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Cogito ergo sum 

René Descartes, Discours De la Méthode, 1637 
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Abstract 
The key high-throughput technology to interrogate the proteome on a large scale is Mass 

spectrometry (MS) based proteomics. To interpret the resulting experimental data, computational 

proteomics plays a critical role. A major challenge is the reliable identification of protein sequence, 

function and post translational modifications. To this end, a popular approach is database searching, 

strongly relying on protein sequence databases to reflect the actual biological protein space and 

subsequent statistical result validation. 

However, current protein sequence databases are not complete and build with sequence clustering, 

not illustrating the peptide centric and inference-prone nature of proteomics data. To reduce 

indistinguishable proteins by MS-based proteomics in protein sequence databases, a peptide centric 

clustering algorithm was developed. The algorithm is implemented as a module in a pipeline, termed 

mass spectrometric centric database (MScDB), accepting various source protein sequence databases 

as input and generates a single consensus database as result. MScDB increases the peptide to 

protein ratio in databases in comparison to sequence clustering and also enables the identification 

of peptides and putative single amino acid polymorphisms not present in UniProtKB.  

The merit of including multiple databases to increase the theoretical search space, is also extendable 

to nucleotide databases. With the advent of next-generation sequencing more genome and 

transcriptome data is readily available and subject of proteogenomics. To alleviate an issue of 

proteogenomics, to derive a valid set of peptide and protein identifications from multiple database 

searches, a tailored strategy was conceived, including peptide spectrum match (PSM) grouping, an 

objective PSM quality criteria and the notion of genome inference. In applying the strategy on a 

porcine biological sample comprising nine juvenile organs and six embryonic stages, enabled 

refinement of known and identification of novel gene models. Additional is the unprecedented 

protein evidence useful to supplement the ongoing functional and structural genome annotation 

process. 

To validate results of database searching in MS-based proteomics, a common statistical measure is 

the false discovery rate (FDR). A large (> 200,000) peptide and phosphopeptide reference library was 

synthesized to enable the objective assessment of the FDR and other analytical parameters. The 

synthetic peptides were fragmented with higher-energy collisional dissociation (HCD) and electron-

transfer dissociation (ETD), searched with Mascot and Andromeda to derive local and global FDR 

models as a function of the search engine score. Furthermore is the library a valuable resource to 

benchmark phosphorylation site localization tools (MD-Score, PTM-Score, PhosphoRS) and derive 

false localization rate models. The design of the library, also gives the means to compare the 

retention time behaviour of modified and unmodified peptides in a reverse phase liquid 

chromatography system.  
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Zusammenfassung 
Die zentrale Hochdurchsatztechnologie, um das Proteom im grossen Stil zu erforschen, ist 

Massenspektrometrie (MS) basierte Proteomik. Angesichts der Interpretation der daraus 

resultierenden experimentellen Daten, spielt Computational Proteomics eine entscheidende Rolle. 

Eine große Herausforderung ist dabei die zuverlässige Identifikation von Proteinsequenz, -funktion 

und posttranslationalen Modifikationen. Zu diesem Zweck ist ein beliebter Ansatz, die 

Datenbanksuche, welche sich stark auf Proteinsequenzdatenbanken zum Widerspiegeln des 

tatsächlichen Proteinraums und nachfolgender statistischer Validierung verlässt. 

Allerdings sind aktuelle Proteinsequenzdatenbanken nicht vollständig und mit Hilfe von 

Sequenzgruppierung konstruiert, die nicht den Peptid-zentrischen und Inferenz-geneigten Charakter 

von Proteomikdaten veranschaulichen. Ein Peptid-zentrischer Gruppierungsalgorithmus wurde 

entwickelt, um ununterscheidbare Proteine für MS-basierte Proteomik zu reduzieren. Der 

Algorithmus wurde als Modul einer Pipeline implementiert, welche als Massenspektrometrie 

zentrische Datenbank (MScDB) bezeichnet wird, und verschiedene 

Quellproteinsequenzdatenbanken als Eingabe akzeptiert und als Ergebnis eine einzelne 

Konsensusdatenbank generiert. MScDB erhoeht das Verhältnis von Peptid zu Protein in 

Datenbanken im Vergleich zur Sequenzgruppierung und ermöglicht zusätzlich die Identifizierung von 

Peptiden und vermeintlichen Einzelaminosäure-Polymorphismen die nicht in UniProtKB vorhanden 

sind. 

