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Abstract

Computed tomography on the basis of grating-based phase-contrast imaging
has the potential to significantly expand clinical diagnostic capabilities. This
novel imaging method not only offers the conventional absorption signal, but
also delivers information on the refraction and the scattering of X-rays. The
additional contrast mechanisms provide increased soft-tissue contrast that is
hardly accessible with conventional CT and new complementary information.
Applications include, for example, early tumor detection, mammography or
lung imaging. Correlated with this increased contrast is, however, an increase
in radiation dose due to the grating structures, which are necessarily placed
in the beam path for the measurement and which absorb about half of the
incident X-rays.
Currently a lot of work in conventional CT research is put into reducing radi-
ation exposure, so dose reduction has become an even more important topic
in grating-based imaging. It can be achieved by either lowering the exposure
time of individual acquisitions or by reducing the overall number of recorded
angular views. However, both of these efforts decrease the applicability of the
current state-of-the-art reconstruction technique, the filtered back projection,
as they violate the requirements needed for an analytical solution to the re-
construction problem.
We address these problems with the development of a statistical reconstruction
algorithm for differential, grating-based phase-contrast CT, which incorporates
the statistical information contained in the scattering signal in order to achieve
an increase in overall image quality of the phase reconstruction. Consequently,
we demonstrate the algorithm’s capability to reduce noise and artifacts caused
by incomplete input data on exemplary data sets obtained by simulations and
experiments. This generally applicable algorithm constitutes the first of the
two main results of this thesis.
In a more sophisticated application we use the algorithm to reduce artifacts
specific to differential phase contrast, which appear, when phase wrapping
occurs at the boundary between structures with low and high density, e.g.
between soft tissue and bones. These—appropriately termed—bone artifacts
have a severe impact on the diagnostic usability of reconstructions. We show
that, by also adding the information from the absorption signal to the statis-
tical algorithm, the information obstructed by the artifacts can be recovered
to a high degree.

As a result of the present thesis, statistical reconstruction for differential phase-
contrast CT is considered a valuable technique for improving the quality of
reconstructed images and thus expanding the current types of applications for
grating-based imaging with the ultimate goal of translating the technique into
a routinely used clinical tool.





Zusammenfassung

Computertomografie auf Basis der gitterbasierten Phasenkontrastbildgebung
kann potentiell dazu verwendet werden, die Möglichkeiten der klinischen Di-
agnostik signifikant zu erweitern. Diese neuartige Bildgebungsmethode liefert
nicht nur das konventionelle Absorptionssignal, sondern ist auch in der Lage,
die Brechung und auch die Streuung von Röntgenstrahlen sichtbar zu machen.
Dieser zusätzliche Kontrastmechanismus führt zu einem erheblich höheren
Bildkontrast in Weichgewebe, der in konventioneller Computertomografie nur
schwerlich zu erreichen ist und zu neuer komplementärer Information. Mögliche
Anwendungen beinhalten zum Beispiel Früherkennung von Tumoren, Mammo-
grafie und Lungenbildgebung. Mit diesem höheren Kontrast ist allerdings auch
eine erhöhte Strahlenbelastung für das untersuchte Objekt verbunden, die mit
den Gitterstrukturen zusammenhängt. Diese müssen notwendigerweise für
eine Messung im Strahlengang platziert werden und absorbieren ungefähr die
Hälfte der einfallenden Strahlung.
Aktuell wird in der konventionellen Computertomografie viel Arbeit investiert,
um die Strahlenbelastung von Patienten zu minimieren, und so kommt diesem
Thema in der gitterbasierten Bildgebung eine noch größere Bedeutung zu.
Diese Minimierung kann einerseits über eine Verringerung der Belichtungszeit
der einzelnen Aufnahmen erreicht werden, andererseits indem weniger Pro-
jektionen über denselben Winkelbereich aufgenommen werden. Diese beiden
Ansätze führen jedoch dazu, dass der momentane Standardalgorithmus für
die Rekonstruktion, die gefilterte Rückprojektion, nurmehr schlecht angewen-
det werden kann, da sie die Voraussetzungen für eine analytische Lösung des
Rekonstruktionsproblems verletzen.
Wir gehen diese Probleme durch die Entwicklung eines statistischen Rekon-
struktionsalgorithmus für gitterbasierte Phasenkontrasttomografie an, der die
im Streusignal enthaltenen Informationen mit verwendet, um die allgemeine
Bildqualität des Phasensignales zu verbessern. Im Anschluss demonstrieren
wir, wie der Algorithmus helfen kann, Rauschen und Artefakte durch un-
vollständige Daten zu verringern. Dazu bedienen wir uns sowohl simulierter
als auch experimentell gemessener Rohdaten. Dieser allgemein anwendbare
Algorithmus stellt das erste der zwei Hauptergebnisse dieser Arbeit dar.
In einer spezielleren Anwendung verwenden wir den Algorithmus zur Reduk-
tion von Artefakten, die im differentiellen Phasenkontrast besonders an der
Grenze zwischen Strukturen mit niedriger und hoher Dichte entstehen, zum
Beispiel zwischen Weichgewebe und Knochen. Diese Knochenartefakte führen
zu einer eingeschränkten diagnostischen Verwendung der finalen Bilder. Wir
zeigen, dass durch die zusätzliche Einbindung des Absorptionssignals in den
Algorithmus die durch die Artefakte überlagerte Bildinformation zu einem
Großteil wieder sichtbar gemacht werden kann.
Im Ergebnis wurde in der vorliegenden Arbeit gezeigt, dass statistische Rekon-
struktion für differentielle Phasenkontrasttomografie eine wertvolle Methode
darstellt, um die Qualität rekonstruierter Bilder entscheidend zu verbessern
und dadurch die Anwendungsbereiche gitterbasierter Bildgebung in Richtung
des klinischen Einsatzes zu erweitern.
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Chapter 1

Introduction

In this chapter we briefly introduce the context, in which this thesis is placed,
and we describe its contribution to current research. In addition we give an
outline of the structure of the thesis.

1.1 Motivation

Since their discovery by Röntgen in 1895 (Röntgen, 1898) the interest in X-
rays has steadily increased because of their ability to penetrate matter. With
the advent of computed tomography (CT) (Hounsfield, 1973) it became even
possible to produce cross-sectional images of the inner structure of objects,
taking X-ray imaging into the third dimension. Conventionally, X-ray CT
makes use of the absorption of X-rays in different materials. X-ray images
are taken from many angles around the investigated object and computer
programs allow the reconstruction of the inner structure. This procedure is
routinely used today for medical diagnosis, non-destructive testing and in
scientific research. In general, good contrast is achieved between materials
with a high density difference, for example between bones and soft tissue.

Contrast between different types of soft tissue, however, is limited due to
similar attenuation properties. This soft-tissue contrast can be made visible
by phase-sensitive imaging methods, that rely on measuring the refraction
of X-rays instead of their absorption as they pass through matter. Sev-
eral different techniques have been developed over the last decades, such
as propagation-based methods (Snigirev et al., 1995), analyzer-based meth-
ods (Davis et al., 1995; Ingal and Beliaevskaya, 1995) and methods based on
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interferometric effects (Momose, 2003; Weitkamp et al., 2005; Pfeiffer et al.,
2006). The technique used in this thesis belongs to this last category and
is called grating-based imaging (GBI). It uses gratings to translate phase
changes into intensity variations that can be measured with conventional X-
ray detectors. With this technique we can measure the refraction of an ob-
ject, i.e. the phase gradient perpendicular to the gratings, giving the method
its other common name: differential phase-contrast imaging. GBI has
been shown to yield soft-tissue contrast that is significantly higher than in
absorption imaging (Hahn et al., 2012; Sztrókay et al., 2013; Tapfer et al.,
2013; Schleede et al., 2013) and to deliver additional and complementary
information (Herzen et al., 2009; Tapfer et al., 2012; Willner et al., 2013).

Tomographic reconstruction from both attenuation and differential phase-
contrast images is typically accomplished using the filtered backprojection
(FBP) algorithm, adapted with an appropriate filter in the latter case (Pfeif-
fer et al., 2007b). The FBP is an analytical solution of the continuous recon-
struction problem and several simplifying assumptions are made in its deriva-
tion, such as acquisitions being noiseless and continuously sampled. Thus, in
reality, the FBP is sensitive to noise and especially ill-behaved when applied
to irregularly sampled or incomplete data sets (Kak and Slaney, 1988; Hsieh,
2009). It is, however, well established that iterative algorithms—especially if
statistical information is taken into account—can outperform the FBP to re-
construct both from projections with low statistics and few-view tomographic
scans (Fessler, 2000; Kohler et al., 2011; Xu et al., 2012; Beister et al., 2012).

The aim of this thesis is the improvement of the image quality in phase-
contrast computed tomography (PCCT) reconstructions for scenarios pre-
venting the use of the FBP. We develop a statistical iterative recon-
struction (SIR) algorithm for PCCT and for the inclusion of the statistical
properties of the input data an alternative method for processing the mea-
surements is presented. A demonstration of the performance of the algorithm
is given with studies done on simulated and experimental PCCT data, incor-
porating typical cases of corrupted measurements.

The main motivation for the development of this algorithm—apart from gen-
eral improvements of image quality—is the reduction of artifacts specific to
grating-based PCCT. In appearance they are similar to metal artifacts known
from conventional CT (see DeMan (2001) for an extensive analysis of these
artifacts) and they share a similar cause, namely photon starvation due to a
high degree of absorption and scattering. An additional cause in PCCT is re-
lated to the measurement of the gradient of the phase shifts, which is defined
on the unit circle and thus intrinsically ambiguous. Projections of very large
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gradients exhibit phase wrapping, leading to statistically unreliable val-
ues. As phase wrapping is prominently visible at boundaries between bones
and soft tissue, the artifacts are given the name bone artifacts. We will
demonstrate how SIR can be used to mitigate the effects of these artifacts.

1.2 Outline

This thesis is structured in the following way. Chapter 2 will introduce the
theoretical key concepts. It covers basic interactions of X-rays with matter
and explains the principles of grating-based phase-contrast imaging. After
that follows an introduction to tomographic reconstruction from an analyti-
cal standpoint as well as a brief overview of advanced numerical techniques.
Chapter 3 is the first of three results chapters and focuses on improve-
ments in the domain of individual projections. These improvements include
a technique to compare differential and non-differential signals, an improved
signal extraction from the raw data and a study involving the effects of the
measurement setup’s point spread function on the differential phase-contrast
signal. Chapter 4 then represents the main part of this thesis and gives
the derivation and evaluation of a statistical iterative reconstruction algo-
rithm for grating-based phase-contrast CT. Chapter 5 demonstrates the
reconstruction algorithm on current typical imaging problems that arise in
the process of developing grating-based phase-contrast CT in the direction
of human clinical applications. First, the algorithm is used to reduce arti-
facts that arise specifically in the differential phase signal and are caused by
bones and other dense materials. The second part deals with the imaging of
large objects and demonstrates how advanced reconstruction algorithms can
help to improve image quality. The thesis concludes with Chapter 6, which
summarizes the scientific results and gives an outlook to further research.
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Chapter 2

Theory

In this chapter we will give a summary of the theoretical key concepts needed
for a basic understanding of the contents of the next chapters. First, we
will briefly discuss the different ways, in which X-rays can interact with
matter. After that we dedicate a section to describing grating-based phase-
contrast imaging, the experimental technique used throughout the thesis. This
section is followed by an introduction to the state-of-the-art reconstruction
algorithm—the filtered back projection, which will serve as the reference re-
construction method for comparison with our new algorithm. The chapter
ends with an overview of established methods for reducing metal artifacts in
conventional CT.

2.1 X-ray interaction with matter

X-rays can interact with matter in different ways. These interactions include
photoelectric absorption, elastic scattering, inelastic scattering and pair pro-
duction. The last one does not play a role for the X-ray energies in the
context of the thesis and a discussion is therefore omitted. Photoelectric
absorption happens, when an X-ray photon is absorbed by an atom, trans-
ferring its energy to an electron and expelling it from the atom. The energy
range of X-rays causes the interactions to occur mostly with the inner shell
electrons of the atom. The photoelectric effect is the main mechanism behind
the attenuation of X-rays for the energies that are in the scope of this thesis.
Another source of attenuation is inelastic scattering or Compton scattering,
where a photon loses part of its energy when scattered by an electron.
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Figure 2.1: Phase shift, attenuation and refraction of a wave traveling through a medium
with complex refractive index n. In a medium with a real part of n smaller than 1 the wave
travels faster than in vacuum, leading to a phase shift of ∆φ as indicated by the blue lines. The
amplitude of the wave is decreased by ∆A due to the imaginary part of n. This is indicated
by the orange lines. The phase difference of both waves causes a refraction by an angle α as
illustrated by the red lines.

While photoelectric absorption and Compton scattering require a treatment
in the particle picture, elastic scattering or Thomson scattering can be ex-
plained classically in the wave picture. When an X-ray wave interacts with
one of the electrons of an atom, the electric field of the wave causes the elec-
tron to oscillate and in turn emit radiation of the same wavelength as the
incoming wave. For typical X-ray energies the emitted wave is phase shifted
by π in relation to the incident wave. In macroscopic terms the superposi-
tion of many of these scattering events causes the phase velocity of the wave
traveling through the medium to be increased compared to a wave travel-
ing through vacuum (Als-Nielsen and McMorrow, 2011). This difference in
phase velocity in turn leads to the wave that passes the medium to be phase
shifted by ∆φ relative to the other wave and consequently to refraction. This
is illustrated in figure 2.1 by the dashed blue lines. The refraction angle is
indicated by α and the dashed red lines.

For a quantitative and combined description of refraction and attenuation
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effects we can use the phenomenological notion of a complex index of re-
fraction, which is well known from imaging with visible light. It is defined
as

n = 1− δ + iβ, (2.1)

where the real part describes scattering and refraction effects and the imag-
inary part describes attenuation effects. The two parameters δ and β are
called refractive index decrement and absorption index, respectively (Will-
mott, 2011). The main difference between visible light and X-rays is, how-
ever, that for X-rays the real part of n—i.e. (1 − δ)—is smaller than unity,
corresponding to the increased phase velocity of a wave while penetrating
matter.

That the real and imaginary part describe phase shift and absorption, re-
spectively, can easily be verified by calculating the propagation of a plane
wave with wave vector k through a medium with refractive index n

Ψ(r) = Ψ0 · eink·r = Ψ0 · ei(1−δ)k·r · e−βk·r, (2.2)

where the first exponential on the right hand side obviously represents a
simple phase factor and the second exponential represents a decay of the
wave’s amplitude. The phase shift ∆φ (and refraction α) and attenuation
∆A of a plane wave traveling through a medium are visualized in figure 2.1.

From equation (2.2) we can derive expressions for the absorption, the phase
shift and the refraction angle as functions of β and δ, respectively.

Let I0 = |Ψ0|2 be the intensity of the incident wave and Ψ = Ψ0e−βkL the
amplitude of the attenuated wave after traveling a distance L inside the
medium. Then

I = |Ψ|2 = |Ψ0e−βkL|2 = |Ψ0|2|e−βkL|2 = I0e−2βkL (2.3)

represents the intensity of the wave after attenuation. The relative transmis-
sion, i.e. the fraction of the wave’s intensity that is left after attenuation, is
then given accordingly as

T =
I

I0

= e−2βkL (2.4)

and with the linear absorption coefficient µ = 2βk we get the well known
Beer-Lambert law

I = I0e−µL. (2.5)
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This relation holds for homogeneous media. For inhomogeneous media we
have to take into account the spatial distribution of the linear absorption
coefficient and can rewrite the previous equation as

I = I0e−
∫
µ(x,y,z) dy. (2.6)

For the refraction we can find a similar expression. A slight reformulation of
the phase-shift term of equation (2.2) gives

ΨP = Ψ0eik·re−iδk·r. (2.7)

With the knowledge that a plane wave propagating through vacuum is given
by

Ψv = Ψ0eik·r (2.8)

we can immediately see that the total phase shift is given by

∆φ = δk · r (2.9)

Again, this relation only holds for a single material. For inhomogeneous
media we get

∆φ =

∫
δ(x, y, z)ky dy. (2.10)

From figure 2.1 we can see that the phase difference between the two waves
causes a change of the wave front’s wave vector by the refraction angle α,
which we can calculate by

tan(α(x, y, z)) ≈ α(x, y, z) =
λ

2π

∂Φ

∂x
(2.11)

or by inserting equation (2.10)

α(x, z) =
∂

∂x

∫
δ(x, y, z) dy. (2.12)

A more in depth treatment of phase-shifting effects of X-rays can be found
in Paganin (2006).

The last equation shows that refraction only occurs, when there is a gradient
of the phase along the wave front. While it is impossible to directly measure
the phase shifts with current detector technology, measuring the refraction
angles is possible, albeit very difficult due to their small scale. To get a good
estimate of the magnitude of the angles, we can use Snell’s law

sinαi
sinαr

≈ αi
αr

=
nr
ni
, (2.13)
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where the subscripts i and r denote incoming and refracted wave, respec-
tively. Correspondingly, ni represents the refractive index of the medium
before refraction occurs, nr of the medium, into which the wave is refracted.
Now let us assume that the wave is refracted, while propagating from a purely
phase-shifting medium into vacuum, i.e. nr = 1 and ni = 1− δ. The refrac-
tion angle α—the change of propagation direction of the incoming wave—is
then given by

α = αr − αi (2.14)

= niαi − αi (2.15)

= (1− δ)αi − αi (2.16)

= −δαi (2.17)

For typical experimental X-ray energies on the order of 10 keV up to 100 keV,
δ ranges from about 10−8 to 10−6 (Chantler, 1995). Subsequently, refraction
angles for X-rays will be on the order of micro radians and even smaller and
are not visible in conventional absorption-based X-ray imaging.

One particular method for accurately measuring these small angels is grating
interferometry, which is the imaging technique solely used throughout this
thesis. The basics of grating-based imaging (GBI) are described in the fol-
lowing section. Information on other phase-sensitive imaging methods can
for example be found in Bech (2009), Willmott (2011), Als-Nielsen and Mc-
Morrow (2011) or Schleede (2013).

2.2 Grating-based phase-contrast imaging

In this section we will introduce the concepts and technology behind grating-
based phase-contrast imaging. GBI uses interference effects to create a spatial
reference pattern, relative to which the refraction angles can be determined.
When refraction occurs in an object this reference pattern is distorted locally
proportional to the magnitude of the refraction. Thus, phase changes are
basically translated into changes of intensity, which can be measured with
standard X-ray detectors and analyzed afterwards. In addition to this phase
information, GBI also provides the conventional absorption signal and the
so-called dark field signal, which is caused by ultra small-angle scattering.
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2.2.1 The Talbot effect

Grating-based imaging uses the Talbot effect to create the spatial reference
pattern needed to determine the refraction angles. This effect is named after
Henry Fox Talbot, who discovered that self images of an absorbing periodic
structure are formed at certain distances away from the structure, when
illuminated with coherent light (Talbot, 1836). The first of these distances,
denoted Talbot distance dT, is given by

dT =
2p2

λ
, (2.18)

where p is the periodicity of the structure and λ the wavelength of the incident
radiation. However, the occurrence of the Talbot effect is not restricted to
absorbing structures, but can also be observed for structures that periodically
modulate the phase of the incoming wave. In this case the wave’s intensity
distribution directly behind the structure and at the Talbot distances is flat.
Instead, periodic intensity modulations can observed at fractional Talbot
distances.

Figure 2.2 shows simulations of the intensity distribution created by an ideal
absorption grating (A) and two ideal phase gratings that periodically shift the
phase of the incoming wave by π (B) and π/2 (C), respectively. The intensity
patterns, or Talbot carpets, are calculated by free-space propagation (see
for example Goodman (2004); Paganin (2006); Als-Nielsen and McMorrow
(2011)) of a monochromatic wave with full transverse coherence up to the
full Talbot distance. As expected, in the case of an absorbing grating the self
image is reproduced at the full Talbot distance, while for the phase-shifting
gratings the periodic structure is reproduced at fractional Talbot distances.
The blue and orange lines indicate exemplary fractional Talbot distances,
where the intensity pattern is box-like and periodic. We can see that for
the π-grating the period of the intensity modulation is half as large as the
grating period and for the π/2-grating both periods are exactly the same.
The general formulation for these distances is given by (Weitkamp et al.,
2006)

dT =
1

η2

np2

2λ
∀ odd n, (2.19)

where n is called the order of the fractional Talbot distance and η distin-
guishes between the phase shift of the gratings and also determines the period
of the intensity modulations

η =

{
1 for ∆φ = π/2
2 for ∆φ = π

. (2.20)
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Figure 2.2: Simulations of the intensity patterns that are formed when a plane X-ray wave
propagates through a periodic structure. (A) interference pattern behind a pure absorption
grating; (B) interference pattern behind a pure phase grating with a phase shift of π; (C)
interference pattern behind a pure phase grating with a periodic phase shift of π/2. Indicated
with the blue and orange line are exemplary fractional Talbot distances, where a binary intensity
modulation occurs.

With the above definition of n, figure 2.2 illustrates the 3rd fractional Talbot
order for the π-grating with the blue line and the 1st order for the π/2-grating
with the orange line.

The intensity patterns at the fractional Talbot distances∗ provide the spatial
reference for determining the refraction angles in GBI as we will see in the
following section.

∗The intensity modulations are binary only in the ideal case of full longitudinal and
transverse coherence. In reality, a finite source size and a finite energy bandwidth and
thus a limited coherence will lead to a smearing of the intensity pattern.
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Figure 2.3: Functional principle of a grating interferometer. The figure illustrates the changes
of the interference pattern created by the phase grating according to the Talbot effect, when
the wave front is distorted by an ideal object. Attenuation leads to a drop of the average
intensity of the pattern, phase shifts cause a lateral displacement of the pattern and scattering
reduces the amplitude of the oscillation.

2.2.2 Grating interferometer

The experimental setup of choice for this thesis for measuring the refraction
angles is the grating interferometer, also called Talbot interferometer..

The functional principle of the interferometer is visualized in figure 2.3. We
first describe the way the interferometer works when there is no sample in
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the beam. An X-ray wave propagating from the left passes the phase grating
G1, represented in the figure by the gray grating structure, which creates
a binary intensity modulation downstream according to the Talbot effect
as explained in the previous section. This unmodified intensity pattern is
sketched as the black box function to the right of the phase grating. The
limited transverse coherence of typical X-ray sources require grating periods
on the order of micrometers and, according to the Talbot effect, the period
of the interference pattern is on the same scale. A detector with sufficiently
small pixels can theoretically resolve the pattern directly, but usually X-ray
detectors with a lot larger pixels—commonly on the order of 100 µm—are
used. To get information on the interference pattern, a second grating is in-
serted into the beam, which is accordingly termed analyzer grating and has
a period matched to the period of the interference pattern. It is placed at a
fractional Talbot distance, i.e. at the position where the intensity modulation
is strongest, and consists of grating bars made from highly absorbing mate-
rial, e.g. gold (Kenntner, 2012) to block parts of the intensity pattern. By
moving this grating perpendicular to the beam direction and its grating lines
over the distance of its periodicity and recording images at each position, the
shape of the interference pattern can be sampled. This is commonly called
phase-stepping scan and will result in a periodic intensity curve recorded for
each detector pixel. In the ideal case of a box-shaped interference pattern,
this intensity curve will represent the result of a convolution of the inten-
sity pattern and the shape of the analyzer grating, i.e. the convolution of
two box functions. The resulting intensity curve is then a triangular func-
tion. However, in a real application with limited coherence and finite source
size the interference pattern will be blurred and the resulting curve of the
phase-stepping scan then approximately represents a sine (Bech, 2009).

