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Abstract: Most results on distributed control design of large-scaterconnected systems assume a
central designer with global model knowledge. The wish forgey of subsystem model data raises the
desire to find control design methods to determine an optgoatrol law without centralized model
knowledge, i.e. in a distributed fashion. In this paper wespnt a distributed control design method
with guaranteed stability to minimize an infinite horizon k@st functional. The introduction of adjoint
states allows to iteratively optimize the feedback matsing a gradient descent method in a distributed
way, based on a finite horizon formulation. Inspired by ideasstabilizing model predictive control,
a terminal cost term is used, which gives a bound on the igfimitrizon cost functional and ensures
stability. A method is presented to determine that term iis&tiduted fashion. The results are validated
using numerical experiments.
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1. INTRODUCTION few results available for the analysis and design of disted
control systems with limited model information. The author

Due to new technological challenges, like increasing systein [Farokhi et al. 2012] investigate the best achievabléqper
sizes, or sharper efficiency requirements, the controlmglela  mance under structural constraints compared to a unsteattu
scale interconnected dynamical systems has become an-impggntrol law for fully actuated discrete-time linear systeihey

tant research direction. Practical applications includgous give the optimal control law for the case that the subsystems
distribution systems, like water, power and gas, or trartapo Only know their own model, and they state bounds on the
tion systems. Motivated by the advances in communicaticichievable performance for more general cases. In [Alarh et a
technologies, distributed control has emerged as a crtanal 2011] the authors present an approach for the specific system
for large-scale systems. Important results on distribatedrol, ~ Structure of line graphs with an application to vehicle ptats

e.g. [Rotkowitz and Lall 2006, Langbort et al. 2004], coesid and describe a suboptimal control design method where each
the situation where a central designer with global modehkno System only knows its predecessor. A different approacheo t
edge designs a structured control law and then passes the sdigtributed control design with limited model informatios
controllers to the subsystems. In some situations, howthier presented in [Martensson and Rantzer 2012a, Deroo et &] 201
centralized design approach might not be feasible. An igsate Which was extended to singular systems in [Deroo et al. 2013]
is becoming more and more important is privacy. Picture, foFheir approach is based on the assumption that neighbaeng,
instance, a situation with economical competitors in a physphysically coupled systems, are allowed and willing to carm
cally interconnected system, e.g. an electrical power.drid hicate. Based on the introduction of adjoint states, andgusi
such a scenario the individual subsystems naturally prefer simulated trajectories of the system, a linear state fegdba
keep model data to themselves as much as possible, and arematrix is iteratively improved using a distributed gradiele-
willing to share their model and other information with ateh ~ scent method to minimize a finite-horizon LQR cost functlona
designer. Furthermore, a global, overall model of a lagdes However, stability is not guaranteed from these results.

system becomes difficult to handle from a computationaloify, i haper we present an approach to determine a stabiliz-
of view, and centralized methods are likely to scale wors@ th i teedback control law where each subsystem uses model
distributed design methods [Martensson and Rantzer 2012 r1‘|owledge and trajectory information only from neighbgrin
Hence, distributed design and analysis methods are refjuire subsystems. The approach to achieve stability is inspiyee-b
Therefore, from now on we will consider the problentohtrol ~ sults from the model predictive control (MPC) literatureigth
design with limited model informatioifino centralized entity consider stability in combination with finite-horizon cdshc-

with global model knowledge exists. So far, there are only #onals [Chen and Allgwer 1998, Bitmead et al. 1990]. The
main challenge involves the determination of a suitableter

* The work is supported in parts by the German Research Foond@FG) Da| cost term that ensures stability. While this is Usua“?\@_lo )
within the Priority Program SPP 1305 "Control Theory of Dédly Networked  in @ centralized fashion, we present a method to determine it
Dynamical Systems” and the TUM Munich School of Engineering.




in a distributed fashion by distributedly solving a struet ) < 5 T
LMI condition [Deroo et al. 2014]. Afterwards, the gradient it Joo(t, 2, u) :/t o' (1)Qx(7) + u” (1) Ru(7)dr.

descent method from [Deroo et al. 2012] is used to determine (4a)
the actual feedback matrix. It should be stressed that trere

numerous results in the literature that solve structureinap s.t.i(r) = Az(r) + Bu(r) (4b)
control problems without the restriction to using only ridigr- u(t) = —Kyist:(7) (4c)
hood model knowledge, or approaches that repeatedly design Kyist is stabilizing (4d)

an open-loop input trajectory in an MPC-setting, see e@. thThe constraint (4d) is already implicitly included in (4dg)
survey articles [Necoara et al. 2011, Scattolini 2009]. lihé  pecause (4a) only has a finite value for a stable closed-loop
tation on model knowledge and the design of a stabilizinticsta system, but we state it for clarity.

feedback law, however, make the problem harder, and ragtrese .

the main contribution of this paper. Before we proceed we make several assumptions.

