Usofi,; — 0, the deformation for the elastic elements has to be measured through
the overall deformation process uejasic 7 0. This characteristic is important, as the
elastic and the form finding elements should be in a state of equilibrium in the final
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configuration. Here, the stresses of the elastic elements can only be developed from
deformations. Therefore, the stresses are evaluated form elasticity and additionally
predefined stresses:

S=S8 (uclastic) + SO (364)

The elastic stresses S (Uelasiic) originate from the deformations and in consequence
from the strains. In general, this means that for the elastic elements the process of
form finding is equivalent to the process of a standard structural analysis. Therefore,
the residual forces for the elastic elements in the form finding process can be derived
from the weak form given in equation (2.87). As there are no dynamical influences
in the form finding process and the external influence is already concerned in the
weak form of the tensile elements, the weak form for the elastic elements can be
reduced to just the internal part. By substituting equation (3.64) in the internal
virtual work, the residual forces can by given by:

OE (uclaslic )

R, = /(S (uelastic) + SO) : ou

v

dv =0 (3.65)

As the form finding problem is solved by a Newton-Raphson algorithm, the system
matrix for the elastic elements can be obtained as follows:

— 9 A . OE (uelaslic)
K,s = Tus / (S (uelasm) + So) : Tdv (3.66)
\%4

Because of, the predefined prestress Sg for the elastic members is independent from
the elastic deformation, the system matrix can given by:

_ 0S8 (uclastic) . OE (uclastic)
Krs = / Ous ’ ou
Vv

aQE (uclastic)
OurOus

+ (S (uelastic) + SO) : av
(3.67)
If comparing the system matrix of the elastic elements with that defined by the Force
Density Method, given in equation (3.17), the difference between the individual el-
ements is obvious. For the tensile elements, just the last part of the system matrix
remains by fading out the elastic stresses. Of course, this difference is based on the
update of the reference configuration as well as on the existence of the predefined
stresses.

As the elastic elements keep their initial reference configuration and the strains
are computed w.r.t. this geometry, it is obvious that the initial configuration is not
just an arbitrary starting point. Therefore, the initial reference configuration for the
elastic elements has to be aligned to the actual manufactured configuration. Due to
that the choice of the stress free configuration is a crucial step in the form finding
of hybrid tensile structures.
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Conclusions

In the beginning of the numerical design and analysis process of tensile structures,
a satisfying shape from an architectural and engineering point of view has to be
found. In this chapter the inverse problem of form finding was described and ap-
propriate solution approaches have been presented. Based on the discussion of the
general solvability of the governing equations for different characteristic types of
prestress distributions, adapted numerical methods for their solution have been de-
veloped. Additionally, the effects from conventional structural elements and their
integration into the governing equations have been included in this chapter.

Based on the described numerical methods, the form finding for arbitrary prestress
situations for the tensile, in combination with conventional structural elements, can
be done. This provides the possibility to evaluate the shape of equilibrium for state
of the art tensile structures, which is the basis for the following design steps, cut-
ting pattern generation and structural analysis. The discussion of the integration of
the presented form finding method in the individual design loops will be given in
chapter 6.
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CHAPTER 4

Structural Analysis

In section 2.5 the equilibrium of a body has been derived. In general, for structural
analysis the distinction in the transient and the steady state case is made. For a
transient analysis, the change of the equilibrium in time is considered. Due to that,
the inertia effects of the structure have to be considered as well. This effect to the
structure can be identified in equation (2.83) by the dynamical part in the principle
of virtual work —0Way,. If there is no time dependency involved in the structure
(e.g. the external load is invariant in time), the equilibrium equation can be reduced
to the steady state case. Then the dynamical part in the equilibrium can be neglected.

In this chapter, both cases of equilibrium, transient and steady state, will be dis-
cussed. The governing equations for the solution with a Newton-Raphson algo-
rithm will be derived on the basis of a finite element discretization in space and the
Newmark-Time-Integration for the time discretization. The derived equations will
be validated on the basis of principal benchmark examples for large deformations.
Based on these examples the principal properties and the solution behavior of non-
linear problems will be discussed.

For the modeling and simulation of state of the art tensile structures, different struc-
tural elements such as cables or membranes are involved. As already discussed in
the previous sections, for the modeling of recent tensile structures the number of
different involved structural element types increase because of the complexity of
the design. In this chapter the formulation of different finite elements will be pre-
sented which are needed in the design and analysis process of tensile structures.
The description of the membrane and cable element will be a substantial content.
Additionally, the discussion on special conditions originating from pressure loads,
like wind loads, will be discussed at the end of this chapter.

4.1 Transient Analysis

In the transient analysis, all effects in the equilibrium equation, defined by the prin-
ciple of virtual work in equation (2.83), will be considered. For the solution, dis-
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cretization approaches were discussed in section 2.5 for time and space. With the in-
troduced Newmark-Time-Integration approach it is possible to reduce the unknowns
to the nodal deformations u,+1 in the next time step ¢;41 = t; + At;. Based on
this, it is possible to define the equilibrium on the basis of the residuum equation,
by a linearization of the principle of virtual work. In the following, the solution of
the equilibrium for the transient case will be described.

The residuum equation defined in equation (2.98) can be enhanced by the struc-
tural damping of the system with the introduction of the damping coefficient co.
In general, in a dynamical system, the kinetic and potential energy is transformed
into each other while the system is vibrating if no external energy input is included.
From a theoretical point of view this process could proceed for an infinite time. Dur-
ing the vibration some part of the energy will be transformed into thermal energy.
Due to this "loss" of energy, the vibration will be decreased in time until it results in
a steady situation. This damping effect of the vibration in time is considered by the
introduction of the damping coefficient in the governing equations. The enhanced
residual equation considering the damping effects can be given by:
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The first line in equation (4.1) is assigned to the elasticity of the structure and can
be interpreted as the internal residual forces. The second line contains the mass
inertia of the structure which will be computed on the basis of the density po of the
structure. The third line describes the effects from structural damping based on the
damping coefficient co. The last line defines the external forces in the equilibrium
equation by the external load q. In the following the individual parts of the residual
equation will be discussed. Additionally, the governing equations for the solution
process based on a Newton-Raphson algorithm are going to be presented.

4.1.1 Internal Forces in the Transient Analysis

The internal forces are related to the elasticity of the structure. As the internal
forces are dependent on the deformation at time n + 1 — oy, the derivative w.r.t. the
unknown deformations u, 1 is not straightforward. Due to that, the assumption
introduced in equation (2.95) for the external forces is also applied for the internal
ones. Here, the general formulation of the internal forces is replaced by a linear
combination of the forces at current time step n and the next time step n + 1 by
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the combination factor ay. Based on this assumption the internal forces at the next
time step n + 1 can be given by:

Rint,'r (un-&-l—af) ~ (1 - af) Rint,r (un+1) + afRint,r (un) (42)

Based on this approximation the derivation of the internal forces w.r.t. the unknown
nodal deformations u,1 is possible. The resulting components of the system ma-
trix can be evaluated as follows:

Rint,r (un+1—af) _ 0
8us,n+1 8us,nJrl

OE (un+1)

K’rs =
aur,n+1

dv

(1) [ ()

\%4

0 _OE (u,)
+ 78%,”“ af/S(un) - A%
v

(4.3)

The second part in equation (4.3) is independent from the unknown deformations
at time n + 1. Due to that, this term will vanish in the derivation of the residual
equation. The components of the resulting system matrix can be given by:

98 (upi1)  OE (uny1)
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4.1.2 Mass Inertia in the Transient Analysis

The mass inertia is related to the mass of the structure defined by the density po.
Like the internal forces, the mass dependent part will have an influence on the sys-
tem matrix in the Newton-Raphson algorithm. This effect can be evaluated by the
first order derivative of the dynamical part in the residual equation, as derived in
equation (2.98), w.r.t. the unknown deformations in the next time step n + 1. The
derivative of the mass part can be obtained by:

8 8un+l
M;s = n am ——dV
8us,n+l / po u e a +1

:/ ﬁn-}—l—am 6ﬁn+1 3un+1 dv (45)
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For the evaluation of the last line in equation (4.5) for the mass matrix, the Newmark
time integration defined in equation (2.94) and the midpoint of approximation from
Chung and Hulbert from equation (2.95) are introduced.

91



4.1 Transient Analysis

4.1.3 Damping in the Transient Analysis

From a mathematical point of view, the damping part differs from the mass part
only in the constant factor in the integral (co for the damping and po for the mass).
Therefore, this part can be treated as described for the mass part in the residual
equation. So, the damping part in the system matrix can be formulated based on
equation (2.98), equation (2.94) and equation (2.95) as follows:

8 aun+1
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aus,n+1 aur ,n+1
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The definition of a damping coefficient which is able to represent the structural be-
havior in a correct way is a major difficulty for complex structures. For simple
structures the damping coefficient can be defined by experiments. Here, the struc-
ture is subjected to a certain initial deformation. After releasing the structure, it
will vibrate in the first eigenform of the system. Due to damping, the system will
reduce the amplitude of the vibration in each oscillation. Based on this reduction of
the maximum deformation, the damping coefficient can be evaluated. In [Wer83]
an example for the determination of the damping coefficient can be found. It is
obvious that this approach can’t be applied for arbitrarily shaped structures, as the
damping has to be known in advance. Therefore, the Rayleigh damping is intro-
duced [Ray94]. It is assumed that the damping of the structure is proportional to
the distribution of the mass and the elastic stiffness in the structure. Based on this
the Rayleigh damping is formulated as a factorized summation of the system matrix
w.r.t. the internal forces and the mass inertia:

C’rs = aOMrs + alKrs (47)

With the definition of the Rayleigh damping in equation (4.7) it is possible to define
the damping by the two combination parameters o and ;. A detailed discussion
on the effects of the Rayleigh damping and the choice of the combination parame-
ters can be found in [CP93], [Pet96], [CKCO06].

4.1.4 Solution process for the Transient Analysis

Based on the derived residual forces and the related system matrices, the equation
of motion can be solved on the basis of a Newton-Raphson algorithm. For the
description of the solution process it is advantageous to formulate the equilibrium
based on matrix notation. Here, the components from equation (4.4), equation (4.5)
and equation (4.6) have to be assembled in their individual global matrices. The
process of assembling the components in the global matrix is well known in finite
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element applications. In the following, the mathematical operation of the assembly
will be defined as given in [Wri08]:

Tele

Based on the global matrices, the equilibrium can be written in terms of a matrix
notation. With the mass matrix M, the damping matrix D and the stiffness matrix
K the well known equation of motion can be obtained by:

1-—

(I—ap)y
ﬂAtQ M + ,BAt D + ( f) K Aun+1 = Rezt - Rint (49)

Here, the mass matrix M can be identified as

Mele
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the damping matrix D as
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and the stiffness matrix K as
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With equation (4.9) an incremental solution process for the unknown deformation
u,1 for the time step n + 1 is defined. Therefore, the incremental deformation
Aup,41 has to be evaluated and the overall deformation can be updated until the
residuum equation is fulfilled for the current time step. After convergence, the next
time increment can be solved.

The derived equation of motion defined in equation (4.9) can also be given in a
simplified form. The term in brackets can be defined as the effective stiffness ma-
trix Kesr. The structure of the simplified form of the equation of motion is given
by:

KeffAun+l = Rext — Rine 4.13)

Here, the effective stiffness matrix K is defined by:

1—am (1-
Ker = M
=18 T T BA

)”D+(1—af)K (4.14)

One of the main challenges in the solution of transient problems is the choice of the
process parameters &, acs, 3 and y as well as the choice of an appropriate time step
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At. In the past, various choices for these parameters have been made, which results
in different published time integration methods. In [KC99] an overview of the dif-
ferent possible choices is given with a discussion of their influence and properties.
For the application to tensile structures the most commonly used time integration
scheme is used in the following. In [New59] the Newmark-£ time integration was
introduced by defining certain values for the process parameters:

1 1
= — d = —
f=7 and v=3 4.15)

af=0 and o, =0

In [New59] it is shown that for this choice of the process parameters, the time in-
tegration of the Newmark-3 method is always stable, independent of the choice of
the time step At. Of course, At has to be chosen in a way that the applied load and
vibration characteristic are discretized in an appropriate way.

One of the most popular benchmarks for the non-linear transient problem is the
Duffing Oscillator first published in [Duf18]. In figure 4.1 the free vibration of the
Duffing Oscillator is illustrated in the middle of the figure. At time ¢ = 0 an ini-
tial deformation ug is applied to the structure. For the illustrated structure different
initial deformations uq are defined. The introduced initial deformations have such
a size, that the consideration of large deformations in the governing equations is
required. The initial velocity and acceleration are assumed to be zero vo = ap = 0.
The time increment for the Newmark-3 method is set to be At = 0.1 and the pro-
cess parameters are chosen as given in equation (4.15). For the evaluation of the
Duffing Oscillator a geometrical nonlinear spring finite element has to be derived.
The governing equations for this type of element are depicted in section 4.3.3. The
example of the Duffing Oscillator is widely discussed. In [Kuh96] a review of the
Duffing Oscillator can be found. The phase diagram at the bottom of figure 4.1
shows the periodic behavior for the defined initial deformations.

Based on the example of the Duffing Oscillator it can be seen that with the derived
equations it is possible to describe the vibration of structures subjected to large de-
formations. Due to this the applicability for tensile structures is given. Additionally
to the solution of the equation of motion, an important modeling aspect has to be
considered in case of tensile structures. In general, these types of structures are light
due to their thinness which, of course, is one of their most important advantages.
For the modeling, this property results in an additional discussion of the input pa-
rameters for the analysis. Due to the lightness of the structure, during the vibration
the surrounding air has to be considered for a realistic result of the analysis. The air
around the tensile structure will vibrate in the same sense as the surface vibrates.
Therefore, additional mass and damping effects, resulting from the added air, have
to be considered. The added mass and the aerodynamic damping have to be included
into the evaluation of the mass and damping matrices for the transient analysis. The
definition of the added mass and aerodynamic damping is not straightforward as the
measurement of how much air will be moved based on the vibration of the tensile
structure is not straight forward. In [Hol07] an introduction and discussion related
to the effects of the surrounding air of a vibrating system is given. Nevertheless, the
inclusion of these effects in the derived governing equations is possible without any
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modification. Due to that a further discussion on this topic is not included in this
thesis.

4.2 Steady State Analysis

The steady state case of the equilibrium describes the situation if all quantities (e.g.
loads) are invariant in time. Due to this property of the problem, the governing
equations can be reduced to the time independent parts. From a mathematical point
of view this reduction can be justified since the time derivatives of the related quan-
tities will be zero. Because of that the mass and damping do not occur in the residual
equation for the steady state case. It can be formulated by the internal and external
forces in the principle of virtual work as follows:

—oW = /S : 0EdV — /qéuda =0 (4.16)
Vv a

For the solution of the equilibrium equation in steady state, a discretization in space
has to be applied as described in section 2.5.1. Due to the absence of a time depen-
dency the discretization of time can be neglected. As a result, the residual form of
the equilibrium can be given by:

Ry — /s OB by /q OU 0 = Rent — Rrest =0 (417)
aur (9ur
\%4 a

In equation (4.17) the first part is defined as the internal residual forces and the
second part as the external residual forces. The external forces depend on the load
intensity q, which is defined as a distributed load over the surface. The definition of
this quantity can be given by a certain direction and a respective value which defines
the intensity. The external load can have certain properties as based on the defini-
tions of the direction and the intensity. If the load is invariant w.r.t. the deformation
of the structure, this part will vanish in the derivation of the system matrix. The
independence of the deformations can be assumed for dead or snow loads. If the
external load depends on the deformation of the structure it will affect the system
matrix, which can be assumed for wind loads. The discussion of the influence on
the solution process of such load conditions will be given in section 4.4.

If a Newton-Raphson algorithm is applied for the solution of the nonlinear resid-
ual equation, the system matrix can be evaluated by the first order derivative of the
residuum as described in equation (2.99). The resulting system matrix can be given
by:

__O0R, [ 8S(u) OE/(u) ~O°E (u)
Kors = Ous Ous ~ Our S (u): Ou,Ous av
v (4.18)
B 1o} ou da
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Figure 4.1: Results for the Duffing Oscillator; top: Definition of the structure;
middle: Time-displacement diagram; bottom: Displacement-velocity diagram

96



4 Structural Analysis

Based on the governing equations defined in equation (4.17) and equation (4.18)
all types of steady state problems can be solved. For the discussion of the solution
process the well known von Mises truss example, illustrated in figure 4.2, is used as
a benchmark example for the nonlinear steady state analysis. A detailed discussion
on the example can be found in [Cri91]. The main advantage of this example is,
that it can be formulated on the basis of one single degree of freedom. Due to that
the governing equations can directly be derived and it is possible to describe the
results in a clear form. For the discretization of the von Mises truss example the

AP
Reference truss length:
y L=+vh?+1?
h Current truss length:
v b |4 b "4
2 2 A

Figure 4.2: von Mises truss example

equations from a truss finite element, derived in section 4.3.1, will be applied. For
this example the assumption of linear elastic isotropic material is applied and the
prestress is set to be zero. Due to these simplifications it is possible to derive the
residual equation for the von Mises truss w.r.t. the unknown deformation u by:

——= (h—u) (u® = 2hu) = AP (4.19)

In equation (4.19) the Young’s modulus F and the cross section area A of the trusses
are assumed to be known. The external nodal force P will be controlled by the load
factor A. With the residual equation from equation (4.19) a A — u diagram can be
constructed as illustrated in figure 4.3.

It is obvious, that only for a single degree of freedom example it is possible to
derive a equation where the construction of the A-u diagram is directly possible. In
general, the nonlinear residual equation has to be solved. Due to the fact that the
relation between the applied load and the deformation is nonlinear, the load should
not be applied at once. In fact, the definition of a varying load factor is equivalent to
a pseudo time representing the load history as a sequence of steady state analyses.
A detailed discussion on the inclusion of a pseudo time in the steady state case of
the equilibrium can be found in [Wri08].

