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Abstract

In this work, uncertainties in shock-bubble interaction experiments are analyzed and
quantified by simulations.

As the first part of the work, a novel numerical method for two-phase flow simu-
lations is developed. An interface-sharpening technique by means of solving an anti-
diffusion equation for two-phase incompressible-flow simulations based on volume-of-
fluid methods is presented. The numerical stability and volume-fraction boundedness
in the anti-diffusion correction step are ensured by a specified discretization scheme
and a stopping criterion. Validation computations demonstrate that sharp interfaces
can be recovered reliably and a good agreement with experimental results including
rising drop and bubble is observed. The interface-sharpening technique is then ex-
tended to two-phase compressible-flow simulations. The consistent update and exact
conservation of the flow variables are maintained in the interface-sharpening step.
Numerical results show an improved interface resolution in shock-bubble interaction
simulations, where interface roll-up phenomena due to the Richtmyer-Meshkov insta-
bility and the Kelvin-Helmholtz instability are recovered reliably as compared with
reference high grid-resolution numerical results based on adaptive-mesh-refinement
algorithms.

As the second part of the work, a physical shock-bubble interaction experiment and
its associated uncertainties are studied by simulations. Based on an experimental case
of air-helium shock-bubble interaction, the amount of gas contamination inside the
bubble and the deformation of the initial bubble shape are selected as the uncertainty
parameters. The interface evolution and the total vorticity are considered as the
quantities of interest. The stochastic collocation method is employed to propagate
the input uncertainty to the output quantities of interest. The uncertainty analysis
shows that the jet formed inside the bubble is most affected by the presence of the
uncertainties, and the baroclinic vorticity generation during the vorticity deposition
phase is found to be largely dependent on the bubble gas content as well as the bubble
shape.
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Chapter 1

Introduction

1.1 Background and objectives

The impact of a shock wave on two-phase compressible flows is an important topic
in science and engineering. In particular, the interaction of a shock wave with a
density inhomogeneity is a fundamental subject in compressible turbulence [80]. To
better understand the instability phenomena that are present in the evolution of
such flows, the shock-bubble interaction [72] is a basic configuration for studying the
shock-accelerated inhomogeneous flows [122|. The investigation of the shock-bubble
interaction leads to the understanding of the Richtmyer-Meshkov Instability (RMI)
[13], the Kelvin-Helmholtz Instability and the mixing mechanisms in shock-accelerated
flows [105]. Flows of this type are present in many engineering applications and have a
wide application in various fields including supersonic mixing and combustion systems
[121], supernova explosion in astrophysics, shock-flame-front interaction, and extra-
corporeal shock-wave lithotripsy [72].

Analytical models, shock-tube experiments, and computational fluid dynamics
(CFD) simulations are the major methods for studying shock-bubble interactions.
While analytical models and experiments are the conventional means for studying the
physical phenomena, in the wake of the advancement of computer technology and
numerical methods, simulations have proven their usefulness in the investigation of
fluid mechanics problems. Configurations that cannot be analytically studied, and
quantities, such as vorticity, which cannot be easily measured experimentally, are
assessable by simulations, where in particular detailed numerical simulations help to
elucidate the essential phenomena and interaction mechanisms [67, 80, 121, 82, 59|.

As the simulation of shock-bubble interactions is being increasingly relied upon,
a full analysis and prediction of the shock-bubble interaction is however not possible

without a reliable numerical and physical modeling. While governing flow equations



are well defined for describing the fluid dynamics, the prediction accuracy of numerical
simulations of shock-interface-interactions strongly depends on the numerical methods
which are employed to solve the flow governing equations, and on the physical model-
ing which requires the precise definition of the physical problem. The accuracy of the
two-phase-flow numerical method on the one hand, and the uncertainties implied by
the input data on the other hand, must be addressed for a correct prediction of the
shock-bubble-interaction phenomena. This refers to the two fundamental aspects of
CFED - the verification and the validation of simulations. First, numerical methods for
solving the flow governing equations have to be verified to ensure the consistency of
the numerical solution and the exact solution. Second, even a simulation code that is
verified for a certain case, it must be validated against the physical observation, essen-
tially the experiment data, to establish the validity of the results generated. The two
aspects have to be examined in order to establish the accountability of the simulation
results.

The foresaid situation poses a challenge in the field of shock-bubble interaction

simulations and lays down the scope of the present work:

e the study of numerical methods for shock-bubble interaction simulations, and

where possible, for two-phase-flow simulations in a broader sense;

e the study of a shock-bubble interaction experimental reference, and the quantifi-

cation and analysis of the associated experimental uncertainties by simulations.

In the following sections, the previous and related works relevant to the topic are
described. The accomplishments achieved in this work are then presented, and the

thesis outline is given at the end of this chapter.

1.2 Previous and related works

Shock-bubble interactions

Shock-bubble interactions are concerned with the fluid dynamic phenomena of a shock
wave propagating through a medium of non-uniform thermodynamic properties, where
a geometrically well-defined density inhomogeneity such as a cylinder or a sphere is
the simplest configuration that can be studied in detail [72]. Shock-bubble inter-
actions have been studied analytically, experimentally and numerically in the last
decades. Analytically, different analytical estimations of the circulation generated in
shock-bubble interactions are proposed in [67, 80, 121, 82, 59|. The analytical stud-

ies are based on certain flow regimes of planar density-stratified interfaces or curved



density-stratified interfaces where the basic estimations are further extended to the
scenarios of shock-bubble interactions. Experimentally, Haas and Sturtevant recorded
a clear set of experimental images and discussed quantitatively the bubble evolution
[26]. To refrain from the membrane for bubble formation, Jacobs [35] and Tomkins
et al. [105] performed membraneless shock-bubble experiments. Simulations using
the interface-tracking and the interface-capturing method have been performed to in-
vestigate the experimental findings. Quirk and Karni [69] conducted among others
a detailed numerical study of shock-bubble interaction based on the experiments of
Haas & Sturtevant [26].

Numerical methods for two-phase flow and shock-bubble inter-

action simulations

Shock-bubble interactions can be categorized as two-phase compressible flows. The
two phases are treated as immiscible and a distinct interface exists between the two
phases. For simulating this kind of two-phase flows, various approaches have been
proposed which can be categorized into two main classes, namely interface-tracking
methods and interface-capturing methods. With the aim to develop a numerical
method suitable for two-phase-flow, the two classes of interface methods for both
incompressible and compressible two-phase flows are studied and described below.
With interface-tracking methods, the location of the interface is explicitly rep-
resented, e.g. front tracking methods [111, 108, 104| and marker methods [107, 84].
Marker methods can efficiently locate the interface position by interface markers.
However, they encounter difficulties for large interface deformations and topology
changes, and require a special treatment of the interface marker distribution when the
interface is stretched or compressed. On the other hand, interface-capturing methods
do not explicitly track but capture the location of the interface implicitly. Examples of
interface-capturing methods include the level-set method [22, 66, 85] and the volume-
of-fluid (VOF) method [30, 25]. With the level-set method, the interface is defined as
the zero contour of a signed-distance function - the level-set function. The interface
is sharp by definition, and the interface sharpness is maintained by recovering the
signed distance property of the level-set function through a reinitialization. From the
level-set function the curvature of the interface and the surface tension can be calcu-
lated with high accuracy. However, a main drawback of the level-set method is lack
of discrete conservation. With VOF methods [84, 75|, two different phases are defined
by the volume fraction of one phase within the other. The interface is represented

by the transition region where the volume fraction ramps up from 0 to 1. The main



advantage of VOF methods is the exact conservation of mass. One main drawback
of VOF methods is the smearing of the interface by the numerical diffusion, which
is due to the use of total-variation-diminishing (TVD) schemes [27] to preserve the
volume-fraction boundedness (for the step-profile of volume fraction at the interface).
Furthermore, the interface cannot be located precisely, which leads to inaccuracies in

calculating the interface curvature and thus the surface tension.

For VOF methods, a sharp-interface representation can be obtained from the vol-
ume fraction by two approaches in general. With the first approach the interface is
reconstructed before each advection step, and subsequently the flow is updated by
propagating the reconstructed interface. Different interface-reconstruction schemes
have been developed, such as simple line interface calculation (SLIC) [60], SOLA-VOF
[30], and piecewise-linear interface construction (PLIC) as described by [84, 75| and
references therein. Drawbacks of these VOF volume-tracking methods are that the
curvature of the reconstructed interface is not smooth, which leads to inaccuracies in
the interface propagation step, and that the interface propagation can become unsta-
ble for very complex interfaces. Non-physical flows, commonly denoted as “flotsam”
and “jetsam”, can be created due to the errors induced by the particular volume-
tracking algorithm [75]. With the second approach, the interface position is captured
by a diffused-interface representation and the volume fraction is advected with a
special treatment to reduce the numerical diffusion. Examples of such VOF volume-
capturing methods include a blending of a compressive scheme with a higher order
scheme attempting to satisfy a convection-boundedness criterion for the advection
step [110], the introduction of an artificial-compression term in the volume-fraction
transport equation [78], the use of a limited downwind anti-diffusive flux correction
[117] and the use of artificial compression as an intermediate step for solving the
volume-fraction transport equation [62]. It should be noted that the compressive dis-
cretization scheme requires special considerations to be applicable to unstructured
meshes [110]. A recent overview of interface sharpening schemes based on compres-
sive flux formulations built into the volume-fraction transport is given by [14]. Other
interface capturing methods, among others, include those making use of a phase-field
function [99] or a hyperbolic tangent function [114] to represent the interface profile
and to compute the numerical flux for the fluid fraction function, as well as those
employing a semi-Lagrangian conservative scheme [113] or a multi-integrated moment
method [115].

In particular for shock-bubble interaction simulations, different numerical meth-
ods were developed for different interface representation methods: among others the

front-tracking/ghost-fluid method [104] for front-tracking representations; discontinu-
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ous Galerkin methods [118] or weighted essentially non-oscillatory (WENO) schemes
[22, 39, 33| for level-set representations; volume tracking by means of an interface re-
construction [90], an interface-compression method [88], and the anti-diffusive scheme
[44] for VOF representations. Methods also worth noting for two-phase compressible
flow simulations include the localized artificial diffusivity method for mass-fraction
representations [86, 43|, the stratified flow model and AUSM™-up scheme [16], the
~v-model [1, 38, 58|, and the arbitrary Lagrangian-Eulerian scheme which involves
a grid evolution [53|. The VOF volume-capturing method possesses the advantage
of exact conservation properties, but suffers from numerical diffusion which causes
the two-fluid interface to smear. Specific numerical schemes to suppress or counter-
act the numerical diffusion, and to maintain the interface sharpness in the course of
simulations are thus desirable and essential for VOF methods. Previous works on
maintaining a sharp interface without an interface reconstruction include the inter-
face compression technique by [88] which originates from the interface compression
technique for two-phase incompressible flows by [62], and the anti-diffusive numerical
scheme based on a limited downwind strategy where stability and consistency criteria

are proposed to make use of the downwind contribution [44].

Studies of the uncertainties in shock-bubble interaction simula-

tions

The experimental investigations of shock-bubble interactions are inevitably subject
to errors and uncertainties, due to limited measurement technique and experimental
reproducibility, etc. The initial conditions of shock-bubble interaction experiments,
such as the real bubble shape and the test gas property (its purity and homogeneity)
are the main sources of uncertainty. The identification of the exact experimental
conditions and the treatment of the associated uncertainties, in simulations, are thus
of paramount importance. The investigation of shock-bubble interaction experiments
with uncertain initial conditions by simulations have been previously conducted by
some researchers, each according to their own methodology [125, 119].

In the work of Zhang et al. [125], the authors conducted a validation process
by adjusting and optimizing the initial condition through iterations to produce op-
timal agreement with the experiment. First, they assume different initial profiles of
bubble gas distribution, and defined the uncertain parameters associated with the
gas distribution profiles. Second, they proceed to run the corresponding simulations
under different initial conditions, and select an initial profile and associated uncer-

tain parameters that fit best to experimental data in terms of the optimal agreement



in early-intermediate-time large- and intermediate-scale with experimental images.
Then, based on this chosen initial profile they carry on to describe and discuss the
late-time phenomenon involving small-scale structures by their simulations. By such
way, they obtain the maximum agreement of the early-intermediate-time large- and
intermediate-scale structures between their simulation and the experimental results,
and they claim an excellent agreement between experiments and their numerical sim-
ulations for many large-, intermediate-, and some small- scale flow features in late-

intermediate time provided by their dynamic-initial-condition-validation-process.

Alternatively, Weirs et al. try to obtain a more realistic initial condition of the
gas distribution for simulations to account for the lateral diffusion between the test
gases and the gravitational effect on the formation of the gas cylinder occurring in
experiments [119]. They first perform a radial fix to the experimental image of initial
gas distribution taken at one cross-section of the gas cylinder for formulating a rep-
resentative radial-gas-distribution function. Second, they perform an axisymmetric
simulation based on the function to generate a steady flow which aims to represent
the real initial condition of the gas cylinder. Then, they recompare the experiment
image and the results from the axisymmetric simulations, and select the most repre-
sentative initial condition for simulations. As the authors concluded, the significance
of their work laid on the fact that their initial flowfield in simulation is based on ex-
perimental initial flowfield itself, rather than a choice from different initial conditions
which is to match the early-intermediate-time experimental results as proposed by
Zhang et al. [125]. Similarly in another work on RMI by Balakumar et al. [3], the
variation of the initial conditions of the gas curtain is recorded experimentally and a
synthetic initial condition for numerical simulations is created based on the best-fit

to the experimental data.

On the other hand, certain researchers performed simulations to collect data on
the effect of different initial conditions with the aim of characterizing shock-bubble
interactions. Yang et al. studied numerically the effect of different initial conditions
on the stretching rate in an application of shock-induced mixing to supersonic com-
bustion [120]. Essentially they performed a sensitivity analysis and studied a wide
range of parameters, including sinusoidal perturbation to bubble surface, elliptical
bubble shape, etc. Niederhaus et al. performed a computational parameter study to
investigate the morphology and integral properties of shock-bubble interaction under
a wide range of scenarios, including gas pairs of different Atwood number and different
shock strengths [59].



Uncertainty quantification and analysis for CFD simulations

Assessing and quantifying uncertainties is a fundamental subject in CFD [77] and the
uncertainty quantification has received an intense interest in recent years for the code
validation exercise in simulation science [42]. Examples include the analysis of the
uncertain initial condition in steady-state flows in a dual throat nozzle, by generalized
polynomial chaos method, where the statistics of shock location is computed [17]. As
opposed to the classical local sensitivity analysis which is suitable for small uncertainty
[57], the uncertainty quantification is a rigorous method to account for experimental
uncertainties and varying initial conditions. The effect of the uncertainty in the initial
condition can be quantified in a way that the moments (mean, variance, etc.) and the
evolution of the PDF can be studied in detail over time. This process accounts for
the non-linear evolution of the uncertainty through the initial problem and provides
quantitative estimates of the output variability given the input uncertainty, and thus
is more objective than a classical parametric study.

The uncertainty quantification exercise can be categorized into 3 stages: i) data
assimilation, ii) uncertainty propagation, and iii) output quantification. While the
focus of the current work is on the uncertainty propagation, the uncertainty in the
problem definition can be propagated and the statistic of the quantities of interest can
be calculated by assuming a probability density function (PDF) of the uncertainty
parameter [15]. The variance of the uncertainty variables is expressed by a polyno-
mial chaos expansion (PCE), where the propagation of uncertainties can be evaluated
by intrusive or non-intrusive methods [57]. Intrusive methods include the stochas-
tic Galerkin methods which reformulates the governing equations to account for the
polynomial chaos (PC) mode strength - the method is also termed the non-sampling
method. On the other hand, non-intrusive methods are to perform sampling based on
the original deterministic model to obtain the numerical evaluation of the PC modes.
Monte Carlo (MC) method is a basic sampling method which is straight-forward but
the convergence rate is low. High-order collocation method as proposed in [116] offers

a sampling method of higher convergence rate.