The remainder of the paper is organized as follows. In Seéssumption LSystem (2) has a sparsity structure, .. no sub-
. L e Vst i ted t th bsystem.

tion 2, the problem formulation is presented. Section 3 SihOWyS em IS_ connecte _oe\_/ery © e.r su sy: em
the necessary steps to distributedly determine an optioral ¢ Assumpt]o;‘: 2Tr?e We'lghtl'(”g matrb() € S has at most the
trol law with guaranteed stability. A numerical exampleiieg ~ S2Me neighborhood block sparsity structurelase. @;; = 0

in Section 4, and the paper concludes with a summary in Sefhenever(i, j) ¢ Ni. Note that this is the maximal allowed
tion 5. structure forQQ meaning that) can contain more zero blocks

than A. The weighting matrix? € S" | is block-diagonal. The
Notation. A zero matrix of dimensionsn x n is denoted block sizes result from the subsystem dimensions.

by Omxn, @ann x n-identity matrix is written asl;,,. The Assumption 3The feedback matrigist is constrained to have
term A e B denotes the Fr(gpbemus inner product of two Mag gparse, distributed structure such that communicatiowees
tricesA and B, i.e. trace AB"). The set of symmetria x n  ghsystems is only allowed among neighbors, Kgsti; = 0
matrices is denoted h§™. The set of positive definite matrices wheneverj ¢ ;.

s denoted bs: , , positive semi definite matrices i, . The Assumption 4We require that also during the design phase,

factthata matrixX € 87 or X € 8", is also writtenas{ > 0 X . .
€ o4 € oty - agents have only access to model and trajectory information

or X > 0, respectively. The column-wise vectorization of af their neiahborhood. i h inf i bout
matrix A ¢ R™*" is denoted by veel) € R™" rom their neighborhood, i.e. agehhas no information abou
agents that are not part of the 9¢t

Assumption 4 has the consequence that both the design and the

2. PROBLEM FORMULATION implementation of the control law = — Kyisx is distributed.
. . . . 3. CONTROL DESIGN WITH NEIGHBORHOOD
In this paper we consider an interconnected system camgisti
. L= X . INFORMATION
of N linear time-invariant subsystems. The dynamics of sub-
systemi are

In this section, we describe how we design a distributedrobnt
N law in a distributed fashion using only neighborhood infarm
() = Az (t) + Z Aijxi(t)+ Biu;(t), x:(0) = 2,0, (1)  tion. Afterwards, we explain how stability is guaranteethgs
= a terminal penalty term in the cost functional and how to idete
J#i mine this penalty term in a distributed way.

wherez; € R™ is the stateu; € R™: is the input,4;; € - . L
Rni X, émdB,- c R™>*m:_The overall system is g concatena-3-1 Adjoint states and gradient descent direction

tion of the subsystem states and is compactly written as
) y pactly In this section, we briefly describe how the gradient of th&t co
&(t) = Az(t) + Bu(t), z(0) = o, (2) functional with respect to the individual entries of thedback
n m =N N matrix can be computed using neighborhood informations Thi
wherez € R", u € R™, n=33;"  njym =32 my. is in parts a recapitulation of results from [Deroo et al. 201
The interconnection structure of the overall system (2pjsr 2013, Martensson and Rantzer 2012a]. For more details, we
resented by a grap#i(V, £). The vertex seV represents the refer the reader to these papers.
set of subsystem§l,..., N}, and an edgéj,i) € & iff the ; ; } o
block A, 2 0, . Hence, iff subsystemis influenced by We'conS|der the mtercpnnected LTI-systém and the finite
J 7 i X1 T ) . horizon LQR cost functional
subsystem there is an edgéj, i) € £. We define the following T
subsets of the graptNou; = {j|(i,j) € £} are the nodeg J(t,zu) =2 t(f;“ ty)Sz(t +1y)
influenced byi, Nin; = {j|(j,7) € £} are the nodeg that fo T
influence node and we define the set of neighboring nodes as + /t 2 (1)Qu(7) +u (1)Ru(r)dr.  (5)
the union of both as Assumption 5.5 € S” satisfies the same sparsity structure
N ={jl(i,j) € EV (4,1) € E} = Nins UNowri- (3) restrictions as() from Assumption 2, i.e.S;; = 0 when-
’ ever(i,j) ¢ N;.

In this paper, we design a stabilizing distributed feedba , _ ' . .
matrix Kgist and therefore consider the following optimizatioﬁfg{w:énm]oref}ovxqe (?g;'gﬁé(] f?o rﬁ (g)l; rﬁf:ldl\;t/.h;r\;\/eerf(l)?]t;?;jrhtlﬁe

problem: e . . .
finite horizon case for now will become clear soon as we will
see that an appropriate choice fobounds/,.



