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Zusammenfassung

In dieser Arbeit werden drei neue Methoden präsentiert und getestet, mit deren Hilfe
ein lückenhafter Datensatz vervollständigt werden kann. Dieses Einfügen fehlender Werte
nennt man Imputation. Alle drei Imputationsmethoden basieren auf der Modellierung von
Daten mit Hilfe der sogenannten Vine Copulas. Diese Art der Modellierung ermöglicht
sehr flexible Abhängigkeitsstrukturen zwischen mehreren zufälligen Ereignissen. Dies ist
für gute Schätzungen der fehlenden Werte ein enormer Vorteil, da gerade diese Abhängigkeit
genutzt wird um basierend auf den gegebenen Daten die nicht vorhandenen zu erlan-
gen. Alle drei Methoden erlauben den allgemeinsten Fall der Vine Copulas, den R-vine,
ausgestattet mit (verschiedenen) parametrischen, bivariaten Copulafamilien (z.B. Gauss,
Gumbel, Clayton, ...).
Jede der untersuchten Vine Copula Imputationsmethoden schätzt anfangs ein Modell
basierend auf den gegebenen Werten des Datensatzes. Zwei versuchen nun durch simulieren
eines Schätzwertes gegeben den restlichen, bekannten Daten einen möglichst guten ”Lücken-
füller” zu erstellen um den Datensatz zu vervollständigen. Die übrig gebliebene Methode
errechnet durch den bedingten Erwartungswert jeweils einen Imputationswert.
Es werden Algorithmen erarbeitet, die es dem Leser erleichtern, die präsentierte Theorie
selbst in die Praxis umzusetzen. Unter anderem eine Mg̈lichkeit, wie Werte eines bes-
timmten R-vines mit schon teilweise gegebenen Daten simuliert werden können. An einer
Simulationsstudie mit verschiedenen Szenarien können Stärken und Schwächen der Vine
Copula Imputationsmethoden im Vergleich zu schon existierenden Verfahren untersucht
werden. Diese Simulationsstudie bewertet zugleich alle getesteten Imputationsmethoden.
Schließlich wird am Ende dieser Arbeit ein Datensatz aus einer medizinischen Studie
mit fehlenden Daten untersucht. Dies bietet ebenfalls eine Möglichkeit zur Evaluation
der verschiedenen Verfahren und zeigt gleichzeitig Herausforderungen, die mit den neu
entwickelten Methoden in der Praxis einher gehen.
Einfache Methoden zur Imputation (simple imputation) für weniger komplexe Probleme
sind schon länger bekannt. 1976 formulierte Rubin (see Rubin D. B., (1976)) ein Modell
für unvollständige Datensätze und führte den Begriff missing at random (MAR) ein, der
von diesem Zeitpunkt an in fast jeder Literatur über Imputation zu finden ist.
Die Theorie der Vine Copulas geht zurück auf Joe (see Joe H., (1996)). Er konstru-
ierte multivariate Verteilungsfunktionen mit Hilfe von einfachen Bausteinen, die er ”pair-
copulas” nannte.
Die Zusammenführung dieser beiden Theorien (und verschiedener Erweiterungen) findet
nun in dieser Arbeit statt und endet in drei separaten, zur Anwendung bereiten Imputa-
tionsverfahren.
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Chapter 1

Motivation

In nearly every survey the presence of missing data occurs. For statistical analysis, this
is a real issue, because incomplete data sets are challenging. It is not possible to apply
common analyzing procedures. They presuppose observed and complete data. If there are
only few values missing, one can consider just disregarding the incomplete observations
and working with the complete cases. In many applications, for example in medical sur-
veys, there are two reasons that do not make this procedure an alternative. One, there is
often not a lot of data available and losing even a small amount of observations is hardly
compensable. Two, it is very expensive to get the information, so collected data, on which
money was spent, is not thrown out just because there are some parts missing.

Further problems occur with missing data. One has to distinguish between different
types of missing values and why they are missing. There are a lot reasons why data might
be incomplete. Following is an explanation of the different scenarios we study in this
thesis.

1.1 Difficulties with Missing Data

There are many different forms of missing data in the world of surveys. Following the
notation in Little R. J. A. (1987) (see Little R. J. A. (1987), pp. 14-17), we will mention
several of them and describe what kind of problems we seek to solve with the techniques
presented in this thesis.

At first one needs to distinguish between unit nonresponse and item nonresponse. Imagine
a company wanting to test a new product and sending it, together with a questionnaire
containing 10 questions, to 1000 test persons. Only 990 of the testers send the question-
naire back to the company. This is called unit nonresponse. Although it would be possible
to solve, this kind of missing data is not our main focus. We are interested in solving the
problem of item nonresponse. Again, imagine the situation as before with the difference
that all 1000 questionnaire were sent back to the company, but one or more test persons
haven’t answered all of the 10 questions.

Now one can distinguish between various types of item nonresponse like in Rubin (1976):
Missing Completely at Random (MCAR), Missing at Random (MAR) and Not Missing
at Random (NMAR).

1



2 CHAPTER 1. MOTIVATION

(MCAR): Suppose there was a study where 1000 persons were asked 10 questions about
their last holiday experience. Because of a printing mistake, question one was not on
every questionnaire, thus 5 of the 1000 people just could not answer the first question.
Hence there is no observable reason for this lack of data with respect to the measured
values. In a mathematical sense, suppose there is a 10-dimensional random variable
X = (X1,. . . , X10) with some missing data in X1. Now we say the data is missing
completely at random if the absence of X1 does not depend on the values of X1, . . . , X10

i.e.

P (X1 is missing|X1, . . . , X10) = P (X1 is missing).

Of course there are reasons why the data are missing, but it does not depend on the values
of interest.
(MAR): There is a very famous example in the literature (see for example Rubin D.
B. 1987, pp. 5-6) where the missing at random case often occurs. When people are
asked about their wage, the wealthier ones do not answer the question with a positive
probability. Here, the reasons why they show this behavior is not of great interest, but
how we can measure it. For example, richer people might live in certain districts or maybe
have certain occupations. So one can conclude that, if a person who did not answer the
wage question lives in a specific part of town, and has a specific job, she or he probably
has a very high income. Again in mathematical terms, data on the random variable wage
X1 of a 3-dimensional random vector (X1 (wage), X2 (district), X3 (occupation)) is said
to be missing at random if the absence completely depends on the random variables X2

and X3, i.e.

P (X1 is missing|X1, X2, X3) = P (X1 is missing|X2, X3).

(NMAR): If data is neither MCAR nor MAR, then it belongs to the class of NMAR.
Because in this thesis, the main point is to use dependencies between missing data and
given values, this case is not of interest here. One example could be found (see for example
Death Penalty Information Center, 2013) in the death penalty data from the USA. Until
now (28.10.2013), 31 people have been executed during the year 2013. Only one of them is
a woman. Imagine that sex were observed in the study and female gender was marked with
an asterisk in the tables, and there were no sign for male. Caused by a misunderstanding
between data collectors and statisticians, the male gender is treated as if it were missing
now, because there is no sign in the tables. So only female sex is observed, with no reason
identifiable in the further collected data, but with a high correlation with respect to the
marginal values ”sex”.

1.2 Notation

It is necessary to set some notations before we start with the whole thematic of imputation.

• In theory,

X = (X1, . . . , Xd) ∈ Rd

denotes the random events, with possibly missing values.

n1 ∈ N
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denotes the number of full cases in the observations.

mi ∈ N

denotes the number of missing values in the row i = 1 . . . , n of the observations.

F = (F1, . . . ,Fd) ∈ R(n1)×d, Fi ∈ Rn1 , i = 1, . . . , d

denotes the complete case matrix.

• in the examples

Data =

 A1
...

An

 ∈ Rn×d, Ai ∈ Rd, i = 1, . . . , n

denotes the data matrix with possibly missing values.

DataI =

 AI
1

...
AI
n

 ∈ Rn×d, AI
i ∈ Rd, i = 1, . . . , n

denotes the completely imputed data matrix without missing values.

F =

 Ai1
...

Ain1

 ∈ Rn1×d, Aik ∈ Rd, k = 1, . . . , n1

denotes the matrix with all rows, which have non missing observations.

IF = {i1, . . . , in1}

is the set of indices of rows with no missing observations.

IFC = {1, . . . , n}\IF = {i1, . . . , in1}

is the set of indices of rows with missing observations.

Ai = (ai1, . . . , aid), , i = 1, . . . , n

are the observed values on the original scale.

Ai = (ui1, . . . , uid), , i = 1, . . . , n

are the observed values on the [0, 1]-scale, or U -scale.
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1.3 Definitions

Definition 1 (AIC & BIC). Generic function calculating the Akaike information criterion
for one or several model objects for which a log-likelihood value can be obtained, according
to the formula

−(−2× log-likelihood+ k × npar),

where npar represents the number of parameters in the fitted model, and k = 2 for the
usual AIC, or k = log (n) (n the number of observations) for the so-called BIC or SBC
(Schwarz’s Bayesian criterion).

Definition 2 (N(µ, σ2)). N(µ, σ2) denotes the normal distribution with mean µ ∈ R and
variance σ2 > 0. Its density is given by

f(x) =
1√

2πσ2
e−

1
2

(x−µ)2

σ2 , x ∈ R

Definition 3 (χ2(ν)-distribution). The χ2(ν)-distribution, with ν ∈ N degrees of freedom
denotes the distribution function with density

f(x) =
1

2ν/2Γ(ν/2)
xν/2−1e−x/21{x>0}, x ∈ R,

where Γ denotes the Gamma function.

Definition 4 ((non-central) t-distribution). t(ν, µ) denotes the (non-central) Student’s
t-distribution with parameters ν ∈ N (degrees of freedom parameter) and µ ∈ R (non-
centrality parameter). This distribution is composed of X ∼ N(0, 1), and V ∼ χ2(ν)-
distribution (independent of X), via

(X + µ)√
V/ν

.



Chapter 2

Commonly used Imputation
Methods

There are a lot of different imputation methods used in practice. The reader should be
aware that every imputed value is wrong, though some are better in view of the data
analyzing process. Always keep in mind that we prepare the data for a statistical analysis
and not to have the exact values. So the aim is to not distort the unknown multivariate
distribution of the random variables given by the whole data set for example by changing
the expected value or increasing or decreasing the standard deviation. The following
is a brief overview of some imputation methods commonly used in practice with their
strengths and weaknesses.

Imputation

Single Imputation Multiple Imputation

Nonstochastic Imputation Stochastic Imputation

EMI Hot Deck Norm PMM

Figure 2.1: Different Imputation Methods, the dashed will be utilized later.

Since a later presented vine copula imputation method has some parallels to the Linear
Regression with normally distributed error (Norm) approach, it is useful to compare it
with the original idea. We will see that, in many cases, it is not sufficient to consider only
linear relationships among the data. So it is necessary to enlarge the concept and allow
for more types of dependencies, like asymmetric dependence structures, in the model.
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6 CHAPTER 2. COMMONLY USED IMPUTATION METHODS

The Predictive Mean Matching (PMM) is interesting, first, because it uses real values
from the data as imputes, which is different to those vine copula imputation methods
discussed later, which use either simulated values or expectations. A comparison with
this procedure that combines parametric and nonparametric techniques is interesting,
as it can show some strengths and weaknesses of the new imputation methods in some
situations. Second, this approach performed well in further tests, and therefor is a good
indicator for the success or failure of the newly developed methods.

2.1 Single Imputation

Single imputation means that, step by step, one fills in a precise (or random) value for
each missing item to have a complete data set to analyze.

Example 1 (Single Imputation). Say we have a 4-dimensional dataset matrix Data ∈
R5×4 with 5 independent observations (Ai ∈ Rd, i = 1, . . . , 5) of a 4-dimensional random
vector X = (X1, . . . , X4), and some missing data,

Data =


a1,1 − a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 − −
a4,1 a4,2 a4,3 a4,4
a5,1 a5,2 a5,3 a5,4

 ,

where the dashes belong to nonresponse. Using a single imputation method, one gets a
single dataset DataI without missing values,

DataI =


a1,1 a∗1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a∗3,3 a∗3,4
a4,1 a4,2 a4,3 a4,4
a5,1 a5,2 a5,3 a5,4

 ,

where a∗ are the imputed values. Later on, we will differentiate between imputing only
one nonresponse (case 1, like in the first row) and imputing two or more values (case 2,
like in the third row).

The main point is that imputation is applied only once. For methods with one precise
value (nonstochastic single imputation), this means that no additional uncertainty is
added to these imputed values. Any time the method is reiterated, the same results will
occur. At first glance this is an attainable property, but it leads to a high underestimation
of the variance in the analyzing procedure afterwards. If a random effect is added to the
values (stochastic single imputation), an underestimation of the correlation between the
multivariate data can occur. Nevertheless, it is often used in practice, because once a
single imputation is done, the manipulated data can be handled as if it were complete,
unfortunately with more or less incorrect results.
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2.1.1 Nonstochastic Single Imputation

In a nonstochastic single imputation method, as mentioned above, the imputation values
stay the same when repeating the procedure. If the method is applied m times on the
same dataset Data, it follows that a∗1i,j = . . . = a∗mi,j for every missing value a∗i,j, i =
1, . . . , n, j = 1, . . . , d.

Empirical Mean Imputation

One rather elementary approach is to simply use the empirical mean or median of the
observed data for every margin to fill in the missing data. For the matrix DataI , this
means that

Case 1. a∗1,2 := 1
4

∑5
i=2 ai,2,

Case 2a. a∗3,3 := 1
4

∑5
i=1,i 6=3 ai,3 and

Case 2b. a∗3,4 := 1
4

∑5
i=1,i 6=3 ai,4.

The advantages are obvious. Every time this method is used one gets the same values.
Additionally, the marginal empirical expected value will not differ from the one computed
before imputation. Further, one does not need to distinguish between one or more missing
values in one row. But maybe this rather intuitive way is slightly too simple for our
purpose. The most undesirable point, apart from those mentioned before, is that the
dependence between the marginal distributions is highly underestimated.

Hot Deck Imputation

An approach that takes a closer look at the dependence structure between the marginals
is the so called hot deck method, where, in its simplest form, one tries to find a ”best
matching partner” to the set of complete values in an incomplete array (for example see
Little R. J. A., 1987, pp. 62-67). It is possible to use the current, but also data of a
survey that was collected earlier. In a mathematical sense, one tries to find a complete
vector in dimension n that minimizes the distance between the incomplete vector in a
lower dimensional vector space with dimension n1, where the number of missing values
is n − n1. If it is found, one completes the missing values in the incomplete vector with
those of the complete. For the nonresponse in the matrix Data, this means: select the
complete cases,

F = DataI
FC

=

 a2,1 a2,2 a2,3 a2,4
a4,1 a4,2 a4,3 a4,4
a5,1 a5,2 a5,3 a5,4

 ,

with IFC = {2, 4, 5}. Choose a norm, for example the Euclidean norm.

Case 1. To get the value a∗1,2, compute the distance for every vector in F to the vector

(a1,1, a1,3, a1,4) in the 3-dimensional submatrix (F1,F3,F4), di =
∑4

j=1,j 6=2(ai,j −
a1,j)

2, for i = 2, 4, 5. Set i = arg mini∈{2,4,5} {di} and a∗1,2 := ai,2.

Case 2a. For the value a∗3,3, search in F for the closest vector in (F1,F2) to (a3,1, a3,2), di =∑2
j=1(ai,j − a3,j)2, for i = 2, 4, 5. Set i = arg mini∈{2,4,5} {di} and a∗3,3 := ai,3.
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Case 2b. Last the value a∗3,4. Search in F for the closest vector in (F1,F2,F3) to (a3,1, a3,2, a
∗
3,3),

di =
(∑2

j=1(ai,j − a3,j)2
)

+ (ai,3 − a∗3,3)2, for i = 2, 4, 5. Set i = arg mini∈{2,4,5} {di}
and a∗3,4 := ai,4.

So if there is more than one missing value per row, the procedure has to be iterated
until every nonresponse is filled with an imputation value. Again, this produces biased
estimates of variances. In todays literature, different, more sophisticated types of hot deck
approaches have been proposed which do not belong to the category of nonstochastic single
imputation anymore. One example is a multiple imputation version in Rubin (1987).

2.1.2 Stochastic Single Imputation

A stochastic single imputation method tries to overcome the variance underestimation
in the marginal by adding a stochastic error to the imputation value. One possible
approach is fitting an appropriate stochastic model to the given data and simulating
imputation values from the model. In the example (Example 1), fit a model M(F, θ) to
the data in F, where θ is the parameter vector of the model. Simulate from the values
x∗1,2 := X2|X1 = a1,1, X3 = a1,3, X4 = a1,4, θ = θ̂ and x∗3,3 := X3|X1 = a3,1, X2 = a3,2, θ = θ̂

and x∗3,4 := X4|X1 = a3,1, X2 = a3,2, X3 = a∗3,3, θ = θ̂ with a simulation scheme for M. Set
a∗1,2 equal to one simulation of x∗1,2, a

∗
3,3 equal to one simulation of x∗3,3 and a∗3,4 equal to

one simulation of x∗3,4.

Linear Regression

Like in many statistical areas, linear regression is also a possible solution for the miss-
ing data problem. Here, a linear regression model is fitted under the assumption of a
continuous response variable with missing data (see Rubin D. B. 1987, pp. 166-167).
The predictor variables are chosen from a set of linearly correlated effects. At this point,
the information of missing data is used by simulating a new regression model based on
the posterior parameters and their corresponding estimated distribution. Otherwise the
variance of the model would be too small and would cause biased imputed values. The
following steps explain the procedure more detailed:

Case 1. Only one column with missing values in Data ∈ Rn×d, with n independent observa-
tions (Ai ∈ Rd, i = 1, . . . , n) of a d-dimensional random vector X = (X1, . . . , Xd) ∈
Rd. W.l.o.g. only missing values in Xd.

1. Set Xd with (n − n1) missing values in Data as the response variable and the
remaining d − 1 covariates X1, . . . , Xd−1 as predictor variables. Construct a linear
model

Xd = β0 + β1X1 + . . . ,+βd−1Xd−1 + ε,

only using complete cases for samples from Xd and X1, . . . , Xd−1. Let F−k denote
the matrix F with the k’th column removed. This yields to parameter estimates

β̂ = (β̂0, . . . , β̂d−1)
T = ((1,F−d)

T (1,F−d))
−1(1,F−d)

TFd



2.1. SINGLE IMPUTATION 9

and

σ̂2
ε =

(ad − âd)
T (ad − âd)

n1 − (d− 1)

only based on the complete case matrix F, with âd = (1,F−d)β̂, and ad = Fd.
Further, one gets the inverse of the S-matrix with S−1 := ((1,F−d)

T (1,F−d))
−1.

2. As mentioned above, the variance has to be adjusted to overcome the estimation
error through nonresponse. That is done via taking σ̃2

ε := σ̂2
ε (n1− (d− 1))/c, where

c is drawn from a χ2
n1−(d−1) random variable.

3. In a next step, the estimated parameters β̂ have to be adjusted, too, because the
missing values also have random influence on it. Define β̃ := β̂+ σ̃ε(S

1/2)TZ, where
S := (S1/2)TS1/2 and Z is a vector of d independent normally distributed random
variables.

4. Every nonresponse ai,d is now imputed by the value (1,F−d)iβ̃ + ziσ̃ε, with zi being
a N(0, 1) random variable.

For the value a∗1,2 in the Data matrix in the previous example (Example 1), the procedure
is the following:

Example 2 (Case 1). Construct a linear model with data of all complete cases F,

ai,2 = β0 + β1 × ai,1 + β3 × ai,3 + β4 × ai,4 + εi, i = 2, 4, 5.

This yields to parameter estimates

β̂ = (β̂0, β̂1, β̂3, β̂4) and σ̂2
ε ,

with

S−1 :=((1,F−2)
T (1,F−2))

−1 =
 1 a2,1 a2,3 a2,4

1 a4,1 a4,3 a4,4
1 a5,1 a5,3 a5,4

T  1 a2,1 a2,3 a2,4
1 a4,1 a4,3 a4,4
1 a5,1 a5,3 a5,4



−1

.

Compute σ̃2
ε and β̃ as mentioned and simulate a value z from a standard normal distri-

bution. Set

a∗1,2 := β̃0 + β̃1 × a1,1 + β̃3 × a1,3 + β̃4 × a1,4 + z × σ̃ε.

Case 2 More than one column with missing values in Data ∈ Rn×d, with n indepen-
dent observations (Ai ∈ Rd, i = 1, . . . , n) of a d-dimensional random vector X =
(X1, . . . , Xd) ∈ Rd.

1. For each column j = 1, . . . , d, with nonresponse in Data do
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2. For each row i = 1, . . . , n, where Xj has a nonresponse in Data, set Xi1 , . . . , Ximi
with missing value in row i in Data as the response variables (where w.l.o.g. i1 := j)
and the d−mi covariates Ximi+1 , . . . , Xid without missing values in Data as predictor
variables. Construct a linear model

Xi1 = β0 + βimi+1Ximi+1 + . . .+ βidXid + ε,

only using complete cases for samples from X1, . . . , Xd. This yields to parameter
estimates

β̂ = (β̂0, β̂imi+1 , . . . , β̂id)
T = ((1,F−Di)

T (1,F−Di))
−1(1,F−Di)

TFi1

with Di := {imi+1, . . . , id} denotes the set of missing entries in row i in Data, and

σ̂2
ε =

(ai1 − âi1)
T (ai1 − âi1)

n1 − |Di|

only based on the complete case matrix F, with âi1 = (1,F−Di)β̂, and ai1 = Fi1 .
Further one gets the inverse of the S-matrix with S−1 := ((1,F−Di)

T (1,F−Di))
−1.

3. Again, the variance has to be adjusted to overcome the estimation error through
nonresponse. That is done via taking σ̃2

ε := σ̂2
ε (n1 − |Di|)/c, where c is drawn from

a χ2
n1−(d−1) random variable. Here the draw is really from a χ2

n1−(d−1) distribution,

because instead of |Di|, we consider d− 1 predictor variables, but some are missing.

4. In a next step, the estimated parameters β̂ have to be adjusted, too, because the
missing values also have random influence on it. Define β̃ := β̂+ σ̃ε(S

1/2)TZ, where
S := (S1/2)TS1/2 and Z is a vector of d independent normally distributed random
variables.

5. The nonresponse ai,i1 is now imputed by the value (1,F−Di)iβ̃ + ziσ̃ε, with zi being
a N(0, 1) random variable.

6. Set Data = DataI with the imputed values, and reiterate with the next column,
while the F matrix does not change.

For the values a∗3,3 and a∗3,4 in the Data matrix in the previous example (Example 1), the
procedure is the following:

Example 3 (Case 2).

a. Construct a linear model with data of all complete cases F,

ai,3 = β0 + β1 × ai,1 + β2 × ai,2 + εi, i = 2, 4, 5.