1.3 Accomplishments

In accordance with the objectives of this work, the following accomplishments are

achieved:

1. An interface sharpening technique applicable for two-phase flow simulations

based on VOF methods is proposed. In this regard, for the first time, an anti-

7



diffusion equation is employed as an interface-sharpening technique to two-phase
incompressible flow simulations. The corresponding limiter and stopping crite-
rion essential for solving the anti-diffusion equation are developed. Numerical
results show an improved accuracy of the two-phase interface. The work is

published in [91, 93].

2. The anti-diffusion interface-sharpening technique is extended to two-phase com-
pressible flow simulations. The consistent update and exact conservation of the
flow variables are maintained. The complexity in shock-bubble interactions in-
cluding the interface instabilities are reliably simulated. The work is published
in (95, 96, 98|

3. For the first time, the stochastic collocation approach is employed for analyz-
ing uncertainties in shock-bubble interaction experiments by simulations. The
influence of the uncertain initial conditions on the output quantities of interest
is quantified and studied. The work is published in [92, 94, 97|.

1.4 Thesis outline

The thesis is organized following the accomplishments achieved in this work:

In chapter 2, the governing flow equations for two-phase incompressible flow simu-
lation are introduced. The concept of solving an anti-diffusion equation for sharpening
the interface is presented, where the essential techniques are illustrated first in an 1-
dimensional formulation, followed by a generalization to 3 dimensions. Extensive
numerical cases including pure advection cases, 2-dimensional and 3-dimensional flow
problems, as well as simulations of experimental cases of rising bubble and drop are
presented and discussed.

In chapter 3, the governing flow equations for two-phase compressible flow simula-
tion are introduced. The essential extension of the anti-diffusion interface-sharpening
technique to the compressible formulation is presented. Numerical cases including
shock-tube problems, shock-bubble interactions and a shock-contact problem are dis-
cussed. In particular, the strength of the interface-sharpening technique for simulating
shock-bubble interactions are demonstrated.

In chapter 4, a widely studied experimental case of shock-bubble interaction is
presented, and corresponding uncertainty parameters and quantities of interest are
defined. An overview of the numerical methods for flow simulations and uncertainty
quantification is presented. The effect of the uncertain initial conditions on the time

evolution of the statistics and the PDF of the output quantities of interest is discussed.



In chapter 5, an overall conclusion of the entire work is presented, with an outlook

of potential extensions of the present work.
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Chapter 2

Interface-sharpening technique for
two-phase incompressible flow

simulation

2.1 Introduction

In this chapter, an interface-sharpening technique is proposed for improving the inter-
face resolution in two-phase incompressible flow simulations based on VOF methods.
A regularized anti-diffusion correction technique which can be used in a straight-
forward fashion with any underlying VOF discretization scheme on structured or
unstructured meshes is presented. The interface sharpness lost during the VOF ad-
vection step is restored by solving an anti-diffusion equation explicitly in pseudo-
time. No interface reconstruction is required to track the interface position. The
interface-sharpening technique is modular and can be applied to general underlying
VOF discretizations. A stopping criterion for defining the desired interface thickness
while maintaining stability of the overall scheme is proposed for the post-processing
interface-sharpening mechanism. In other approaches such as the interface compres-
sion technique in [62, 63|, a parameter is introduced relating the desired interface
thickness to the grid. Here, the stopping criterion is based on a discrete measure of
the interface sharpness, and the advantage of this criterion is that it does not explic-
itly contain the grid-size as parameter, which would be cumbersome for unstructured

meshes.

This chapter is organized as follows: First, the governing equations for two-phase
incompressible flow simulation and an overview of the solution procedure are pre-

sented. The main focus of the chapter, which is the formulation of the anti-diffusion
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equation and the solution algorithm, is then illustrated in detail. Numerical cases
and results are presented and discussed. Finally, the main points of the interface-

sharpening technique are summarized in concluding remarks.

2.2 Governing flow equations

The governing equations for unsteady, incompressible, viscous, immiscible two-phase

flow are given by the continuity equation

V-u=0, (2.1)
and the Navier-Stokes equations
Jdpu
W+V~puu:—Vp+V-‘r+pg+fg , (2.2)

where u is the velocity, p is the density, ¢ is time, p is the pressure, T is the stress
tensor, g is the gravitational acceleration, and f, is the force due to surface tension.
Two different fluids are represented by the volume fraction o with 0 < o < 1, where
a = 0 refers to the first fluid, & = 1 refers to the second fluid. 0 < a < 1 is the
transitional region, i.e. the smeared discrete representation of the interface between
the two fluids. The volume fraction is advected by the flow, resulting in the volume-
fraction-transport equation

((;—(;—Fv-auzo . (2.3)

Density, p, and viscosity, i, can be recovered from « by

p=oap+(1—a)p (2.4)

and
p=opy+ 1=z (2.5)

where the subscripts 1 and 2 denote the respective fluids of the two-phase flow. The

Newtonian stress tensor is given by
T =u(Vu+vu’) . (2.6)
The surface curvature of the interface, s, is given by

v (%) .7)
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resulting in the force due to surface tension
f, = —orVa | (2.8)

using the Continuum-Surface-Force (CSF) formulation of Brackbill et al. [10]. o is
the surface tension.

As the objective is to develop a simple and modular correction technique for re-
covering a (sufficiently) sharp interface that also works efficiently with discretiza-
tion schemes typical for industrial practice, a rather straight-forward low-order finite-
volume unstructured-mesh scheme is used for the above flow equations. A convenient
environment is given by the open source CFD package OpenFOAM [64], providing
an underlying framework of the VOF volume-capturing method [78|. It should be
noted that the correction procedure can be incorporated in a straight-forward fash-
ion into any underlying time-marching VOF discretization scheme. The algorithm
for solving the discretized VOF equations can be summarized as follows: First, the
advection equation (2.3) is evaluated for one time step based on the limiter by Jasak
et al. [37, 64]. Second, density and viscosity fields are updated from the new volume-
fraction field. Third, the momentum and continuity equations are solved by the PISO
algorithm [34].

2.3 Anti-diffusion correction

The advection step of the volume-fraction-transport equation introduces additional
interface smearing by numerical diffusion. To counter-act the numerical diffusion, the
main idea is to provide a correction algorithm which can be applied as post-processing
to the volume-fraction field, independent of the underlying VOF discretization scheme.
For this purpose, the following anti-diffusion equation after each time step of the

advection equation (2.3) is solved:

Oa

where D > 0 is an anti-diffusion coefficient and 7 is a pseudo time.

Formulation of the 1-dimensional anti-diffusion equation

Before formulating the anti-diffusion correction for 3-dimensional flow simulations,

the essential properties of the anti-diffusion correction are illustrated for one spatial
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dimension: p p 5
« «
or o (Dﬁx) ’ (2.10)

where the diffusion operator is written as sequence of two first-order derivatives on
purpose. The anti-diffusion equation is ill-posed and thus an approximate numerical
solution requires regularization. A regularized solution to an anti-diffusion equation
was first proposed by Boris and Book [8] for a compressive correction within the
flux-corrected-transport (FCT) algorithm. Other methods formulating a non-linear
diffusion coefficient have been reported and applied to the field of image processing,
such as the stabilized inverse diffusion equations [68] and the forward-and-backward
adaptive diffusion process [23]. Alternatively, a minmod limiter for discrete inverse
diffusion was proposed by Osher and Rudin [65]. Other regularization methods suit-
able for the anti-diffusion equation are monotonicity preserving constraints [4, 76|,
or maximum and minimum bounds on unstructured meshes [110]. An analysis of
inverse-diffusion regularization based on a minmod function was carried out by Breufs
et al. [11, 12].

Regularized discrete approximation of the anti-diffusion equation

Considering a 1-dimensional equidistant grid, the anti-diffusion equation can be dis-

cretized as

AT
n+1 n n n
ot = af 4 DI (Bl jp = Fliapa) (2.11)

where F', , is defined by a minmod limiter [11, 12] as

(2.12)

Ajpzpa” Ajprpa™ Ajiypa®
EF" ., = minmod lax . :
/2 ( Ar 7 Az ' Az ’
using A1 00" = o — af. The index 7 indicates the considered cell and n the time

step. The minmod limiter is defined as
minmod (a, b, ¢) = sgn (b) max (0, min (sgn (b) a, |b| ,sgn (b) ¢)) . (2.13)

The calculation of F, , requires the stencil {al,,..., o} which is not well
defined in more dimensions with respect to the cell face between cell 7 and cell 7 + 1.
For this reason, a compact reformulation of eq. (2.12) is introduced. First, it is
observed that F\, , defined by eq. (2.12) is equivalent to

n (Va)iy, i [(Va)i,| < [(Va)]|
i+1/2 = nH . | n+1| N ; (2.14)
(Va), if |(va)i’ < |(VO‘>¢+1‘

)
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where (Va)!, taken at each cell center, is calculated from

(Va); = minmod <&i+lA; & , i ;ji_1> : (2.15)

The two-variable minmod function is defined as

a ifa-b>0and |a| <D
minmod (a,b) =< b ifa-b>0and |b| <|a| - (2.16)

0 else

By combining (2.15) and (2.14), it is obvious that the resulting numerical flux function,
F}\, )y, is equivalent to that of (2.12). Note that by (2.15) the calculation of (Va),
requires only a three-point stencil {oz?H, al, a?_l}.

Now, the minmod evaluation in eq. (2.15) and (2.16) can be reformulated as

n _n
Qit1/2 — Xi_qy2

Va)i = 2.17
( a)z Azr ) ( )
with
(
CYZFI if AH_l/QOénAZ'Oén > (0 and |Az‘+1/2()én‘ < |AZOén|
Q119 = M if Ajyq00"A0™ >0 and |Ai+1/2a"‘ = |Aja”| ,  (2.18a)
af else
\
(
Oéznil if Ai_l/ganAZ’OKn > 0 and |Az‘_1/2()én‘ < |AlOén|
Oy = 4 B GEA G pamAjam > 0 and Ay pa”| = [Ajan| , (2.18b)
af else
\
i~

where A;a" = L. For non-equidistant grids the A;41/20™ and A;a™ in (2.18b)

2
need to be divided by the respective local grid spacings. A comparison of (2.15) and
(2.16) with (2.17) and (2.18) shows that the resulting (V). are equivalent. Note that
by (2.18a) the evaluation of o', | , requires only the one-sided difference A;,;/»a™ and

the central difference A;a™, and similarly for o', , in (2.18b).

Stability and time-step constraint

The time derivative is discretized by an Euler-forward scheme in eq. (2.11). Note
that the anti-diffusion correction is needed only as an interface-sharpening procedure,

which is iterated in pseudo-time until a stopping criterion (see next section) is satisfied,
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Figure 2.1: 1-dimensional profile of volume fraction «. ¢ denotes the cell index. n-th
AD denotes the profile after the n-th anti-diffusion correction.

so that a higher- order accuracy is not needed. The remaining concern is about the
stability of time advancement of (2.11), where the relevant stability criterion for the

discrete anti-diffusion equation [93] is given in Appendix A.

Measurement of interface sharpness

The effect of the anti-diffusion correction is illustrated in Fig. 2.1. A smoothed Heavi-
side function, with a transition region across 6 cells, is taken as initial data to represent
an interface smeared by numerical diffusion. The effect of several anti-diffusion time
steps is then illustrated. As can be seen from the result, the anti-diffusion correction
exhibits the desired properties: reduction of the thickness of the transition region,
while preserving the interface position, and boundedness of the volume fraction be-
tween 0 and 1. With more iterations a three-point profile is obtained and maintained.
However, a three-point interface is marginally resolved on the underlying mesh with
respect to discrete operators at the interface. In particular in two or three dimensions
and on unstructured meshes this marginal resolution implies direction dependent nu-
merical resolution and may lead to nonphysical interface behavior as consequence of
discrete approximations of surface normals and curvature. Therefore it is desirable to
limit the interface sharpening.

For this purposes, two tolerances T'OL; and T'O L, are defined as

Z A ((Aie)y,,)"
TOL1 == ¢ P)
2 [((Aia)op)"|

, (2.19a)
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Figure 2.2: Evolution of TOL; and T'OLs corresponding to the anti-diffusion correc-
tion in Fig. 2.1. n denotes the number of anti-diffusion correction steps.

max (|A; ((Aia)y;,,)")
TOLy = — ~ (2.19D)
max (1((Ai)ep)" 1)

where ) denotes the summation over all cells, max is the maximum over all cells. We
i K3

denote (A;a),,, as the gradient obtained in the regularized discrete approximation

of the anti-diffusion equation. A; ((A;),;,.)" is the solution of the anti-diffusion
equation, and ((A;a),p)" is the gradient obtained from the central difference scheme.
Corresponding definitions can be written in multiple dimensions and for unstructured
meshes by taking the divided differences instead of the undivided differences A;. The
evolution of TOL; and T'O Ly corresponding to the anti-diffusion correction in Fig. 2.1

is shown in Fig. 2.2.

Extension to multiple dimensions, general meshes and nonlinear

diffusion

To extend the interface sharpening by anti-diffusion to multiple dimensions and un-
structured meshes, and to couple the anti-diffusion algorithm with the volume-fraction
advection and the Navier-Stokes equations for realistic flow simulations, the diffu-
sion coefficient is related to the numerical diffusion due to advection. A modified-
differential equation analysis of the numerical diffusion induced by an upwind scheme
gives that the numerical diffusion scales with the magnitude of the advection velocity,
see e.g. [51]. As the anti-diffusion correction is intended to counteract the numerical

diffusion, it is reasonable to set the diffusion coefficient in the anti-diffusion equation
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as
D = |u] (2.20)

so that

O«
5, =V (=uVa) (2.21)

where |u] is constant with respect to 7.

Eq. (2.21) is discretized by translating the discretization of (2.9) to multiple di-
mensions and general meshes. First, the cell average of Va is calculated from the
Gauss theorem with a limiter based on the directional derivative. The calculated cell-
average (Va"); at time step n and for cell i is multiplied by the diffusion coefficient
to obtain (— \uJW) Note that with respect to n the velocity u; is constant.

The cell-averaged divergence V - (— |u| Va”) is calculated from the Gauss theorem to

obtain (V- (—|u|Van®)),. An explicit Euler scheme is used for the discretization of

the anti-diffusion equation in pseudo time.

Calculation of (Va”) Given cells P and its direct neighbors according to Fig. 2.3,

first the cell-averaged gradient (V") is calculated for the cell P by

2ep(@™S)
V

(Var) = (2.22)
Yo " denotes the summation over all cell faces, S is the cell surface area vector, V' is
the cell volume. " is obtained by averaging the volume fractions of the cell P and

the respective neighbor N
Oé?ng + OénNdp

dp + dy

where o and aof are the volume fractions of cell P and N, and dp and dy are

Y

the distances from the cell centers P and N to the respective cell face centers. The

directional derivative from cell P to cell N Bg‘—; is approximated as

n n n
da" af —ap

= 2.23
Jc lcy — cp| (2:23)

where cp and cy are the cell-center-position vectors of cell P and N respectively.

As the next step, m is projected onto the cell-face-normal direction, leading
to m~ n.s, where n.s is the cell-face unit normal between the cells P and N.
(Van), - fi,p and 90" are compared to select the volume fraction o/ from o} and

oy for calculating the limited gradient of volume fraction in the next step. The

selection is equivalent to (2.18) in the 1-dimensional setting. Direction and magnitude
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Figure 2.3: Cell arrangement for unstructured meshes.

of (Vam), - 0.y and ‘%ﬂ are compared for choosing the volume fraction as

al if (Va)p - 0% > 0 and ’(Va")P ‘Nep| < lag:
o = N EE (T > 0 [T, | = 4] 220
a’p else

This procedure is applied to all cell pairs P and N.
Finally, the cell-averaged value of the volume-fraction gradient (Vam), for cell P

is calculated by the Gauss theorem using o’

2er(@S)
V

(Van), = (2.25)

This procedure is equivalent to step (2.17) in the 1-dimensional setting. Comparing
(2.25) to the equation (2.22), it can be recognized that regularization is achieved by
replacing cell-face values of a obtained from an arithmetic average by the o obtained

from the above selection procedure.