Additionally, in a general sense the introduction of the load factor A defines another

degree of freedom for the governing equations. Due to that an additional equation
has to be defined in order to be able to solve the equilibrium equation. There are
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various methods to describe this additional equation. The simplest method is to
prescribe the value of the load factor A w.r.t. the pseudo time directly. That means
for each pseudo time step, an increment for the load factor has to be defined, which
is known as the force control method. As a consequence, it is not generally pos-
sible to trace the A-u or load-displacement curve in detail. From figure 4.3 it can
be seen that after the first buckling point (at point B in figure 4.3) of the struc-
ture, the load should be decreased if the overall load-displacement curve should be
evaluated. If the load is increased constantly in case of the force control method,
the next equilibrium point E will be found when the structure has recovered after
snapping through. In general, for tensile structures the evaluation of the exact load-
displacement curve is not of such an importance as only the first buckling point is
of interest in the design and analysis. If the complete curve should be evaluated,
more advanced methods like displacement control or the arc length method can be
applied. A detailed discussion on different solution strategies for such cases can be
found in [Rei94], [Ram82], [WS90].

With the described method it is possible to analyze the deformation of a tensile
structure subjected to time invariant loads. The application of these methods for
systems with large deformations has been discussed on the basis of the von Mises
truss example. It can bee seen that, as for the transient analysis, appropriate finite
elements have to be available for a geometrical nonlinear steady state analysis. In
the following, the most important elements for the analysis of tensile structures will
be discussed.
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I I
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04 - E...Next equilibrium point for force control after B _|

0.3 /
0.2 E /
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Figure 4.3: A-u diagram for the von Mises truss example (with P = 1; EA = 1;
h=1b=1)
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4.3 Finite Element Formulations

In the previous sections the governing equations and the process of the structural
analysis of tensile structures in case of transient and steady state conditions were
discussed. The necessity of appropriate finite element formulations for the model-
ing and simulation of state of the art applications became obvious. In this section
the most important finite elements will be introduced. For a collection of elements,
the governing equations will be derived, as they are adapted for the special appli-
cations for tensile structures. For the elements which are applied for the modeling
of conventional structures, a wide discussion on the individual finite elements is
available in literature. For those, which are also applied for the modeling of tensile
structures, the relevant references will be given. The important step of introducing
the discretization in the governing equations was already described in section 2.5.1.

4.3.1 Truss or Cable Element

The presented truss or cable element connects two nodes in space as shown in fig-
ure 3.8. It is assumed that the element has a constant axial stiffness F'A, a dis-
tributed mass over length m and an initial prestress So which is constant over the
length of the element. The element is a 1D element, which has the consequence that
the summation over the components in the governing equations can be reduced to
a scalar equation. Due to that the overall stress in the element is the summation of
the elastic and the prestress, based on a local Cartesian coordinate system:

St = Sat + S5t (4.20)

One possibility is to derive the equation w.r.t. the curvilinear coordinate system as
done for the cable element in section 3.3.1.2. Here, an alternative approach is shown
where the governing equation will be given in terms of a local Cartesian coordinate
system. This approach is restricted to elements which remain straight during the
deformation. Based on this, the Green-Lagrange strain tensor can be transfered into
the local Cartesian coordinate system as given by:

E=FE1G' G = Fiet ®e!

R Ell 1 l2 _ L2 (421)
B =FEn (G- Gle)="Tr=-—"7—
= L1 11 ( 91) ( 91) 12 5 2
In equation (4.21) the length of the element in the reference configuration is de-
fined by L and with [ in the current configuration. With the relation for the Green-
Lagrange strains in equation (4.21) the internal forces can be formulated as follows,
where S'! is identified as the 2. Piola-Kirchhoff stresses:

r

R, = A/S“ : ?dL (4.22)
L

The system matrix can be given with the derivative of the internal forces w.r.t. the
nodal deformations. Here, the independence of the prestress w.r.t. the deformations
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For the mass matrix, the formulation from equation (4.5) can be applied for the
truss element. For the evaluation of the volume integral the fact is used that the
cross section area is already defined in advance. Therefore, the volume integral can
be reduced to the integral over the length and a multiplication by the cross section
area A. Based on this the components of the mass matrix can be obtained by:

My = A / i1 Onsr (4.24)
8”5 n+1 aur n+1

dL (4.23)

4.3.2 Membrane Element

The most important elements for the design and analysis of tensile structures are
membrane elements. The main requirements are: (i) Large deformation in the kine-
matics; (ii) Possibility to define additional prestress in the surface; (iii) Possibility
to define the warp and weft direction aligned to the fiber directions. In the follow-
ing, the description of an appropriate membrane finite element will be given on the
basis of the formulated requirements. The presented governing equations are based
on the description given in [Die09] and [Lin09].

Membrane finite elements are surface elements which can be either triangles or
quadrilateral elements as shown in section 2.5.1. For the description of the kine-
matic of the membrane finite element, the Green-Lagrange strains are used as in-
troduced in section 2.4.3. Based on this strain measurement, the simulation of large
deformations is possible.

The definition of the warp and weft directions on the surface can be given by the
approach presented in section 3.3.1.1. By defining a local Cartesian coordinate sys-
tem where the prestress is defined, it has to be decided if the element is formulated
w.r.t. the local or curvilinear coordinate system. Most of the available derivations
are done w.r.t. the local Cartesian coordinate system as the material definition is
given in the Voigt notation and the prestress is defined in the same coordinate sys-
tem. From a continuum mechanical point of view it is more appropriate to derive
the governing equations in the curvilinear coordinate system. If the element is de-
rived in the curvilinear coordinate system the prestress has to be transformed from
the local coordinate system. This can be done as described in equation (3.22) for
the 2. Piola-Kirchhoff stresses. The overall stress for the membrane element is
a summation of the elastic stresses S and the prestress S considering the plane
membrane state of stresses:

S =S + So (4.25)

With the definition of the stresses the internal forces can be given with the assump-
tion of constant thickness by:

R, = t/S : OE Vv (4.26)
our
p\
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The system matrix for a Newton-Raphson algorithm can be given by the first order
derivative of the internal forces:

2
08 OB +S: _OE 4 4.27)

K,.s =t :
e ous  Ou OurOus
A

In case of a transient analysis the required components of the mass matrix can be
evaluated by equation (4.5) with the assumption of a constant thickness:

M, =t pOMMdA (4.28)
8U57n+1 8ur,n+1
A

4.3.3 Spring-Damper Element

In state-of-the-art tensile structures, different applications are used to reduce the
vibration due to transient load conditions. The introduction of damper elements in
bridge design is well known. Similar applications can be found in recent designs
of tensile structures. For the simulation of most bridge designs, spring-damper ele-
ments based on linear kinematics are sufficient, as the deformations of the structure
remains small. In case of tensile structures this assumption, of small deformations
for the spring-damper elements does not hold. Due to that, an appropriate ele-
ment has to be derived. In figure 4.4 the reference and the current configuration of
this element is illustrated. The spring-damper element is defined by a stiffness in

Reference configuration

l

Current configuration

Figure 4.4: Spring Damper Finite Element

the spring k and a damping coefficient in the damper element co. In general, the
residual forces can be formulated in different ways for the geometrical nonlinear
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spring-damper element. Here, the governing equation for the internal forces will
be derived from the assumption of a potential energy of the spring. The potential
energy can be formulated based on the stiffness and the axial deformation u of the
spring as follows:

1
I = §k .u? (4.29)
For the potential energy of the spring just the axial deformations are needed. There-
fore, the vector of the deformations can be reduced to the axial deformation u =

Uaxial. Substituting the relation between the current and the reference length for the
axial deformation waxia = (I — L), the potential energy can be rewritten as follows:

II = %k ~(1—-L)? (4.30)

From the condition that the residuum of the spring-damper element is the first order
derivative of the potential energy the residuum can be given by:

oIl ol
Our =R =k-(1-1) Jur

431)

With the derivative of the residual force, the components of the system matrix can
be obtained by:

OR, ol ol ol
T Ous  Ous Ouy +h(-1L) Ou,-Ous

Kys (4.32)

For the components of the damping matrix, equation (4.11) can be applied directly.
With the assumption of a constant distributed damping coefficient over the length
c(s) = const = co, the volume integral can be reduced to an integration over
length. As the function in the integral is independent of the length, the integral can
be reduced to a multiplication with the reference length:

8un+1 8un+1

Crs = co (4.33)

aus,n+1 aur,n+1

The resulting damping matrix is a consistent system matrix, which also have com-
ponents outside the main diagonal. For some applications it can be useful to be able
to define the damping effects just on the main diagonal. This means a certain damp-
ing definition only affects the related degree of freedom. This type of description
of the damping matrix is also known as a lumped damping matrix. In this case the
components on the main diagonal of the damping matrix have to be directly defined.

The derived spring-damper element can be applied for the modeling of state of
the art tensile structures, as it includes large deformations in the governing equa-
tions. A restriction for the element is that a linear stiffness is assumed, which can
be understood as a linear material definition. Another restriction originates from
the assumption of a constant damping coefficient. As for the spring stiffness, this
assumption can be interpreted as a material property.
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4.3.4 Further Finite Elements

In the previous sections, the finite elements for the simulation of tensile structures
were described for transient and steady state analysis. Of course, for state of the art
applications more elements are necessary to satisfy the requirements of the mod-
els. Certainly, beam finite elements have to be available for the simulation of recent
tensile structures. With the inclusion of the supporting structures in the design,
this type of element became more important in the simulation of recent designs.
Additionally, the applications where the beam elements are also subjected to large
deformation is growing. Due to that, the necessity of beam finite elements, which
are able to describe large deformations is obvious. Certainly, the formulation of
appropriate beam elements is one of the most complex tasks in the context of finite
elements. This is due to the description of the rotational degrees of freedom at the
nodes. There exist various approaches to describe the full kinematic of the nodal
deformation. Based on this, different element formulations for beam elements are
available. A detailed review of different methods to describe beam finite elements
can be found in [Rom08]. Based on the concept of Co-rotational deformation de-
scription in [Kre09] a recent derivation of a geometrical nonlinear beam element is
introduced.

Another important type of finite elements for the state-of-the-art modeling of tensile
structures are shell elements. As for beam elements, there exists a wide range of
available formulations based on different theoretical assumptions. A detailed dis-
cussion on different shell finite elements can be found in [CB98], [KJ03], [Bis+04].
Most recently, shell elements which are free of rotational degree of freedoms were
developed [LWBO7], [OF05]. These elements have the advantage that the govern-
ing equations only depend on the translational degrees of freedom. Due to that,
the problematic rotational parts do not appear in the formulation. An interesting
development in this direction is made by the introduction of non-rational B-Splines
(NURBS) as shape functions for the finite elements. NURBS are successfully ap-
plied in Computer Aided Design (CAD) for the advanced modeling of curves and
surfaces on the basis of well defined and flexible mathematical equations [Pie97].
Due to the mathematical description it is possible to formulate shell (or beam) el-
ements without introducing rotational degrees of freedom. The formulation of ap-
propriate shell finite elements based on NURBS surfaces for different mechanical
assumptions can be found in [CHBO09], [EB10], [Kiell]. As well as for the beam
elements there exist some formulations for shell elements which are based on the
co-rotational concept. A promising formulation has been recently made by [FHOS5],
[Hau94]. An extension of the formulated element by an in plane prestress is made
in [Kok13].

With the described finite elements, recent designs of tensile structures can be mod-
eled. It can bee seen that a wide range of element types have to be available for
the numerical modeling of an appropriate design and analysis process. In addition
to the finite elements, the modeling of the external loads introduce a further com-
plexity to the numerical process. In the following section the discussion of special
loading conditions will be given.
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4.4 External Loads

For invariant loads, like snow or dead load, neither the direction nor the load value
will change due to deformation. Based on this the load q can be obtained by the
multiplication of the intensity ¢ and the direction v.

q=qv (4.34)

Based on equation (4.34) the external virtual work can be given by:

OWexe = —/qdudA (4.35)
A

The description in equation (4.35) is appropriate to describe dead loads, where the
direction is defined as the gravity and the intensity can be evaluated from the den-
sity of the structure. Furthermore, snow loads can be described on this basis in an
appropriate way as they are also gravity dependent. From a numerical point of view
these types of loads do not need a special discussion as they do not affect the struc-
tural stiffness.

For other load conditions the assumption of the invariance of the load definition
w.r.t. the deformation does not hold. In case of wind loads, or more general pres-
sure loads, the direction always is perpendicular to the surface in direction of the
surface normal n. Since the load will follow the surface as it deforms, this type of
load is called follower load. The final load can be given by the multiplication of the
intensity of the wind load and the normal direction of the surface:

g1 X g2
n=q¢g———— 4.36
q(n) Uigr % gal] (4.36)

Substituting equation (4.36) into the external virtual work and introducing equa-
tion (2.27) to describe the surface integral by the surface parameters, the external
residual forces can be given by, where 6* and 6 are the surface parameters:

ou
our

R'r',ext = //q(gl X gz) d91d92 (437)

01 62

It is obvious that due to the introduction of the normal vector of the surface the
derivative of the external forces will not vanish in the system matrix. The remaining
load stiffness matrix can be given by the first order derivative of the residual forces:

_ O(g1 xg2) 0u 1o
Krs,exl = //q CI our df~do (438)
01 62

The governing equations for the load stiffness matrix do not result in a symmetric
matrix in all cases depending on the type of boundary conditions. In [SR84] the
discussion of the symmetric and non-symmetric cases can be found. The described
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modeling of follower forces for a pressure load is appropriate for free constant pres-
sure. That means that the intensity of the load is independent from the deformations.
Additionally, it can be the case that the intensity of the load changes as the structure
is deformed. In case of tensile structures, this has certainly to be considered for en-
closed cushions. Recently, this type of structures is applied for roofs and facades as
illustrated in figure 4.5. Additionally, the pressure intensity is depending on the cur-

Figure 4.5: Examples for ETFE cushions; top: Casino Macao; bottom: Lyon
Confluence (copyright: Seele Cover GmbH)

rent volume of the structure. For the description of the change in pressure intensity
w.r.t. the current volume, various methods exist. According to the adiabatic state
of thermodynamics the current pressure can be defined on the basis of a reference
pressure qo, the reference volume V' and the current volume v as follows:

7= (K) (439)

v

In equation (4.39) k defines the isentropic exponent, which can be used to define dif-
ferent behaviors of the enclosed gas. For x = 1 an isothermal behavior of an ideal
gas is mentioned, which is defined as the Boyle’s law [Bon+00]. For the choice of
K = 1.4 a two-atomic gas is modeled, as mentioned in [SHOS]. It is obvious, that if
the relation of the pressure as defined in equation (4.39) is considered, the derivative
of the pressure intensity w.r.t. to the degrees of freedom has to be taken into account
for the system matrix as well. As the volume depends on all defined unknowns of
the system, the special characteristic of the load stiffness is that the system matrix
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is fully populated. Most of the available numerical solvers for a system of equa-
tions are assuming a sparse matrix. Due to this, special strategies for the solution of
the resulting system of equations have to be considered. For a numerical efficient
solution of the fully populated nonlinear problem, the Woodbury’s formula can be
applied [Wo050]. A detailed discussion on the topic of enclosed cushions can be
found in [Jru09].
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Conclusions

For state of the art tensile structures the requirements on the modeling with the
FEM increase constantly. Therefore, it is necessary to derive appropriate simulation
methods to ensure a high quality in the results. Hence, in this chapter methods for
the structural analysis for transient and steady state conditions were presented.

For the modeling of tensile structures, different finite elements have to be available
to describe the structural model in an appropriate way. In this chapter the individual
elements were described. For the most important ones, the governing equations are
derived. For elements which are published in a satisfying manner, the related liter-
ature is discussed.

Due to the large deformation of tensile structures, the discussion of follower forces
is essential. Based on the description of external loads in the principle of virtual
work, the special characteristic of this type of load is discussed. The governing
equations for the modeling of direction and intensity depending loads were derived.
This type of loading condition has to be available for the state of the art modeling
of cushions with enclosed pressure.

With the described methods for the structural analysis it is possible to simulate the
behavior of all types of tensile structures subjected to external loads. The evaluation
of the deformation in this process is based on the definition of an appropriate refer-
ence configuration. In general, this reference configuration of the tensile structure
will be computed in the form finding process. The discussion of the introduction of
the results of the form finding in the structural analysis will be presented in chap-
ter 6.
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CHAPTER 5

Cutting Pattern Generation

Due to their large scale, architectural tensile structures can’t be manufactured out
of a single piece of fabric. To realize the design, the surface will be divided into a
number of patterns which will be assembled together to form the final shape. The
fabric, which will be used for the production of the individual patterns, is available
on rolls of material with a certain width. For the production, a blueprint has to be
provided which defines the shape of the pattern on the flat fabric. The process of
defining the form of the flat patterns is called the Cutting Pattern Generation.

The cutting pattern generation involves a great deal of experience from the designer.
The architectural effect and the structural behavior are substantially affected by the
shape of the patterns. The process is defined by the creative part of designing a
pattern layout which satisfies the architectural concept and the pure mathematical
problem of the evaluation of the flattened patterns.

The architectural requirements on the cutting pattern generation can’t be solved
in a general numerical way. Here still, the experience of the designer and the man-
ufacturer is the most important component in the definitions concerning the cutting
patterns.

In this chapter the principal mathematical problem of the cutting pattern generation
will be described. Subsequently, different existing solution strategies, which have
been developed in the past, will be discussed. Based on this review of the existing
methods improvements will be introduced which are motivated from the applica-
tion in practice. Additionally, the discussion of the main influence parameters for
the cutting pattern problem will be made. As the resulting method is consequently
derived from continuum mechanics, the definitions introduced in chapter 2 can be
applied for the solution process. Based on the general formulation, it is possible to
include all types of mechanical and practical requirements in the governing equa-
tions. Therefore, it is possible to achieve high quality cutting patterns and thus
enlarge the design space for tensile structures.