This yields to parameter estimates

β̂ = (β̂0, β̂1, β̂2) and σ̂2
ε ,
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with

S−1 :=((1,F−{3,4})
T (1,F−{3,4}))

−1 =
 1 a2,1 a2,2

1 a4,1 a4,2
1 a5,1 a5,2

T  1 a2,1 a2,2
1 a4,1 a4,2
1 a5,1 a5,2



−1

.

Compute σ̃2
ε and β̃ as mentioned and simulate a value za from a standard normal

distribution. Set

a∗3,3 := β̃0 + β̃1 × a3,1 + β̃2 × a3,2 + za × σ̃ε.

b. Construct a linear model with data of all complete cases F,

ai,4 = β0 + β1 × ai,1 + β2 × ai,2 + β3 × ai,3 + εi, i = 2, 4, 5.

This yields to parameter estimates

β̂ = (β̂0, β̂1, β̂2, β̂3) and σ̂2
ε .

with

S−1 :=((1,F−4)
T (1,F−4))

−1 =
 1 a2,1 a2,2 x2,3

1 a4,1 a4,2 x4,3
1 a5,1 a5,2 x5,3

T  1 a2,1 a2,2 a2,3
1 a4,1 a4,2 a4,3
1 a5,1 a5,2 a5,3



−1

.

Compute σ̃2
ε and β̃ as mentioned and simulate a value zb from a standard normal

distribution, independent of the value za. Set

a∗3,4 := β̃0 + β̃1 × a3,1 + β̃2 × a3,2 + β̃3 × a∗3,3 + zb × σ̃ε.

Again, if there is more than one missing value in one row, the procedure will be applied

iteratively. Note that, if one takes the value β̂
T
ai for imputation, linear regression belongs

to the category of nonstochastic single imputation methods.

Predictive Mean Matching

The predictive mean matching (PMM) contains mainly the idea of the linear regression
method, but with some slight distinction, leading to a significant difference in the impute
values. The first three steps are the same as in the linear regression approach.

Case 1 Only one column with missing values in Data ∈ Rn×d, with n independent observa-
tions (Ai ∈ Rd, i = 1, . . . , n) of a d-dimensional random vector X = (X1, . . . , Xd) ∈
Rd. W.l.o.g. only missing values in Xd.

4. Every nonresponse ai,d in DataI
FC

is predicted by the value (1,F−d)iβ̃ + ziσ̃ε.
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5. For the missing ai,d find an observed candidate (a set of candidates) in Fd with closest
predicted value (values), and take its observed value (draw in the set randomly an
observed value) for imputation. So for all complete cases in F, and the nonresponse
case, set

âr,d = (1,F−d)rβ̃ + zrσ̃ε, r ∈ {r|Ar ∈ F} ∪ i
for zr independent standard normal draws. Find di, with

di := min
r∈{r|Ar∈F}

{|âr,d − âi,d|}

and define i∗, such that

i∗ := arg min
r∈{r|Ar∈F}

{|âr,d − âi,d|}

and set a∗i,d := ai∗,d.

Example 4 (Case 1). For the value a∗1,2 in the example (Example 1), that means: Set

âr,2 = β̃0 + β̃1 × ar,1 + β̃3 × ar,3 + β̃4 × ar,4 + zr × σ̃ε, r ∈ {1, 2, 4, 5},

for zi independent standard normal draws. Find d1, with

d1 := min
r∈{2,4,5}

{|âr,1 − â1,2|}

and define i∗, such that
i∗ := arg min

r∈{2,4,5}
{|âr,1 − â1,2|}

and set a∗1,2 := ai∗,2.

Case 2 More than one column with missing values in Data ∈ Rn×d, with n indepen-
dent observations (Ai ∈ Rd, i = 1, . . . , n) of a d-dimensional random vector X =
(X1, . . . , Xd) ∈ Rd.

5. Every nonresponse ai,i1 in DataI
FC

is predicted by the value (1,F−Di)iβ̃ + ziσ̃ε.

6. For the missing ai,i1 find an observed candidate (a set of candidates) in Fi1 with
closest predicted value (values), and take its observed value (draw in the set ran-
domly an observed value) for imputation. So for all complete cases in F, and the
nonresponse case, set

âr,r1 = (1,F−Dr)rβ̃ + zrσ̃ε, r ∈ {r|Ar ∈ F} ∪ i

for zr independent standard normal draws. Find di, with

di := min
r∈{r|Ar∈F}

{|âr,r1 − âi,i1|}

and define i∗, such that

i∗ := arg min
r∈{r|Ar∈F}

{|âr,r1 − âi,i1|}

and set a∗i,i1 := ai∗,i1 .
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Example 5 (Case 2).

a. For the value a∗3,3. Set

âr,3 = β̃0 + β̃1 × ar,1 + β̃2 × ar,2 + zr × σ̃ε, r ∈ {2, 3, 4, 5}.

for zr independent standard normal draws. Find d3, with

d3 := min
r∈{2,4,5}

{|âr,3 − â3,3|}

and define i∗, such that

i∗ := arg min
r∈{2,4,5}

{|âr,3 − â3,3|}

and set a∗3,3 := ai∗,3.

b. And for the value a∗3,4, set

âr,4 = β̃0 + β̃1 × ar,1 + β̃2 × ar,2 + β̃3 × ar,3 + zi × σ̃ε, r ∈ {2, 4, 5},
â3,4 = β̃0 + β̃1 × a3,1 + β̃2 × a3,2 + β̃3 × a∗3,3 + z3 × σ̃ε.

for zr independent standard normal draws, r ∈ {2, 3, 4, 5}. Find d3, with

d3 := min
r∈{2,4,5}

{|âr,4 − â3,4|}

and define i∗, such that

i∗ := arg min
r∈{2,4,5}

{|âr,4 − â3,4|}

and set a∗3,4 := ai∗,4.

This sounds similar to the hot deck approach, but the matching is done on the predicted
values only. Note again the iteratively applied procedure if there is more than one value
missing. Further, like in the linear regression approach, one can create a nonstochastic
single imputation method if one uses (1,F−Di)iβ̂ instead of (1,F−Di)iβ̃+ziσ̃ε as regression
estimates.

2.2 Multiple Imputation

In the words of Rubin (Rubin D. B. 1987, p. 15): ”Multiple imputation retains the
virtues of single imputation and corrects its major flaws”. What is the idea behind this?
One imputes values with more than one single imputation method more than once (for
example, one uses the three ”best matching partners” in the hot deck approach, first
with the data of the current survey and second with data collected earlier) to receive
a distribution of probabilities. Then one treats each imputed data set as if it were one
without missing values and analyzes it with respect to the important quantities like the
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expected value, variance or covariance. One takes the obtained parameters and analyzes
them.
In a mathematical sense, choose L single imputation methods. Apply all L methods to
the matrix with missing data Data. This yields to L full matrices DataIl , l = 1, . . . , L
without nonresponse. Analyze every matrix DataIl , l = 1, . . . , L for the parameter of
interest θ and obtain L estimates of the parameter θ̂l, l = 1, . . . , L. Now there is data
available to analyze the parameter of interest θ, for example for its expectation and its
variance.
Nonstichastic single imputation methods can only be applied once to receive a full data
matrix DataI , while stochastic single imputation methods are able to produce different
imputation matrices when repeating them.



Chapter 3

Parametric Vine Copulae

The vine copula or pair-copula theory provides a very flexible and powerful approach
to modeling multivariate data, i.e. constructing multivariate distribution functions, only
using bivariate copulae and univariate distribution functions as building blocks. The
bivariate copulae contain all information about the dependency structure between the
data like the correlation matrix in the multivariate Gaussian distribution does, whereas
the marginal distributions are modeled by one-dimensional distribution functions. As
special cases, the vine copulae contain the multivariate Gaussian and the multivariate
t distribution. But they still contain far more, like distributions with tail asymmetries,
with combinations of different types of dependence and with different marginals. One
major fault is that in almost all cases there is no closed form cdf (cumulative distribution
function) available, but the good news is that there is always a closed form density using
only parametric bivariate copulae. This is very helpful when applying maximum likelihood
methods for parameter estimation.

3.1 Theory of Vines

In the following a theory is presented on how a general multivariate distribution function
can be decomposed in terms of only bivariate copulae and one-dimensional distribution
functions (Aas, Czado, Frigessi, Bakken (2009)).
Consider a d-dimensional random vector X = (X1, . . . , Xd) with given density function
f , distribution function F and marginal distributions Fi, i = 1, . . . , d. The density can
be uniquely (up to variable permutation) factorized by

f(x1, . . . , xd) = f(xd)f(xd−1|xd)f(xd−2|xd−1, xd) · · · f(x1|x2, . . . , xd). (3.1)

The idea is to combine this decomposition with the famous Sklar’s theorem (Sklar, 1959)

F (x1, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)),

which, in words, states that every distribution function can be expressed in terms of its
d-dimensional copula C and the (maybe different) marginal distribution functions Fi,
i = 1 . . . , d. Likewise, the density has the expression

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd),

15
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where all marginals have to be strictly increasing and continuous and c is the copula
density. This is just d times an application of the chain rule for derivatives.
With the recursion formula

f(x|v) = cXVj |V−j(F (x|v−j), F (vj|v−j))f(x|v−j), (3.2)

and the expression for the conditional distribution function shown by Joe (1996)

F (x|v) =
∂CXVj |V−j(F (x|v−j), F (vj|v−j))

∂F (vj|v−j)
, (3.3)

where CXVj |V−j and cXVj |V−j are the copula and the copula density of (X, Vj) given V−j
respectively, and v−j is the vector v with the jth element missing, it is now possible
to derive a functional form of the multivariate density in terms of bivariate copulae and
univariate distribution functions only.
For simplifying model selection procedures and calculations, we assume that the copula
CXVj |V−j does not depend on V−j. This is called the simplifying assumption. Notation

CXVj ;V−j(x, vj) =CXVj |V−j(x, vj), and (3.4)

CX|Vj ;V−j(x|vj) =
∂CXVj |V−j(x, vj)

∂vj
. (3.5)

It is said to be the copula associated with the bivariate distribution and its derivative
respectively. For simplicity sometimes

Ci1i2;i3...ik(ui1 , ui2), and (3.6)

Ci1|i2;i3...ik(ui1|ui2), (3.7)

denotes the copula for the bivariate distribution function Ui1 , Ui2 given Ui3 , . . . , Uik and for
its partial derivative, where U1, . . . , Uk ∼ U [0, 1]. The same holds for the density function
c.
For notation in later sections it is useful to introduce the definition of the function h(x, v),
to represent a conditional distribution function F (x|v) where

h(x, v) = CX|V =
∂CXV (x, v)

∂v
, (3.8)

and x, v ∈ [0, 1].
It is easily seen that this factorization is not unique, because there are many possibilities to
step through the recursion formula of the density (see Morales Napoles et al. (2010)). So
Bedford and Cooke (2001b, 2002) introduced an organization scheme, helping to structure
the precise copula. They invented a graphical way called the regular vine (or R-vine).
In this thesis the assumption of an underlying regular vine (R-vine) holds which is defined
using graph theory (Kurowicka and Cooke (2006)).

Definition 5 (R-vine tree specification). Let Γ be a graph (E(Γ), V (Γ)) with E(Γ) the
set of edges and V (Γ) the set of vertexes. Γ is a regular vine on d elements with E(Γ) =
E1 ∪ . . . ∪ Ed−1 if

1. Γ = {T1, . . . , Td−1} is a forest consisting of d− 1 trees.



3.1. THEORY OF VINES 17

2. T1 is a connected tree with nodes N1 = {1, . . . , d} and edges E1. For i = 2, . . . , d−1,
Ti is a tree with nodes Ni = Ei−1.

3. Proximity condition: For i = 2, . . . , d − 1, for {A,B} ∈ Ei, |(A∆B)| = 2, with
A∆B := (A\B) ∪ (B\A) denotes the symmetric difference.

The following example should help to illustrate this idea.

Example 6. Considering a special density factorization (3.1) of the random vector (X1, . . . , X5)
one gets

f(x1, . . . , x5) = f(x5)f(x3|x5)f(x2|x3, x5)f(x4|x2, x3, x5)f(x1|x2, x3, x4, x5).

With the recursion formula for the density (3.2) one derives the expressions for the factors
only using copula densities:

f(x5) =f(x5)

f(x3|x5) =c35(F (x3), F (x5))f(x3)

f(x2|x3, x5) =c25;3(F (x2|x3), F (x5|x3))f(x2|x3)
=c25;3(F (x2|x3), F (x5|x3))c23(F (x2), F (x3))f(x2)

f(x4|x2, x3, x5) =c45;23(F (x4|x2, x3), F (x5|x2, x3))f(x4|x2, x3)
=c45;23(F (x4|x2, x3), F (x5|x2, x3))c24;3(F (x2|x3), F (x4|x3))f(x4|x3)
=c45;23(F (x4|x2, x3), F (x5|x2, x3))c24;3(F (x2|x3), F (x4|x3))
c34(F (x3), F (x4))f(x4)

f(x1|x2, x3, x4, x5) =c15;234(F (x1|x2, x3, x4), F (x5|x2, x3, x4))f(x1|x2, x3, x4)
=c15;234(F (x1|x2, x3, x4), F (x5|x2, x3, x4))
c14;23(F (x1|x2, x3), F (x4|x2, x3))f(x1|x2, x3)

=c15;234(F (x1|x2, x3, x4), F (x5|x2, x3, x4)
c14;23(F (x1|x2, x3), F (x4|x2, x3))c13;2(F (x1|x2), F (x3|x2))f(x1|x2)

=c15;234(F (x1|x2, x3, x4), F (x5|x2, x3, x4)
c14;23(F (x1|x2, x3), F (x4|x2, x3))c13;2(F (x1|x2), F (x3|x2))
c12(F (x1), F (x2))f(x1).

Applying (3.3) yields the final result. This special choice of factorization corresponds to
the R-vine tree structure in Figure 3.1.

There are two special cases of an R-vine structure, called the Canonical vine (C-vine) and
the D-vine. First, the C-vine has the representation

f(x) =
d∏

k=1

f(xk)×
d−1∏
i=1

d−i∏
j=1

ci,i+j;1:(i−1)(F (xi|x1, . . . , xi−1), F (xi+j|x1, . . . , xi−1)),

and second, the D-vine is defined as having the form

f(x) =
d∏

k=1

f(xk)×
d−1∏
i=1

d−i∏
j=1

cj,j+i;(j+1):(j+i−1)(F (xj|xj+1, . . . , xj+i−1), F (xj+i|xj+1, . . . , xj+i−1)).



18 CHAPTER 3. PARAMETRIC VINE COPULAE

T1 : 1 2 3 4

5

12 23 34

35

T2 : 12 23 34

35

13|2 24|3

25
|3

T3 : 13|2 24|3 25|3
14|23 45|23

T4 : 14|23 45|23
15|234

Figure 3.1: 5-dimensional R-vine structure.

D-vines have trees like path, while C-vines have stars as trees.

Conditional CDF’s and inverses.

Later, for simulation, we need to compute conditional distribution functions and their
inverses. One example for each, C-vine and D-vine, should be enough for demonstration.

Example 7 (Conditional Distribution Function & Inverse (C-vine)). Let X = (X1, . . . , X4)
be a 4-dimensional random vector, with an underlying C-vine structure. With the re-
cursion formula (Equation 3.3) one can compute the conditional distribution function
F4|123(x4|x1, x2, x3),

F4|123(x4|x1, x2, x3) =C4|3;12(F (x4|x1, x2)|F (x3|x1, x2))
F (x4|x1, x2) =C4|2;1(F (x4|x1)|F (x2|x1))
F (x3|x1, x2) =C3|2;1(F (x3|x1)|F (x2|x1))

F (x4|x1) =C4|1(F (x4)|F (x1))

F (x3|x1) =C3|1(F (x3)|F (x1))

F (x2|x1) =C2|1(F (x2)|F (x1))

=⇒
F4|123(x4|x1, x2, x3) =C4|3;12(C4|2;1(C4|1(F (x4)|F (x1))|C2|1(F (x2)|F (x1)))|

C3|2;1(C3|1(F (x3)|F (x1))|
C2|1(F (x2)|
F (x1))))
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with inverse

F−14|123(y4|x1, x2, x3) =F−14|12(C
−1
4|3;12(y4|F (x3|x1, x2))|x1, x2)

F−14|12(y4|x1, x2) =F−14|1 (C−14|2;1(y4|F (x2|x1))|x1)
F−14|1 (y4|x1) =F−14 (C−14|1(y4|F (x1)))

=⇒
F−14|123(y4|x1, x2, x3) =F−14 (C−14|1(C−14|2;1(C

−1
4|3;12(y4|

C3|2;1(C3|1(F (x3)|F (x1))|C2|1(F (x2)|F (x1))))|
C2|1(F (x2)|F (x1)))|
F (x1))).

The same holds true for a permutation of π(1, 2, 3, 4) = (1, 2, 4, 3).

Example 8 (Conditional Distribution Function & Inverse (D-vine)). Let X = (X1, . . . , X4)
be a 4-dimensional random vector, with an underlying D-vine structure. With the re-
cursion formula (Equation 3.3) one can compute the conditional distribution function
F4|123(x4|x1, x2, x3),

F4|123(x4|x1, x2, x3) =C4|1;23(F (x4|x2, x3)|F (x1|x2, x3))
F (x4|x2, x3) =C4|2;3(F (x4|x3)|F (x2|x3))
F (x1|x2, x3) =C1|3;2(F (x1|x2)|F (x3|x2))

F (x4|x3) =C4|3(F (x4)|F (x3))

F (x2|x3) =C2|3(F (x2)|F (x3))

F (x1|x2) =C1|2(F (x1)|F (x2))

F (x3|x2) =C3|2(F (x3)|F (x2))

=⇒
F4|123(x4|x1, x2, x3) =C4|1;23(C4|2;3(C4|3(F (x4)|F (x3))|C2|3(F (x2)|F (x3)))|

C1|3;2(C1|2(F (x1)|F (x2))|
C3|2(F (x3)|
F (x2))))

with inverse

F−14|123(y4|x1, x2, x3) =F−14|23(C
−1
4|1;23(y4|F (x1|x2, x3))|x2, x3)

F−14|23(y4|x2, x3) =F−14|3 (C−14|2;3(y4|F (x2|x3))|x3)
F−14|3 (y4|x3) =F−14 (C−14|3(y4|F (x3)))

=⇒
F−14|123(y4|x1, x2, x3) =F−14 (C−14|3(C−14|2;3(C

−1
4|1;23(y4|

C1|3;2(C1|2(F (x1)|F (x2))|C3|2(F (x3)|F (x2))))|
C1|2(F (x1)|F (x2)))|
F (x3))).

The same holds true for a permutation of π(1, 2, 3, 4) = (4, 3, 2, 1).
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For statistical inference, one needs to store an R-vine copula consisting of all the corre-
sponding pair-copula types and parameters properly. This was explained for example in
(Dimann J., Brechmann E. C., Czado C., Kurowicka D., (2013)). They are simply using
one lower triangular array for coding the tree structure, one for determining the type and
one for fixing the parameter for all one-parametric bivariate copula families. Clearly for
multi-parametric families one needs further arrays to store the additional information.

Definition 6 (Array Constraint Set). For an d-dimensional R-vine, let M = (mij)i,j=1,...,d

be a lower triangular array. The i-th constraint set for M is

CM(i) = {({mi,i,mk,i}, D)|k = i+ 1, . . . , d,D = {mk+1,i, . . .md,i}}

for i = 1, . . . , d − 1. If k = d set D = ∅. The constraint set for array M is the union
CM = CM(1)∪. . .∪CM(d−1). For the elements of the constraint set ({mi,i,mk,i}, D) ∈ CM
call {mi,i,mk,i} the conditioned set and D the conditioning set.

For demonstrating the use of this definition, just compare the following example of an
lower triangular array M̂ with Figure 3.1.

Example 9 (Lower Triangular Array). The constraint set always consists of one diagonal
element and an element in the same column below this entry together with all entries
following in that column.

M̂ =


1
5 5
4 4 4
3 2 2 3
2 3 3 2 2

 ,

e.g (14|23) as can be found in T4 in Figure 3.1. In the next step to defining an R-vine array,
one needs some proximity sets to ensure the proximity condition required in definition 5.

Definition 7 (Proximity Sets).

PM(i) := {(mi,i, D)|k = i+ 1, . . . , d,D = {mk,i, . . .md,i}},
P̃M(i) := {(mk,i, D)|k = i+ 1, . . . , d,D = {mi,i} ∪ {mk+1,i, . . .md,i}}.

So one can finally define an R-vine array.

Definition 8 (R-Vine Array). A lower triangular array M = (mij)i,j=1,...,d is called an R-
vine array if for i = 1, . . . , d−1 and for all k = i+1, . . . , d−1 there is a j ∈ {i+1, . . . , n−1}
with

(mk,i, {mk+1,i, . . . ,md,i}) ∈ PM(j) or ∈ P̃M(j).

3.2 Simulation and Estimation

Two of our proposed imputation methods work via the simulation of the nonresponse
given the values that are not missing like in the linear regression case. Hence it is crucial
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to have a simulation as well as an estimation scheme for both a vine copula model and
for the marginals available. In the following section the inversion method to stimulate
univariate random variables and the algorithm of Dissmann will be presented (Dissmann
J., Brechmann E. C., Czado C., Kurowicka D., (2013)). For R-vine simulation, that is
the most general class of vine copulae. Afterwards, some estimation methods for the
model will be explained. As there are only parametric copulae and margins considered,
the methods will be reduced to parametric and semi-parametric estimators.

3.2.1 Marginal Simulation

The most common method to generate any univariate random variable is the Inversion
Sampling Method. It works the following way:

Theorem 1 (Inversion Sampling). Let F be a continuous and increasing distribution
function on R with generalized inverse F−1 defined by

F−1 : (0, 1)→ R, F−1(x) := inf {y ∈ R : F (y) ≥ x}.

If U ∼ U [0, 1] is a uniformly distributed random variable on the interval [0, 1], then
F−1(U) has distribution function F . Also if X has distribution function F , then F (X) is
uniformly distributed on [0, 1].

Proof 1 (Inversion Theorem). The first statement follows after noting that ∀x ∈ R,

P(F−1(U) ≤ x) = P(inf {y ∈ R : F (y) ≥ U} ≤ x)

= P(U ≤ F (x))

= F (x).

Further note that F ◦ F−1 is the identity and F−1 is strictly increasing. Then the second
statement follows from the fact that ∀u ∈ (0, 1),

P(F (X) ≤ u) = P(X ≤ F−1(u))

= F ◦ F−1(u)

= u.

So the procedure works by generating a uniformly distributed random variable U ∼ U [0, 1]
and applying the generalized inverse (or quantile function) of the distribution function
that one wants to simulate F−1(U).