If a sample is placed in the beam the wave front is locally distorted depending
on its index of refraction. This distortion then changes the shape of the

Figure 2.4: Visualization of phase-stepping curves for a purely attenuating (left), refracting
(middle) and scattering (right) object. The black curve in each plot corresponds to a blank
scan, the colored curves to the signal scans, respectively. The dashed lines indicate the quantity
of interest for the three signals, i.e. mean value, phase and amplitude.
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interference pattern. According to the fundamental interactions of X-rays
with matter, three distinct effects can happen to the interference pattern.
These effects are sketched in figure 2.3 for different idealized objects.

Attenuation: The orange sample locally attenuates the X-ray wave, causing
the mean intensity of the interference pattern to decrease.
Refraction: The blue, purely phase-shifting wedge leads to a local refraction
of the incoming wave, which manifests as a lateral shift of the interference
pattern.
Scattering: The green sample scatters incoming X-rays on a very small
scale, leading to a local loss of coherence and thus reduces the amplitude of
the interference pattern.

Figure 2.4 shows exemplary stepping curves for these three effects. Plotted
is the recorded intensity versus the grating position, which extends over one
complete period of the analyzer grating. The black curve in each plot repre-
sents a scan without object in the beam—called flat-field or blank scan—and
thus a sampling of the unmodified interference pattern. The colored curves
show from left to right the results of scans with an attenuating, refracting
and scattering object, respectively. The attenuation causes a change in mean
value of the curve, refraction a shift of the phase and scattering a decrease
of the amplitude as indicated by the dashed lines in the plots. These curves
serve as a basis for extracting the three contrast signals available from grating
interferometry. The signal extraction will be described in the next section.

The above description of the grating interferometer assumes a source, which
itself provides enough coherence to allow for interference effects. This is
mostly given when synchrotron sources are used. In 2006 it was shown that
grating interferometry is also possible using conventional, incoherent X-ray
tubes with large focal spots by adding a third, absorbing grating in front of
the source. This source grating G0 splits the large source into an array of
small slit sources, each by itself providing the necessary coherence (Pfeiffer
et al., 2006; Weitkamp et al., 2006). In this three-grating configuration the
setup is then called Talbot-Lau interferometer.

For illustrative purposes, a 3D-rendering of a typical bench-top three-grating
interferometer for computed tomography is shown in figure 2.5.

2.2.3 Signal extraction

To extract the three contrast images from the raw detector images captured
during a phase-stepping scan, an additional processing step has to be per-
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Figure 2.5: Setup used for doing tomographic imaging with a grating interferometer

formed. From the previous section we know that the intensity curves acquired
during a phase-stepping scan are represented by periodic functions. Thus,
we can write the recorded intensity as a Fourier series

I(xg, x, z) = a0(x, z) +
∞∑
k=1

ak(x, z) · cos(2πkxg − φk(x, z)), (2.21)

where xg is the grating position in units of the fraction of a full grating period
and (x, z) are the coordinates on the detector. The propagation direction is
again along the y-axis. It was also stated that usually the intensity curves
are sine shaped, so the signal extraction can be done with only the 0th and
1st order terms of the series

I(xg, x, z) = a0(x, z) + a1(x, z) cos (2πxg − φ1(x, z)) (2.22)

The interesting parameters in this equation are the mean value a0, the phase
φ1 and the oscillation amplitude a1. The natural way to calculate the pa-
rameters of such a sinusoidal function is Fourier analysis. The average value
and the amplitude are then given by the absolute value of the zeroth and
first Fourier coefficients, respectively, and the phase by the argument of the
first coefficient. These parameters can be related to the attenuation, refrac-
tion and scattering of a sample by comparing parameters retrieved from a
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Figure 2.6: Illustration of the signal extraction from stepping curves with sample (object scan,
blue) and without sample (blank scan, orange)

blank scan and a scan with sample. In the following the superscript ’r’ will
denote quantities from a blank—or reference—scan and ’s’ will be used for
scans with sample. Stepping curves containing all three effects are shown in
figure 2.6. The blank scan is represented by the orange curve, the scan with
sample by the blue curve. Also marked are the three parameters from the
Fourier analysis for both curves.

Attenuation: The transmission through a sample is given by the ratio of
the mean intensities of signal and blank scans

T (x, z) =
I(x, z)

I0(x, z)
=
as

0(x, z)

ar
0(x, z)

. (2.23)

Obviously the transmission is related to the attenuation of the sample, i.e.
the linear attenuation coefficient µ, by the Beer-Lambert law (see equa-
tion (2.5)) and

a(x, z) = 1− T (x, z) (2.24)

Refraction: Refraction leads to a transverse shift of the interference pattern.
This shift is proportional to the phase difference between the stepping curves
with sample and the stepping curve of the blank scan. The exact relation is

S(x, z) =
p

2π
(φs

1(x, z)− φr
1(x, z)) , (2.25)
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where p denotes the period of the grating that was moved during the phase-
stepping scan. We call the result of the phase-stepping analysis φ = φs

1 − φr
1

the differential phase contrast (DPC) image. It is evident that the shift of
the interference pattern cannot be determined without ambiguity. As the
pattern is periodic, we can detect the phase of the stepping curve only in the
interval [0, 2π], values outside of this interval are simply wrapped back into
it, thus this effect is called phase wrapping. We will see in chapter 5, that
this ambiguity in determining the interference pattern shift—or the gradient
of the phase—has dramatic effects in tomographic reconstruction, leading to
the appearance of bone artifacts.

The transverse shift of the interference pattern is related to the refraction
angle via

α(x, z) =
S(x, z)

d
=

p

2πd
φ(x, z), (2.26)

with d denoting the distance between the phase grating and the analyzer
grating. Together with the line integral equation for the refraction angle (see
equation (2.12)) we can relate the phase difference from the stepping curves
to the refractive index decrement δ

φ(x, z) =
2πd

p

∂

∂x

∫
δ(x, y, z) dy. (2.27)

Scattering: The last signal we can extract is related to (ultra) small angle
scattering with scattering angles much smaller than the resolution of the
interferometer. This kind of scattering leads to a loss of the beam coherence,
which then causes the amplitude of the interference pattern to decrease. We
call the quantity that describes this coherence loss the visibility. It is defined
as the ratio (Imax − Imin) / (Imax + Imin) or in terms of the Fourier coefficients

V (x, z) =
a1(x, z)

a0(x, z)
. (2.28)

The final image signal incorporating both intensity curves is then given as
the ratio of the visibility for the phase-stepping scan with sample and the
visibility of the blank scan

v(x, z) =
V s(x, z)

V r(x, z)
=
as

1(x, z)

ar
1(x, z)

ar
0(x, z)

as
0(x, z)

. (2.29)

This signal is called the dark-field image (Pfeiffer et al., 2008).
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Figure 2.7: Illustration of the Fourier slice theorem.

2.3 Tomographic reconstruction

In this section the most widely used method for the reconstruction of to-
mographic measurements, the filtered back projection, is described. The
reconstruction is the computational part of computed tomography and its
purpose is to calculate the three-dimensional distribution of a quantity from
two-dimensional measurements. For example, in conventional X-ray CT a
large number of radiographic images (projections) of transmitted intensities
are recorded from different angular views around an object and reconstruc-
tion algorithms are used to retrieve the three-dimensional map of the linear
attenuation coefficient. In the following we first describe the Fourier slice
theorem, which the FBP algorithm is based on and afterwards the FBP it-
self.

2.3.1 Fourier slice theorem

The Fourier slice theorem states that the Fourier transform of parallel pro-
jection of a two-dimensional function is equal to a slice through the two-
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dimensional Fourier transform of the original function. If the projection is
taken at an angle θ, its Fourier transform will correspond to the slice through
the two-dimensional Fourier transform of the object along the line rotated
by θ with respect to the qx axis. The theorem is illustrated in figure 2.7.

We define the projection of a general two-dimensional distribution f(x, y) in
a coordinate system (x′, y′) rotated by an angle θ with respect to the original
coordinates, i.e. [

x′

y′

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x
y

]
. (2.30)

The projection along the propagation direction of the X-rays in the rotated
coordinates is then

Pθ(x′) =

∫
f(x′, y′) dy′, (2.31)

where the propagation direction is chosen as the y′ axis. This projection is
also called the Radon transform of f(x, y) (Radon, 1917). We restrict this
derivation to a parallel-beam geometry such that single slices at constant
z positions can be treated independently. Stacking the projections for all
measured angles creates a so-called sinogram, because a point in the object
will follow a sine-shaped curve when tracked through all angular projections.
Each point in the sinogram corresponds to a value of Pθ(x′).

The Fourier transform of the one-dimensional projection is

P̃θ(q′x) =

∞∫
−∞

Pθ(x′)e−2πix′q′x dx′ (2.32)

The two-dimensional Fourier transform in the rotated coordinate system is

f̃(q′x, q
′
y) =

∞∫
−∞

∞∫
−∞

f(x′, y′)e−i2π(x′q′x+y′q′y) dx′dy′. (2.33)

A slice through the origin of the frequency space defined by (q′x, q
′
y) tilted by

the angle θ requires that q′y = 0, which simplifies equation (2.33) to

f̃(q′x, 0) =

∫ ∫
f(x′, y′)e−i2πx

′q′x dx′dy′ (2.34)

=

∫ (∫
f(x′, y′) dy′

)
e−i2πx

′q′x dx′ (2.35)

=

∫
[Pθ(x′)] e−i2πx

′q′x dx′ = P̃θ(q′x), (2.36)
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Figure 2.8: Illustration of the sampling of
the Fourier space when recording projection
images from different angles around an object.

thus proving the above stated Fourier slice theorem. If the values of all
points in the (qx, qy)-plane are determined by measuring an infinite number
of projections, the original object function can then be recovered by an inverse
Fourier transform

f(x, y) =

∞∫
−∞

∞∫
−∞

f̃(qx, qy)e
i2π(xqx+yqy) dqxdqy (2.37)

2.3.2 Filtered back projection

The filtered backprojection (FBP) algorithm is currently the most widely
used method for tomographic image reconstruction from projections because
of its high speed and easy implementation. It can be directly derived from
the Fourier slice theorem, which says that the frequency space can be sam-
pled by measuring projection images from many directions around the object.
The conclusion of the previous section was that a two-dimensional Fourier
transform is sufficient to recover the original object function, if it were pos-
sible to measure an infinite number of projection images. However, in real
experiments only a finite number of projections with a finite number of data
points can be recorded. The frequency space is accordingly only sampled by
a finite set of values along the radial lines corresponding to the angles θ used
to capture the projections. The sampling of the Fourier space in this case is
illustrated in figure 2.8. The orange points correspond to the measurements
and it is obvious that for low frequencies the sampling points are much closer



Chapter 2. Theory 29

than for high frequencies. The FBP compensates this by introducing a filter-
ing step that gives more weight to the high frequency components and then
smearing the filtered projections back over the field of view.

The derivation of the filtered back projection algorithm is based on express-
ing the inverse two-dimensional Fourier transform in polar coordinates with
(qx, qy) = (ω cos θ, ω sin θ) and dqxdqy = ω dω dθ

f(x, y) =

∞∫
−∞

∞∫
−∞

f̃(qx, qy)e
i2π(xqx+yqy) dqxdqy (2.38)

=

π∫
0

∞∫
−∞

f̃(ω, θ)ei2πx
′ω|ω| dω dθ, (2.39)

with x′ = x cos θ+ y sin θ as in the previous section. The last integral can be
split into the integration over ω and over θ

H(x′ = x cos θ + y sin θ, θ) =

∞∫
−∞

f̃(ω, θ)︸ ︷︷ ︸
P̃θ(q′x)

|ω|ei2πx′ω dω, (2.40)

where in the underbraced term ω and q′x represent the same coordinates for
a given angle θ, when we set q′y = 0 as we did in equation (2.34). This
first integration over ω constitutes a filtering operation with a ramp filter
h̃(ω) = |ω| defined in Fourier space. The second integration over θ

f(x, y) =

2π∫
0

H(x cos θ + y sin θ, θ) dθ (2.41)

corresponds to a back projection of the filtered projection data, i.e. each
filtered projection is smeared over the field of view. Due to the change of
coordinates from a polar to a Cartesian system, i.e. the projections sample
the Fourier space on a polar grid, whereas the reconstructed object is defined
on a Cartesian grid, some kind of interpolation is required in the back projec-
tion step. Usually a simple linear interpolation is used. The polar sampling
of frequency space also defines the lower bound on the number of projections
that have to be measured for a reconstruction free of aliasing artifacts. This
lower bound is given in Kak and Slaney (1988) and Mueller (1998) as

Mproj =
π

2
Ndet, (2.42)

where Mproj is the number of projections taken and Ndet is the number of
pixels in a single row of the detector.
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Attenuation Conventional attenuation CT measures the relative trans-
mission in each projection according to the Beer-Lambert law (see equa-
tion (2.5)). The object function to be reconstructed is the spatial distribution
of the linear attenuation coefficient. We can define the projections Pθ(x′) as
the logarithm of the relative transmission

PTθ (x′) = − ln

(
Iθ(x

′)

I0

)
=

∞∫
−∞

µ(x′, y′) dy′. (2.43)

Applying the FBP algorithm on these projections yields µ(x, y) as desired.

H(x′, θ) =

∞∫
−∞

P̃θ(x′)|ω| dω (2.44)

µ(x, y) =

π∫
0

H(x′ = x cos θ + y sin θ, θ) dθ (2.45)

Differential phase contrast In the case of the refraction data the pro-
jections are of a differential nature. The measurement—the phase difference
of stepping curves from an object scan and a blank scan—is related to the
spatial distribution of the decrement of the refractive index δ(x, y) via equa-
tion (2.27). The projections are then defined as

Pφθ (x′) = φθ(x
′) = −2πd

p

∂

∂x′

∫
δ(x′, y′) dy′. (2.46)

Because of the partial derivative we cannot use these projections directly
as input for the FBP but we can make use of the Fourier transform of the
derivative of a function

FT
[
∂

∂x
f(x)

]
= 2πiωf̃(ω), (2.47)

so the ramp filter |ω| in the equation for the filtered projections (see equa-
tion (2.40)) has to be augmented to compensate for the additional factor
from the derivative and yields

H(x′, θ) =

∞∫
−∞

−2πiωδ̃(ω, θ)
|ω|

2πiω
ei2πx

′ω dω, (2.48)
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with the modified filter h̃(ω) = |ω|/2πiω = −2πisgn(ω), which basically
represents an integration of the differential projections in Fourier space. With
this filter the differential projections can be directly used as input for the FBP
reconstruction.

δ(x, y) =

π∫
0

−H(x′ = x cos θ + y sin θ, θ) dθ (2.49)

Dark field The reconstruction procedure for the dark-field signal is anal-
ogous to the attenuation signal. Following Bech (2009) the dark-field signal
can be explained by a linear diffusion coefficient ε(x, y), which is related
to the measured quantity—the visibility—in the same way as the linear at-
tenuation coefficient is related to the relative transmission. The projection
function is then defined via the logarithm of the measured visibility v(x, y)

Pvθ (x′) = − ln
p2

2π2d2
vθ(x

′) =

∞∫
−∞

ε(x′, y′) dy′, (2.50)

where the relation between the linear diffusion coefficient and the measured
visibility is (Bech, 2009)

v(x) =
V s

V r
= e

(
− 2π2d2

p2

∫
ε(x,y) dy

)
. (2.51)

The measured projections can then be directly used in the FBP.

2.4 Iterative reconstruction methods

The FBP as a transform-based method relies on evenly distributed data sam-
pling, i.e. projections measured uniformly over 180◦ or 360◦. Also a sufficient
number of projection views have to be recorded to achieve the desired spatial
resolution for the specific application (see Kak and Slaney (1988) and Mueller
(1998)). If these requirements are not met by, for example, non-uniform ac-
quisition of projection data or not recording projections over the half or full
circle, different reconstruction techniques have to be used. Basically, there
are two main classes of algorithms, algebraic methods and model-based re-
construction.
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The first group of methods relies on the algebraic solution of an inverse
problem of the form

Af = p, (2.52)

where f is the objective function in vector notation, p the vector containing
the measured projection data for all detector pixels and angles and the sys-
tem matrix A represents the so-called forward model. The forward model
can, for example, be just the discretized Radon transform but it can also con-
tain a complete physical model of the acquisition system, even for arbitrary
scanning geometries. The system matrix A is often defined to be an N ×M
matrix, where N is the number of discretized points—usually voxels—in the
reconstructed object and M is the number of rays for all projections. For
typical CT problems M and N are very large, so a direct inversion of the
system matrix is usually not feasible. Numerical solutions for estimating the
original object have to be used.

The first of these methods was proposed by Gordon et al. (1970) and is called
algebraic reconstruction technique (ART). In ART the elements of the
system matrix are defined as

aij =

{
1 if ray i intersects voxel j
0 otherwise

, (2.53)

i.e. a voxel contributes its value to a specific projection if it is intersected
by a ray, independent of the intersection length. Equivalently the forward
model reads

pi =
N−1∑
j=0

aijfj, i = 1, 2, . . . ,M, (2.54)

i.e. it represents a linear system of M equations for N unknown values. The
solution is based on the Kaczmarz method of projections (Kaczmarz, 1937),
where the current estimate at step (i − 1) is projected onto a hyperplane
represented by the ith equation. The update equation for the jth voxel for
such a subiteration reads

f
(i)
j = f

(i−1)
j +

pi −
N−1∑
k=0

f
(i−1)
k · aik

N−1∑
k=0

a2
ik

· aij. (2.55)

One iteration is complete as soon as every equation has been used for an
update. One drawback of this method is that voxels in the reconstructed
image are updated after each step, so it might occur that voxel values are
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changed after considering one equation, i.e. have been set to fit to one
particular measurement, and the same voxels are modified again to fulfill
a subsequent equation. These competing voxel updates are avoided in a
different implementation called simultaneous iterative reconstruction
technique (SIRT) (Gilbert, 1972). In this approach the voxel updates
are first calculated for all equations and then the average of the calculated
updates for a particular voxel are written back, which leads to smoother
reconstructions, albeit at the cost of slower convergence.

A third flavor of the algebraic methods seeks to combine the fast convergence
of ART and the smooth reconstructions of SIRT. It is called simultaneous
algebraic reconstruction technique (SART) and was first introduced
by Andersen and Kak (1984). The voxel updates in this approach are also
applied simultaneously as in SIRT, but not for all rays—one equation in the
system represents the sum along a ray through the object—at once. The
correction terms are calculated for all the rays in a particular angular view,
then all voxels are updated using these terms. Again, a single full iteration
is complete, when all ray-sums, i.e. equations, have been considered. In
addition, angular projections are not traversed in sequential order, but rather
angles far apart from each other are considered to avoid redundant updates
caused by the high correlation between adjacent angular views.

A second improvement over ART and SIRT is the refinement of the forward
projection model. Instead of using pixels as a basis for discretizing the object,
bi-linear elements, pyramids-shaped objects extending over the area of four
traditional pixels are introduced. In addition, the idea of binary elements for
the system matrix, i.e. all voxels that are intersected by a ray are added to
the particular equation of this ray, is dropped in favor of ray strips of finite
width. The intersection area between the image sampling points and the
rays is then calculated using bi-linear interpolation.

Lastly, the correction terms are no longer weighted uniformly (by the value
of aij in equation (2.55)) for the back-distribution to the image, but a longi-
tudinal hamming window is applied that gives more weight to points along
a ray that are closer to the center of the object (Andersen and Kak, 1984).

Even more refinement of the forward projection model is found in statisti-
cal reconstruction methods. These most advanced iterative techniques use
statistical models of the complete image acquisition process including noise
properties to get an objective function measuring the deviation of the mea-
sured data from the model (e.g. minimum least-squares error, maximum
likelihood, etc.). The objective function is then optimized to calculate an
estimate of the original distribution of the desired quantity. A variety of
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optimization algorithms have been developed and are used today. Examples
include steepest descent, conjugate gradients—used within this thesis—, ex-
pectation maximization and many more. An exemplary derivation of such a
SIR algorithm is given in detail in chapter 4 for a Gaussian distribution. In
conventional CT most commonly the projection data is assumed to be follow-
ing a Poisson distribution. The derivation of Poisson likelihood algorithms
is not given here. The reader is referred to Fessler (2000) for an in-depth
treatment of this topic.
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Chapter 3

Data processing and analysis of
projection data

This chapter is separated into three main sections, which all focus on meth-
ods or improvements that work on radiographic, i.e. projection, data. The
first section focuses on a technique to compare the contrast-to-noise ratio of
absorption and DPC radiographs without the need for an explicit integration
of the differential data. This comparison is accomplished by instead calcu-
lating the gradient of the absorption projection and doing the analysis on
the derivative projections. The results of this study have been published in
D. Hahn et al., Numerical comparison of X-ray differential phase contrast
and attenuation contrast, Biomedical Optics Express (2012). The next sec-
tion, 3.2, introduces an alternative signal extraction, providing additional
statistical information for the later development of statistical reconstruction
techniques. It is based on weighted least-squares principles and supposed to
replace the conventional Fourier analysis approach. In the final section, 3.3,
we study how the system’s point spread function affects raw projections, the
three contrast channels and the DPC reconstruction and show a way to im-
prove overall image sharpness with simple deconvolution tools.



36 3.1. Comparison of attenuation and phase projections

3.1 Comparison of attenuation and phase sig-

nals in single projections

Introduction

In this section a method for comparing the performance of attenuation and
differential phase contrast in single projections is presented. At a first glance
this is not an easy task because of the differences in the image formation
process. While an attenuation-contrast image can be interpreted as a simple
projection of an object function (the distribution of linear absorption coeffi-
cient), in grating interferometry the differential phase-contrast image corre-
sponds to the first derivative of the projected object function (the decrement
of the complex refractive index).

One way to directly compare both contrast signals is, of course, quantitative
PCCT, which is described in detail in chapter 2 and in (Herzen et al., 2009;
Chen et al., 2011; Zambelli et al., 2010). In PCCT the differential phase-
contrast images are inherently integrated by the reconstruction algorithm,
resulting in an image proportional to the decrement of the refractive index.
But for radiographic applications such as mammography, where the interest
in increased soft tissue contrast and the requirement for low radiation dose
is especially high, usually only a single projection is recorded. This gives rise
to the question of how to assess and compare image quality and information
content in the domain of single projections or in other words, how to compare
a non-differential to a differential signal.

In this section we introduce a quantity, the relative contrast gain (RCG),
which provides an estimate of the expected performance of a differential
phase-contrast image compared to an attenuation projection. It is defined
as the ratio of the contrast-to-noise ratio (CNR) in a DPC projection to the
CNR in an attenuation projection and it is meant as a analysis tool that
can be applied on real data. Engel et al. (2010) recently derived a theory
of the CNR in differential phase-contrast imaging based on an integration
of the phase (see also Kottler et al. (2007); Zanette et al. (2010); Thuering
et al. (2011)). In contrast to the integration approach, we propose to solve
the problem of comparing the two image modalities by differentiating the
attenuation image along the same direction as the derivative of the phase.

To motivate the use of a differential attenuation signal for the analysis of
the RCG, we have to go back to section 2.1, where the line integrals of the
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attenuation and phase signals were introduced as

T (x, y) = ln

(
I (x, y)

I0 (x, y)

)
, (3.1)

∂xΦ (x, y) =
2π

λ
α (x, y) , (3.2)

Note that from a single projection we can only obtain these line integrals of
the two quantities through the sample.