109



5.1 Cutting Pattern Generation for Tensile Structures

5.1 Cutting Pattern Generation for Tensile Structures

In the process of cutting pattern generation, the flat patterns for the manufacturing of
the tensile structure are computed. The underlying mathematical problem originates
from the doubly curvature of the surface. In general, double curved surfaces can’t be
developed into a plane as already discussed in section 2.3. The non-developability
can be illustrated on the basis of the two examples shown in figure 5.1. Here, for the
discussion of the developability of a surface the examples of a cylinder and a sphere
are introduced. In both cases the surface should be covered with a simple flat piece
of fabric. In the case of the cylinder, it can be seen that the structure can be covered
by the fabric without any elastic deformations in the cover. For the example of the
sphere, it is obvious that elastic deformations are needed for covering the overall
surface. The occurring wrinkles visualize the elastic deformations for the observer,
which illustrates the non-developability of the surfaces.

The described example shows that in the case of the manufacturing of tensile struc-
tures, the final shape will differ from the intended one due to the non-developability
of the structure. Additionally, elastic deformations are needed to shape the final
surface from the flat patterns. In general, the prestress in the tensile structure is
achieved through these elastic deformations. However, the elastic deformations are
not constant over the overall surface. Due to that, the final stress distribution will
vary around the defined prestress introduced in form finding. If the elastic stress
state remains in tension, no wrinkles will occur in the surface. If large elastic defor-
mations are needed to shape the surface from the patterns, compression stresses can
occur, which will result in wrinkles in the surface. From a theoretical point of view,
the best result for the surface and stress distribution can be achieved if the width
of the patterns will tend to zero, which results in the recommendation to divide the
tensile structure into as many individual patterns as possible. Of course, the number
of patterns is limited from practical and architectural point of view. Therefore, in
the design of the pattern layout a compromise between minimization of stress devi-
ation and architectural or practical aspects has to be made.

Cylinder Sphere

.

Cover Cover with wrinkles

Figure 5.1: Cylinder and Sphere covered by an initially flat plane
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In figure 5.2 the principal process of the cutting pattern generation for tensile struc-
tures is illustrated. Based on an intended surface from form finding, the pattern
layout will be defined by the designer with the decision about the number of pat-
terns and the shape of the cutting lines. Subsequently, the computation of the cutting
patterns will be made. For each of these steps, various experimental and numerical
methods have been developed in the past. In the following, a brief discussion on
these methods will be given.

Final design

Pattern Layout

Cutting Pattern after
flattening and compensation

Figure 5.2: Principal steps for the cutting pattern generation

Pattern Layout: The definition of the pattern layout is influenced by determin-
istic and non-deterministic aspects. The maximum available width of the applied
material is an example of a deterministic influence. The architectural appearance
can’t be formulated and due to that, it can be characterized as non-deterministic.
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5.1 Cutting Pattern Generation for Tensile Structures

Therefore, the process of the definition of the pattern layout can’t be formulated
in a closed numerical method, but for different aspects in this process numerical
methods can be applied. The definition of the cutting lines to divide the overall
surface into the individual patterns is typically done based on numerical methods.
In principle, the cutting line between two defined points on the structure can be
described arbitrarily. In [FMO04] the advantage of geodesic lines is discussed. The
main advantage is that the cutting patterns will show the straightest boundaries in
the flattened configuration, which provides the most economical material use of all
possibilities.

In general, the surface of the tensile structure will be discretized by finite elements
in order to solve the governing equations. Therefore, the surface isn’t described in
a closed mathematical form. The evaluation of the geodesic lines on a discrete sur-
face can’t be done directly as it is defined by nodes in space and the topology of the
finite elements. The solution for the definition of geodesic lines on the discretized
surface can be solved in a two step approach: (i) Evaluate an approximation of the
geodesic line along the edges of the finite elements. (ii) Optimize the approximative
geodesic line by moving the position of the involved nodes of the finite elements on
the surface. The optimization process can be done with a mechanical approach. If
a cable is taut on a fixed surface it will deform in the position where the potential
energy is minimized. From a geometrical point of view this position will connect
the start and end point by the shortest distance. As the geodesic line is defined as
the shortest distance between two points, the analogy of the prestressed cable and
the geodesic line is obvious. In figure 5.3 the principal process is illustrated.

For the evaluation of the approximation of the geodesic line, various methods exist.
From a general point of view, the problem to find the shortest path of a start and
end point through a defined set of nodes can be found in different applications like
navigation, optimized data storage or computer graphics. Most of the available al-
gorithms are based on the idea of wave propagation. Here, the approximation of the
geodesic line is computed in two steps. (i) Evaluate, starting from the end point of
the geodesic line, the shortest distance to all other nodes in the mesh: (ii) From the
start node evaluate step by step the next node which is characterized by the minimal
path length to the end node. This step is repeated until the end node is reached.
The first publication based on this approach is by Dijkstra [Dij59]. The presented
algorithm includes the disadvantage that for regular meshes there is no unique re-
sult. This drawback was overcome by the method published in [KS98]. Here, the
process of computing the minimal distances of the individual nodes to the end node
is modified to ensure a unique approximation of the geodesic line. A description of
an algorithm based on this method is presented in [NKO02].

Along the approximation of the geodesic line, highly prestressed cables will be
introduced in the surface. The position of the nodes, where the potential energy is
minimized, can be evaluated by form finding as introduced in chapter 3. Of course,
if the cable will be prestressed and can deform freely in space, kinks will occur in
the surface. Due to that, the cables have to be limited in their possible deformation
to the in-plane direction. This can be achieved by the modification of the resid-
ual force vector of the cable element. As described in section 3.4 it is possible to
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3D view Top view

Reference
configuration

Form-finding analysis with highly
prestressed cables along the geodesic
lines

|

Current
configuration

Figure 5.3: Discrete geodesic line computation

split the residual force vector into its individual parts. For the geodesic line finite
element, the in-plane part of the residual vector will be taken into account and the
out-of-plane part will be neglected. With this modification, the deformations of the
nodes are restricted to the in-plane direction of the surface. Additionally, all com-
ponents of the residual force at the start and end node of the geodesic line have to be
neglected as well. This approach defines a flexible and adapted method to determine
geodesic lines on discretized surfaces. Of course, there are various disadvantages
related to this approach. One major disadvantage is that through the in-plane defor-
mation of the nodes, the mesh in the vicinity of the geodesic line will be distorted.
It is obvious, that the mesh distortion depends on the quality of the approximation
of the geodesic line, which is in general related to the element size.

Another interesting possibility for the evaluation of geodesic lines can be intro-
duced if non-rational B-splines (NURBS) are applied for the discretization in space
of the structure. The application of NURBS as shape functions was already men-
tioned in section 4.3.4 for a shell type finite element. The introduction of this type
of function for tensile structures can be found in [Phi+14]. By applying NURBS
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surfaces, a mathematically closed form of the surface is achieved and the geodesic
lines can directly be evaluated as defined in [BZ13]. The resulting geodesic line is
of course the same as evaluated with standard finite elements for the discretization.
The comparison of the two approaches is illustrated in figure 5.4.

Geodesic line on a Geodesic line on a
NURBS surface discretized surface

Figure 5.4: Geodesic line on a NURBS and discretized surface

Cutting Pattern Generation: The task in the evaluation of the cutting patterns
is to develop the individual 3D shaped strips of the tensile structure into a flat, 2D
configuration. Historically, this task is well known from cartography where a plane
representation of the sphere-like surface of the earth is going to be evaluated. The
methods applied for this task are adapted for the needs in the generation of maps.
Mostly, the Mercator-Projection is used as a projection method. With this method
it is ensured that the angles are unchanged through the projection, but the area con-
tent of an object may change. There exist various methods which are based on the
idea of unchanged surface angles for the unfolding of general kinds of surfaces, e.g.
[SSO1].

One of the simplest methods for the unfolding of a tensile structure is described
in [MT90]. Here, the discretization of a general non-developable strip of the tensile
will be modified in order to be able to unfold it. This can be achieved, if the strip is
discretized by triangle elements which cover the whole width. This special surface
discretization enables the unfolding of the strip along the individual edges of the
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5 Cutting Pattern Generation

triangles. Of course, the resulting cutting patterns do not have a high quality, as the
surface representation is not detailed enough and depends extremely on the choice
of discretization. In [Sch78] an improvement of the idea of triangulation is made.

It is obvious that with the purely geometrical based formulations, some major draw-
backs are introduced. The most important one is the independence of the cutting
pattern of the applied material. Due to that in [OH79] a method is presented where
the material properties are included. Here, the cutting patterns are achieved based
on a finite element simulation, where the nodes of the individual strips are forced
into a plane. The method can be described as two plates which compress the strip
into the flat configuration while no friction is present between the plates and the
strip.

In [MM99] and [KLO2] the Stress Composition Method is introduced. Here, the
cutting pattern generation is formulated w.r.t. the defined prestress. In this method,
a 2D configuration is defined. Based on this configuration the resulting stresses
can be evaluated which occur while assembling the 2D to the 3D configuration.
Of course, the resulting stresses will not fit the defined prestresses, but with an
optimization of the 2D configuration the difference between the resulting and the
predefined stresses can be achieved. The main advantages of this method is that all
kinds of mechanical properties can be included and it is possible to formulate the
governing equations in a continuum mechanical framework.

There exist more than the described methods for the solution of the cutting pat-
tern generation problem. In [Top07] and [B&u95] a review of the existing methods
from a methodological and historical perspective can be found. In the following,
exiting methods on the basis of the stress composition method will be discussed,
which are purely derived from continuum mechanics and numerical optimization.

5.2 Solution approach for the Cutting Pattern Generation

In this section, the principle objective for the cutting pattern generation will be dis-
cussed, which is based on the idea of the stress composition method and will be
used in the following sections when the solution approaches will be discussed. As
previously described, the stress composition method evaluates a 2D plane configu-
ration which results in a stress distribution with a minimal difference to the intended
prestress after the assembly. To find this 2D configuration, optimization methods
can be applied. For the solution of an appropriate optimization problem, the for-
mulation of the objective function is essential. For this purpose the process of the
optimization is illustrated in figure 5.5. Here, the 3D configuration of the tensile
structure is defined as (23p. From a manufacturing point of view, the 3D surface
will be achieved by assembling the cutting pattern in the final position. Trans-
forming this process to the continuum mechanical description of the cutting pattern
problem, the 3D surface can be understood as the current configuration in this pro-
cess. Introducing the cutting pattern as well to the governing equations, it can be
defined as the reference configuration. As the cutting patterns are placed in the 2D
domain, the surface will be indicated by {22p. The process of optimization can be
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\

Minimization of stress deviation
r)I(lin — f(X2p) = 0c1,2D3D — Opre
2D

Current conﬁwQ3D

QSD

Q2p
Reference configuration (22p
Optimum!

Figure 5.5: Optimization problem for cutting pattern generation

understood as a guess of different cutting patterns and testing them w.r.t. the objec-
tive function. In the end, the cutting pattern which results in the minimal value for
the objective function will represent the optimum. As mentioned before, the crucial
point in the formulation of the cutting pattern is the appropriate objective function,
as it is responsible for the quality of the final patterns. Based on the idea of the
stress composition method the objective function can by formulated as follows:

min — f(X2p) = el 203D — Opre (5.1
X2D

In equation (5.1) the definition of the stress difference is defined by the stresses
resulting from the assembling of the 2D to the 3D surface oc1,2p—3p and the in-
tended prestress opre. The related design variables or unknowns is the geometry
Xsp in the 2D reference configuration {22p. Based on this objective function the
cutting pattern generation can be solved with numerical optimization methods.
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The principal continuum mechanical definitions are already made by assigning the
2D and 3D surfaces to the reference and the current configuration, respectively.
This definition reflects the true process of manufacturing in the numerical approach.
Most of the available methods for the cutting pattern generation are defining the
configurations the other way around, so that the 3D surface is assigned to be the
reference configuration and the 2D surface to be the current configuration. As this
approach introduces a misinterpretation of the configurations in the governing equa-
tions, the quality of the resulting stresses and patterns is not as precise as for the
adjusted definition. In principle, both ways would fit to the concept of the stress
composition method.

By defining the 2D surface as the geometry of the reference configuration, the un-
derlying kinematic of the cutting pattern generation can be described as illustrated
in figure 5.6. Here, the 2D configuration (22p is defined as the reference and the 3D
configuration 23p as the current one. The difference between the geometry of the
two configurations defines the overall deformation uzp—3p. Based on these defini-

QSD

Xop
u2D—3D

Qap

Figure 5.6: Configurations for Cutting Pattern Generation

tions, the unusual situation occurs that the geometry of the reference configuration
is unknown. In standard problems of structural mechanics, the current configura-
tion is intended to be unknown. As for the cutting pattern analysis the unknowns
are "inverted", thus, the idea of inverse engineering is introduced. If gradient based
methods, like the Newton Raphson method, are applied for the solution of the de-
fined objective function, the variation of the reference configuration has to be made.
Due to that in [WWB12] the method is introduced as the Variation of Reference
Strategy (VaReS).

In the following, different existing solution approaches for the VaReS are discussed.
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Additionally, general statements for the solution process are introduced as well as
further extensions to the method. The discussion of the sensitivity of the method
w.r.t. the individual input parameters is also included in the subsequent sections.

5.2.1 Minimization of the Work of Stress Differences

In [BLW10], [Lin09] and [BLWO09] a solution approach for the defined objective
function from equation (5.1) is suggested based on the method of weighted resid-
uals [Fin72], [Zie00]. For this purpose, the objective function is multiplied with
a so-called test or weighting function and will be integrated over the 3D domain.
In general, the weighting function can be chosen arbitrarily. In this approach, the
virtual Euler-Almansi strains will be chosen, as they are energetically conjugated to
the used Cauchy stresses. The solution for the optimization problem is achieved if
the first variation is equal to zero. As the formulated governing equation is similar
to the internal virtual work, defined in equation (2.80), it is introduced as the mini-
mization of the work of stress differences. The resulting governing equation can be
given by:

oW = / (0e1,2D3D — Opre) : d€2p 53Dd{23p = 0 (5.2)

Q3p

For the solution of equation (5.2) a linearization w.r.t. the unknown parameters has
to be done. In the original discussion of the introduced method (e.g. [BLW10]),
artificial deformations Us>p in the 2D configuration are introduced. This means,
that the overall deformation process is divided into a purely geometrical projection
of the 3D surface in the 2D domain and the deformation w.r.t. this intermediate
configuration. In [Die+13a] the linearization w.r.t. the unknown geometry Xop
of the reference configuration Q2op is done. By applying this to equation (5.2) the
residual form of the governing equation can be given in terms of the individual
components as follows:

R / (o Tore) 0e2p—3D
r = el,2D—3D — Opre) - — 5w
0X,

Q3p

dQsp = 0 (5.3)

For the solution of equation (5.3) the Newton Raphson method can be applied. As a
consequence of the derivative of the residuum, the resulting system matrix becomes
non-symmetric. Most available numerical solvers assume that the involved matrices
are symmetric. In order to fit to the widely used solution strategies, the system
matrix will be modified to ensure the symmetry. It is obvious that this results in the
loss of the quadratic convergence of the Newton Raphson algorithm. The modified
version of the system matrix can be given by:

1 80’ 1 — 88 — ao'e 89
Sym el,2D—3D 2D—3D 1,2D—3D 2D—3D
K’rs = / . + : dQSD

2 X, 0X, 0Xs " 0X,
Q3p
%ean
* / (e1,203D — Tpre) : ﬁdﬂw

Q3p

5.4
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The solution process based on the modified system matrix shows a robust con-
vergence behavior, even for complex cutting patterns as discussed in [Lin09] and
[BLW10]. However, the non-symmetry of the system matrix has to be discussed.
The reason for this can be explained in the misinterpretation of the variation of the
Euler Almansi strains in equation (5.3). In the original presentation of the approach,
the variation of the strains is evaluated straightforward w.r.t. the unknown reference
configuration. The misinterpretation becomes obvious when equation (5.2) is trans-
formed into the reference configuration:

ref
W™ = / (oe,2D+3D — Opre) : 0€2Dp3pd 23D

Q3p
1

= / MF (Se1,20—+3D — Spre) F' : de2p3pdetFdQap

" (5.5)
= | (Sa2p-3D — Spe) : F de2p3pFdQap

Qb
= / (Set2p—3D — Spre) : 6E2p3pdQ2p

Qap

In equation (5.5) it can be seen that the previously introduced Lie-Time-Derivative
from equation (2.84) has to be applied to calculate the variation of the Euler Al-
mansi strains. Additionally, the description of the cutting pattern generation prob-
lem w.r.t. the reference configuration is introduced in the last line of equation (5.5).
If this formulation is used instead of the original one given in equation (5.3), the
resulting system matrix stays symmetric. The application of this idea is presented
in [WWBI12]. Here, the cutting pattern generation is formulated in the reference
configuration. In the next section, the governing equations for this approach will be
discussed.

5.2.2 Minimization of Potential Energy

In contrast to the minimization of work from stress difference in the approach sug-
gested in [WWB12], the minimization here is done w.r.t. the difference of the elastic
potential introduced by the resulting stresses from assembling Il¢ 2op—3p and the
elastic potential from prestresses II,... Based on this, the minimization problem
will be reformulated in terms of the difference in the potentials:

I}Elin — Ilrotal = el,2p—3D — Hpre (5.6)
2D

For both parts, the elastic and the prestress, the elastic potential will be evaluated by
a strain energy function W. In general, it is possible to formulate the strain energy
function on the basis of the Right Cauchy Green tensor or the Green Lagrange strain
tensor [HolOO]. In the following, the Green Lagrange strains are used to formulate
the strain energy. For the elastic stress and the prestress, the strain energy function
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can be given for the general case by:

Ile1,2p—3D = / Usp-3p (E2p—3p) dQ2p

Q2p

Hpre = / \I]pre (E2D~>3D) dQQD

Qop

(5.7)

In case of linear elastic material the strain energy function can be given on the basis
of the individual stress contributions and the strains:

Vop_s3p = §Scl,2D—>3D :Eap3p
1 (5.8)
\I/pre = Espre :E2p_3p

A necessary condition for a minimum in the potential energy, is a stationary point
in the functional Ilty, W.r.t. a variation in the reference geometry. This results in
the following variation of the optimization problem:

0IlTotal = 0lel 2D 53D — 0llpre =0 (5.9

The variation can be done by a linearization as defined in equation (2.96). By
substituting the linearization to equation (5.9) and formulating the strain energy in
the reference configuration as given in equation (5.8), the residual forces for the
individual terms can be obtained. For the elastic part

11
6He 1 08S.
12D—>3D _ 5// (( 1,2D—3D EZD—>3D) |Gy x Ga||
—1-1

OE :
+ (Sel,ZDHSD : %) IG1 x Gz

I|G1 x Gz||

+ (Sel,2p-3D : Eapos3D) X

) do*do?
(5.10)

and for the prestress part

re 65 re aE
p // (( D E2p—3p + Spre : %) IG1 x Gz||

8HG1 X G’QH
oX,

~+ (Spre : E2p3D) ) dotdo?
(5.11)

In equation (5.10) and equation (5.11) the integration is transformed to the surface
parameters, as the integration domain has to be derived as well. The evaluation
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of the individual derivatives is straightforward except for the prestress contribution
Spre
0X,
the form finding process, it has to be transformed to the reference configuration by
applying the pull back operation from equation (2.57). Due to the dependency of the
prestress in the reference configuration on the Deformation Gradient, the derivative
of the prestress will not vanish.

in equation (5.11). Due to the definition of the prestress as Cauchy stress in

The solution of the discussed optimization problem can be achieved by various
methods known from numerical optimization. In [WWB12] the solution is achieved
by the application of a Newton Raphson method, while the resulting system matri-
ces will be symmetric in each case.