Der Vorzug mehrere Datenbanken einzubinden, um den theoretischen Suchraum zu vergrössern, 

kann auch auf Nukleotiddatenbanken erweitert werden. Mit dem Aufkommen von Sequenzierung 

der naechsten Generation sind mehr Genom- und Transkriptomdaten ohne Weiteres verfügbar und 

somit Thema der Proteogenomik. Zur Erleichterung des Proteogenomikaspekts, eine valide Menge 

an Peptid- und Proteinidentifikationen von multiplen Datenbanksuchen abzuleiten, wurde eine 

maßgeschneiderte Strategie konzipiert, einschließlich Peptid Spektrum Match (PSM) Gruppierung, 

objektives PSM Qualitätskriterium und der Begriff der Genominferenz. Unter Verwendung der 

Strategie an einer biologischen Schweineprobe, die neun jugendliche Organe und sechs 

Embryonenstadien umfasst, ermöglichte diese die Verfeinerung bekannter und die Identifikation 

neuer Genmodelle. Zusätzlich ist der neuartige Nachweis von Proteinen nützlich, um den laufenden 

funktionellen und strukturellen Genomannotierungsprozess zu ergänzen. 

Zur Validierung der Datenbanksuchergebnisse in der MS-basierten Proteomik, ist die False Discovery 

Rate (FDR) ein wichtiges statistisches Mass. Eine große (> 200.000) Peptid- und 

Phosphopeptidbibliothek wurde synthetisiert, um die objektive Beurteilung der FDR und anderer 

analytische Parameter zu ermöglichen. Die synthetischen Peptide wurden mittels stossinduzierter 

Dissoziation mit hoher Energie (HCD) und Elektronentransferdissoziation (ETD) fragmentiert, und mit 

Mascot und Andromeda gesucht, um lokale und globale FDR Modelle als Funktion des 

Suchmaschinenscores abzuleiten. Darüber hinaus ist die Bibliothek eine wertvolle Ressource für das 

Benchmarking von Tools zur Lokalisierung der Phosphorylierungsstelle (MD-Score, PTM-Score, 

PhsophoRS) und um False Localization Rate Modelle abzuleiten. Das Design der Bibliothek, 

ermöglicht auch das Retentionszeitverhalten von modifizierten und unmodifizierten Peptiden in 

einer Umkehrphasen-Flüssigkeitschromatographie zu vergleichen. 
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Genomics, transcriptomics and proteomics  

 
The ultimate goal of biological sciences is a holistic view on the building blocks of life, cells, in 

particular their components and interplay on a molecular level. The key component is the 

deoxyribonucleic acid (DNA), a molecule that encodes the instructions to sustain the cellular 

functions. The instructions, also referred to as genes, are fundamental to express other vital 

components, including ribonucleic acid (RNA) and protein molecules.  

To systematically interrogate structure and function of the myriads of components in cell types, 

body fluids, tissues and organs, necessitates large scale and high throughput technologies. Hence, 

the last decade brought forth major technological advances leading to the omics era with key 

disciplines such as genomics, transcriptomics and proteomics, that facilitate routine DNA- and RNA- 

sequencing (RNA-Seq) 1 of more than 100 million base pairs (bp) and profiling of thousands of 

proteins per day 2, 3. 

 

In 2001, the Human Genome Project was the result of a 10 year concerted effort to sequence a 

single 3.3 billion bp genome 4. With the advent of next generation sequencing (NGS) a few years 

later, even personal genome sequencing was feasible, as in the 1000 Genomes Project, resulting in a 

genome per day 5. In addition has NGS also revolutionized gene expression analysis, giving the 

means to characterize and quantify RNA in the dynamic range of six orders of magnitude 6. 

In comparison 7, is the challenge for complex proteomes even more difficult, exceeding seven in cells 

to ten orders of magnitude in body fluids 8, requiring highly sensitive methods. The emerging 

technology over the last years for in-depth proteomics profiling, was mass spectrometry (MS) based 

proteomics 9.  

 

The amount and complexity of data generated by these high throughput technologies poses a 

challenge to manual curation and requires automatic mechanisms. Therefore the field of 

bioinformatics 10 plays a critical role, covering major research areas such as data integration, 

sequence analysis (structure), annotation and expression analysis.  

In particular, MS-based proteomics requires novel, sophisticated bioinformatics algorithms and tools 

to tackle the associated computational challenges. This new area of bioinformatics is referred to as 

computational proteomics 11 - 14. 