3.2.2 R-vine Simulation

Generating a sample of an d-dimensional R-vine is based on the Rosenblatt transforma-
tion for continuous multivariate distributions that provides a procedure to sample from a
d-dimensional multivariate distribution function.
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Theorem 2 (Multivariate Inversion Sampling). Let F be the d-dimensional distribution
function of the random vector (X1, . . . Xd) with continuous univariate marginal distribu-
tion functions F1, . . . , Fd. Further let

F2|1, F3|12, . . . , Fd|1,...,d−1

be the corresponding conditional distribution functions with generalized inverses

F−12|1 , F
−1
3|12, . . . , F

−1
d|1,...,d−1.

To generate a random vector (X1, . . . Xd) ∼ F , one has to simulate U1, . . . , Ud iid uniform
on [0, 1] and set

X1 = F−11 (U1)

X2 = F−12|1 (U2|X1)

X3 = F−13|12(U3|X1, X2)

...

Xd = F−1d|1,...,d−1(Ud|X1, . . . , Xd−1).

Now the vector (X1, . . . Xd) has the distribution function F .

Clearly, a permutation of the numbers 1, 2, . . . , d is possible.

Proof 2 (Sampling Multivariate Distribution Functions). Let the setting be as in the
theorem, then the case d = 1 is proved above in the Inversion Theorem. For the case
d = k − 1→ d = k,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk)

= P(X1 ≤ x1, X2 ≤ x2, . . . , Xk−1 ≤ xk−1, Xk = F−1k|1,...,k−1(Uk|X1, . . . , Xk−1) ≤ xk)

= P(X1 ≤ x1, X2 ≤ x2, . . . , Xk−1 ≤ xk−1, Uk ≤ Fk|1,...,k−1(xk|X1, . . . , Xk−1))

=

∫ x1

−∞
. . .

∫ xk−1

−∞
P(Uk ≤ Fk|1,...,k−1(xk|y1, . . . , yk−1)|X1 = y1, . . . , Xk−1 = yk−1)

dF1...k−1(y1, . . . , yk−1)

=

∫ x1

−∞
. . .

∫ xk−1

−∞
Fk|1,...,k−1(xk|y1, . . . , yk−1)dF1...k−1(y1, . . . , yk−1)

= F1...k(x1, . . . xk).

With the expression for the conditional distribution function (3.3) and the definition of the
h-function (3.8) it is now possible to determine F (xik |xi1 . . . xik−1

) for a ”well chosen”
permutation π((1, 2, . . . , d)) = (i1, . . . , id) for every k = 2, . . . , d. For example for the
canonical vine choose, without loss of generality, π as the identity and

F (xk|x1 . . . xk−1) =
∂k−1Ck,k−1|1,...,k−2 (F (xk|x1, . . . xk−2), F (xk−1|x1, . . . xk−2))

∂F (xk−1|x1, . . . xk−2)
.
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For the D-vine again choose π as the identity and

F (xk|x1 . . . xk−1) =
∂1Ck,1|2,...,k−1 (F (xk|x2, . . . xk−1), F (x1|x2, . . . xk−1))

∂F (x1|x2, . . . xk−1)
.

For simulating from a regular vine, Dissmann et al. (2013) developed an algorithm that
chooses first a ”proper” permutation for the indexing of the random variables and then
steps through the sampling scheme given above. This involves a clever storing order of
the h-functions and their inverses in two d × d arrays, where only the lower diagonals
are used. For convenience it is assumed that the diagonal entries of M are ordered from
d to 1, i.e., mk,k=d − k + 1. If this is not the case, just rename the random vector and
get an equivalent vine representation with an ordered M .

Example 10 (Convenience Ordering). For example for the vector (X1, X2, X3, X4, X5)
and the corresponding M̂ from example 9 one gets a renamed vector (X̂5, X̂1, X̂2, X̂3, X̂4),
with X̂5 = X1, . . . , X̂4 = X5 with the array representation

M̂ =


5
4 4
3 3 3
2 1 1 2
1 2 2 1 1

 .

At the same time this convenience ordering turns out to be a ”proper” index permutation
for simulation. To proceed, one last matrix has to be introduced, called the maximum
array. It ensures that the algorithm inserts the right arguments in the h-functions and
their inverses and is defined as follows.

Definition 9 (Maximum Array). The maximum array M = (mi,k)i,k=1...,d of a R-vine
array M = (mi,k)i,k=1...,d is defined by mi,k := max {mi,k, . . . ,md,k} for all k = 1 . . . , d
and i = k, . . . , d.

In words, the element mi,k is the maximum over all entries in column k from i up to the
d’th row.

Example 11. The maximum array M̂ of the R-vine array M̂ is then by definition

M̂ =


5
4 4
3 3 3
2 2 2 2
1 2 2 1 1

 .

Additionally, two more lower triangular arrays have to be specified to store information
about types and parameters of the bivariate copulae. That is T = (ti,j)i,j=1,...,d for the
type (e.g. Normal, t, Clayton, etc.) and P = (pi,j)i,j=1,...,d for the parameter (for copula
families with more than one parameter, additional arrays are needed) of each bivariate
copulae.
Taking into account the convenience ordering, one can finally use Dissman’s algorithm to
get a simulation from a d-dimensional random vector X = (U1, . . . , Ud) with R-vine array
M ∈ Nd×d, maximum array M ∈ Nd×d, pair copula family specification array T ∈ Nd×d

and with corresponding parameter array P ∈ Rd×d.
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Data: R-vine specification in array form, i.e., M ,T ,P , where mk,k = d− k + 1,
k = 1, . . . , d.

Result: Random observations (x1, . . . , xd) ∈ [0, 1]d from the R-vine specification.
1 Let u1, . . . , ud be independent uniform samples.
2 Allocate V direct = (vdirecti,k |i, k = 1, . . . , d).

3 Allocate V indirect = (vindirecti,k |i, k = 1, . . . , d).

4 Set (vdirectd,1 , vdirectd,2 , . . . , vdirectd,d ) = (u1, u2, . . . , ud).

5 Let M = (mi,k|i, k = 1, . . . , d) with mi,k = max {mi,k, . . . ,md,k} for all
k = 1, . . . , d− 1 and i = k, . . . , d.

6 x1 = vdirectd,d

7 for k = d− 1, . . . , 1 do
8 for i = k + 1, . . . , d do
9 if mi,k = mi,k then

10 Set z
(2)
i,k = vdirecti,d−mi,k+1.

11 else

12 Set z
(2)
i,k = vindirecti,d−mi,k+1.

13 end

14 Set vdirectd,k = h−1(vdirectd,k , z
(2)
i,k |ti,k, pi,k)

15 end
16 xd−k+1 = vdirectd,k

17 for i = d, . . . , k + 1 do

18 Set z
(1)
i,k = vdirecti,k

19 Set vdirecti−1,k = h(z
(1)
i,k , z

(2)
i,k |ti,k, pi,k) and vindirecti−1,k = h(z

(2)
i,k , z

(1)
i,k |ti,k, pi,k).

20 end

21 end
22 return (x1, . . . , xd).

Algorithm 1: Simulation of an R-vine specification
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3.2.3 R-Vine Simulation with Given Values

The fundamentals for this issue are already given from the preceding chapter. For simu-
lating with given values one supposedly has to do less work. In practice, however, almost
the same ideas are needed. Algorithm 1 generates a sample from a d-dimensional random
vector (U1, . . . , Ud) with a given R-vine structure. Now the aim is to enlarge this concept
and generate a sample from a random vector (U1, . . . , Ud) with a given R-vine structure
and given values U1 = u1, . . . , Ur = ur, for r < d. Now the following corollary of Theorem
2 solves the problem theoretically.

Corollary 1 (Multivariate Inversion Sampling with Given Values). Let the conditions of
Theorem 2 hold and additionally let X1 = x1, . . . , Xr = xr being the already given values
from the random vector (X1, . . . , Xr, Xr+1, . . . , Xd). To generate a sample of the random
vector (X1, . . . Xd) ∼ F , one has to simulate Ur+1, . . . , Ud iid uniform on [0, 1] and set

X1 = x1
...

Xr = xr

Xr+1 = F−1r+1|1...r(Ur+1|X1, . . . , Xr)

...

Xd = F−1d|1,...,d−1(Ud|X1, . . . , Xd−1).

Now the vector (X1, . . . Xd) is a sample from a random vector X, which is distributed
according to F .

Note that one needs the given values in a particular order. The procedure can only be
applied if the first r values are given. Otherwise one has to rename the variables.
Algorithm 1 already creates the needed inverses, but additionally samples (X1, . . . , Xr)
under the corresponding R-vine model. So only the steps where these now given values
are created have to be corrected to ensure the right result. Adjustments have do be done
only in the first r iterations over the columns, where in each iteration over the row, the
vdirectd,k is replaced by the nested inverse (line 14). Further the xd−k+1 must not be replaced
(line 16), because it is already given. This can be better illustrated by an example:

Example 12. Given the R-vine matrix like in Example 10

M̂ =


5
4 4
3 3 3
2 1 1 2
1 2 2 1 1

 ,

with corresponding maximum array

M̂ =


5
4 4
3 3 3
2 2 2 2
1 2 2 1 1

 ,
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algorithm 1 creates the following 4 matrices: Setting (including line 6)

V direct =


�
� �
� � �
� � � �
u1 u2 u3 u4 x1

 , V indirect =


�
� �
� � �
� � � �
� � � � �

 ,

z(1) =


�
� �
� � �
� � � �
� � � � �

 , z(2) =


�
� �
� � �
� � � �
� � � � �

 ,

step k = 4

V direct =


�
� �
� � �
� � � C2|1
u1 u2 u3 x2 x1

 , V indirect =


�
� �
� � �
� � � C1|2
� � � � �

 ,

z(1) =


�
� �
� � �
� � � �
� � � x2 �

 , z(2) =


�
� �
� � �
� � � �
� � � x1 �

 ,

step k = 3

V direct =


�
� �
� � C3|2;1
� � C3|1 C2|1
u1 u2 x3 x2 x1

 , V indirect =


�
� �
� � C2|3;1
� � C1|3 C1|2
� � � � �

 ,

z(1) =


�
� �
� � �
� � C3|1 �
� � x3 x2 �

 , z(2) =


�
� �
� � �
� � C2|1 �
� � x2 x1 �

 ,
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step k = 2

V direct =


�
� C4|3;12
� C4|1;2 C3|2;1
� C4|2 C3|1 C2|1
u1 x4 x3 x2 x1

 , V indirect =


�
� C3|4;12
� C1|4;2 C2|3;1
� C2|4 C1|3 C1|2
� � � � �

 ,

z(1) =


�
� �
� C4|1;2 �
� C4|2 C3|1 �
� x4 x3 x2 �

 , z(2) =


�
� �
� C3|1;2 �
� C1|2 C2|1 �
� x2 x2 x1 �

 ,

step k = 1

V direct =


C5|4;123
C5|3;12 C4|3;12
C5|2;1 C4|1;2 C3|2;1
C5|1 C4|2 C3|1 C2|1
x5 x4 x3 x2 x1

 , V indirect =


C4|5;123
C3|5;12 C3|4;12
C2|5;1 C1|4;2 C2|3;1
C1|5 C2|4 C1|3 C1|2
� � � � �

 ,

z(1) =


�

C5|3;12 �
C5|2;1 C4|1;2 �
C5|1 C4|2 C3|1 �
x5 x4 x3 x2 �

 , z(2) =


�

C4|3;12 �
C3|2;1 C3|2;1 �
C2|1 C1|2 C2|1 �
x1 x2 x2 x1 �

 .

The main point is that if values x1, . . . , xr, for r < 5 are given, one just has to leave out
the xk computations for k = 1, . . . , r, because the nested conditioned copulae are depending
on x1 . . . , xk−1, xk only. For k = r + 1, . . . , 5 continue as in Algorithm 1.

So the result is an algorithm consisting of two parts. One just filling in the needed so called
”backward substeps” (k = 1, . . . , r), and one doing ”forward-” and ”backward substeps”
and really simulating returned values (k = r + 1, . . . , d).
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Data: Given values x1, . . . , xd−r, an R-vine specification in array form, i.e.,
M ,T ,P , where mk,k = d− k + 1, k = 1, . . . , d.

Result: Random observations (xd−r+1, . . . , xd) from the R-vine specification.
1 Let u1, . . . , ur be independent uniform samples.
2 Allocate V direct = (vdirecti,k |i, k = 1, . . . , d).

3 Allocate V indirect = (vindirecti,k |i, k = 1, . . . , d).

4 Set (vdirectd,1 , vdirectd,2 , . . . , vdirectd,d ) = (u1, u2, . . . , ur, xd−r, xd−r−1 . . . , x1).

5 Let M = (mi,k|i, k = 1, . . . , d) with mi,k = max {mi,k, . . . ,md,k} for all
k = 1, . . . , d− 1 and i = k, . . . , d.

6 for k = d− 1, . . . , d− r do
7 for i = k + 1, . . . , d do
8 if mi,k = mi,k then

9 Set z
(2)
i,k = vdirecti,d−mi,k+1.

10 else

11 Set z
(2)
i,k = vindirecti,d−mi,k+1.

12 end

13 end
14 for i = d, . . . , k + 1 do

15 Set z
(1)
i,k = vdirecti,k

16 Set vdirecti−1,k = h(z
(1)
i,k , z

(2)
i,k |ti,k, pi,k) and vindirecti−1,k = h(z

(2)
i,k , z

(1)
i,k |ti,k, pi,k).

17 end

18 end
19 for k = d− r − 1, . . . , 1 do
20 for i = k + 1, . . . , d do
21 if mi,k = mi,k then

22 Set z
(2)
i,k = vdirecti,d−mi,k+1.

23 else

24 Set z
(2)
i,k = vindirecti,d−mi,k+1.

25 end

26 Set vdirectd,k = h−1(vdirectd,k , z
(2)
i,k |ti,k, pi,k)

27 end
28 xd−k+1 = vdirectd,k

29 for i = d, . . . , k + 1 do

30 Set z
(1)
i,k = vdirecti,k

31 Set vdirecti−1,k = h(z
(1)
i,k , z

(2)
i,k |ti,k, pi,k) and vindirecti−1,k = h(z

(2)
i,k , z

(1)
i,k |ti,k, pi,k).

32 end

33 end
34 return (x1, . . . , xd).

Algorithm 2: Simulation of an R-vine specification with given values
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Vine Copula Imputation

Now we should have sufficient theory to start with the actual project, the imputation
method via vine copulae. With this concept, it is possible to exploit much more general
dependence structures, like asymmetric dependencies between multivariate random vari-
ables. This is far more general than, for example, the linear regression procedure, only
allowing linear dependencies. Further there is a simulation scheme available that allows
for stochastic imputation. With the known density function, it is also possible to create
a nonstochastic method with an underlying vine copula model.

Let us start with an example in dimension 4 to illustrate the common thread:

Example 13. Let there be a 4-dimensional random variable U = (U1, . . . , U4) with uni-
formly distributed margins (Ui ∼ U [0, 1], i = 1, . . . , 4). Further there have been data

collected n times (ui = (ui1, . . . , ui4), ui
iid∼ U, i = 1, . . . , n),

Case 1. in the first scenario with nonresponse only in the first variable U1,
u1 = (−, u12, u13, u14)

Case 2. in the second scenario only in the second margin U2,
u2 = (u21,−, u23, u24)

Case 3. in the third case only in the third variable U3,
u3 = (u31, u32,−, u34)

Case 4. and last, only in the fourth variable U4.
u4 = (u41, u42, u43,−)

Assume that U follows a C-vine structure with estimated pair copulae C12, C13, C14, C23;1,
C24;1, C34;12.

With the simulation scheme mentioned in Section 3.2, it is easy to derive an imputation
value that takes into account all available information, for every nonresponse in the third
or in the fourth scenario, with missing value either in the third or in the fourth variable.
That is for every missing value in the fourth case, do:

Case 4a. Simulate V4
iid∼ U [0, 1].

29
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T1 : 1

2 3

4

12 13

14

T2 : 1213 14
23|1 24|1

T3 : 23|1 24|1
34|12

T1 : 1

2 3

4

12 13

14

T2 : 1213 14
23|1 24|1

T3 : 23|1 24|1
34|12

Figure 4.1: 4-dimensional C-vine structure with the vertexes labeled that contain the
third or the fourth variable. These are the two examples where it is possible to impute
with taking into account all available information (for Case 3 and Case 4).

Case 4b. Compute the inverse of the conditional distribution function with Equation 3.3 (see
Example 7), and set

u∗4 = F−14|123(V4|u1, u2, u3)

= C−14|1

(
C−14|2;1

(
C−14|3;12

(
V4|C−13|2;1

(
C−13|1 (u3|u1) |u2

))
|C−12|1 (u1, u2)

)
|u1
)
,

and for every missing value in the third case, do:

Case 3a. Simulate V3
iid∼ U [0, 1].

Case 3b. Set

u∗3 = F−13|124(V3|u1, u2, u4)

= C−13|1

(
C−13|2;1

(
C−13|4;12

(
V3|C−14|2;1

(
C−14|1 (u4|u1) |u2

))
|C−12|1 (u1, u2)

)
|u1
)
,

where F−1i1|i2i3i4 is the general inverse of the distribution function of Ui1 given Ui2 , Ui3 and

Ui4. Further C−1i1|i2;j1...jk := (∂i2Ci1,i2;j1...jk)
−1. This is straightforward, because every copula

needed in the computation above is known from the estimation. Problems appear with the
nonresponse in u1 and u2, so for scenario one and two. There are three possibilities for
the imputation in u1 considering most of the available information, but none of them is
satisfying in the sense that we can use all of them:

Case 1a. Simulate V1 ∼ U [0, 1].
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Case 1b. Set

u∗1 = F−11|2 (V1|u2) = C−11|2(V1|u2),

or

u∗1 = F−11|3 (V1|u3) = C−11|3(V1|u3),

or

u∗1 = F−11|4 (V1|u4) = C−11|4(V1|u4),

notation as above. One can not use the other copulae in closed form, because they are
conditioned on the first variable i.e. the first variable has to be known which is not the
case. Almost the same problem appears for nonresponse in u2 only. Here there are two
possibilities:

Case 2a. Simulate V2 ∼ U [0, 1].

Case 2b. Set

u∗2 = F−12|13(V2|u1, u3) = C−12|1

(
C−12|3:1

(
V2|C3|1(u3|u1)

)
|u1
)
,

or

u∗2 = F−12|14(V2|u1, u4) = C−12|1

(
C−12|4:1

(
V2|C4|1(u4|u1)

)
|u1
)
,

again with the same notation.

Theorem 3 (Conditional CDF’s for C-vines).

- univariate In general, it is possible for a C-vine to derive the conditional distribu-
tion function for the last two values only, i.e.

Fd|1:d−1 = Cd|1:d−1 = ∂d−1Cd,d−1|1:d−2,

Fd−1|1:(d−2),d = Cd−1|1:(d−2),d = ∂dCd,d−1|1:d−2,

which are available in closed form in the C-vine structure. Therefor it is possible to
simulate Ui|U−i = u−i for i ∈ {d− 1, d}, only.

- bivariate

Fd−1|1:d−2 = Cd−1|1:d−2 = ∂d−2Cd−1,d−2|1:d−3,

Fd−2|1:(d−3),d−1 = Cd−2|1:(d−3),d−1 = ∂d−1Cd−1,d−2|1:d−3,

Fd|1:d−2 = Cd|1:d−2 = ∂d−2Cd,d−2|1:d−3,

Fd−2|1:d−3,d = Cd−2|1:d−3,d = ∂dCd,d−2|1:d−3

are again available in closed form for d − 2 conditioning variables only. Combining this
with the univariate case, it is possible to simulate (Ui, Uj)|U−{i,j} only for i, j ∈ {d−2, d−
1, d}, i 6= j.
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- general For d-k conditioning variables there are the conditioned cdf ’s available

Fi|1:(i−1),i+j = Ci|1:(i−1),i+j = ∂i+jCi,i+j|1:i−1,

Fi|1:(i−1),i+j = Ci+j|1:i = ∂iCi,i+j|1:i−1, i = d− k, j = 1, . . . , d− i

So possible simulations are (Ui1 , . . . , Uik |U−{i1,...,ik}) only for i1, . . . , ik ∈ {d − k, . . . , d},
for il l = 1 . . . , k pairwise unequal.

Theorem 4 (Conditional CDF’s for D-vines).

- univariate In general, it is possible for a D-vine to derive the conditional distribu-
tion function for the first and the last value only, i.e.

Fd|1:d−1 = Cd|1:d−1 = ∂1C1,d|2:d−1,

F1|2:d = C1|2:d = ∂dC1,d|2:d−1,

which are available in closed form in the D-vine structure. Therefor it is possible to
simulate Ui|U−i = u−i for i ∈ {1, d}, only.

- bivariate

Fd|2:d−1 = Cd|2:d−1 = ∂2C2,d|3:d−1,

F2|3:d = C2|3:d = ∂dC2,d|3:d−1,

Fd−1|1:d−2 = Cd−1|1:d−2 = ∂1C1,d−1|2:d−2,

F1|2:d−1 = C1|2:d−1 = ∂d−1C1,d−1|2:d−2

are again available in closed form for d − 2 conditioning variables only. Combining
this with the univariate case, it is possible to simulate (Ui, Uj)|U−{i,j} only for {i, j} ∈
{{1, 2}, {1, d}, {d− 1, d}}.

- general For d-k conditioning variables, the conditioned cdf ’s are available

Fj+i|j:(j+i−1) = Cj+i|j:(j+i−1) = ∂jCj,j+i|(j+1):(j+i−1),

Fj|j+1:(j+i) = Cj|j+1:(j+i) = ∂j+iCj,j+i|(j+1):(j+i−1), i = d− k, j = 1, . . . , d− i

So possible simulations for k > 1 are (Ui1 , . . . , Uik |U−{i1,...,ik}) only for {i1, . . . , ik} ∈
{{1, d− k + 2, . . . , d}, {1, . . . , k1, d− k2 + 1, . . . , d|k1 + k2 = k}, {1, . . . , k − 1, d}}.

Facing this issue, one could think about the following two approaches that are discussed
in detail next. They only use closed form density functions and impute values with sim-
ulation of the missing data given the observed. First, for each missing value combination
we try to find the ”best” fitting model with the constraint that all nonresponse data have
to be imputed such that every available information is included, called Vine Copula
Regression Imputation (CopReg). Second, we follow the procedure demonstrated in
the 4-dimensional example in the way that we try to find the ”best” fitting vine copula
model and impute considering ”the most possible” information available, called Vine
Copula Fitting Imputation (CopFit).
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Taking another look at the problem in Example (13) of not being able to simulate the
random variable U1 given U2, U3, U4, one could think about integrating out the given
density function to get the conditional expected value E(U1|U2 = u2, U3 = u3, U4 = u4)
instead of using closed form cdf’s. This method is straightforward for every vine structure
as long as the continuity assumption holds true. Later on, this third approach is called
Vine Copula Expectation Imputation (CopExp).