5.2.3 Least Square Approach

An alternative way of evaluating the minimum of the objective function is based on
methodologies which are known from numerical optimization and was introduced in
[LWBO08] and [Die+13a]. A standard approach for the formulation of an appropriate
objective function is the Least Square approach. The stress difference is multiplied
by itself and integrated over the overall 3D surface. The objective function based
on the Least Square approach can be formulated as follows:

. 1
min — f Xap) = 3 / (0e1,2D3D — Opre) : (Oel,2D—3D — O pre) d23D
2D

Q3p

(5.12)
As equation (5.12) represents a standard optimization task, all solution methods for
this type of numerical problem can be applied. If a gradient based optimization
algorithm is used, like the steepest descent or conjugate gradient [HG92], the gradi-
ent of the objective function w.r.t. the design variables has to be evaluated. From a
mathematical point of view, this is equivalent to a stationary point in the functional.
In this case the design variables of the optimization problem are defined as coordi-
nates in the 2D reference configuration. Based on this, the gradient of the objective
function can be given by:

Jf (Xap)

vxsz (XQD) = X

=R,=0 with 7 =1,...,ngos (5.13)

Based on equation (5.13) the residuum of the cutting pattern generation can be
formulated as follows:

99020530 4 (5.14)

R, = (0e1,2D—-3D — Opre) X
T

Qs3p

It is obvious that the resulting residual equation can be solved efficiently by a New-
ton Raphson algorithm. Therefore, the system matrix has to be evaluated. This can
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be achieved by the first order derivate of the residual equation:

K. — 00c12D3D  O0c1,2D3D
rs 8X9 : 8XT
Q3D (5.15)
o,
+ (0el,2D3D — Opre) : Mdg?@

0X,0Xs

Based on equation (5.14) and equation (5.15) it is possible to solve the minimization
problem for the cutting pattern generation effectively. In contrast to the methods
discussed in the beginning of this section, the formulation of the objective function
allows the application of standard solution techniques from numerical optimization.
Moreover, it enables the addition of constraints to the objective function to include
additional requirements to the problem. This characteristic will be used in sec-
tion 5.2.6 to formulate an extended version of the described optimization problem.

5.2.4 Summary of the Cutting Pattern Methods

Form section 5.2.1 to 5.2.3 it can be seen, that the principal objective function of
the cutting pattern generation problem can be solved differently. All of the methods
have advantages and disadvantages which can be found in the respective literature.
For the following enhancements the least square approach form section 5.2.3 will
be used. Here, it is possible to include all types of state-of-the-art material models
for the modeling of tensile structures as well as the respective formulation of the
objective function allows the integration of constraints. Before the enhancements
to the method will be introduced, in the following section general statements to the
chosen method will be given. Here, the investigation on the sensitivity w.r.t. to
different input parameters (e.g. material properties, pattern layout, etc.) is included
as well as remarks to the numerical implementation.

5.2.5 General Statements

The process of VaReS for the evaluation of the cutting patterns includes different
process steps and mathematical operations which differ from standard computa-
tional mechanics. In the following, the most important steps will be discussed. The
effect on the cutting pattern w.r.t. the resulting stress distribution in the tensile struc-
ture will be discussed as well.

General process and boundary conditions: With the previously described meth-
ods, it is possible to evaluate the cutting patterns for tensile structures. The overall
simulation process is divided into individual steps. For the application of numerical
optimization approaches for the minimization of the objective function, an initial
guess has to be provided. This is required since the optimization algorithm needs a
first evaluation of the objective function, which then can be improved. Of course,
the convergence depends crucially on the quality of the initial guess. This first
guess can be achieved by different methods like simple projection techniques as
discussed in section 5.1. The process of cutting pattern generation can be divided
into two steps as illustrated in figure 5.7: (i) Choose an initial guess and (ii) Perform
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3D surface

Initial guess

Optimization

Figure 5.7: Process for cutting pattern generation

the optimization. Since projection and compensation come together with large dis-
placements and, eventually, large strains as well, the procedure is highly nonlinear.
Consequently, the problem might be solved using intermediate analysis steps. For
example, the method of minimization of the work from stress difference as intro-
duced in [BLWO09] has a robust convergence behavior in the solution process. This
property can be used to increase the overall robustness of cutting pattern generation,
by introducing this approach as an intermediate process step.

If the optimization problem is solved with the Newton Raphson method, it is im-
portant to introduce appropriate boundary conditions as otherwise the system matrix
will be singular. This can be explained by the rigid body rotation of the cutting pat-
tern if there are no boundary conditions defined. In order to prevent this, a statically
determined boundary condition has to be defined as illustrated in figure 5.7. If other
optimization techniques are used, where no system matrix is involved (e.g. steepest
descent, conjugate gradient), the definition of appropriate boundary conditions is
not necessary, as there is no system matrix involved which can become singular.
From a general point of view the singular system matrix can be prevented by meth-
ods introduced to solve a pure Neumann problem as described in [BLOS5].

Fiber orientation in the patterns: In the beginning of the computation of a tensile
structure, the fiber orientation will be defined on the 3D surface. In the process of
cutting pattern generation, this orientation has to be included in the computation. In
general, the fiber orientation in the applied fabric is orthogonal. After assembly of
the pattern in the final position, the resulting fiber orientation should align with the
predefined one. Therefore, besides the evaluation of the cutting pattern, which min-
imizes the objective function, the fiber orientation in the pattern which results in the
predefined fiber orientation must be found. To include the fiber orientation in the
computation, a continuum mechanical relation between the fiber orientation in the
reference and the current configuration has to be defined. Based on the kinematics,
illustrated in figure 5.8, this relation can be derived. Of course, it can’t be ensured
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to

=

[l ————

Figure 5.8: Computation of the fiber directions in the cutting pattern generation

that the predefined fiber orientation on the 3D surface can be achieved from the or-
thogonal fibers in the cutting pattern. Therefore, the suggested approach attempts
to fit the warp direction as closely as possible.

In general, the fiber directions can be transformed form the 2D reference to the
3D current configuration by applying the deformation gradient. As the weft direc-
tion t; is predefined in the current configuration, it will be transformed into the
reference configuration by the inverse of the deformation gradient:

T, =F "' t (5.16)

It is obvious that based on the relation defined in equation (5.16) the resulting warp
direction T'; in the cutting pattern will differ in the orientation at each point in the
surface. In general, the fabric material has a unique fiber orientation. Due to that, the
approach from equation (5.16) has to be modified to achieve a mean warp direction.
For this purpose, an averaging of the individual warp directions will be introduced.
Therefore, the projected warp directions in the 2D surface are summed up at each
point and will be normalized. The summation can be realized by an integration over
the 2D surface. Based on this, the mean warp direction can be given by:

f F! - t1dQp
T, = 220 (5.17)
f F_l . tldQQD

Q2p
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With the assumption of equation (5.17) the optimization approach for the cutting
pattern generation will result in an optimized stress difference by finding the opti-
mal fiber orientation for the warp direction.

The evaluated warp direction is excluded from the variation and is assumed to be in-
variant due to small variations in the reference configuration. Of course, after each
optimization step, the fiber directions have to be adjusted. Based on the averaged
warp orientation, the weft direction can be evaluated by the cross product with the
normal vector T'3 of the pattern:

T2 = T3 X T1 (518)

Derivative of the Cauchy stresses for linear and nonlinear materials: In the
Least Square optimization approach introduced in section 5.2.3, the derivative of
the Cauchy stress tensor has to be evaluated w.r.t. the nodal position in the ref-
erence configuration. For linear elasticity this can be done easily as there exists
a relation between strains and stresses in the current configuration. Based on the
definition of the material tensor in the current configuration in equation (2.63) the
gradient of the Cauchy stresses can be given by

oo Jc Oe

oX. = X, re+4c: ax. (5.19)
where the derivative of the Euler-Almansi-strain tensor can be obtained by:
de 1 /(0G, 0Gg\ o 8
6XT__2(8XT'GB+GQ.6Xr>g ®g (5.20)

In the case of linear elasticity, equation (2.64) defines an analytical representation
of the coefficients of the material tensor in the reference configuration w.r.t. the
curvilinear coordinate system. Based on this representation, the derivative of the
elasticity tensor in the current configuration can be obtained by:

o 9 1 o 1 9CePN
¢ —( ( )C pro )g vg’ g’ ®g’ (5.21)

0X, \ 90X, \ detF detF  0X,

In the case that a material model is introduced, where linear elasticity is no longer
valid the relation between stresses and strains have to be defined in the incremental
form as introduced in equation (2.60). As for such materials there is no linear
relation between the strains and stress, the derivative of the Cauchy stresses can be
formulated as follows:

do _ 1o} 1 T
X, 0X, <detFFSF )

o 1 T 1 OF T
= — | ——= —_— 5.22
0X, (detF) FSF™ + detF 0X, SF ( )
T
1 F oS FT 1 FS@F

detF " 0X, + detF ~ 0X,
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The derivatives in equation (5.22) are straightforward except for the derivative of the
2. Piola-Kirchhoff stresses w.r.t. the nodal position in the reference configuration.
To evaluate this derivation, the chain rule has to be applied:

9S _ 9S  OE
0X, OE 00X,

(5.23)

In equation (5.23) the derivative of the 2. Piola-Kirhoff stresses w.r.t. to the Green
Lagrange strain tensor is equal to the elasticity tensor in terms of the reference con-
figuration, which is defined in equation (2.60).

Residual stresses in the tensile structure: In the previous section it was discussed,
that due to their double curvature, tensile structures can’t be developed into a plane
without compromises. Based on the governing equation derived in section 5.2, the
difference of elastic and predefined stresses is minimized. This means that the re-
sulting stress can’t be identical to the intended one at each point on the surface. This
shall be illustrated with the example shown in figure 5.9. If the resulting cutting pat-
tern is introduced as the reference configuration of the elastic deformations of the
assembling process in absence of external loads, the compromise can be seen in the
resulting stress distribution. For the process of the structural analysis, the distance
between the 2D pattern and the 3D current configuration is defined as an initial
deformation. The 3D surface is in equilibrium w.r.t. the predefined stresses, as it
was evaluated in form finding. Of course, if the cutting pattern is deformed to this
configuration, the resulting stresses are not identical to the prestress. Due to that,
this situation does not fulfill equilibrium. The resulting deformations to satisty the
equilibrium condition will result in a deviation of the current stress situation. The
current stress distribution is illustrated in figure 5.9. It can be seen that the stresses
deviate considerably from the indented prestress, which illustrates the compromise
due to the non-developability of the doubly curved surface.

The compromise which has to be accepted in the cutting pattern of a doubly curved
surface depends on different aspects. The first one is related to the material proper-
ties, or more precisely to the shear stiffness. The second influence parameter is the
number of strips into which the tensile structure is divided. The last influence orig-
inates from the curvature of the tensile structure. In the following, the sensitivity of
the cutting pattern w.r.t. the influence parameters is discussed.

The example illustrated in figure 5.10 will be used. The geometry of the hypar
kind of surface is defined in [Gos+13]. The length and width of the structure is
defined to be 10.0[m] and the prestress to be 3.0[kN/m]. In the following three
different aspects will be discussed: (i) The change of area content of the cutting
pattern w.r.t. a variation in the material parameters. Here, a linear elastic isotropic
material is assumed with Young’s modulus £ and Poisson’s ratio v. In this case
the cutting pattern of the surface will be evaluated in one piece, which means that
the surface won’t be divided into strips. The height is defined as H = 5.0[m]. (ii)
The next investigation is done w.r.t. to the change in the maximum surface stress
based on the variation of the number of introduced strips n. For this discussion
the height is defined to be H = 5.0[m] and the material parameters are fixed as
E = 250.0[kN/m] and v = 0.3. (iii) The third investigation will be done w.r.t. the
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System: Young’s modulus £ = 2.0
Poisson’s ratio v = 0.3
Base length L = 2.0
Height H = 1.0
H
Prestress og = 1.0
L
L
Stress distribution: Cutting Pattern:
1.124
0.926
OvonMises

Figure 5.9: Residual stresses based on the optimized cutting pattern

change of maximum surface stress based on a variation in the Gaussian curvature if
the surface is flattened in one piece. In order to modify the Gaussian curvature, the
height of the structure is changing as H = 0...10.0[m]. It is obvious that for the
case of zero height, the structure can be developed as it is already a plane surface.
In this case the resulting stresses have to be the intended ones. Here, the material
parameters again are defined as E = 250.0[kN/m] and v = 0.3.

Sensitivity of the cutting pattern w.r.t. the material properties: In figure 5.11
the area content of the resulting cutting pattern for different material parameters is
illustrated. As previously described, for the evaluation Young’s modulus is varied
from E = 1.0...1000[kN/m] and Poisson’s ratio from v = 0.05...0.45. The height
and the number of strips are fixed. It can be seen that there is a large change in the
area content for smaller values of Young’s modulus and the influence of the Pois-
son’s ratio is almost negligible. For a Young’s modulus £ > 200.0 the change in
area content decreases substantially. The Young’s modulus for architectural tensile
structures is larger then 200.0 in general. Due to that it can be concluded that the
influence of the material properties on the cutting pattern for architectural tensile
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System: Young’s modulus
E = 1.0...1000[kN/m]

Poisson ratio’s v = 0.05...0.45
Base lenght L = 10.0[m)|
Height H = 0.0...10.0[m]

L Prestress oo = 3.0[kN/m]

L
Number of patterns n = 1...16

Figure 5.10: Hypar example for sensitivity of the residual stresses

structures is not overly critical. Of course, this conclusion only holds if a linear
elastic material model is valid. If this is the case, for the evaluation of the cutting
patterns the exact values of the parameters do not have such a vital influence since
the overall shapes of the resulting patterns do not change that much. In the case of
highly deformable materials, such as with furniture or car seats, the definition of the
material parameters has to be precise. In this discussion only the influence from the
elastic deformation in the cutting pattern is concerned. Of course, there will be an
additional influence from the pre-stretch in the material, which will be discussed in
the following.

Pattern area A

110
100
Pattern area A 90
110
100
80
60
1000

Young’s modulus £

Figure 5.11: Sensitivity of residual stress w.r.t. material properties
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Include the pre-stretch in the governing equations: In general the cutting pattern
generation consist of the flattening of the doubly curved strips into a plane, com-
pensate the elastic deformations which will occur during the assembly process and
compensate the deformations which are related to the pre-stretch of the material.
In the previous introduced governing equations this initial strain hasn’t been dis-
cussed. In general the integration of the pre-stretch in the governing equation can
be made by a various number of methods. One possibility is to modify the deforma-
tion gradient as formulated in equation (2.44). Here, the deformation is defined by
the stretches \;. Therefore, the overall stretch consist of the elastic part A\g ciastic
and the pre-stretched part Ay ;.. Based on this, the modified deformation gradient
can be given such:

3
Fmod - Z (Ak,elastic + Ak,p'r'e) n;g ® Nk (524)
k=1

The integration of the pre-stretch Ay ,re in the deformation gradient can be done
straightforward as these stretches are known from experiments. In the following
examples the pre-stretch isn’t considered, as it would not change the principal state-
ment of the investigations.

Sensitivity of the cutting pattern w.r.t. the number of patterns: In figure 5.12
the result for the maximum von Mises stresses is illustrated, if the number of strips
for the cutting pattern generation is varied. In this case the example defined in fig-
ure 5.10 will be divided into different numbers of patterns n = 1...16. The material
parameters are fixed at £ = 250.0[kN/m] and at v = 0.3. The height of the struc-
ture is defined to be H = 5.0[m] and the prestress to oo = 3.0[kN/m]. It can be
seen that by increasing the number of patterns, the maximum stresses in the surface
will converge to the predefined stresses. Of course, this can be explained by the
fact that as the strips get smaller the needed deformation to develop the individual
strip decreases. In the limit case, if the width of the strips will tend to zero, the
resulting stresses would be identical to the prestress at each point on the surface.
In this example it can be seen that already for 8 strips the stresses will be close to
the intended stresses. Of course, the resulting width of the patterns, approximately
1.25[m], is too small from a practical point of view, but the general conclusion can
be made that with more strips the resulting stresses will converge to the intended
stresses.