Divergence of (—|u| Va") Equivalent to the flux calculation in the 1-dimensional

setting, the flux at the cell face between cell P and cell N is limited by selection based

on the minimum of |[(Va"),| and |(Va) |

(Va")P _ (van)P if |(V04n)P| < |(van)N| ' (2.26)
(Vam)y if [(Vam) x| < [(Van)pl
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The limited flux is multiplied by the diffusion coefficient —|upy]|

updytundp | S

Uupny = % ) (227)

i.e. the magnitude of the linear-averaged velocity at the cell face between cell P and

cell N. The diffusion for cell P is then calculated by the Gauss theorem as

Zcf <<_|UPN|W> -S)
V

V(= (Vam)p = (2.28)

Time-step criterion The time derivative is discretized by an explicit Euler scheme.

The volume fraction is forwarded in pseudo time by

aptt =ah + V- (= [u| (Van)) AT (2.29)
where a%“ and o’} are the volume fractions at the new and the old time step respec-
tively. In the 1-dimensional setting the stability requirement (A.2) for the stabilized
inverse diffusion equation applies. From numerical experimentation, it is found that
stable time integration for multiple dimensions, unstructured meshes and variable
diffusion coefficient is ensured by

AT = - 2.30
r=; 7 (230)

|u‘mam
where Ay, is the minimum cell width and |u|,,q, the maximum velocity magnitude

over the entire computational domain.

Stopping criterion for the anti-diffusion correction A stopping criterion for
the anti-diffusion correction in multiple dimensions and unstructured meshes uses

V- (=|u|Va™) as interface-steepness measure. Sharpness tolerances TOL; and TOL,

Y|V (Ta)) |V

TOL, = — : (2.31a)

> 1(Va)er), PV
max (| (% F2)m) | )

TOL2 - :

ma (| (V) o), P17)
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Figure 2.4: Volume-fraction contours 0.05, 0.5 and 0.95 of a 3-dimensional diffused
profile. (a) Initial profile (3-dimensional view). (b) Initial profile (cross section). (c)
Profile after 4 anti-diffusion corrections steps (3-dimensional view). (d) Profile after
4 anti-diffusion correction steps (cross section).

where (V- (W) lim)' is the solution obtained for the anti-diffusion equation in the
3-dimensional Settingj and ((%) CD)i is the gradient obtained from the central dif-
ference scheme. For demonstrating the effect of the tolerances, the anti-diffusion
correction is applied to a steady diffused 3-dimensional profile, Fig. 2.4. The corre-
sponding evolution of TOL; and T'O L, is shown in Fig. 2.5. For pure transport, it is
found by numerical experimentation that proper interface sharpness, ensuring over-
all stability of the interface evolution, can be achieved under the criterion that the
anti-diffusion interface sharpening stops when TOL; and TOL, fall below 1. These
interface-sharpness tolerances are used throughout all numerical computations in this
work. It is found that in general the number of anti-diffusion step per advection is
less than 5 times, while in most cases only 1 to 2 times of anti-diffusion correction per

advection suffice for attaining the desired TOL; and TO L.
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Figure 2.5: Evolution of TOL; and T'O L5 corresponding to the anti-diffusion correc-
tion in Fig. 2.4. n denotes the number of anti-diffusion correction steps.

2.4 Numerical results

The anti-diffusion interface-steepening technique is validated with the following nu-
merical examples. First, four passive-transport cases illustrate the interface-sharpening
technique with pure advection. Following suggestions from literature [46, 62, 123, 75],
a linearly advected square, a rotating circle, the Zalesak’s disk problem and the single
vortex case are considered. Second, five realistic flow configurations serve to study the
fully coupled problem: a 2-dimensional rising bubble [62], a 3-dimensional axisymmet-
ric rising bubble [31], a 3-dimensional rising bubble [6], the merging of two bubbles
[111], and finally a 3-dimensional axisymmetric rising drop on a non-Cartesian mesh
[29]. For all cases in the following section, the volume-fraction-transport equation is
discretized by the van Leer MUSCL scheme [112] in space and a third-order TVD
Runge-Kutta method for time integration. All computations are carried out with a

CFL number of 0.5 for volume-fraction transport and momentum transport.

Translation of square interface

The case of a square interface advected by a uniform velocity field [46] is used to
validate the interface-sharpening method for a pure advection. A square of size
(lref X lyes) is filled with phase "1". At the center of the domain a smaller square
of size (%lref X %lref) with phase "2" is initialized. The reference length [,.s is set
to be 0.125. A uniform velocity field (u,v) = (1,—1) is used to propagate phase "2"

towards the lower right domain corner. Five levels of grid resolutions by dyadic refine-
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Figure 2.6: Volume-fraction contours 0.05, 0.5, 0.95 of the advected square at initial
(center) and final (corner) positions for three different grid resolutions. From left to
right: 64 x 64, 128 x 128, 256 x 256.

ment from 16 x 16 to 256 x 256 are used. For an overall impression volume-fraction
contours 0.05, 0.5 and 0.95 of the square at ¢ = 0 and at t = 0.05 are shown in Fig. 2.6.
The results show that the square shape is well preserved for different grid resolutions,
and compares well with interface-capturing methods where interface sharpening is
built directly into the volume-fraction transport equation [14]. In order to study the
order of accuracy of the advection together with the anti-diffusion correction, the L,
error and the truncation error of the volume fraction field at ¢ = 0.05 are calculated

and shown in Table. 2.1, indicating an error of O(Ax) before round-off effects set in.

Grid resolution L1 error error order
16 x 16 0.020432
32 x 32 0.008762 1.22
64 x 64 0.004239 1.05
128 x 128 0.001530 1.47
256 x 256 0.001058 0.53

Table 2.1: L; error and order of the truncation error at ¢ = 0.05 for the moving-square
case.

Rotation of circular interface

The case of a rotating circle in a constant velocity field of Olsson and Kreiss [62] is
considered. The computational domain, filled with phase "1", is defined as 2,y X 2,..
A circle of a diameter 0.5, filled with phase "2", is initialized at (0.25,0.25) with the
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Figure 2.7: Volume-fraction contours 0.05, 0.5, 0.95 of the rotating circle at ¢t = 27
for four different grid resolutions. From left to right, top to bottom: Az = 0.08,
Ax = 0.04, Az = 0.02,Az = 0.01.

initial profile given by a smoothed Heaviside function

0 a < —€
Han(0) = {3+ £+ 5sin (%) —e<a<e - (2.32)
1 > €

where € = Az/2. A constant velocity field (u,v) = (y, —x) is imposed, and the circle
is subjected to a rotation for one revolution about the domain center (0,0). Four
different grid resolutions are used Ax = 0.08, Az = 0.04, Az = 0.02, and Az = 0.01.
Volume-fraction contours 0.05, 0.5 and 0.95 of the circle after one revolution are
plotted in Fig. 2.7. The general shape of the circle is preserved under different grid
resolutions. The interface sharpness is maintained at 2 to 3 cells. The L; error and

the order of the truncation error are given in Table 2.2, demonstrating again an error

of O(Az).
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Grid resolution L1 error error order

Az = 0.08 0.010027

Az =0.04 0.005505 0.87
Az = 0.02 0.003364 0.71
Az =0.01 0.001682 1.00

Table 2.2: L; error and order of the truncation error at ¢t = 27 for the rotating-circle
case.

Zalesak disk problem

The solid-body rotation case of Zalesak [123], which is known as the "Zalesak disk
problem", is considered. The computational domain, filled with phase "1", is dis-
cretized by 100x100 cells. A disk of phase "2" with 15 cells spanning the radius,
and a slot of a width of 5 cells and a depth of 25 cells is initialized at the position
(50Az, 75Az) as shown in Fig. 2.8(a), where Ax is a constant grid spacing. The disk
is subjected to an anti-clockwise rotating flow about the position (50Az,50Ax) for
one revolution. No-slip boundary conditions are enforced at all four domain bound-
aries. In addition to the computation in Cartesian grid, in order to demonstrate the
performance of the advection together with the anti-diffusion correction, the case is
computed on a non-Cartesian grid, with a total number of cells of about 1002, as
shown in Fig. 2.8(c).

Volume-fraction contours 0.05, 0.5 and 0.95 of the Zalesak disk after one revolution
for the Cartesian grid and for the non-Cartesian grid are shown in Fig. 2.8(b) and
(d). The general shape of the Zalesak disk after one revolution is preserved on Carte-
sian and non-Cartesian grids, with a performance comparable to other VOF interface

capturing methods, e.g. [114].

Single vortex case

The single vortex case of Rider and Kothe [75] is considered. The case has served as
a standard validation case for various two-phase flow numerical methods. The case
setup of [62] is adopted here for a direct comparison.

A circle of phase "1" and a radius of 0.15/,.¢ is initialized within a square domain
of phase "2" and size (I, X lef) at the position (0.5, x 0.75l..f). The interface
is defined by a smoothed Heaviside function (2.32) with e = (Az)"? /2. Cartesian
girds with four different grid resolutions are used: 322, 642, 1282, 2562. In addition,
the case is computed on a non-Cartesian grid which is similar to the grid shown in
Fig. 2.8(c), with approximately 256 cells. No-slip boundary conditions are enforced

at all four domain boundaries.
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Figure 2.8: Volume-fraction contours 0.05, 0.5 and 0.95 of the Zalesak disk. The thick
solid line refers to contour 0.5 and the thin solid line to contours 0.05 and 0.95. (a)
Initial contour. (b) Contour after one revolution in Cartesian grid. (c) Non-Cartesian
grid with approximately 100? cells. (d) Contour after one revolution in non-Cartesian
grid.
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Figure 2.9: Volume-fraction contours 0.05, 0.5 and 0.95 of the single vortex. The thick
solid line refers to contour 0.5 and the thin solid line to contours 0.05 and 0.95. Rows
from top to bottom: t =0, 0.5, 1, 2. Columns from left to right: 322, 642, 1282, 2562,
the non-Cartesian grid of approximately 256 cells.

The circle is first subjected to a clockwise-direction rotation, with the velocity
field defined as: u = —sin? () sin (y), v = sin® (7y) sin (7). u is the velocity in
x-direction and v the velocity in y-direction. At time, ¢ = 1 the flow is reversed to
an anti-clockwise orientation, by reversing the signs of u and v. At t = 2 the circle
should recover the initial profile.

Volume-fraction contours 0.05, 0.5 and 0.95 of the circle at t = 0, 0.5, 1, 2 on a
Cartesian grid and a non-Cartesian grid are plotted in Fig. 2.9. One can note that
the results obtained by the proposed method do not show pinch-off artifacts at ¢t = 1,
as compared to the results in [62].

At t = 2, the advected profile is compared to the initial circular profile. The L,
error and the order of the truncation error calculated for the Cartesian-grid cases are

given in Table. 2.3, demonstrating an error of O(Ax).

Another simulation is conducted where the circle is subjected to the clockwise-
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Grid resolution L1 error error order

32 x 32 0.03624

64 x 64 0.01390 1.38
128 x 128 0.006015 1.21
256 x 256 0.002652 1.18

Table 2.3: L; error and order of the truncation error at ¢t = 2 for the single vortex

case.
U |l | ||

Figure 2.10: Volume-fraction contours 0.05, 0.5 and 0.95 for the single-vortex case on
a Cartesian grid 2562. The thick solid line refers to contour 0.5 and the thin solid line
to contours 0.05 and 0.95. From left to right: ¢t =1, 2, 3, 4.

direction vortical flow up to ¢ = 4 on the Cartesian grid of 2562. The result, Fig. 2.10,

represents the stretched filament without major artifacts, unlike the results in [62].

Two-dimensional rising bubble

The 2-dimensional rising-bubble case of Olsson and Kreiss [62] is considered. The
parameters of this case are: p; = 1, py = 0.0013, py = 1, py = 0.016, 0 =
7.3 x 1072 N/m, Re = 500, Fr = 0.45, We = 0.68, where p is the density, u is
the liquid viscosity, o is the surface tension of the liquid, and the subscripts 1 and
2 refer to the water phase and the air phase, respectively. Reference parameters are
prer = 1.0 X 103kg/m?, l,e; = 5.0 x 1073 m and wu,.; = 0.1m/s. The computational
domain size is 21,5 X 4l,.¢. The interface is defined by a smoothed Heaviside function
(2.32) with € = (Az)%? /2, and initially centered at (I, lyes). Four different grid
resolutions are used: Az = 2/25, Az = 2/50, Az = 2/100, Az = 2/200. No-slip
boundary conditions are enforced at all four domain boundaries.

Volume-fraction contours 0.05, 0.5, and 0.95 of the bubble at t = 0.5 obtained by
the anti-diffusion interface-sharpening method are shown in Fig. 2.11(a). The result
of [62] is reproduced in Fig. 2.11(b) for comparison.

The bubble shapes at lower grid resolutions reproduce already the spherical-cap
type, where the results are significantly better than that of [62]. It is also apparent that
the prediction of the rising velocity in the present simulations is improved compared
to that of [62], as shown in Fig. 2.12(b).
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Figure 2.11: Volume-fraction contours 0.05, 0.5, 0.95 of the 2-dimensional rising bub-
ble at t = 0.5 for four different grid resolutions. From left to right: Az = 2/25,
Ax = 2/50, Az = 2/100,Az = 2/200. (a) Result by anti-diffusion interface sharpen-
ing. (b) Result of [62], reproduced with permission.
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Figure 2.12: Rising velocity of the 2-dimensional bubble for four different grid resolu-
tions. (a) Result by anti-diffusion interface sharpening. (b) Result of [62], reproduced
with permission. Dotted line: 25 x 50; dashed-dotted line: 50 x 100; dashed line:
100 x 200; solid line: 200 x 400.
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Figure 2.13: Cross section of volume-fraction contours 0.05, 0.5 and 0.95 of the sta-
tionary bubble at ¢t = 1.2s.

Axisymmetric rising bubble

To validate against experimental results of rising bubbles, the spherical cap bubble
case of Hnat and Buckmaster [31] is considered. As in [101, 102|, the rising bubble

case is studied by 3-dimensional axisymmetric simulations.

The case refers to the spherical cap bubble "A" in [31]. The main flow parameters
are given in Table 1 in [31]: py, = 875.5kgm ™3, i, = 0.118kgm~'s™!, oy, = 3.22 ¥
1072 Nm™, V = 9.4 x 107"m3, and the relations given in [101] is used to calculate
the air properties: piiq/pair = 714, tig/ ttair = 6667, where p is the density, x is the
viscosity, o is the surface tension, V' is the measured bubble volume and the subscripts
air and liq refer to the air phase and the test-liquid phase, respectively. The Reynolds

number, Re-, based on the effective bubble radius, 7, are defined as:

WU 3\
Rer = Mv r= (_V) 7
Hiiq 4m

where U is the rising velocity.

The computational-domain size is 57 x 207, discretized at a grid-resolution of
64 x 256. A spherical bubble of radius 7 is initialized at a height 47. No-slip boundary

conditions are enforced at all four domain boundaries.

The bubble reaches a stationary shape and the terminal rising velocity soon after
the bubble starts to rise. Volume-fraction contours 0.05, 0.5, and 0.95 of the bubble at
t = 1.2s are shown in Fig. 2.13. The bubble shape agrees well with the experimental
image in [31] and the interface sharpness is maintained across 2 to 3 cells. The rising
velocity obtained from the simulation is 20.3 ¢m/s, which compares well with the

experimental result of 21.5cm/s as reported in [31].
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Three-dimensional rising bubble

For validation in 3 dimensions, the case of an air bubble rising in a water-glucose
solution based on the experiment of Bhaga and Weber [6] is considered. The configu-
ration is characterized by the Reynolds number, the E6tvos number and the Morton

number

d d? 4
_pdBUs o yr g 9P gy o= I

Re 2
1 o po

=848

where p is the liquid density, dg = 0.0261 m is the bubble volume-equivalent diameter,
Up is the bubble terminal rising velocity, p is the liquid viscosity, o is the surface
tension of the liquid and ¢ is the gravitational acceleration. The computational-
domain size is bdg x 10dg x 5dg. The grid resolution is 50 x 100 x 50. A spherical
bubble of diameter dp is initialized at (2.5dg, 1dg, 2.5dg). The boundary condition
at the front, back, left, right and bottom domain boundaries is set as no-slip wall.
Corresponding to the experimental setup of a rising bubble in a vertical tube open
to the atmosphere, the top boundary is treated by a mixed inlet-outlet boundary

condition, depending on the direction of the velocity.