Imputation

Single Imputation Multiple Imputation

Nonstochastic Imputation Stochastic Imputation

EMI Hot Deck CopExp Norm PMM CopFit CopReg

Figure 4.2: Overview of common imputation methods with the newly proposed copula
based imputation methods (dashed).
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4.1 Vine Copula Regression Imputation (CopReg)

This method picks up the idea of a classical regression model as the nomenclature sug-
gests. Likewise, one determines response variables where information is needed (missing
variable), and predictor variables that contain this information (given values). After fix-
ing the affiliation of each, the ”best” fitting vine copula model among the ”appropriate”
ones has to be found to impute the missing data with a simulation scheme.

Case 1 (Only one missing per row): So first, consider a matrix Data ∈ Rn×d with
n independent observations (ui ∈ Rd, i = 1, . . . , n) of a d-dimensional random vector
U = (U1, . . . , Ud) ∈ Rd, Uj ∼ U [0, 1], j = 1, . . . , d with, w.l.o.g. nonresponse in the first r
rows of the first observation vector , i.e.

Data =



− u12 . . . u1d
...

...
...

− ur2 . . . urd
ur+1,1 ur+1,2 . . . ur+1,d

...
...

...
un1 un2 . . . und


.

Now the procedure is the following:

Step 1. Determine the complete case matrix

F =

 ur+1,1 . . . ur+1,d
...

...
un1 . . . und

 .

Step 2. Determine the response variables (= {U1}) and the predictor variables
(= {U2, . . . , Ud}).

Step 3. Fit an R-vine model to F under the constraint, that U1|U2, . . . , Ud can be simulated.
This means that for only one missing value per row (see Example 13), the nonre-
sponse variable has to be a leaf in any tree in the structure of the vine trees (see
Figure 4.1).

Step 4. Simulate u∗11 ∼ U1|U2 = u12, . . . , Ud = u1d, . . . , u
∗
r1 ∼ U1|U2 = ur2, . . . , Ud = urd

from the R-vine model.

Case 2 (More than one missing per row): Second, consider the same matrix Data,
now w.l.o.g. with the first m− 1 values missing in the first row, i.e.

Data =


− . . . − u1m . . . u1d
u21 . . . . . . . . . . . . u2d
...

...
un1 . . . . . . . . . . . . und

 .

Now the procedure is the following:
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Step 1. Determine the complete case matrix

F =

 u21 . . . u2d
...

...
un1 . . . und

 .

Step 2. Determine the response variables (= {U1, . . . , Um−1}) and the predictor variables
(= {Um, . . . , Ud}).

Step 3.1. Fit an R-vine model to F under the constraint that U1|Um, . . . , Ud can be simulated.
This means that the R-vine model for the vector (U1, Um . . . .Ud) has the constraint
that the nonresponse variable U1 has to be a leaf in any tree in the structure of the
vine trees (see Figure 4.1).

Step 4.1. Simulate u∗11 ∼ U1|Um = u1m, . . . , Ud = u1d from the R-vine model.

Step 3.2. Fit an R-vine model to F under the constraint that U1|Um, . . . , Ud and
U2|U1, Um, . . . , Ud can be simulated. This is an extension of the R-vine model in
Step 3.1, by adding the variable U2.

Step 4.2. Simulate u∗12 ∼ U2|U1 = u∗11, Um = u1m, . . . , Ud = u1d from the R-vine model.

Step 3.m. Fit an R-vine model to F under the constraint, that U1|Um, . . . , Ud and
Ui|U1, . . . , Ui−1, Um, . . . , Ud, i = 2, . . . ,m− 1 can be simulated. This is an extension
of the R-vine model in 3.m− 1, by adding the variable Um−1. So the R-vine model
has to fulfill the condition that first the nonresponse variable Um−1 has to be a leaf
in any tree in the structure of the vine trees. If we look at the structure of the vine
trees without Um−1, the variable Um−2 has to be such a leaf. This has to be possible
up to variable U1.

Step 4.m. Simulate u∗1,m−1 ∼ Um−1|U1 = u∗11, . . . , Um−2 = u∗1,m−2, Um = u1m, . . . , Ud = u1d from
the R-vine model.

If there is nonresponse in more than one row, we use the method on each row Ai ∈
DataI

FC
, ∀i ∈ IFC , separately, while the F matrix does not change. Note that with

changing the imputation order, the R-vine fit also changes.
As mentioned before, the ”best” fitting model here is the one that Dissmann’s tree by tree
estimation suggests (of course one can use her or his preferred estimation scheme). Now
the question of what ”appropriate” vine copula models are so that every given information
can be used to predict the nonresponse is almost answered. Clearly it does not matter
what kind of bivariate copula families are chosen and which parameters they are equipped
with. But looking back at the example from the beginning of Chapter 4, it clearly shows
that the tree structure of the vine has to be restricted to a subclass of R-vine copulae.
The restrictions are:

1. For only one missing value per row, as said before, the nonresponse variable has to
be a leaf in any tree in the structure of the vine trees (see Figure 4.1).
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2. For two or more missing values per row, at least one nonresponse variable in this
row has to be a leaf in any tree in the structure of the vine trees. If we look at the
structure of the vine trees without this leaf, again at least one nonresponse variable
in this row has to be a leaf in any tree in the new structure of the vine trees etc.
In matrix notation: if there are m out of n given variables in one row, it has to be
possible to find a nonresponse variable with the property that it does not take place
in the lower triangular R-vine array (M)ij=1,...n at places mij for all i > j+ 1. Then
if this leaf nonresponse variable is deleted (in the sense that the whole column with
its number on top and additionally every place the number occurs in is deleted),
again it has to be possible to find such a nonresponse variable in this row etc. This
has to be possible for n−m− 1 deletions.

The following example will help to make this more intuitive:

Example 14 (Vine Copula Imputation for D-vines). Let U = (U1, . . . , U5) be a 5-
dimesional random variable with uniformly distributed margins {Ui ∼ U [0, 1], i = 1, . . . , 5}.
Again there have been data collected n times {ui = (ui1, . . . , ui5), ui

iid∼ U, i = 1, . . . , n}
now with nonresponse in two of the five variables. Assume that U follows a D-vine struc-
ture with estimated pair copulae C12, C23, C34, C45, C13;2, C24;3, C35;4, C14;23, C25;34,
C15;234.

T1 : 1 2 3 4 5
12 23 34 45

T2 : 12 23 34 45
13|2 24|3 35|4

T3 : 13|2 24|3 35|4
14|23 25|34

T4 : 14|23 25|34
15|234

Figure 4.3: 5-dimensional D-vine structure.

Now we assume that there are 2 missing values in one row of a vector uj. This could
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happen for 10 different cases:

uj = (−,−, u3, u4, u5),
uj = (−, u2,−, u4, u5),
uj = (−, u2, u3,−, u5),
uj = (−, u2, u3, u4,−),

uj = (u1,−,−, u4, u5),
uj = (u1,−, u2,−, u5),
uj = (u1,−, u3, u4,−),

uj = (u1, u2,−,−, u5),
uj = (u1, u2,−, u4,−),

uj = (u1, u2, u3,−,−).

Everything is fine as long as only the values of the pairs

Case 1. (U1, U2),

Case 2. (U1, U5), or

Case 3. (U4, U5)

are missing, since

Case 1. First do the imputation procedure in U2 then in U1, i.e. simulate V1, V2 iid from a
uniformly distributed random variable and impute

u∗2 =C−12|3(C−12|4;3(C
−1
2|5;34(V2|C5|3;4(C5|4(u5|u4)|C3|4(u3|u4)))|C3|4(u3|u4))|u3),

u∗1 =C−11|2(C−11|3;2(C
−1
1|4;23(C

−1
1|5;234(V1|

C5|4;23(C5|4;3(C5|4(u5|u4)|C4|3(u4|u3))|C2|4;3(C2|3(u
∗
2|u3)|C3|4(u3|u4))))|

C4|2;3(C4|3(u4|u3)|C2|3(u
∗
2|u3)))|

C2|3(u
∗
2|u3))|

u∗2).

The inverses are again computed with the recursion formula of equation 3.3. So for
the first imputation value u∗2:

C(u2|u3, u4, u5) =C2|5;34(C(u2|u3, u4)|C(u5|u3, u4))
C(u2|u3, u4) =C2|4;3(C(u2|u3)|C(u3|u4))
C(u5|u3, u4) =C5|3;4(C(u5|u4)|C(u3|u4))

C(u2|u3) =C2|3(u2|u3)
C(u3|u4) =C3|4(u3|u4)
C(u5|u4) =C5|4(u5|u4)

=⇒
C(u2|u3, u4, u5) =C2|5;34(C2|4;3(C2|3(u2|u3)|C3|4(u3|u4))|

C5|3;4(C5|4(u5|u4)|
C3|4(u3|
u4))).
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Now one can compute the inverses

C−1(y2|u3, u4, u5) =C−12|34(C
−1
2|5;34(y2|C(u5|u3, u4))|u3, u4)

C−1(y2|u3, u4) =C−12|3(C−12|4;3(y2|C(u3|u4))|u3)
=⇒

C−1(y2|u3, u4, u5) =C−12|3(C−12|4;3(C
−1
2|5;34(y2|

C5|3;4(C5|4(u5|u4)|C3|4(u3|u4))|
C3|4(u3|u4))|
u3).

For the second imputation value u∗1:

C(u1|u2, u3, u4, u5) =C1|5;234(C(u1|u2, u3, u4)|C(u5|u2, u3, u4))
C(u1|u2, u3, u4) =C1|4;23(C(u1|u2, u3)|C(u4|u2, u3))
C(u5|u2, u3, u4) =C5|2;34(C(u5|u3, u4)|C(u2|u3, u4))

C(u1|u2, u3) =C1|3;2(C(u1|u2)|C(u3|u2))
C(u4|u2, u3) =C4|2;3(C(u4|u3)|C(u2|u3))
C(u5|u3, u4) =C5|3;4(C(u5|u4)|C(u3|u4))
C(u2|u3, u4) =C2|4;3(C(u2|u3)|C(u3|u4))

C(u1|u2) =C1|2(u1|u2)
C(u3|u2) =C3|2(u3|u2)
C(u4|u3) =C4|3(u4|u3)
C(u2|u3) =C2|3(u2|u3)
C(u5|u4) =C5|4(u5|u4)
C(u3|u4) =C3|4(u3|u4)

=⇒
C(u1|u2, u3, u4, u5) =C1|5;234(C1|4;23(C1|3;2(C1|2(u1|u2)|C3|2(u3|u2))|

C4|2;3(C4|3(u4|u3)|C2|3(u2|u3)))|
C5|2;34(C5|3;4(C5|4(u5|u4)|C3|4(u3|u4))|
C2|4;3(C2|3(u2|u3)|C3|4(u3|u4))))
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Now one can compute the inverses:

C−1(y1|u2, u3, u4, u5) =C−11|234(C
−1
1|5;234(y1|C(u5|u2, u3, u4))|u2, u3, u4)

C−1(y1|u2, u3, u4) =C−11|23(C
−1
1|4;23(y1|C(u4|u2, u3))|u2, u3)

C−1(u1|u2, u3) =C−11|2(C1|3;2(y1|C(u3|u2))|u2)
=⇒

C−1(y1|u2, u3, u4, u5) =C−11|2(C1|3;2(C
−1
1|4;23(C

−1
1|5;234(y1|

C5|2;34(C5|3;4(C5|4(u5|u4)|C3|4(u3|u4))|
C2|4;3(C2|3(u2|u3)|C3|4(u3|u4))))|
C4|2;3(C4|3(u4|u3)|C2|3(u2|u3)))|
C2|3(u2|u3))|
u2).

T1 : 1 2 3 4 5
12 23 34 45

T2 : 12 23 34 45
13|2 24|3 35|4

T3 : 13|2 24|3 35|4
14|23 25|34

T4 : 14|23 25|34
15|234

Figure 4.4: Case 1. 5-dimensional D-vine structure with the vertexes labeled that
contain the first or the second variable. If they are both missing, imputation is possible
with the copula regression method under this D-vine model.

Case 2. The order does not matter in the sense that one can simulate with every given value.
Either start with imputing u1 or u5. For example, start with u1, i.e. simulate V1, V5
iid from a uniformly distributed random variable and impute

u∗1 =C−11|2(C−11|3;2(C
−1
1|4;23(V1|C4|2;3(C4|3(u4|u3)|C2|3(u2|u3)))|C3|2(u3|u2))|u2),

u∗5 =C−15|4(C−15|3;4(C
−1
5|4;23(C

−1
5|4;123(V5|

C1|4;23(C1|3;2(C1|2(u
∗
1|u2)|C3|2(u3|u2))|C4|2;3(C4|3(u4|u3)|C3|2(u3|u2))))|

C2|4;3(C2|3(u2|u3)|C4|3(u4|u3)))|
C4|3(u4|u3))|
u4).

The inverses are computed as in case 1, with the permutation π(1, 2, 3, 4, 5) =
(5, 1, 2, 3, 4).
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T1 : 1 2 3 4 5
12 23 34 45

T2 : 12 23 34 45
13|2 24|3 35|4

T3 : 13|2 24|3 35|4
14|23 25|34

T4 : 14|23 25|34
15|234

Figure 4.5: Case 2. 5-dimensional D-vine structure with the vertexes labeled that
contain the first or the fifth variable. If they are both missing, imputation is possible
with the copula regression method under this D-vine model.

Case 3. Here start with the imputation in u4 followed by u5, i.e. simulate V4, V5 iid from a
uniformly distributed random variable and impute

u∗4 =C−14|3(C−14|2;3(C
−1
4|3;12(V4|C1|3;2(C1|2(u1|u2)|C3|2(u3|u2)))|C2|3(u2|u3))|u3),

u∗5 =C−15|4(C−15|3;4(C
−1
5|4;23(C

−1
5|4;123(V5|

C1|4;23(C1|3;2(C1|2(u1|u2)|C3|2(u3|u2))|C4|2;3(C4|3(u
∗
4|u3)|C3|2(u3|u2))))|

C2|4;3(C2|3(u2|u3)|C4|3(u
∗
4|u3)))|

C4|3(u
∗
4|u3))|

u∗4).

The inverses are computed as in case 1, with the permutation π(1, 2, 3, 4, 5) =
(5, 4, 3, 2, 1).

T1 : 1 2 3 4 5
12 23 34 45

T2 : 12 23 34 45
13|2 24|3 35|4

T3 : 13|2 24|3 35|4
14|23 25|34

T4 : 14|23 25|34
15|234

Figure 4.6: Case 3. 5-dimensional D-vine structure with the vertexes labeled that
contain the fourth or the fifth variable. If they are both missing, imputation is possible
with the copula regression method under this D-vine model.
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In all these situations one can find a specific missing value with the property of being a
leaf in every tree in the vine structure. After deletion again one finds a nonresponse with
this characteristic.
The problem changes significantly if the pair (U1, U4) is missing, which we call Case 4.
In a first step, U1 has the right property to be such a leaf. But already in the first tree U4

fails to fulfill this criterion.
And not surprisingly, it is not possible to impute U1 or U4 with all information available.
Lets try it for demonstration and simulate V1, V4 iid from a uniformly distributed random
variable.

Case 4. Try to compute

u∗1 =C−11|2(C−11|3;2(C
−1
1|4;23(V1|C4|2;3(C4|3(u4|u3)|C2|3(u2|u3)))|C3|2(u3|u2))|u2), or

u∗4 =C−14|3(C−14|2;3(C
−1
4|1;23(V4|C1|3;2(C1|2(u1|u2)|C3|2(u3|u2)))|C2|3(u2|u3))|u3),

but neither the first, nor the second value is possible to compute, because u4 is
missing in the first equation and u1 in the second equation. So fitting a new D-vine
model after changing the order of, for example, U4 and U5 ”π(U1, U2, U3, U4, U5)→
(U1, U2, U3, U5, U4)” would lead us to Case 2.

T1 : 1 2 3 4 5
12 23 34 45

T2 : 12 23 34 45
13|2 24|3 35|4

T3 : 13|2 24|3 35|4
14|23 25|34

T4 : 14|23 25|34
15|234

Figure 4.7: Case 4. 5-dimensional D-vine structure with the vertexes labeled that
contain the first or the fourth variable. If they are both missing, imputation is not
possible with the copula regression method under this D-vine model.

Now look at the general case i.e. for an R-vine structure. If there is only one missing
value, it is possible to impute with all available information if and only if the nonresponse
random variable is not in the conditioned set of any bivariate copula of the vine. This
case occurs if and only if the nonresponse variable is a leaf in any tree in the structure
of the vine trees. If there is more than one missing value, just iterate this procedure and
treat the imputed values as given.
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4.2 Vine Copula Fitting Imputation (CopFit)

As explained, this approach seems quite natural. However, only at first glance. Consider
a matrix

Data =

 A1
...

An

 ∈ [0, 1]n×d,

with n independent observations (Ai ∈ [0, 1]d, i = 1, . . . , n) of a d-dimensional random
vector U = (U1, . . . , Ud), Uj ∼ U [0, 1], j = 1, . . . , d with some nonresponse in n − n1 of
the n observation vectors. To estimate the ”best” vine copula model, only consider the
complete cases F in Data, with

F =

 Ai1
...

Ain1

 ∈ [0, 1]n1×d,

only containing completely observed data. Now it is well known (i.e. with Dissmann’s
algorithm) how to estimate the tree structure of the vine model and all bivariate copula
families with all additional parameters required. So the procedure is the following (”only
one missing observation case” is omitted, because of having almost the same steps):

Step 1. Determine the complete case matrix F with respect to Data.

Step 2. Fit an R-vine model to F without further constraints.

Step 3. For each row Ai, for i ∈ IFC = {1, . . . , n}\{i1, . . . , in1} with missing data, im-
pute the mi missing values with the help of each given value by using r sub-vine
structures, as explained below.

Step 3.1. W.l.o.g the first mi values are missing (otherwise restructure the data in each
Step 3). Let r denote the number of sub-vine structures. They are determined
with Algorithm 3 (Finding sub-vine structures), explained later. Simulate u∗1i1 ∼
U1|D1, . . . , u

∗r
i1 ∼ U1|Dr, where

Dl ⊂ D := {Umi+1 = ui,mi+1, . . . , Ud = uid}, l = 1, . . . , r

are subsets of the whole conditioning set according to the sub-vine structures. Set
u∗i1 := f(u∗1i1 , . . . , u

∗r
i1 ), where f : [0, 1]r → [0, 1] is some function explained later (e.g.

the arithmetic mean f(u∗1i1 , . . . , u
∗r
i1 ) = 1/r ×

∑r
l=1 u

∗l
i1).

Step 3.2. Simulate u∗1i2 ∼ U2|D1, . . . , u
∗r
i2 ∼ U2|Dr, where

Dl ⊂ D := {U1 = u∗i1, Umi+1 = ui,mi+1, . . . , Ud = uid}, l = 1, . . . , r

and set u∗i2 := f(u∗1i2 , . . . , u
∗r
i2 )

Step 3.mi. Simulate u∗1imi ∼ Umi |D1, . . . , u
∗r
imi
∼ Umi |Dr, where

Dl ⊂ D := {U1 = u∗i1, . . . , Umi−1 = u∗i,mi−1, Umi+1 = ui,mi+1, . . . , Ud = uid},
l = 1, . . . , r

and set u∗imi := f(u∗1imi , . . . , u
∗r
imi

).
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Note that the r can change from Step 3.1 to Step 3.mi. Further note that

r⋃
l=1

Dl = D

in each step, but the sets Dl, l = 1, . . . , r are not necessarily disjoint. Again if more than
one value per row is missing, as seen, the procedure is used iteratively.
A clear advantage of this method is that from now on, one always works with the ”best”
fitting vine copula model in the sense of a goodness of fit criteria (for example the AIC).
Unfortunately, one has to be very careful with the imputation procedure considering the
vine structure given now. From the previous example (Example 13) it should be clear
that for some nonresponse variables there are several, sometimes not perfectly satisfying
(in the sense that one could not use the whole response data available) possibilities to
impute the missing values. So two questions arise: The first one (a) is about how one can
get every imputation possibility available to get a value closest to reality and the second
one (b) tries to answer which option should be taken (i.e. how to select the function f).
a) From the previous section (vine copula regression imputation) it is known that one only
can use every information available to impute a missing value if and only if the variable
is a leaf in every tree Ti, i = 1, . . . , d − 1 of the vine tree structure. If this is the case,
everything is fine and there is just one rational (the optimal one) possibility to impute
the value via a simulation, taking into account every given d− 1 observation in the whole
d-dimensional vector. Unfortunately, this is only the case for (mostly only few) specific
values. For all other missing data one has to find a sub-vine structure where the variable
of interest is such a leaf.

Data: vine tree specification in array form, i.e., M , where mk,k = d− k + 1,
k = 1, . . . , d, the number of the missing value r, a binary vector bi
(= NULL at the beginning) and a list of matrices ListM (= NULL at the
beginning).

Result: L sub-vine tree specifications in array form.
1 if mi,j = r for some i ≥ j + 2, then
2 search for all columns j = j1, . . . , jJ with entries mi,j = r for i ≥ j + 2. For the

column jmax, with mimax,jmax = r, s.t. imax := max {i|mi,j = r, with i ≥ j + 2}
(that is the column, where r is the lowest entry of all columns j = j1, . . . , jJ),
do

3 1. bi = (bi, 0), set Mbi = M , set the column jmax and all entries with
(mbi)i,j = (mbi)jmax,jmax equal to NULL, repeat algorithm with Mbi

4 and 2. bi = (bi, 1), set Mbi = M , set all columns in Mbi, with
(mbi)k,k ∈ {(mbi)n,jmax |n = jmax + 1, . . . , imax}, k = 1, . . . , d and all entries
(mbi)i,j ∈ {(mbi)n,jmax |n = jmax + 1, . . . , imax}, i, j = 1, . . . , d equal to NULL,
repeat algorithm with Mbi

5 else
6 Delete all NULL’s and set ListM = (ListM ,Mbi)
7 end
8 return ListM = (M1, . . . ,ML).

Algorithm 3: Finding sub-vine structures

Theorem 5 (Algorithm ”Finding sub-vine structures”). The algorithm ”Finding sub-vine
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structures” collects all possible (maximal) sub-vine structures where the missing value is
such a leaf.

Proof 3 (Algorithm ”Finding sub-vine structures”). A variable is a leaf in every tree
of the vine tree structure if and only if there is no copula involved where this variable
is in the conditioned set. Now in the R-vine matrix, for each column there are exactly
two possibilities to reduce the matrix, such that the variable is not in the conditioned set
anymore.

1. Delete the whole column that contains the variable in a conditioned set, i.e. where
the variable is an entry below the sub-diagonal. Additionally, one has to delete all
entries with the diagonal entry of this column in the whole matrix. Reducing the
matrix in this way is equal to deleting the diagonal entry variable of the column in
every tree in the R-vine tree structure.