We formulate the Lagrangian of the problem with objective (5(linearly) but generally leads to better results [Deroo ket a

and constraints (2) given by 2012].
T e Remark 1.In order for the subsystems to be able to simulate the
L(t,z,u) =27 (t +t5) St +t5) + /t 2" (1)Qu(7) z—trajectories described by (1) and therajectories described

T T . by (7), the subsystems need to know their respective rows and
+u” (1) Ru(r) + AT (1) (2(7) — A (7))dr columns of the matrix4 5. That means that they need to know
+ plz(t) — ) (6)  how they are influenced by their neighbors, and in turn how
where z; is the initial condition of the state for the time they influence their neighbors. In addition, the nodes need t
interval [t,t 4 t]. Based on (6), we derive the dynamics ofexchange the simulated trajectory data during the algurith
the adjoint statea () by requiringg—’; =0as Because the approach is based on simulated trajectories, th
: T T physical neighborhood topology described by the undickecte
A7) = —ARA(T) +2(Q + Kt K dist) 2 (T), version of graphg is essentially the minimal required infor-
At +ty) = =28z(t +t5), p=—A¢t), T€[t,t+1s]. (7) mation exchange topology in order for Algorithm 1 to work.
Sincey is not necessary in the following, we disregard it buGiven state trajectories from other subsystems that arelinot
it gives us the justification thax(¢) is free whileA(t + t;) is  rect neighbors, each subsystem could compute additional en
fixed. Given Assumptions 2 and 5, the dynamics of the adjoirtties of the feedback matrix up to the full matrix thus pobsib
states (7) have the same neighborhood structure as thaalrigisacrificing privacy for improved performance.
sys.;tem @) o o ) ) So far we have designed a control law for a finite horizon
Using these adjoint states it is possible to formulate thelignt  cost functional. In the next subsection we will see that an
of the cost functionall with respect to the feedback matiix. appropriate choice of the terminal cost weighting mat$ix
Proposition 1. The gradient of the cost functional (5) with allows us to find a control law that gives an upper bound on the
respect to the control law blocKsyis:;; is given by infinite horizon cost functional,, and thus an upper bound on
t+ty the optimization problem (4).
(Vigad)ij = / —2Ru;x] + Bl Nizldr  (8)
' 3.2 Guaranteed stability
Proof. See [Deroo et al. 2012].

In this subsection, we describe how we use the terminal cost
weighting matrix.S to guarantee stability of the solution of
Algorithm 1 by applying reasoning from MPC methods.

Using the proposed gradient descent direction, the fofigwi
algorithm is used to find a (possibly sub-)optimal contrel.la
The suboptimality may result from the fact that the problem i

non-convex. The principle of MPC is that an optimal control problem over
Algorithm 1. a finite time-horizort; is solved, using recent state measure-
ments to obtain an optimal open-loop input trajectary-).
Then only the first part of the input trajectory is appliedie t
system for the duratiod\t and is then re-optimized. In [Chen
and Allgbwer 1998] it is shown that using MPC, guaranteed
stability is achieved when the optimization problem comsea
terminal cost term of a specific form. The idea is to determine
the terminal cost term in such a way that it gives a bound on
1 (& [tttr . the infinite horizon cost functional. Therefore, we combine
(Vkasd)ij ~n Z/ —2Rjui w5, method from the previous subsection with the terminal cies i
1=1"1 from MPC in order to obtain a stabilizing distributed cohtro

(1) Simulate the states; ;(¢) of System (2) for a finite hori-
zonT for every initial conditione; with i =1, ..., n.

(2) Simulate the adjoint states; ;(¢t) for the same finite
horizonT in the backwards direction.

(3) Every agent calculates the respective entries of théi-gra
ent by

. - law obtained in a distributed fashion without centralizeodel
+ B iy dr (9)  information. Note that since we do not consider any conssai
_ . on the input or state, the optimization problem (4) is always
(4) For each neighboring agefitupdate feasible. We adopt the notation from the MPC literature that
k+1 k k z(T: i icti i i
Kéisuj) _ K(gis)m_j — (Vg ‘])z('j)' (10) z(r;2(t),t) is the prediction of the state trajectory at time

) S ) . L using state information from timg andz*(7; z(t), ¢, t + ty)
with a Barzilai-Borwein step lengtly, which satisfies the s the optimal predicted state trajectory at timaising state
Armijo rule [Deroo et al. 2012]. information from timet with optimization horizort .

(5) If all ||(VKd,stJ)§f)\| < ¢ or if a different stopping
criterion is satisfied, stop. Otherwise, incredsand go
back to 1.