Sensitivity of the cutting patterns w.r.t. the Gaussian curvature of a tensile
structure: In figure 5.13 the change in the maximum von Mises stresses w.r.t. a
variation of the Gaussian curvature as defined in equation (2.32) is illustrated. Here,
the Gaussian curvature is investigated in the center of the surface and the maximum
values of the stresses are used. Based on the example defined in figure 5.10 the
number of patterns is fixed at n = 1, which means that the surface isn’t divided into
parts, and the material parameters are defined as £ = 250.0[kN/m] and v = 0.3.
For the variation of the curvature the height is changed as H = 0...10.0[m]. It can
be seen that with increasing curvature the stress will increase as well. Therefore,
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Figure 5.12: Sensitivity of residual stress w.r.t. number of cutting patterns
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it can be concluded that if the structure is characterized by a slight curvature, the
width of the individual strips can be larger than in case of a high curvature. This
discussion holds as well for certain regions of the structure. If a tensile structure is
characterized by reasonable changes in curvature in the overall surface, the layout of
the cutting patters should be adapted to achieve a homogeneous stress distribution.
Of course, it can be argued that if the curvature at a certain point is investigated, it
won’t change if the surface is considered as a whole or if it is divided into patterns.
This argument is valid, but the deformation of a certain point from the plane 2D to
the curved 3D configuration depends on the curvature and the distance of the point
from the center of the pattern.

5.2.6 Ensure equal seam length of multi-strip cutting patterns

If the surface of the tensile structure is divided into more than one strip, the cutting
patterns will be evaluated individually for each single strip. Because of this process
it is obvious that the edge length of adjacent patterns do not fit to each other. From a
practical point of view this characteristic introduces major difficulties in the manu-
facturing process, as the patterns will be welded together in order to assemble them
in the final situation.

For the discussion of this characteristic, the example illustrated in figure 5.14 will
be introduced. The geometry of the 6 point tent is defined with the base lengths
L = 10.0[m] and B = 10.0[m], as well as by the height H = 4.42[m]. The
prestress is defined as constant anisotropic. In section 3.3.1.3 it was discussed that
for such a prestress distribution there exists no unique solution for the form finding
problem. Based on the shape of equilibrium, the cutting pattern is evaluated. The
surface of the given structure is divided into 5 strips.

L = 10.0[m]
L = 10.0[m]
oy H=d42m
By, = 350[kN/m)
warp E. = 350[kN/m]
Vs = 0.2

f
welt G = 145.8[kN/m]

or = 0.75[kN/m)|
os = 0.50[kN/m]

k... warp
s ... weft

Figure 5.14: 6 point tent consisting of 5 patterns
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Table 5.1: Unconstrained seam lengths

No. seamline | L;[m] | L; [m] | AL, [m]
1 4.69 4.74 0.05
2 7.08 7.07 0.01
3 7.08 7.07 0.01
4 4.69 4.74 0.05

The resulting cutting patterns for this example will be evaluated with the method
of Least Squares as introduced in section 5.2.3 based on the discussion in sec-
tion 5.2.4. For the case that the optimization is solved as previously defined, the
shape, and therefore the seam lengths, are evaluated with the goal of minimizing
the stress difference for the individual pattern. Based on this, it is obvious that the
equality of the seam length of adjacent patterns can’t be ensured. In figure 5.15 the
individual lengths are illustrated and the resulting differences are given in table 5.1.
However, an optimal cutting pattern is characterized by equal lengths of adjacent

AL = L1 — Lo ALs = Ls — Lg
ALy=Ls—La I_IAL2 S ALa=Lr-Ls
ALl Ls AL4
warp

L
Ly Ls J Lq ’
Lo weft Lg
Ly

Figure 5.15: Cutting patterns of a 6 point tent and seam line lengths

patterns from a practical point of view.

The described result from the solution of the cutting pattern problem can be also
explained on the basis of the governing equation. For the solution process, a dis-
cretization in terms of the Finite Element Method is introduced. In figure 5.16 some
of the introduced degrees of freedom (dofs) at the nodes of the discretization are il-
lustrated for the patterns in the middle of the surface. As illustrated, the dofs of
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I—» dof I_' dofs I_, dof1
dofs dofs dof2
; d0f13
dof3 I—» dof» dofg dofi
d0f4

dofs dof1o

Figure 5.16: Degrees of freedom (dof) for the middle patterns

each individual pattern are restricted to a certain pattern. From a numerical point of
view, this means that if the gradient of the objective function for a certain pattern is
evaluated w.r.t. to a dof which belongs to another pattern, the resulting gradient will
always be equal to zero. This can be understood as a decoupling of the individual
patterns in the solution process. Of course this can also be seen in the resulting sys-
tem of equations when applying a Newton Raphson method. Based on the objective
function f(Xap), the resulting system of equations can be formulated as follows:

Vo 1 J (X2p) 0 e 0 AXop
0 Viap.2 S (X2p) 0 AXsp o B
0 0 e Vg(m,nf (XQD) AXQD,n

vx2D,1 f (XQD)
VXZD,2 f (XQD)

VX2D,n f (XQD)
(5.25)

133



5.2 Solution approach for the Cutting Pattern Generation

In equation (5.25) Xop,» are the unknown nodal coordinates in the 2D reference
configuration w.r.t. the n‘" cutting pattern. Based on the special structure of the re-
sulting system matrix, it is possible to solve the cutting pattern problem separately
for each strip. Therefore, the decoupling of the individual patterns also becomes
visible from a mathematical point of view.

From a optimization point of view, the most direct way to the ensure equal seam
lengths is to introduce an appropriate constraint to the governing equation. In the
case of the cutting pattern generation, the formulation of such a constraint can be
achieved easily. As it should be ensured that the lengths of adjacent patterns are the
same, the difference between them must be equal to zero. This type of constraint,
where the equation has to be equal to zero, is introduced as an equality constraint
in numerical optimization. Based on this idea the equality constraint can be formu-
lated as follows:

AL; = Lieit — Liignt = 0 (5.26)

To ensure equal seam lengths of adjacent cutting patterns, the introduced con-
straint from equation (5.26) has to be added to the optimization problem. There
are various methods for the introduction of constraints in an optimization problem
[BSS94], [Ber96], [HG92], [VanO1]. Here, the Augmented Lagrange Multiplier
(ALM) method will be applied. In principal this method represents a combination
of a Lagrange Multiplier and a Penalty Method. The constraints AL; are added
to the objective function Xop and multiplied by the Lagrange parameter ;v as well
as the squared constraint multiplied with the penalty factor . The Augmented La-
grange Multiplier was initially developed for the application of optimization prob-
lems with equality constraints. Therefore, the method is well suited for the given
problem of cutting pattern generation. Based on the ALM the augmented Lagrange
function LA can be given by:

Mseams Mseams

I}?in — La (Xap, pi) = f (Xap) + Z wiAL; (Xop) 47 Z AL; (X2p)®
2D i=1 i=1

(5.27)

For the solution of the modified optimization problem given in equation (5.27) the

Karush-Kuhn-Tucker (KKT) conditions are applied. The KKT conditions describe

the stationary point condition for a constrained optimization problem. The resulting

residual equations can be given as follows:

Vian L (Xap, 1i) = Vaon f (X2p) + D p#iVop AL (Xap)
i=1
Mseams
+2r > AL; (Xop) Vxop AL (Xop) =0 (5.28)
i=1
ViiLa (Xop, ) = Y ALi(Xap) =0
i=1

There are various solution techniques for constrained optimization problems. Here,
a Newton Raphson algorithm will be applied. For the evaluation of the system ma-
trix, the linearization of the KKT w.r.t. the nodal coordinates in the 2D reference
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configuration and the Lagrangian parameters has to be done. The number of un-
knowns for the introduced governing equation are the number of nodal degrees of
freedom plus the number of seam lines, as for each seam line 7 a Lagrangian pa-
rameter p; is defined (— dof + nseams). The resulting system of equations for the
incremental solution of the minimization problem can be obtained by:

MNseams

V§<2D La (Xaop, i) 2; Vx5 AL; (Xap) |:AX2D:| B
Mseams ' A i -
Vxop ALi (Xap) 0 #
i=1 (5.29)

Vxop La (Xop, i)

S AL (Xap)

The component V§(2D La (Xap, ;) is again a decoupled matrix as in the uncon-

Mseams
strained case. The off-diagonal terms of the system matrix >, Vx,,AL; (X2p)
i=1
are realizing the coupling in the system of equations, or in other words the gradients
of the equality constraints are responsible for the coupling of the individual cutting
patterns. From a numerical point of view the property of the decoupled system of
equations in the unconstrained case allows an advantageous solution process, as the
resulting system matrices can be solved individually for each strip in a certain iter-
ation step. This characteristic introduces a time and storage saving potential in the
numerical solution process. It is obvious that for the modified objective function
the time saving potential will be lost. To overcome this drawback, a method will
be introduced to exclude the Lagrangian parameters from the system of equations.
For this purpose, an appropriate update method of the Lagrange parameters in the
iteration steps has to be found. In [HG92] and [Hes69] a method to update the
parameters is presented which can be derived from the equality of the Augmented
Lagrangian and the Lagrangian function at the optimum L} = L*. The update
method can be formulated as follows:

P ORI SN (xgg) (5.30)

In equation (5.30) k represents the iteration counter for the optimization steps.
Based on this update method the system of equations can be reduced to the nodal
coordinates in the 2D reference configuration as remaining degrees of freedom. The
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Table 5.2: Constrained seam lengths

No. seamline | L;[m] | L; [m] | AL, [m]
1 4.71 4.71 0.00
2 7.08 7.08 0.00
3 7.08 7.08 0.00
4 4.71 4.71 0.00

reduced system of equations can be given by:

v%{ZD,lLA (X'2D7:Ll’i) 0 0 |
0 V§2D=2LA (X2p, i) 0
0 0 oo VipaLa (Xop, i)
AXszl VX2D71 La (X2D7 U’i)-
AXop,2 VXQD,ZLA (X2D7 Mi)
AXopn Vxop .o La (Xap, i) |
(5.31)

Of course, with the update approach from equation (5.30) no quadratic convergence
can be achieved in the Newton Raphson algorithm. Due to that, a further simpli-
fication for the process of the constrained optimization can be done. The gradient
ng,nL A (X2p, p;) includes the derivative of the objective function and the con-
straints. The evaluation of the gradient of the constraints introduces additional effort
from a numerical point of view and might be complex in the computation. There-
fore, a Modified Newton Method can be used for the solution of the optimization
problem. Therefore, the system matrix is replaced by the definition given in equa-
tion (5.25), as this version of the system matrix has to be computed in each case.

If the derived method is applied to the mentioned example, the resulting seam lines
will be equalized. The overall patterns are just slightly effected and the difference
can be seen only when looking in detail. In table 5.2 the equalized lengths for the
constrained optimization problem are given.

The described extensions to the Least Square approach for the cutting patterns com-
bines the general derived governing equations with the practical needs for the design
of a tensile structure. As the governing equations are based on continuum mechan-
ics and numerical optimization, it is possible to describe this behavior in a most
general framework.
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5 Cutting Pattern Generation

5.2.7 Influence of the Seams

In the manufacturing of a tensile structure, the individual cutting patterns will be
assembled. In general, the strips will be welded along the seam lines. For the
process of welding, the adjacent patterns have to overlap each other to enable the
connection between them. The overlap can be realized in a simple way, in which
just the two strips are overlapping. In this case, along the seam the material will
be doubled and might be considered in the analysis. Additionally, the width of the
overlap is important for the behavior of the seam. In [FM04] recommendations for
the width of the overlap of the seams are given. From a mechanical point of view,
the seam will introduce additional stiffness as the thickness is increased in these
regions of the surface. Due to the increase of the stiffness along the seam lines, the
stress distribution will be influenced. The effect of the seam line on the stress dis-
tribution is mainly controlled by the cross section area, as a product of the number
of layers,the seam width and thickness of the membrane. Additionally, the density
of the seams in the surface is an influence parameter. In the following, the influ-
ence of the seams on the resulting stress distribution will be discussed by varying
the number of layers in the seam and the density of the seam lines in the surface.
Here, the seam lines are modeled by cable elements as derived in section 4.3.1. It
is important to consider that the thickness of the seam is defined by the number
of layers minus 1, multiplied with the thickness of the membranes, as one layer is
already included in the model of the membrane surface. The example illustrated in
figure 5.17 will be used. The geometry of the hypar kind of surface is defined by the
base length L = 10.0[m] and the height H = 5.0[m]. The seam width is defined
to be b = 0.1[m] and the material is assumed to be linear elastic isotropic with the
parameters £ = 250.0[kN/m] and Poisson’s ratio v = 0.3. The prestress in the
structure is defined to be oo = 3.0[kN/m].

Density of the seam lines in the surface: In figure 5.18 the ratio between the cur-
rent maximum stress ocyr in the surface for the individual pattern layouts w.r.t. the
maximum stress omax for the single strip case is illustrated. In the following, the
number of cutting patterns will be increased from 2 to 16. In this case the number
of layers in the seams is fixed to 2. From figure 5.18 it can be seen that the number
of seams effectively influences the stress distribution. Of course, this effect has to
be seen in combination with the improvements regarding the developability of the
individual strips for a low numbers of patterns as illustrated in figure 5.12. But in
case of higher number of patterns n > 4 the stress reduction in the surface can be
explained by the increased rearrangement of the stresses towards the seams.

Number of layers in the seam: In figure 5.19 the stresses in the membrane sur-
face and the forces in the seam in relation to the individual maximum values are
illustrated w.r.t. the number of layers in the seam. The computations for the given
diagram are done on the basis of 8 patterns. As expected, the influence of the seam
lines increases with the number of layers which are defined for the seam. While the
stresses in the membrane decrease, the forces in the seam increase. This behavior
can be explained purely by the introduced additional stiffness along the seam. Usu-
ally, in standard tensile structures, the number of layers does not exceed 4. From the

137



5.2 Solution approach for the Cutting Pattern Generation

System: Young’s modulus
E = 250.0[kN/m)

Poisson’s ratio v = 0.3

H Base lenght L = 10.0[m]
Height H = 5.0[m]

L prestress o = 3.0[kN/m)]
Seam width b = 0.1[m)]

Loading ¢ = 0.6[kN/m?]

L
Pattern layouts:

2 pattern layout 4 pattern layout

8 pattern layout 16 pattern layout

Figure 5.17: Different seam layouts for a hypar
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diagram it can bee seen that in this case the surface stresses are reduced to 80% of
the maximum value. Even for the simplest case of 2 layers the stresses are reduced
by approximately 10%.

Based on the investigations described above, the question of whether the seam lines
have to be modeled can’t be answered uniquely. Of course, it can be seen that the
seam lines have an influence on the final stress distribution, but it has to be decided
in each case if the influence needs to be considered. It is obvious that it will never
be a mistake if the seams are modeled, but in an early state of the design of a tensile
structure, the exact layout of the seams is often not defined. In these cases it has to
be decided on the basis of the pattern layout if the density and the possible number
of layers are such that it will result in a major influence on the seams. If it is con-
cluded that the seam will be influenced, an appropriate reserve in the stress design
has to be considered.
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5 Cutting Pattern Generation

Conclusions

In general, tensile structures are doubly curved surfaces as the equilibrium, based
on the in plane prestress, can just be satisfied by this type of shape. Therefore, the
surfaces are non-developable. The process of cutting pattern generation defines the
task of evaluating the plane 2D reference configuration which enables the manufac-
turing of the non-developable structure with the least compromises as possible. The
evaluation of the cutting pattern can be made on the basis of different approaches.
The compromise which has been accepted in this process becomes visible as the
resulting deviation from the desired stresses when the assembly of the 2D reference
to the 3D current configuration is done.

In this chapter, existing solution methods based on the Variation of Reference Strat-
egy (VaReS) has been discussed. For a certain method the discussion of the sensi-
tivity w.r.t. the individual input parameters has been included in this chapter. It was
illustrated, that the derived method for the cutting pattern generation is able to eval-
uate high quality patterns. It is possible to include anisotropic material models, the
compensation of the elastic and the pre-stretch deformations. Still, there are open
questions as the influence and integration of creep and temperature, for example.

In addition to the discussion of the principles of the method, an extension that ad-
dresses practical issues is introduced to the method. The issue of equal seam lengths
of adjacent strips is a crucial point to evaluate feasible cutting patterns. At the end
of this chapter the influence of the welded seam lines has been included.

The process which has been introduced in this chapter consists of a continuum me-
chanical based method which is able to solve the problem of the non-developability
of the structure. Additionally, the requirements to cutting patterns from a practical
point of view have been included.
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CHAPTER 6

Design Loops and Interfaces

The design process of tensile structures can be divided into separate steps. The form
finding, as discussed in chapter 3, is concerned with the evaluation of the shape of
equilibrium w.r.t. a given prestress state in a given boundary. Based on this shape
the following design steps, such as cutting pattern and structural analysis, will be
carried out. In the step of structural analysis, the response of the structure w.r.t.
external loads is evaluated. In chapter 4 this process has been discussed in detail.
In order to manufacture the final shape of the tensile structure, a number of strips
generally have to be assembled together to form the final shape. These strips for
the manufacturing of the structure are defined in a 2D plane configuration. In the
design step of cutting pattern generation, as discussed in chapter 5, the process of
developing the individual 3D curved strips of the structure in the prescribed 2D do-
main is described.

In this chapter the individual steps will be connected in order to define appropriate
design loops for the numerical simulation of tensile structures. Based on figure 1.4
it can be seen that it is possible to define two principal design loops. The standard
design approach connects the individual design steps as Form finding-Structural
Analysis-Cutting Pattern Generation. In contrast, the extended design approach
switches the order to Form finding-Cutting Pattern Generation-Structural Analysis.
In the following, the effects and the quality of the individual design loops will be
discussed. Additionally, the effects of elastic members in the overall design process
will be described.

For the connection of the individual design steps, interfaces are required which
enable the transformation of the structural model between the design steps. At the
end of this chapter the principal requirements of these interfaces will be discussed.