2. In the column of the matrix, delete all variables between the diagonal entry and
the missing variable in the whole Matrix. This is done via deleting all columns
which have those as diagonal entries and additionally every entry where they occur.
Reducing the matrix in such a way is equal to deleting all variables between the
diagonal entry and the missing variable in every tree in the R-vine tree structure.

Example 15 (Finding sub-vine structures). Assume a missing observation in node 1,
given the R-vine matrix

M =


5
3 4
4 3 3
2 1 1 2
1 2 2 1 1

 ,

with the tree specification shown in Figure 4.8. Now use Algorithm 3 to find all sub-vine
structures where 1 is a leaf in every tree in the R-vine tree structure:

1.

M0 =


�
� 4
� 3 3
� 1 1 2
� 2 2 1 1

 ,

Delete the first column, because ”1” is an entry below the sub-diagonal. Additionally,
one has to remove every entry with a ”5” (is not the case in this example). Since
”1” is still in a conditioned set (second column), one has to repeat the algorithm
with the reduced matrix. But first, the second step of the algorithm.

2.

M1 =


5
� �
� � �
� � � �
1 � � � 1

 ,
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T1 : 5 1 2 3

4

15 12 23

24

T2 : 15 12 23

24

25|1 13|2

14
|2

T3 : 25|1 14|2 13|2
45|12 34|12

T4 : 45|12 34|12
35|124

Figure 4.8: 5-dimensional R-vine structure.

Delete the entries between ”5” and ”1”, so ”1” is not in a conditioned set anymore
i.e. the entries 2,3,4. Additionally, one has to remove the whole columns where
those are the diagonal entries and all other entries, where those numbers occur (is
not the case in this example). Now ”1” is not in a conditioned set anymore.

1.1.

M00 =


�
� �
� � 3
� � 1 2
� � 2 1 1

 ,

Delete the second column, because ”1” is an entry below the sub-diagonal. Addition-
ally, one has to remove every entry with a ”4” (is not the case in this example).
Now ”1” is not in a conditioned set anymore.

1.2.

M01 =


�
� 4
� � �
� 1 � 2
� 2 � 1 1

 .

Delete the entries between ”4” and ”1” in the second column, so ”1” is not in a
conditioned set anymore i.e entry ”3”. Additionally, one has to remove the whole
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column where ”3” is the diagonal entry and all other entries, where this number oc-
curs (is not the case in this example). Now ”1” is not in a conditioned set anymore.

This results in 3 different matrices:

M1 =

(
5
1 1

)
, M00 =

 3
1 2
2 1 1

 , and M01 =

 4
1 2
2 1 1

 .

Easily seen, in each R-vine array there is no copula conditioned on 1. Additionally, they
are maximal, i.e. it is not possible to add a vertex from the original R-vine array. So
if there is the data vector with only the first value missing uj = (−, uj2, uj3, uj4, uj5), the
sets Dl, l = 1, 2, 3 are the following:

D1 = {U5 = uj5}, D2 = {U2 = uj2, U3 = uj3}, D3 = {U2 = uj2, U4 = uj3}.

M0 M00 M01

T1 : 5 1
15

T1 : 1 2 3
12 23

T2 : 12 23
13|2

T1 : 1 2

4

12

24

T2 : 12

24

14
|2

Table 4.1: Possible sub-vine structures where 1 is a leaf on each tree of the sub R-vine
array (according to Figure 4.8).
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b) Often, if there are several possibilities, it is useful to not only apply one of them, but
try to get information from every or sometimes a small subset of them. This rule can also
be applied in this method via taking a weighted sum of all available, or a chosen subset,
of options to impute which can be demonstrated by Example 13.

Example 16 (Example 13 continued (a)). Assume missing data in the first column of
Data, only. There is the problem of how to impute variable U1 given U2, U3, U4 in the
given C-vine structure with bivariate copulae C12, C13, C14, C23|1, C24|1, C34|12.

T1 : 1

2 3

4

12 13
14

T2 : 1213 14
23|1 24|1

T3 : 23|1 24|1
34|12

Figure 4.9: 4-dimensional C-vine structure with the vertexes labeled that contain the
first variable, which is considered to be the missing observation. This is one example
where it is not possible to impute with taking into account all available information.

The three possibilities are

Case 1a. Simulate V1 ∼ U [0, 1].

Case 1b. Set

u∗1 = F−11|2 (V1|u2) = C−11|2(V1|u2),

or

u∗1 = F−11|3 (V1|u3) = C−11|3(V1|u3),

or

u∗1 = F−11|4 (V1|u4) = C−11|4(V1|u4).

Now, if one wants to use each of the three options, then one choice is to use an equally
weighted sum, i.e.

Case 1a. Simulate V1, V2, V3 ∼ U [0, 1] jointly independent.
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Case 1b. Set

u∗1 =
1

3

(
C−11|2(V1|u2) + C−11|3(V2|u3) + C−11|4(V3|u4)

)
.

Alternatively, it is feasible to just use one method that is subjectively best. In the copula
model assumption, high Kendall’s tau values can be an indicator for a good imputation
possibility, because it measures the dependency between missing and given data. High
dependence (either positive or negative) is more likely to lead into a good imputation
guess. Again a demonstration will help to understand the idea.

Example 17 (Example 13 continued (b)). Again, let only the first column have missing
observations. There are the three options to impute variable U1 given U2, U3, U4, but now
look at the highest Kendall’s tau value (in absolute terms):

Case 1a1. Choose imax ∈ {2, 3, 4} s.t.

τ(C1imax) = max {|τ(C1i)|, i ∈ {2, 3, 4}}.

Case 1a2. Simulate V1 ∼ U [0, 1].

Case 1b. Set

u∗1 = F−11|imax(V1|uimax) = C−11|imax(V1|uimax).



4.3. VINE COPULA EXPECTATION IMPUTATION (COPEXP) 49

4.3 Vine Copula Expectation Imputation (CopExp)

The following procedure differs from the others because there is no simulation of a ran-
dom variable involved. This implies that one can only do nonstochastic single imputations
(without random influences), i.e. if one repeats the imputations with the same estimation
methods, every time the same results will occur. This approach is comparable to the
nonstochastic linear regression method. But, as said, instead of just using linear depen-
dencies, here there will be a more flexible model estimation with probably asymmetric
dependence structures. Later in the tests, this method will be extended in a way such that,
if it is possible to simulate the missing value with all given values in the estimated vine
structure, then simulating the nonresponse is preferred instead of conditioned expectation
to avoid the variance underestimation.
As said before, the goal is to calculate the conditional expectation E[Xi|X−i = x−i], where
X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xd) is the random vector without the i’th component. For
this purpose it is very helpful to have the density function fi|{1,...,d}\{i}(xi|x−i) available.
Consider the same matrix

Data =

 A1
...

An

 ∈ [0, 1]n×d,

with n independent observations (Ai ∈ [0, 1]d, i = 1, . . . , n) of a d-dimensional random
vector U = (U1, . . . , Ud), Uj ∼ U [0, 1], j = 1, . . . , d with some nonresponse in n − n1 of
the n observation vectors, like before, in Section 4.2. To estimate the ”best” vine copula
model, again only consider the complete cases F in Data, with

F =

 Ai1
...

Ain1

 ∈ [0, 1]n1×d,

only containing completely observed data. Then the procedure is (again, the ”only one
missing observation case” is omitted):

Step 1. Determine the complete case matrix F with respect to Data.

Step 2. Fit an R-vine model to F without further constraints.

Step 3. For each row Ai, for i ∈ IFC = {1, . . . , n}\{i1, . . . , in1} with missing data, impute
the mi missing values separately.

Step 3.1. W.l.o.g the first mi values of the i’th row Ai are missing (otherwise relabel the
variables in this step). Set

u∗i1 := E[U1|Umi+1 = ui,mi+1, . . . , Ud = uid]

Step 3.2. Set
u∗i2 := E[U2|U1 = u∗i1, Umi+1 = ui,mi+1, . . . , Ud = uid]
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Step 3.mi. Set

u∗imi := E[Umi |U1 = u∗i1, . . . , Umi = u∗i,mi−1, Umi+1 = ui,mi+1, . . . , Ud = uid].

Again, the method produces imputation values for each row Ai with missing values
iteratively.

How to compute those conditional expectations is explained by the theorems below.

Theorem 6 (Conditional Density Function). Let f1,...,d(x), and f{1,...,d}\{i}(x−i) be the
continuous density functions of the d-dimensional random vector X and the (d − 1)-
dimensional random vector X−i respectively. Then, for the (continuous) conditional
density function, the following holds:

fi|{1,...,d}\{i}(xi|x−i) =
f1,...,d(x)

f{1,...,d}\{i}(x−i)
.

The same holds true for the conditional copula density function ci|{1,...,d}\{i}(ui|u−i).

Now in the vine copula case, not every density function will always be available in closed
form. So the next step is to get them via integrating out higher dimensional density
functions.

Theorem 7 (Lower Dimensional Density Function). Let f1,...,d(x) be the continuous den-
sity function of the d-dimensional random vector X. Then, for the (d − 1)-dimensional
random vector Xi−1, it holds that the corresponding (continuous) density is given by

f{1,...,d}\{i}(x−i) =

∫ ∞
−∞

f1,...,d(x)dxi.

Obviously, the same holds true for the copula density function c{1,...,d}\{i}(u−i).

At this point one can easily compute (in the most cases numerically) conditional expec-
tations of one missing random variable Xi given X−i = x−i with the help of the known
closed form density and the two theorems above.

Theorem 8 (Conditional Expectation). Let f1,...,d(x) and f{1,...,d}\{i}(x−i) be the continu-
ous density functions of the d-dimensional random vector X and the (d−1)-dimensional
random vector X−i. Then, for the conditional expectation, it holds that

E[Xi|X−i = x−i] =

∫∞
−∞ xif1,...,d((x−i, xi))dxi∫∞
−∞ f1,...,d((x−i, xi))dxi

.

If there is more than one value missing, it is more suitable to apply the method sequentially
than independently. There is a simple example to support this statement.

Example 18. Set two random variables X1, X2 ∼ U [0, 1] independently uniformly dis-
tributed on [0, 1] and a third random variable X3 := (1 − X2 + X1)1{X2>X1} + (X1 −
X2)1{X2≤X1}. It is easy to show that X3 is again uniform on [0, 1] and independent of
X2 and X1, since the uniform distribution on this interval is negatively symmetric (i.e.
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−X2 ∼ U [−1, 0]) and X1 is independent of X2. Now there is the case that X2 = 0.7 is
the given value with X1 and X3 missing, i.e. (−, 0.7,−) = (x1, x2, x3) ∼ (X1, X2, X3). If
one computes expectations independently, the results are not satisfying since

x∗1 := E[X1|X2 = x2] = E[X1] = 0.5

x∗3 := E[X3|X2 = x2] = E[X3] = 0.5

does not fulfill the property of x3 = 1− 0.7 + 0.5 = 0.8. With a sequential imputation of
the missing values one gets

x∗1 := E[X1|X2 = x2] = E[X1] = 0.5

x∗3 := E[X3|X2 = 0.7, X1 = 0.5] = (1− 0.7 + 0.5) = 0.8,

or, with the relation X1 = (X3 +X2 − 1)1{X3>1−X2} + (X3 +X2)1{(X3≤1−X2)}

x∗3 := E[X3|X2 = x2] = E[X3] = 0.5

x∗1 := E[X1|X2 = 0.7, X3 = 0.5] = (0.5 + 0.7− 1) = 0.8.

This shows that firstly, sequential imputation keeps the special structure of the three ran-
dom variable and secondly, that the order of imputation matters. Later in the test studies,
the order is in such a way that simulation with all given values can be applied as fast as
possible in the estimated R-vine structure. This will decrease the runtime of the algorithm
immensely.
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4.4 Comparison of the three Vine Copula Imputation

Methods
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Chapter 5

Simulation Study for the
Performance of Copula Imputation
Methods

5.1 Simulation Methods considered & Simulation As-

sumptions

Method Abbreviation

Vine Copula Regression
Imputation

(CopReg)

Vine Copula Fitting Im-
putation with real vine
structure

(CopFit)

Vine Copula Fitting Im-
putation with vine struc-
ture according to the
number of missing values
in each column

(CopFit2)

Vine Copula Expectation
Imputation

(CopExp)

Linear Regression (Norm)
Predictive Mean Match-
ing

(PMM)

Complete Case (Del)

Table 5.1: Methods considered in the simulation study.

The theoretical aspects have been discussed and at this point the practical part begins.
Until now, several different approaches have been investigated, using vine copulae to
generate meaningful imputation data and obtain a complete data set. The next step is to
determine which of the developed methods performs best according to selected criteria.

53
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To get an idea of how well the approach of copula theory comes off in comparison to
commonly used imputation methods, already existing procedures are integrated in the
test, too. Here the Predictive Mean Matching (PMM) and the Linear Regression
(Norm) methods are added.

In each of the three vine copula approaches, some degree of freedom is involved which has
to be fixed here.

Copula Fitting Imputation (CopFit & CopFit2)

1. Here use the arithmetic mean of simulated values of all sub vine structures (with
maximal possible number of known values) as the imputed value.

2.1. Once, for comparison, with the real (best fitting) C-vine structure (CopFit) and

2.2. once with a C-vine that allows to impute the marginal with the order from least
missing to most missing values (CopFit2). So the more values are marginally
missing, the more likely it is to simulate with taking into account all available infor-
mation in the C-vine structure, and therefor the better are the simulated imputation
values for this marginal.

3. For both, the order of imputation is chosen from marginal 1 to 4 in the underlying
C-vine structure, so the imputation values depend on this order.

Copula Regression Imputation (CopReg)

1. Only C-vine structures (overall 12) are allowed and

2. the imputation order is chosen such that for the best fitting C-vine, where only
complete cases are allowed, marginal 1 is the first and marginal 4 the last candidate.
This order has the advantage that the more given values can be included directly for
imputation (in the best fitting C-vine structure), the later the nonresponse will be
filled in there. This ensures, with each further imputation per row, an improvement
in the chosen dependence structure.

Copula Expectation Imputation (CopExp)

1. The same C-vine and the same order as in the CopFit2 case is applied, which leads
to a better run time.

2. The integration is done after marginals are transformed to N(0,1) margins to get
smoother integration functions and with the help of an adaptive multivariate inte-
gration algorithm over hypercubes (R-function ”adaptIntegrate” in the R-package
”cubature”).

3. If the C-vine structure allows for simulation of the missing values given all known
values, than simulation is preferred. This is possible for the cases (U1, U2, U3,−),
(U1, U2,−, U4), (U1, U2,−,−), (U1,−, U3,−), (U1,−,−, U4), and (U1,−,−,−).
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5.2 Simulation Setup

If a model is used, it is common to first use simulation to get an idea of how practical
a newly invented scheme is. It is possible to consider various scenarios under known
conditions to try out some of the strengths and weaknesses of some different approaches.
For this purpose it is necessary to determine some important conditions.

• The simulation scheme.

• The number of simulations.

• The different conditions under which the simulation will be performed.

Since a simulation scheme for a vine copula dependence structure and a method for
marginal transformations have been presented previously which additionally allow for
many variabilities in creating multivariate random samples, it makes sense to use this
procedure as the simulation scheme to generate data sets with missing values. It was
decided to generate one hundred 4-dimensional data sets from the C-vine with density

c(u1, u2, u3, u4) =c3,4;1,2(C3|1;2(u3|u2), C4|2;1(u4|u2))×
c2,4;1(C2|1(u2|u1), C4|1(u4|u1))× c2,3;1(C2|1(u2|u1), C3|1(u3|u1))×
c1,2(u1, u2)× c1,3(u1, u3)× c1,4(u1, u4),

with missing values in each of the 4 variables. This was done under the following 6 binary
combination possibilities (overall 64 combinations):

1. Length of the data sets:
a) 500 or
b) 1000

2. Marginally missing values
a) (5%,5%,5%,5%) or
b) (10%,1%,2%,5%)

3. Type of missing:
a) uniform (random) (MCAR) or
b) (1− α)-quantile (the highest values) missing (MAR)

4. Marginal distributions:
a) (Exp(5),t(3, 0),Exp(4),t(2, 0)) (Exp&t-dist) or
b) (N(2, 5),t(3, 0),N(11, 4),N(−5, 10)) (Norm&t-dist),
where the expectations are denoted by (η1, . . . , η4)

5. Copula families (c1,2, c1,3, c1,4, c2,3;1, c2,4;1, c3,4;1,2):
a) (Gauss,Gauss,Frank,Frank,Gauss,Gauss) or
b) (Clayton,Clayton,Gumbel,Gumbel,Gumbel,Gauss)
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6. Strength of dependencies in terms of Kendall’s tau values (this is equivalent to
differentiating between the parameters of the copula families, since there is a one
to one relationship between the parameter of the families used and their Kendall’s
tau value):
a) (0.7,0.4,0.6,0.5,0.3,0.2) (High) or
b) (0.3,0.2,0.2,0.1,0.1,0.01) (Low),
denoted by (τ1, . . . , τ6)

Exp&t-dist
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Figure 5.1: Plot of the density functions used for the marginals in the simulation. The
plots are scaled with a width of 10 on the x-axis for Normal and t-distributions, and with
a width of 2 for the Exp-distributions.

5.3 Performance Criteria

After imputation, the parameter of each (now fixed) family in the true C-vine structure
was estimated by inversion, using estimated Kendall’s tau values (using the correspond-
ing bijection) and was compared to the true value from the simulation. The comparison
was done via the Euclidean norm. This whole procedure was repeated with the pa-
rameters of the marginal distribution functions estimated via maximum likelihood under
the assumption that the true distribution function was known. This may sound like a
not always satisfied assumption, but finding well-fitting one-dimensional distributions is
in many common situations well researched. Finally, in addition to the quality of the
imputed data, an important aspect is the runtime, which was measured also. So goodness
of success criteria are:

• deviation of the copula family parameters,

• deviation of the marginal distribution parameters, and
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• runtime of the imputation method.

To compare the invented imputation techniques, a ranking system was used that, for each
of the 100 data sets, rates the methods from 1 to #methods (in this case = 7) for each
criterion separately:

• copula Kendall’s tau value fitting for High Kendall’s tau values in the MCAR
cases,

• copula Kendall’s tau value fitting for Low Kendall’s tau values in the MCAR cases,

• copula Kendall’s tau value fitting for High Kendall’s tau values in the MAR cases,

• copula Kendall’s tau value fitting for Low Kendall’s tau values in the MAR cases,

• marginal expected value fitting for Exp&t-dist in the MAR cases,

• marginal expected value fitting for Norm&t-dist in the MAR cases,

• and runtime.

The arithmetic mean of the individual ranks decides about the rank for the different
criteria. For this we need the definition of a rank-function.

Definition 10 (rank-function).

rankx(xi) :=
1

|{k|xi1 ≤ . . . ≤ xik = xi ≤ . . . ≤ xid}|
∑

{k|xi1≤...≤xik=xi≤...≤xid}

k

is the rank of entry xi in the vector x = (x1, . . . , xd), for i ∈ {1, . . . , d}.

So for ”copula Kendall’s tau value fitting for high Kendall’s tau values in the MCAR case”,
we have for data set i = 1, . . . , 100, pair copula term j = 1, . . . , 6, method m = 1, . . . , 7
and scenario s = 1, . . . , 16, compute

dm,sj :=
1

100

100∑
i=1

(τ̂m,si,j − τ sj )2, j = 1, . . . , 6,m = 1, . . . , 7, s = 1, . . . , 16

average of data set distance. Set ds
j := (d1,sj , . . . , d7,sj )

rrm,s :=
1

6

6∑
j=1

rankdsj (d
m,s
j ), m = 1, . . . , 7, s = 1, . . . , 16

average over pair copula term ranks. Set rrs := (rr1,s, . . . , rr7,s)

rm,s :=rankrrs(rr
m,s), m = 1, . . . , 7, s = 1, . . . , 16.

rank of the individual method for each scenario s.

Set now

rs := (r1,s, . . . , r7,s) ∈ [1, 7]7, s = 1, . . . , 16,
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with
∑7

m=1 r
m,s =

∑7
m=1m = 28. Set

rrm :=
1

16

16∑
s=1

rm,s, m = 1, . . . , 7,

average over scenarios. Set rr := (rr1, . . . , rr7)

rm :=rankrrrr
m, m = 1, . . . , 7 and

r :=(r1, . . . , r7) ∈ [1, 7]7

as the overall result for the criterion ”copula Kendall’s tau value fitting for high Kendall’s
tau values in the MCAR case”. A weighted mean (good fit is worth more than fast
imputation in times of very fast computers) of the three criteria decides about the overall
rank. For marginal parameter fit, case 3a (MCAR case) was omitted, because the results
would have been almost identical for all methods.

5.4 Results

The tables below consist of the evaluation results. They are categorized in two different
types of missing cases (simulated MAR and MCAR cases) and in three different ob-
servation cases (observing High and Low Kendall’s tau values and observing marginal
parameters for Exp&t-dist and for Norm&t-dist). So overall there are 64 scenarios
investigated and they are arranged in 6 block scenarios giving 16 members per block sce-
nario. These cases give an overview of how the individual methods have performed. The
block scenarios are chosen in a natural way such that one can observe the performance
for the dependence structure and for the marginal parameters. Further, maybe there is a
difference in the type of missing cases. Runtime is evaluated separately without catego-
rization. The first table shows the exact simulation categories in the 6 block scenarios, so
the reader can really observe every situation individually.