To achieve stability, we propose a two step algorithm irespir
by the results in [Chen and Aligver 1998] but instead of
a classical centralized viewpoint, we put emphasis on our

As the initializing feedbacks),, every choice is possible that distributed setting for large-scale systems.

satisfies the allowed structure of the control law. An obsiou|, the first step, the subsystems try to design a decentdalize
choice would be the zero matrix of appropriate size. (block-diagonal) control laws gec Which stabilizes the system,
The attentive reader will have noticed that Algorithm 1 doe&Sing only local model data. To ensure that the system can be
not use the gradient formula from (8). The modified formulgtabilized using a decentralized feedback law we have t@mak
in the algorithm serves an averaging purpose to get rid &p€ following assumption.

the dependence on the state initial conditianused in the Assumption 6.System (2) does not contain any decentralized
trajectory simulations. Naturally, this increases thegtesffort  fixed modes.



In a next step the agents determine a solutiBry) to the linear J*(x(t),t,t +ty)

matrix inequality t+ty
. . = ¥ (s;x(t),t,t +t1)QT* (s;x(t), t,t +t
Af, diagP',..., PYN) +diag P',..., PV)Ag,, /t T (siw(t) bt + ) QT (si0(t), 1 6+ )
— —
A 4+ a* (s;a(t),t,t+ tp)RU*(s;x(t), t,t + 7)ds
T
70 (Q + Kaecltaeo) =0, (A1) 4 ™ (4t a(t), 6,8 + ) ST (E + Ly 2(t), bt + ).
Q Kyec (15)
o4 - ) .+ Forr in the current control time intervét, ¢ + At¢], the control
\évgr?;;ﬁtl(d“ = A — BEaecandy > 0is a pre-specified input is determined througlkyst and the state trajectory is

) identical to the predicted trajectory, i®.s) = z*(s; z(¢), t, t+
Remark 2.Note that we restrict> and Kec t0 be block- . for any s ¢ [¢, 7]. Assuming the suboptimal feedback
diagonal. This limitation introduces a restriction on the s

lution space and hence might involve conservativenes®. If u(t) = {—Kdistff(t)’ O<t<t

is not block-diagonal, thePAg,, has a different structure —Kgeqr(t), t>ty.

than the original system, if(4ec is not block-diagonal, the is applied to the system, the generated trajectories argatine
term K. .RKqec Would violate the pattern. The sparsity strucas the ones from the optimization timeexcept for the shifted
ture is not strictly necessary to find a solution to (11), bsea part in the time intervalt + t¢, 7 + t¢], so we have that
without it the LMI just takes the form of the centralized Caser(s; x(r),7) = &*(s;x(t),t,t + ty) forall s € [1,¢ + t]
in [Chen and All@wer 1998]. The structure is, however, the ) ‘ o
key to the distributed solution of (11) which is shown in tlesn [N order to determine the value of the cost function for
subsection. If one is able find a sparsity patternfaand Kgec (1> + At] we have to compute the cost generated in the new
that is not block-diagonal but still retains the neighbartio Partof the optimization interval, namefiit-¢ 7, 7+ ]. With the

structure of the original system, these choices still althw Ch0Sen input we know that in that time interval (13) is satfi
distributed solution. Integrating (13) in the interval of intereBt +¢;, 7 + ¢ 7| gives

(T 4ty (1), T)TSf(T +tp (1), 7)

If the solution of the LMI is a positive definit® and positive), T4ty

the decentralized control law is stabilizing, otherwisageds +/ Z(s;2(7), 7)T Qi @ (s; (1), 7)ds

to be redesigned to achieve stability. The solution is usekée t+ts

following lemma. ST (t+tra(t), 6t + 1) ST (t+tr;2(t), 6t +tf).

Lemma 1.Given a solutior( P, §) to the LMI (11), a stabilizing ysing that, we can bound the value of the cost functional
decentralized feedbaakt) = —Kuecr(7) and by settings = for 7 ¢ (¢, ¢ + At] as

%, the infinite horizon cost functional. (¢, z, u) is bounded 7y (7)) 7 7 + ty) <
from above by the terminal cost term as

t+ts
o0 / T (s;2(t), 6t + 1) QryeT (s32(1), t,t +tf)ds
z(t)) T Sa(t)) > / 27 (1)Qx(7) + uT () Ru(r)dr. (12) T
t + @ (g a(t), bt + ) STt +tpa(t), tt+ 1),
whereQg,, = Q + Kl R K. Combining this with (15) and
Proof. By differentiating z” Sz along a trajectory of sys- knowing that/* is optimal, we get for- € (¢, + At]
tem (2) and using (11), we get T ((r), 7,7+ t5) < J(x(7), 7,7 + tf)
) < J*(x(t), t,t+t
V= %.’L‘TSI' =aT (AL, S+ SAk.)r < 2" Qg < 0. - T(x( ) 2
(13) — [ e Qrarts)ds. a8)
Integrating both sides frorty to oo and knowing thatiyec is ¢

stabilizing gives the result from (12). With @ >~ 0 andR > 0, this means that the value function is

always non-increasing.