In any experiment, noisy versions of T and ∂xΦ are measured, and our aim is
to compare the quality of these two signals. To obtain a physically meaning-
ful comparison we can either differentiate the attenuation integral (eq. (3.1))
or integrate the differential phase (eq. (3.2)). The integration of the differen-
tial phase takes a lot of experimental effort to accomplish by using additional
measurements (Kottler et al., 2007; Zanette et al., 2010). Numerical inte-
gration is equally difficult due to the missing constant of integration and an
extremely low signal-to-noise ratio of the non-zero low frequency components,
which can lead to strong artifacts (Thuering et al., 2011).

Equations (3.1) and (3.2) indicate that the only other possibility for compar-
ison is to differentiate the attenuation signal along the same direction x as
the derivative in eq. (3.2). As a result we get the following definition for the
differential transmission:

∂xT =
∂

∂x
ln

(
I

I0

)
. (3.3)

The Relative Contrast Gain (RCG)

The main concept behind the definition of the Relative Contrast Gain is a
quantification of the increase in feature contrast of differential phase-contrast
projections compared to attenuation projections. For the analysis the follow-
ing definition of a contrast-to-noise ratio (CNR) is used:

CNR =
max(A)−min(A)

σ0

, (3.4)

where A denotes a set of image values in a region of interest (ROI) in a
projection and σ0 is the standard deviation of image values in a flat region,
i.e. the pure image noise. This definition can be seen as an effective dynamic
range or in other words the number of grey levels needed to represent the



38 3.1. Comparison of attenuation and phase projections

image without loss of information. For a comparison of differential phase-
contrast projections to attenuation projections we then define the RCG as
the ratio of the CNR in a ROI of the differential phase projection to the CNR
in the same ROI of the differential attenuation projection,

RCG =
CNRΦ

CNRT

=
∆(∂xΦ)/σ∂xΦ

∆(∂xT )/σ∂xT
, (3.5)

where ∆(X) corresponds to max(X)−min(X) and σX denotes the standard
deviation.

The RCG is an estimate of the relative contrast of phase projections and
attenuation projections. By normalizing with the standard deviation of the
respective images, the pure image signals, that are not hidden by noise,
are compared. In imaging terms we could also reformulate that by saying
that the RCG is a quantity that determines which signal provides a larger
dynamic range in the presence of noise. It is similar to the detective quantum
efficienty (DQE), which quantifies the ability of an imaging system or detector
to provide good signal-to-noise.

Differentiation of the attenuation image

The problem of differentiating a discrete image affected by noise presents a
challenge that is difficult to solve. This is due to a low signal-to-noise ratio
in high frequency components found in most images, where the derivative
will lead to an amplification of the noise levels.

It is well known that the derivative corresponds to a linear function in Fourier
space. In analogy to the Ram-Lak filter known from the reconstruction in
attenuation computed tomography (Hsieh, 2009; Oppenheim and Schafer,
1999) we have to bandlimit the filter response by applying a window function.
Typical choices in CT reconstructions are the Dirichlet-window (rectangle-
window), sinc-window, Hamming-window or the Hann-window. (Hsieh, 2009;
Oppenheim and Schafer, 1999) As images are functions that are sampled on
a finite grid and spatially limited, their Fourier transform will be inherently
bandlimited with a cutoff frequency of 1/2 px−1. To prevent aliasing effects
that may be introduced by applying a discrete Fourier transform, the filter
also has to be bandlimited and, as in the case of CT reconstruction filters,
there are certain degrees of freedom in choosing the shape of a bandlimiting
window function. The two main concerns in choosing the appropriate window
function are the accuracy of the resulting derivative and the best possible
noise suppression without losing image information, i.e. spatial resolution.
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Figure 3.1: Experimental data used in the RCG analysis. (A) photograph of the sample, (B)
attenuation signal, (C) differential phase-contrast signal, (D) differential attenuation signal.

For the present application of differentiating the attenuation image we com-
pared the Dirichlet-window to the Hamming- and a Gaussian-window. We
chose the Gaussian-derivative filter (Gonzalez and Woods, 2008) because it is
the most versatile one. In the following we will set the width σ = 1/2π px−1.
This corresponds to a derivative filter combined with a smoothing operation
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over one pixel in image space. Smoothing in y-direction by the same amount
improves the noise suppression even further. Smoothing by this small amount
is just enough to keep the noise at an acceptable level. Using a smaller σ,
i.e. smoothing over a larger area of pixels in image space, leads to a visual
degradation of the image and a loss of information.

Figure 3.2: Power spectra of the experimental data shown in fig. 3.1, calculated by computing
the absolute squared Fourier transform in x-direction for each image row and averaging in y-
direction. (a) power spectrum of the DPC projection; (b) power spectra of the differential
attenuation projection calculated with different filter functions as indicated in the figure; (c)
corresponding filter functions; solid green: Dirichlet windowed; short-dashed red: Hamming
windowed; long-dashed blue: Gaussian windowed with σ = 1/2π px−1).

Results

To validate the concept, we have applied the RCG analysis on experimen-
tal data and we present first results in the following. For that purpose,
radiographs of a human breast sample were recorded using a two-grating
Talbot interferometer (Weitkamp et al., 2005; Pfeiffer et al., 2007a; Schulz
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et al., 2010; Weitkamp et al., 2010) at the ID19 beamline of the European
Synchrotron Radiation Facility in Grenoble, France. The radiographs were
taken with a monochromatic X-ray beam with an energy of 23 keV in the 9th

fractional Talbot order. The distance between the phase grating G1 and the
analyzer grating G2 was d = 0.48 m, G1 had a period of g1 = 4.785 µm and
G2 a period of g2 = 2.4 µm. Phase stepping was performed in four steps over
one period. The resulting raw images are processed with the commonly used
Fourier phase-stepping analysis (Weitkamp et al., 2005) to extract the rela-
tive transmission signal T and the differential phase signal α. (Bech, 2009)
The sample itself was a slice of human breast tissue about 1 cm thick, fixated
in formalin. Figure 3.1 gives an overview of the experimental data used in
the analysis and shows a photograph of the breast slice, an attenuation, dif-
ferential phase-contrast and differential attenuation projection, respectively.

For the RCG analysis the attenuation signal was brought into the form intro-
duced in the first section, more specifically eq. (3.3), to be able to compare
the two signals. More precisely, we took the logarithm of the attenuation
signal and differentiated it using the Gaussian-derivative filter defined in the
previous section. We used eq. (3.2) as it is, as the differential phase signal
is directly available from the phase-stepping analysis. To ensure a fair com-
parison, a Gaussian filter with the same width was also applied to the DPC
signal. This introduces the same loss of high frequency information that
occurs during the differentiation of the attenuation signal. The noise stan-
dard deviation of both signals was calculated from corresponding reference
projections, i.e. from a blank scan without the sample in the beam.

Figure 3.2 shows power spectra for the experimental data shown in fig. 3.1
to assess the behaviour of the different filter functions when applied to the
attenuation projection and to compare them to the DPC projection. The
power spectrum of the differential phase contrast projection is plotted in
panel a). Panel b) shows the power spectra of the attenuation projection
differentiated using the three indicated window functions. Finally in panel
c) the filter functions themselves are plotted. These plots show that the
Gaussian-derivative filter with σ = 1/2π px−1 performs reasonably well in
making the power spectrum of the attenuation projection similar to that of
the differential phase contrast projection.

A visual representation of the RCG is given in fig. 3.3 for the regions A (green
box) and B (red box), which are defined in fig. 3.1 (A), respectively. In the
main part of each subfigure the values of ∂xT and ∂xΦ for each position (x, y)
in the projection are presented in the form of a scatterplot for regions A (left)
and B (right), respectively. The horizontal axis corresponds to the differential
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phase-contrast projection, the vertical axis to the differential attenuation
projection. Histograms showing the distribution of values for both signals
for the sample and reference (i.e. blank scan) regions are plotted on top of the
respective axes of the signals. Green color denotes the sample region and blue
the corresponding reference regions. The definition of the RCG in eq. (3.5)
can equivalently be stated in terms of the geometry of the ellipses formed by
the pixel values of the sample region and the widths of the reference region
histograms. The width of the ellipse corresponds to ∆∂xΦ and the height
corresponds to ∆∂xT . This means that the RCG is inversely proportional to
the slope of the ellipses major axis. Using eq. 3.5 we find for region A an
RCGA = 9.5 and for region B an RCGB = 5.8.

Figure 3.3: Visual representation of the RCG analysis of regions A (left) and B (right).

Discussion and conclusion

The results of the RCG analysis from the last section indicate that phase-
contrast projections, as expected, can provide substantially higher soft-tissue
contrast than attenuation images. Two distinct regions of interest were ana-
lyzed, one with clearly visible features and one with features that are barely
visible by the human observer. Looking at the scatterplots and histograms
in fig. 3.3 and comparing the width and height of the ellipses formed by
the sample (green) and reference (blue) pixel values and the widths of the
corresponding projections in the 1-D histograms it is obvious that in both
regions the fraction of the signals dynamic range covered by noise is larger
for the differential attenuation. This observation is quantified by RCG values
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of 9.5 and 5.8 for regions (A, green) and (B, red) respectively, confirming the
improved CNR performance of differential phase projections. The RCG is
different for these two regions, which indicates that the RCG analysis de-
pends strongly on the properties of the analyzed region. We believe that
this is mainly due to the different spatial frequencies contained in these two
regions and the different ratios of δ/β for different materials. Therefore the
RCG is a local measure that states for which regions the phase signal should
be trusted more than attenuation. Because of the uncertainty in choosing
the width of the Gaussian-derivative filter that is used to calculate ∂xT , the
RCG cannot be defined as an absolute scale, but rather a relative measure to
compare different regions inside an image. Further work has to be done on
calibrating the derivative filter to be able to absolutely quantify the contrast
improvement of differential phase contrast compared to attenuation contrast,
a task especially difficult because of the different noise power spectra in the
attenuation and phase components.

The results we obtained for the RCG can, in principle, be further improved by
optimizing the experimental setup. For the experimental data of the human
breast tissue the visibility of the fringe oscillations during the phase-stepping
was 54%. As the noise in a phase-contrast projection is inversely proportional
to this visibility we can reach higher contrast-to-noise in the phase projection
by increasing the visibility. Note that a change in visibility will not affect
the CNR of the attenuation projection which will result in a higher relative
contrast gain in favor of phase contrast. There are several ways to improve
an experimental setup in terms of visibility. The manufacturing of phase and
absorption gratings is constantly improving, leading to fewer defects in the
gratings and to higher aspect ratios allowing X-rays with higher energies to
be used. Also having the gratings matched to the desired X-ray energy and
adjusting the Talbot distance between the phase grating and the absorption
grating accordingly may improve the visibility.

Our results are consistent with those presented recently by (Engel et al.,
2010) and we conclude that the RCG formalism can be used as a tool to
assess the image quality in differential phase-contrast imaging. Also, the
discussions in this paper and in (Engel et al., 2010) indicate that the details
of an experimental setup, e.g. quality of the gratings, influence only the CNR
of the phase projection but not the attenuation image, so from this fact we
conclude that the RCG can be used as a tool to compare the performance of
different experimental setups.
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3.2 Statistical phase retrieval

This section describes an alternative procedure to retrieve the three contrast
signals from the data measured with a grating interferometer. It uses the
statistical properties of the raw projections to estimate not only the values
of the three signals but also their uncertainties and is thus called statistical
phase retrieval (SPR). As explained in section 2.2.2, the acquisition of pro-
jection data in grating interferometry is done by stepping one of the gratings
and recording an image of the intensity distribution at each grating posi-
tion and by that an intensity curve for each individual pixel. The common
way to extract the three contrast signals—attenuation, differential phase and
darkfield—from the stepping curves is the Fourier transform approach pre-
sented in detail in section 2.2.3. This method, however, has one drawback:
the statistical uncertainties of the retrieved signals are not easily calculated.

Here we present an alternative implementation of the phase retrieval to
accommodate the need for the projection’s statistical information, that is
used in the reconstruction algorithm throughout the next two chapters. A
weighted least squares (WLS) estimation is used to directly fit a sinusoidal
curve to the measured intensities for each pixel. If we recap the intensity
curve model function used in the Fourier approach

I(x) = a0 + a1 · cos(x− φ1), (3.6)

we can see, that estimating the three parameters a0, a1 and φ1—corresponding
to mean, amplitude and phase of the sinusoid—from this model function is
not straightforward with a conventional least-squares (LS) approach, as this
requires the function to be linear with respect to all fit parameters to work
properly. Consequently the first step is to linearize the function, which is
simple using basic trigonometric relations. The linearized model function of
the stepping curve is then:

I(x) = A0 + A1 · cos(x) +B1 · sin(x), (3.7)

where the shifted cosine from the original function is replaced by a linear
combination of a cosine and a sine. The fit parameters A0, A1 and B1 now
denote the mean of the curve, the amplitude at x = 0 and at x = 0.25 · p,
respectively, where p is the period of the grating that was moved. The three
original parameters can be recovered by

a0 = A0, φ1 = arctan

(
B1

A1

)
, a1 =

√
A2

1 +B2
1

A0

. (3.8)
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Figure 3.4: Sample stepping curve. Indicated are the three fit parameters calculated by SPR
as dashed lines and their uncertainties as the semi-transparent background. Additionally shown
is their relation to the three contrast signals.

We can now introduce two vectors, a = (A0, A1, B1)T, containing the three
estimated parameters, and X(x) = (1, cos(x), sin(x))T, the vector of basis
functions. Equation (3.7) can then be rewritten in general form as

I(x) =
M−1∑
j=0

aj ·Xj(x), (3.9)

where M is the total number of estimated parameters and basis functions.
From this model a WLS cost function is derived that has to be solved for
each pixel in each projection

S =
N−1∑
i=0

1

σ2
i

[
I(xi)−

M−1∑
j=0

aj ·Xj(xi)

]2

, (3.10)

where N denotes the total number of grating positions during a stepping scan
and σi is the uncertainty of the intensity measurement at grating position
xi. Since the main source of noise is counting statistics, the natural model
is the Poisson distribution, so the error on the measured intensity in a pixel
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is estimated as σI = α
√
I, with α = 1 when the detector calibration is such

that I represents photon counts.

To show that this assumption is not only true for photon counting detectors
that measure the number of photons collected by a pixel directly, but that it
can also be used in most cases for integrating detectors, e.g. CCDs, consider
the following: The conversion from photon counts N to intensity I is linear
in regimes far enough from saturation of the analog to digital converter of
the detector. If readout noise can be neglected, this linearity also applies to
the uncertainties σI and σN , as shown here:

I = α ·Nph

→ σ2
I = σ2

N ·
(

∂I

∂Nph

)2

= α2 · σ2
N . (3.11)

To generally solve such a WLS problem, we have to compute the gradient of
equation (3.10) with respect to each of the estimation parameters and set it
to zero, leading to M equations that are indexed by k

0 =
N−1∑
i=0

1

σ2
i

[
I(xi)−

M−1∑
j=0

aj ·Xj(xi)

]
Xk(xi) k = 0, . . . ,M − 1 (3.12)

In these equations the order of the summations can be reversed, which gives

M−1∑
j=0

aj

N−1∑
i=0

Xj(xi) ·Xk(xi)

σ2
i

=
N−1∑
i=0

I(xi) ·Xk(xi)

σ2
j

, (3.13)

and with the definitions

Bij =
Xj(xi)

σi
and ci =

I(xi)

σi
(3.14)

equation (3.13) can be rewritten in matrix notation as(
BT ·B

)
· a = BT · c (3.15)

or
β · a = γ (3.16)

with β =
(
BT ·B

)
(system matrix) and γ = BT · c (solution vector).

The analytical exact solution is then given by

a = β−1 · γ, (3.17)
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where

β−1 =
1

|β|
·

 (β11β22 − β12β21) (β12β20 − β10β22) (β10β21 − β11β20)
(β02β21 − β01β22) (β00β22 − β02β20) (β01β20 − β00β21)
(β02β11 − β01β12) (β02β10 − β00β12) (β00β11 − β10β01)

 ,

(3.18)
with

|β| = det (β) =
2∑

i,j,k=0

εi,j,k · β0,i · β1,j · β2,k (3.19)

being the determinant of the system matrix. This generalized derivation is ex-
plicitly applied on the problem of statistical phase retrieval in appendix A.1.
The actual computer implementation follows the equations in the appendix.
After solving this system of equations for the three fit parameters in the
solution vector a, their variances and covariances can be extracted from

the inverse of the system matrix
(
BT ·B

)−1
, also called the covariance ma-

trix of the system. However, as we do not estimate the three contrast sig-
nals directly—their relation to the estimated parameters is stated in equa-
tion (3.8)—further steps have to be applied to calculate the statistical uncer-
tainties of the contrast signals from those of the estimated parameters. For
this purpose we use standard Gaussian error propagation,∗ resulting in

σa0 = σA0 , (3.21)
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√
(A2

1 +B2
1)σ2

A0

A4
0

+
A2

1σ
2
A1

+B2
1σ

2
B1

A2
0(A2

1 +B2
1)

, (3.23)

where the covariance terms have been left out to make the display of the
expressions more comprehensible. In practice the covariances are always
taken into account.

Figure 3.4 shows the relation between the new parameters and the Fourier
coefficients, as well as indicating their uncertainties. As usual, measurements

∗Given f(x0, . . . , fN ) and σx0
, . . . , σxN

, σf follows

σ2
f =

N∑
i,j=0

∂f

∂xi

∂f

∂xj
σxi,xj

, (3.20)

where σxi,xj is the covariance between xi and xj and σ2
xi

= σxi,xi denotes the variance of
xi.
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with a sample in the beam and one without sample, i.e. a flatfield or reference
image, are combined to get the resulting projections used as input for the
tomographic reconstruction

a = − ln

(
as
ar

)
, φ = arg(ei(φs−φr)), v = − ln

(
vs
vr

)
, (3.24)

where the subscript ’r’ denotes the reference or flatfield scan and ’s’ the scan
with sample in the beam. These are also functions of parameters, of which
we know the uncertainty, so again applying standard error propagation yields
the uncertainties of each of these signals

σ2
a =

σ2
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a2
s

+
σ2
ar

a2
r

, σ2
φ = σ2

φs + σ2
φr , σ2

v =
σ2
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v2
s

+
σ2
vr

v2
r

. (3.25)

With equations (3.24) and (3.25) we now have analytical expressions for the
three grating-interferometer signals and their statistical uncertainties, that
can be explicitly and quickly calculated from the raw data. These expres-
sions can later on directly be used in the statistical iterative reconstruction
algorithm presented in chapter 4.

3.3 Influence of the system’s point spread func-

tion on the tomographic reconstruction

Deconvolution is a common technique in many imaging fields, for example in
microscopy or astronomical imaging. It is used whenever a measurement sys-
tem distorts the gathered data along the optical path. This influence usually
manifests as blurring of the measured images and is described by the so called
point spread function (PSF). The PSF is a mathematical function that de-
scribes the response of the optical system to a point source, i.e. how a perfect
point is spread or blurred because of the measurement device’s imperfections.
The PSF usually includes contributions from the source, any component in
the beam path and the detection system. In the case of grating-based phase-
contrast imaging these contributions are the size and shape of the incoming
X-ray beam, imperfections in the gratings and the detector response. To
my knowledge, in the context of GBI the effects of the PSF have so far not
been taken into account. In this section we will present a qualitative analysis
of how the PSF influences the sharpness of tomographic phase-contrast re-
constructions and a simple but effective way to deconvolve the raw detector
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images prior to further processing to increase the spatial resolution of the re-
constructions. Especially if an experiment uses scintillator-coupled devices,
such as CCD cameras or flat-panels, as a detection system, its PSF can have a
significant influence on the spatial resolution of tomographic reconstructions.

In this section the effect of the PSF is investigated for an experimental mea-
surement performed at the beamline ID19 of the European Synchrotron Ra-
diation Facility (ESRF) in Grenoble, France. The grating interferometer at
this beamline uses a FReLoN (Fast Readout Low Noise) camera coupled
with a scintillator to convert incoming X-ray photons into visible light. The
camera was first described by Labiche et al. (1996, 2007) and put into the
context of grating interferometry at ID19 by Zanette (2011).

The deconvolution itself was performed using the Richardson-Lucy (RL) algo-
rithm first introduced in Richardson (1972) and Lucy (1974). This algorithm
is based on a maximum likelihood estimation of the latent or underlying im-
age by an iterative update procedure. A derivation of the algorithm is given
in appendix A.2. It leads to the following update equation

O(i+1) = O(i) ·
(

P ∗ I

(P ∗O(i))

)
, (3.26)

where I is the measured image, O is the underlying true object and P is
the known PSF. Furthermore, ∗ denotes the convolution operator, P is the
flipped PSF (as explained in appendix A.2) and the superscript (i) represents
the iteration number.

A tomographic measurement of a mouse performed at the grating interferom-
eter of beamline ID19 is used to demonstrate the effects of the PSF deconvo-
lution on experimental data. As the true PSF of the system was not known,
it was assumed as an isotropic two-dimensional Gaussian function. As we
are not interested in a strictly quantitative analysis of the deconvolution, but
only in the influence, that the PSF has on tomographic reconstructions, our
criterion of image quality is solely based on visual inspection. In this regard,
we achieved the visually best results with σ = 1 px, a size of 23× 23 px2

and 20 iterations of the RL algorithm. The deconvolution was performed on
each raw projection of the stepping scan prior to the SPR. In the following,
images derived from the raw images will be denoted by ’original’ and images
derived from the deconvolved raw data will simply be called ’deconvolved’.

Figure 3.5 shows two raw detector images. The upper panel (A) presents the
image as it was originally captured by the camera. In the lower panel (B)
the same image can be seen after deconvolution. For both images a zoom
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Figure 3.5: This figure shows a comparison of a single raw detector image prior to deconvo-
lution (A) and after deconvolving with the PSF (B). In addition to the full projection also a
zoom of a part of the spine is presented as an inset. The deconvolved image is significantly
clearer and sharper with respect to the fine details visible in the bone of the mouse.

of the region marked with the red rectangle containing parts of the spine
is shown as an inset. When comparing these zoomed images it is obvious
that the original image is blurred due to the effect of the PSF, whereas the
deconvolved image is much clearer and sharper, especially when looking at
edges or small details.

The same result can also be observed in the three contrast signals after the
phase retrieval. Figure 3.6 shows enlargements of the same region used in
figure 3.5 for all three contrast channels. The left column depicts projections
retrieved from the original detector images, the right column the projections
retrieved from the deconvolved raw data. The top row—panels (A) and
(B)—displays the comparison for the attenuation signal, whereas the middle
(C, D) and bottom (E, F) rows depict the differential phase- and dark-field
signals, respectively. We can see that for all three modalities the image on
the right, i.e. the one retrieved from the deconvolved data, is sharper and
shows small details more clearly than the image on the left. So from this
figure we can conclude that a deconvolution of the stepping images prior
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to the phase retrieval not only significantly improves the visual quality and
sharpness of the raw images, but these improvements are also propagated
to the individual contrast signal’s projections. The black and white pixels,
which can be seen inside the bone structure in the differential phase-contrast
projections (panels (C) and (D)), are caused by phase wrapping. This effect
does not influence the conclusions drawn in this section and will be treated
in chapters 4 and 5.