There are also the plots of the Euclidean norm distance for the estimated Kendall’s
tau values and the marginal parameters added. There, one can observe the deviation
of the distances for each case separately. If the whole dataset could not be filled out
with imputation values for some reason, the distance was set to NA (missing) and the
corresponding method was punished by the last place in this evaluation step. Note also
that the y-axis has different ranges for Kendall’s tau values and marginal parameters.
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comparing copula fit τ assessing marginal η

MCAR, High MAR, High MAR, Exp&t-dist

1) 1b,2b,3a,4a,5b,6a 33) 1b,2b,3b,4a,5b,6a 65) 1b,2b,3b,4a,5b,6a
2) 1b,2a,3a,4a,5b,6a 34) 1b,2a,3b,4a,5b,6a 66) 1b,2a,3b,4a,5b,6a
3) 1b,2b,3a,4a,5a,6a 35) 1b,2b,3b,4a,5a,6a 67) 1b,2b,3b,4a,5a,6a
4) 1b,2a,3a,4a,5a,6a 36) 1b,2a,3b,4a,5a,6a 68) 1b,2a,3b,4a,5a,6a
5) 1a,2b,3a,4a,5b,6a 37) 1a,2b,3b,4a,5b,6a 69) 1a,2b,3b,4a,5b,6a
6) 1a,2a,3a,4a,5b,6a 38) 1a,2a,3b,4a,5b,6a 70) 1a,2a,3b,4a,5b,6a
7) 1a,2b,3a,4a,5a,6a 39) 1a,2b,3b,4a,5a,6a 71) 1a,2b,3b,4a,5a,6a
8) 1a,2a,3a,4a,5a,6a 40) 1a,2a,3b,4a,5a,6a 72) 1a,2a,3b,4a,5a,6a
9) 1b,2b,3a,4b,5b,6a 41) 1b,2b,3b,4b,5b,6a 73) 1b,2b,3b,4a,5b,6b
10) 1b,2a,3a,4b,5b,6a 42) 1b,2a,3b,4b,5b,6a 74) 1b,2a,3b,4a,5b,6b
11) 1b,2b,3a,4b,5a,6a 43) 1b,2b,3b,4b,5a,6a 75) 1b,2b,3b,4a,5a,6b
12) 1b,2a,3a,4b,5a,6a 44) 1b,2a,3b,4b,5a,6a 76) 1b,2a,3b,4a,5a,6b
13) 1a,2b,3a,4b,5b,6a 45) 1a,2b,3b,4b,5b,6a 77) 1a,2b,3b,4a,5b,6b
14) 1a,2a,3a,4b,5b,6a 46) 1a,2a,3b,4b,5b,6a 78) 1a,2a,3b,4a,5b,6b
15) 1a,2b,3a,4b,5a,6a 47) 1a,2b,3b,4b,5a,6a 79) 1a,2b,3b,4a,5a,6b
16) 1a,2a,3a,4b,5a,6a 48) 1a,2a,3b,4b,5a,6a 80) 1a,2a,3b,4a,5a,6b

MCAR, Low MAR, Low MAR, Norm&t-dist

17) 1b,2b,3a,4a,5b,6b 49) 1b,2b,3b,4a,5b,6b 81) 1b,2b,3b,4b,5b,6a
18) 1b,2a,3a,4a,5b,6b 50) 1b,2a,3b,4a,5b,6b 82) 1b,2a,3b,4b,5b,6a
19) 1b,2b,3a,4a,5a,6b 51) 1b,2b,3b,4a,5a,6b 83) 1b,2b,3b,4b,5a,6a
20) 1b,2a,3a,4a,5a,6b 52) 1b,2a,3b,4a,5a,6b 84) 1b,2a,3b,4b,5a,6a
21) 1a,2b,3a,4a,5b,6b 53) 1a,2b,3b,4a,5b,6b 85) 1a,2b,3b,4b,5b,6a
22) 1a,2a,3a,4a,5b,6b 54) 1a,2a,3b,4a,5b,6b 86) 1a,2a,3b,4b,5b,6a
23) 1a,2b,3a,4a,5a,6b 55) 1a,2b,3b,4a,5a,6b 87) 1a,2b,3b,4b,5a,6a
24) 1a,2a,3a,4a,5a,6b 56) 1a,2a,3b,4a,5a,6b 88) 1a,2a,3b,4b,5a,6a
25) 1b,2b,3a,4b,5b,6b 57) 1b,2b,3b,4b,5b,6b 89) 1b,2b,3b,4b,5b,6b
26) 1b,2a,3a,4b,5b,6b 58) 1b,2a,3b,4b,5b,6b 90) 1b,2a,3b,4b,5b,6b
27) 1b,2b,3a,4b,5a,6b 59) 1b,2b,3b,4b,5a,6b 91) 1b,2b,3b,4b,5a,6b
28) 1b,2a,3a,4b,5a,6b 60) 1b,2a,3b,4b,5a,6b 92) 1b,2a,3b,4b,5a,6b
29) 1a,2b,3a,4b,5b,6b 61) 1a,2b,3b,4b,5b,6b 93) 1a,2b,3b,4b,5b,6b
30) 1a,2a,3a,4b,5b,6b 62) 1a,2a,3b,4b,5b,6b 94) 1a,2a,3b,4b,5b,6b
31) 1a,2b,3a,4b,5a,6b 63) 1a,2b,3b,4b,5a,6b 95) 1a,2b,3b,4b,5a,6b
32) 1a,2a,3a,4b,5a,6b 64) 1a,2a,3b,4b,5a,6b 96) 1a,2a,3b,4b,5a,6b

Table 5.2: Different simulation scenarios for the tables below (64
unique). For example (1b,2b,3a,4a,5b,6a) corresponds to data set length
1000, marginal missing values (10%, 1%, 2%, 5%)), type of missing is uni-
form, marginal distributions (Exp(5),t(3, 0),Exp(4),t(2, 0)), copula families
(Clayton,Clayton,Gumbel,Gumbel,Gumbel,Gauss) and Kendall’s tau values
(0.7,0.4,0.6,0.5,0.3,0.2).



60 CHAPTER 5. SIMULATION STUDY

5.4.1 Comparing copula fit in block MCAR, High
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Figure 5.2: Plot of the Euclidean norm distance dm,sj of the Kendall’s tau values τm,sj in
block MCAR, High. For every pair copula term j and each method m, 16 dots are
plotted for the scenarios s in this block.

As seen in the distance plot, the results are very close. For almost every method the
dependence structure after imputation does not change significantly from the real one.
For the scenarios with simulated MCAR data, every invented method should be able to
find well-fitting imputation values, because with such data, one could also just consider
complete cases. And with imputation we try to perform better than the deletion of
observations. Also seen, the High dependencies with sometimes nonlinear structure are
more challenging for Linear Regression (Norm).
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5.4.2 Comparing copula fit in block MCAR, Low
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Figure 5.3: Plot of the Euclidean norm distance dm,sj of the Kendall’s tau values τm,sj

in block MCAR, Low. For every pair copula term j and each method m, 16 dots are
plotted for the scenarios s in this block.

In this simulation block, there are almost the same results for all seven approaches in
dependence modeling. With reducing the dependence between the margins, it is less grave
if the imputation method suggests ”wrong” imputation values. So it is not surprising that
there is no big difference between the seven approaches.
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5.4.3 Comparing copula fit in block MAR, High
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Figure 5.4: Plot of the Euclidean norm distance dm,sj of the Kendall’s tau values τm,sj in
block MAR, High. For every pair copula term j and each method m, 16 dots are plotted
for the scenarios s in this block.

A little more challenging is a data set with MAR nonresponse, which is simulated here.
An additional obstacle is the High dependence between the marginals. Four methods
do quite well in our simulation, that are CopFit, CopReg, PMM, and Del. The two
Copula Imputation methods have the advantage that they can look at dependence and
marginal modeling separately, while the linear regression procedure, for example, faces real
difficulties when it comes to the MAR scenarios. The PMM method does not simulate
the imputation values. It uses values which are observed. These values are quite good
for keeping the right dependence intensity, but marginally, this can be a shortfall if some
values are missing that are not observed in the used data set. It is also interesting that
the Kendall’s tau value for the copula C1,2 is the most challenging parameter. First,
there are the most values missing in the first marginal and second, it has the highest
dependence among all pair copulae. Additionally, C2,3|1 is equipped with a high Kendall’s
tau. Therefor C1,3 has higher fluctuation than C1,4.
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5.4.4 Comparing copula fit in block MAR, Low

sc
T

au
C

op
F

it
T

au
C

op
F

it2
T

au
C

op
E

x
p

T
au

C
op

R
eg

T
au

N
orm

T
a
u
P

M
M

T
au

D
el

49)
4.5

3
7

1.5
6

4.5
1.5

50)
3

6
7

4
5

1
2

51)
3.5

5
7

2
6

1
3.5

52)
5

3.5
7

1
6

3.5
2

53)
4

6
7

2
5

1
3

54)
3

5
6

2
7

1
4

55)
4

5
7

1.5
6

3
1.5

56)
5

1
6

3.5
7

3.5
2

57)
6

4
7

1
5

2
3

58)
6

5
7

3
2

1
4

59)
6

3
7

4
5

1
2

60)
6

5
7

1
3.5

2
3.5

61)
5

6
7

3.5
2

1
3.5

62)
5.5

5.5
7

4
1.5

1.5
3

63)
7

5
6

2.5
2.5

4
1

64)
5

3.5
7

3.5
6

1
2

total
total

total
total

total
total

total
6

4
7

2
5

1
3

T
ab

le
5.6:

R
an

k
s

r
s

of
th

e
d
iff

eren
t

m
eth

o
d
s

over
th

e
six

teen
scen

arios
in

b
lo

ck
M

A
R

,
L

o
w

.



5.4. RESULTS 67

C1,2 C1,3 C1,4

●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

di
st

an
ce

C
op

F
it

C
op

F
it2

C
op

E
xp

C
op

R
eg

N
or

m

P
M

M

D
el

0
0.

1
0.

2
0.

3
0.

4
0.

5

● ● ● ●

●

● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ●
●

●

●

● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ●
●

●

● ●● ● ● ●

●

● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ●
●

● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ●
●

● ● ● ●● ● ● ● ● ● ● ●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

di
st

an
ce

C
op

F
it

C
op

F
it2

C
op

E
xp

C
op

R
eg

N
or

m

P
M

M

D
el

0
0.

1
0.

2
0.

3
0.

4
0.

5

● ● ● ●
●

● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ●
●

● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ●
●

● ●● ● ● ●
●

● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

di
st

an
ce

C
op

F
it

C
op

F
it2

C
op

E
xp

C
op

R
eg

N
or

m

P
M

M

D
el

0
0.

1
0.

2
0.

3
0.

4
0.

5

● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●

C2,3|1 C2,4|1 C3,4,|1,2

●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

di
st

an
ce

C
op

F
it

C
op

F
it2

C
op

E
xp

C
op

R
eg

N
or

m

P
M

M

D
el

0
0.

1
0.

2
0.

3
0.

4
0.

5

● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

di
st

an
ce

C
op

F
it

C
op

F
it2

C
op

E
xp

C
op

R
eg

N
or

m

P
M

M

D
el

0
0.

1
0.

2
0.

3
0.

4
0.

5

● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

di
st

an
ce

C
op

F
it

C
op

F
it2

C
op

E
xp

C
op

R
eg

N
or

m

P
M

M

D
el

0
0.

1
0.

2
0.

3
0.

4
0.

5

● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●

Figure 5.5: Plot of the Euclidean norm distance dm,sj of the Kendall’s tau values τm,sj in
block MAR, Low. For every pair copula term j and each method m, 16 dots are plotted
for the scenarios s in this block.

Like in the Low dependence scenario before, imputation keeps the Kendall’s tau values
more or less the same for every method. Here it looks like just deleting incomplete data
(Del) works best, but with our ranking system, the PMM method is closer to the real
values. Again, the dependence parameter in C1,2 is the highest one. This explains the
slightly increased deviance from the true parameter.
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5.4.5 Assessing marginal in block MAR, Exp&t-dist
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third marginal Exp(4) forth marginal t(2, 0)
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Figure 5.6: Plot of the Euclidean norm distance dm,sj of the expected values ηm,sj in block
MAR, Exp&t-dist. For every marginal j and each method m, 16 dots are plotted for
the scenarios s in this block.

First, one can observe that Linear Regression Imputation (Norm) is closest to the true
values. But also seen, Copula Regression Imputation (CopReg) is not far behind, and this
procedure modeled the dependence structure much better. Second, observe that the last
marginal is the most challenging for imputation. But the distances in this block are rather
low. That is because the expectations and volatilities of the Exponential distribution are
very low. Moreover, for the t-distributions, only the very high values are missing. The
very low ones are still there. Together with the fat tails of this distribution it is helpful
in finding good estimates.
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5.4.6 Assessing marginal in block MAR, Norm&t-dist
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third marginal N(11, 4) forth marginal N(−5, 10)
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Figure 5.7: Plot of the Euclidean norm distance dm,sj of the expected values ηm,sj in block
MAR, Norm&t-dist. For every marginal j and each method m, 16 dots are plotted for
the scenarios s in this block.

The highest deviations are seen in the plot of the first and the last marginal. The first
marginal is the one with the most nonresponse, and the last the one with the highest
volatility. Here one can observe that imputation really can change parameter estimates,
compared to deletion (Del). Normal distributions are very sensitive to missing values.
For example in the first marginal, an absence of the highest 10% values changes the
expectation significantly. Imputation reduces this miss-estimation. According to the
rating criteria, the Linear Regression procedure (Norm) works best.



72 CHAPTER 5. SIMULATION STUDY

rtCopFit rtCopFit2 rtCopExp rtCopReg rtNorm rtPMM rtDel

4.5 4.5 7 6 2.5 2.5 1

Table 5.9: Evaluation of the Runtime.

CopFit CopFit2 CopExp CopReg Norm PMM Del

5 6 7 1 4 2 3

Table 5.10: Overall results r for a weighted sum of all results of all 7 tables above, with
equal weights for Kendal’s tau values and marginal parameters (= 0.16), and a smaller
weight for runtime (= 0.04).

In the end the results are very close. Runtime is valued with a parameter of 0.25 according
to the others. With a parameter of 0.4 the order of PMM and CopReg would have changed.
To observe each method in every situation graphically, have a look at the appendix. There
are box plot diagrams, which show each simulation category separately.



Chapter 6

Case Study (4 dimensions)

To see strengths and weaknesses under real conditions, it is crucial to apply the developed
methods to real data. In a simulation test, one simply produces what is needed to try out
theoretical methods straightforward and under a relatively simple setup, but in reality
there are often obstacles not seen if one makes life too elementary. For this purpose a
case study is presented in the following, in which a closer look is taken at the candidates
in the simulation test ranking. In this case it was decided to analyze a medical survey
because this is one of the most common areas of application in the field of imputation. As
mentioned before, these studies are often very expensive and time consuming, so throwing
collected data away just because one value is missing is not an option. Another reason
why a medical study was chosen is the mostly not trivial dependence structure existing
between the variables and therefore is very interesting in the topic of missing values.
Last but not least, there is nearly always missing data. So the conditions in such an
environment are very suitable for applying vine copula imputation techniques.
In a first try, the study is restricted to a 4-dimensional environment with continuous
marginal distributions, like in the simulation test, to make comparison to earlier chapters
possible. Then, if after the simulation study and the real data test one or more vine copula
imputation methods prove to be successful, they will be chosen for higher dimensional (and
thus much more time consuming) practice. So the first aim is to select four continuous
dependent random variables from a medical survey, done by an exploratory data analysis.
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6.1 Exploratory Data Analysis

Data was collected for the study of ”Prenatal Lead Exposure and Weight of 0- to 5-Year-
Old Children in Mexico City” (see Afeiche A., et al, (2011)), with the Background that
”[c]umulative prenatal lead exposure, as measured by maternal bone lead burden, has
been associated with smaller weight of offspring at birth and 1 month of age”, and the
objective of ”investigating the association of perinatal maternal bone lead, a biomarker of
cumulative prenatal lead exposure, with children’s attained weight over time from birth
to 5 years of age”. The measurements were done within two groups (A with n=327 and
B with n=463) that differ in total number of children and year of birth. In the following
only the dataset of group B with (considering only different mothers and children with
known sex) a total number of n=363 children (#female = 179 (49, 3%) and #male = 184
(50,7%)) was analyzed.

The data considered has the following variables:

• Visit: follow-up visit in months. 0 corresponds to the visit of child at birth. Integer
variable with values in the set {0, 3, 6, 12, 18, 24, 30, 36, 48, 60}.

• Weight: longitudinal measure of weight for a child. Continuous variable.

• Birth-Sex: sex of a child. Integer variable with values in the set
{0, 1} := {female,male}, with #female = 179 (49, 3%) and #male = 184 (50,7%).

• Child-PB: lead concentration in child’s cord blood at birth. Continuous variable.

• Rotula: lead concentration in child’s rotula (patella) bone with respect to a bench-
mark. Continuous variable.

• Tibia: lead concentration in child’s tibia bone with respect to a benchmark. Con-
tinuous variable.

• Mother-PB: lead concentration in mother’s blood. Continuous variable.

• Mother-Age: age of the mother at birth. Continuous variable measured in years.

• Birth-Gestage: number of gestational months. Continuous variable measured in
month.

Note that only ”Weight” differs with varying variable ”Visit”. The missing values are
listed in the table below:
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Varying Variable Missing Values
Weight (0 Month) 0 (0%)
Weight (3 Month) 17 (4,7%)
Weight (6 Month) 12 (3,3%)
Weight (12 Month) 19 (5,2%)
Weight (18 Month) 27 (7,4%)
Weight (24 Month) 28 (7,7%)
Weight (30 Month) 40 (11%)
Weight (36 Month) 52 (14,3%)
Weight (48 Month) 60 (16,5%)
Weight (60 Month) 102 (28%)
Weight (over all) 357 (9,8%)

Table 6.1: Percentage of missing values for the longitudinally measured variable Weight.

Non-varying Variables Missing Values
Birth-SEX 0 (0%)
Child-PB 92 (25,3%)

Rotula 2 (0,6%)
Tibia 2 (0,6%)

Mother-PB 13 (3,6%)
Mother-Age 0 (0%)

Birth-Gestage 0 (0%)

Table 6.2: Percentage of missing values for all variables which are only measured at birth.

Because only four candidates are needed for simultaneous imputation, it is more interest-
ing to look for some different dependence structures between these variables with missing
data. It is easy to recognize that all lead measurements on different parts of the body
(mother or child) are highly correlated. Further, by results of the study, ”a 1 standard
deviation-increase in maternal patella lead was associated with a 130.9 g decrease in weight
(95% CI= -227.4 to -34.4) among females and a 13.0 g non-significant increase in weight
among males (95% CI= -73.7 to 99.9) at 5 years of age”. This leads to the conclusion that
”the association was evident for patellar but not tibial lead levels, and limited to females”.
So it is highly relevant to investigate the variables ”Child-PB”, ”Mother-PB”, ”Rotula”
and ”Weight at 6 month”. The first candidate has a significantly high percentage of miss-
ing data and is highly correlated with the second and the third. ”Rotula” and ”Weight”,
as mentioned before, have an interesting relationship because of the dependence differ-
ences in sex, which ”Tibia” and ”Weight” have not. One also could choose the variable
”Weight” at every other measurement ”Visit”, but the study also mentions ”[p]renatal
lead exposure measured by maternal blood lead has been associated with decreases in
childrens anthropometry at 6 and 15 months respectively (Schell et al. 2009; Shukla et al.
1989; Shukla et al. 1991)”, and there are just some values missing. That is why those four
variables are chosen first for testing imputation methods under real data conditions. The
immediately preceding considerations are now displayed in images, in order to convince
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the reader of their usefulness.
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Figure 6.1: The chosen variables, with upper diagonal scatter plots (male=black, fe-
male=red dots) and # pairwise missing values, lower diagonal contour plots (male=black,
female=red), on the diagonal histograms of the data, with data on X-scale (original).

From the scatter plots and the contours, it can already be guessed that there are interesting
dependence structures between the variables varying over sex. The contours on Z-scale
might offer further opportunities for interpretation, but more work is needed to get them.

To apply two step vine copula methods, it is crucial to fit appropriate marginal models
first to get to uniform distributions. It also helps to understand the dependence structure
between the four variables better if there is no marginal effect distorting the pictures.
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6.2 Fitting Marginals for Mother-PB, Child-PB, Ro-

tula, Weight at 6 month

Here, this is done by eliminating some other effects (also observed in the study) with a
linear regression model. Then the residuals are fitted with a normal, or skewed normal
error distribution respectively. In the following, possible effects will be examined to have
some linear relationship on the chosen variables. Then the significance of these effects
and their interactions will be computed. The goodness of fit will be decided with the help
of studentized residuals and qq-plots.

6.2.1 Using complete data for male and female jointly

First, the marginal fit is done using the complete data for male and female. One can
observe that marginally there is no difference between genders for the four variables. For
simplicity, we introduce

• BSEX for Birth-Sex,

• MAGE for Mother-Age,

• BGES for Birth-Gestege,

• and T for Tibia.
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Figure 6.2: Linear ”Rotula” effects. Rotula is plotted against Sex (box plot upper left),
Mother-Age (upper right), Birth-Gestage (lower left) and Tibia (lower right). The red
regression line is done by only considering female (red dots), and the black only considering
male (black dots) children. One can see that marginally, ”Rotula” has no noticeable effects
or interaction effects on the child’s gender. However, there seem to be relationships with
”Mother-Age” and Tibia.
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H]
Res.Df RSS Df Sum of Sq F Pr(>F)

1 350 26174.11
2 355 26687.83 -5 -513.73 1.37 0.2334

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6882 82.8331 0.07 0.9453

BSEX 46.4045 32.6361 1.42 0.1560
MAGE -0.7301 3.3516 -0.22 0.8277
BGES -0.3455 2.1195 -0.16 0.8706

T -1.6442 1.8653 -0.88 0.3787
BSEX:MAGE -0.3295 0.1909 -1.73 0.0853
BSEX:BGES -0.9926 0.8287 -1.20 0.2318

BSEX:T -0.0659 0.0950 -0.69 0.4887
MAGE:BGES 0.0322 0.0856 0.38 0.7067

MAGE:T 0.0221 0.0081 2.73 0.0066
BGES:T 0.0391 0.0465 0.84 0.4013

Big model for ”Rotula” with all bivariate interactions.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -12.9538 16.2918 -0.80 0.4271

MAGE 0.3659 0.1161 3.15 0.0018
T -0.0661 0.2089 -0.32 0.7517

BGES 0.2441 0.4192 0.58 0.5607
BSEX -0.9648 0.9216 -1.05 0.2959

MAGE:T 0.0184 0.0079 2.33 0.0201

Smaller model with only the single variables and the interaction of ”Mother-Age” and
”Tibia” included.
Anova with the result that the smaller model is preferred.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.3615 2.8306 -1.54 0.1242

MAGE 0.3824 0.1150 3.32 0.0010
T -0.0190 0.2041 -0.09 0.9260

MAGE:T 0.0167 0.0077 2.17 0.0310

Smaller model with only ”Mother-Age” and ”Tibia” and the intersection included.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 355 26687.83
2 357 26792.25 -2 -104.42 0.69 0.5000

Anova with the result that the smaller model is preferred.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.9142 2.3185 -3.41 0.0007

MAGE 0.5281 0.0938 5.63 0.0000
T 0.4116 0.0464 8.87 0.0000

Smaller model with only ”Mother-Age” and ”Tibia” included.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 357 26792.25
2 358 27144.15 -1 -351.90 4.69 0.0310

Anova with the result that the smaller model is preferred.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7228 0.6097 7.75 0.0000

T 0.4719 0.0470 10.03 0.0000

Model with only ”Tibia” included.

The tables show the significance of the effects with respect to the response variable
”Rotula”. The calculated p-values for a 99% significance level can be observed, with an
adj. R2 of 0, 217 for only ”Tibia” and 0, 279 for both significant variables in the smallest
model included.
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Figure 6.3: Linear Log ”Child-PB” effects. Log Child-PB is plotted against Sex (box plot
upper left), Mother-Age (upper right), Birth-Gestage (lower left) and Tibia (lower right).
The red regression line is done by only considering female (red dots), and the black only
considering male (black dots) children. For logarithmically transformed ”Child-PB” there
should be no single sex effect, either. Interaction effects with the ”Birth-Gestage” or the
”Tibia” variable are possible. But they turn out not to be significant as one can see in
the p-value table.