 

Mass spectrometry based proteomics 

 
MS-based proteomics covers protein sequencing, quantification, post translational modifications 

(PTM), protein-protein interactions (PPI), localization and structure 15. In contrast to the DNA- and 

RNA- NGS methods featuring single nucleotide resolution and upcoming direct readout, is MS-based 

proteomics a multi-step process to characterize protein sequences and modifications. 

MS-based proteomics (Fig. 1) is divided in two prevalent paradigms, namely “top-down” and 

“bottom-up”. In “top-down” are the intact proteins subject of the analysis, whereas the more 

common “bottom-up” proteomics approach requires proteolytic digestion of the proteins into 

peptides prior to the analysis (shotgun proteomics) 16. 

In general a mass spectrometric measurement is, the analysis of an ionized analyte (e.g. peptide, 
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protein) in gas phase. To this end, the analyte is ionized in an ion source, measured by a mass 

analyzer to determine the mass-to-charge ratio (m/z) and a detector to register the number of ions 

at each m/z value (intensity). To depict the result, the intensity values are plotted as a function of 

the m/z values, and is referred to as mass spectrum. To derive in MS-based proteomics the amino 

acid sequence the mass spectrum is processed with various computational strategies. 

The next paragraphs outline briefly the major experimental and computational steps of the “bottom-

up” approach. 

 

 

 
 
Figure 1. The default MS-based proteomics workflow (adapted from 16). The workflow comprises, 
sample preparation, protein digestion, peptide separation, sample ionization and the mass 
spectrometric analysis. 
 

 

Sample extraction 
The biological samples analyzed in a MS-based proteomics experiment consist of various sources 

such as cell culture systems, tissues, body fluids or organs. Each sample type may be subject of 

methods to sort, dissect or isolate a subpopulation of the originating source, depending on the 

sample homogeneity 17, 18. The subsequent sample preparation to extract the proteome, comprises 

diverse strategies to access insoluble proteins and proteins localized in organelles or membranes 19. 

 

Protein separation 
The limited analytical capacity of the mass spectrometer requires pre-fractionation of the extracted 

proteins to scale down the complexity of the proteome. The most common techniques are one- or 

two-dimensional gel electrophoresis or affinity chromatography 20. Gel electrophoresis is a generic 

technique to separate the complete proteome. In contrast, affinity purification reduces the 

complexity of the sample by capturing specific proteins, complexes or protein classes 21. 

In gel electrophoresis are proteins separated in native or denatured conformation based on their 

size and charge. In one-dimensional gel electrophoresis, polyacrylamide gel electrophoresis (PAGE) is 

the method of choice in conjunction with sodium dodecyl sulfate (SDS). SDS is a strong detergent 

(denaturation of proteins) that wraps around the polypeptide chain to provide a uniform charge to 

mass ratio. The coated proteins are separated by size in the acrylamide gel applying an electric field 

to enable the migration of the proteins. Subsequent staining with coomassie brilliant blue or silver 

visualizes the separated proteins as bands. A merit of gel electrophoresis is the removal of unwanted 

byproducts of the biochemical protein (sample) preparation such as salts and detergents.  

 

Protein digestion 
The gel bands are excised and usually digested by proteases, i.e. enzymatical cleaving of the protein 
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sequence at specific sites into peptides. The most common protease is trypsin, cleaving the carboxyl-

terminal side of arginine and lysine residues, generating suitable peptides for the mass 

spectrometric measurement. Notable features of trypsin are the high specificity (few miss 

cleavages), and the length of peptides generated, due to the frequency of arginine and lysine in 

protein sequences. Alternative proteases with consistent and predictable cleavage patterns are 

among others Lys-C, Asp-N and Glu-C. 

Even though prior protein separation by gel electrophoresis is beneficial, alternative methods have 

been developed, which employ a digestion of proteins in solution or on filter devices. However, 

these approaches require additional dimensions of peptide separation to cope with the increase of 

sample complexity. 

 

Peptide separation 
The complexity of the resulting peptide mixture is unmanageable for an in depth mass spectrometric 

measurement and therefore subject to an additional separation step, namely one- and two-

dimensional (2D) chromatographic fractionation. The chromatography is column based and makes 

use of the physicochemical properties inherent to each peptide, such as electrical charge (ion 

exchange) and hydrophobicity (ion-pairing reverse phase). PTMs require additional methods to 

separate and enrich peptides, due to the low stoichiometry and / or low abundance 22 - 26. 

The general concept of chromatography comprises a stationary phase and a mobile phase (solvent 

and analyte). The physicochemical interaction of the analyte and the stationary phase influences the 

elution order and the retention time.  