The last and most important part is now to analyze the effect of the decon-
volution on the tomographic reconstruction. As an example, the differential
phase projections were reconstructed with the conventional FBP algorithm,
using a standard ramp filter in order to retain the maximum amount of
sharpness in the resulting images. The reconstructions from both the raw
and the deconvolved projections of the differential phase signal are shown
in figure 3.7. The top row contains a slice of the full reconstructed volume
from the original raw projections (A) and from the data that was decon-
volved prior to the phase retrieval (B). The display window of both images
is δA,B = [4.15 · 10−7, 5.00 · 10−7]. As the difference in sharpness is barely
visible in these full images, the figure also shows enlargements of two regions
that contain fine detail. A zoom of the region marked with the red rectan-
gle in panel (A), covering parts of the liver and the stomach, is shown in
panel (C) for the reconstruction from the original projections and in panel
(D) for the reconstruction from the deconvolved data. The display window
for these two images is in the range δC,D = [4.40 · 10−7, 4.64 · 10−7]. When
comparing the two enlargements it is not only obvious that the deconvolved
reconstruction is significantly sharper but also local contrast is improved in
the deconvolution process. The same observation is true for the enlargement
of the second region—marked with the green rectangle in panel (A)—, that
shows parts of the intestines and also parts of the liver. This region is de-
picted in panels (E) and (F). Again, the reconstruction from the original
dataset is by far blurrier and small details tend to be less visible than in the
image reconstructed from the deconvolved data. The display window here is
δE,F = [4.43 · 10−7, 4.64 · 10−7].

This analysis was done for a case, where the most probable cause of the
blurring was the detector. This is shown in figure 3.8 (A). Depicted is the
case of a parallel-beam geometry, i.e. the sample point is illuminated by a
single ray. Due to the detector PSF, however, the projection of this single
point is spread over multiple detector pixels.

Another possible origin of image distortion is discussed in the following. At
the rotating anode setup of our laboratory, for example, a Pilatus 100K
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Figure 3.6: Enlargements of spinal region for the three modalities. Top row: attenuation
signal retrieved from original data (A) and from deconvolved data (B). Middle row: differential
phase-contrast signal retrieved from original data (C) and from deconvolved data (D). Bottom
row: darkfield signal retrieved from original data (E) and from deconvolved data (F).

detector is used, that has a boxlike PSF with a width smaller than the pixel
size. Here the influence of the detector can be ruled out with a high certainty,
but we still observe slight blurring of the raw images. In this case it is due to
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Figure 3.7: Phase contrast reconstructions. Top row: full slice from original projections
(A) and deconvolved projections (B). Middle row: zoom of region marked with red rectangle,
(C) original, (D) deconvolved. Bottom row: zoom of region marked with green rectangle,
(E) original, (F) deconvolved. Display windows: δA,B =

[
4.15 · 10−7, 5.00 · 10−7

]
, δC,D =[

4.40 · 10−7, 4.64 · 10−7
]
, δE,F =

[
4.43 · 10−7, 4.64 · 10−7

]
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Figure 3.8: The influence of the PSF for the two extreme cases. (A) Only the detector PSF
has an influence on how the projection of a point is spread over the detector pixels. (B) Only
the finite size of the source contributes to a spread of the projection of a point on the detector.

the X-ray tube’s focal spot, that is large enough to smear out the projection
of a point-like structure over multiple detector pixels. This is illustrated in
figure 3.8 (B). Neglecting effects from the detector, we concentrate only on
the influence of the source size. As shown in the figure, the single sample
point is illuminated by multiple rays from different directions and thus the
projection of the point on the detector will also have finite size. Using the
intercept theorem it is easy to estimate the blur due to the finite size of the
focal spot. Consider

S

L− Y
=
D

Y
, (3.27)

where S is the source size, D the size of the projection of the sample point on
the detector, L the distance between source and detector and Y the distance
between sample point and detector. For illustration we will estimate this
for the rotating anode lab setup mentioned above. Here the focal spot has
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a size of S = 0.3 mm, a source-detector distance of L = 2360 mm and in
typical experiments a sample-detector distance of Y = 990 mm. With the
intercept theorem this amounts to a projection size on the detector of D =
0.217 mm = 217 µm. Comparing this to the pixel size of the Pilatus 100K,
which is ps = 172 µm, we see that even though the PSF of the detector itself
does not have a significant effect on the spatial resolution, blurring is still
observed due to the finite size of the source. Just like in the case of blurring
due to the detector PSF, the image quality can significantly benefit from a
deconvolution.

3.4 Summary and outlook

In this chapter we presented a collection of several methods and techniques
based on radiographic images. The first section focused on the Relative Con-
trast Gain as a simple and practical tool to determine the relative contrast-
to-noise-ratio of the attenuation- and differential phase-contrast signals that
are available from grating-based X-ray imaging. The attenuation projection
was differentiated to bring it into a comparable modality to the differential
phase projection. The Relative Contrast Gain was then defined as the ratio
of the contrast-to-noise ratio of a region of interest in the differential phase
projection to the contrast-to-noise ratio in the same region in the differential
attenuation projection. We applied the RCG analysis on experimental data
of human breast tissue acquired on a grating-based imaging setup, yielding
an RCG of 9.5 for a region containing strong features and 5.8 for a region
with barely visible features. This indicates that the RCG is a local measure
depending on the properties of the analyzed material. The last two sections
demonstrate improvements of raw detector images from grating interferom-
etry in preparation for statistical reconstruction discussed in the following
chapter. The first of these two sections introduced an alternative method for
processing phase-stepping sequences to extract the three contrast channels.
The method uses a weighted least-squares approach to not only estimate the
contrast signals, but simultaneously also their statistical uncertainties. Fi-
nally, in the last section we presented a study of how the influence of the sys-
tem’s point spread function propagates through the measurement, processing
and reconstruction chain. We found that, by using a simple deconvolution
approach and an estimate of the true PSF, we could significantly improve the
image quality and sharpness in all three stages—raw acquisitions, processed
contrast signals and reconstructed images.
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Chapter 4

Statistical reconstruction
framework

This chapter describes the main scientific contribution of this thesis. A sta-
tistical iterative reconstruction algorithm for grating-based phase-contrast CT
is developed and tested with synthetic and experimental data. Section 4.1
motivates the use of iterative reconstruction—in particular for grating-based
phase-contrast imaging. Section 4.2 introduces the statistical iterative recon-
struction framework. Section 4.3 presents a visual validation of the algorithm
for simulated and experimentally obtained data for a variety of cases of miss-
ing data, as well as qualitative convergence and noise analyses and section 4.4
gives an outlook to a more correct modelling of the statistical properties. The
main results of this chapter are currently in preparation for publication.

4.1 Motivation

Iterative reconstruction techniques have seen a great deal of interest in the CT
community for their ability to increase reconstruction quality—and thus di-
agnostic value—or to keep the quality at the same level while lowering patient
doses. Grating-based phase contrast shares the same goals as conventional
CT, but, due to the additional elements—the gratings—in the beam path and
the required stepping procedure, the dose applied to a patient is intrinsically
higher in grating interferometry. Even though it offers additional diagnostic
information, we aim to produce diagnostically valuable reconstructions with
as little dose as possible. The past decades have seen much effort in con-
ventional CT reconstruction to develop and improve iterative reconstruction
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with the goal of decreasing the patient radiation dose. We can learn from
this experience and redevelop these already established techniques to make
them applicable to our novel problems. Especially if the statistical properties
of the raw data are taken into account, good reconstructions even from very
noisy projections resulting from low-dose scans are still possible. In addition,
iterative reconstruction can help to reduce artifacts that arise when the pro-
jection data is not complete or corrupt and thus contains unreliable data in
some regions.

4.2 Statistical reconstruction algorithm (SIR)

In this section the different parts of the statistical iterative reconstruction
(SIR) algorithm are derived and explained. The main concept of the al-
gorithm is the application of maximum-a-posteriori (MAP) principles in a
Bayesian sense. This principle is an extension of maximum likelihood (ML)
estimation and combines the likelihood function with prior knowledge of the
latent parameters.

4.2.1 Model

The most important part of any iterative reconstruction (IR) algorithm is the
physical model that incorporates information on the image formation process
and relates the measured projections to the reconstructed image values. In
this part we will describe how different aspects have been modelled in our
reconstruction framework and also the reasoning behind the choices we made.
We loosely follow the structure used by Nuyts et al. (2013).

Discretization

The first aspect of the physical model is the discretization of the continuous
distribution of reconstructed image values. IR algorithms are not restricted
to a certain discretization. The grid size, i.e. the distance between two
volume elements, can be chosen as finely as desired, only restricted by com-
putational requirements. Also the shape of each volume element presents
several degrees of freedom. In general, a reconstructed volume is represented
as a weighted sum of spatial basis functions. Two of the most common
choices in IR for such a basis set are voxels and blobs. Voxels are cubic and
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non-overlapping basis functions that discretize a volume into a regular grid.
Each voxel is isotropic and represents a single value. Blobs on the other
hand model each discretized point in the volume with spherically symmetric
Kaiser-Bessel functions (Lewitt, 1990; Matej and Lewitt, 1996; Ziegler et al.,
2006) with several parameters to determine the shape and spatial extension.
Those functions are bell-shaped, but, in contrast to a Gaussian function,
they taper off to zero to prevent truncation of a volume element. The blobs
are placed on a regular grid in such a way that they overlap, so that each
element also contributes to its neighbors. Several authors have shown that
using blobs in IR is advantageous in terms of image quality and noise sup-
pression (Matej and Lewitt, 1996; Ziegler et al., 2006), but, in contrast to
voxels, which are perfectly fit for a computer representation as arrays, the
blob formulation is computationally more expensive and the parameters of
the Kaiser-Bessel functions have to be chosen according to the reconstruc-
tion problem and geometry. In this thesis, due to the lower computational
requirements, a voxel representation is used. In particular, the representation
of a quantity δ(x, y, z) as a sum of basis functions is

δ(~x) =

Np∑
j=1

δjχj(~x), (4.1)

where Np is the number of elements δj in the volume and basis functions
χj(~x). For the voxel representation the basis functions can be written in
three dimensions as

χj(x, y, z) = rect

(
x− xj

∆

)
rect

(
y − yj

∆

)
rect

(
z − zj

∆

)
, (4.2)

where the point (xj, yj, zj) denotes the center of the jth voxel and ∆ is the
voxel size. The basis functions are defined in a way that they are 1 inside
the jth voxel and 0 outside.

Forward and back projection

The decision to use the voxel model for the volume discretization stands in
relation to the implementation of the forward- and back-projection opera-
tion. In this work we use a ray-driven model (Joseph, 1982; Siddon, 1984a,b)
for the forward projection and a voxel-driven model for the back projection
(see Mueller et al. (1998) for a comparison of ray-driven and voxel-driven).
The reason for this choice is the implementation on general purpose graphics
processing units (GPGPUs). For this massively parallel implementation it
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Figure 4.1: This figure visualizes the actual implementation of the way detector pixel values
are projected back to an image voxel (A) and the way image voxels are projected forward to a
detector pixel (B).

is advantageous to use a loop over the intended target volume, i.e. to treat
each element of the target volume separately to prevent eventual race con-
ditions (Fehringer et al., 2013). A schematic view of the implementation is
shown in figure 4.1.

In the back projection operation the main loop runs over the image voxels
and updates them separately using a voxel-driven projection model. Each of
the image voxels is projected onto the detector and the linearly interpolated
pixel value is added to the voxel value. The implementation of the back
projection is illustrated in figure 4.1(A). The back projection is complete
once each voxel and each projection angle have been processed.

For the forward projection the loop is running over the detector pixels in
combination with ray tracing to determine the image voxels that intersect
the particular ray and thus contribute to the update of the corresponding
detector pixel. A ray starting from each detector pixel is traced back to the
source position. The linearly interpolated values of all image voxels that
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intersect this ray are added to the detector pixel value. The implementation
of the forward projection is illustrated in figure 4.1(B). Again this operation
is complete after processing each detector pixel and each projection angle.

Finite spatial resolution

The spatial resolution of reconstructed images is limited by several factors
that have been described in detail in section 3.3. These factors include blur-
ring by a detector PSF that is larger than the pixel size and the finite size of
the X-ray source’s focal spot. All of these effects originate from the physical
properties of the measurement setup and manifest in the raw detector images.
In conventional CT these effects can directly be modeled in the IR algorithm,
as in this case the raw projections are used as input for the reconstruction.
In grating-based phase-contrast CT an intermediate step—the signal extrac-
tion described in section 2.2.3 or the SPR described in section 3.2—has to be
performed to acquire the input signal for the reconstruction. All the physi-
cal effects that lead to a limited spatial resolution have to be corrected for
before the signal extraction step, and thus are not incorporated in the SIR
algorithm presented in this chapter.

Statistical model

In grating-based phase-contrast imaging we measure the gradient of the line
integrals of the decrement of the refractive index δ along the rays. The total
phase shift along the ith ray with length Li is given according to section 2.1

Φ(x, z) =

∫
Li

δ(x, y, z)k dy, (4.3)

where the ray travels along the y direction. This equation is related to the
quantity that is directly measured in grating interferometry—the refraction
angle—by

α(x′, z) =
λ

2π

∂Φ(x′, y′, z)

∂x′
, (4.4)

where the prime now denotes coordinates in the coordinate system rotated
around the z axis so that the beam direction points along y′. This equation
together with the equation for the total phase shift yields

α(x′, z) = ∂x′

∫
Li

δ(x′, y′, z)dy′. (4.5)
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We call this equation the forward model of our reconstruction problem. In
the following, we leave out the primes for matters of clarity. Adding the
discretization using voxel basis functions as discussed before this integral
now becomes

α(x, z) = ∂x

∫
Li

Np−1∑
j=0

δjχj(x, y, z)dy = ∂x

Np−1∑
j=0

δj

∫
Li

χj(x, y, z)dy. (4.6)

With the last result we can rewrite the forward model into a matrix equation
for the ith measurement of the refraction angle vector

αi = [∂xAδ]i =

Np−1∑
j=0

∂xaijδj, (4.7)

where the matrix A denotes the forward projection operation defined earlier.

We can use this system of NA equations to formulate a least-squares objective
function to get an estimate of the parameter vector δ

S =

NA−1∑
i=0

(
αi −

Np−1∑
j=0

∂xaijδj

)2

. (4.8)

However, from section 3.2 we know that each measurement αi has its own
statistical uncertainty σi. This can be included in equation (4.8) by attaching
a weighting factor wi = 1/σ2

i to each term in the sum, giving the following
objective function, which, when minimized, results in the weighted least-
squares estimator δ̂WLS

δ̂WLS = arg min
δ

NA−1∑
i=0

wi

(
αi −

Np−1∑
j=0

∂xaijδj

)2

. (4.9)

This will make sure that measurements with a higher statistical uncertainty,
i.e. that contain less reliable information, do not distort the resulting esti-
mate as much as in the unweighted case. In addition, the weights wi can be
modified with a mask to exclude measurements from the reconstruction that
are a-priori known to contain no reliable information. This can for example
be used to mask out corrupt projections in a sinogram, which would lead to
artifacts in the reconstruction if they were treated with the same weight as
correct projections. This mechanism will be used extensively in section 4.3
when the algorithm is tested on different cases of corrupt data.
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Log-likelihood formulation Equation (4.9) can also be derived in the
sense of a log-likelihood formulation. If we assume that the αi are realiza-
tions of a Gaussian distributed random variable A, i.e. Ai ∼ N (ᾱi(δ), σi),
the probability of observing a certain measurement for a particular set of
parameters δ is

Pr(A = α|δ) =

NA−1∏
i=0

P(Ai = αi|δ) =

NA−1∏
i=0

1√
2πσ2

exp

(
(αi − ᾱi(δ))2

2σ2

)
,

(4.10)
where

ᾱi(δ) = [∂xAδ]i. (4.11)

Equation (4.10) as the probability of observing a measurement α given a
fixed set of parameters δ can also be viewed as a function of the parameters
given a set of fixed measurements:

L(δ|α) = Pr(A = α|δ). (4.12)

In statistics this is then called the likelihood of δ being the true parameters
if a specific set of measurements has been observed. The method of maxi-
mum likelihood then seeks to maximize this function. Often, especially when
working with exponential probability functions, it is easier to use the natural
logarithm of the likelihood function, which is called the log-likelihood. For
equation (4.10) the log-likelihood is then

l(δ|α) = −
NA−1∑
i=0

log(
√

2πσ2)−
NA−1∑
i=0

1

2σ2
(αi − [∂xAδ]i)

2 (4.13)

As the first term of the log-likelihood does not depend on δ, it does not influ-
ence the parameter set that maximizes the function and thus can be dropped.
In the ML formalism the reconstruction is then a matter of minimizing the
negative log-likelihood (or maximizing the log-likelihood)

δ̂ML = arg min
δ

NA−1∑
i=0

1

2σ2
(αi − [∂xAδ]i)

2 , (4.14)

which is equivalent to minimizing the WLS objective of equation (4.9). In
most cases, however, —especially when working with noisy measurements—
estimating the true parameter set δ by maximizing the log-likelihood alone
is not sufficient. The problem of tomographic reconstruction is ill-posed, i.e.
there are many parameter vectors δ̂ that can lead to the specific measure-
ments α. The result of an unconstrained reconstruction, i.e. a reconstruction
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Figure 4.2: This figure illustrates an iterative reconstruction that only takes into account the
likelihood term, i.e. represents the unconstrained reconstruction. Panel (A) shows the image,
which was used as the initial guess for the reconstruction code and panel (B) the estimate
after 10 iterations.

that only takes into account the likelihood term, is shown in figure 4.2. The
left part of the figure represents the initial estimate, which the IR was started
with and the right part demonstrates the estimate after 10 iterations of the
unconstrained reconstruction. It is obvious that this nonsmooth solution is
not the correct one, the algorithm simply reached the nearest solution that
fulfills the maximum likelihood principle. To restrict the space of possible
solutions to the one that best explains the observed data, the likelihood is
augmented by an additional term that is commonly known as regularization
or penalty function. More details on the regularization that is used in this
work are presented in section 4.2.2. Usually this function is chosen in a
way to enforce the reconstructed distribution of δ to be smooth. The final
objective function is

δ̂ = arg min
δ

l(δ|α) + λR(δ), (4.15)

where λ is a tunable parameter that determines the strength of the regu-
larization term with respect to the likelihood term. The right choice of λ
will represent a compromise between spatial resolution and noise reduction
of the reconstructed δ vector. Equation (4.15) is also called penalized log-
likelihood (Fessler, 2000).
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Relation to Bayesian statistics This last equation can also be derived
using a Bayesian formulation.

Bayesian statistics use probability distributions to test hypotheses based on
experimental observation. In the case of tomographic reconstruction the
hypothesis to test is: ”given this specific measurement α, δ are the true
reconstructed values”. So, let

p(δ|α) (read: probability of δ given α) (4.16)

be the probability that δ are the correct parameters for fixed experimental
outcomes α. In Bayesian terminology this is called the posterior probability.
According to Bayes’ Theorem (Bayes and Price, 1763; Laplace, 1986) it is
defined as

p(δ|α) =

=L(δ|α)︷ ︸︸ ︷
p(α|δ) ·p(δ)

p(α)
. (4.17)

In this equation the probability of acquiring experimental results based on
fixed model parameters is equal to the measure of how likely the parameters
are the true ones, when given a specific experimental outcome. This is the
same notation that was used in the previous section on the derivation of the
ML formulation. In contrast to the ML formulation, the posterior probabil-
ity contains two additional terms. The term p(α) denotes the probability
distribution of the experimental data points, but as it does not depend on
the variable parameters δ it represents a multiplicative constant, which can
be disregarded in the following steps. The second additional term p(δ), how-
ever, describes the probability distribution of the estimated parameters. In
Bayesian terminology this distribution is called the prior. It encapsulates
every a-priori knowledge∗ that one has on the estimated parameters. In im-
age reconstruction this prior knowledge can be for example the notion that
the reconstructed image has to be locally smooth or individual voxels having
specific values.

In this context the aim is to find the parameter set δ̂ that maximizes the
posterior probability

δ̂ = arg max
δ

p(δ|α) = arg max
δ

p(δ)

p(α)
· L(δ|α) (4.18)

Discarding the probability distribution of the experimental data and taking
the natural logarithm of equation (4.18) leads to the following optimization

∗In Bayesian inference this prior knowledge can also be purely subjective.
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problem for estimating δ

δ̂ = arg max
δ

log (L(δ|α)) + log (p(δ)) , (4.19)

where δ̂MAP is now accordingly called the MAP estimator, i.e. the argument
that maximizes the posterior probability. Obviously this is equivalent to
the formulation of the penalized likelihood objective function (4.15) stated
earlier.

If there is no prior knowledge, i.e. p(δ) is constant, equation (4.17) will just
state that the posterior probability is equal to the likelihood function and
the MAP estimator becomes the ML estimator (4.14) again.

4.2.2 Regularization

As already stated earlier, the maximum likelihood formulation by itself is nu-
merically unstable, because it represents an ill-posed inverse problem, with
the consequence that the space of possible solutions δML that maximize the
likelihood is infinite. It was also noted already that a remedy for this problem
is to add an additional term, which in mathematics is called regularization. In
the Bayesian framework this regularization term represents prior knowledge
about the solution and, in conjunction with the maximum likelihood estima-
tor, the resulting statement constitutes the maximum-a-posteriori principle.

In this section several possibilities of implementing prior knowledge in the
form of regularization terms are presented. Most regularization approaches
in CT reconstruction are based on locally penalizing the differences be-
tween neighboring voxels as shown in figure 4.3. The general formulation
is then (Fessler, 2000)

R(x) =
∑
i

∑
j∈Ni

wijΦ (xi − xj) (4.20)

where the first sum index i runs over all image voxels and the second sum
index j over all the direct neighbors of voxel i, with Ni denoting the direct
neighborhood of i. The coefficients wij are a weighting factor that is 1 for
adjacent neighbors, 1/

√
2 for diagonal neighbors in the same plane and 1/

√
3

for diagonal neighbors in the adjacent planes to account for the varying inter-
voxel distances in the individual differences. Finally, Φ(x) is an arbitrary
scalar potential function, which—in the ideal case—is a convex function to
keep the optimization stable. Two common choices for Φ(x) are a simple
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Figure 4.3: Basic principle of locally re-
stricted regularization. For each voxel (or-
ange) in the current estimate of the recon-
structed volume, the difference (arrows) of
this voxel to its direct neighbors (blue) is com-
puted. After applying a potential function to
each difference, the sum of all function evalu-
ations is added to the objective function as a
penalty.

quadratic function and the Huber potential. For the quadratic potential
function the regularization is defined as

RQ(x) =
∑
i

∑
j∈Ni

wij (xi − xj)2 , (4.21)

so the summation is performed over the quadratic differences between the
neighboring voxels. For large differences between neighboring voxels this
results in a large value for the regularization term, preventing the recon-
structed image to become non-smooth. This basically can be interpreted as
a Gaussian prior distribution of the next-neighbor differences in the Bayesian
formulation.

The second common regularization term is based on the Huber potential
function (Huber, 1964). This function is piecewise defined with a quadratic
and linear part as

Φ(x, γ) =


(x)2

2γ2
for |x| ≤ γ

|x|−γ/2
γ

for |x| > γ
, (4.22)

where γ is called the threshold and specifies the value that marks the tran-
sition from quadratic to linear behavior. This convex function and its first
derivative are continuous at the threshold value.