82 CHAPTER 6. CASE STUDY (4 DIMENSIONS)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.2296 5.9190 -0.71 0.4755

BSEX 3.8911 2.2188 1.75 0.0807
MAGE 0.1054 0.2481 0.42 0.6713
BGES 0.1316 0.1515 0.87 0.3856

T 0.0748 0.1399 0.54 0.5930
BSEX:MAGE -0.0127 0.0139 -0.91 0.3618
BSEX:BGES -0.0879 0.0563 -1.56 0.1194

BSEX:T -0.0081 0.0068 -1.19 0.2365
MAGE:BGES -0.0023 0.0063 -0.37 0.7151

MAGE:T -0.0003 0.0006 -0.47 0.6423
BGES:T -0.0013 0.0035 -0.37 0.7100

Big model for ”Child-PB” with all bivariate interactions.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3476 1.1063 0.31 0.7536

BSEX 0.0723 0.0638 1.13 0.2587
MAGE 0.0063 0.0068 0.93 0.3538
BGES 0.0206 0.0281 0.73 0.4636

T 0.0139 0.0032 4.30 0.0000

Smaller model without interactions.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 260 70.88
2 266 72.86 -6 -1.98 1.21 0.3003

Anova with the result that the smaller model is preferred.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3406 0.0418 32.09 0.0000

T 0.0146 0.0031 4.72 0.0000

Smaller model just with ”Tibia” included.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 266 72.86
2 269 73.62 -3 -0.76 0.92 0.4315

Anova with the result that the smallest model is preferred.
The tables show the significance of the effects with respect to the response variable Log
”Child-PB”. In the end it is a linear relationship with ”Tibia” only, with an adj. R2 of
0, 073.
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Figure 6.4: Linear Log ”Mother-PB” effects. Log Mother-PB is plotted against Sex (box
plot upper left), Mother-Age (upper right), Birth-Gestage (lower left) and Tibia (lower
right). The red regression line is done by only considering female (red dots), and the
black only considering male (black dots) children. The plots of ”Mother-PB” are very
similar to those of the ”Child-PB” variable. That is conditioned on the strong dependency
between these two measurements. Intuitively, the fit of the linear model should not be
very different. This suggestion is underlined in the pictures.



84 CHAPTER 6. CASE STUDY (4 DIMENSIONS)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.4863 4.9883 -1.30 0.1944

BSEX 1.6768 1.9717 0.85 0.3957
MAGE 0.3064 0.2018 1.52 0.1298
BGES 0.2054 0.1276 1.61 0.1086

T -0.1681 0.1122 -1.50 0.1351
BSEX:MAGE -0.0070 0.0115 -0.61 0.5437
BSEX:BGES -0.0372 0.0501 -0.74 0.4588

BSEX:T 0.0013 0.0057 0.23 0.8204
MAGE:BGES -0.0077 0.0052 -1.50 0.1353

MAGE:T 0.0004 0.0005 0.90 0.3691
BGES:T 0.0043 0.0028 1.55 0.1232

Big model for ”Mother-PB” with all bivariate interactions.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6495 0.9778 0.66 0.5070

BSEX 0.0647 0.0554 1.17 0.2438
MAGE 0.0047 0.0056 0.83 0.4054
BGES 0.0228 0.0249 0.92 0.3606

T 0.0130 0.0028 4.68 0.0000

Smaller model without interactions.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 339 91.29
2 345 92.43 -6 -1.15 0.71 0.6414

Anova with the result that the smaller model is preferred.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6821 0.0355 47.43 0.0000

T 0.0135 0.0027 4.98 0.0000

Smaller model just with ”Tibia” included.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 345 92.43
2 348 93.22 -3 -0.78 0.97 0.4062

Anova with the result that the smallest model is preferred.

The tables show the significance of the effects with respect to the response variable Log
”Mother-PB”, with an adj. R2 of 0, 064 for the smallest model.
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Figure 6.5: Linear Log ”Weight at 6 month” effects. Log Weight at 6 month is plotted
against Sex (box plot upper left), Mother-Age (upper right), Birth-Gestage (lower left) and
Tibia (lower right). The red regression line is done by only considering female (red dots),
and the black only considering male (black dots) children. The only optical relationship
could be found between ”Weight at 6 month” and ”Birth-Gestage”.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5876 1.1964 0.49 0.6236

BSEX -0.2628 0.4725 -0.56 0.5784
MAGE 0.0254 0.0484 0.52 0.6001
BGES 0.0364 0.0306 1.19 0.2353

T 0.0094 0.0270 0.35 0.7267
BSEX:MAGE -0.0006 0.0028 -0.22 0.8296
BSEX:BGES 0.0085 0.0120 0.71 0.4794

BSEX:T 0.0021 0.0014 1.49 0.1374
MAGE:BGES -0.0007 0.0012 -0.55 0.5802

MAGE:T 0.0001 0.0001 0.67 0.5005
BGES:T -0.0003 0.0007 -0.50 0.6177

Big model for ”Weight at 6 month” with all bivariate interactions.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2168 0.2340 5.20 0.0000

BSEX 0.0708 0.0132 5.35 0.0000
MAGE -0.0003 0.0014 -0.24 0.8131
BGES 0.0194 0.0059 3.27 0.0012

T -0.0007 0.0007 -1.04 0.3014

Smaller model without interactions.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 338 5.17
2 344 5.24 -6 -0.07 0.74 0.6160

Anova with the result that the smaller model is preferred.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2108 0.2311 5.24 0.0000

BSEX 0.0717 0.0132 5.43 0.0000
BGES 0.0192 0.0059 3.24 0.0013

Smaller model just with ”Birth-Sex” and ”Birth-Gestage” included.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 344 5.24
2 346 5.26 -2 -0.02 0.66 0.5193

Anova with the result that the smaller model is preferred.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.9589 0.0095 205.25 0.0000

BSEX 0.0733 0.0133 5.50 0.0000
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Smaller model just with ”Birth-Sex” included.
The tables show the significance of the effects with respect to the response variable Log
”Weight at 6 month”. The gender effect plays a role in the linear regression model
fitting of the weight of 6 month old children. The model with just ”Birth-Sex” has an
adj. R2 of 0.080 and the model with ”Birth-Sex” and ”Birth-Gestage” included an adj.
R2 of 0.107.
That results in four different linear models. Note that the significant ”Mother-Age” is
omitted in the ”Rotula” linear regression model, because of two reasons: First, the R2

coefficient in the bigger model, eliminating this effect, was only a little higher. There-
fore the smaller model is preferred. Second, the transformation on uniform [0, 1] scale
works nearly the same and looks a little better on the U-graph later on. Because of the
same reasons, the significant variable ”Birth-Gestage” in the ”Weight at 6 month” linear
regression model is omitted, too.

• log (Weight) = β0 + β1 ∗Birth-Sex,

• Rotula = β0 + β1 ∗ Tibia,

• log (Mother-PB) = β0 + β1 ∗ Tibia,

• log (Child-PB) = β0 + β1 ∗ Tibia,

with skewed, centered normally distributed ”Rotula” residuals and centered normally
distributed residuals for the other three marginals. The small adj. R2 in the models is
only an indicator for low relationships between the predictor and the response variables.
Always keep in mind, the goal is to fit marginal distributions for uniform transformations
here.
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Figure 6.6: Residuals of the four linear models transformed to uniform distributions on
[0, 1] using the complete data for male and females.

If both sex is taken in common to fit the four different marginal distributions, the data
looks uniform enough after transformation. The quality of the marginal model fit is also
seen in linearity of qq-plots,
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Figure 6.7: The smaller model for ”Rotula” with Mother-Age effect, i.e. Rotula∼Tibia.
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Figure 6.8: To compare, the bigger model for ”Rotula” without Mother-Age effect, i.e.
Rotula∼Mother-Age+Tibia.
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Figure 6.9: The smaller model for ”Weight at 6 month” with Birth-Gestage effect,
i.e.Weight∼Birth-Sex.
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Figure 6.10: To compare, the bigger model for ”Weight at 6 month” without Birth-Gestage
effect, i.e. Weight∼Birth-Sex+Birth-Gestage.
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Figure 6.11: QQ-plots for the chosen models using the complete data for male and female.

and the randomness in the studentized residuals without many outliers.
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Figure 6.12: Studentized residual-plots for the chosen variables in the linear regression
models, using the complete data for male and female. Note that in the linear regression
model for the marginal ”Weight at 6 month”, only Birth-Gestage was decided to be
a predictor variable, while in the other three linear regression models, only Tibia was
decided to have a linear effect (upper left Weight at 6 month, upper right Rotula, lower
left Child-PB and lower right Mother-PB).

6.2.2 Using complete data for male and female separately

Next, the marginal transformations for both sexes are added separately. After finding
out that the dependence structure distinguishes between female and male, but marginally
there are only differences for one single variable (Weight at 6 month), it should be enough
to take only one marginal linear regression model for both sexes for ”Rotula”, ”Mother-
PB” and ”Child-PB”, which does not separate the gender. However, it does not make
a big difference separating marginally between genders, since the parameters are nearly
the same except for ”Rotula”. The residuals are fitted via a skewed normal distribution
and those parameters differ a lot between male and female children. For this variable
there could be parameters used for each sex, but in the Studentized residuals plot, one
can observe that the fit is also well chosen when there is no differentiation between sexes.
Here, the separation is done in every marginal because there is enough data to do so, it
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makes programming life a little easier, and the changes are insignificant.
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Figure 6.14: Studentized residual-plots for the chosen random effects in the models with
female children only.
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Figure 6.15: Studentized residual-plots for the chosen random effects in the models with
male children only.
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After changing to univariate uniform distribution, it is practical to look once again at
the depencence structure without any marginal effects that might distort some of the
structures displayed some pages before.
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Figure 6.16: The chosen variables, with upper diagonal scatter plots on Z-scale (male=full
dots, female=empty dots) and # pairwise missing values, lower diagonal contour plots on
Z-scale (male=black, female=red), on the diagonal histograms of the data on U-scale.
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Female Male Difference

Weight at 6 month, Mother-PB −0.13 0.11 0.24
Weight at 6 month, Child-PB −0.13 0.07 0.2
Weight at 6 month, Rotula −0.12 −0.01 0.11
Mother-PB, Child-PB 0.54 0.47 0.07
Mother-PB, Rotula 0.3 0.26 0.04
Child-PB, Rotula 0.23 0.19 0.04

Table 6.5: Kendall’s tau values for every bivariate combination of the four variables for
female and male separately, using the complete data.

Like the Kendall’s tau values for the variable ”Weight at 6 month”, the gender difference
is noticeable in the Z-scaled contours. There is a twist between male and female contours
for this variable.
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6.3 Imputation

After analyzing the data, it makes sense to impute nonresponse for female and male
children separately. For comparison, the case of just one model for both sexes is added.
To evaluate the level of success, there will be two measurements. First, the Kendall’s
tau of all (in total 6) bivariate cases will be computed before and after imputation. The
same will be done for the Kendall‘s tau of the families of the best fitting C-vine structure
(with highest AIC). A box plot diagram with 20 tries of each imputation method will
show the discrepancy between the measurements with and without imputation values.
The smaller the change, the better the method. But Kendall’ tau is only a measure of
the strength and of whether there is positive or negative dependence, not of what it looks
like. So second, non varying contour plots (or mean contour plots) are a good sign for
not changing the dependence structure in sense of the copula family. The contours will
be plotted for the bivariate cases only. Note that for the linear regression method, the
marginals were transformed to standard normals and there was no transformation for
the PMM. After Imputation every marginal was standard normal transformed, using the
linear models, to get comparable results.

6.3.1 Both Sexes

First, there are the best fitting C-vine trees, estimated for the vine copula imputation
methods. Note that only Copula Regression Imputation needs more than one tree esti-
mation. The edges are labeled with the estimated bivariate pair copula family and the
corresponding empirical Kendall’s tau value.

C-vine Order AIC BIC # Parameter

1) (4,1,2,3) 216.7 191.7 7
2) (1,3,2,4) 214.3 189.5 7
3) (1,2,3,4) 214.3 189.5 7
4) (1,4,2,3) 214.1 189.3 7
5) (4,2,3,1) 209.3 188.1 6
6) (4,3,1,2) 206.7 181.7 7
7) (2,4,1,3) 206.7 185.4 6
8) (2,3,1,4) 206.2 184.9 6
9) (2,1,3,4) 206.2 184.9 6
10) (3,2,1,4) 203.5 178.7 7
11) (3,4,1,2) 203.4 178.6 7
12) (3,1,2,4) 203.4 178.6 7

Table 6.6: AIC, BIC and number of parameters for the C-vine tree structures with (1,2,3,4)
denotes the vector (UMother−PB, UChild−PB, URotula, UWeight) and e.g. (2,1,3,4) the vector
(UChild−PB, UMother−PB, URotula, UWeight).
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Using data for both sexes, C-vine model for CopFit and CopExp. It is also
used as one of the models in CopReg.

Tree 1

N,−0.03
J90,−0.02

C270,−0.09

V1

V2

V3

V4

Tree 1

G,0.5

BB8,0.28

V1,V2

V1,V3

V1,V4

Tree 3

F,0.07

V2,V3|V1

V2,V4|V1

Figure 6.17: 1) Best fitting C-vine structure (with highest AIC under all C-vines)
estimated for Copula Fitting Imputation and Copula Expectation Imputation. Also
estimated to impute ”Rotula” and/or ”Child-PB” in method Copula Regression.
(Weight=V1, Mother-PB=V2, Child-PB=V3 and Rotula=V4).

Using data for both sexes, C-vine model for CopReg for the remaining single
variables missing.

Tree 1

BB8,0.28
G,0.5
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V1
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V4

Tree 1
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F,−0.02

V2,V3|V1

V2,V4|V1

Figure 6.18: 2) Best fitting C-vine structure (with highest AIC under all admissible C-
vines) estimated to impute ”Weight” in method Copula Regression. (Mother-PB=V1,
Rotula=V2, Child-PB=V3 and Weight=V4).
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Tree 1

J90,−0.02

C270,−0.09
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V1

V2
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V4

Tree 1
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Tree 3
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V2,V3|V1
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Figure 6.19: 5) Best fitting C-vine structure (with highest AIC under all admissible C-
vines) estimated to impute ”Mother-PB” in method Copula Regression. (Weight=V1,
Child-PB=V2, Rotula=V3 and Mother-PB=V4).

Using data for both sexes, C-vine model for CopReg for the remaining two
missing variables.
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Figure 6.20: Best fitting C-vine structure (with highest AIC under all admissible C-vines)
estimated to impute ”Mother-PB” and ”6) Child-PB” in method Copula Regression.
(Weight=V1, Rotula=V2, Mother-PB=V3 and Child-PB=V4).
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Tree 1

F,0.22

G,0.5
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V1
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Tree 1
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V2,V3|V1

V2,V4|V1

Figure 6.21: Best fitting C-vine structure (with highest AIC under all admissible C-vines)
estimated to impute ”Mother-PB” and ”8) Weight” in method Copula Regression.
(Child-PB=V1, Rotula=V2, Mother-PB=V3 and Weight=V4).
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Figure 6.22: 3) Best fitting C-vine structure (with highest AIC under all admissible
C-vines) estimated to impute ”Weight” and ”Rotula” in method Copula Regression.
(Mother-PB=V1, Child-PB=V2, Rotula=V3 and Weight=V4).

As seen, one really has to fit several models in the Vine Copula Regression approach.
They differ in the tree structure as well as in the bivariate copulae. It is important to
have a range of bivariate copula families available which have some different variability
features and different dependence structures. Otherwise, the fit is very restricted, because
this method has less options in choosing the tree structures for the different imputation
combinations.
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Evaluation of the different imputation methods, using Kendall’s tau values.

For every box plot diagram a range of 0, 4 is chosen. The red line is the value of complete
cases only. It does not change when repeating the imputation methods. As mentioned,
the box plots are of 20 tries each. At first there will be the ”both sexes in common”
scenario, where there will not be a differentiation between male and female. Then the
separation case will be presented.

Data Kendall’s tau in C-vine Figure number

female&male female 6.23
female&male male 6.24

female female 6.41
male male 6.42

Data pairwise Kendall’s tau Figure number

female&male female 6.25
female&male male 6.26

female female 6.43
male male 6.44

Table 6.7: Overview of the following figures with box plot diagrams of Kendall’s tau
values.

Because of the C-vine structure, the first plot in Figure 6.23 and 6.24 captures most of
the dependence between ”lead measurements” and ”weight”. Therefore this plot shows
best how important it is to separate between genders before imputation is applied. In
the female plot (see Figure 6.23), there is an average mismatch of almost 0, 1 between
with and without imputation independent of the method. And even worse, the sign has
changed from negative to positive dependence exept for one method (). That means the
nonresponse is filled out with clearly wrong data. Copula regression Imputation captures
the misspecified model in the first plot of Figure 6.23 and 6.24 best, but that leads in
more errors in the last (conditioned) copula family parameter that is connected to the
same ”lead measurements-weight” dependence. In the male case (see Figure 6.24), nearly
the same problem occurs, but the other way around. Not surprising, because on average
the models are right.
A more intuitive and interpretable way is to look at the bivariate Kendell’s tau, with-
out conditioning, only (see Figure 6.25 and 6.26). In the female case (see Figure 6.25),
the PMM method does better than the others, but therefore gets worse with the male
imputation (see Figure 6.26). Over all, high deviations from the complete cases can be
observed.
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Figure 6.23: Female Kendall’s Tau for the families in the best fitting C-vine structure,
according to the AIC criteria, using female & male complete data after 20 imputations
using 6 imputation methods (the red line is deletion, i.e. complete case). Range of
Kendall’s tau values = 0.4.
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Figure 6.24: Male Kendall’s Tau for the families in the best fitting C-vine structure,
according to the AIC criteria, using female & male complete data after 20 imputations
using 6 imputation methods (the red line is deletion, i.e. complete case). Range of
Kendall’s tau values = 0.4.



104 CHAPTER 6. CASE STUDY (4 DIMENSIONS)

●

●

TauFit TauReg TauExp TauPMM TauNorm

0.
4

0.
5

0.
6

0.
7

mother_pb,child_pb

methods

TauFit TauReg TauExp TauPMM TauNorm

0.
2

0.
3

0.
4

0.
5

mother_pb,rotula

methods

TauFit TauReg TauExp TauPMM TauNorm

−
0.

2
−

0.
1

0.
0

0.
1

mother_pb,weight

methods

● ●

TauFit TauReg TauExp TauPMM TauNorm

0.
2

0.
3

0.
4

0.
5

child_pb,rotula

methods

●

●

TauFit TauReg TauExp TauPMM TauNorm

−
0.

2
−

0.
1

0.
0

0.
1

child_pb,weight

methods

TauFit TauReg TauExp TauPMM TauNorm

−
0.

3
−

0.
2

−
0.

1
0.

0

rotula,weight

methods

Figure 6.25: Female empirical Kendall’s Tau for all possible bivariate combinations with-
out conditioning, using female & male complete data after 20 imputations using 6 im-
putation methods (the red line is deletion, i.e. complete case). Range of Kendall’s tau
values = 0.4.

TauFit TauReg TauExp TauPMM TauNorm

0.
3

0.
4

0.
5

0.
6

0.
7

mother_pb,child_pb

methods

●● ●

TauFit TauReg TauExp TauPMM TauNorm

0.
2

0.
3

0.
4

0.
5

mother_pb,rotula

methods

TauFit TauReg TauExp TauPMM TauNorm

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

mother_pb,weight

methods

●

TauFit TauReg TauExp TauPMM TauNorm

0.
1

0.
2

0.
3

0.
4

child_pb,rotula

methods

●

TauFit TauReg TauExp TauPMM TauNorm

−
0.

1
0.

0
0.

1
0.

2

child_pb,weight

methods

TauFit TauReg TauExp TauPMM TauNorm

−
0.

2
−

0.
1

0.
0

0.
1

rotula,weight

methods

Figure 6.26: Male empirical Kendall’s Tau for all possible bivariate combinations without
conditioning, using female & male complete data after 20 imputations using 6 imputation
methods (the red line is deletion, i.e. complete case). Range of Kendall’s tau values =
0.4.
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Evaluation of the different imputation methods, using mean contour plots.

Data Contour Figure number

female&male female 6.27
female&male male 6.28

female female 6.45
male male 6.46

Table 6.8: Overview of the following figures with mean contour plots after imputation.

Now the mean contour plots (on the levels 50%, 75%, 95%) for the six bivariate combi-
nation possibilities. The dashed lines are the complete cases. They are added for simpler
comparison. The procedure for mean contour plots is presented in the appendix.
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Figure 6.27: Pairwise female empirical mean contours, using imputed data (20 tries). The
dashed contours are the complete cases.
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Figure 6.28: Pairwise male empirical mean contours, using imputed data (20 tries). The
dashed contours are the complete cases.

The pairwise contours with ”Mother-PB” (first three) seem to be difficult, especially
”Mother-PB” and ”Weight”. In the contours of female children (see Figure 6.27), it looks
like the last two methods can compensate the gender problem more effectively. In the
male contours (see Figure 6.28), however, CopReg fits better than the rest. As guessed,
one has to separate between sexes before imputation.

6.3.2 Separated Sex

Next there are the results with separating gender in two different models and applying the
methods for each. The results should be much closer to reality and maybe some methods
do better than before. Interestingly, but foreseeably, the highest AIC C-vine structures
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do not change, but the best fitting bivariate copulae and the according parameter are
different according to the model without the separation.