The bubble reaches a steady shape after an initial transient period. The volume-
fraction contour 0.5 of the steady bubble at t = 0.5 s is shown in Fig. 2.14(a). The
interface sharpness can be evaluated by the volume-fraction contours 0.05, 0.5 and
0.95 in Fig. 2.14(b). A terminal oblate-ellipsoidal-cap bubble shape is obtained, which
corresponds to the experimental observation [6]. The rising velocity of the bubble is
plotted in Fig. 2.15. The computed Reynolds number based on the predicted terminal
rising velocity is 2.34, which compares well with the experimental Reynolds number
of 2.47.

Merging of two bubbles

To validate the robustness of the interface method in flow configurations with topology
changes, the case of the merging of two bubbles of [111] is considered. The fluid
parameters are: £6 =50, Mo =1, p,/py = 20, po/pp = 26, where p is the density,
i is the viscosity, the subscripts o and b refer to the outer-liquid phase and bubble
phase respectively. The definitions of F6 and Mo are:

_ IlresPo

4
Ej . Moo=
o Po0
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Figure 2.14: (a) 3-dimensional view of volume-fraction contour 0.5 of the 3-
dimensional rising bubble at steady state at ¢ = 0.5s. (b) Cross section of volume-
fraction contours 0.05, 0.5 and 0.95 of the stationary bubble at ¢t = 0.5s.
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Figure 2.15: Rising velocity up of the 3-dimensional bubble in the 3-dimensional
rising-bubble case.
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where [..¢ is the reference length, o the surface tension and g the gravitational
acceleration. The reference time is t,ef = lef/Urer, and the reference velocity is
Ures = \/lres-

As in [52, 20|, the domain is 4l,ef X 8lef X 4l.cy. Two spherical bubbles with
diameter /.. are initialized at positions (2l,ef, 2l.cf, 2.150,¢¢) and (2.50¢f, 2lrcf, lyey).
No-slip boundary conditions are enforced at all domain boundaries. The domain is
discretized by a 64 x 128 x 64 grid, which has the same effective grid resolution as
[101].

The volume-fraction 3D contour of 0.5, and the cross section of the contours 0.05,
0.5 and 0.95 of the bubbles at t,.y = 1.17, 1.32, 1.63, 2.13 are plotted in Fig. 2.16
to illustrate bubble shape and interface thickness during the merging process. The
results compare well with that in [108, 52, 20|. As is evident from the cross section
of volume-fraction contours, the interface sharpness is maintained across 2 to 3 cells
throughout the merging process. Note that at ¢,.; = 2.13 the tail of the lower bubble

becomes under-resolved.

Rising drop in a periodically constricted capillary tube

In order to validate the anti-diffusion correction algorithm for general meshes and
comparably complex domains, a case of a drop rising in a periodically constricted
capillary tube is considered. The case is based on the experiment of [29], and has been
investigated by simulations in [56]. The parameters used in this numerical example are
po = 1160 kg/m?, pg = 966 kg/m?, u, = 8TmPas, g = 115mPas, o = 0.0042 N/m,
where the subscripts o and d denote the ambient fluid and the drop fluid respectively.
As in [56], a section of 26 cm of a periodically constricted capillary tube is selected
as the computational domain, shown in Fig. 2.17. The constricted capillary tube
has the following geometric parameters: average radius, R = 0.5cm, wavelength
of corrugations, h = 4cm, and amplitude of corrugations A = 0.07c¢m. The grid
resolution of the computational domain is 32 x 1664. A drop is initialized at the
height of 6 cm along the centerline and its size is measured by x which is defined
as the ratio of the equivalent spherical drop radius to R. The simulation time is

non-dimensionalized by
P
Apg, R

where ¢, is the reference time, Ap = p, — pg and g, is the gravitational acceleration.

The velocity is non-dimensionalized by

Apg, R?
‘/ref = Py )
Ho
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Figure 2.16: Volume-fraction contours 0.05, 0.5 and 0.95 of the two bubbles. Rows
from bottom to top: t,.; = 1.17, 1.32, 1.63, 2.13. Left column: 3D contour of volume
fraction 0.5. Right column: cross section of the volume fraction contours 0.05, 0.5

and 0.95. The thick solid line refers to contour 0.5 and the thin solid line to contours
0.05 and 0.95.
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where V,.; is the reference velocity. The drop position is characterized by z, which
is the axial distance between the drop tip (defined from the volume-fraction contour
0.5) and the preceding constriction, normalized by the wavelength of corrugations,
h. A similar parameter z* is defined as the axial distance between the drop tip and
the constriction before the drop initial position, normalized by h. The drop shape is
characterized by a deformation parameter D, which is defined as the ratio of the drop
profile perimeter to that of the equivalent spherical drop, and by the axial length L,
which is the axial length of the drop profile normalized by h. For comparison with the
simulation of [56] and the experiment of [29], axisymmetric 3-dimensional simulations
for kK = 0.92 and k = 0.95 are carried out. Two different drop sizes are taken in order
to determine the sensitivity of the results to x which is difficult to determine precisely
from the experiments. The volume-fraction contours 0.05, 0.5 and 0.95 at different
time instants are shown in Fig. 2.18(a) and (b), respectively. The periodic drop shapes
at the constriction and expansion region for x = 0.92 are shown in Fig. 2.19. A sharp
interface is obtained on the underlying non-Cartesian mesh. Also, it can be seen
that the drop shape is periodic with respect to the periodic corrugation. This is in
good agreement with the experiment, where it is stated that the drop deformation
parameter is found to be periodic for all drop sizes without drop breakup. Note
that the simulations of [56] do not recover this behavior. The rising velocity of the
mass centroid of the drop of k = 0.95, U. is shown in Fig. 2.20. The velocity profile
is periodic with respect to the periodic corrugation. The velocity evolution agrees
reasonably with the experiment observations, where in [29] it is stated that for a drop
of k > 0.7, the rising velocity increases once the leading meniscus clears the throat.
The average rising velocity across the constrictions is 0.97 x 1072, as compared to the
experimental value of 0.9 x 1072. It is suspected that the difference of the average
rising velocity may be due to an inconsistency of the Bond number as reported by [29],
where Bo = 13.0 is specified explicitly in [29], however the Bond number calculated
from the given material and geometry data with Bo = ApgR?/u rather results in
Bo = 11.3. The inconsistency is also reported by [56]. Despite the discrepancy of the
velocity, the overall evolution, periodic motion of the drop and periodic profile of the
rising velocity are well reproduced by the present method. The deformation parameter
D and the axial length L for a drop of kK = 0.95 are compared with the experiment in
Fig. 2.21 and Fig. 2.22, respectively. Extrema of the deformation parameter D and its
profile agree with the experiment, but the profile is shifted with respect to the axial
coordinate. This shift is also observed for the axial length L. Again, this shift can be
attributed to the inconsistency of the specified Bond number. For further assessment

of simulation errors, results across successive constrictions are shown in Fig. 2.21 and
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Figure 2.17: Computational domain for the axisymmetric 3-dimensional rising drop
in a periodically constricted capillary tube. (a) Full domain. (b) Plan view showing

dimensional details (not to scale).
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Figure 2.19: Volume-fraction contours 0.05, 0.5 and 0.95 of the rising drop with
k=092 (a) t =1722.8. (b) t = 2133.0.
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Figure 2.20: Rising velocity of the mass centroid of the drop at x = 0.95 vs axial
position z*. The vertical dotted lines indicate the constriction nodes. z* = 1 refers to
the first constriction reached by the drop tip.
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Figure 2.21: Deformation parameter D of rising drop for experiment and simulation,
k = 0.95, within one period of corrugation. "Exp" denotes the experimental data.
"Sim - 1st" denotes the simulation results for the first period of corrugation the drop
passes through.

Fig. 2.22. With respect to the experiment, it is stated in [29] that the variation of
single measurements is less than 5%. Also, in [29] it is stated that when a drop of
k > 0.7 reaches a constriction, the leading end follows the capillary wall contour and
the drop is squeezed through the throat. Their statement implies that the drop should
be continuously stretched from the onset of the constrictions, meaning that D and
L should increase at z = 0. Such a behavior of D and L is observed in the present
simulations but is not apparent from the experimental data [29].

Despite the discrepancies to the experiment, which may be related to an inconsis-
tent specification of experimental parameters, this test case is significant for validation,
as proper mass conservation and periodicity of the solution need to be reproduced by
the simulation. The present simulation clearly recovers these properties, whereas some

deficits in this respect can be observed for the simulations of [56].

2.5 Concluding remarks

In this chapter, an interface-sharpening technique by an anti-diffusion correction is
presented for two-phase incompressible flows based on the VOF interface-capturing

method. The method possesses the following properties:

e The interface-sharpening step is separate from the volume-fraction transport

and thus can be used in conjunction with any underlying VOF schemes.
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Figure 2.22: Axial length L of rising drop for experiment and simulation, x = 0.95,
within one period of corrugation. "Exp" denotes the experimental data. "Sim -
1st" denotes the simulation results for the first period of corrugation the drop passes
through.

e No interface reconstruction is required for the volume-fraction transport to
achieve an accuracy similar to that of comparable (in terms of discretization-

scheme accuracy) level-set approaches, while being conceptually simpler.

e A desired interface representation is maintained throughout the simulation based

on a case- and grid-resolution independent, robust interface-sharpness measure.

The key ingredients of the interface-sharpening method are a regularization based
on a minmod limiter and a grid-independent interface-sharpness measure. Starting
from the standard minmod limiter with a 5-point stencil, an equivalent compact lim-
iter, suitable for general, unstructured meshes has been formulated in 1 spatial dimen-
sion and extended to 3 dimensions. With this limiter a stable regularization of the
discrete anti-diffusion equation is obtained that maintains a local extremum principle.
The anti-diffusion correction is evolved in pseudo time after each advection step of
the volume-fraction transport. In principle the anti-diffusion could be iterated until
a steady state is achieved, that steady state, however, may extend the resolution ca-
pabilities of the underlying volume-fraction and flow-transport discretization beyond
its limits. This is particularly important in higher dimensions as the discretization
resolution becomes anisotropic. This issue can be handled by introducing a stopping
criterion. The stopping criterion imposes two thresholds on the interface sharpness
which is computed from a comparison of discrete volume-fraction divergence and dis-

crete volume-fraction gradient. As these expressions are evaluated in the solution of
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the anti-diffusion equation, the sharpness measure does not imply additional compu-
tational cost. The thresholds for the sharpness measure can be set to unity, and the
overall solution is rather insensitive to these thresholds.

For demonstration and validation purposes, the anti-diffusion method is coupled
with a discretization of the volume-fraction advection and the Navier-Stokes equation
which is typical for practical applications in engineering for realistic flow simulations.
Validation computations are performed for passive transport, a 2-dimensional and 3-
dimensional rising-bubbles and a rising-drop configuration. These application exam-
ples involve Cartesian and non-Cartesian, unstructured meshes. The results agree well
with reference data from literature and with experiments. In particular, the method
is more accurate, even at low grid resolutions compared, e.g., to [62], and exhibits
an improved accuracy. The challenging test case of a drop rising in a periodically
constricted capillary tube demonstrates that the present method, while being rather
simple, represents a significant improvement as compared to that of [56].

Two by-products of the anti-diffusion method may be also of more general interest
to other computational modeling problems. First, as the proposed compact modifica-
tion of the minmod function can be employed as a general slope limiter, it may also
be applied more generally for discretization schemes on unstructured meshes. Second,
as the proposed interface-steepness measure gives a general assessment of the quality
and resolvability of a VOF interface representation, it may also be used in conjunction

with other interface models.
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Chapter 3

Interface-sharpening technique for
two-phase compressible flow

simulation

3.1 Introduction

In this chapter,the anti-diffusion technique presented in chapter 2 is extended to two-
phase compressible flow simulations. Compressible flows pose the particular challenge
of ensuring consistency among the flow variables during the interface-sharpening step.
It is the objective of this chapter to present a further development of the interface-
sharpening method for two-phase compressible flows with numerical validation results

and some applications as feasibility demonstration.

This chapter is organized as follows: First, the governing equations for two-phase
compressible flows adopted are described. Second, the underlying Riemann solver,
the numerical method for the volume-fraction transport equation are detailed, and
the numerical method for interface sharpening by solving an anti-diffusion equation
is recapitulated. In particular, special consideration is given to modifications of the
incompressible formulation necessary for compressible flows. Validation cases for dif-
ferent equations of state (EOS) and in 1 and 2 dimensions are then presented to
illustrate the improvement obtained by the interface-sharpening method, where a de-
tailed discussion of simulations of shock-bubble interactions and an application of the
method to a complex interaction problem are given. Finally, the merits of the numer-
ical method and the improvements achieved in numerical results are summarized in

concluding remarks.
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3.2 Governing flow equations

Various mathematical models for two-phase compressible flow simulations have been
developed with different sets of governing equations [41, 83, 45]. In this work, a basic
conservative formulation of the Euler equations assuming a single velocity and pressure
equilibrium is employed. The two phases are represented by the respective volume
fractions, where the formulation of the volume-fraction transport equations of [25] is
adopted. This volume-fraction transport equation formulation has been extensively
studied by [55] for simulations with the ideal-gas EOS and the Mie-Griineisen EOS
[74], and employed for a computational study of shock-bubble interactions of different
gas pairs and at different shock speeds by [59]. With two volume-fraction-transport
equations, two mass conservation equations, one momentum conservation equation

and one energy conservation equation, a six-equation model is obtained as follows:

Jda KS

op Ky

E%—V-ﬁu—ﬁ[(gv u (3.2)

Jap® o
5t Vaptu=0 (3.3)
&

90" L. Bfu=0 . (3.4)
ot

dpu

W%—V-puu—i—Vp:O , (35)

OpE

%—i—v'(pE—i—p)u:O , (3.6)

where o and 3 are the volume fractions of the two phases respectively, t is the time,
u is the velocity, Kg is the mixture bulk modulus, K& and K g are the phase bulk

moduli, p® and p” are the phase densities, p is the pressure and F is the total energy.

It should be noted that, instead of solving Eq. (3.2), # can be computed directly
from « based on the relation e+ (3 = 1. Here the original form of the volume-fraction
transport equations (3.1) and (3.2) as adopted in [25] are maintained unchanged for
demonstrating the modularity of the interface-sharpening method and the applicabil-

ity of the method to general underlying VOF discretizations.

As the formulation of the volume-fraction transport equations are capable of sim-
ulations with the ideal-gas EOS and the Mie-Griineisen EOS as studied in [25, 55, 59],
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these two EOS are also considered in this work as examples. The ideal-gas EOS reads

p(p,e)=(y—1)pe , (3.7)

where 7 is the ratio of specific heats and e is the internal energy. The Mie-Griineisen

EOS reads
p(p.e) =pres+ 1T (p)p(e—ery) (3.8)

where prey = pocdn/ (1 —sn)®, n=1=(po/p), I' (p) = Lopo/p, €re = 0.5pyesn/po and
Po, Co, S, Iy are constant coefficients.

A general EOS can be formulated to represent both the ideal-gas EOS and the
Mie-Griineisen EOS. The general EOS for each phase reads

PR =T () e 1 ) 39)

where I'* (pk) and f* (pk) are functions of p*, and the superscript k& denotes the phase,
ie. aor (.

By assuming pressure equilibrium, i.e. p* = p® , p can be calculated by

pe+(af(p)+ﬁf (P))

Poom) T ()

a B
)

p(p,e,a, ) = (3.10)

3.3 Numerical methods

Riemann solver

It should be pointed out that the particular choice of Riemann solver serves as an
example for using the interface-sharpening method which can be formulated for other
Riemann solvers in a straight-forward way.