In ion exchange chromatography, in particular strong anion exchange (SAX) chromatography, 

contains the stationary phase cationic groups which interact with anionic analytes. SAX is frequently 

used in combination with ion-pairing reverse phase chromatography to achieve an orthogonal 

separation (2D). Ion-pairing reversed columns separate analytes due to the non-polar stationary 

phase and an aqueous (polar) mobile phase (gradient) with an ion pairing reagent such as formic 

acid modulating the retention time of ionic analytes. 

 

Ionization 
In general, the analytes have to be ionized and transferred into the gas phase, to be amenable for 

the mass spectrometric analysis. To ionize the analyte, so called soft ionization methods, which do 

not fragment the analyte upon ionization, such as matrix assisted laser desorption / ionization 

(MALDI) 27 and electrospray ionization (ESI) 28 are common in MS-based proteomics (Fig. 2). 

In ESI the eluting peptide fractions pass through a capillary with an electrostatic potential generating 

charged droplets. In the transition the droplet solvent evaporates and contains mostly peptides with 

two or more protons ([M+nH]n+). Ionization occurs following two major theories, the Ion Evaporation 

Model (IEM) 29 suggests that ionized peptides at the surface of the droplet are extracted and ionized 

by field desorption or as in the Charge Residue Model (CRM) 30 is the solvent evaporating almost 

completely, leaving the charges of the droplet on the peptide. 
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Figure 2. Electrospray ionization (adapted from 16). A peptide mixture is separated with liquid 
chromatography and subjected to the ion source resulting in ionized peptides based on the IEM and 
CRM model. 
 

 

Mass analyzer 
To direct the ionized analytes through the mass spectrometer electrostatic and or magnetic fields 

are applied by mass analyzers. In general the mass analyzer determines the mass to charge ratio 

(m/z), but also enables the ion transfer, selection and fragmentation. Mass analyzers with different 

principles of functions and features are commonly employed in MS-based proteomics, such as time-

of-flight (TOF) 31, quadrupole, ion traps, orbitrap and fourier transform ion cyclotron resonance (FT-

ICR) mass analyzer. 

Quadrupole mass analyzers comprise two pairs of parallel rods with an oscillating electrostatic field 

(quadrupolar field), resulting in a spiral trajectory of the analyte. To select a specific m/z, the field 

frequency and amplitude are modulated leading to stable trajectories for the selected m/z value, 

while undesired ions are ejected or collide with the rods 32. Quite similar is the working principle of 

ion traps, where ions are kept in a (quadrupolar) field, the modulation of the electrostatic field 

parameters ejects ions of specific m/z value that can be detected. A particular advantage is the 

accumulation of ions, while ion traps and quadrupole mass analyzers suffer from low resolution 33 - 

35.  

Orbitraps are based on the principle of the analyte oscillating around a central spindle, separating 

ions with different m/z values due to the oscillation frequency. The frequency is inversely 

proportional to the analyte m/z value and applying Fourier Transformation will result in the actual 

m/z value 36, 37.  

 

Tandem mass spectrometry 
To identify peptides different paradigms are used, namely peptide mass fingerprinting (PMF) 38 - 40, 

accurate mass and time tag (AMT) and tandem mass spectra (MS/MS). In contrast to PMF is MS/MS 

not solely relying on the mass of the peptide but also acquiring sequence level information to derive 

a valid peptide sequence. 

In MS/MS, ions of a particular m/z are selected in the first mass analyzer, subsequently fragmented 

and resulting fragment ions are then measured by a second mass analyzer. The use of two separated 

mass analyzers is referred to as ‘tandem in space’, while sequential use of the same analyzer can be 

viewed as ‘tandem in time’. 

A commonly employed ‘tandem in space’ setup is the combination of an ion trap and a FT-ICR or 
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Orbitrap mass analyzer, featuring high accuracy and resolution of the Orbitrap readout and, fast 

scanning time for the readout of fragment spectra in the ion trap. Other tandem configurations are 

the triple quadrupole (QQQ) comprising a Q1 mass analyzer as m/z selection, Q2 as fragmentation 

and Q3 as filter or scan of fragments as well as, quadrupole and TOF (Q-TOF) and quadrupole and ion 

trap (Q-TRAP). 