The regularization based on this potential function is then defined as

RH(x,m, γ) =
∑
i

mi

∑
j∈Ni


(xi−xj)2

2γ2
for |xi − xj| ≤ γ

|xi−xj |−γ/2
γ

for |xi − xj| > γ
, (4.23)
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Figure 4.4: Comparison of the quadratic (orange curve) and Huber (blue curve) potential
functions. The Huber threshold γ is shown in red and has a value of 3.0. The quadratic
function is normalized to have the same scale as the quadratic part of the Huber function.

where again the first sum over i is performed over all image voxels and j is the
index running over the direct neighbors of voxel i. The reason for using such a
regularization term is to preserve edges that are present in the image that are
not to be smoothed out. How this is accomplished is explained with the help
of figure 4.4. For a more fine grained application of this regularization it can
also be augmented by a mask m that restricts the effect of the regularization
to certain voxels. An example of where this is useful is given in section 5.1.3.

In figure 4.4 a comparison between the quadratic (orange curve) and the Hu-
ber (blue curve) potential functions is presented. Both functions are plotted
for the range x = (−10.0, 10.0). The threshold for the Huber function is set
to γ = 3.0 and is marked with the red lines in the figure. The quadratic
function is normalized to have the exact same values as the quadratic part
of the Huber function. It can be clearly seen from the plot that for x larger
than the threshold the values of the quadratic function are much larger than
those of the Huber potential; thus, in terms of regularization, large differ-
ences between neighboring voxels are much more penalized in the quadratic
case, forcing the voxel values to become much more similar during the min-
imization. This, in turn, leads to the statement that by using the Huber
regularization term large voxel differences, which are likely to represent real
sharp edges in the reconstructed volume, are penalized only linearly, while
already more or less uniform areas are penalized quadratically.

A third regularization term used in this thesis is based on a slightly dif-
ferent kind of prior knowledge. It is now well known that, in contrast to
conventional CT, where the noise power spectrum (NPS) is largest for high
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frequencies, the noise in PCCT from grating interferometry is located more
in the low frequency part of the spectrum (Köhler et al., 2011). This means
that fluctuations in the reconstructed volume are of a longer range than
usually observed in CT reconstructions and the concept of regularizing the
differences between adjacent voxels as in the quadratic and Huber case is—
while still effective—physically not perfectly suited for the noise properties of
PCCT reconstructions. To remedy this problem another regularization term
is proposed that can potentially be tuned to specific parts of the NPS. We
call it the ’mean regularization’. It is defined as

RM(x, σ) =
∑
i

(xi − 〈xi〉σ)2 , (4.24)

where 〈x〉σ is the mean of the neighborhood of size σ around a voxel.

The last regularization term developed in the course of this thesis is called
bone regularizer, as it was specifically designed for the purpose of bone ar-
tifact reduction (BAR). It is based on the assumption that the values in
parts of the image are known a-priori. Consequently, the term is defined
as the squared difference between the voxels in the reconstructed image and
another set of corresponding voxels a containing the a-priori known values.
The definition is

RB(x,a, b, c) =
∑
i

bi(xi − c · ai)2, (4.25)

where the mask b specifies the parts of the image, which the regularization
is supposed to have an effect on. The scalar factor c can be used to further
scale the a-priori known values in the voxel set a. This term will be used
in sections 5.1.3 and 5.1.4 to reduce the artifacts originating from voxels
containing no reliable DPC signal because of strong absorption, scattering
and phase wrapping by replacing these voxels with the corresponding ones
taken from an absorption reconstruction scaled by c = δ/β.

4.2.3 Minimization

Just as a reminder, the complete cost function is restated here

δ̂ = arg min
δ

∑
x,θ

wx,θ

(
αx,θ −

∑
j

∂xA
θ
x,jδj

)2

+
∑
k

λkRk (δ) , (4.26)

with Rk being one or more of the regularization terms described above, each
with its own strength parameter λk. The single index of the outer sum has
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now been replaced with the sinogram coordinates: the projection angle θ and
the detector channel x

For the minimization procedure we chose a standard conjugate gradient (CG)
algorithm. This algorithm is similar to the method of steepest descent, where
a function is minimized by calculating its gradient and then doing a line
search to find the minimum along this direction and repeating this until
the global minimum of the function is found. In CG after each line search
one does not use the gradient at this point as a new search direction, but
calculates a new direction that is conjugate to the previous one by using
Gram-Schmidt orthogonalization. The CG algorithm, however, is in its ba-
sic form suitable only for the minimization of linear problems, i.e. purely
quadratic functions that have a linear gradient. If the Huber term is used for
regularization the cost function becomes partly non-quadratic, which means
that its first derivative is non-linear. Because of this fact we use the non-
linear variant of the conjugate gradient, which can be used for more general
optimization problems. A pseudo code representation of the algorithm with
comments is given in algorithm 1. The main difference between linear and
non-linear CG is that the calculation of the step size to the minimum along
the search direction is more complicated. In our non-linear conjugate gradi-
ent (NLCG) implementation we find the minimum along the search direction,
i.e. the step size κ that minimizes the one-dimensional function along the
search direction d f(x + κd), by setting the gradient of this function with
respect to κ to 0 and following the Newton-Raphson method. This method
is based on a truncated Taylor expansion of the function

f(x+ κd) ≈ f(x) + κ

[
d

dκ
f(x+ κd)

]
κ=0

+
κ2

2

[
d2

dκ2
f(x+ κd)

]
κ=0

(4.27)

= f(x) + κ[f ′(x)]Td+
κ2

2
dTf ′′(x)d, (4.28)

and
d

dκ
f(x+ κd) = 0 ≈ [f ′(x)]Td+ κdTf ′′(x)d. (4.29)

To apply this we have to calculate the gradient and the Hessian of our cost
function (4.26). The gradient calculation cannot be avoided because it is also
needed for other parts of the algorithm. In order to not having to calculate
the Hessian, which would be computationally very expensive considering the
amount of data in CT, we use the relation that is directly given in equa-
tions (4.27) and (4.28)

dTf ′′(x)d ≈
[
d2

dκ2
f(x+ κd)

]
κ=0

, (4.30)
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Algorithm 1 Pseudo code representation of the nonlinear conjugate gradient
algorithm with Newton-Raphson line search and Polak-Ribiere formula for
calculating conjugate directions

Precondition: f(x) = l(x) + λR(x) is a convex function not necessarily
purely quadratic, x0 is a first guess of the solution
// preliminary initializations
i ← 0 // initialize loop variable for main iterations
x ← x0

r ← −f ′(x)
d ← r // initial search direction equal to gradient
nnew ← ‖r‖2 // gradient norm
gprev ← 0 // gradient in previous iteration
while i < imax do // begin iterative minimization

nd ← ‖d‖2 // norm of search direction vector
j ← 0 // initialize loop variable for Newton-Raphson iterations
while j < jmax do

κ ← −[f ′(x)]Td/dTf ′′d
x ← x + κd // update of the solution vector by advancing

along the current search direction by the step size
j ← j + 1

r ← −f ′(x)
nold ← nnew

nnew ← ‖r‖2

βPR ← [nnew − [f ′(x)]Tgprev]/nold // Polak-Ribiere formulation
for calculating conjugate search directions
gprev ← f ′(x) // store gradient for next iteration
d ← r + βPRd // update search direction
i ← i+ 1

which is much easier to calculate since we do not need the second derivative
with respect to a vector but only with respect to a scalar. The resulting step
size is then

κ =
[f ′(x)]Td[

d2

dκ2
f(x+ κd)

]
κ=0

, (4.31)

which is evaluated several times to make the line search more accurate.

What we do need to calculate is the first order gradient, i.e.

∂

∂δj

[
l(δ) +

∑
k

λkRk(δ,θ)

]
. (4.32)
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Fortunately the cost function is a sum of multiple terms, so it is possible to
calculate the gradient of the likelihood and the regularization terms sepa-
rately. For the log-likelihood term the gradient is calculated as

∂ l(δ)

∂δj
=

∂

∂δj

∑
x,θ

wx,θ

(
αx,θ −

∑
j

∂xA
θ
x,jδj

)2

(4.33)

= 2
∑
x,θ

wx,θ∂xA
θ
x,j∂xA

θ
xδ − 2

∑
x,θ

wx,θαx,θ∂xA
θ
x︸ ︷︷ ︸

gα

(4.34)

or in vector notation

l′(δ) = 2
∑
x,θ

wx,θ(∂xA
θ
x)

T(∂xA
θ
x)δ − gα, (4.35)

where (∂xA) is the differential forward projector. Its transpose represents
the backward projection. Also note that the second term gα is constant and
can thus be precomputed and stored. In addition we use the equality

(∂xA)T = AT∂T
x = AT(−∂x), (4.36)

with the interpretation of the partial derivative as a finite difference matrix.

The approximation of the Hessian, i.e. the denominator of κ, which is needed
for the step size, is calculated as

∂2

∂κ2
l(δ + κd) =

∂2

∂κ2

∑
x,θ

wx,θ
(
αx,θ − ∂xAθxδ − κ∂xAθxd

)2

∣∣∣∣
κ=0

(4.37)

= 2
∑
x,θ

wx,θ(∂xA
θ
xd)2, (4.38)

so the complete step size definition is

κ =
[l′(δ)]Td

2
∑
x,θ

wx,θ(∂xAθxd)2
. (4.39)

The same calculations have to be done for each regularization term. The
explicit expressions for all regularization terms can be found in appendix A.3.
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4.3 Evaluation of the algorithm

In this section the performance of the algorithm is tested against common
cases of corrupt or incomplete data. The tests are performed on two different
sets of data. The first part will deal with simulated projection data, whereas
the second part will use an experimentally obtained data set to verify the
algorithm. The reconstruction algorithm was tested on five different cases of
corrupt or incomplete projection data and for reference, also a reconstruction
from the complete data set was performed. In the order they are presented
in the following sections, these six scenarios include:

(A) Full dataset: The reference reconstruction was performed on the com-
plete data set.
(B) Noisy projections: For the simulations, Poisson noise was added to
the raw detector images before doing the phase retrieval to simulate a scan
with less exposure. The experimental data was measured with different ex-
posure times, so one of the scans with low exposure was chosen for this test.
(C) Stationary gaps: In each projection, the information in several pixel
columns was removed, i.e. those pixels were set to zero, to simulate sta-
tionary gaps in the projections that could be caused by tiling of individual
detector modules or by seams created during the fabrication of larger grat-
ings when stitching multiple smaller ones.
(D) Missing blocks of projections: The information in several contigu-
ous projections in the angular range of 0◦–180◦ and in the corresponding
projections in the range 180◦–360◦ was removed to simulate a CT scan that
is angularly not fully sampled. This case corresponds to a slight tomosyn-
thesis problem.
(E) Few projections: The number of projections is reduced to give a scan,
which is undersampled by a factor of about 4, when taking into account that
for an FBP reconstruction the ideal number of projections Nproj should be
larger than π/2·Ndet (detector channels) to satisfy the Nyquist criterion (Kak
and Slaney, 1988), i.e. to be free from aliasing artifacts.
(F) Very few projections: The number of projections is further reduced
to an undersampling factor of about 8.5 with respect to the Nyquist criterion
to produce even more aliasing artifacts for the algorithm to remove.

4.3.1 Synthetic data

For the first test of how well the algorithm can deal with corrupt or missing
information, simulated data of a numerical phantom was used. In this section
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the procedure of creating the test data is explained.

Simulation and preparation of projection data

For the simulation a framework based on wave propagation was used. A
detailed description of this framework can be found in Malecki et al. (2012).
This framework is able to model all components of an actual experimen-
tal setup. The simulation was started with a monochromatic plane wave
with an energy of 23 keV. The plane wave was used to simulate a parallel
beam geometry. For the grating interferometer two gratings were modelled.
The phase grating G1 consisted of silicon with a period of 4.80 µm and a
height of 29.5 µm. The analyzer grating G2 consisted of gold with a pe-
riod of 2.40 µm and a height of 74.0 µm. The distance between the two
gratings was 48.1 cm. Directly behind the analyzer grating a detector was
placed. This detector was modelled with the attributes of a PILATUS pho-
ton counting detector with silicon as the sensor material and a pixel size of
15.36 µm× 15.36 µm. As a sample, a well defined numerical phantom with
dimensions 1024× 1024× 128 px3 was created, which is shown in

Figure 4.5: This figure shows a slice of the
numerical phantom used as input for the sim-
ulation. The values for the different parts
of the phantom, especially the small cylin-
ders, are given in table 4.1. The large cylin-
der itself is simulated as plastic and filled
with formalin. The region outside is made of
water. The dimensions of the phantom are
1024× 1024× 128 px3.

figure 4.5. It contains a plastic cylinder embedded in water and filled with
formalin. Inside the large cylinder several small cylinders consisting of differ-
ent materials found in breast tissue are placed. An overview of the materials
and their δ-values is given in table 4.1 with symbols corresponding to those
in the image of the phantom. The values were chosen to simulate a sample
consisting purely of soft tissue with very weak contrast between the individ-
ual parts. For each of the simulated 360 projections a phase stepping with
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Table 4.1: This table gives the numerical values of the phan-
tom that was used in the simulations. The index corresponds
to the symbols used in figure 4.5.

Index δ tissue name

I 4.059× 10−7 adipose tissue

II 4.643× 10−7 parenchyma

III 4.564× 10−7 tumor

IV 4.675× 10−7 ductal structure

V 4.360× 10−7 water

VI 4.086× 10−7 tube (plastic)

VII 4.466× 10−7 formalin

8 images over one period was performed. Every 60 projections a block of 20
simulated flatfield projections was inserted. A last, optional step was to add
Poisson noise directly to the simulated detector images before continuing on
with the statistical phase retrieval that was presented in section 3.2, to simu-
late noisy acquisitions. The combination of phantom dimensions, dimensions
of the incoming plane wave and the detector pixel size was a compromise be-
tween getting reasonably large projection images, providing the simulation
program enough resolution to actually acquire a phase signal and keeping
memory consumption and simulation times feasible. The dimensions of the
final projections due to these three parameters were 33× 257 px2 and because
of aliasing effects in the simulation code at the projection boundaries they
were cropped in the phase retrieval to the final dimensions 28× 251 px2.

Results

The results of the simulation study are summarized in figures 4.6 and 4.7.
Shown from left to right are the sinogram, the FBP reconstruction and the
SIR reconstruction, respectively. The parameters for the SIR reconstructions
are summarized in table 4.2. Row A corresponds to the first of the six cases,
the reference scan with full sampling and no noise. Before the phase retrieval
only minimal Poisson noise was added to the simulated raw acquisitions,
resulting in a mean photon count of about 1300 per pixel and stepping image,
so it can be considered to be noise free for all practical purposes. Because
there is neither corrupt nor missing data there is no visible difference between
the FBP and SIR reconstructions.
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Figure 4.6: First part of the results of the evaluation of the algorithm with simulated data.
The left column shows the sinogram, the middle and right columns the reconstructions with
FBP and SIR, respectively. A: full dataset; B: noisy data; C: stationary gaps. The second part
is shown in figure 4.7.
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For the second case—noisy projections—more Poisson noise was added to the
raw projections, while reducing the number of counts, resulting in a mean
photon count of around 13 photons per pixel and acquisition. The result is
shown in row B. With this amount of noise the FBP begins to have trouble
differentiating the tumorous tissue (the cylinders marked III in figure 4.5)
from the surrounding formalin. However, in the SIR reconstruction the con-
trast between tumor and formalin is lower than in the full reconstruction, but
it is still clearly visible. In addition, the noise has been completely removed
from the reconstruction.

The third case—shown in row C—simulates stationary gaps, i.e. missing
pixels at the same position for every projection. In this case we placed a 5 px
wide gap every 11 px, which amounts to a fraction of almost 30% of pixels
with no information. In the FBP reconstruction these gaps lead to severe
ring artifacts and streaks radiating from the inserts with high contrast to the
surrounding formalin. Although all of the inserts can still be clearly distin-
guished, the artifacts make it impossible to tell if there is another feature
hidden in the surrounding formalin. The rings and streaks are successfully
removed by the SIR reconstruction by modifying the statistical weights in
the cost function to not consider the pixels that contain no information. The
gaps are then filled according to the a-priori knowledge of the edges in the
reconstructed volume, i.e. only governed by the regularization. However,
due to gaps lying exactly on top of the boundary between plastic cylinder
and formalin the algorithm cannot determine the values inside the container
quantitatively anymore. While the values might not be quantitative any
longer, the visible contrast between the inserts is faithfully reconstructed.
Also, the formalin filled region around them is reconstructed as a flat area
as it should be.

For the next case the angular views between 45◦ and 60◦ as well as between
225◦ and 240◦ of the 360 projections in the full scan were removed from
the sinogram volume. The sinogram in row D gives an impression on how
much of the data is missing. The FBP reconstruction exhibits the artifacts
that are typical for the reconstruction of a tomosynthesis acquisition, where
only a part of the angular range is recorded. These artifacts manifest as
streaks in the angular direction of the missing projections because in the
final step of the FBP, which is basically a sum of all the filtered and back
projected projections, these missing projections do not contribute to the
final image. The SIR algorithm on the other hand is able to slowly fill the
gaps in the sinogram and create an almost flawless reconstruction. Here the
missing projections are masked out in the cost function by modifying the
statistical weights, i.e. we tell the algorithm that these projections contain
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no information at all and it should fill the missing data with the help of the
regularization alone.

The last two cases are related in that they both simulate different levels
of undersampling artifacts. We know from Kak and Slaney (1988) that a
certain minimum number of projections is needed for an artifact-free FBP
reconstruction. This number is calculated by Nproj ≈ π/2·Ndet, so around 1.6
times the number of detector channels or number of beams per projection.
For this phantom simulation with a sinogram width of 251 px this amounts
to a minimum number of projections of 394, so theoretically the full scan is
already undersampled. But we also have to consider what is contained in
the field of view. The sample itself only occupies around 210 px of the full
detector width. This means, that for an artifact-free reconstruction of the
sample we need at least 330 projections, which is fulfilled in the full scan.
The scan in row E was simulated with an undersampling of around 3.7, by
reducing the number of projections from 360 to 90. The sinogram in figure 4.7
E is just stretched to have the same height as in the other rows. In the FBP
reconstruction the undersampling—or aliasing—artifacts are clearly visible.
The SIR reconstruction was done by first creating an empty sinogram with
the dimensions of the original full scan and then distributing the remaining
90 projections evenly in there. The parts in between without information are
masked out via the statistical weights. The result is a reconstruction that is
closer to the original one from the full scan than the FBP reconstruction.

Table 4.2: This table gives the reconstruction parameters
for the algorithm verification with synthetic data.

Case # iterations λH γH

A 50 1.0 · 10−4 1.0 · 10−3

B 50 2.0 · 10−4 3.0 · 10−4

C 150 1.0 · 10−4 1.0 · 10−3

D 50 1.0 · 10−4 1.0 · 10−3

E 250 1.0 · 10−4 1.0 · 10−3

F 500 1.0 · 10−5 1.0 · 10−4

In the last case shown in row F the undersampling is increased even further.
Now only 40 of the original 360 projections are used, giving an undersam-
pling of around 8. In the FBP reconstruction we find that the severity of the
aliasing artifacts is much more pronounced than in the previous case. How-
ever, the SIR algorithm is still able to reconstruct the flat, formalin-filled
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Figure 4.7: Second part of the results of the evaluation of the algorithm with simulated
data. The left column shows the sinogram, the middle and right columns the reconstructions
with FBP and SIR, respectively. D: missing blocks of projections; E: short scan (90 out of
360 projections); F: ultrashort scan (40 out of 360 projections). The first part is shown in
figure 4.6.
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region and all of the inserts. The only drawback is that the relative contrast
between the tumorous tissue (the cylinders marked III in figure 4.5) and the
surrounding formalin, as well as between water (the cylinder marked V in
figure 4.5) and formalin is drastically reduced. Still, all of the inserts can be
clearly distinguished from the background.

4.3.2 Experimental data

However, software phantoms with distinct flat areas like the one used here
favor every reconstruction algorithm and especially iterative algorithms that
use any kind of edge preserving regularization or filtering. So using such a
phantom can only be a part of testing the capabilities of an algorithm and
one should not base the evaluation of algorithm performance solely on the
study of analytical phantoms. These facts are the reason for performing the
same study on medically relevant experimental data. So, in this section, the
algorithm is tested with experimentally obtained measurements on the same
cases of corrupt data as in the previous section. We use the PCCT scan of
a human heart performed at a laboratory-based three-grating interferometer
for this evaluation.

4.3.2.1 Experimental setup

The measurements were performed at a three-grating interferometer in a
laboratory-based setup. It consists of a rotating anode X-ray tube as the
source. The source grating G0 is made of gold with a period of 5.4 µm and a
height of 65.0 µm. The phase grating G1 consists of nickel and is 8.0 µm high
with a period of 5.4 µm. With these specifications the grating is optimized for
an X-ray energy of 23.0 keV. Finally, the analyzer grating G2 also consists of
gold with a height of 70.0 µm and a period of 5.4 µm. For this measurement
the three gratings are arranged in a symmetrical setup with inter-grating
distances of 80 cm. The sample is placed 130 cm in front of the source, the
phase grating 7 cm further down the beam. The distance between the sample
and the detector is 94 cm. Due to the placement of all these components the
beam characteristic is that of a minimal cone with a sample magnification of
1.72. The detector is a single-photon counting PILATUS 100K with a pixel
size of 172.0 µm× 172.0 µm and an effective area of 487 px× 195 px. The
field of view, however, is restricted to a width of 420 px due to the limited
size of the gratings. A not-to-scale, schematic view of the three-grating setup
is given in figure 4.8.
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Figure 4.8: Schematic view of the three-grating interferometer used for the tomographic
measurements of the heart sample for the verification of the statistical reconstruction algorithm.
The different parts are: T - X-ray tube; G0, G1, G2 - source, phase and analyzer gratings; S -
rotation stage with attached sample; D - X-ray detector.

The sample that is presented contains parts of a human heart—mostly fat and
muscle tissue—fixated in formalin and put in a plastic cylinder. In addition,
the cylinder contains a PMMA rod to be able to quantitatively calibrate the
resulting reconstructed values. To avoid phase wrapping at the edges of the
container it was placed in a water bath. Figure 4.9 gives an overview of
the different parts of the sample. The X-ray tube was operated at a voltage
of 40 kV and a current of 70 mA. For the tomographic measurement 1200
angular views were recorded with 11 individual raw images during the phase-
stepping scan. For every 20 projections with sample in the beam a block of
5 flatfield projections was recorded. Each raw image acquisition was taken
with an exposure time of 3.6 s.

The complete tomographic scan was subsequently processed with the SPR
procedure (cf. section 3.2) extracting the differential phase signal and the
corresponding statistical uncertainties. For the verification of the new re-
construction algorithm the data set was prepared according to the six cases
presented in the introduction to this section and reconstructed on one hand
with a conventional FBP with a Hilbert filter and on the other hand with
the SIR algorithm as presented in section 4.2. In the next section both
reconstructions are compared for each of these cases.
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Figure 4.9: Overview of the different parts contained in the human heart sample.

4.3.2.2 Results

The results of this study are presented in figures 4.10 and 4.11. As in the sec-
tion about the synthetic data, the figures are presented in three columns, with
the left one showing the sinogram, on which the reconstructions are based
and the middle and right column displaying the FBP and SIR reconstruc-
tions, respectively. A summary of the parameters for the SIR reconstructions
is given in table 4.3.

The reconstruction results of the full scan is shown in row A. The mean
photon count per pixel and acquisition is around 2300, so it can be considered
free of noise for all practical purposes. With a detector width of 420 px and
the number of projections of 1200 it is also more than fully sampled and
aliasing or undersampling artifacts are not expected to show up in the FBP
reconstruction. A look at the figure confirms this. When comparing this
reconstruction to the one performed with the SIR algorithm, however, it
becomes clear that by using the new algorithm there is still some room for
improvement. The iterative reconstruction appears much sharper than the
FBP reconstruction. This demonstrates that even under ideal experimental
conditions the prerequisites for the FBP can never be fully met.