In the previous chapters the definition of the configurations from a continuum me-
chanical point of view could be done straightforward within each design step. In
this chapter the definition of the reference configuration can’t be done uniquely,
as the reference point for the deformations may change for the individual design

143



6.1 Standard Design Approach

loops. In the following discussion of the different design loops the definition of the
respective reference configuration will be done. The current configuration can be
defined uniquely as it is the deformed geometry based on the external loads. To
ensure consistent terms for the different geometry stages through the design loops
the following naming will be introduced:

e Initial Configuration: The initial guess of the geometry in form finding

e Form Found Configuration: The shape of equilibrium which is determined in
form finding

Pattern Configuration: The geometry of the flat cutting pattern

Assembled Configuration: The shape of the tensile structure after the assem-
bling based on the cutting patterns

Current Configuration: Deformed geometry based on the external loads

6.1 Standard Design Approach

The standard design approach, as illustrated in figure 1.4, starts with the evalu-
ation of the shape of equilibrium by the form finding which represents the form
found configuration. Based on the external load, the resulting deformations in a
transient or steady state situation will be evaluated. The final stresses in the pro-
cess of structural analysis will be used in order to decide about the ultimate and
serviceability limit state of the design. If one of the structural requirements is not
fulfilled, the overall design has to be changed. In the case that all requirements are
fulfilled, the last step in this design loop is the evaluation of the cutting patterns for
the manufacturing. In the standard design loop, this step is often done by the ac-
tual manufacturer of the structure instead of the designer. Due to that, the evaluation
of the cutting patterns is usually located in a late phase of the overall design process.

From a continuum mechanical point of view, the steps in the standard design loop
have to be assigned to the related configurations. In figure 6.1, it can be seen, that
the from found configuration is introduced to be the reference configuration X for
the structural analysis. Here, the deformations uypoading related to the external loads
will lead to the current configuration x.

In chapter 5 is was already discussed that the general non-developability of the
shapes of tensile structures introduces variations in the resulting prestress. In the
standard design approach, this effect, based on the deformations uzp_,3p from the
cutting pattern on the resulting stress distribution, is neglected. The structural anal-
ysis is carried out on the assumption that the stresses in the surface are equal to
the prescribed prestresses. The examples given in chapter 5 have shown that the
difference in the resulting stresses from the assembling process and the prestresses
can vary substantially. From an engineering point of view this means that with the
application of the standard design approach a non quantifiable uncertainty remains
in the design.
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Initial Configuration X
Form Found Configuration X

ULoading

Pattern Configuration Xap

llqlll

Current Configuration x

Figure 6.1: Standard Design Approach

In the following, the standard design approach will be applied for the evaluation
of the final stresses for the example illustrated in figure 6.2. The given 4 point
tent is defined referring to an example given in [Gos+13]. The form finding of the
structure is carried out w.r.t. the given isotropic prestress values for the membrane
and the edge cables. Subsequently, the resulting shape of equilibrium is interpreted
as the reference configuration and the prescribed prestresses are considered in the
formulation of the related finite elements as given in section 4.3. The load for the
structural analysis is defined as a snow-type load, which is invariant in time. There-
fore, a steady state analysis is applied in order to evaluate the stresses in warp and
weft direction as illustrated in figure 6.2.

It can be seen that the final stress distribution is as expected. The stresses at the
high points of the 4 point increase as the stresses at the low points decrease. From a
design point of view, this stress distribution and the related deformations would be
used in the design of the ultimate and serviceability limit state.

Based on the given example, it can be seen, that the standard design approach can
be applied easily with a minimum of complexity in the interfaces to transfer the nu-
merical model between the individual design steps. This approach is based on the
simplified assumption that the cutting patterns have no influence on the final stress
distribution. In the next section, the variations in the prescribed stresses based on
the cutting pattern will be discussed, which will increase the quality of the evaluated
stress distribution.

6.2 Extended Design Approach

The standard design approach described in the previous section includes the draw-
back that the influence of the cutting pattern on the final stress distribution is ne-
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Geometry:
System: Base length L = 6.0m

Height H = 4.0m
Membrane

Membrane:

Young’s modulus E = 400kN/m
Poisson’s ratio v = 0.2

Prestress oo = 3.0kN/m

\Edge Cable

Edge Cable:
Young’s modulus £ = 205'000M N/m?>
Diameter d = 12mm

External Load:

Snow type loading
q = 0.6kN Prestress (Force) So = 30kN
Warp Stress: Weft Stress:
4.488 3.249
2.786 1.618
O Warp O Weft

Figure 6.2: 4 point tent example with standard design approach

glected. In order to overcome this, the extended design approach will be introduced.
Based on figure 6.3 the principal change in the definitions of the configurations can
be described. The inclusion of the cutting pattern is realized by the definition of the
assembled configuration X. Therefore, the deformations uzp_,3p, evaluated in the
cutting pattern process, are added to the pattern configuration Xop. The deforma-
tions w.r.t. the external load will be computed based on this assembled configuration
X. Due to that, it is possible to introduce the exact stress distribution from the as-
sembling process as already discussed in chapter 5.

In principle, there are two methods to introduce the assembled configuration in the
numerical modeling process [Die+13b]. The obvious approach would be to include
the deformations from the cutting pattern to the assembled configuration into the
structural analysis as an initial deformation. Based on this, the overall deformation
can be obtained by:

Ufinal = U2D—3D + ULoading 6.1)
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Initial Configuration X
Form Found Configuration X

Pattern
Configuration Xap

Current Configuration x

Assembled Configuration X

Figure 6.3: Extended Design Approach

Therefore, the cutting pattern will be introduced as the reference configuration for
the evaluation of the continuum mechanical quantities. In the case of the applica-
tion of external loads which are defined w.r.t. the built structure, like dead or snow
load, the assembled configuration has to be introduced for the evaluation of the load
related parts in the governing equations.

The second possibility, for the introduction of the cutting pattern in the structural
analysis, is to evaluate the stress state resulting from the assembly process and de-
fine it as the prestress in the surface. This can be understood such that the pre-
scribed stresses will represent the cutting patterns in the computation. Therefore,
the assembled configuration can be introduced as the reference configuration. In
this approach there is no need to introduce the cutting patterns in the governing
equations. Of course, the main advantage of this approach is that all continuum
mechanical quantities are related to the same reference configuration.

On the first glance it seams that the two approaches are identical. In [Die+13b]
a discussion of the two methods is given on the basis of the previously introduced
von Mises framework as illustrated in figure 4.2. Here, the first approach, where the
deformation from the cutting pattern to the assembled configuration is considered as
an initial deformation, is described as the modeling of the full deformation. The sec-
ond approach, where the initial deformations are considered as a predefined stress
distribution and the further deformations are defined w.r.t. the assembled configu-
ration, is introduced as the incremental deformation description. In the following,
the same example will be used in order to discuss the differences in the approaches.
The example is illustrated in figure 6.4. In this example the cutting patterns are
represented by the undeformed shape of the trusses defined by the height A and
the base length b. The deformation between the cutting pattern and the assembled
configuration is given by uo. The further deformation is defined by Au. Here, the
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Full Deformation:
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Incremental Deformation:
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Figure 6.4: von Mises example for the configuration update

additional deformation is assumed to be prescribed, which is generally related to
an external load of varying magnitude. For both cases, the full and the incremental
description, the respective length in the reference and the current configuration is
given. It can be seen that for both descriptions of the deformation process, uo and
Aw are included in the current configuration. In the case of the incremental descrip-
tion uo is considered in the reference configuration as well. From this definition,
the different interpretation of the reference configuration becomes obvious.

The formulation of the equilibrium equation can be done for both cases based on the
governing equations which are derived in section 4.3.1. Here, the Green Lagrange
strains are formulated w.r.t. a local coordinate system given in equation (4.21).
Using this, the strains can be given in terms of the initial and the additional de-
formation. In case of the consideration of the full deformation process, the strain
ear (1, L) dependent on the overall deformation ug + Aw. Due to that, the residual
equation for this case can be given by:

R, = FAegr (I, L) LEG;A(Z L)

112-L2\ 1 al
’EA<§ L2 )ZaAuL

L
(6.2)

In the case of the incremental modeling of the deformation process, the initial state
ug is transfered to a prestress So (L7 L) in the truss members. With the assumption
of a linear elastic isotropic material, this prestress can be evaluated by the multipli-
cation of the Green Lagrange strains € (L, L) with the respective Young’s modulus
E:

- - 107 - L2
So(L.L) = Be (L L) = E (§T> 63)
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With equation (6.3) the equilibrium equation for the incremental approach for the
deformation process can be given by:

Oear (l_,L)
0Au

= oN 7o

L — L ) I 0ol i

i

R. = (EAcar (I.L) + ASy (L, L))

_ (6.4)
2 72
:EA(y L,

1

2 L2 2 L? L 0Au

Comparing equation (6.2) and equation (6.4) it can be seen that due to the different
consideration of the initial deformation, the equilibrium equations are not equal. In
particular, the value in brackets exemplifies the difference in the governing equa-
tions. The values around the brackets are equal in both cases as the derivative of the
respective current lengths and the axial stiffness are identical. Due to the nonlinear
nature of the strains, the different interpretation of the initial state the equilibrium
equations differ from each other. The difference can be illustrated by a plot of the
residual force R, as well as the related first order derivative for the stiffness K for
both cases. In figure 6.5 the difference in the solution can be seen. The diagram is
achieved for an axial stiffness £ A = 1, an initial deformation ug = 0.2 and the
geometry b = h = 1. The resulting system behavior will differ fundamentally for

0.3 ‘ ‘
025} R(So + Au) B
0 K(So + Au)-----
: . R(uo + Au)
& 015 fe AN K(uo + Au)----- |
£z Ol : s
R e ———— —
7 N S~ Sl
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-0.15
0 0.1 02 0.3 0.4

Deformation Au

Figure 6.5: Results for the von Mises truss with an initial deformation

both modeling approaches. The different characteristics can be discussed based on
the location of the critical point for the individual methods (i.e. where the stiffness
is equal to zero K = 0). As for the full deformation approach, the critical point
is located at Au ~ 0.22. In contrast, for the incremental approach this point is
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located at Au ~ 0.34. This substantial shift illustrates, the different structural be-
havior, only based on the individual modeling approaches.

The example of the von Mises framework can be easily transfered to the modeling
of tensile structures. If the cutting pattern is introduced as the reference configura-
tion in the strains, the initial deformations will occur which can be understood as
equivalent to the full deformation description for the simple truss example. For the
case that the stresses, resulting from the initial deformation from the cutting pattern
to the assembled configuration, are introduced in the governing equation for the
equilibrium, the incremental deformation formulation will be applied.

For the example of the 4 point tent given in section 6.1, the two modeling ap-
proaches will be applied. The cutting patterns are based on a 5 strip layout and
the constraint of equal seam lengths is applied. The resulting cutting patterns are
illustrated in figure 6.6 as well. The structural properties for the membrane, cable
as well as for the loading are the same as in the discussion of the standard design
loop.

The resulting stresses of the structural analysis w.r.t. to the defined snow-type load-
ing are illustrated in figure 6.7. It can be seen that the principal characteristic of the
stresses are the same for both modeling approaches. Even the maximum stresses in
the warp direction are almost identical. The difference becomes visible by compar-
ing the minimum warp stresses. For this example, the maximum stresses are almost
equal. The difference in the minimum stresses is substantial. From a design point
of view this result would not change the ultimate limit state design, but the inter-
pretation of the possibility for wrinkles in the surface would differ. Based on this,
it can be seen that the choice of the modeling approach influences the final stress
distribution substantially.

Of course, from a continuum mechanical point of view, the full deformation ap-
proach seems to be preferable. However, for the modeling of the tensile structure
this introduces additional effort in the numerical description. In general, the ten-
sile structure will be divided into several cutting patterns. Additionally, structural
elements, like edge cables or arches, will be involved in the simulation process. If
the cutting patterns are introduced in the structural analysis as the reference config-
uration of the membranes, the individual elements are no longer attached to each
other. The gap between the individual patterns as well as between the resulting
membrane surface and the edge cable or other structural elements has to be closed.
From a continuum mechanical point of view, this means that in this approach each
structural element in the analysis has its own reference configuration which is not
attached to the others. From a numerical point of view, this introduces the challenge
that in the beginning of the computation the individual members have to be assem-
bled together and the equilibrium of the resulting internal forces has to be evaluated
before an external load can be applied. This additional modeling effort can be dis-
advantageous for various applications. However, this modeling approach should be
preferred as it describes the "true" deformation process.

The discussion so far only addresses how the deformation from the cutting pat-
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Geometry:
System: Base length L = 6.0m

Height H = 4.0m

Membrane

Membrane:

Young’s modulus E = 400kN/m
Poisson’s ratio v = 0.2

Prestress o9 = 3.0kN/m

Edge Cable:

Young’s modulus E = 205'000M N/m?
Diameter d = 12mm
Prestress (Force) So = 30kN

External Load:

Snow type loading
q = 0.6kN

Cutting Pattern Generation:
Warp 5 pattern layout
equal seam length

Weft

Figure 6.6: 4 point tent example with extended design approach - cutting pattern
layout

tern to the assembled configuration can be introduced in the structural analysis. Of
course, the actual comparison of the standard and the extended design approach
is of major importance. For this comparison the final stresses will be evaluated
on the basis of the full deformation modeling approach as illustrated in figure 6.8.
Comparing figure 6.2 and figure 6.8 shows that there is a substantial difference in
the final stresses. With the standard design approach, the maximum final stress in
the warp direction has a value of owap = 4.498, whereas the extended approach
results in owap = 7.592. Based on this comparison it can be seen that the decision
of the design approach introduces substantial consequences to the final stress distri-
bution, which have to be considered by the designer. Of course, the difference for
the individual application is influenced by the choice of the material properties and
the cutting pattern layout.

Based on this comparison, the extended design approach can be characterized as
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Incremental Deformations: Full Deformations:
7.429 7.592
0.206 2.860
O Warp O Warp

Figure 6.7: Residual stress for the 4 point tent w.r.t. the different modeling

approaches
Warp Stress: Weft Stress:
7.592 3.410
2.860 1.143
O Warp O Weft

Figure 6.8: Residual stress for the 4 point tent for full modeling approach

the more exact and reliable modeling method. Of course, the introduction of the
cutting patterns in the structural analysis requires the definition of the layout in an
early stage of the design process and introduces new challenges to the designer. On
the other hand, based on the extended approach the designer is able to come up with
more effective and reliable designs. Additionally, the application of the extended
design approach introduces the demand of high accuracy in the manufacturing pro-
cess if the resulting potentials for a efficient design will be exploit. If the assembled
cutting patterns deviate from those introduced in the numerical simulations, the fi-
nal stress distribution will differ from the evaluated values. This will result in an

uncertainty in the ultimate limit state design.
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6.3 Elastic Members in the Design Process

In state-of-the-art tensile structures, elastic elements are introduced in order to en-
large the design space. From an engineering point of view, these elements can be
applied to improve the structural capacity, such as the dynamic or buckling behav-
iors. From an architectural point of view, these elements can be used to design new
types of shapes based on the elasticity of the elements. If elastic elements are intro-
duced to tensile structures, they have to be considered in the overall design process.
Therefore, the discussion of the effects of these elements was already included for
the process of form finding in section 3.5. Here, it was shown that for the evaluation
of the shape of equilibrium, elastic deformations are going to occur in the elastic
elements. At the end of the form finding process the prestress in the tensile structure
and the evaluated stresses in the elastic elements, based on the deformation in the
form finding process, are in equilibrium. In order to transfer this shape of equilib-
rium to the structural analysis, two principal methods exist.

The first method is to introduce the deformation of the elastic elements from form
finding as an initial deformation uo and keep the initial configuration Xejastic as
the reference configuration. For the tensile members, the reference configuration
is updated in each form finding step by applying the URS in order to achieve the
shape of equilibrium. Therefore, the reference configuration X¢ensile for tensile
elements is well defined by this shape. In figure 6.9 the process of the full descrip-
tion of the deformation for the elastic members is illustrated. It is obvious that for

Shape of Equilibrium

Reference Configuration
Structural Analysis

e

Xelaslic

Initial Configuration

Xtensile

Figure 6.9: Configuration update in the case of the full description of the defor-
mation process

this modeling approach it is implied, that the elastic and the tensile elements are
not attached to each other anymore. Due to that, in the beginning of the structural
analysis, the initial deformation has to be applied for the elastic elements in order
to describe the actual shape of equilibrium. From a numerical point of view, this
approach introduces additional effort as further nodes for the elastic elements have
to be modeled and the coupling of these nodes with the related ones on the tensile
after the application of the initial deformations have to be realized. In [DWB12] the

153



6.3 Elastic Members in the Design Process

effects on the numerical modeling by this approach were first discussed. In order
to overcome this additional effort in the numerical modeling, a second method to
transfer the shape of equilibrium to the structural analysis can be discussed.

The main idea for the second method to describe the shape of equilibrium is to
keep the elastic and tensile elements attached. This can be realized by prescribing
the stresses which are occurring due to the deformation of the elastic elements in the
form finding process as predefined stresses So = Selastic. Due to this, the reference
configurations for the elastic elements Xelastic and for the tensile members Xensile
are equal and aligned with the updated geometry. With this approach it is possible
to describe the deformations w.r.t. external loads in an incremental method, based
on the updated reference configuration. In figure 6.10 the process of the incremental
description of the deformation for the elastic members is illustrated.

Reference Configuration
Structural Analysis

elastic

Shape of Equilibrium X

Initial Configuration Shiastic S0 = Setastic

Xtensi]e

Figure 6.10: Configuration update in the case of the incremental description of
the deformation process

For both methods the elastic deformations are assumed to be evaluated in the form
finding process. These deformations are transfered to the structural analysis in order
to describe the shape of equilibrium. If the cutting pattern of the membrane is de-
signed such that the variation in the final stress distribution in the membrane can be
assumed to be the intended stresses, the initial configuration of the elastic elements
can be understood as the actual cutting pattern of these elements. Based on this idea
it is obvious, that the discussion of the elastic elements in the structural analysis is
the same as for the introduction of the cutting pattern for the tensile elements as
they also are introducing elastic stresses in the assembly process.

In section 6.2 the individual methods for the introduction of the cutting pattern
in the structural analysis are discussed for tensile elements. Here, the possibilities
to model the full deformation of the structure w.r.t. an external load based on the
cutting pattern as well as an incremental approach have been discussed. Obviously,
these approaches requires that the cutting pattern of the elastic element is known.
In contrast to the tensile elements, so far there exists no method for the evaluation
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of the cutting pattern for the elastic elements similar to the presented ones. There-
fore they can only be assumed. In the previous discussion, the initial configuration
has been accepted as the cutting patterns for the elastic elements. Of course, the
methods introduced in chapter 5 can be applied for elastic elements as well, but the
related kinematic must be included in the governing equations.