After having obtained the terminal cost term, in a seconflote that the proof follows [Chen and Atigver 1998] closely
step t_he systems design a dlstrlbl_Jted contro_l ¥ using  putis adapted to the feedback input of this paper.
Algorithm 1 whereS = % is used in the terminal cost term.

Next, we show that with this feedback control law the optimayVith that result we finally formulate the following theorem.

value function is non-increasing. Theorem 1.Given Assumptions 2, 3, 5 and 6, the closed-loop
Lemma2.For 7 € (t,¢t + At] the optimal value function Of system (2) with an MPC implementation of the inpuit) =
satisfies — Kistz(t) resulting from Algorithm 1 withS = 7’} from (11)

T (r), 7+ ) < T (t), 6, + t5) is asymptotically stable.

i Proof. We define the functio? (z) = J*(x,t,t + t5). The
T T ) Uy
*/t ™ (5)Qx(s) +u” (s) Ru(s)ds. (14)  function has the properties:
e V(0)=0,V(z) > 0forz #0, _
Proof. At time ¢, the optimal feedback input*(; (), ¢, t + e along the trajectory of the closed-loop system, there is for
ty) is computed ag* = —Kgig@* and we additionally have 0<t <tp <00

the optimal predicted state trajectasy (-; «(t),t,t + t5) on _ < _ "o
[t,t 4 ts]. Then, the value of the optimal value function is V{z(t2)) = V{z(t) < L (B)Q(t)dt,  (17)



where Lemma 2 is used. We now show asymptotic stability, i.és not sufficient for the presented method of solving (11).
for everye > 0, there isn(e) > 0 such that||z(0)|| < n(e) However, it is possible to extend the communication topplog
implies||z(¢)|| < e forall ¢ > 0 [Khalil 2002]. From (17), we of the network such that Assumption 7 is satisfied.

get The principle approach here is to formulate an optimization

V(z(00)) < V(x(0)) _/ 2T (1) Qx(t)dt. problem that includes (11) as a constraint, to decompose the
0 constraint [Kim et al. 2011] and then to apply distributed
BecauséV (z(c0)) > 0 andV(x(0)) < B > 0, the integral optimization methods [Meinel et al. 2014]. It turns out that
must exist and it is bounded. Clearly the closed loop systefor the solution of the optimization problem only neighbooki
given by (2) with feedbacki = — Kz is uniformly con-  information is necessary.
tinuous. Hence, we can apply Barbalat's lemma and conclude . L ]
that||z(£)|| — 0 as ¢ — 0, which implies asymptotic stability. First, we formulate the following optimization problem:

N
Again, note that the proof follows [Chen and Adlyer 1998] . _s4 T2 9P pl2 18a
but is adapted to our needs. 56]15%1123": * 2 + 1—21 2 I I (182)
We have thus proven stability of an MPC-implementation ef th s.t.(11), (18b)
feedback control law. = — Kyisiz. Because the design of the P'—6I, =0 forl=1,...,N, (18c)

feedback law with Algorithm 1 is independent of currentetat \\here the convexity parametes ando - have to be chosen
measurements no repeated re-optimizatio gé is necessary g priori. It can be shown that (11) has a feasible solutiomdf a

for an MPC-implementation, and we can continuously applyp|y if the optimal objective function value of problem (1i8)
the feedback law for all times. Note that this result res@sbl negative (which then also impligs> 0). For details, we refer

the centralized, full-information control case [Bitmealad [Deroo et al. 2014].

1990] where the optimal MPC control law corresponds to a

static state-feedback. We would like to stress again that thn order to decompose the LMI (11), it is necessary to ex-

presented control scheme is not technically a model pieict press it in a basis ofS™. Let N' = {1,...,n} and de-

method, but a static feedback law. However, the reasonarg fr note by E;; the n x n symmetric matrix whose compo-

the MPC literature is required to prove stability. nents(i, j) and(4,4) are 1 and all others are 0. Note that the
set{E;; : (i,j) € N x N, i < j} forms a basis o§™. Also,

3.3 Distributed computation of terminal cost term we define the indices of theh subsystem block as

-1 l -1 l
In the previous subsection we have shown how we determinela= {Z ni +1,..., Z m} x {Z ni+1,..., an} )
stabilizing feedback control law = — Kgiix using a terminal i=1 i=1 i=1 i=1

cost term which involves the solutiaiP, 6) of (11). Because Wherel =1,..., N,

Algorithm 1 runs using only information from neighbors it _ - .