The HLL Riemann solver [106] is adopted for calculating the numerical flux at the

cell face, Fyrr,

F, if0< 9y,
Fypp =  SeBe=Sifnt S SnlUn=Us) i §) < 0 < Sp, (3.11)
Fr if 0> Sg,

where U = (a, B, ap®, Bp°, pu, pE) is the vector of the cell-averaged conserved

variables, F is the cell-average flux, S is the bound of the fastest signal velocity,
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and the subscripts L and R denote the variables at the cell face computed by the
reconstructed values at the two sides of the cell face.

The lower and upper bounds of the fastest signal velocities are calculated by
Sy, = min(uy, —ag,ug —ar) , Sg = max(up+ag,ugp+ag) , (3.12)

where uy, and ugr are the flow velocity at the cell face, a;, and ar are the mixture
sound speeds at the cell face. The Wood formula or the frozen speed of sound [83]
can be used for calculating a;, and ag, and the latter is adopted in this work as the

numerical results do not show significant differences for both:

ap — \/(appZ)L (2)? + (ﬁgj)L <c€>2 g = \/(04,0&)3 ()2 + (Bp%) g (Cg>2 ’
(3.13)

where c¢, c§, cﬁ and c’g are the phase sound speeds at the cell face computed based

on the respective EOS.

Volume-fraction transport equations

The numerical method for solving the volume-fraction transport equations (3.1) and
(3.2) is detailed in |25, 55| and illustrated below.
The volume fractions are updated in two steps. First the volume-fraction transport

equations without the source terms are solved:

O

E—FV'OJUZO 5 (314)
9 B

S TV fu=0 . (3.15)

The solutions of Egs. (3.14) and (3.15) are denoted respectively as a* and (* which
are the intermediate states. Then the compressibility effect represented by the source

term is taken into account for the final solution:

o™t = {1 + (g—; [1—(a* + ﬁ*)]) , (3.16)
+1 * FS * * ]
Al =g |1+ (K—g [1—(a*+ 8 )])_ , (3.17)

where a"t! and "' are the volume fractions at the new time step.

The numerical method ensures the relation o + 3 = 1 during the evolution of
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the volume fractions. As mentioned in section 3.2, instead of solving Egs. (3.15) and
(3.17), B+ can be computed directly from o™ based on the relation o + 3 = 1
which holds for all time steps.

Anti-diffusion interface sharpening

The anti-diffusion interface-sharpening technique presented in chapter 2 is adopted
and extended to two-phase compressible flow equations as described in the previous
section. The idea of sharpening the two-fluid interfaces is to provide a correction
algorithm which can be applied as post-processing to the volume-fraction field after
each time step. For this purpose, an anti-diffusion equation, i.e. a diffusion equation
with a positive diffusion coefficient, is solved to counter-act the numerical diffusion in

the volume-fraction-transport equation:

8_04 =-V-(DVa) , (3.18)
or

where D > 0 is an anti-diffusion coefficient and 7 is a pseudo time.

The essential points in solving the anti-diffusion equation are recapitulated below
and the differences from the incompressible formulation are detailed. First, the limited
cell-averaged value of the gradient of « is obtained by the regularization based on a

minmod limiter - this is hereafter denoted by (%) i Lhen, the anti-diffusion flux

for a, F'§,, at the cell face between cell P and cell N is obtained by:

=D ((Va)y,)p- S H1((V)y,) pl < T{(VA)y) y |

Fip = -D((Va), )y-S i (Va), )yl <l (V). )|

(3.19)

where ((Va) lim)P and ((%)lim)N
of the gradient in cell P and cell N, S is the cell face area vector which points from
cell P to cell N.

The right-hand-side of Eq. (3.18) is calculated by

2er (Fiip)
=

are the respective limited cell-averaged value

vV (—D(Va)) = (3.20)

where ) s denotes the summation over all cell faces and V' is the cell volume.

The volume fraction is advanced in pseudo time by an explicit Euler scheme

N =" + V. (-D(VaM))AT (3.21)
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with IV being the pseudo time index, and the time step limit on pseudo time,

Ar= ot (3.22)

where Ax,,;, is the minimum cell width.

In the following, (-)AD denotes a quantity that is obtained after applying the sharp-
ening procedure. As proposed in the incompressible simulations, it should be noted
that the anti-diffusion equation does not need to be integrated up to a certain pseudo
time. Rather a certain number of iterations is performed to achieve a desired inter-
face steepness, which is controlled by a stopping criterion detailed below. While other
time-integration schemes can be used for the solution of the anti-diffusion equation,

the explicit Euler scheme is employed here for its low computational cost.

As the anti-diffusion equation is meant to counteract the numerical diffusion re-
sulting from the volume-fraction transport, the choice of D is based on an estimation
of the numerical diffusion of the underlying numerical scheme. Following the formu-

lation of the HLL Riemann solver, D is chosen to be

SLSk (ag — ar)
Sr— S

D = ’ (3.23)

After o has been sharpened, all other flow variables in the governing equations
have to be updated to ensure the consistency across the flow variables which is im-
portant for simulating the correct flow physics. As demonstrated in [88] where the
interface compression technique is applied, in case only the interface function is com-
pressed without updating the other flow variables, the mismatch of the compressed
interface function and the smeared density field leads to an incorrect interface evo-
lution. To update the other flow variables the authors in [88] employ a hyperbolic
function together with their interface compression technique for the mass conservation
equation to localize the compression to the interface region. For the momentum and
energy field, they first compute the primitive variables before applying the interface
compression technique, and based on these primitive variables and the compressed
interface function they estimate the new conserved variables. It is noted that based
on this approach the compression in the interface function equation and in the mass
conservation equation is not exactly consistent, and the update of the momentum and
energy field is not conservative. Alternatively in this work, all the flow variables are
updated according to a”? for ensuring the consistency. For each time the « field is
sharpened by solving an anti-diffusion equation, the other flow variables 3, ap®, 3p°,

pu, pE are updated accordingly by respective flux defined based on F'§,. These fluxes
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to update the other variables are denoted by F'5 ), F5#" Fff_if, FRY PP respectively

for the flow variables 3, ap®, 3p°, pu, pE.

To preserve the relation a + 3 =1, F j p 1s defined as

Fio=—F%, . (3.24)

£ Fﬁj’f are defined based on F§;, and F; ,, and the flow variables o, 3, ap®, 3p°

interpolated at the cell face:

FY5 = Fipp} (3.25)
B (6%
Fit = —Fipo] (3.26)
= (apa)f ,05 _ (ﬁpﬁ)f (3.27)
f o ) f ﬁf ’ :

v Gpdy+()ydp
)y = dp + dy

where (), and (-) 5 are the cell-averaged variables in cell P and N, dp and dy are the

, (3.28)

distances from the cell centers P and N to the respective cell-face centers, and (-),

denotes the reconstruction at the cell face of the variables.

F? is defined based on F$2', F fjpjﬁ , and the flow variables ap®, 3p°, pu interpo-
lated at the cell face:

a ap® 8 (pu)
Fi = (P35 + F35) s (3.29)
f f
which can be rewritten as
U o o 3 (pu)f

F A’f% is defined based on the assumption of pressure equilibrium. Given the phase
EOS based on Eq. (3.9)
p* =T (pe)* + f* (3.31)

P’ =T%(pe)’ + 1, (3.32)

and the pressure-equilibrium EOS Eq. (3.10),

pe + (% + %f)
p= — : (3.33)
(5 + %)
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Fﬁg is obtained by imposing p* = p = p°:

Fi5 = Fip |(T(pe)); + fr + (0B | (3.34)
%19 3 (pu)AQ
r = —L— E), - .
( (pe))f (osz‘? + ﬁfr?) (p )f (apa)f + (ﬁpg)f ) (3 35)
(=1
ff_’(ayrﬁ4—ﬁfr§> , (3.36)
(aﬂa)f o (ﬁpﬁ)f 1 2
(PEx); = | —2 o 2 (), (3.37)

(@pa)f + (ﬁpﬂ)f (O‘Pa)f + (ﬁpﬁ)f

For cases with the ideal-gas EOS it is f; = 0. It can be seen that F Fe ngﬁ,
FY F%% are all defined based on F§}, and the flow variables interpolated at the cell
face. Note that, as the relation a + = 1 always holds, o "ip can be calculated first
instead of F§,, and F¢,, F3%' Fﬁgﬁ, Ff FPP can be calculated based on F, in
a similar fashion as illustrated above. Both solution procedures give the same set of

anti-diffusion sharpening flux since Voo = —V .

The variables 3, ap®, 3p%, pu, pE are then updated in the same way as o according
to Egs. (3.20) and (3.21) based on the above F%  F" FABf)ﬁ, FRY R with the
same pseudo time step. It should be noted that the formulation of the anti-diffusion

sharpening flux for phase mass, momentum and energy is conservative.

The anti-diffusion equation can be solved repeatedly to attain an even sharper
profile. A case- and grid- independent stopping criterion (i.e. no explicit dependence
on fluid or geometry parameter and no explicit dependence on cell-size measurement)
based on the measurement of the tolerance of the interface sharpness, TOL, as devel-

oped in the chapter 2 is employed to terminate the sharpening iterations:

S|V (), v

TOL = - , (3.38)

S 1(T) o) 7

where ) denotes the summation over all cells, the subscript 7 indicates the cell index,

and V; is the volume of the cell .. One can see that T'OL essentially compares the two
gradients of the volume-fraction field: (W) 1, Which is the limited gradient obtained

in the solution of the anti-diffusion equation, and (%) op Which is the gradient
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calculated by a central difference scheme. As the interface becomes sharper after each
time the anti-diffusion equation is solved, the right-hand-side of Eq. (3.38) decreases.
Numerical experiments show that TOL = 1 is a suitable threshold for the anti-
diffusion interface sharpening to stop for all cases considered in this work. It is noted
that the choice of TOL = 1 is also adopted in the incompressible simulations in chapter
2. Numerical experiments also show that the interface-sharpness is not sensitive to
the choice of TOL - the interface sharpness does not vary much for TOL around 1.
Too small a TOL, however, would sharpen the interface beyond the resolution limit
of the underlying scheme and could introduce numerical instabilities. Typically, only
1-2 sharpening iterations are sufficient at each time step. Based on the test cases in
sections 3.4, the computational overhead of the interface-sharpening is found to be
5 —10%.

Overall solution procedure

The solution algorithm of the two-phase compressible flow with the anti-diffusion
interface sharpening for U = (a,ﬁ, ap®, BpP, pu, pE) from time step n to n + 1 can

be summarized as follows:

1. Solve Egs. (3.14), (3.15), (3.3), (3.4), (3.5), (3.6) based on the flux calculated by
the HLL Riemann solver for (a*, 5%, (ozpo‘)"ﬂ/ , (6,0/6)%1, , (pu)”“l , (pE)”H/)
(')TL+1/

where indicates the variable at time step n + 1 without interface sharp-

ening.

2. Solve Egs. (3.16) and (3.17) for (a™+!, gn+1").
(anﬂ/’ ﬁnﬂ/’ (apa>n+1’ ) (ﬁ/)ﬁ)nﬂl ) (Pu)nﬂl ) (/)E)nH’) obtained here is the base

solution of the flow variables without interface sharpening at time step n + 1.

3. Solve Egs. (3.18) to (3.21) for a*P. After each time o*? is found, 842, (ap®)*?,
(8p%) AD, (pu)*?, (pE)*? are computed accordingly, calculated from the fluxes
in Eqs. (3.24), (3.25), (3.26), (3.30) and (3.34).

4. The anti-diffusion sharpening (Step 3.) is iterated until the stopping criterion
of TOL <1 based on Eq. (3.38) is satisfied.
The result of step 3 (aAD, pBAD (ozpa)AD , (6p5)AD , (,ou)AD , (pE)AD> is taken
as the final solution
(a”*l, B (ap®)™ (ﬁpﬁ)mrl ,(pu)" (pE)”+1> at time step n + 1.
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3.4 Numerical results

First, a 1-dimensional air-helium shock-tube problem and a 1-dimensional molybdenum-
MORB shock-contact problem are considered to verify the interface sharpening method
with the ideal-gas EOS and the Mie-Griineisen EOS respectively. Then, 2-dimensional
shock-bubble interactions based on the experiments of [26], and a 2-dimensional shock-
contact problem are considered to verify the interface sharpening method in multiple-
dimensions, and to illustrate the small-scale interface structures recovered by the
interface sharpening method.

For all cases in this section the reconstruction of U; and Ugp is based on the van
Leer MUSCL scheme [112]. A third-order TVD Runge-Kutta method is employed
for the time integration. The time step for the governing equations is determined by
the CFL requirement with a CFL number of 0.2. The zero fraction of one phase in

another pure phase is represented as 107 at the initialization of simulations.

Shock-tube problem

The one-dimensional air-helium shock tube case of [33] is considered. The domain is
defined as [0, 1] and discretized by 200 cells. The ideal-gas EOS is employed for the

two phases and the initial condition is

(1,0,1,1.4) if0<z<05
(p,u,p,y) = : (3.39)
(0.125,0,0.1,1.667) else

The results with and without the application of the anti-diffusion interface sharpening
technique at t = 0.15 are shown in Fig. 3.1. The results at higher grid resolutions,
400 cells and 800 cells, are shown in the Fig. 3.2.

First, the flow variables in all cases agree well with the exact solution. By compar-
ing the results with and without the interface sharpening, one can see that the phase
interface is better resolved, as represented by the reduced number of transition points
in «, with the application of the anti-diffusion interface sharpening technique. Then
by comparing the results with the interface sharpening at different grid resolutions,
the interface is resolved by a similar number of grid points in the vicinity of the posi-
tion of volume fraction 0.5, which demonstrates the interface sharpness controlled by
the grid-independent stopping criterion Eq. (3.38). It should also be noted that the
improved interface resolution also transfers to the other variables at the two-phase
interface.

In order to study and compare the order of truncation error of the two-phase
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Figure 3.1: Variables at t = 0.15 of the air-helium shock tube. Numerical results
at the grid resolution of 200 cells. Symbols are the numerical results and solid lines
are the exact solutions. Left column: no interface sharpening; right column: with
interface sharpening.
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Figure 3.2: Variables at ¢ = 0.15 of the air-helium shock tube. Numerical results with
interface sharpening. Symbols are the numerical results and solid lines are the exact
solutions. Left column: grid resolution of 400 cells; right column: grid resolution of
800 cells.
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interface evolution with and without the application of the interface-sharpening tech-
nique, the L; errors and the orders of the truncation error of the volume-fraction
field at ¢ = 0.15 are calculated and shown in Table. 3.1. The analysis indicates
an error of O(Ax) for both computations with and without the application of the
anti-diffusion interface-sharpening technique, and the L; error is reduced when the

interface-sharpening technique is applied.

no interface sharpening with interface sharpening
Grid resolution Ly error Error order L, error Error order
100 cells 0.02113 0.01571
200 cells 0.01183 0.84 0.00729 1.11
400 cells 0.00732 0.69 0.00418 0.80
800 cells 0.00456 0.68 0.00244 0.78

Table 3.1: Ly errors and orders of the truncation error at ¢ = 0.15 for the air-helium
shock tube.

The exact conservation (to the 64-bit machine double precision) of the conservative

variables is shown in the Table. 3.2 for the computation at the grid-resolution of 200

cells.
no interface sharpening | with interface sharpening
Z(a/pa)imtialized — Z(apa)final -7.10543e-14 -2.84217e-14
S (B0 initiatized — D (B0°) finai -1.59872¢-14 -1.59872¢-14
Z(pE>initialized — Z(pE)final -2.27374e-13 -5.68434e-14

Table 3.2: Exact conservation (to the 64-bit machine double precision) for the air-
helium shock tube at the grid resolution of 200 cells. > (-) denotes the summation
of the variable over the entire computational domain. The subscripts initialized and
final denote respectively the initialized state and the final state.