The next case—shown in row B—incorporates a measurement with reduced
statistics. To be precise, the exposure time of each acquisition was reduced
from 3.6 s to 0.144 s, which amounts to 1/25 of the exposure time used in the
fully sampled scan. Accordingly the mean number of photons detected per
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pixel and acquisition is decreased to around 95. This decrease in statistics
leads to a substantial amount of noise in the FBP reconstruction, obstructing
most of the fine details. Especially in the fat tissue the distinction between
noise and actual features is not clear. The SIR algorithm, however, is able
to reduce the noise in the flat regions, while keeping the features intact.
This works due to the combination of the statistical uncertainties in the
likelihood term, which identifies pixels that most probably contain noise, and
the edge preserving Huber regularization with carefully chosen parameters.
Comparing the SIR reconstruction in row B with the one from the full scan
in row A we see that apart from a slight reduction in overall contrast most
of the fine details match between the two images.

For the case of stationary gaps the fraction of almost 30% of pixels with
no information is kept the same as for the synthetic data in the previous
section. Due to the larger detector width the gaps were set to 8 px and
placed every 19 px. The distribution of the missing data in the sinogram,
as well as the two reconstructions are shown in row C. The observation we
can make from the FBP reconstruction is the same as for the synthetic data.
The gaps lead to ring and streak artifacts, although not as pronounced as
for the phantom. This can be explained by the distribution of image values.
While for the phantom different δ values are concentrated in objects with
very sharp edges, they are much more evenly distributed in the heart sample
with much less sharp edges. Still, the artifacts make the identification of
small features a lot harder than in the full scan. In addition, a look at the
fat tissue suggests that the ring artifacts destroy the overall texture of the
flat regions. All of these effects are mitigated by using the SIR algorithm.
In a visual comparison between the SIR reconstructions from the sinogram
with gaps and from the full scan no significant differences become apparent.

Table 4.3: This table gives the reconstruction parameters
for the algorithm verification with experimental data.

Case # # iterations λH γH

A 50 7.0 · 10−4 1.5 · 10−3

B 50 2.0 · 10−4 3.0 · 10−4

C 50 1.0 · 10−4 1.0 · 10−3

D 150 1.0 · 10−4 1.0 · 10−3

E 30 1.0 · 10−4 1.0 · 10−3

F 100 1.0 · 10−5 1.0 · 10−4
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Figure 4.10: First part of the results from the experimental evaluation of the algorithm. The
left column shows the sinogram, the middle and right columns the reconstructions with FBP
and SIR, respectively. A: full dataset; B: noisy data; C: stationary gaps. The second part is
shown in figure 4.11.
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Row D presents the results of a scan with missing blocks of projections. In
contrast to the case of the synthetic data, where blocks spanning 15◦ were
missing, we removed two blocks from 45◦ to 75◦ and 225◦ to 255◦ from the
original sinogram. This means that we doubled the fraction of pixels with
no information. We did this in order to enhance the effect this has on the
reconstruction and to make the resulting artifacts even more visible. While
in the phantom case these tomosynthesis-like artifacts appeared as streaks
in the direction of the missing projections originating from the different in-
sets, the artifacts in the heart sample reconstruction with the FBP are even
more similar to those encountered in tomosynthesis due to the increased an-
gular range of the missing projections. Looking at the FBP reconstruction
we can see that the artifacts, instead of just streaks, appear as horseshoe
shapes originating from higher contrast, small features. In addition, there is
strong shadowing around the PMMA rod, which represents the object with
the highest contrast and the largest size in the reconstruction. In the SIR
reconstruction there are still some distortions from the missing data but the
overall quality of the image is significantly improved. Most of the horseshoe
artifacts have been removed with only some of them still visible in the center
of the image, where fat and muscle tissue meet. Also parts of the plastic
container are still blurry and were not faithfully reconstructed. The shadows
around the PMMA rod, however, have been perfectly removed. In summary,
the SIR reconstruction represents a more useful image for detecting small
features than the FBP reconstruction.

The last two cases are again scans with a reduced number of angular views.
Row E gives the results of a scan with an undersampling factor of around 4.4,
which is obtained by reducing the number of projections from the original
1200 to 150 at a detector width of 420 px. For a full sampling the minimum
number of projections would be about 660. The sinogram in the figure is
again just stretched to be aligned with the reconstructions. The FBP re-
construction exhibits the typical undersampling artifacts, which manifest as
simple radial streaks. These, of course, overlay the original structure of the
sample making the analysis of the image more difficult. In this case, however,
the artifacts are not yet severe enough to significantly impair the reconstruc-
tion. Still, the result obtained with the SIR algorithm is much closer to the
original reconstruction. As in the section on synthetic data a sinogram with
the original dimensions was created and evenly filled with the remaining pro-
jections before the actual reconstruction. Again, this leaves enough room for
the algorithm to fill the remaining pixels with meaningful data, resulting in
a smooth, artifact-free image.
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For the last case in row F the number of projections was further reduced to
75, giving an approximate undersampling factor of 8.8. With this amount
of missing data the artifacts in the FBP reconstruction become more severe
and start to look like noise. This leads to small features tending to get lost
within this artificial texture. The SIR algorithm is able to remove the texture
but in the process also starts to blur out some of the low-contrast features.
Especially in this case the choice of the parameters for the Huber regular-
ization plays an important role. It represents a trade-off between keeping
the features, which will also retain artifacts, and removing the artifacts com-
pletely while sacrificing small features. From table 4.3 it is apparent that the
parameters had to be set very differently from the ones in the other cases.
In the light of this the summary is that this is probably the most challenging
of all cases for the presented SIR algorithm.



Chapter 4. Statistical reconstruction framework 87

Figure 4.11: Second part of the results from the experimental evaluation of the algorithm.
The left column shows the sinogram, the middle and right columns the reconstructions with
FBP and SIR, respectively. D: missing blocks of projections; E: short scan (150 out of 1200
projections); F: ultrashort scan (75 out of 1200 projections). The first part is shown in fig-
ure 4.10.
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Figure 4.12: Tomography of a rat brain measured at a synchrotron. (A) DPC projection; (B)
full DPC sinogram; (C) corrupt DPC sinogram with stationary gaps; (D) SIR reconstruction of
the full sinogram; (E) SIR reconstruction of the sinogram with gaps; (F) FBP reconstruction
of the same corrupt sinogram.

4.3.3 Synchrotron data

An additional validation of the algorithm is shown in figure 4.12 for a data
set collected at a synchrotron facility. The reduction of artifacts arising from
stationary gaps (labeled C in the previous sections) is demonstrated on the
scan of a rat brain that was measured at the ESRF. For the tomographic
scan 600 projections were acquired. In addition 25 blank scans each before
and after the main projection block were recorded. The phase stepping was
done in 8 steps over 2 grating periods. One exemplary DPC projection after
the statistical phase retrieval is shown in panel (A) of the figure. Panel (B)
presents one complete sinogram, while panel (C) demonstrates the placement
of the stationary gaps. For reference, panel (D) illustrates the result of
applying the SIR algorithm on the full data set. Finally, panel (E) and (F)
show the reconstructions from the sinogram with gaps using SIR and FBP,
respectively. The enlarged area of the FBP reconstruction clearly shows the
severity of the artifacts originating from the gaps, manifesting as rings and
small streaks. These artifacts are almost completely eliminated in the SIR
reconstruction.
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Figure 4.13: Plots of the likelihood, i.e. the value of the objective function, with respect to
the iteration number for the six reconstructions from the synthetic data. Each graph is labeled
according to the lettering in the previous section.

4.3.4 Further analysis

In this section we will analyze some more properties of the algorithm.

The first part deals with the rate of convergence. The convergence properties
of the conjugate gradient algorithm have been thoroughly examined and dis-
cussed before (Shewchuk, 1994), so a mathematical analysis is omitted here.
Instead we show how long it takes the SIR algorithm to reach a convincing
reconstruction for each of the test cases from the previous section. The re-
sults are shown in figure 4.13. Visualized in the subfigures is the likelihood
at each iteration. The likelihood is calculated by evaluating the complete ob-
jective function (4.26) including the regularization with the parameters given
in table 4.2. The absolute value of the likelihood is not relevant—it depends
strongly on the statistical weights and the regularization parameters—so the
ordinate axis is labelled in arbitrary units. The curves for the first five cases
(A–E) have the same overall shape, strongly decreasing for the initial 5–10
iterations with a decreasing slope afterwards. It is obvious that for different
problems the number of iterations needed to obtain a good reconstruction
varies between the cases.

Especially difficult to reconstruct is case (C), i.e. the detector gaps, because
the gaps are positioned in a way to remove the information on the bound-
ary between plastic container and formalin. The short scan (E) takes even
longer to reach convergence due to the large amount of missing data (75%
of data missing). For case (F), where even more data is missing (around
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90% of the complete data), the likelihood curve takes on a completely differ-
ent shape. The curve strongly decreases for approximately 60–70 iterations
before it becomes more flat. It even increases slightly after iteration 150.
According to the definition of the CG the value of the objective function
should decrease at every iteration, but only if numerical errors are not taken
into account. These errors can for example occur due to round off errors in
the computer implementation or the inexact implementation of the forward
and back projector. In addition, the presented algorithm is used on partly
non-quadratic problems. Therefore a NLCG is used. It contains as one step
a one-dimensional line search. This line search is another source of numerical
inaccuracies.

The same plots of the likelihood at each iteration are shown for the ex-
perimental test cases in figure 4.14. The convergence behavior of (A) and
(B) are almost identical to the corresponding cases with the synthetic data
with convergence reached at about 10 and 30 iterations, respectively. We
can conclude that for fully sampled data sets the specific structure of the
reconstructed object does not play a significant role. The first difference in
convergence speed between synthetic and experimental data occurs for the
reconstruction from projection data with stationary gaps (case (D)). While
it took the algorithm over 100 iterations to get to the final reconstruction
for the synthetic data, the convergence behavior for the experimental data is
not significantly different from the full or the noisy scan. We can explain this
by the placement of the gaps on the sinogram. In the simulated sinogram
gaps were located directly on the boundary between plastic container and
formalin filling, making the reconstruction of the low frequency components
inside the container very difficult. The algorithm has to be iterated many
times before the estimate of the solution is visually satisfactory. The heart
sample, however, was placed slightly off of the center of rotation, which leads
to the container-formalin boundary to become visible under the gap for sev-
eral projection angles. The algorithm has more intact data to work with and
converges faster in this case.

While in the gap case the algorithm converged faster for the experimental
data because there was more data available, the opposite is true for the
reconstruction from the sinogram with missing angles (D). The size of the
blocks of missing angles has been increased to 30◦ compared to the 15◦ blocks
used for the simulated data. This increase in missing data is reflected in
an increase in the number of iterations needed to reach convergence. The
simulated data reconstruction is converged after about 20 iterations but the
experimental reconstruction takes roughly 80 iterations.
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Figure 4.14: Plots of the likelihood, i.e. the value of the objective function, with respect to
the iteration number for the six reconstructions from the experimental data. Each graph is
labeled according to the lettering in the previous section.

For the last two cases (E) and (F)—the undersampled scans—the opposite
is true. For the simulated data set the algorithm is iterated 5–10 times
longer than in the fully sampled case. The first of the two experimental
reconstructions on the other hand converges only marginally slower than the
fully sampled reconstruction and for the second reconstruction the number
of iterations is still on the same order of magnitude. This can be explained
with the content and frequency spectrum of the two samples. The phantom
contains much less high frequency components than the heart sample and the
fact that for the DPC signal the high frequency components are reconstructed
much faster than the low frequencies (Köhler et al., 2011) leads to a faster
convergence for the experimental data.

In the next part we highlight case (B) from the previous section by evaluating
how the noise power spectrum behaves for both the FBP and the SIR algo-
rithm. More specifically we look at the frequency dependent signal-to-noise
ratio (SNR). For this evaluation we utilize the reconstructions from the fully
sampled sinogram as noise-free ground truth and the noisy reconstructions
for estimating the noise power spectrum. The noise power spectrum itself
is estimated by first subtracting the noise-free reconstruction from the noisy
one and calculating the NPS each for the FBP and the SIR reconstruction
by

NPS = |F(δnoisy − δnoise−free)|2, (4.40)

i.e. the squared absolute value of the two-dimensional Fourier transform of
the difference. The NPS calculated this way is two-dimensional, which does
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Figure 4.15: Radial signal-to-noise spectrum of the FBP and SIR reconstructions for the
simulated data set. The details of how the spectrum is calculated are given in the text.

not lend itself well for a qualitative and intuitive evaluation. Therefore, this
two-dimensional quantity is transformed to a one-dimensional one by taking
the average over the values in azimuthal direction. The resulting quantity
then represents the average power spectrum in the radial direction and is
correspondingly called the radial power spectrum.

The same calculations are performed on the noise-free reconstructions alone
to get the radial signal power spectrum (SPS), i.e. the power spectrum of the
noise-free signal. Dividing the SPS by the NPS we can get information on the
frequency dependent SNR. For the simulated data this quantity is illustrated
in figure 4.15 and for the experimental data in figure 4.16. A SNR below
1 means that the noise is so high that the underlying signal is not or only
barely visible and a SNR above 1 indicates a signal, which is not completely
obstructed by noise and thus features can be clearly distinguished. In both
figures SNR = 1 is indicated by the horizontal black line. The main message
of this analysis is that by reconstructing with the SIR algorithm the noise in
the images is reduced and the detectability of features in the high frequency
range is significantly improved. A look at figures 4.15 and 4.16 confirms
that indeed the SNR of the high frequencies is way below 1 for the FBP and
around or even above 1 for the line calculated from the SIR reconstructions.
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Figure 4.16: Radial signal-to-noise spectrum of the FBP and SIR reconstructions for the
experimental data set. The details of how the spectrum is calculated are given in the text.

4.4 Moving towards correct modelling of the

cost function

In section 4.2.1 it was stated that the basis for the development of the statis-
tical model is the assumption that the measured and extracted DPC data is
distributed following a Gaussian distribution. This, however, does not take
into account the periodic nature of the data. We have seen that the phase
gradient can only be measured in the interval [−π, π). If a gradient exceeds
this range it is wrapped back into it. Instead, Chabior (2011) proposes the
so called wrapped normal distribution as correctly describing the DPC statis-
tics, which is simply the normal distribution of a phase signal defined on the
unit circle. In this section an objective function on the basis of this distri-
bution in the log-likelihood formalism is derived. The probability density
function (PDF) of the wrapped normal distribution can be written as

f(X|µ, σ) =
1√

2πσ2

∞∑
n=−∞

exp

(
−(X − µ+ 2πn)2

2σ2

)
, (4.41)

where X is the random variable, µ the mean and σ the standard deviation.
This definition means that the resulting distribution is composed of a sum
of Gaussian distributions that are shifted by multiples of 2π around the
mean. Figure 4.17 plots this distribution for different values of σ and µ = 0.
We can see that for small σ, i.e. high SNR, the function can be very well
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Figure 4.17: Plot of the wrapped normal distribution (equation (4.41)) for different values of
σ.

approximated by a simple Gaussian. The limit for large σ or low SNR,
however, is the uniform distribution. This is also derived in Chabior (2011).

As this function is not easy to work with it is commonly approximated by
the von-Mises distribution. It is defined for an angular random variable X
as

f (X|µ, κ) =
exp (κ cos (X − µ))

2πJ0 (κ)
, (4.42)

where µ is again the mean, κ is equivalent to 1/σ2 in the normal distribution
and J0 is the zeroth order Bessel function of the first kind. This distribution
defines the probability of measuring a realization of X on the unit circle when
the mean and the variance-equivalent κ are given. In the likelihood formalism
we seek the most likely values of these parameters given an already measured
realization of X. The likelihood function for the von-Mises distribution is
then written as

L (µ, κ|X) =
n∏
i=1

f (xi|µ, κ) =
n∏
i=1

exp (κ cos (xi − µ))

2πJ0 (κ)
(4.43)

Now we can rewrite this equation in the notation already used in 4.2.1
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L (δ, σ|α) =
∏
x,θ

f
(
αθx|δ, σ

)
(4.44)

=
∏
x,θ

exp

(
1

(σθx)2
cos

(
αθx −

∑
j

∂xA
θ
x,jδj

))
2πJ0

(
1

(σθx)2

) (4.45)

= exp

(∑
x,θ

1

(σθx)
2

cos(αθx −
∑
j

∂xA
θ
x,jδj)

)
·
∏
x,θ

1

2πJ0

(
1

(σθx)2

)
︸ ︷︷ ︸

constant

,

(4.46)

where δ is the vector of reconstructed values, α the vector of measured
projection values, x is the coordinate along the width of the detector and θ
is the coordinate indicating the angular view in sinogram space. The second
parameter κ of the von-Mises distribution has now been replaced by the
inverse of the variance of the measurements 1/σ2. Of course we do not want
to maximize the likelihood itself but rather its logarithm

l(δ, σ|α) =
∑
x,θ

1

(σθx)
2

cos(αθx −
∑
j

∂xA
θ
x,jδj) (4.47)

In its basic form this equation is very similar to equation (4.9) with the
exception that the difference between measured data and the model is no
longer squared but becomes the argument of a cosine function. This cosine
function poses a problem regarding the optimization of the objective. While
the cost function derived from the Gaussian distribution is squared and thus
convex with a global optimum, equation (4.47) is periodic. What this means
is that there is no longer a single optimum, but multiple ones. These multiple
optima alone would not pose an unsolvable problem, one would just have to
try to avoid local optima by, for example, a clever choice for the starting
values. In the case of the cosine function, however, all optima have the same
value, so it becomes a lot harder to find the correct one. Experiments with
the non-linear conjugate gradient from section 4.2.3 show that this algorithm
is not the ideal one to solve for this objective. Finding or developing an
algorithm for this kind of problem, however, exceeds the scope of this thesis
and is left for further research.
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4.5 Summary

In this chapter the development and validation of a statistical iterative re-
construction algorithm for grating-based phase-contrast CT was presented.
The goal of this algorithm was to be able to reconstruction PCCT data that
is noisy or otherwise corrupt or incomplete. First, the physical model of the
reconstruction problem was described in detail with an emphasis on the un-
derlying statistical model. This statistical model was derived, starting with
the line integrals for the total phase shift, resulting in an ill-posed minimiza-
tion problem with an objective function that is called penalized weighted
least-squares, penalized log-likelihood or posterior probability, depending on
the formalism. We gave some examples of terms that can be used to con-
strain the solution space of this problem. In a next step the algorithm was
validated first with the simulation of an analytical phantom and afterwards
with real experimental data obtained at a laboratory-based grating interfer-
ometer. The validation was done on different scenarios of corrupt or missing
data ranging from noisy projections to data sets with very few angular views.
We found that in most simulated cases the algorithm performs as expected,
giving well defined reconstructions. The more important finding, however,
was that even for the experimental data set the SIR results were very close
to the fully sampled, noise-free reconstruction for almost all of the different
scenarios. Finally, the convergence and frequency dependent SNR analyses
showed that the algorithm converges reasonably fast for all scenarios and
both data sets and is able to improve the SNR especially for the high fre-
quencies, where it is unsatisfying when analytical reconstruction algorithms
are used. The chapter ended with an outlook to a more accurate design of
the statistical model for the differential phase-contrast problem, which would
require a totally different method for the minimization.
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Chapter 5

Imaging application

In this chapter two individual applications of the algorithm developed in the
previous chapter are presented. The first application is the reduction of arti-
facts caused by strongly absorbing and scattering objects (section 5.1). In sec-
tion 5.1.3 BAR is demonstrated on a synchrotron scan of a mouse with bones.
The main results of this section are currently under preparation for publica-
tion. In section 5.1.4 the algorithm is then applied to a laboratory-based scan
of a carotid artery containing calcified plaque. The second application of the
algorithm is presented in section 5.2 and deals with the reconstruction of the
tomographic scan of a large object—the head of a pig.

5.1 Bone artifact reduction (BAR)

5.1.1 Motivation

Limited ability to record the full dynamic range of a signal is a common
problem in imaging. The most prominent example is photography, where the
camera sensor is often unable to capture the full contrast of a scene, especially
when it contains very bright and very dark areas. This is usually overcome
by taking multiple photos of the same scene with different exposure times
and combining them with specialized software afterwards. This multiple-
capture approach has an additional problem. The individual exposures are
not perfectly registered with respect to each other.

The problem of limited dynamic range is, however, not restricted to visible
light imaging. It also arises in X-ray imaging. Conventional X-ray absorp-
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Figure 5.1: This figure visualizes the similarities between the artifacts created by metal
implants in conventional CT (A) and those created by bones in grating-based phase-contrast
CT (B). (Left image: courtesy of Dr. Peter B. Noël, Klinikum rechts der Isar)

tion computed tomography is routinely used in many fields to create three-
dimensional maps of the linear attenuation coefficient µ—or the imaginary
part of the complex index of refraction (Hounsfield, 1973). For example, in
medical applications it can be used to retrieve three-dimensional informa-
tion of the skeletal structure of a patient. However, problems arise when the
patient’s body contains metal implants. The contrast between metal and
bone is usually too high to capture information on both materials within the
limited dynamic range of a conventional X-ray detector and clinically rele-
vant measurement settings. In particular, with the settings of a CT scanner
adjusted for good bone contrast, the absorption of metal implants is so high
that virtually no photons will reach the detector behind the implants. This
effect is called photon starvation and usually leads to streak artifacts in a
tomographic reconstruction, commonly termed ’metal artifacts’ in literature
(see chapter 2 and De Man et al. (1999); Link et al. (2000); Lemmens et al.
(2009); Meyer et al. (2009); Boas and Fleischmann (2011); Kachelriess et al.
(2012); Meyer et al. (2012)). In addition, sufficient contrast in soft tissue is
not easily achieved with conventional CT because of the small variations of
the attenuation coefficients between the elements that make up soft tissue.

The part of the dynamic range, the soft-tissue contrast, is covered by phase-
sensitive imaging methods, such as GBI. However, this high sensitivity to
small density variations leads to a problem similar to the effects that metal
introduces in conventional CT. This is mostly related to what is known as
phase wrapping. Phase wrapping occurs in all phase-contrast techniques, as
the quantity that is measured—the phase shift—is defined on the unit cir-



Chapter 5. Imaging application 99

cle, i.e. in the interval [0, 2π]. If the phase of the X-rays is shifted by more
than 2π, this value is wrapped into the original interval and thus leads to
measurements that are no longer uniquely defined. This wrapping usually
happens when the X-rays pass through dense objects, such as bones. This
effect produces artifacts that look similar to those caused by metal in con-
ventional CT and in analogy are termed ’bone artifacts’. Figure 5.1 shows a
comparison of metal artifacts from a metallic hip implant in a conventional
CT (A) and artifacts caused by bone material in the phase-contrast CT of
the head of a mouse (B).

In this section we make use of the fact that grating interferometry provides
three different, perfectly registered contrast signals. The SIR algorithm com-
bines all these signals in order to improve the effective dynamic range of the
final reconstructed volume with the aim to eliminate most of the artifacts
originating from dense objects. In short, the soft-tissue parts provided by
the phase-contrast signal are combined with information on the location of
the dense parts, e.g. bones, taken from the absorption signal, complemented
with statistical noise information, which is for the most part contained in the
dark-field signal. In analogy to the reduction of metal artifacts, we call this
method bone artifact reduction (BAR).