would be undesirable if more than neighborhood informatioNeXt’ forf) =1L...,Nand(i,j) € I, we define

would be necessary to determine a solution of (11). Hence, in F* = —vQKqeor

this subsection we apply a method developed in [Deroo et al. 1 AT B 54 TR
2014] to find(P, §) using only neighborhood information. ? (—AkeBij — BijAry,) i<,

I e
Because of the _block-diagonal structures}bfa_nd Kyeo, the Fij = 3 (—A;T@%Eji - EjiAKdeC) ifi> 4,
problem of solving (11) clearly has a sparsity structure re- - Az];decEij — EjjAx,, if i = J.

lated to the structure of the matrid. We denote byA a
matrix where all zero entries of blocks,; with j € A, are Withi; =i — Y.\ n, it follows that (11) is equivalent to
set to arbitrary nonzero values. Then the structure of (81) i N

given by the binarization of the symmetric part.¢f denoted F(P,5) := F° + Z Z FL.P.. =0,

by ASY™ = Bin(|A| +|A|T), where| A| denotes the component- S

wise norm ofA. The structure is also described by the undi- | . . .
rected grapiG, = (Vu, ), where(j, i) € &, iff Af;’m £ 0. and it follows that problem (18) is equivalent to

=1 (i,5)€Z;

Note that unlike in the graply, here an edge signifies the _ o N oo

presence of an individual entry in the matrix instead of arixat . 5652 +Y 51 I P % (19a)
block. In [Kim et al. 2011] the authors show how to decompose enre 1=1

an LMI-condition using the so-called range-space congersi s.t.F(P6) = 0, (19b)
method. The method, however, works only when the sparsity pl_ §I,, =0forl=1,...,N. (19¢)

structure of the problem corresponds to a chordal graphcéien
we have to make the following assumption. o _ .
Assumption 7.G, is a chordal graph. Definition 1. We define [Kim et al. 2011]:

o . SC={XeS8": X;;=0if (i,j) ¢ C x C}YC C N,

A chordal graph is defined to be a graph where every induced Sf _ {X €S X+ O}VC C N,

cycle has length less thah In other words, every cycle of o T

length> 4 has a chord, i.e. an edge joining non-consecutive” (C) = {(i,j) € Cx C : 1 <i<j<n}VC CN.

vertices of the cycle [Gross and Yellen 2004]. Examples ofhe cliquesC of the graph are subsets where each node is
graphs that are chordal graphs include line and star graphsaaljacent to all the other nodes of the subset. Given the nzdxim
well as trees. If7,, does not satisfy this assumption and is not @&liques (cliques that are no subsets of other cliqugs) .., C,
chordal graph by itself, local communication with neigtdor of G,,, define



J:OJ(O

T(i,5) ={s:i€Cs, jeCs} V(i,j) € J.

Then the LMI (19b) can be decomposed in the following

way [Kim et al. 2011])
Eje Y Y*—E;eF(P§)=0
sel(i,5)
for (i,7) € JandY* € 8¢  fors = 1,...,p.
With this it follows that problem (19) is equivalent to

in -0 752 art ) pl 20a

s 0+ +; | P [%  (20a)

s.t.él, —P' <0forl=1,...,N, (20b)

> Y*—EjjeF(P6) =0for(ij)€J (20c)
seT(4,5)

Ve eS8 fors=1,...,p. (20d)

To solve problem (20) in parallel we apply the distributeaxpr

imal center algorithm (DPCA) [Meinel et al. 2014, Necoard an
Suykens 2008]. This optimization method uses dual decomp

sition to distribute the computation. As the objective fiimc
of (20) is not strictly convex, the differentiability of thggadient

N
> AyE;eF°+1-) Mel,,

(i,5)eJ =1

Xy = Z —AijEij,
(,5)€J(Cs)

Xps = Z AapEap ® Fl + M, for (i,§) € T,.
(a,b)eJ

As the Lagrangianl is separable ins, P',..., PV, and
Y, ...,YP, the corresponding dual objective function

_ 95 2}
JA M) = melﬂg{ w50+ 507 p +
N g pl
: P
> min {~XpeP'+ 2| PE )+
=1 €

P
E min
s=1

— X5 eY? +
yeesTs { v e

ve |3},

can be evaluated in parallel and is continuously diffeedé
due to the uniqueness of the solutiofis\, M), P'(A, M),
an dY*(A, M). Furthermore its gradient, given by

of the dual objective function cannot be guaranteed and thus

a strictly convex regularization of the dual function wolne

necessary in order to apply the DPCA. To remedy this drawback

we consider the following optimization problem

. O pi Oys
. —5+f52+lzl r ||PlHF+Z YelI%
(21a)
st. I, —P'<0fori=1,...,N, (21b)
> Y*—EjjeF(P)=0for(i,j)eJ, (21c)
SED(i,])
veeSYfors=1,...,p (21d)

As before it can be shown that (11) has a feasible solution
and only if the optimal objective function value of problefi}
is negative [Deroo et al. 2014].