1-dimensional shock-contact problem

The interaction of a shock wave in molybdenum and an encapsulated MORB (Mid-
Ocean Ridge Basalt) liquid of [55, 90, 89, 33| in a 2-dimensional setting is first con-
sidered as a 1-dimensional case. The Mie-Griineisen EOS is employed for the two

materials with coeflicients

(9.961,4.77,1.43,2.56) for molybdenum
(po, o, 8, 10) = : (3.40)
(2.66,2.1,1.68,1.18) for MORB liquid

The domain is defined as [0, 1] and discretized by 200 cells. The shock is initialized

at position 0.4 and the two-phase interface at position 0.6, where the initial condition
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Figure 3.3: Variables at ¢ = 0.12 of the 1D shock-contact problem. Numerical re-
sults at the grid resolution of 200 cells. Symbols are the numerical results and solid
lines are the reference solutions. Left: no interface sharpening; right: with interface
sharpening.

is
(11.042,0.543,30) if 0 <z < 0.4
(p,u,p) = (9.961,0,0) if04<z<06 - (3.41)
(2.66,0,0) else

The results with and without the application of the anti-diffusion interface sharp-
ening technique at ¢ = 0.12 are shown in Fig. 3.3. The results at grid resolutions of
400 cells and 800 cells are shown in Fig. 3.4.

All flow variables in all cases agree well with the reference solutions and literature.
As in the test case of the ideal-gas EOS, the phase interface is better resolved and
the flow variables are consistent with the application of the anti-diffusion interface

sharpening technique. The interface is resolved by a similar number of grid points
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Figure 3.4: Variables at t = 0.12 of the 1D shock-contact problem. Numerical results
with interface sharpening. Symbols are the numerical results and solid lines are the
reference solutions. Left column: grid resolution of 400 cells; right column: grid
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in the vicinity of the position of volume fraction 0.5 at different grid resolutions as
found in the previous test case, which demonstrates the independence of the interface-

sharpening stopping criterion on the grid resolution and the case.

2-dimensional air-R22 shock-bubble interaction

The experimental case of a R22 cylinder in air hit by a shock wave at Mach number of
1.22 of [26] is considered to demonstrate the improvement by the interface sharpening
and the recovery of the small-scale interface structures by the interface sharpening
method. Results of the case have been given in a number of references employing
interface capturing methods [69, 61, 5, 18, 45, 58, 79, 86|. Corresponding to the ref-
erence literature, the configuration is considered as 2-dimensional, and the set-up of
[86] and the fluid parameters of [69] are adopted here. Flow field symmetry about the
streamwise center axis is assumed, and thus only the top half domain is computed. A
zero-gradient boundary condition is imposed at the left and right boundaries, and the
symmetry-plane boundary condition is imposed at the top and bottom boundaries.
The case is computed on three levels of grid resolution in order to highlight the con-
sistent recovery of small-scale structures as the grid resolution increases. The domain
is discretized by Cartesian grids with size Az/D = Ay/D = 0.01, Az/D = Ay/D =
0.005 and Az/D = Ay/D = 0.0025, where Az, Ay, D are the cell sizes in x-direction
and y-direction, and the bubble initial diameter. These grid sizes correspond to grid-
resolutions of 100, 200 and 400 cells across the bubble initial diameter. Schlieren-
type images, |Vp|, at time instants corresponding to the experimental images [26],
ie. t = bbus, 115us, 13bus, 187us, 247us, 318us, 342us, 417us after the shock
impact, are shown in Figs. 3.5 and 3.6. The enlarged images at the grid-resolution of
400 cells across the bubble initial diameter at ¢ = 247us, 318us, 342us, 417us after
the shock impact are shown in Figs. 3.7. The positions of the characteristic interface
points and waves are recorded against time corresponding to |26, 90, 44] and shown
in Fig. 3.8.

First, for the results without the application of anti-diffusion interface-sharpening,
the large-scale structures and interface evolution agree well with the reference litera-
ture which confirms the validity of the underlying governing equations and numerical
method. Second, with the application of interface-sharpening, the phase interface be-
comes significantly better resolved while the large-scale structures remain consistent
with the reference solution where no sharpening is applied and with the reference lit-
erature. The comparison between the results with and without interface-sharpening

shows that more small-scale structures are recovered by the sharpening technique.
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Figure 3.5: Schlieren-type images, |Vp|, of the air-R22 shock-bubble interaction. Top
3 rows: numerical results without interface sharpening; bottom 3 rows: numerical
results with interface sharpening. From top to bottom in each set: Ax/D = Ay/D =

0.01, Az/D = Ay/D = 0.005, Az/D = Ay/D = 0.0025. From left to right: ¢ =
55us, 115us, 13bus, 187us after the shock impact.
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Figure 3.6: Schlieren-type images, |Vp|, of the air-R22 shock-bubble interaction. Top
3 rows: numerical results without interface sharpening; bottom 3 rows: numerical
results with interface sharpening. From top to bottom in each set: Ax/D = Ay/D =
0.01, Az/D = Ay/D = 0.005, Az/D = Ay/D = 0.0025. From left to right: ¢ =
247us, 318us, 342us, 417us after the shock impact.
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Figure 3.7: Schlieren-type images, |Vp|, of the air-R22 shock-bubble interaction, with
interface sharpening, at the grid-resolution of Az/D = Ay/D = 0.0025. From left to
right, top to bottom: ¢ = 247us, 318us, 342us, 417us after the shock impact.
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Figure 3.8: Space-time diagram for the characteristic interface points and waves of
the air-R22 shock-bubble interaction: '+’ denotes the upstream interface, ¢’ denotes
the downstream interface, ’x’ denotes incident shock, A’ denotes the refracted shock,
‘A’ and ’x’ denote transmitted shocks. Symbols of light grey color denote Ax/D =
Ay/D = 0.01, symbols of dark grey color denote Ax/D = Ay/D = 0.005, symbols
of black color denote Ax/D = Ay/D = 0.0025. Left: no interface sharpening; right:

with interface sharpening.



As compared to reference results obtained by adaptive mesh refinement (AMR) algo-
rithms using interface-capturing methods [69, 61, 5, 79] where the effective grid resolu-
tion is approximately 800 to 900 cells across the bubble initial diameter, the interface
evolution obtained by the present method agrees well with respect to prominent fea-
tures of the interface roll-up present in these reference results. The present results also
agree well with reference results computed by a VOF interface-tracking method [90] at
a grid resolution of 400 cells across the bubble initial diameter. The interface instabil-
ity first develops at the interface near the upper side in the bubble windward direction
at t = 115us after the passage of the shock, and the interface rolls up at the wind-
ward side from ¢ = 247us after the shock impact onwards. The interface evolutions
at t = 318us, 342us, 417us after the shock impact clearly shows that the Kelvin-
Helmholtz instability is recovered by the anti-diffusion interface-sharpening method.
In particular, when the present results at grid resolution Az/D = Ay/D = 0.005
are compared with the reference high grid-resolution results [69, 61, 5, 79|, it can be
observed that a similar interface evolution can already be recovered by the simula-
tions with the interface sharpening on a mesh which is about 16 times coarser at the
interface. One can note that the simulation of the same case in [44] computed by an
anti-diffusive numerical scheme which is based on a limited downwind strategy, the
interface roll-up is not recovered even for a grid with approximately 562 cells across
the bubble initial diameter.

Third, the comparison of the numerical results at different grid resolutions shows
the consistent development of the small-scale interface structures recovered by the
interface-sharpening method. This is best illustrated by a comparison of numerical
results at t = 247u, 318us, 342us after the shock impact: as the grid resolution
increases from Az/D = Ay/D = 0.01 to Az/D = Ay/D = 0.005, more small-
scale interface structures are recovered; when the grid resolution further increases to
Axz/D = Ay/D = 0.0025, even finer small-scale interface structures and fine details
are recovered. While no pointwise convergence for the numerical solution of the com-
pressible Euler equations as an initial-value problem can be expected as suggested in
[81], the interface evolution with the application of the interface-sharpening technique
is resolved in a consistent manner with increased recovery of small-scale structures as

the grid resolution increases.

2-dimensional air-helium shock-bubble interaction

Another experimental case of [26] where a helium cylinder in air hit by a shock wave
at Mach number of 1.22 is considered. The case has been simulated by [69, 2, 39, 5,
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104, 86, 28, 118]. While most of the results from the reference literature agree on the
early-time evolution of large-scale structures, differences are observed for the evolution
of small-scale structures at late times. Here mainly the early-time bubble evolution is
studied and the numerical results are compared with a high grid-resolution numerical
result of [28| which is based on a wavelet-adaptive grid method that reaches an effective
grid resolution of approximately 1638 cells across the bubble initial diameter and
uses a fifth-order WENO scheme. The numerical results are presented using a non-
dimensional time #, which is the same as in [28] and given by ¢ = (t — timpact M cs/T)
where t, timpact, M, cs, 7 are the physical time, the physical time at the shock impact,
the Mach number of the shock, the sound speed of the surrounding air and the bubble
initial radius, respectively.

As only the early-time evolution is considered, the domain size used in section 3.4
is reduced in the streamwise direction and resized to [80mm, —30mm| centered at the
bubble center for reducing the computational effort. The same boundary conditions
as those in the section 3.4 and the fluid parameters of [86] are adopted. The case is
computed at three levels of grid resolution, with grid sizes Az/D = Ay/D = 0.005,
Ax/D = Ay/D = 0.0025 and Az/D = Ay/D = 0.00125, which correspond to
resolutions of 200, 400 and 800 cells across the bubble initial diameter. The density
and the vorticity fields at £ = 0.5, 1.0, 2.0, 4.0 are shown in Fig. 3.9. The enlarged
images at the grid resolution of 800 cells across the bubble initial diameter at ¢ =
2.0, 4.0 are shown in Fig. 3.10. The positions of the characteristic interface points
are recorded against time corresponding to [28] and shown in Fig. 3.11.

Similar findings as in the section 3.4 also apply to this test case:

e For the numerical results without the anti-diffusion interface-sharpening method
the large-scale structures agree with the reference literature [28], which confirms

the validity of the underlying governing equations and numerical method.

e For the numerical results with application of the interface-sharpening method
the interface is better resolved, and the large-scale evolution agrees with the

results without interface-sharpening and the reference literature [28].

e Finer small-scale interface structures are recovered by the interface-sharpening
method. Increasingly small-scale interface structures are recovered in a consis-

tent manner as the grid resolution increases.

As compared to the high-resolution results of [28|, the mushroom-shaped struc-
tures due to Richtmyer-Meshkov instability [13]| are recovered reliably in the numerical
results with the interface-sharpening method for the grid Az/D = Ay/D = 0.00125.
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Figure 3.9: Density (upper half) and vorticity (lower half) fields of the air-helium
shock-bubble interaction. Top 3 rows: numerical results without interface sharpening;
bottom 3 rows: numerical results with interface sharpening. From top to bottom in
each set: Az/D = Ay/D = 0.005, Az/D = Ay/D = 0.0025, Ax/D = Ay/D =
0.00125. From left to right: £ = 0.5, 1.0, 2.0, 4.0.
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Figure 3.10: Density (upper half) and vorticity (lower half) fields of the air-helium
shock-bubble interaction, with interface sharpening, at the grid-resolution of Az/D =
Ay/D = 0.00125. From left to right: £ = 2.0, 4.0.
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Figure 3.11: Space-time diagram for the characteristic interface points of the air-

helium shock-bubble interaction:

’AJ’ denotes the air jet head, 'DI’ denotes the

downstream interface. Lines of light grey color denote Ax/D = Ay/D = 0.005,
lines of dark grey color denote Az/D = Ay/D = 0.0025, lines of black color de-
note Az/D = Ay/D = 0.00125. Left: no interface sharpening; right: with interface
sharpening. Numerical results are dimensionalized in accordance with [28].
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One can note that in the simulation of the same case computed by an interface com-
pression scheme in [88], no instability at the interface is found for a grid with resolution

of approximately 225 cells across the bubble initial diameter.

2-dimensional shock-contact problem

To demonstrate the improvement by the interface sharpening method for problems
with the Mie-Griineisen EOS, the shock-contact problem of [55, 89, 90, 33| is con-
sidered. The problem is the 2-dimensional extension of the corresponding numerical
case in 1 dimension and involves a shock wave of Mach number 1.163 propagating
from molybdenum to MORB liquid. Mie-Griineisen EOS are employed for the two

materials with coeflicients

(9.961,4.77,1.43,2.56) for molybdenum
(PO» Co, S, FO) = . (342)
(2.66,2.1,1.68,1.18)  for MORB liquid

A unit square computational domain is defined, and the shock is initialized at
x = 0.35 traveling towards the positive x-direction. MORB liquid is initialized in
the region [0.4,0.7] x [0,0.5], and molybdenum otherwise. The dimensional reference
values are 1000kg/m?, 1GPa and 1m. The initial condition is

(9.964, (0,0),0) pre-shock molybdenum
(p,u,p) = : (3.43)
(11.042, (0.543,0),30) post-shock molybdenum

A wall boundary condition is enforced at the bottom of the domain, an inflow
boundary condition at the left of the domain, an outflow boundary condition with
a zero gradient at the top and the right of the domain. Numerical results including
the volume-fraction contours, Schlieren-type images of density and pressure, with
and without the application of the interface sharpening technique, and of two grid
resolutions, namely 200 x 200 and 400 x 400 are shown in Fig. 3.12. To emphasize
weak flow features, the non-linear shading function ¢ of [69] is used for the Schlieren-

type images of density and pressure. For density the function reads

\Y
¢ = exp (_k|vlp|p| ) : (3.44)

where k is a constant which takes a value of 20 for this test case.
First, by comparing the volume-fraction contours of the results with and without

the interface sharpening, one can note that the interface is significantly sharper when
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Figure 3.12: Numerical results of the 2D shock-contact problem. The set of top 3 rows:
t = 50 us; the set of bottom 3 rows: t = 100 us. From top to bottom in each set:
Volume-fraction contours 0.05, 0.5, 0.95; Schlieren-type images of density; Schlieren-
type images of pressure. From left to right: 200 x 200 (without interface sharpening),
400 x 400 (without interface sharpening), 200 x 200 (with interface sharpening), 400 x
400 (with interface sharpening).
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the interface sharpening is applied. The Schlieren-type images of density show that
the high-speed jet at ¢ = 100 us near the tip of the MORB liquid as found in [33],
and in [55] computed by an AMR algorithm, is better recovered with the application
of interface sharpening. The Schlieren-type images of density and pressure are also
in good agreement with [90, 33| at comparable grid resolutions. It should be noted
that the results in Fig. 12 in [90] are not computed at the grid resolution 200 x 200
as described in the text but at a higher resolution [33, 96].

3.5 Concluding remarks

In this chapter, the interface-sharpening technique based on solving an anti-diffusion
equation is extended to two-phase compressible flow simulations. A conservative for-
mulation of the Euler equations with the volume-fraction equations of [25] which are
capable of simulations with the ideal-gas EOS and the Mie-Griineisen EOS is em-
ployed as the flow governing equations. The HLL Riemann solver and the numerical
method for solving the volume-fraction transport equations are described as example
for the application and illustration of the interface-sharpening method. The adap-
tation to other Riemann solvers is straight-forward. The main concept of the inter-
face sharpening is to solve an anti-diffusion equation for the volume-fraction field for
counter-acting the numerical diffusion resulting from the underlying VOF discretiza-
tion scheme. The numerical scheme for solving the anti-diffusion equation ensures the
boundedness of the volume fraction and the numerical stability. The merits of the

anti-diffusion interface-sharpening method are:
e No interface reconstruction is required to locate the interface.

e No interface-normal calculation and in particular no specific schemes for the

interface-normal calculation as in [88| are required.

e The phase masses, momentum and energy are updated consistently in accor-
dance with the sharpened volume-fraction field. The update of the phase masses,
momentum and energy are conservative. No hyperbolic function is employed to
localize the compression to the interface region for the density equation as re-

quired in [88].

e The rate of sharpening across the entire field is variable and derived from the
numerical scheme of the underlying VOF discretization schemes. The interface
is not compressed to a state determined based merely on the cell size regardless

of the compression velocity of the interface sharpening as in [88|.
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e The interface-sharpening algorithm is modular and applicable to general under-
lying VOF discretization schemes. The interface-sharpening method can not
only be applied to two-phase compressible flow simulations as shown in this
work, but also to two-phase incompressible flow simulations based on a VOF

discretization, as presented and verified in [93].

e The interface-sharpening algorithm can be formulated for unstructured grids as
detailed in [93]. Also, a stopping criterion for the interface-sharpening method
is formulated based only on the comparison of gradients of the volume-fraction
field. It does not depend on the cell size and thus is not restricted to equi-
distant Cartesian grids. Thus, the entire interface sharpening method is readily

applicable to underlying unstructured grid discretizations.