In the next two sections the capabilities of the BAR algorithm are demon-
strated on two studies that present problems of preclinical relevance. The
first study involves an ex-vivo scan of the abdominal region of a mouse mea-
sured at a synchrotron facility, where the spine causes severe artifacts. The
subject of the second study is an excised carotid artery, which contains sub-
stantial amounts of calcified plaque. In contrast to the mouse, this sample
was measured at a laboratory setup with a conventional rotating anode X-ray
tube.

5.1.2 Bone artifacts: causes and reduction

The following three causes contribute to the appearance of bone artifacts:

1. The strong absorption in dense materials leads to photon starvation
and loss of information.

2. Small-angle scattering inside dense, porous materials causes a loss of
coherence and thus limits the ability to reliably determine the phase
gradient.
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Figure 5.2: Differential phase-contrast sinogram of a mouse (A). The strongest signal inside
the container represents the spine, i.e. bone material. A part of the spine is shown enlarged
in (B). The black and white pixels, which are visible inside the bone, are phase-wrapped.

3. The measurement of the phase gradient is intrinsically restricted to the
interval [0, 2π]. If the gradient at a certain position exceeds this range,
it will be wrapped into this interval, causing the value at this position to
be undefined, thus lowering the statistical significance of this particular
measurement. Phase wrapping usually occurs at strong edges, where
refraction and thus the differential phase shift is especially high, e.g. at
the boundary between soft tissue and bones. In combination with 1.,
also measurements close to the boundaries of the phase gradient interval
can become wrapped due to higher noise fluctuations at positions where
the count rate is lowered by strong absorption. This is called statistical
phase wrapping (Chabior, 2011).

All of the above effects lead to a differential phase shift that is no longer
uniquely defined at certain positions and thus does not represent reliable
information for the tomographic reconstruction. An example of the visual
appearance of phase wrapping is given in figure 5.2.

Up to this point the formulation of the SIR algorithm given in chapter 4 is
very general. To apply it specifically on the reduction of bone artifacts, and
especially on those caused by phase wrapping, additional steps have to be
taken. The locations of pixels, which are wrapped with a high probability,
have to be determined, with the goal of restricting their influence on the final
reconstruction by modifying the statistical weights. This is accomplished by
making use of the absorption signal, precisely delineating bones or other
dense objects. The following steps are performed and illustrated in fig. 5.3:

1. reconstruction of absorption volume (fig. 5.3(A))
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Figure 5.3: Steps for creating the mask m used to modify the statistical weights 1/σ2
φ in the

cost function to alleviate the effects of phase-wrapping at the boundaries between bone and
soft tissue. (A) absorption reconstruction serving as starting point; (B) zoom of red rectangle
from (A) showing the soft-threshold segmentation of the bones; (C) the gradient magnitude
of the segmented bones; (D) the resulting weights m/σ2

φ obtained after forward projection of
the gradient volume and multiplication with the statistical weights.

2. thresholding of absorption volume to segment bones (fig. 5.3(B))

3. calculation of gradient magnitude of thresholded volume in three di-
mensions (fig. 5.3(C))

4. forward projection of gradient volume

5. multiplication of gradient projections onto statistical weights (fig. 5.3(D))

By thresholding the absorption reconstruction (step 2), only the information
on the bones including their inner structure is preserved. The gradient cal-
culation (step 3) is done to get the location of tissue-bone boundaries, where
the phase gradient is known to be large. The forward projection operation of
these boundaries is then used to pinpoint the location of most likely phase-
wrapped pixels in projection space—the native space of the measurement
data. Finally, the forward projection of the gradient volume is multiplied
with the existing statistical weights.
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Reconstructing with only the weighted least-squares term (see equation (4.9)
in section 4.2.1) is, however, not sufficient. It represents an inverse problem
with an infinite number of solutions. Choosing the desired solution is equiv-
alent to regularizing or constraining the objective function. Most regulariza-
tion terms are based on specific functions of neighboring voxels. A simple
quadratic regularization, for example, is defined as the sum of quadratic dif-
ferences between one voxel and all of its neighbors. The result is the penalty
that is added to the objective function. In the optimization procedure this
will lead to reduced value differences between adjacent voxels and thus helps
to keep the resulting volume smooth. The same principle is used in edge-
preserving regularization, where the quadratic function is replaced with a
Huber potential function on the voxel differences. This function is piece-wise
defined to be quadratic for differences below a choosable threshold, to further
smooth out already flat regions, and linear above. In this work, the Huber
term is supplied with a mask to be able to restrict its effect only to certain
parts of the volume. For the treatment of the bones, a novel regularization
term was designed. It is defined as the quadratic difference between a voxel
of the phase reconstruction and the corresponding voxel of the absorption
reconstruction, with the latter being scaled by a factor that can be chosen
freely. This term forces the values of the bones in the phase reconstruction
towards meaningful values, whereas before they were unreliable due to the
ambiguity in the projection data, and effectively couples both signals. Just
as the Huber term, the bone regularization contains a mask to restrict its
effect to parts of the volume.

5.1.3 Reduction of bone artifacts on a whole mouse

Experimental setup

The abdominal region of a mouse cadaver—fixed in formalin and placed in
a plastic container—was measured in a two-grating interferometer installed
at beamline ID19 of the European Synchrotron Radiation Facility (ESRF)
in Grenoble, France. The interferometer consists of a phase grating with a
period of 4.78µm and an absorption grating with a period of 2.40µm. The
inter-grating distance of 48.1 cm corresponds to the 9th Talbot order. The
measurement was performed with monochromatic X-rays with an energy of
23 keV. The dataset was recorded in 902 projection views with four step-
ping images each. All images were recorded with the FReLoN camera, a
scintillator-lens-coupled CCD, with an effective pixel size of 30.0µm and im-
age dimensions of 1453×433 pixel2. Due to the nature of the detector, the raw
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projection images were deconvolved before the signal extraction step to im-
prove spatial resolution, as presented in section 3.3. Because the point spread
function of the detector system was not exactly known, it was estimated as
a two-dimensional Gaussian function with σx,y = 1 pixel. To prevent phase
wrapping at the edges of the container during the measurement, it was placed
in a water bath, that extended over the field of view. More information on
this measurement can also be found in Tapfer et al. (2013).

The data set was subsequently reconstructed using both the standard filtered
back projection algorithm with the Hilbert filter (Pfeiffer et al., 2007b), as
well as the BAR algorithm. The statistical weights resulting from the least-
squares processing step were modified using the procedure as explained in the
last section and depicted in figure 5.3, using the absorption signal retrieved
from the same measurement. The Huber and bone regularization each only
worked on parts of the volume. The mask used to restrict the effects of
these two regularizers was taken as the thresholded absorption reconstruction
(figure 5.3 B). For the Huber regularizer the mask was inverted to only work
on the soft-tissue regions outside of the bones and the original thresholded
volume was used to restrict the bone regularizer to the voxels that contain
bone material. The regularization parameters were chosen empirically, such
that the result was visually and quantitatively most accurate. The strength
of the Huber regularization was set to 0.5 with a threshold of 0.1, the strength
for the bone regularizer was set to 10.0 with a factor of 1 and the values set
to the absorption reconstruction. The results of both reconstructions were
converted to units of the refractive index decrement δ by

δ =
p2

2πd
ρ+ δH2O,23keV, (5.1)

where the addition of the refractive index decrement of water takes into
account the offset created by the water bath.

Results

Figure 5.4 depicts the results of reconstructions performed using the con-
ventional filtered backprojection (FBP, left column) and the proposed bone
artifact reduction method (BAR, right column) in the form of axial slices
(A, B), as well as sagittal (C, D) and coronal (E, F) cuts through the
center of the volume. All six images are windowed in the same range of
δ = [4.067 × 10−7, 5.067 × 10−7]. The FBP reconstruction exhibits strong
streaking artifacts and shadowing around the bone in the axial view that
manifest as horizontal lines in the sagittal view and a noise-like texture in
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Figure 5.4: This figure shows the results of reconstructions of an ex-vivo mouse X-ray phase-
contrast CT measurement using the conventional filtered backprojection (left) and the proposed
BAR algorithm (right). Depicted are an exemplary axial slice (A, B) and sagittal (C, D)
and coronal (E, F) cuts through the center of the volume. When comparing the filtered
backprojection results with the BAR results, it is obvious that the strong streaking artifacts
and the shadowing around the bone visible in the in the axial view of the FBP reconstruction
(A) are clearly reduced in the BAR result (B). In the sagittal view (C) the streaking artifacts
lead to horizontal lines which are strongest in the vicinity of the bones. Even relatively far
away from the bone the artifacts affect the image quality, as can be seen in the coronal view
(E). Both of these effects obstruct the underlying fine details, which become much clearer and
easier to detect in the BAR reconstruction (D, F). Several regions of interest are marked with
green rectangles in the left column images. There, a comparison of the standard deviation of
both reconstructions is performed. The results are given in table 5.1.

the coronal view, obstructing most of the fine anatomical detail. Although
there are still artifacts left in the reconstruction with the presented BAR
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Figure 5.5: Analysis of streak artifact reduction. (A) Enlarged view of the spine in the axial
slice of the FBP reconstruction; (B) the same image for the BAR result; the figure in the
bottom shows ring plots along the circles drawn in the two axial views. The arrows indicate
corresponding positions along the circle and in the line plot.

algorithm, their intensity and extension is drastically reduced, making the
detection of small details a lot more feasible. This becomes most apparent in
the sagittal and coronal views, where the images appear significantly clearer
and almost free of artifacts. Figure 5.6 shows an enlarged view of the part
of the sagittal cut, that is marked with a red, dashed rectangle in figure 5.4
(C). This makes the amount of artifact reduction and detail visibility of the
BAR (B) compared to the FBP (A) even more obvious.

In order to quantify the reduction of artifacts, figure 5.5 presents an enlarged
version of the axial slice from figure 5.4 showing the region around the spine
that is effected the most by the streak artifacts. Quantitative values are
plotted in the bottom of figure 5.5 along the circles drawn in blue (FBP, A)
and orange (BAR, B), respectively. The 0◦ point is marked with a vertical
bar and an arrow indicates the clockwise direction, in which the plot is drawn.
The blue line corresponds to the FBP and the orange line to the BAR result.
The standard deviation of these curves was determined as 1.35 ·10−8 for FBP
and 5.92 · 10−9 for BAR, respectively, giving a good indication of the streak
reduction. In addition, this plot shows the presented algorithm reduces the
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Figure 5.6: Enlarged view of the part of the sagittal cut from figure 5.4(C) and (D), which is
marked with the red dashed rectangle there. (A) FBP result; (B) BAR result.

streaks of the bone artifacts, while retaining the underlying details. Examples
for these details are marked in the axial slice, as well as in the line plot. The
green arrow, marking the point at around 135◦ on the circle, point to a
feature that is darker than the surrounding tissue. In the line plot both the
blue and the orange curve show this feature. At around 225◦ the red arrow
points to a feature that is brighter than the surrounding tissue, which is also
clearly visible as a spike of both curves in the line plot. In the other parts
of the line plot it is obvious that the FBP curve contains many more and
stronger variations than the BAR curve.

Furthermore, several homogeneous regions of interest (ROI) in different parts
of the mouse and also in different views are studied with respect to their
standard deviation to determine the degree of artifact reduction. They are
marked with green rectangles in the left column images of figure 5.4. The
results are summarized in table 5.1 and show, that a reduction of the artifacts
by factors of 1.5–2 is achieved.

In a last figure, 5.7, we show the resulting sinogram after the reconstruction.
This sinogram belongs to the same slice as the one shown in figure 5.2 and
demonstrates that the phase wrapping has been completely removed by the
BAR reconstruction.
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Table 5.1: Results of the standard deviation analysis of several regions of interest
in figure 5.4

region of interest FBP BAR σFBP/σBAR

axial (ROI 1) 5.01 · 10−9 3.78 · 10−9 1.33

axial (ROI 2) 2.27 · 10−9 1.56 · 10−9 1.46

sagittal (ROI 3) 2.42 · 10−9 1.16 · 10−9 2.09

coronal (ROI 4) 4.32 · 10−9 3.02 · 10−9 1.43

Figure 5.7: The same DPC sinogram as shown in figure 5.2, but after finishing the BAR
reconstruction, showing that the phase wrapping has been completely removed.

5.1.4 Reduction of artifacts caused by calcified plaque
in a carotid artery

In this section the BAR algorithm is demonstrated on a different data set
measured at a laboratory X-ray source. The sample under investigation is
an excised carotid artery that contains large amounts of calcified plaque.
This sample is different from the mouse of the previous section in that the
soft-tissue parts contain much less contrast than the different organs in the
mouse. In addition, the dense parts causing the bone artifacts—the calcified
plaque—are much denser than the skeletal structure of the mouse and also
more compactly distributed.
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Figure 5.8: (A) Sinogram of the slice shown in the top row of figure 5.9. (B) Corresponding
weights calculated from the statistical uncertainties.

Experimental setup

The artery was measured at a laboratory-based interferometer consisting of a
conventional rotating anode X-ray source, a PILATUS 100K photon counting
detector and three gratings as shown in figure 4.8 in the previous chapter.
The source grating G0 consists of gold bars with a period of 5.4 µm and
a height of 55 µm. The phase grating G1 is made of nickel with a period
of 5.4 µm and a height of 8.5 µm, making it a π-shifting grating. Finally,
the analyzer grating G2 has the same specifications as the source grating.
Taking into account the magnification of the setup of 1.72, the measurement
was performed in the 6th Talbot order. The three gratings were arranged
in a symmetric setup with inter-grating distances of 80 cm each. For the
measurement the X-ray tube was operated at a voltage of 40 kV and a current
of 70 mA with a molybdenum target, leading to an effective energy of about
27 keV. For the tomographic scan 1200 angular views over 360◦ were captured
with 11 steps over 1 period per projection. The sensitive area of the detector
covers 487× 195 px2, but, due to the limited size of the gratings, the effective
field of view is restricted to 380× 195 px2. To prevent phase wrapping at the
edge of the plastic container, the sample was measured in a 3.5 cm thick
water bath.

For this study the data set is reconstructed three times. The first reconstruc-
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tion uses the conventional FBP algorithm with the Hilber filter and serves as
the reference result, which the other results are compared with. The second
and third reconstructions are done with SIR and BAR, respectively. Before
the statistical reconstructions—as for the mouse from the previous section—
a mask m for the regularization is created by thresholding a reconstructed
absorption volume to separate the calcifications from the surrounding soft
tissue and enabling the regularization to target both areas independently
from each other. To soften the edges a little, the mask was filtered with a
two-dimensional Gaussian with a σ of 2 px in both directions. Calculation
of separate weights is not necessary for this data set, because the correct
weighting is already achieved by the statistical uncertainties alone due to
the strong concentration of calcified material in small volumes. The sino-
gram of one of the slices is shown in figure 5.8 (A), exhibiting strong phase
wrapping in the parts, which contain the calcifications. Panel (B) of the
same figure visualizes the corresponding statistical weights calculated from
the phase variance. Dark pixels in the weight sinogram correspond to a lower
weighting of the sinogram pixels in the data term of the reconstruction. It
is obvious from a comparison of both images that all of the phase-wrapped
pixels are weighted very low. The SIR reconstruction is performed without
the use of the bone regularizer, solely using Huber regularization restricted
with the mask m to only affect the soft tissue parts surrounding the calcifi-
cations. The strength parameter is set to λH = 0.001 and the threshold to
γH = 0.005. The algorithm is initialized with the FBP result and iterated 25
times. The second reconstruction uses the BAR algorithm, employing basi-
cally the same parameters with the differences that no mask is applied to the
Huber regularization and the bone regularization is added with a strength of
100 and the absorption reconstruction as value. The additional factor of the
term is empirically set to 8 for the best visual result.

Results

In this section the results of the three reconstructions are presented, com-
pared and discussed.

A comparison of the FBP reconstruction and the SIR result is shown in
figure 5.9. The top row contains the axial slice that corresponds to the
sinogram in figure 5.8 with the FBP on the left (A) and SIR on the right
(B). The two other rows show the transverse slices along the blue and orange
line, respectively. The same colors are used to mark the corresponding slices
in (C) and (E). The SIR slices along the same lines are given in (D) and (F).
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Figure 5.9: Comparison of FBP and first SIR reconstructions of the artery with calcified
plaque. (A) axial slice of the FBP volume; (B) corresponding axial slice of the SIR volume;
(C) transverse slice through the FBP volume along the blue line as indicated in (A); (D)
corresponding SIR slice; (E) another transverse slice through the FBP volume along the orange
line as indicated in (A);(F) corresponding SIR slice.

Most apparent in the FBP reconstruction are the strong streak artifacts that
obstruct most of the reconstruction. It is obvious that the strength of the
streaks is larger in the direction along the elongated calcification. This effect
happens, because in this direction the X-rays have to travel much longer
through the dense material than in the other directions. Thus, they are
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attenuated much more along their path and they are also scattered much
stronger, leading to a lower signal on the detector for these rays. This in
turn causes the variance of the phase signal to increase up to the point, where
almost all pixels in the DPC signal are phase-wrapped. In addition to the
streak artifacts we also observe dark shadows in front and behind the calcified
parts, where the calcification is thickest. These shadows are also caused by
the low signal that the detector receives. How strong and long-reaching the
streak artifacts are is illustrated in the transverse slices. In (C) we can see a
noise-like texture ranging over the complete width of the image. This texture
is caused by the streak artifacts present in the corresponding slices. The
image shown in (E) is even more illustrative. Here, no calcification is directly
in the field of view, but still the extended streaks obstruct large parts of the
soft tissue. A completely different picture is given in the right column. The
SIR algorithm is able to significantly reduce the streak artifacts, revealing
the soft-tissue structure that was formerly obstructed by the streaks. The
conclusion from this comparison is that, for this kind of problem, the FBP
is not suitable and produces unusable results and other algorithms have to
be employed to get meaningful images.

The SIR results, however, are still not perfect. Despite nicely showing details
in the soft-tissue in the regions far away from the calcifications, the dark
shadows are still obstructing some of the features in the near vicinity of the
plaque. In the following we concentrate on a direct comparison of the results
obtained with the SIR and the BAR algorithms and highlight some of the
areas, where one or the other algorithm produces more usable images.

Figure 5.10 shows the direct comparison of both statistical reconstructions in
the axial view with (A) being the same image as in figure 5.9 with plain SIR
and (B) representing the reconstruction with BAR. On the first glance both
images appear very similar. The differences between them are visible only
in small details. The orange and red arrows point to areas, where the SIR
reconstruction exhibits dark shadows at the tips of the calcifications. The
effect of the shadows is mitigated in the BAR reconstruction by applying a
stricter constraint on the calcified regions. This constraint not only mani-
fests in a reduction of the shadows, but overall the calcifications are much
better delineated through the inclusion of the absorption signal in the phase
reconstruction. The blue arrow points to a region, where this is most appar-
ent. In the SIR reconstruction the bright area representing the large piece of
calcification bleeds out into the surrounding soft tissue, decreasing the local
contrast there. By using the BAR algorithm, the dark area between the fine
bright line and the calcification itself is much better delineated. While the
BAR algorithm is able to improve the image quality in small details right
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Figure 5.10: Comparison of the axial slices reconstructed with SIR (A) and BAR (B) with
the respective settings given in the text. The arrows point to the main differences between the
images, which are discussed in the text.

next to the artifact-causing parts of the sample, the long streak artifacts in
the outer parts of the reconstruction are a lot better controlled by just using
the plain SIR algorithm.

This last statement is also clearly visualized in figure 5.11, which shows the
transverse cut through the reconstructed volume corresponding to one in the
second row of figure 5.9. The left image (A) is again the SIR reconstruction
and the right image (B) depicts the BAR reconstruction. It contains a part of
the artery that is heavily contaminated with calcifications. The dark shadows
next to the calcified plaque is clearly not reduced by the SIR algorithm. The
blue arrows point to two exemplary positions, where these shadows are very

Figure 5.11: Comparison of the first set of transverse slices reconstructed with SIR (A) and
BAR (B) with the respective settings given in the text. The cut through the volume follows
the blue line as indicated in figure 5.9 (A). The arrows point to the main differences between
the images, which are discussed in the text.
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Figure 5.12: Comparison of the second set of transverse slices reconstructed with SIR (A)
and BAR (B) with the respective settings given in the text. The cut through the volume
follows the orange line as indicated in figure 5.9 (A). The arrows point to the main differences
between the images, which are discussed in the text.

strong. The left shadow is obviously caused by the calcification that lies in
the same plane, whereas the right shadow stems from a calcification that itself
cannot be seen in this cut. So, even in views that do not contain calcified
plaque directly, the image quality can be impaired by the artifacts. The BAR
algorithm, on the other hand, removes these shadows almost completely and
is able to reveal much more detail, especially for the shadow on the right
hand side. The orange arrow points to a location, where in fact the SIR
reconstruction shows visibly better results than the one obtained with BAR.
The long-range streak artifacts originating from the calcifications lead—in
this view—to strong intensity variations over the whole width of the image
in the BAR reconstruction. The SIR algorithm is able to suppress these
artifacts almost completely.

As a last example we compare the SIR and BAR reconstructions on the same
view as in the bottom row of figure 5.9 that does not contain any calcification.
The comparison is shown in figure 5.12 with the SIR result on the left (A)
and the BAR result on the right (B). As expected, in regions not directly
in the vicinity of the calcifications, the SIR reconstruction provides better
image quality than the BAR reconstruction. The orange arrow points at
the most obvious location. In the BAR image the streak artifacts appear as
a dark shadow obstructing the small corner of the vessel wall. Due to the
reduction of the streaks by the SIR, this edge is much better delineated in
the left image. The blue arrow points to a flat region outside the sample.
In the left image this area is indeed flat, whereas in the BAR reconstruction
we can see a texture that stems from streak artifacts that originate from out
of plane. Lastly, the differences are visible in the general region, which the
red arrow points to. Here we can also see the texture caused by the streak
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artifacts overlaying large parts of the soft tissue in the BAR reconstruction.
The SIR reconstruction on the left appears much clearer with small details
being better visible.

From this study we can conclude that for these kinds of problems the FBP
algorithm has limited use, due to the amount of missing and corrupt data.
These limitations can be lifted by employing iterative reconstruction tech-
niques. However, the final choice of which algorithm to use depends on the
given task, i.e. which information we want to see in the reconstruction.
Radiologists also face these kinds of task-dependencies in conventional CT,
because state-of-the-art reconstruction programs today offer multiple proto-
cols depending on, for example, whether the task is to image the skeletal
structure of the patient or the diagnostic focus lies on the imaging of organs.



Chapter 5. Imaging application 115

5.2 Reconstruction of large objects demon-

strated on a sliced pig

This experiment is carried out to demonstrate that phase-contrast imaging
with a grating interferometer in combination with SIR techniques is feasible
even for large objects. For this purpose a slice of a frozen pig cadaver’s head
was measured at a synchrotron facility. In this section we apply the SIR
algorithm to this challenging data set and compare the results to a state-of-
the-art clinical scan.

5.2.1 Experimental setup

The frozen pig cadaver was cut into transverse slices with a height of about
5 cm. For the measurement a section of the head—containing a part of the
brain—with a diameter of roughly 19 cm was used. This section was placed
in a plastic container and fixated in formalin. This specific section was chosen
to simulate a human head CT. A photograph of the prepared sample is shown
in figure 5.13.

Figure 5.13: This figure shows a photograph of the ’Scheibenschwein’ sample, a slice of a
pig’s head. The slice is inside a plexiglass container and fixated in formalin. The cylindrical
part of the container has a diameter of roughly 19 cm and a height of about 5 cm.