In order to formulate the dual problem of problem (21) coasid
the corresponding Lagrangian with dual multipliarend M

L(8,P,Y,A, M)

—5+—62+Z
—i—ZMlo
1=1

gys

- Pl +Z

s=1

Y*|E

(61,, — P")

+ > Ay | Eje > Y- EjeF(P9)

(i,5)€J s€l(4,5)

N
— g0+ %52 +y (ijg o Pl %np%)
=1

p
> (X evr+ Do)
s=1

where

Va, f(AM)=FE;je Z Y* (A, M)
sel(i,5)
— Eye | FO5(A, M) +Z > FLPL (A M) |,
=1 (i,j)€T;

Vo f(A, M) = 6(A, M)I,,, — P (A, M)
for (i,5) € Jandl = 1,..., N, is Lipschitz continuous with
Lipschitz constant

P Nc
L= NEe, I /ows +>_ (IF2 +1) fop+
s=1 =1
Z (EijoFO)Q/J(;Jrn/J(s,

(i,5)eJ
where Ec, € RIJ(C)Ixn” s the matrix that contains the
rows E;;(:)T for (i,5) € J(C,) andF! e RU/Dxni is the
matrix that contains rows$E,; e Filjl, o By e F\zn 1z,0)
for (a,b) € J [Deroo et al. 2014].
Having obtained the smooth dual function we apply the DPCA
to maximize it in parallel.
Algorithm 2.(Distributed solution of (11)). Faot > 0 do

(1) GivenM“* and componentd”., the agents compute in

l]’

parallel
61 = argmin {—xgé + @52} ,
5eR
PUFHL — argmin {—Xﬁ3 opl 4 70 HPl||F}
Ples™
Y*F*! — argmin {—Xf/ oys + IV ||Ys||F}
veesys
fori =1,...,N ands = 1,...,p. Moreover, they send

gk+1, pbE+l “andy = #+! to the agents that require them
to update their dual iterate.

For(i,j) € Jandl =1,..., N, the agents do in parallel
(2) Givensk+1, pLk+1 andy**+! compute



Va, f(AF, M*) = Ejje Y yoit!

s€r(ing)
N
0 sk+1 I plk+1
—Ejje [FOs* 4+ > FLpE
=1 (i,5)€Ty

Vszf(Ak’]W'k) _ 5k+1]'nl o Pl’k+1.
(3) Find

L 2
Yikf:ar max{ — — Yi‘—Af»
! 1%jER { 2 ( ! J)

+ VAijf(Ak,Mk)Yij},

L
HWF = argmax { — —||Hl — MlkH%
HleSY! 2

+ Vo f(AF, MF) .Hl}.

(4) Find
L
Z,kj = argmaxs — —ij
Zi;€ER 2
k i1 -
+ Z 2vAijf(AJ7M])Z’ij}1
j=0
Thk = argmax { — —||TZH%7
Ttes™!
LN ] o
+3 LTV f (0, M) .Tl}
j=0
(5) Set
k+1 2
AFFL — Yk 7k
K ki3 s
MR k+ le,k 2 Tk
k+3 E+3"

(6) SendAf; andM"* to the neighboring agents.

While some of the subproblems in Algorithm 2 may loo

(22)

(23)

essary iterations to achieve a desired accutaafythe approx-
imate solution of problem (21) can be computed in advance.

Remark 3.Note that several adaptations to the algorithm are
possible. One is to implement the algorithm using evenethas
communication [Meinel et al. 2014].

Remark 4.Note that all steps in Algorithm 2 require only
neighborhood information except the computatiory oHow-
ever, the variabléd can be computed distributedly through a
consensus if the size of the system is known.

4. NUMERICAL INVESTIGATIONS

In this section, we demonstrate numerically that the feekiba
P

law obtained with Algorithm 1 where = 3 is obtained
through (11) is stabilizing. For this purpose, we randonmtc

ate 100 unstable test systems, each with 20 subsystems, and
every subsystem has two states. The systems are createthin su
a way such that the subsystems can stabilize the system with
decentralized LQR control laws designed with only their own
decoupled modely = I,,, xn,, R = 1001,,, xm,). Afterwards,

we determine solutions to (11) both with Yalmip dtberg
2004] (Sy) and with Algorithm 2 Ggist). Then, we determine
distributed control laws< st with Algorithm 1 for four sce-
narios: (1)t; = 1 andS = Sy, (2)ty = 1 andS = Sgist,
3ty = 1andS = Opxn, Bty = 10 @andS = Opxn.