The anti-diffusion interface-sharpening method is verified by the numerical vali-
dation for different EOS and in 1 and 2 dimensions. Simulation results obtained by
the interface-sharpening method at different grid resolutions are studied and com-
pared with the reference literature, in particular with the reference high-resolution
numerical results based on AMR algorithms. The improvements of the simulation
results achieved by the anti-diffusion interface-sharpening method as shown by these

test cases are:

e A good agreement of the large-scale interface structures obtained by the interface-
sharping method with the results obtained without interface sharpening, exper-
imental results and simulation results from reference literature is observed. The
interface is better resolved and finer small-scale interface structures can be re-

covered with the application of the interface-sharpening method.

e The recovery of finer small-scale interface structures by the interface-sharpening

method increases consistently with the grid resolution.

e In compressible flows involving different ideal gases where the Richtmyer-Meshkov
instability and the Kelvin-Helmholtz instability are significant for the evolution
of the two-phase interface, the method performs particularly well in recover-
ing interfacial instabilities as found for the reference high-resolution numerical
results based on AMR algorithms. It is noted that similar details of interface

evolution are not recovered in |88, 44| at comparable grid resolutions.

e Numerical cases for the Mie-Griineisen EOS illustrate the applicability of the
interface-sharpening method to different EOS with improved interface represen-

tation.
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Chapter 4

Quantification of initial condition
uncertainty in shock-bubble

interaction

4.1 Introductions

In this chapter, the uncertainties of initial condition in a shock-bubble interaction
experiment are modeled and analyzed by simulations. The uncertainties in initial
conditions of a widely studied experimental case of the shock-bubble interaction of
Haas & Sturtevant [26] are studied and modeled. A non-intrusive stochastic colloca-
tion approach is employed to transport the input uncertainties to the output quantities
of interest. The evolution of the statistics and of the PDF of the quantities of interest
over time is presented and discussed.

This chapter is organized as follows: In preliminaries, the shock-bubble interac-
tion studied, the definition of the uncertainty parameter and the quantities of interest
are described. Then, the governing equations and the numerical methods of the flow
solver, and the uncertainty quantification methods are presented. The collocated re-
sults under each and both uncertainty parameters and the main findings are discussed.

Finally, the work is summarized in concluding remarks.

4.2 Preliminaries

Case studied

The experimental case of a cylindrical-helium-bubble in air hit by a shock wave at
Mach number of 1.22 of Haas & Sturtevant [26] serves as the basis for the study. The
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Figure 4.1: Schematic of the computational domain for the shock-bubble interaction
simulation. The helium bubble diameter, D, is 50mm.

case can be categorized as a slow-fast interaction (in terms of the ideal-gas sound
speed) or a divergent case (helium bubble acts as a divergent acoustic lens in the
surrounding air). The experiment was first performed by Haas & Sturtevant to study
the refraction and diffraction of shock waves in cylindrical and spherical gas inho-
mogeneities. It has since been widely studied and simulated, e.g. by Picone & Boris
[67] and Quirk & Karni [69] to examine vorticity generation and the dynamics of
shock-bubble interaction, and, as a test case, to verify numerical methods [104, 86].

In the experiment, a circular gas-cylinder filled with helium was formed by a
microfilm-solution membrane in air. A shock-wave of Mach number of 1.22 was gen-
erated in air and hit the helium-cylinder. In simulation the case is treated as a
two-dimensional case and the same computational domain as adopted by Shankar et
al. [86] is used. Here a different reference system is adopted and the domain is shown
in Fig. 4.1.

The flow conditions are determined by the Rankine-Hugoniot jump conditions to
be:

e Pre-shock air :p = 1.20kg/m?, u = (0m/s,0m/s), p = 101325Pa, 7, = 1.4.

e Post-shock air: p = 1.65kg/m?, u = (114.7m/s,0m/s), p = 159060Pa, Yair =
1.4.

e Helium cylinder: p = 0.166kg/m?3, u = (0m/s,0m/s), p = 101325Pa, Vhetium =
1.667.

Uncertainties in shock-bubble interactions

In shock-bubble interactions, the experimental condition of the bubble is one of the

main sources of variation and thus uncertainty. Undesired test gas impurity inside
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the bubble and imperfect bubble shape are present in many shock-bubble interaction
experiments, whether membrane [26, 49] or no membrane [35, 105] is used for the
bubble formation, despite the careful control of experiment conditions. To perform
the uncertainty quantification, two uncertainty parameters are defined to represent
the variability typically observed in experiments.

The first uncertainty parameter & describes the amount of initial gas contamina-
tion inside the bubble, and a relevant range is derived directly from the error and the
methodology for the gas contamination estimation as described in the work of Haas &
Sturtevant [26]. The second uncertainty parameter & is introduced to represent the
initial bubble deformation that has been shown to be important in shock-bubble inter-
action experiments. The present methodology translates these uncertain parameters

into random quantities, so that the original problem becomes stochastic.

Uncertainty of gas contamination

The test gas impurity is a major source of uncertainty in shock-bubble interaction
experiments, and its effect on the interface evolution is reported to be significant in
the literature. In the numerical study of Shankar et al. [87], it is demonstrated by
means of a series of numerical simulations that in an air-SF'6 shock-bubble interaction,
the effect of an uncertain amount of acetone in the bubble (added to the bubble gas
for experimental image tracing purposes) on the evolution of the RMI and mixing
is not negligible. Zhai et al. [124] also studied the effect of the air contamination
inside a helium bubble in shock-bubble interactions and they concluded that the air
contamination has a significant effect on the bubble evolution.

In the experiment of Haas & Sturtevant [26], the authors reported that the helium-
cylinder was contaminated by 28% by mass of air. With reference to [26] (Section 6.1
in the literature), the evaluation of the air-contamination was based on the comparison
of the speed of sound estimated from the experiment, c.s, with the speed of sound of
pure media (1010m/s for pure helium). The authors calculated c.s by Cest = Vr/Mest,
where Vg is the measured velocity of the refracted shock, and M, is the estimated
Mach number obtained from the pressure measurement. They obtained c.q to be
910m/s for the weak-shock case and 833m/s for the strong-shock case; the mean
value from the experiments, 872m /s was used to estimate the air contamination, which
yielded the air-contamination of 28% by mass as reported. Further analysis reveals
that c.s is subject to errors, where the error of V is 10 to 20% as given in table 2 in
the literature, and the error of M, is not detailed. When the errors are taken into
account, c.¢ falls into the range of [1010m/s, 727m/s] (where the maximum is bounded

to be 1010m/s for pure helium). Based on this, the air-contamination in the helium-
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cylinder is selected as an uncertainty parameter, and its range is formulated based on
Cest, Which is [1010m/s, 727m/s| centered at 871.5m/s. This in turn corresponds to
an air-contamination by mass of [0%, 52.80%] (by volume of [0%, 13.40%)]), centered
at 28.45% (by volume 5.21%) corresponding to c.y; = 871.5m/s. Here the uncertainty
parameter, &, is denoted by the fraction of air by mass inside the bubble, f%" €

(0%, 52.80%)]. &; is assumed to be a uniform random variable as no information on its

probability distribution is available.

Uncertainty of bubble deformation

In most shock-bubble interaction experiments, the bubble is formed and designed to
have a perfect circular cross section such as the cylinders and spheres. Correspondingly
in simulations which are based on the experiments, a perfect circular shape is used as
the initial condition [24, 48]. However, as observed in experiments, when the densities
of the gas pair differ to a large extend, the bubble shape can deviate from a perfect
circular shape, e.g. approximately becomes a teardrop shape [26, 47, 48, 49]. When the
initial shape deviation is not precisely measured, its evolution becomes uncertain. For
example, as reported in the experiments of Layes & Le Metayer [48], the variation of
the radius of the spherical bubble can reach 2.0 4+ 0.3 mm. It is also noted that in the
numerical simulations of Giordano & Burtschell [24] which simulated the experiments
of Layes & Le Metayer [48], the initial bubble shape of a teardrop was represented by
a perfect circle in the simulations and no account of the shape deviation was made.

The deformation of a circular bubble to elliptical shape can also be observed in
the experiments using a retractable bubble injector with soap films [70]. When the
injector is retracted after the bubble formation, the bubble assumes a free fall (or rise)
inside the vertical shock tube, but an oscillatory motion initiated by the motion of
the retractable bubble injector is also observed, e.g. due to the surface tension effect
of the soap membrane film. While the bubble is falling (or rising) with an oscillatory
motion inside the shock tube, the shock wave is then triggered and it is thus plausible
when the shock approaches the bubble, its cross section is not perfectly circular but
assumes an elliptical shape.

On the other hand, an elliptical bubble hit by a shock was studied numerically
and experimentally, where based on numerical simulations, Ray et al. [73] purposed
an interface circulation deposition model for elliptical bubbles, and experimentally
Zou et al. [126] studied the interface evolution of elliptic gas cylinder with different
axis ratio in shock-bubble interactions.

As a generic approach to describe the bubble deformation, in the present work the

bubble is assumed to be elliptical with its axis along the streamwise direction varying,
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and define the uncertainty parameter, &, as the eccentricity, e = /1 — (b/ a)Q, where
b and a are respectively the semi-minor axis and the semi-major axis of the ellipse.

By the original definition of eccentricity, e € [0, 1]. Here, it is defined alternatively

1—(b/a)®> if ais along x-axis

e= :
—\/1=(b/a)® if bis along x-axis

and we choose e € [—0.5,+0.5] with the middle value at e = 0, i.e. a circle. It is

(4.1)

assumed that & to be a random variable with a uniform probability distribution.
Although it is possible that the air contamination leads to considerable difference

in bubble weight and, therefore, to bubble deformation, here it is assumed that the two

effects are not correlated. In the following, & and & are assumed to be independent

random variables.

Definition of quantities of interest

The interface evolution measured by the characteristic interface points and primary
vorticity production are considered as the quantities of interest to characterize the

simulation results.

Interface evolution and characteristic interface points

To characterize the simulation results of shock-bubble interactions, the first quantity
of interest is the evolution of the bubble interface. For code verification purposes, the
interface evolution is an important quantity of interest for the comparison between
different numerical results as well as the comparison with experimental results [86].
The characteristic interface points, namely the upstream location ¢*, the downstream
location ¢¢ and the jet ¢’ of the interface [26], are used to charteristize the interface
evolution. The volume fraction contour of 0.5 is used to define the interface location
for measuring the characteristic interface points.

The jet is of particular interest in certain studies such as the interaction of shock
waves with gas cavities in fluids. Its formation and evolution are key parameters to
characterize the cavity collapse [9]. On the other hand, the interface evolution is also
studied extensively by experiments [47, 49], where different geometries, e.g. bubble
length, vortex area, etc. of the shocked bubble under different gas pairs were recorded
for characterizing the shock-bubble interactions.

As shown below in section 4.4, the maximum variance is located at the vortex

position which cannot be measured by the characteristic interface points. Therefore,
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Figure 4.2: Helium bubble after the shock impact. Three characteristic points are
identified at the bubble surface [97].

to examine the interface evolution on the whole flow field, the density field is used to

illustrate the interface evolution in addition to the characteristic interface points.

Primary vorticity production

In a shock-bubble interaction, the vorticity generated in the system is strongly associ-
ated with the baroclinic generation of vorticity due to the misalignment of Vp and Vp.
The baroclinic vorticity production is the major mechanism of vorticity generation in
the early phase of interaction (vorticity deposition phase). In the subsequent time
known as the vorticity evolution phase, mechanisms including the secondary baro-
clinic effects, the vortex roll-up, the development of vortex cores, Kevin-Helmholtz
instability and Richtmyer-Meshkov instability come into play. The large-scale motion
breaks into smaller scales and eventually into turbulence. In this work, the focus is
on the uncertainty in the vorticity deposition phase - the period in which the shock
sweeps through the bubble (i.e. the shock travels one bubble-diameter distance). The
total vorticity, ¢*, which is the integration of the magnitude of vorticity over the entire

control volume, is employed as the second quantity of interest:

i = [ loldody . (4.2

where w is the vorticity defined as V x u, and u is the velocity.

This should be noted that the 3-dimensional turbulent mixing effects in shock-
bubble interactions cannot be simulated by a 2-dimensional setting as in the present
work. In this regard, as shown in [119] where the shock-bubble interaction of a SFj
cylinder in air is studied, the evolution of the circulation computed by 2-dimensional
and 3-dimensional simulations are comparable. Thus in this work, the 2-dimensional

simulations are deemed to be sufficient to compute the correct evolution of vorticity
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for a shock-cylindrical-bubble interaction as the quantity of interest.

The above uncertainty parameters and quantities of interest are generic to most
experiments of shock-bubble interaction. It should be added that other uncertainties
still exist in shock-bubble interaction experiments. As the case studied in the work is
concerned, they include the uncertain gas diffusion across the interface, the varying
shock strength; and the uncertainties due to the effect of the existence and the rupture
of the membrane for forming the helium cylinder, the effect of the intruding support
structure and the 3-dimensional nature in 2-dimensional simulations are difficult to
quantify. In particular, the varying shock strength can be a significant source of
uncertainty in shock-bubble interaction experiments. Nevertheless, as no systematic
estimate of the incident shock strength variation is available in [26], it is a reasonable
assumption that the authors has made their effort to present their results without the
significant influence from the uncertain incident shock strength, and correspondingly

the incident shock strength is not modeled as an uncertainty in this work.

4.3 Methods

Governing equations, numerical method and setup for shock-

bubble interaction simulation

To simulate the shock-bubble interaction, the basic two-phase compressible flow gov-
erning equation as presented in chapter 3 is adopted. For the simulation under the
uncertainty parameters & and &, the flow field is assumed to be symmetrical about
the center axis and thus only the top half domain is computed. The zero-gradient
boundary condition is imposed on the left and right boundaries, and the symmetry-
plane boundary condition is imposed on the top and bottom boundaries. The grid
resolution employed is Az/D = Ay/D = 0.01.

It should be noted that interface sharpening methods as detailed in the chapter 3
and more involved numerical methods [104, 86, 96] can be adopted for the recovery
of the small-scale structures of the interface in late times. However for the numerical
solution of the compressible Euler equations as an initial-value problem, no pointwise
convergence is expected [81] and thus it is difficult to obtain converged results for the
quantities of interest such as the total vorticity at late times. As the quantities of
interest in this work are the bubble large-scale structure and the total vorticity at
the vorticity-deposition phase, the basic numerical method without the anti-diffusion
interface sharpening is found to be sufficient for the purpose and is employed.

In order to verify the simulation code, and to demonstrate that the quantities of
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interest computed are accurate, a grid-convergence study is conducted and the results
are compared with other established numerical results for the base deterministic case
simulated by reference literature. This base deterministic case corresponds to for ==
28.45%, e = 0, f@" = 0. In Fig. 4.3, the characteristic interface points converge as
the grid refines (Whlch is also shown in chapter 3), and by comparing the results with
that of the experiment [26] and by other numerical methods [86], it can be seen that
the evolution of the characteristic interface points are in good agreement with the
reference literature. ¢' converges upon the refinement of the grid for t = 0 — 150us.
The evolution of ¢! also agrees with the observations of the study by Quirk & Karni
[69] where for ¢ = 0 — 60us, the shock front traverses one bubble-radius distance,
i.e. it sweeps through the windward side of the bubble, and ¢" bottoms out at around

t = 60us, which is the moment when the refracted wave emerges from the bubble.

Uncertainty quantification method

The objective of the uncertainty quantification is to evaluate the effect of the two

uncertainty parameters & and & on the quantities of interest (¢* with k = u,d, j,T').