From the discussion of the individual methods for the introduction of the initial
deformations of the elastic elements in the structural analysis it could be concluded
that the full deformation approach should be preferred in each case. This conclu-
sion would be valid if the elastic elements were subjected to large deformations in
each case, like tensile elements. However, for most architectural tensile structures
the deformations of the elastic members remain small as they form the supporting
structure which is required to keep its shape. Due to this, the formulation of the
kinematic for the elastic elements can be linearized in most cases. In the following,
the von Mises truss example given in section 6.2 will be discussed by applying lin-
earized strain measurements to the governing equations.

For the formulation of the residual equations, the linearized strains for the initial
deformation can be formulated as follows:

Elin (UO) _

Uo
(6.5)
V2L
The additional strains w.r.t. an incremental deformation based on the assumption of
a linearized kinematic can be given by:

; Au
lin A _ =2 .
e (Au) L (6.6)

Finally, the strains for the full modeling of the deformations can be achieved by the
summation of the strains from equation (6.5) and equation (6.6):

" (Au 4 ug) = % 6.7)

For the formulation of the residual forces, the derivative w.r.t. the incremental de-
formation Aw of the individual strain equations has to be calculated. In the case
of the full deformation process, the residual equation can be obtained by substitut-
ing equation (6.7) and the related derivative in equation (6.2). Hence, the resulting
residual equation can be formulated as follows:

Au+u0> 1

For the incremental approach to the deformation modeling, the predefined stresses
have to be evaluated. Based on the assumption of a linear elastic isotropic mate-
rial, the prestress can be given by the multiplication of the strains w.r.t. the initial
deformation and the related Young’s modulus E:

R (B2

SE™ (uo) = Ee™ (ug) = E\}%OE (6.9)
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Substituting equation (6.9) in equation (6.4), the residual equation can be formu-
lated as follows:

Au AAu+uo> 1

R. = (EAE + AShn (uo)) % = (E BV AN (6.10)

From equation (6.8) and equation (6.10) it can be seen that the two approaches re-
sult in the almost identical residual equation beside the reference length. Therefore,
it can be concluded that for the cases where the elastic element is subjected to small
deformations, both introduced approaches for the inclusion of the initial state in the
structural members will result in a similar or almost identical behavior as the ref-
erence length tends to be equal. In order to illustrate the correlation between the
two individual methods in the case of small deformations, the example shown in
the bottom figure of figure 6.11 will be discussed. The given arch hall is based on a
design done at the Chair of Structural Design at the TU Miinchen, shown in the top
figure of figure 6.11.

Beam Elements Membrane Elements

h =10.0m

Z:M

Cable Elements

Figure 6.11: Arch Hall example

For the defined example, a form finding is evaluated in order to achieve the shape of
equilibrium. The resulting maximum deformations of the elastic beam elements are
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Umax = —0.1811[m]. For the modeling of the beam elements the theory of second
order is applied in order to be able to model the moderate deformations. It can be
seen that the deformations remain small in contrast to the geometry, which allows
the application of the theory of second order.

Based on the resulting shape of equilibrium a dynamic computation is evaluated,
where a single force is applied to the top of the middle arch as illustrated in fig-
ure 6.12. The applied force only acts in the first time step, which results in a free
vibration in the following time steps. For this simulation the damping effects of
the structure are neglected. Based on this example it will be shown that for small
deformations the applied methods for the initial state will result in the same struc-
tural behavior. Both methods will be compared to the approach where the initial
state is neglected and the reference configuration of the elastic elements are defined
on the shape of equilibrium by neglecting the initial deformations or stresses. This
approach is indicated by "None" in the following.

From figure 6.12 it can be seen that the results for the full and incremental defor-
mation modeling show the same structural behavior. The difference to the approach
where the initial state is neglected becomes obvious. This can be seen in the sub-
stantial shift of the eigenfrequency of the system. The given example illustrates
the general importance of the inclusion of the initial state even in cases of small
deformations. However, the choice between these two approaches depends on pref-
erence or the numerical framework available. The effects of the modeling approach
on the quality of the final results are not exclusively a discussion for the assessment
of the ultimate and serviceability limit state. For numerical applications where the
structural model can be interpreted as an input, the quality becomes essential for the
related results. An example for such a simulation is given by the exact evaluation
of the wind load behavior of the structure.

For the definition of the wind load which acts on a tensile structure, the available na-
tional codes are insufficient in most cases. Therefore, the wind loads are defined by
performing wind tunnel experiments for small scale models of the tensile structure.
As the thickness of the applied membrane material is thin in general, the scaling of
the real structure to a small scale model introduces additional complexity to the pro-
cess of experimental evaluation of the wind loads. Based on this scaling issue, the
actual flexibility of the structure is difficult to adjust with the experimental model.
To overcome this problem, the possibility to model the wind load situation on the
tensile structure numerically has been introduced. For this, the characteristic of the
wind is modeled as a fluid in a computational fluid dynamic simulation (CFD). If
the structural model is introduced to the wind simulation, the effects from the de-
formation of the structure on the wind characteristic can be evaluated. The achieved
numerical framework is defined as a Fluid-Structure-Interaction (FSI) simulation.
For a discussion of this kind of simulation for tensile structures, refer to [Kup09],
[Mic10], [Wiic07].

For the given example of the arch hall, the FSI simulation was done in [Gal10]. The

results from this computation for a certain time step are illustrated in figure 6.13.
Here, the structural model and the resulting stream lines of the wind are shown.
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Figure 6.12: Arch Hall example results
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Structural model: Stream lines of the wind:

Figure 6.13: Arch Hall example FSI [DWBI10], left: structural model; right:
stream lines

Based on this numerical approach, for the evaluation of the wind effects on the ten-
sile structure, arbitrarily shaped structures can be simulated without introducing an
error from the scaling effect. It is obvious that for such challenging numerical sim-
ulations, the exactness of the introduced structural model has an essential effect on
the final results achieved by the FSI simulation.

6.4 Requirements for the Interfaces

In the previous sections, two different design loops have been discussed. For both
the transition between the individual design steps has to be realized. For the appli-
cation, specific interfaces between the individual design steps have to be defined. In
general, the requirements for the interfaces are to transfer stresses or deformations
from the current design step to the following one. At a first glance it seems that
based on this requirement the interfaces are well defined. It could be interpreted
that the transition of the prestress state from the current design step to the next one
would be enough to ensure a correct transition between the design steps. The dis-
cussion for the extended design loop, where either the initial deformations or the
related stresses are introduced in the structural analysis, illustrates that there are
more possible ways to realize the transition and the results in general differ based
on the individual choice. Additionally, the introduction of elastic elements in the
simulation of the tensile structure enlarge the appropriate definition of the interface,
as the individual structural elements have to be processed in a specific manner. In
general, it can be defined that the interface has to be able to transfer the state of
equilibrium from one design step to the other. From a continuum mechanical point
of view, this can be realized easily since the equilibrium is uniquely defined by the
reference and the current configurations. For conventional structures, this defini-
tion is enough to realize the transition between the related design steps since the
reference configuration can be defined in advance. In the case of tensile structures,
the reference configuration is found by the form finding process or defined by the
cutting pattern generation. As the result of this process defines the shape of equi-
librium the transition is also well formulated. To ensure the correct transition from
form finding to structural analysis in terms of the continuum mechanics, the form
found shape and the related stresses have to be transfered. This means that if the
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prestress is not identical to the intended one, e.g. due to stress adoption methods
(e.g. distortion control form section 3.3.1.5), the current stress distribution in the
surface has to be used. In this case, by the application of the Finite Element Method
for the discretization of the governing equations, in combination with a Gaussian
integration, at each evaluation or Gaussian point the prestress has to be defined.

For the individual structural elements, the requirements for the interfaces are well
defined with the given discussion. It is obvious that the different situations for elas-
tic and tensile elements introduce the special discussion on this topic, as from a
continuum mechanical point of view the reference configurations are no longer at-
tached to each other. In section 6.2 and section 6.3, the effects on the individual
model approaches have been discussed. It was shown that by avoiding the issue
of different reference configurations, by introducing initial stresses in the elastic
elements, the resulting structural response is changed. The preference of the intro-
duction of the "true" reference configurations for the tensile and elastic elements is
obvious. For the interfaces, this introduces special requirements for the numerical
modeling. After the form finding, the model has to be separated for the definition of
the individual reference configurations. Of course, the connectivity of the structure
has to be preserved. Due to that, the interfaces have to realize the coupling of the
individual nodes. This way of simulating the structure is well known from bridge
design, where it is common practice to simulate the full assembly process.

From this discussion it can be seen that from a numerical point of view the in-
terfaces have to be able to prescribe stresses for each element and define initial
deformations at each node in the case of a Finite Element Method for the discretiza-
tion of the governing equations. Additionally, the topology of the numerical model
has to be modified if the individual reference configurations will be introduced. The
implementation of the interfaces showed that it is important to have the access to all
data of the numerical model. Therefore, the modification of the source code of the
used program has to be possible. Finally, it is important to note that from a contin-
uum mechanical point of view, all of the discussed methods try to transfer the state
of equilibrium from one design step to the other, which is the primary requirement.
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Conclusions

In this chapter the individual design loops introduced in figure 1.4 have been dis-
cussed in detail. The differences for the standard and extended design loop have
been illustrated. It became obvious that with the extended design loop, where the
cutting patterns are introduced in the analysis, the quality of the structural response
can be improved. The extended design approach defines a major complexity in the
simulation process, as the structural models are no longer attached to each other.
The discussion of the requirements for the interfaces between the individual design
loops has addressed this issue and strategies for how to achieve a feasible simulation
have been given.

The introduction of elastic elements in the modeling of tensile structures can be
processed in the same way as for the cutting pattern for the tensile elements. This
can be explained because the initial configuration of the elastic elements is inter-
preted as their cutting pattern. Therefore, it becomes obvious that the definition of
the initial configuration for the elastic elements can’t be made arbitrarily.

Based on the discussion of the different design loops it becomes obvious that the
final results for a tensile structure can vary essentially. If the designer applies the
standard design approach, he must be aware of the uncertainties in the final results.
The extended design approach offers the possibility to improve the quality substan-
tially. Hence, an simulation approach is presented which enables the designer to
create more effective and efficient structures.
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CHAPTER 7

Projects

In the previous chapters, methods for the numerical design and analysis of tensile
structures have been derived. For the individual steps of form finding, structural
analysis and cutting pattern generation, detailed discussions were given regarding
the solution possibilities and applied approaches. In chapter 6, the individual steps
were connected to describe two different design loops which can be applied for the
numerical design and analysis.

In this chapter, different projects will be presented where the introduced methods
and design loops have been applied. The first project which will be presented is a re-
alization of a student project developed in an annual workshop held at the Technical
University in Munich. The second project is a simulation of a wide-span umbrella
structure which is used to shadow piazzas in Medina. The third project describes
the results from a research project where the validation of the presented methods
against experimental data was the objective.

In the following, brief introductions to the projects will be given. The principal
objectives, the background and the achieved results will be presented. The detailed
discussion of the individual projects can be found in the related literature, which
will be given for each project.

7.1 Student Project

The present student project is the result of an annual workshop held at the Tech-
nische Universitidt Miinchen. This workshop is part of the curriculum of the master
program in civil engineering and architecture. Each year the students have to elabo-
rate a design of a tensile structure in teams. The individual teams consist of students
from architecture and civil engineering which introduces the challenge to combine
the aesthetic of a design with the engineering needs.

In 2011 the task for the students was to design a pavilion which covers an area
of approximately 100/m?. The objective was to design a structure which is flexible
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and mobile, as it should be assembled in various places for different occasions. The
individual teams developed different designs and in the end one was chosen to be
realized in real scale. In the beginning the teams started to realize design studies on
the basis of tulle models to get an idea of their final design. Based on these models
the teams were starting to apply the introduced numerical methods to simulate their
chosen design. In this case the standard design loop, as introduced in section 6.1,
has been applied for the numerical modeling of the design process.

Figure 7.1: Tulle model for the student project

In figure 7.1 the tulle model of the design chosen for the realization is shown. It
consists of a 6-point tent in the middle to which two 4-point tents are attached. The
main idea for connecting the three tents is to join them at the adjacent high points.
The detailed report on this design can be found in [Grel1].

It can be seen that at this stage of the design a first idea of the final shape of the
structure is given by the tulle model. The actual shape will be determined in the
form fining process. The process of getting ideas from tulle models and computing
the related shape of equilibrium has to be repeated several times until a satistying
result from an architectural point of view can be achieved. In figure 7.2 the render-
ing of the final shape of equilibrium is illustrated.

The individual steps for the standard design approach are introduced as Form finding-
Structural Analysis-Cutting Pattern Generation. For the presented design, the struc-
tural analysis was evaluated for the steady state case for a certain snow and wind
load applied to the structure.
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Figure 7.2: Rendering of the form found tensile structure

The final design of the tensile structure was supposed to be realized. This has been
possible based on the support of CARPRO in Belgium, which is a company realiz-
ing tensile structures all over the world. They provided their knowledge, time and
facilities to enable the students to manufacture their design of the structure.

The most important input from the students in this process was to provide appro-
priate cutting patterns for the tents. For this purpose, the methods discussed in
chapter 5 were applied. The resulting patterns for the 6-point tent are illustrated in
figure 7.3. Here, the numerically evaluated patterns and those that were manufac-
tured can be seen. The real scale of the overall tent becomes obvious by comparing
the illustrated cutting patterns with the team of students beside.

The cutting patterns for the 6-point tent have been industrially manufactured to en-
sure a high accuracy for the resulting structure. In case of the 4-point tent it was
possible to produce the patterns for one tent industrially and one manually. The
resulting difference in the quality in the patterns was remarkable. The designed pat-
terns and the manufactured ones for the 4-point tent are illustrated in figure 7.4.

Based on the manufactured cutting patterns, the individual strips were welded to-
gether. For this purpose, a high frequency welding machine was used. Here, the
coating and the fibers of the adjacent strips will be heated and under the acting pres-
sure they will be connected while the welding area is cooling down. This process
has to be done along the overall seams as illustrated in figure 7.5.

The welded cutting patterns will form the final shape of the structure when it will
be assembled into the boundary conditions defined by the high and low points as
well as by the edge cables. For the assembly of the membrane, the edge cables will
be attached to the surface in pockets along the edges. The inlying cable is going to
form a loop at the end. This loop enables the connection of the structure at the high
and low points to the supporting structure. In figure 7.6 the realization of the end
points of the edge cables is illustrated.

The manufactured tensile structures can be erected with a minimum of effort. The
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Cutting Pattern Layout:

Cutting Pattern:

Figure 7.3: Cutting pattern for the 6-point sail

assembled 6-point tent is illustrated in figure 7.7. It can be seen that the result-
ing structure and the rendering are in accordance from a visual point of view. The
experience from the erection process shows, that the most important aspect for the
realization is the exactly positioned and appropriately designed high and low points.
For assembly of the tensile structure to its final position, the high points will be put
in place first. For the final positioning of the tensile structure the low points have to
be pulled into their final location, which introduces the prestress in the cables. By
prestressing the cables, the stresses in the surface will be introduced as well. In the
case of a highly accurate manufacturing, the resulting structure and stresses should
be identical to the indented ones. Of course, based on variations in the quality of
the simulation or manufacturing the resulting structure will vary from the designed
one. In the case of the student project, the exact measuring of the resulting surface
and stresses has not been done.
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Cutting Pattern Layout:

Cutting Pattern:

Figure 7.4: Cutting pattern for the 4-point sail

Figure 7.5: Welding process
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Figure 7.6: Assembling of the edge cables

Figure 7.7: Final 6-point tent of the student project
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7.2 Wide-span Umbrella Structure

The wide-span umbrella structure described below is part of an on-going research
project as a cooperation of the SL-Rasch GmbH and the Chair of Structural Anal-
ysis at the Technische Universitdt Miinchen. The actual design of the umbrella
structures is done by the architectural office SL-Rasch and the manufacturing is
done by Liebherr. The motivation for this project is to shadow the places of prayer
at holy cities in the Islamic culture. Because of the considerable temperatures and
solar radiation during the time of pilgrimage, Saudi Arabia has started to shadow
this piazzas with wide-span umbrella structures as illustrated in figure 7.8. In order

Figure 7.8: Umbrellas in Medina, Saudi Arabia (copyright SL-Rasch GmbH)

to cover the overall area of the piazzas, the edge length of the individual umbrellas
increased to 29m and in the latest version up to 53m. One of the main challenges
for the engineering of the umbrellas was related to the external loads. In Saudi
Arabia the main load condition originates from wind. For the simulation of the
overall structure, the wind loads have to be defined. For such complex structures,
the wind load is not defined in the available design codes. The wind situation for the
umbrellas is influenced by the local wind intensity, the shape of the structure itself
and of course the surrounding building conditions. The surrounding conditions are
complex, since groups of umbrellas are placed in a certain piazza. Due to that, the
evaluation of the wind conditions for one umbrella isn’t straightforward. In order
to define the wind conditions for the umbrellas in the piazza, sophisticated numeri-
cal simulations and wind tunnel experiments of the individual local conditions have
been performed, which are presented in [Mic10] and [Mic+11]. Here, a real scale
prototype of the 29m umbrella was build in Ehingen (Germany) as illustrated in
figure 7.9. For this prototype the wind intensity and the deformations was moni-
tored so that the structural behavior of the umbrella for specific wind situations can
be investigated. In order to compare the in-situ measurements with the wind tunnel
experiments, it was attempted to model the same conditions in the wind tunnel as
illustrated in figure 7.10. In addition to the complexity of the evaluation of the wind
loads, the structure itself also introduces a major challenge based on the external
wind loads. Due to the lightness of the overall structure, the deformations at the
edges of the umbrella can’t be assumed to be small, which introduces an interaction
between the wind loads and the structure. In order to study this Wind-Structure-
Interaction, an on-going research project was initiated by SL-Rasch and the Chair
of Structural Analysis. For the detailed study of the behavior of the umbrella in
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Figure 7.9: Umbrella-prototype in Ehingen, Germany [Mic10]

wind, different disciplines are involved in numerical simulations in transient and
steady state, Fluid-Structure-Interaction simulations (FSI), wind tunnel tests and
in-situ real scale experiments.