The other weighting matrices a€g¢ = I,,x, andR = L, xm.

The first two scenarios are chosen to compare the results of
the distributed algorithm 2 with the results from Yalmip.eTh
third one is used to see if the additional terminal cost tereme

has an effect, whilé¢4) investigates the influence of a longer
optimization horizon on stability.

The results are summarized as follows: For scendfi®ps(2)
and (4) all 100 systems are stabilized with the distributed
control law. For scenari@3) only 46 systems, so less than half,
are stabilized without the terminal cost term. This dematss
that the terminal cost term leads to a stabilizing contrel. la
Note that the terminal cost term leads to an increase ofibeIa

in Algorithm 1. The results are summarized in Table 1. The
principle behavior of Algorithm 1 is shown in Figure 1a where

e plot the average of the achieved cost over the iterations.

challenging at first glance, there are actually small-scaised W also see that if the horizan is sufficiently long and n& is
form solutions for all of them. For instance, the solutiom foysed, we can achieve stability as well. However, the corapari
Yk in step 1 is determined as follows [Deroo et al. 2014]of scenarios (4) and (3) — in both casgs= 0 — shows that it
Consider the spectral decomposition of the symmetric matris difficult and in no way obvious without global knowledge

X3 given by

xp 030" = @@ (5 ) ()

whereX contains the non-negative eigenvalues@f. Then
the optimal solutiony***! is the projection on the positive

semidefinite part oy, i.e.
Ys,]g.t,_l _ Q+E+Q£
Oys '
Identically, we get solutions faf/-:* and7"*.

(24)

which horizon is “long enough” to guarantee stability. The
tuning of the horizon to achieve stability without givingagu
antees can then turn into a “playing of games” [Bitmead et al.
1990] and makes clear why the presented approach involving
the terminal cost term is preferable.

Additionally as a comparison of the results of Yalmip witle th
distributed Algorithm 2 we compare the costs of the resgltin
control laws obtained withSy and Sgist and the maximum
relative difference is less than 0.25%. This indicates that
distributed algorithm gives results that are very closeht® t
centralized results even though only neighborhood infiona

Note that Algorithm 2 only leads to an approximate solutios used, and demonstrates the applicability of the digithu
because it is based on dual decomposition. However, the capproach. To illustrate the behavior Algorithm 2, the iating
vergence of the above Algorithm follows with Theorem 3 inend part of a typical cost evolution for different values loé t
[Deroo et al. 2014] where it is shown that the number of ne@accuracy parametetris shown in Figure 1b.
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5. CONCLUSION singular systems with privacy constraints 4t IFAC Work-

shop on Dist. Estimation and Cont. in Netw. Sys. (NecSys)

In this paper we present a distributed control design methdehrokhi, F., Langbort, C., and Johansson, K.H. (2012). r@iti
with guaranteed stability that only requires informatioxr e  structured static state-feedback control design withtéohi
change with neighboring subsystems. Stability is achidwed  model information for fully-actuated system#utomatica
introducing a terminal penalty term into the finite-horiZoQ 49(2), 326 — 337.
cost functional. A method is shown how to determine th&ross, J.L. and Yellen, J. (2004)landbook of Graph Theory
penalty term in a distributed fashion using distributedropta- CRC press.
tion methods. Subsequently, the feedback matrix is condput&halil, H.K. (2002). Nonlinear Systemsolume 3. Prentice
using an iterative gradient-descent method. Because tlye on hall.
global information that has to be known is the system siz&im, S., Kojima, M., Mevissen, M., and Yamashita, M. (2011).
privacy of the subsystems is maintained in the sense that sub Exploiting sparsity in linear and nonlinear matrix inedties
systems need to share their dynamic model only with a limited via positive semidefinite matrix completiorMathematical
number of agents. The effectiveness of the approach isatatid ~ Programming 129(1), 33-68.
through numerical investigations. Langbort, C., Chandra, R., and D’Andrea, R. (2004). Dis-

Table 1. Comparison of the approach involving the new tributed control design for systems interconnected over an

terminal cost term and without the new terminal cost term  @rbitrary graph. IEEE Trans. on Automatic Cont49(9),

1502-1519.
withS | S = 0nxn Lofberg, J. (2004). Yalmip : A toolbox for
# stabilized systems out of 100 100 46 modeling and optimization in MATLAB. In
Average # iterations for Algorithm 1} 15.5 9.8 Proceedings of the CACSD Conference URL
http://users.isy.liu.seljohanl/yal np.
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