The polynomial chaos approach is adopted to approximate the relationship be-

tween the output and the input ¢* = ¢*(&;, &) by a (truncated) polynomial basis:

P

(61, 6) = qusl,swzfmﬁ,sz , (4.3)

=0 =0

where ¢F are coefficients to be determined and 1), are orthogonal polynomials such
that

(Yirhj) = /:¢i(fla€2)¢j<€l7§2)dfld§2 =0,;Cy (4.4)

= is the domain spanned by the parameters & and & while Cj; is a normalization
constant [103] and §;; is the Kronecker delta. The coefficients gj can be obtained by

projection:

qk _ <qk(§1,§2),¢g(§1,§2))
‘ (Vetdy)

The evaluation of the coefficients ¢f requires the numerical evaluation of the inte-

(4.5)

grals in Eq. 4.5, where the details refer to [97] and are described in Appendix B.
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Figure 4.3: Top: space-time diagrams for the upstream position; bottom: total vor-

ticity against time. Solid line, Az/D = 0.0025, dashed line, Ax/D = 0.005; dotted
line, Az/D = 0.01.
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4.4 Results

The uncertainties in the initial conditions have a direct impact on the time evolution
of the helium bubble and the process of vorticity generation at the interface. Before
the shock impact, the variability due to the uncertainties in the initial conditions is
confined to the bubble density and shape, which can be observed in the first panel of
Fig. 4.4. Once the shock hits the bubble, the uncertainty is transported into the entire
domain. The density field of the shock-bubble interaction at different time instants
is reported in the subsequent panels in Fig. 4.4, which shows the resulting variability
of the interface location. The shock speed in the bubble is directly affected by the
density variability and as a result large variance in the shock location is also observed.
As for the vorticity generation at the interface, it is also directly affected by both the
uncertainty in air contamination, &;, and the variability in the initial shape of the
bubble, &. The respective effect of the 2 uncertainties on the quantities of interest is

described in the following sections.

Time evolution of the statistics of the quantities of interest

The analysis of the statistics of the quantities of interest is presented in this section.
First, the effect of the input uncertainties on the evolution of the interface in terms
of the three characteristic interface points, ¢%,q% ¢’, is studied. The evolution of
the mean location does not show significant difference from the nominal evolution
as reported in Fig. 4.3. On the other hand, the time evolution of the variability as
reported in Fig. 4.5 reveals the impacts due to the presence of the uncertainties. The
upstream tip of the bubble is first located at the origin of the domain to keep the
time of the shock hitting fixed. The uncertainty in the air contamination, &;, strongly
affects its location as the shock hits the bubble. In the initial phase, the variability
of the upstream location grows linearly in response to the variability in the bubble
density. At ¢ ~ 100us, the jet is formed and the variance of the upstream location
decreases for a small time interval, before it starts to increase again at ¢t ~ 200us.
This is a consequence of the overall reduction in speed of the upstream point once the
jet is detached. The jet location variability on the other hand continues to increase
strongly in an non-linear fashion until it impacts the downstream side of the bubble
(at t ~ 500us). The large variability in the relative position of the downstream and
the jet locations is also evident from the last panel in Fig. 4.4. The uncertainty in the
downstream location remains largely constant as it is mainly resulted from the initial
uncertainty in the bubble shape. The variability increases considerably when the jet
impacts the leeward side of the bubble at ¢ ~ 500us.
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Figure 4.4: Time evolution of the standard deviation of the density field [kg/m3].
The top figure corresponds to the initial conditions before the shock impact. The
uncertainty is confined to the bubble (air-contamination) and connected to its shape
(circular vs. elliptic). After the shock impact the uncertainty is transported into the
entire domain.
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characteristic points at the bubble interface (see Fig. 4.2).
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The evolution of the vorticity, ¢', is affected by input uncertainties mainly due to
variability of the baroclinic vorticity production at the interface, the misalignment of
the pressure gradient and the density gradient during the passage of the shock across
the bubble. The impact of the air contamination and bubble shape uncertainty on
the total vorticity generated during the interaction is reported in Fig. 4.6 in terms
of its mean and standard deviation. As for the characteristic interface points defined
in Fig. 4.2, the mean of total vorticity does not show any substantial difference with
respect to the nominal case. The evolution of the standard deviation on the other
hand shows the effect of the presence of the uncertainties. In the initial phase at
t ~ 100us, the standard deviation grows linearly and then remains fairly constant
up to t ~ 400us when the jet moves close to the downstream side of the bubble.
During the jet impingement, the variance increases considerably. To investigate the
effect of the input uncertainties independently and discern the uncertainty which has
a dominant impact on the vorticity, the standard deviation due to the combination
of both input uncertainties is reported in Fig. 4.6 (bottom) together with the effect

of only the air contamination or the bubble shape.

It is clear that in the first phase of the interaction (up to ¢ =~ 100us) the two
uncertainties have competing effects as illustrated in Fig. 4.7, the overall effect of air
contamination is dominant. Initially the impact of air-contamination is of primary
importance; the change in bubble density directly affects the amount of vorticity
deposited on the interface. In this phase, the effect of the bubble shape uncertainty
is limited to a change in curvature that is negligible for the cases considered here.
However, at t ~ 50us the variability induced by the bubble shape starts to increase
because the downstream edge of the bubble starts to move, and at the same time the
effect of the air-contamination is reduced because the shock propagates toward the

leeward side of the bubble in regions of reduced misalignment between Vp and Vp.

As mentioned earlier, a strong sensitivity to grid resolution and numerical meth-
ods is expected after the initial vorticity deposition phase. The results reported here
show that for a given discretization scheme and a fixed mesh, the initial conditions
might induce a similar increased sensitivity. On the other hand, the results of uncer-
tainty quantification rely on the numerical quadrature for computing the coefficient
of the polynomial chaos expansion of the quantity of interest (Eq. 4.3) as described
above. The statistical convergence of the output uncertainty is described in [97| and

summarized in Appendix C.
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Figure 4.6: Time evolution of the mean (top) and standard deviation (bottom) of the
total vorticity in the domain. STD; 5 refers to the variability due to the combination
of both input uncertainties while STD; and STD, correspond to the effect of the air
contamination and bubble shape respectively.
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Figure 4.7: Time evolution of the standard deviation of the total vorticity in the
domain.STD; 5 refers to the variability due to the combination of both input uncer-
tainties while STD; and STD, correspond to the effect of the air contamination and
bubble shape respectively.

Time evolution of the probability density functions of the quan-

tities of interest

The probability density functions (PDF) of the quantities of interest are studied and
presented in this section. In Fig. 4.8, the PDF of the downstream point is shown
when considering both the uncertainties or one at the time, where a dramatic change
of the shape of the PDF can be observed. In the initial phase, the PDF resembles a
uniform distribution which is consistent with the assumed input uncertainty. At later
stages, it has a very distinct peak which indicates that with a high probability, the
evolution is equivalent to the one resulting in the absence of uncertainties. The width
(support) of the distribution suggests that there is a large remaining uncertainty in
the evolution even at later stages, which is also indicated by the evolution of the
standard deviation. The individual effect of input uncertainty is shown in last two
panels in Fig. 4.8. where the PDF of the location of the downstream point induced
by the air contamination and the bubble initial shape are reported. The effect of air
contamination uncertainty &; is almost negligible after t ~ 300us, while the effect of

the uncertainty in shape & remains almost unchanged as time progresses.

The PDF of the total vorticity is reported in Fig. 4.9 and it confirms the dynamics
illustrated in Fig. 4.6. The largest variability observed at ¢t ~ 500us results in a broad
distribution. The effect of the air contamination and the bubble shape is comparable

at t =~ 100us and t ~ 800us while in the intermediate phases the first one dominates.
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Figure 4.8: Time evolution of the probability density function of the characteristic
downstream point (Fig. 4.2). Top: uncertainty in both the air contamination and
bubble shape; middle: uncertainty in air contamination alone; bottom: uncertainty
in bubble shape alone. The dashed line corresponds to the location of the downstream
point in the nominal conditions.
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4.5 Concluding remarks

The interaction of a shock with a helium bubble in air is investigated using numerical
simulations. The effect of uncertainties in the initial conditions on the dynamics of the
bubble interface and the vorticity generation process is studied in this work. The air
contamination in the helium bubble and the non-circular initial shapes are considered
as the two dominant sources of uncertainty and relevant ranges of probable scenarios
are defined according to experimental observations. A compressible gas model and
a discretization method based on the volume-of-fluid approach is employed, and the
uncertainties are characterized probabilistically using a polynomial chaos technique.

The results illustrate that the initial uncertainty strongly affects the evolution
of the interface, especially the location of the jet formed inside the bubble. A large
variability is also observed in terms of vorticity generation, where initially the air con-
tamination uncertainty dominates the variability of the quantities of interest, but in
the late time as the shock moves across the bubble, the effect of the shape uncertainty

becomes comparable.
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Chapter 5
Conclusions

In this work, the shock-bubble interaction under uncertainties have been investigated
by CFD simulations. The primary goals were to develop novel numerical methods,
suitable for two-phase flow simulations and shock-bubble interactions; and to investi-
gate and analyze the uncertainties in physical shock-bubble interactions by means of
simulations.

Correspondingly, a novel numerical method for maintaining the interface sharpness
in two-phase flow simulations based on VOF methods was developed and verified for
both incompressible and compressible regimes. Essential techniques for this interface-
sharpening method were developed including a specified discretization scheme and
stopping criterion for solving the anti-diffusion equation, and a consistent and con-
servative update of all flow variables in compressible-flow formulations. Numerical
results for incompressible regimes showed that the method is competitive even with
level-set approaches when similar discretizations are used for the level-set transport
as for the volume-fraction transport, so that both methods imply comparable compu-
tational cost. For compressible regimes, the simulations of shock-bubble interaction
shows that the interface sharpness can be maintained and more small-scale structures
recovered in a consistent and reliable manner as the grid resolution increases. Impor-
tant interface roll-up phenomena due to the Richtmyer-Meshkov instability and the
Kelvin-Helmholtz instability in shock-bubble interactions can be reliably simulated,
where the numerical results are comparable to reference high grid-resolution numerical
solutions based on adaptive-mesh-refinement algorithms. In summary, the proposed
interface-sharpening technique based on VOF methods offer a general numerical al-
gorithm for two-phase flow simulations where the conservation of the flow variables
is exact and the interface sharpness is maintained in the course of simulation. The
implementation of the interface-sharpening technique to other VOF underlying dis-

cretizations and industrial unstructured-grid CFD codes are straight-forward which
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makes the technique suitable for engineering applications.

A widely studied experimental case of helium-air shock-bubble interaction was
then studied by simulations. The initial condition of the amount of gas contamination
inside the bubble and of the deformation of the initial bubble shape were selected as
the uncertainty parameters, where the interface evolution and the total vorticity were
considered as the quantities of interest. The propagation of the input uncertainty
to the output quantities of interest by means of the stochastic collocation method
showed that the jet formed inside the bubble and the baroclinic vorticity generation
during the vorticity deposition phase are largely dependent on the bubble gas content
as well as the bubble shape.

As potential extensions of the current work, the interface-sharpening technique
can be applied to other two-phase simulations, such as compressible flow based on
other equations of state, with a necessary adaption of the formulation. Besides, the
uncertainty quantification of other shock-bubble interaction experiments, as well as
other experiments of fluid dynamics phenomena such as RMI, where the initial con-
dition (e.g. initial interface perturbations) is subject to uncertainty and believed to
have a strong influence on the flow evolution, can also be conducted based on the

methodology described in this work.
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Appendix A

Stability criterion for discrete

anti-diffusion equation

The relevant stability criterion for the discrete anti-diffusion equation is the local

extremum principle |65, 50, 11|, which in its strong form requires

1 1
5 min (Ai+1/204n7 _Ai—l/Qany 0) < Oé?fll - Oé? < 5 max (Ai+1/204n, —Ai—1/204n7 0)
(A.1)
This principle is satisfied by (2.11) under the condition
Ax?
AT = — A2
T=35 (A.2)

For the proof, it is assumed that
sgnAiH/Qa" = sgnAi_l/ga" >0

Eq. (2.11) can be rewritten as

ATD
CY?H/Q = Oé? - A—m2 (Ci+1/2Ai+1/204n - Oifl/QAifl/Qan) )

where

C'14-1/2 = SgHAiH/z&nmmOdiH/z
and A . A .

. i Q i—1/2¢¢

mmod; = minmod L/z, sgnd\; 100", —>
+1/2 <|Ai+1/go¢”| +1/2 |Ai+1/2a”]
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Given the above assumption, the above time-step constraint, and the properties of

the minmod function, it can be deduced that
0< (Ci+1/2Ai+1/204n - Cifl/QAifl/Qan) < A1'71/2@”

provided that A;i ;0™ > A;_j,a". For the converse case Ajiqp0™ < A;_jpa” it
can be obtained that

0 < (Ciy1/2Di11/20" — Ci1pAi_120™) < Ay ppa”

Thus, the local extremum principle is satisfied with respect to the upper bound.

With respect to the lower bound the principle is satisfied for the case
sgnA; 120" = sgnA;_; " <0
following the same procedure as above. For
sgnl 100" # sgnl; g pa”

it can be obtained that Cj;,/2 = Cj_1/2 = 0, and the principle is satisfied as well.
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Appendix B

Evaluation of coefficients of truncated

polynomial basis

The evaluation of the coefficients ¢} requires the numerical evaluation of the integrals
in Eq. 4.5. The Clenshaw-Curtis (CC) quadrature |7, 19| is used in this work, with
the basis functions 1y(;, &) defined as tensor product of one-dimensional Chebychev
polynomials. The CC approach requires the evaluation of the integrand in Eq. 4.5 at
a finite number N, x N, of locations within the domain (abscissas) spanned by the
variables & and &. This requires the evaluation of ¢*(£1,&;) at selected values of &;
and & and thus the solution of the original bubble/shock interaction problem with
different initial conditions. In the following, the collocated results are obtained by

using 17 x 17 abscissas (in total 289 computations).

The order P in Eq. 4.3 is chosen as P = (N, — 1)/2 by recognizing that the CC
quadrature with N, abscissas integrates exactly polynomials of order N, — 1. By
increasing N,, the evaluation of the integrals (4.5) is more accurate and the precision
of the polynomial chaos approximants 4.3 is increased. As shown in Appendix C, the
choice of N, = 17 and P = 8 leads to converged results.

Once the polynomial chaos coefficients g are computed, the statistics of the quan-

tity of interest g, can be studied in details. The expected value (mean), E[¢*], and

the variance, Var[g*], can simply be obtained by

P
El¢*] = / ¢*dedéy = > g ( / wz&d@) =q . (B.1)
= £=0 =

E[(¢")’] = / )2dérdE, ~ iingjk (/5 W%dﬁld&)

£=0 3=0
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= ZCU (Qf)Q ; (B.2)

£=0

Varlg"] = E[(¢")’] — (E[¢"])* = >_(af)* = (STD[¢"])" . (B.3)

=1

In addition to the statistical moments of the quantities of interest, one can also
evaluate the PDF by performing Monte Carlo sampling directly on Eq. 4.3. One im-
portant tool in understanding the propagation of uncertainties in a physical problem
is the determination of the relative importance (and effect) of each of the input un-
certainties. This can be accomplished by evaluating two additional polynomial chaos
expansions for ¢*(&;,E[&]) and ¢F(E[&], &) directly form the general expression in
Eq. 4.3 without requiring additional simulations.
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Appendix C

Statistical convergence of quantities

of interest

The evaluations of the integrals (4.5) is based on the use of 17 x 17 abscissas (289
computations). In order to verify the accuracy of the CC methods and the overall
accuracy of the polynomial chaos expression (Eq. 4.3), the collocated results using 9x9
and 5 x 5 abscissas is also computed observing that the CC quadrature is nested [19].
The results are reported in Fig. C.1 and it can be observed that the difference between
9 x 9 and 17 x 17 remains very small for the entire time interval considered. It is
worth mentioning that the computations of the standard deviation (and the variance)
requires the computations of all the polynomial chaos coefficients (up to order P) and
therefore is more sensitive to errors in the quadrature accuracy of polynomial chaos

truncation order.
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