The measurement was performed at beamline W2 of the storage ring DORIS
III located at DESY, Hamburg and operated by Helmholtz-Zentrum Geesthacht
(HZG). A schematic view—not to scale—of the measurement setup is shown
in figure 5.14. The synchrotron X-ray source is represented by the tube
marked ’T’. The beam characteristics of the source require a three-grating
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Figure 5.14: Schematic view of the experimental setup used for measuring the sliced pig. The
tube labelled ’T’ represents the X-ray source (in this particular measurement a synchrotron
beamline). The three gratings—source grating, phase grating and analyzer grating— are
marked ’G0’, ’G1’ and ’G2’, respectively. The label ’S’ corresponds to the sample and sample
holder, while ’D’ marks the detector. The red arrow indicates the rotational movement for the
tomographic aquisition and the green arrow the movement of the sample perpendicular to the
beam direction to to measure overlapping projection images of the sample.

interferometer to be used to get enough coherence for interference experi-
ments. The source grating ’G0’ has a period of 20.29 µm and a height of
130 µm. The phase grating ’G1’ is made of nickel with a period of 4.33 µm
and is 35 µm high and the analyzer grating ’G2’ is made of gold and has a
period of 2.4 µm and a height of 192 µm. The detection system—denoted ’D’
in the figure—consists of a scintillating screen coupled with a CCD camera
and a standard photographic lens to focus the visible light created in the
scintillator on the sensor. The choice of focal length of the lens results in
a field of view of about 14.42 µm× 14.42 µm. Due to this limited field of
view, the whole sample had to be measured in parts while being moved per-
pendicular to the beam direction, creating ’panorama’ projections. This is
indicated by the green arrow in figure 5.14. The sample was mounted on a
standard rotation stage, but, to prevent vibrations and bending of the setup
during movement of the sample, a counterweight was installed to balance the
perpendicular movement of the rotation stage.

The measurement was performed at an energy of 81 keV for the beam to be
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Figure 5.15: Two adjacent, overlapping DPC projections of the sliced pig sample. The vertical
blue lines indicate the region of overlap in each of the projections. The orange lines mark one
corresponding feature that can be used to align the two projections.

able to penetrate this large sample. Exposure times ranged from 0.9 s for
the blank scans and from 1.5 s to 54 s for the acquisitions with sample. The
exposure times were varied between the perpendicular movements in order
to keep mean count rates approximately equal as the thickness of the object
varied. For each angular view a total of 16 overlapping individual images
was recorded, to cover the complete width of the sample. Each individual
acquisition consisted of a phase-stepping scan with 4 images each. The total
number of angular views recorded for the tomographic scan was 240, covering
the angular range from 0◦ to 180◦.

5.2.2 Preprocessing and reconstruction results

All of the raw phase-stepping sequences are initially processed using the SPR
to extract the differential-phase signal and the phase uncertainty to be later
used in the reconstruction step.

The individual DPC projections belonging to a particular angular view are
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then semi-manually stitched together. For the stitching the positions of the
motor, which is responsible for the perpendicular movement of the sample,
are used to calculate the corresponding pixel shift, by which the projec-
tions have to be moved to fit together. To reduce the effect of stitching
seams the overlapping areas of neighboring projections are blended together
by multiplying the overlapping areas with simple linear gradients in the in-
terval [0, 1]. An example of two adjacent, overlapping DPC projections is
given in figure 5.15. Projection (A) represents the left one, projection (B)
is stitched to the right of (A). The vertical blue lines indicate the region,
where both projections overlap and the orange line marks a distinct feature
in both projections that can be used to align them. For these two projec-
tions the alignment is easy, even using automatic registration algorithms.
For other pairs of projections, however, there are no such features present,
making it very difficult to automatically align the projections using feature-
based approaches. This is why we opted for using the motor positions for
alignment. The angular views resulting from the stitching and blending are
subsequently binned by a factor of 20, as the original angular views had a
width of 21 591 px. There are two reasons for binning the projections: 1. re-
duce the amount of data that has to be handled by the reconstruction code;
2. reduce the undersampling (there are only 240 angular views) of the data
set to a factor that is feasible for the SIR algorithm to manage.

Figure 5.16: Comparison of sliced pig reconstructions: (A) result of the FBP reconstruction
from 240 projections; (B) result of the reconstruction with SIR of the same 240 projections.

The reconstruction itself is done on one hand with the FBP and the Hilber
filter, on the other hand with SIR using the statistical weights from the
signal extraction. The SIR algorithm is iterated 150 times with a Huber
regularization. The Huber strength parameter is set to 2 × 10−5 and the
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Figure 5.17: Comparison of sliced pig reconstructions: (A) previous SIR result; (B) resulting
image when adding 30% of the FBP reconstruction to the SIR result.

threshold to 1 × 10−5. In addition to the statistical weights another set of
weights is created by masking out sinogram pixels that are close to π or −π
to filter unreliable pixels. Some of the flat-field images used to correct the
signal projections were corrupted in some areas, leading to false values of
pixels at those locations.

A comparison of both reconstructions is shown in figure 5.16, with the FBP
result on the left (A) and the SIR result on the right (B). As expected,
the FBP result exhibits very strong undersampling artifacts that make it
hard to delineate the density differences in the soft tissue. These density
differences are a lot better visible in the SIR reconstruction, the strong Huber
regularization, however, smooths out most of the fine details. These details,
especially the sharpness in the dense regions, e.g. the skeletal structure, are
significantly better preserved in the FBP reconstruction. One way to combine
the best of these advantages, i.e. fine details of the FBP and the strong soft-
tissue delineation of the SIR, is to just mix the two reconstructions after the
fact. Figure 5.17 compares the previous SIR result (A) to such a mixture,
where roughly 30% of the FBP result have been added (B). The image of the
mixture still clearly shows the variations in the soft tissue, while appearing
sharper in the high-density parts.

For a final comparison the pig slice is also measured in a clinical CT scanner
at Klinikum rechts der Isar. As this scan is performed with state-of-the-art
soft- and hardware, we do not expect our results to come close to this re-
construction. The acquisition is done with a helical trajectory with the tube
voltage set to 120 keV and a current of 404 mA in a manufacturer-specific
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inner-ear protocol. The total exposure time of this scan is 1.437 s. The re-
construction of this data set is done with the manufacturer’s implementation
of the FBP algorithm.

Figure 5.18: Comparison of sliced pig reconstructions: (A) previous FBP-SIR mixture image;
(B) result from a scan at a state-of-the-art clinical CT scanner.

Figure 5.18 shows the reconstruction of the clinical scan next to our FBP-SIR-
mixture. As expected, when we compare our reconstruction to the clinical
one, we can see that, even though the clinical scan only shows the absorp-
tion signal, image quality and soft-tissue delineation is a lot better than in
our reconstruction. The main reason is, of course, the different sampling.
While the clinical scan is fully sampled with about 2300 angular views for a
detector width of 1024, the synchrotron scan, even with a 20-fold binning,
is undersampled by a factor of 6.96. There are, however, also some grating-
interferometry specific reasons, the first being that the scan was performed
at a very low inteferometer visibility of around 0.1, which is far from the
maximum visibility∗ of 1.0. The visibility can be increased by improving
grating fabrication, e.g. creating analyzer gratings with larger aspect ratios
to increase absorption of the grating bars. The second reason is setup design.
In a clinical CT scanner, all components are designed in a way to perfectly
work together for a given scan geometry. Setups for grating interferometry,
on the other hand, are for the most part optimized for performing experi-

∗The maximum visibility is evident from

v = (Imax − Imin)/(Imax + Imin),

if Imin = 0, i.e. the stepping curve goes to zero when the absorption grating bars cover
the maxima of the interference pattern.
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ments with different goals and geometries. This variability mostly comes at
the cost of stability. In summary, there are currently many reasons, why clin-
ical CT scanners outperform grating interferometry for the imaging of large
objects. These reasons, however, are mainly of a technological nature, mean-
ing that they can be solved by improving design and fabrication of grating
interferometer components.

5.3 Summary

In this chapter two important applications were presented, where statistical
iterative reconstruction techniques can significantly improve image quality of
PCCT data sets. The first part demonstrated a new method for reducing the
influence of strongly absorbing and scattering objects on the reconstruction of
differential phase-contrast tomography data. By incorporating complemen-
tary information from the two other contrast channels available in grating
interferometry, we were able to overcome the limited dynamic range inher-
ently present in this measurement technique and considerably reduce the
artifacts related to this effect. We presented the applicability of our bone
artifact reduction algorithm in a difficult scenario with respect to the exper-
imental parameters. This means, that both the energy of the measurement
and the chosen Talbot distance contributed to stronger streak artifacts from
the bones. The low energy leads to an increased attenuation, which in turn
increased the information loss in the bones. The high Talbot order—that is,
a large distance between the phase and absorption grating—produced larger
transverse shifts of the interference pattern and thus increased the probabil-
ity of phase wrapping. We have shown, that even under these challenging
circumstances a significant reduction of bone artifacts and a convincing in-
crease in image quality is possible. We limited this study to the case of
a bone concentrated in a small part of the reconstructed volume. Further
studies will have to show if our approach is also valid for more challenging
anatomical examples, such as the ribcage with multiple sources of artifacts or
the skull for artifact-free visualization of the brain. In addition, we demon-
strated the BAR algorithm on a laboratory measurement of a carotid artery
with calcified plaque with similar results of artifact reduction.

The second application is mainly geared towards human application of the
method. We investigated the imaging and reconstruction of large objects
on a slice of a pig’s head, simulating a human head CT. We could show
that by using statistical reconstruction a significant improvement in soft-
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tissue delineation is possible compared to conventional reconstruction tech-
niques, even though current experimental setups—without further advances
in technology—are still lacking the image quality achieved with today’s gen-
eration of specialized and highly developed CT scanners.
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Chapter 6

Conclusions and outlook

In this last chapter we summarize the main results of this PhD thesis and
give a brief outlook. The structure follows the division of the thesis in three
main results parts.

Projection images
In the domain of single projection images we worked on three distinct top-
ics: the comparison between differential phase-contrast projections with non-
differential absorption projections, the signal extraction of the three contrast
images from raw acquisitions and the investigation of the influence of the
point spread function on the imaging chain up to CT reconstructions. With
the exception of the first topic, these results were further used in the course
of the development of the statistical reconstruction algorithm.

• We presented a method to directly compare absorption projections with
their differential phase-contrast counterparts without the need for a
costly numerical integration of the phase gradient by carefully calcu-
lating the derivative of the absorption signal instead. The comparison
involves the contrast-to-noise ratio in the same region of interest in
the absorption and the differential phase-contrast projection resulting
in the definition of the relative contrast gain as the ratio of CNRs.
Application of this analysis tool on two distinct regions in a mammo-
graphic projection of a human breast resulted in a five- to ten-fold gain
in relative contrast of the phase over the absorption projection.

• On the topic of signal extraction we introduced an alternative method
to the well established Fourier analysis. Instead, using a weighted
least-squares approach to directly fit a model to the measured step-
ping curves allows for a simple inclusion of the raw data’s counting
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statistics, resulting in the full covariance matrix in addition to the ex-
tracted contrast signals. Error propagation then gives access to the
statistical uncertainties of absorption, differential phase-contrast and
dark-field projections. Another advantage of this method is the possi-
bility of extending the model for, e.g., future experimental setups with
even better coherence and further developed gratings, to include higher
order terms than the normally used first-order cosine.

• As a last part we briefly investigated the influence, which the setup’s
point spread function has on the projection data, as well as on CT
reconstructions. We found that for a specific synchrotron setup the
spatial resolution of acquired raw images is decreased, but can be re-
covered by deconvolution. Even though the point spread function was
not known in advance, assuming a two-dimensional Gaussian led to a
significant increase in image quality and sharpness in the raw stepping
projections. We also compared untouched and deconvolved projections
after the signal extraction and CT reconstructions from untouched and
deconvolved data, with the result that the increase in spatial resolution
and sharpness propagates through the processing and reconstruction.
An estimate of the influence of the point spread function for setups
at laboratory sources yielded the insight that, even if photon-counting
detectors with a box-like point spread function are used, the finite size
of the source’s focal spot still leads to a degradation of the recorded
images.

Statistical reconstruction algorithm
In this central part of the thesis we developed a statistical iterative re-
construction algorithm for differential phase-contrast computed tomography.
The underlying statistical model was derived from the maximum-a-posteriori
principle from Bayesian statistics based on the assumption of Gaussian dis-
tributed object values and takes into account the differential nature of the
projections. This approach led to the formulation of a weighted least-squares
objective function, which is iteratively minimized. For an appropriate weight-
ing of the measurement values, the results from the alternative signal extrac-
tion procedure were used. This allowed for reducing the influence of mea-
surements with a high statistical uncertainty on the reconstructed image.
The objective function was complemented with prior knowledge about the
reconstructed object in the form of regularization terms, two of which were
developed during this thesis. An evaluation of the algorithm was not only
performed with phantom simulations, but also with experimental data ob-
tained at a laboratory setup and showed a significant reduction of noise as
well as artifacts arising from different scenarios, where parts of the projection
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information was missing. During this thesis we always assumed projections
to be acquired with monochromatic X-rays, but further work will have to be
put into taking into account polychromatic effects. Especially going into the
direction of dual energy or even spectral phase-contrast CT is considered a
viable option.

Bone artifact reduction
We showed for the first time how artifacts arising from phase wrapping at the
interface between soft tissue and bone, so called bone artifacts, can be sig-
nificantly reduced. The statistical reconstruction algorithm was augmented
with information from the absorption signal. As the absorption projections
are perfectly registered to the differential phase projections, we could use
this information to extract the location of the edges of bones and decrease
their influence on the final reconstruction. Together with a novel regular-
ization term, which inserts absorption information about the bone structure
back into the phase reconstruction, we were able to decrease the strength
and extent of the bone artifacts. We showed that this method works on
monochromatic synchrotron measurements, but also on measurements ac-
quired at a conventional laboratory source.

Overall, we believe that the advances in data processing and in statistical
reconstruction of differential phase-contrast projections worked out within
this thesis will allow for a broad range of new applications of grating-based
phase-contrast CT. This reconstruction method can easily be adapted for
any kind of scan geometry, including cone beam acquisitions to allow for
compact setups or helical geometries to speed up scan times. Together with
the given results in noise reduction in combination with a reduction of un-
dersampling artifacts the feasibility of dose compatible full body CT with
a grating interferometer is greatly increased, by lifting the requirements on
exposure of individual acquisitions and on angular sampling. Furthermore,
by solving the problem of bone artifacts we pave the way for increased diag-
nostic value of full body phase-contrast CT reconstructions with the ultimate
goal of bringing grating-based X-ray imaging to clinical application.
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Appendix A

Derivations and
implementations

A.1 Implementation of the statistical phase

retrieval

Following the derivation of the solution using normal equations for the WLS
problem discussed in section 3.2 we now concretize the steps for the statistical
phase retrieval. We start the derivation from the explicit WLS cost function
for each pixel in each projection

S =
N−1∑
i=0

wi · (Ii − A0 − A1 · cos(xi)−B1 · sin(xi))
2 , (A.1)

where N is the total number of measurements on the stepping curve, Ii is
the measured intensity at grating position xi and wi = 1/σ2

i represents the
statistical weighting. xi = 2πip/N is the position of the grating, where p is
the number of periods, over which the stepping was performed.

The minimization of equation (A.1) involves setting the partial derivatives
with respect to A0, A1 and B1 to zero. This yields a system of three equa-
tions for the three parameters. For matters of presentation the following
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abbreviations are introduced:

S =
∑
i

wi Sc =
∑
i

wi cos(xi) Ss =
∑
i

wi sin(xi)

Scc =
∑
i

wi cos2(xi) Sss =
∑
i

wi sin
2(xi) Scs =

∑
i

wi cos(xi) sin(xi)

SI =
∑
i

wiIi ScI =
∑
i

wiIi cos(xi) SsI =
∑
i

wiIi sin(xi)

In matrix notation the system of equations looks like S Sc Ss
Sc Scc Scs
Ss Scs Sss

 ·
 A0

A1

B1

 =

 SI
ScI
SsI


If the weights were equal for all pixels, i.e. not taking statistical properties
into account, the coefficient matrix only depended on the grating positions
and thus solving this system would only involve a single matrix inversion
and multiplications of the inverse matrix with each pixel’s solution vector.
In the case of statistical phase retrieval, however, a matrix inversion has to
be computed for each pixel, making an analytical expression more favorable
over a numerical solution. Calculating the inverse of the coefficient matrix
analytically yields

∆ = det(A) = (SccSss − S2
cs) · S + 2ScsScSs − S2

cSss − SccS2
s ,

A−1 =
1

∆
·

 (SccSss − S2
cs) (ScsSs − ScSss) (ScsSc − SccSs)

(ScsSs − ScSss) (SSss − S2
s ) (ScSs − SScs)

(ScsSc − SccSs) (ScSs − ScsS) (SccS − S2
c )

 ,

leading to the following solution for the three fit parameters

A0 =
(SccSss − S2

cs) · SI + (ScsSc − SccSs) · SsI + (ScsSs − ScSss) · ScI
∆

,

A1 =
(ScSss − ScsSs) · SI + (ScsS − ScSs) · SsI + (S2

s − SssS) · ScI
∆

,

B1 =
(ScsSc − SccSs) · SI + (SccS − S2

c ) · SsI + (ScSs − ScsS) · ScI
∆

,

their variances

σ2
A0

=
SccSss − S2

cs

∆
, σ2

A1
=
SssS − S2

s

∆
, σ2

B1
=
SccS − S2

c

∆
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and covariances

COV (A0, A1) =
ScsSs − ScSss

∆

COV (A0, B1) =
ScsSc − SccSs

∆

COV (A1, B1) =
ScSs − ScsS

∆

These expressions now only consist of multiplications and summations, as
the grating positions are the same for all pixels, allowing for a precalculation
of the cosines and sines.

A.2 Derivation of Richardson-Lucy deconvo-

lution

The Richardson-Lucy deconvolution algorithm is a maximum likelihood method
based on Poisson statistics, which aims to recover the true object that has
been blurred by a known PSF. In this appendix we derive the update equa-
tion used in section 3.3.

First, we define

O true object

I measured image

P a priori known PSF.

The maximum likelihood method is explained in section 4.2.1. The statistical
model of choice in this case is the Poisson distribution, because the decon-
volution is supposed to be applied to raw detector acquisitions that usually
obey counting statistics. The maximization problem can then be formulated
as

Ô = arg max
O

L(O|I), (A.2)

i.e. the goal is to find the object O that maximizes the likelihood of O being
the true object given the measured image I.

The Poisson likelihood function is given as

L(O|I) =
∏
x

e−MxM Ix
x

Ix!
, (A.3)
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where Mx is the xth value in the forward model vector, which we define as

Mx = (P ∗O)x =
∑
x′

Px−x′ ·Ox′ , (A.4)

where x′ represents the coordinate of the PSF vector. We can omit the
factorial term in equation (A.3), because it evaluates to a constant that only
changes the value of the maximum but not its location. Its logarithm is then

l(O|I) =
∑
x

(Mx − Ix lnMx). (A.5)

Finding the maximum of this equation amounts to setting its gradient with
respect to the object vector O to zero. The gradient of the likelihood with
respect to each entry in the object vector is

∂l(O|I)

∂Ox

=
∑
x′

∂l

∂Mx′

∂Mx′

∂Ox

(A.6)

and

∂Mx′

∂Ox

=
∂

∂Ox

∑
x′′

Px′−x′′Ox′′ =
∑
x′′

Px′−x′′

δx′′,x︷ ︸︸ ︷
∂Ox′′

∂Ox

= Px′−x = P̄x−x′ . (A.7)

This result means that the PSF is traversed in reverse order, when used in a
convolution. Inserting it in equation (A.6) gives

∂l(O|I)

∂Ox

=
∑
x′

∂l

∂Mx′
P̄x−x′ = P̄ ∗ ∂l

∂M
. (A.8)

The last piece of equation (A.6) is the evaluation of the gradient of the
likelihood with respect to the forward model M , which gives

∂l

∂Mx

= 1− Ix
Mx

, (A.9)

so the final formulation of equation (A.6) is

∂l(O|I)

∂Ox

= P̄ ∗
(

1− Ix
Mx

)
. (A.10)

The final formulation of the update equation requires the use of the prior
knowledge that the true object is always positive, Ox ≥ 0. To implement
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this prior, we assume the object to be the result of an exponential function,
so we substitute Ox = exp(ux) and reevaluate the gradient with respect to
ux

∂l

∂ux
=

∂l

∂Ox

∂Ox

∂ux
= Ox · P̄ ∗

(
1− Ix

Mx

)
. (A.11)

Setting this gradient to zero and reformulating slightly gives

Ox = Ox ·
(
P̄ ∗ Ix

Mx

)
= Ox ·

(
P̄ ∗ Ix

(P ∗O)x

)
, (A.12)

which exactly represents the update equation used in section 3.3.

A.3 Gradient and step size calculation of reg-

ularization terms

For the sake of completeness the expressions for the gradient and the denom-
inator of the step-size calculation for the regularization terms are stated here
(cf. section 4.2.3).

The gradient of the quadratic regularization term (eq. (4.21)) is

∂

∂δj
RQ(δ) = 4

∑
i∈Nj

wij(δj − δi) (A.13)

and the denominator term

∂2

∂κ2
RQ(δ + κd)

∣∣∣
κ=0

=
∑
j

∑
i∈Nj

wij (dj − di)2 (A.14)

The gradient of the Huber term (eq. (4.23)) is

∂

∂δj
RH(δ,m, γ) = mj

∑
i∈Nj


(δi−δj)
γ2

for |δi − δj| ≤ γ

−sgn(δi−δj)
γ

for |δi − δj| > γ
, (A.15)

and the denominator term

∂2

∂κ2
RH(δ + κd,m, γ)

∣∣∣
κ=0

=
∑
j

mj

∑
i∈Nj

wij

{
(di−dj)2

γ2
for |δi − δj| ≤ γ

0 for |δi − δj| > γ

(A.16)
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The same expressions for the mean regularizer (4.24) are

∂

∂δj
RM(δ, σ) = 2 (δj − 〈δj〉σ) (A.17)

and
∂2

∂κ2
RM(δ + κd, σ)

∣∣∣
κ=0

=
∑
j

(dj − 〈dj〉σ) . (A.18)

And finally for the bone regularization term (4.25)

∂

∂δj
RB(δ,a, b, c) = 2bj (δj − c · aj) (A.19)

and
∂2

∂κ2
RB(δ + κd,a, b, c)

∣∣∣
κ=0

= 2
∑
j

b2
j · d2

j (A.20)
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A. Sztrókay, J. Herzen, S. Auweter, S. Liebhardt, D. Mayr, M. Willner,
D. Hahn, I. Zanette, T. Weitkamp, K. Hellerhoff, F. Pfeiffer, M. Reiser and
F. Bamberg, Assessment of grating-based X-ray phase-contrast CT for dif-
ferentiation of invasive ductal carcinoma and ductal carcinoma in situ in an
experimental ex vivo set-up, European Radiology, 23(2):381-7, 2013.
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P.B. Noël, M. Willner, A. Fingerle, J. Herzen, D. Munzel, D. Hahn, E.
Rummeny and F. Pfeiffer, Improved diagnostic differentiation of renal cystic
lesions with phase-contrast computed tomography, SPIE Proceedings Vol.
8313, 2012.

D. Hahn, P. Thibault, A. Fehringer, M. Bech, P. Noël and F. Pfeiffer, Bone
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