In [Mic10] and [Mic+11], as the fist work in this cooperation, it was attempted
to achieve the results from the in-situ experiments and from the wind tunnel by a
numerical FSI simulation. Based on a three dimensional turbulent wind flow simu-
lation, the interaction with the structural model is evaluated in a FSI simulation.
Here, satisfying accordance of the results from the in-situ and the wind tunnel ex-
periments with the numerical simulation have been achieved.

In order to validate the commercial software used for the simulation of the structural
behavior, in [Degl2] a comparison with the methods presented and implemented in
this thesis has been made. Therefore, the simulation was re-run with an independent
numerical model as illustrated in figure 7.11. For the comparison of the different
simulations for the umbrella, the load situations evaluated from the wind tunnel
experiments have been applied. Here, the surface of the umbrella is divided into
individual wind pressure areas as illustrated in figure 7.10. For these areas the wind
load is defined for the overall measuring time. It is obvious, that the wind loads are
not invariant in time, which introduces that a transient structural analysis has to be
performed as described in section 4.1.

For the simulation of the umbrella structure, various modeling decisions are nec-
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Figure 7.10: Wind tunnel test of the Umbrella; top: Model for the experiment;
bottom: Position of the measurement points and the resulting pressure areas
[Degl12]
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Figure 7.11: Numerical model of the Umbrella with its FE-mesh

essary. Since the commercial code does not provide the possibility to include the
cutting patterns in the process of structural analysis, the standard design approach
has been applied. Furthermore, the umbrella structure consists of membrane, cable
and beam elements. With the integration of the elastic elements in all design steps of
the numerical simulation at the interface between form finding and structural analy-
sis the decision regarding the transition of the shape of equilibrium has to be taken.
In section 6.3 the possibilities of prescribing the deformations or the stresses in the
elastic elements have been discussed. In order to simplify the modeling effort, the
stresses have been prescribed for this simulation.

For the comparison of the different simulations, the resulting bending moment at the
mast foot for the commercial and presented approaches was chosen. In figure 7.12
the results for a certain period of time are illustrated. It can be seen that in principal
the results have the same characteristics. Of course, there are still small variations
for individual time steps, but this has no major influence on the overall design.

The presented research project is part of the efforts which are made for the de-
velopment of a virtual wind tunnel. Therefore, validated numerical methods for
the computational fluid dynamics and the structural analysis have to be available.
In order to achieve a validated simulation framework for the coupled analysis of
lightweight tensile structures in realistic wind conditions, further research is pre-
sented in [Fis+12], [Hoj+11], [Sar+12], [Sic+11], [WKBO7], etc.
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7.3 Cushions

In the following, the extract of the results from a research project funded by the
German Research Foundation will be presented. The project is designed to be pro-
cessed together with a partner from industry (here: Seele Cover GmbH, Obing,
Germany) to ensure the transfer of the research results into practice. The objective
of this research project was the simulation and experimental validation of cushions.
Here, the contribution of the industry partner is their knowledge of the manufactur-
ing process of the cushions as well as providing the overall experimental set-up.

In section 4.4, the special characteristic of the simulation of enclosed cushions was
already discussed. In general, cushions are applied for roofs or facades as illus-
trated in figure 4.5. It is common practice to neglect the effects from the enclosed
volume for the overall structural behavior in the simulation process. Additionally,
most cushions have dimensions which can be realized without the division of the
surface into individual strips. Therefore, the application of appropriate cutting pat-
terns is mostly neglected. If it is necessary to assemble the surface of the cushion
from individual cutting patterns, this is often done by simplified approaches (e.g.
the projected area is used as the cutting pattern).

In this research project the exactness of the presented simulation methods should
be validated with experimental data. For this purpose a set of different cushions
has been investigated. In order to execute the experiments, an appropriate set-up
has to be developed. The main decision was to define the results which should be
compared. Of course, the overall deformation of the cushion is an important quan-
tity which has to be measured. Additionally, the pressure inside the cushion is of
interest, as this quantity is constantly evaluated in the simulation process.

The principal experimental set-up is illustrated in figure 7.13. For the experiment,
a rectangular cushion was chosen since similar shapes are most commonly built
in practical applications. The dimensions of the cushions were chosen according to
the available experimental facility as 70/105[cm], based on different cutting pattern
layouts. The cushions consist of a single chamber, which means there is an upper
and lower membrane layer which encloses the air. In the initial step, the chamber of
the cushion is inflated up to a defined pressure p;. For the modeling of an external
load, the chamber is assembled in an airtight wooden box, which will be pressur-
ized. The pressure in the box p. will simulate the situation in which the cushion is
subjected to a constant wind load. The pressure in the cushion and the airtight box
can be measured by a U-tube manometer. Both pressures have been introduced by
a Compressor.

During the experiments different load levels were measured. The main goal was
to simulate realistic wind scenarios. The available design codes for wind loads de-
fine a maximum wind load for roofs and facades of approximately 2.0[kN/m?).
Due to that, for the experiment the maximum applied pressure was defined to be
twice as large. The process of pressuring the cushion and the box was realized in
6 steps and in each step a deformation measurement was made. The first two steps
were done to pressurize the cushion and in the next four steps the pressure in the
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Section A-A: Inflated situation  Section A-A: Loaded situation
Deformed

Upper layer

Lower layer Undeformed

A

[

—

Cushion ———

Airtight box —_

Measurment of the
Lpressure in the cushion
and in the airtight box

compressor

U-tube manometer

Figure 7.13: Experiment set up for the cushions; top: Different situations for the
cushions; bottom: Experimental set-up
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airtight box was increased. The measured pressures in the cushion and the box is
listed in table 7.1.

Table 7.1: Measured Pressures in Cushion 1-SO-4

Load Case | Chamber [kN/m?] | Airtight Box [kN/m?]
-1 0.00 0.00
0 0.34 0.00
1 1.00 0.00
2 1.42 1.00
3 2.04 1.96
4 2.92 2.98
5 3.90 4.00
6 3.98 4.06

For the comparison of the experiments and the simulations, detailed deformation
measurements had to be made. These have been done by Konrad Eder, Carsten
Gotz, Sebastian Tuttas and Berit Cantzler from the Institute of Photogrammetry and
Cartography at the Technische Universitidt Miinchen. In [Can13] the overall process
is discussed. In order to measure the deformation of the upper and lower layer of
the cushion, two cameras at each side are needed as illustrated in figure 7.14.

Additionally, appropriate measuring points have to be assembled on the cushion.
For the manufacturing of the cushions it is important that an airtight material is
used. For this purpose ETFE-foils are used in most applications. In this research
project, this type of material was used as well to align the experiment to the practical
applications. The disadvantage of ETFE is that the measured points can’t be applied
by standard paint. The first challenge in this project was to find an appropriate paint
which keeps its shape during the deformation process. A detailed discussion on that
can be found in [Can13].

The result from the measuring of the deformation process are point clouds for each
individual pressure step of the lower and upper layer of the cushion. With base
points on the airtight box it was possible to combine the measurements from the
lower and upper cameras to one point cloud as illustrated in figure 7.14. Based on
these point clouds it was possible to compare the results from the experiment to the
simulation.

For the discussion of the exactness of the presented simulation methods and the
influence of the cutting patterns to the final results, different cushions were defined
for the experiments. In figure 7.15 the different cutting pattern layouts are illus-
trated. The first experiment was defined to be aligned with common practice, where
the cutting pattern is defined to be a flat rectangle shape with the actual dimensions
of the supporting framework (1-FG-1). For the other cushions, the cutting patterns
have been introduced. The patterns for the individual specimen have been deter-
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Point cloud of

/ the upper and
lower layer

Figure 7.14: Photogrammetric deformation measurement
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Name | Patterning type Cutting pattern layout

1-FG-1| Flat geometry
1 strip

1-SO-1 Stre§s optimized
1 strip

1-SO-2 Stres.s optimized (:) (:)
2 strips
Stress optimized

1-SO-4| 4 strips

Figure 7.15: Experiment types of cutting patterns

mined by the Variation of Reference Strategy as introduced in section 5.2.3. The
stress optimized cutting patterns consist of 1 (1-SO-1) to 4 strips (1-SO-4). For
these cutting patterns, equal seam lengths are ensured by the methods described in
section 5.2.6, if applicable.

In the following, results for the cushion based on the 4-strip layout will be pre-
sented. A detailed discussion of the overall simulation process and the comparison
with the experimental data can be found in [Kos14]. For the simulation of the
cushions, the extended design approach is applied as the cutting patterns should be
included in the structural analysis. In figure 7.16 and figure 7.17 the deformations
for the cushion at a section in the middle of the length of the cushion are illustrated.

Here, the deformations from the simulations and from the experiments are shown.
In figure 7.16 the results for the case that just the cushion is pressurized is shown. In
figure 7.17 the deformation is shown were the pressure in the cushion is equal to the
half of the final load situation. In both figures it can be seen that the deformations in
the simulation are too small in comparison to the one evaluated in the experiments.
Based on various investigations it turned out that the manufactured cushions have
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Figure 7.16: Deformation comparison for pressure in the cushion and without
external load
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Figure 7.17: Deformation comparison for pressure in the cushion and with ex-
ternal load
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had an imperfection w.r.t. to the defined cutting patterns as illustrated in figure 7.18.
Based on the evaluated cutting patterns, the initial surface should be straighter in the

(\Imperfection
T

Designed geometry

S

Manufactured geometry

Figure 7.18: Imperfections of the cushion geometry

supporting frames. In order to introduce these imperfections in the simulation pro-
cess, the geometry of the cutting patterns as starting point of the simulation has
been modified accordingly. Of course, this introduces the disadvantage that it is
impossible to discuss the effects of the cutting patterns on the final result as the im-
perfections overlap this influence. In figure 7.19 and figure 7.20, the results with the
modified cutting patterns are illustrated. It can be seen that the deformations after
inflation of the cushion are equal for the simulation and the experiment. For the
situation where the external load is applied, the deformations for the lower layer are
equal as well. In the upper layer there are still small variations in the results. The
discussion of whether this variation originates from the governing equations or from
the introduced imperfections can’t be solved as the individual effects overlap each
other. At first glance it seems that the derived simulation methods are able to predict
the overall structural behavior as the lower layer can be evaluated exactly. In order
to finally discuss the exactness of the developed simulation methods, further ex-
periments would be necessary where the manufactured and simulated cushions are
compared in order to ensure the accordance between the two reference situations.
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Figure 7.19: Deformation comparison for pressure in the imperfect cushion and
without external load
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Figure 7.20: Deformation comparison for pressure in the imperfect cushion and
with external load
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Conclusion

In this chapter, the application of the presented numerical methods for the design
and analysis of tensile structures was shown for different projects. It can be seen
that the individual methods and the defined design approaches are suitable to simu-
late state of the art tensile structures. The student project illustrates the application
for classical tensiles, whereas the simulation of the wide-span umbrella shows the
possibilities for complex hybrid structures. In this example, the comparison to a
commercial software proves the applicability to modern structural systems. The
example of comparing experimental data with simulation results for cushions illus-
trates that the numerical modeling and final manufacturing interacts strongly for the
final results.

Based on the discussed examples it can be seen, that the presented methods de-
fine an appropriate framework for the simulation of tensile structures. Additionally,
the necessity of highly accurate manufacturing processes in order to take advantage
of the possibilities offered by the advanced simulation methods have been depicted.
Only if all steps from the first idea to the completed structure are at the same level
of quality the most efficient structures can be built.
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CHAPTER 8

Concluding Remarks

The design and analysis process for tensile structures differs fundamentally from
conventional structures as the overall shape and the structural capacity are strongly
coupled. The lightness and the characteristic that external loads are only restrained
by in-plane stresses introduces the requirement of adapted simulation and modeling
techniques. For a successful design of a tensile structure, the influences of the spe-
cial demands in the simulation process have to be considered.

Due to the special connection between acting forces and overall form of the ten-
sile structure, the design step of Form Finding has to be introduced at the beginning
of the overall design process. Here, the shape of equilibrium w.r.t. to a given pre-
stress and certain boundary conditions will be evaluated. The resulting shape of this
design step represents the input for all following analyses.

Based on the results from form finding, different analyses have to be made to
achieve a feasible design. Certainly, a Structural Analysis has to be made in order to
ensure that the tensile structure is able to restrain the external loads. Comparing this
analysis for a conventional and a tensile structure, the least differences of all will
be recognized. The difference, most likely, is that tensile structures are subjected to
large deformations in general, especially in the assembly process. In contrast, for
conventional structures this is rarely the case for applications in civil engineering.

Besides this more mechanical based discussion, the manufacturing process of the
tensile structure also introduces a considerable influence to the overall design pro-
cess. In general, Cutting Pattern Generation describes the process of evaluating the
individual plane strips for the manufacturing of the tensile structure. Additionally,
this design step is concerned with the task of minimizing the effects from the doubly
curved shapes regarding the final stress distribution.

The design steps of form finding and cutting pattern generation introduce the main

difference to the design and analysis process of conventional structures. Addition-
ally, the interaction between them has to be considered in the simulations. There-
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8 Concluding Remarks

fore, a substantial level of experience regarding the structural behavior of tensile
structures is required for a feasible design.

In the present thesis, the individual design steps of form finding, structural anal-
ysis and cutting pattern generation have been discussed in detail. The derivation of
the individual governing equations is done on the basis of continuum mechanics.
This way of formulating the actual underlying mechanical problem allows the ap-
plication of efficient numerical solution methods. Here, the concept of the Finite
Element Method is introduced to the solution process.

In the case of the form finding, the inverse nature of the problem has been dis-
cussed. The stabilization of the governing equations based on the Updated Refer-
ence Strategy has been described. Based on the discussion of the general existence
of a solution w.r.t. different prestress situations, respective numerical solution ap-
proaches are included in the discussion as well. In case of an isotropic prestress
in the surface, a unique solution for the form finding can be achieved. From a
mathematical point of view, all of the existent methods converge iteratively to an
approximated solution. In this thesis the eXtended Updated Reference Strategy is
introduced which is able to describe the exact solution in a nonlinear equation. Due
to that, it is possible to evaluate the analytical shapes for the tensile structure with-
out introducing an iterative form finding process. In addition to the pure discussion
of the form finding problem, the introduction of elastic elements in this design step
has been discussed. It can be seen that for the correct description of the resulting
hybrid structure w.r.t. continuum mechanics, adapted interpretations of the individ-
ual reference configurations have to be considered.

For the design step of structural analysis, a detailed review of the transient and
steady state case has been discussed from a continuum mechanical point of view.
The special focus in this discussion is on the large deformations of tensile struc-
tures in cases of external load. This characteristic introduces special needs in the
mechanical description of the external loads as well. If the load depends on the
deformation of the structure, the respective influence has to be considered in the
governing equations. The application of cushions has been discussed as an example
for these effects.

The cutting pattern generation introduces special requirements to the formulation of
the governing equations as it is influenced by mechanical and manufacturing argu-
ments. In this thesis, different methods have been discussed which address the me-
chanical problem of minimizing the stress difference between the intended prestress
and the resulting stress distribution from the assembly process. With the introduc-
tion of the Variation of Reference Strategy a continuum mechanical based method
is described which enables the inclusion of the manufacturing requirements. Here,
the need of equal seam lengths of adjacent cutting patterns has been introduced as a
constraint motivated from practice. The mathematical inclusion has been realized in
the formulation of an equality constraint in the optimization problem. Additionally,
the influence of the seams w.r.t. the stress distribution in the overall membrane has
been discussed.
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Based on the discussion of the individual design steps, the interaction between them
has been discussed in detail. With the definition of a standard and an extended de-
sign approach, the difference in the results from the simulation of the tensile struc-
tures becomes obvious. The structural behavior strongly depends on the choice
of design approach and can be interpreted as a fundamental design decision. The
extended design approach offers the possibility to analyze the structure in a more
realistic way and so more efficient structures can be achieved. Of course, the ac-
curacy of the manufacturing has to be as precise as the simulation to ensure that
the evaluated and real stress distribution are as equal as possible. In this case it is
possible to reduce the considered safety factors between the ultimate and the actual
stress state to achieve more efficient designs.

Based on the numerical design and analysis methods introduced in this thesis, the
overall simulation process has been adapted to the requirements formulated by the
realization of a state of the art tensile structure. Of course, the present thesis does
not give an answer to all of the open questions in the numerical simulation of such
structures.

Certainly, the cutting pattern generation of elastic elements can be addressed as one
of the major tasks which have to be added in order to enhance the presented design
approaches. Here, the main issue is the introduction of the kinematic description of
the elastic elements in the governing equations of the Variation of Reference Strat-
egy. Furthermore, an appropriate material law which covers all design steps has to
be developed. This would lead to an improvement in the accuracy of the simulation
results. It must be investigated how the material behaves during the short term as-
sembling process and the long term period of usage, especially for the extended
design loop.

For conventional structures made of wood, steel or concrete a wide range of ex-
perimental data is available. Due to that, it is possible to compare the developed
simulation techniques w.r.t. the realistic results. In the case of tensile structures,
such experimental data is not available so far. In order to improve the reliability
of the simulation results, the validation of the available numerical methods w.r.t.
experimental results should be intended. This would also introduce the possibility
to discuss the applied modeling techniques introduced for the simulation of tensile
structures. Here, the question regarding the level of detail in the modeling could
be discussed (e.g. wrinkling models, effects from bending stiffness, etc.). The dif-
ferent investigations should lead to the definition of requirements for the numerical
simulation of tensile structures which could be defined in a design code.

In can be concluded that for an efficient and effective design and analysis process of
tensile structures, numerical simulation methods are essential. In the present thesis
a contribution to the improvement of existing methods is made. Particularly, the
entanglement of the numerical simulation approaches and the requirements from
the manufacturing process has been addressed in this thesis. Through the contin-
uum mechanical description of the governing equations and the detailed discussion
of the solution process, the introduced methods can be applied by those who are
involved in the numerical modeling of tensile structures.
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