Using female data, C-vine model for CopFit and CopExp. It is also used as
one of the models in CopReg.
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Figure 6.29: Female C-vine structure (with highest AIC under all C-vines) estimated
for Copula Fitting Imputation (CopFit) and Copula Expectation Imputation (CopExp).
Also estimated to impute ”Rotula” and ”Child-PB” in method Copula Regression Im-
putation (CopReg). (Weight=V1, Mother-PB=V2, Child-PB=V3 and Rotula=V4)

Using female data, C-vine model for CopReg for the remaining single variables
missing.
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Figure 6.30: Female C-vine structure (with highest AIC under all admissible C-vines) esti-
mated to impute ”Weight” in method Copula Regression. (Mother-PB=V1, Rotula=V2,
Child-PB=V3 and Weight=V4)
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Figure 6.31: Female C-vine structure (with highest AIC under all admissible C-vines)
estimated to impute ”Mother-PB” in method Copula Regression. (Weight=V1, Child-
PB=V2, Rotula=V3 and Mother-PB=V4)

Using female data, C-vine model for CopReg for the remaining two missing
variables.
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Figure 6.32: Female C-vine structure (with highest AIC under all admissible C-vines)
estimated to impute ”Mother-PB” and ”Child-PB” in method Copula Regression.
(Weight=V1, Rotula=V2, Mother-PB=V3 and Child-PB=V4)
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Figure 6.33: Female C-vine structure (with highest AIC under all admissible C-vines)
estimated to impute ”Mother-PB” and ”Weight” in method Copula Regression.
(Weight=V1, Child-PB=V2, Rotula=V3 and Mother-PB=V4)
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Figure 6.34: Female C-vine structure (with highest AIC under all admissible C-vines)
estimated to impute ”Weight” and ”Rotula” in method Copula Regression. (Mother-
PB=V1, Child-PB=V2, Rotula=V3 and Weight=V4)
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Using male data, C-vine model for CopFit and CopExp. It is also used as one
of the models in CopReg.
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Figure 6.35: Male C-vine structure (with highest AIC under all C-vines) estimated for
Copula Fitting Imputation (CopFit) and Copula Expectation Imputation (CopExp). Also
estimated to impute ”Rotula” and ”Child-PB” in method Copula Regression Imputa-
tion (CopReg). (Weight=V1, Mother-PB=V2, Child-PB=V3 and Rotula=V4)

Using male data, C-vine model for CopReg for the remaining single variables
missing.
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Figure 6.36: Male C-vine structure (with highest AIC under all admissible C-vines) esti-
mated to impute ”Weight” in method Copula Regression. (Mother-PB=V1, Rotula=V2,
Child-PB=V3 and Weight=V4)
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Figure 6.37: Male C-vine structure (with highest AIC under all admissible C-vines) es-
timated to impute ”Mother-PB” in method Copula Regression. (Weight=V1, Child-
PB=V2, Rotula=V3 and Mother-PB=V4)

Using male data, C-vine model for CopReg for the remaining two variables
missing.
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Figure 6.38: Male C-vine structure (with highest AIC under all admissible C-vines)
estimated to impute ”Mother-PB” and ”Child-PB” in method Copula Regression.
(Weight=V1, Rotula=V2, Mother-PB=V3 and Child-PB=V4)
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Figure 6.39: Male C-vine structure (with highest AIC under all admissible C-vines) esti-
mated to impute ”Mother-PB” and ”Weight” in method Copula Regression. (Child-
PB=V1, Rotula=V2, Mother-PB=V3 and Weight=V4)
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Figure 6.40: Male C-vine structure (with highest AIC under all admissible C-vines) es-
timated to impute ”Weight” and ”Rotula” in method Copula Regression. (Mother-
PB=V1, Child-PB=V2, Rotula=V3 and Weight=V4)
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Evaluation of the different imputation methods, using Kendall’s tau values.
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Figure 6.41: Female Kendall’s Tau for the families in the best fitting C-vine structure,
according to the AIC criteria, using only female complete data after 20 imputations using
6 imputation methods (the red line is deletion, i.e. complete case). Range of Kendall’s
tau values = 0.4.
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Figure 6.42: Male Kendall’s Tau for the families in the best fitting C-vine structure,
according to the AIC criteria, using only male complete data after 20 imputations using
6 imputation methods (the red line is deletion, i.e. complete case) Range of Kendall’s tau
values = 0.4.
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Figure 6.43: Female empirical Kendall’s Tau for all possible bivariate combinations with-
out conditioning, using only female complete data after 20 imputations using 6 imputation
methods (the red line is deletion, i.e. complete case). Range of Kendall’s tau values =
0.4.
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Figure 6.44: Male empirical Kendall’s Tau for all possible bivariate combinations without
conditioning, using only male complete data after 20 imputations using 6 imputation
methods (the red line is deletion, i.e. complete case). Range of Kendall’s tau values =
0.4.
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A much better fit is seen here for every method. Only Copula Regression has the wrong
sign in the last female plot (see Figure 6.41). One reason could be a different copula fit for
imputing a specific variable, because this is the only method which uses more than one C-
vine for modeling the data. It is not clear if the structure given above is the true structure
for the lead measures and the weight of children at 6 month. It is chosen according to the
highest AIC under all C-vine possibilities. But even if the structure is not well modeled,
it should not change with filling out nonresponse.
For female children, the PMM procedure works best in looking at bivariate Kendall’s tau
values. In the case of the male children, all different imputation methods were nearly
equally successful (see Figure 6.44).

Evaluation of the different imputation methods, using mean contour plots.

Moving on to the mean contours with separated sex (again on the levels 50%, 75%, 95%).

Again there is not a huge gap between the different imputations. It is possible that the
mean of the contours is smoothing the result a little too much to interpret some success
or failure, but as seen in the Kendall’s tau tries, in total there is not a big mismatch.
The most noticeable difference while working with every single procedure is the time
consuming model fitting in the Copula Regression method (which can be improved with
efficient algorithms) and the even longer integral evaluations for the computations in the
Copula Expectation procedure. It is only possible to improve efficiency here by avoiding
the numerical integration part, but some of the bivariate copulae can not be expressed
in closed form. So it is either possible to use only copula families that allow for closed
form evaluations (like only using Gaussian copulae), which is very restrictive, or to lose
accuracy within the imputation values.
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Figure 6.45: Pairwise female empirical mean contours, using imputed data (20 tries) for
female and male separately. The dashed contours are the complete cases.
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Copula Fitting Imputation
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Figure 6.46: Pairwise male empirical mean contours, using imputed data (20 tries) for
female and male separately. The dashed contours are the complete cases.



Chapter 7

Case Study (6 dimensions)

Up to 4 dimensions it is not possible to construct a ”real” R-vine tree structure. There
are only C-vines or D-vines in these low-dimensional cases. For testing copula imputation
methods under general conditions (with possible R-vine dependence structures), one needs
a data set with more than 4 dimensions.

We decided to take a look at the same study as in the 4-dimensional case study presented,
and to include two more ”weight” variables on two more time measurements. Weight at
different points in time is highly correlated and has a very interesting and non-trivial
dependence structure with respect to the lead measurements. So it makes sense to add
these variables for imputation. The reason why not all weight measurements in time are
considered is the amount of data we have. When considering the complete cases without
missing data, there are only about 100 observations left for each, female and male children.
Because we distinguish between genders, it is enough to use only a 6-dimensional data
set. So the different variables are:

• Weight6: measure of weight for a child at 6 month. Continuous variable.

• Weight12: measure of weight for a child at 12 month. Continuous variable.

• Weight24: measure of weight for a child at 24 month. Continuous variable.

• Child-PB: lead concentration in child’s cord blood at birth. Continuous variable.

• Rotula: lead concentration in child’s rotula (patella) bone with respect to a bench-
mark. Continuous variable.

• Mother-PB: lead concentration in mother’s blood. Continuous variable.

And we distinguish between Birth-Sex: sex of a child. Integer variable with values in the
set {0, 1} := {female,male}, with #female = 179 (49, 3%) and #male = 184 (50,7%).

119
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Varying Variable Missing Values
Weight (6 Month) 12 (3,3%)
Weight (12 Month) 19 (5,2%)
Weight (24 Month) 28 (7,7%)

Table 7.1: Percentage of missing values for the longitudinal measured variable ”Weight”.

Non-varying Variables Missing Values
Birth-SEX 0 (0%)
Child-PB 92 (25,3%)

Rotula 2 (0,6%)
Mother-PB 13 (3,6%)

Table 7.2: Percentage of missing values for the variables measured at birth.

The amount of complete cases for male children is 120 and for female children 114. So
there are 34.8% missing for male sex, and 36.3% for female sex. This is a setting where
imputation is needed, because nobody throws away 35% of data that has been collected
with a lot of money and effort within more than 2 years.

7.1 Imputation

Here, only Vine Copula Regression Imputation is tested, because numerical integration
over 6 dimensions is too time consuming for Vine Copula Expectation Imputation. The
Vine Copula Fitting Imputation method is omitted ,too, because this procedure seems to
not work well in the simulation study. For comparison, again the PMM and the Linear
Regression approaches are added for the reasons explained in Chapter 2 (Commonly used
Imputation Methods).
For simplicity, we introduce

• CPB for Child-PB,

• MPB for Mother-PB,

• R for Rotula,

• W6 for Weight6,

• W12 for Weight12,

• W24 for Weight24

while plotting the tree structures.
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Figure 7.1: Best fitting R-vine structure, only using complete data for female children.



122 CHAPTER 7. CASE STUDY (6 DIMENSIONS)

Tree 1

BB1,0.49

F,0.22
F,−0.05

SG,0.55

F,0.59

MPB

CPB

R

W6

W12

W24

Tree 2

F,0.13

SC,0.11

F,−0.12

F,0.1

MPB,R

MPB,CPB

R,W6

W6,W12

W12,W24

Tree 3

SJ,0.03

F,−0.03

F,0.01

MPB,W6|R

CPB,R|MPB

R,W12|W6

W6,W24|W12

Tree 4

F,−0.07

G270,−0.05

MPB,W12|R,W6

CPB,W6|MPB,R

R,W24|W6,W12

Tree 5

J90,−0.06

MPB,W24|R,W6,W12

CPB,W12|MPB,R,W6

Figure 7.2: Best fitting D-vine structure, only using complete data for male children.
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Figure 7.3: Best fitting R-vine structure, only using complete data for male children.
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gender vine AIC BIC # parameter
female R-vine (=D-vine) 285.2 236.0 18
male R-vine 271.9 227.3 16
male D-Vine 259.6 215.0 16

Table 7.3: AIC and BIC for the best fitting R-vine structures, using complete data for
female and male separately. For comparison, the D-vine structure for male is added.
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7.1.1 Evaluation via Mean Quantiles

In the appendix, there are the 95% quantile contour plots added, where one can see that
the PMM method differs in some bivariate cases from the deletion dependence structure
for female children, while Vine Copula Regression Imputation keeps the structure more
precisely. But for 20 tries, the 95% quantiles of data, are more or less just the highest
values. Therefore significance is less than for the mean quantiles. So it was decided to
put the additional pictures in the appendix. For the mean quantiles (see Table 7.4, 7.5,
7.6, 7.7, 7.8, 7.9 ), all three methods do not have high deviations from the complete
case structure. Only the Predictive Mean Matching (PMM) has some difference in the
dependence structure for ”Mother-PB, Child-PB”.
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Copula Regression Imputation
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Table 7.4: Female empirical mean contours (20 tries) for all possible bivariate combina-
tions without conditioning. The dashed contours are the complete cases.
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PMM Imputation
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Table 7.5: Female empirical mean contours (20 tries) for all possible bivariate combina-
tions without conditioning. The dashed contours are the complete cases.
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Linear Regression Imputation
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Table 7.6: Female empirical mean contours (20 tries) for all possible bivariate combina-
tions without conditioning. The dashed contours are the complete cases.



7.1. IMPUTATION 129

Copula Regression Imputation
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Table 7.7: Male empirical mean contours (20 tries) for all possible bivariate combinations
without conditioning. The dashed contours are the complete cases.
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PMM Imputation
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Table 7.8: Male empirical mean contours (20 tries) for all possible bivariate combinations
without conditioning. The dashed contours are the complete cases.
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Linear Regression Imputation
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Table 7.9: Male empirical mean contours (20 tries) for all possible bivariate combinations
without conditioning. The dashed contours are the complete cases.
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7.1.2 Evaluation via Kendall’s Tau Values

In this case, it is quite difficult to evaluate whether a method is better or worse than other
procedures. What one can observe is that the range of the Kendall’s tau value box plot
diagrams for Copula Regression Imputation (TauReg) is mostly the smallest among all
three methods (see Figure 7.4,7.5). This is an indicator for being stable while repeating
the procedure. For a stochastic single imputation method this is an attainable property.
It is also noticeable that, in most situations, the Predictive Mean Matching (TauPMM)
has the least deviance from the complete case parameters.
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Figure 7.4: Female empirical Kendall’s Tau for all possible bivariate combinations without
conditioning, using only female complete data after 20 imputations using 6 imputation
methods (the red line is deletion, i.e. complete case). Range of Kendall’s tau values =
0.4.
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Figure 7.5: Male empirical Kendall’s Tau for all possible bivariate combinations without
conditioning, using only male complete data after 20 imputations using 6 imputation
methods (the red line is deletion, i.e. complete case). Range of Kendall’s tau values =
0.4.
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7.1.3 Evaluation via AIC & BIC

The last evaluation is done via AIC and BIC. An R-vine model was fitted with all available
data, once for female children only, and once for male children only. Then the AIC and
the BIC were computed for this model with data for complete cases (female and male
separately) only. Then, after imputation, the AIC and BIC were computed again for all
three methods separately using the R-vine model with the same bivariate copula families
and the corresponding parameters from the complete cases, but with imputed data. The
results are plotted (see Figure 7.6, 7.7) and tabled (see Table 7.10, 7.11). One can observe
that clearly Vine Copula Regression Imputation has the best fit for both female and male
children.

Female AIC BIC

Del 285.2 236
CopReg 455.4 398.1
PMM 440.5 382.9
Norm 432.3 375

Table 7.10: Mean (20 tries) AIC, BIC before and after imputation for the best fitting
R-vine, only using complete data for female children.
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Figure 7.6: Box plot of AIC (left) and BIC (right) for 20 different imputations, only using
complete data for female children. The red line corresponds to complete case.

Male AIC BIC

Del 271.9 227.3
CopReg 414.8 363.3
PMM 373 321.5
Norm 387.1 335.6

Table 7.11: Mean (20 tries) AIC, BIC before and after imputation for the best fitting
R-vine, only using complete data for male children.
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Figure 7.7: Box plot of AIC (left) and BIC (right) for 20 different imputations, only using
complete data for male children. The red line corresponds to complete case.



Chapter 8

Conclusion

Missing Data is an issue affecting the data analyzing process in its way from the beginning
of collecting observations up to the end. In the course of this work, three applicable
methods were proposed and discussed, helping to overcome the absence of values in a
data set. Each of these methods models the dependence structure using an R-vine copula
based on the complete observations. While two of the new developed procedures (CopFit
and CopExp) turned out to have disadvantages compared to already existing imputation
methods, one (CopReg) was found to be competitive (and in some situations even better)
and applicable in general.

For application of the three R-vine copula based imputation methods, three algorithms
were proposed that can be used apart from filling out data sets. Two of them are sim-
ulation schemes from a given R-vine structure with potentially given values, and the
remaining is a procedure to find sub R-vine structures where simulation with given values
is possible.

In the simulation study presented, the R-vine copula based imputation method CopReg
did not outperform all other procedures included in every single scenario, but over all
it was the best imputation method according to different evaluation criteria. CopFit
and CopExp, the remaining R-vine copula based imputation methods, turned out not
to perform as expected in some scenarios, which does not lead to an improvement for
statistical analysis only based on complete cases. The simulation study also showed that
it is worth using imputation to enlarge the dataset for the analyzing process. Particularly
the marginal parameters significantly changed when data is not missing completely at
random, while the dependence structure stayed the same.

Finally, a medical study with missing data was proposed to test the imputation methods
under real conditions, first in 4 and later in 6 dimensions. Therefor a lot of different
aspects were discussed that statisticians have to deal with in the absence of values in a
data set, while using an R-vine copula based imputation method. One challenge is to
find well fitting marginal models for transforming the data on [0, 1] (U -level). In most
situations the marginal transformation is not a huge obstacle, but a necessary step for
modeling the dependence structure this way. Having data on the right scale, the proposed
theory can be applied to fill out the incomplete data set. The next challenge is to find
criteria for measuring the quality of imputed values.

Because of the observation that the dependence structure did not change when looking at
data with and without missing values in the simulation study, the evaluation criteria if an
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imputation method performed better or worse were based on the dependence structure
measured before and after imputation. According to these criteria, the proposed method
CopReg managed the imputation quite well, but there was no great difference to the other
imputation procedures. Unlike in the simulation study, one could not conclude that one
method completely failed imputing the dataset.
The study was interesting and challenging in itself, because of the highly complex depen-
dence structure between the different measurements. Prenatal lead measurements were
found to have an influence on female children’s weight in early childhood, while there
is no significance for male. This influence only was measurable through the dependence
structure, because marginally there was no difference in lead measurements for gender.
This example justified the assumption of flexible (e.g. nonlinear) dependence structures
that was done in the R-vine copula models.
In the end it depends on the data if it is worth performing imputation with an R-vine
copula dependence model. It is a very flexible way of modeling and it was shown to lead
to good results, but also requires more time and knowledge than some simpler, already
existing imputation methods.
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Appendix A

Test via Simulation

A.1 Box Plot

In the following, the box plot diagrams according to the simulation test are presented.
For each situation, each parameter measured is observable for every iteration. So the
performance of the different methods is visually comparable.
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Table A.1: Fix scenarios: 1b, 3a, 4a, 6a. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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Table A.2: Fix scenarios: 1b, 3a, 4b, 6a. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a



A.1. BOX PLOT 143

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●

●

●

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5
1. CopFit
2. CopFit2
3. CopExp
4. CopReg
5. Del
6. Norm
7. PMM

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●
●

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●

●

●
●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5
1. CopFit
2. CopFit2
3. CopExp
4. CopReg
5. Del
6. Norm
7. PMM

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5
1. CopFit
2. CopFit2
3. CopExp
4. CopReg
5. Del
6. Norm
7. PMM

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●

●

●

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●

●

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

●

●

●

●

●

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

●

c_
12

c_
13

c_
14

c_
23

;1

c_
24

;1

c_
34

;1
2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5
1. CopFit
2. CopFit2
3. CopExp
4. CopReg
5. Del
6. Norm
7. PMM

Table A.3: Fix scenarios: 1b, 3a, 4a, 6b. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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Table A.4: Fix scenarios: 1b, 3a, 4b, 6b. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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A.1.2 MCAR, Low (Kendall’s tau values)
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Table A.5: Fix scenarios: 1a, 3a, 4a, 6a. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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Table A.6: Fix scenarios: 1a, 3a, 4b, 6a. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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Table A.7: Fix scenarios: 1b, 3a, 4a, 6b. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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Table A.8: Fix scenarios: 1b, 3a, 4b, 6b. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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A.1.3 MAR, High (Kendall’s tau values)
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Table A.9: Fix scenarios: 1b, 3a, 4a, 6a. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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Table A.10: Fix scenarios: 1b, 3b, 4b, 6a. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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Table A.11: Fix scenarios: 1b, 3b, 4a, 6b. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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Table A.12: Fix scenarios: 1b, 3b, 4b, 6b. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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A.1.4 MAR, Low (Kendall’s tau values)
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Table A.13: Fix scenarios: 1a, 3b, 4a, 6a. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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Table A.14: Fix scenarios: 1a, 3b, 4b, 6a. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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Table A.15: Fix scenarios: 1b, 3b, 4a, 6b. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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Table A.16: Fix scenarios: 1b, 3b, 4b, 6b. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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A.1.5 MAR, Exp&t-dist (Marginal para)
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Table A.17: Fix scenarios: 1b, 3a, 4a, 6a. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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Table A.18: Fix scenarios: 1b, 3b, 4b, 6a. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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Table A.19: Fix scenarios: 1b, 3b, 4a, 6b. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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Table A.20: Fix scenarios: 1b, 3b, 4b, 6b. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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A.1.6 MAR, Norm&t-dist (Marginal para)
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Table A.21: Fix scenarios: 1a, 3b, 4a, 6a. From the top to the bottom: 1) 2b,5b; 2) 2a,5b;
3) 2b,5a; 4) 2a,5a
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Table A.22: Fix scenarios: 1a, 3b, 4b, 6a. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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Table A.23: Fix scenarios: 1b, 3b, 4a, 6b. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a
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Table A.24: Fix scenarios: 1b, 3b, 4b, 6b. From the top to the bottom: 1) 2b,5b; 2)
2a,5b; 3) 2b,5a; 4) 2a,5a

A.2 Contours

Further we tried to compare the success rate for each method with the help of level plots.
So for each method in every simulation situation, the empirical mean, the empirical 5%,
and the empirical 95% quantile of the level curves were plotted. So the procedure is the
following:

1. Fix a grid for the points of the level curves (100×100 between the theoretical 99.9%
and 0.1% quantiles of the marginal distribution).

2. For each data set (1, . . . , 100) compute the points in the grid for the level curves.
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3. For each value in the grid compute the empirical mean or the empirical 5% or the
empirical 95% quantile. This results in a new grid.

4. Plot the level curves (25%, 50%, 75%) of the empirical mean or the empirical 5%
or the empirical 95% quantile grid.

For comparison, the case without deleted values was added. If the deviation of the picture
after imputation compared to the case without deleting values is very low, this is an
indicator for a well performing method. Unfortunately the pictures look almost the same
for each method, and no big difference is observable. For illustration one case is added.
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Table A.25: 5% Quantile Contours 1b,2b,3a,4a,5b,6a



166 APPENDIX A. TEST VIA SIMULATION

True, Del

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

CopImp, CopImp2, CopExp

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

CopReg, Norm, PMM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

Table A.26: 95% Quantile Contours 1b,2b,3a,4a,5b,6a



A.2. CONTOURS 167

True, Del

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

CopImp, CopImp2, CopExp

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

CopReg, Norm, PMM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−10

−5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

−20

−10

0

10

20

−10 −5 0 5 10

0.0

0.5

1.0

1.5

−10 −5 0 5 10

−20

−10

0

10

20

0.0 0.5 1.0 1.5

−20

−10

0

10

20

Table A.27: Mean Contours 1b,2b,3a,4a,5b,6a



Appendix B

Case Study (6 dimensions)

The 95% contours are added to compare the different imputation methods.
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Copula Regression Imputation
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Table B.1: Female empirical 95% contours (20 tries) for all possible bivariate combinations
without conditioning. The dashed contours are the complete cases.
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PMM Imputation
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Mother-PB mother_pb,weight6

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

mother_pb,weight12

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

mother_pb,weight24

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Rotula rotula,weight6

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

rotula,weight12

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

rotula,weight24

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Child-PB child_pb,weight6

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

child_pb,weight12

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

child_pb,weight24

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Mother-PB Rotula

Child-PB mother_pb,child_pb

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

child_pb,rotula

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Rotula mother_pb,rotula

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Weight6 Weight12

Weight24 weight6,weight24

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

weight12,weight24

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Weight12 weight6,weight12

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Table B.2: Female empirical 95% contours (20 tries) for all possible bivariate combinations
without conditioning. The dashed contours are the complete cases.



171

Linear Regression Imputation
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Table B.3: Female empirical 95% contours (20 tries) for all possible bivariate combinations
without conditioning. The dashed contours are the complete cases.
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Copula Regression Imputation
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Table B.4: Male empirical 95% contours (20 tries) for all possible bivariate combinations
without conditioning. The dashed contours are the complete cases.
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PMM Imputation
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Table B.5: Male empirical 95% contours (20 tries) for all possible bivariate combinations
without conditioning. The dashed contours are the complete cases.
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Linear Regression Imputation
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Table B.6: Male empirical 95% contours (20 tries) for all possible bivariate combinations
without conditioning. The dashed contours are the complete cases.