 

Fragmentation 

To derive the peptide sequence information, the peptide backbone has to be fragmented, common 

techniques are resonance-type or beam-type collision induced dissociation (CID), electron transfer 

dissociation (ETD), electron capture dissociation (ECD) and post source decay (PSD). The peptide 

sequence is fragmented in CID based on the collision with inert gas molecules (He, N2, Ar), the 

resulting kinetic energy is converted to internal energy ultimately breaking the weakest peptide 

bonds. The resulting fragments are referred to as b- and y- ions depending on whether they contain 

the N- or C- terminus of the peptide. In ETD an electron donor reacts with the peptide ions and 

transfers an electron. This leads to a radical anion and the unpaired electron configuration is so 

unstable that peptide bonds are rapidly cleaved. The resulting ions are c- and z- fragment ions. The 

process can diminish the sensitivity because of charge reduction 41 - 43. In general is CID more 

advantageous for peptide sequence determination and ETD for modified or large peptides due to 

marginal cleavage bias. 

 

Liquid Chromatography tandem mass spectrometry (LC-MS/MS) 
The coupling of liquid chromatography and tandem mass spectrometry enables the separation and 

mass spectrometric analysis of highly complex peptide mixtures. Most commonly, LC and MS are 

coupled via an ESI interface (LC-ESI-MS/MS). Miniaturization of the ESI interface and the LC flow 

rates lead to the development of nanoLC and nanoESI systems which feature a dramatically 

increased sensitivity compared to standard ESI approaches 43, 44. NanoLC is advantageous for low 

sample quantities and nanoESI features a 100% ionization rate with no ion suppression, i.e. 

reduction of  ionization efficiency of the analyte of interest due to competing molecules. 

The prevalent chromatography in LC-MS/MS is ion-pair reverse phase. Advantage is the volatile 

solvents used in reverse phase and the direct coupling to the ESI source (on-line configuration).  

 

Peptide and protein quantification 
MS-based proteomics is also used for peptide and protein quantification. To quantify, the main 

strategies are the relative and absolute quantification 45 of the analyte. In recent years absolute 

quantification gains popularity with strategies such as selected reaction monitoring (SRM) and 

multiple reaction monitoring (MRM) 46. A comprehensive and critical review is available by 

Bantscheff et al 47. 

 

Computational proteomics 

 
MS-based proteomics relies on computational proteomics to process the raw data into interpretable 

biological information, comprising spectra pre-processing, identification, quantification and 

statistical validation 48, 49. 
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Spectra preprocessing 
The experimental mass spectra comprise noise as well as isotopic and charge state variants of the 

analyte, requiring pre-processing to simplify the spectrum for further analysis 50. 

First, the spectrum is subject to noise reduction, discriminating electronic noise, chemical noise (e.g. 

sample handling) and the signal of interest. The signal of interest should ideally have the highest 

intensity. In MS-based proteomics various approaches are used to remove noise and / or select a 

peak, such as local maximum detection to wavelet analysis 51, 52 In addition the signal intensity in the 

mass spectrum has to be normalized to distinguish noise from real signals (signal to noise ratio) 53, 54. 

Second, the peptide of interest may occur at multiple m/z values due to the natural isotope 

distribution (isotope envelope) of its atomic constituents, requiring the reduction to one 

monoisotopic peak (deisotoping) 55, 56. In tandem mass spectra an additional step is to collate 

fragments in different charge states to one state, referred to as charge state deconvolution 57, 58. 

The MS preprocessing is error-prone and in cases of false monoisotopic peaks or undeterminable 

charge states, precursor mass errors can be corrected based on the MS/MS spectrum. 

 

Peptide sequence assignment to MS/MS spectra 
The processed MS/MS spectra (peak lists) are subject to various peptide identification strategies. To 

assign a peptide sequence to a spectrum, the experimental MS/MS spectra are correlated against 

theoretical spectra from a protein sequence database (database search approach) or against spectra 

from a set of interpreted spectra (spectral library searching) 59 -62. Other strategies, directly infer the 

peptide sequence from the spectrum (de novo approach) 63, 64 or combine strategies (hybrid 

approaches). In hybrid approaches, a short segment of the spectra (highest intensity) is interpreted 

with de novo sequencing (sequence-tag) reducing the number of theoretical candidate peptides 

from a sequence database to search against 65, 66. 

 

Sequence database searching 
The most common peptide identification approach is database searching (Fig. 3). To this end, the 

search engine compares the peak lists against theoretical peptide fragment mass lists generated 

with a proteolytic in silico digest of a (protein) sequence database and several search criteria. The 

most important criteria comprise, enzyme digestion, post-translational or chemical modifications, 

parent ion mass tolerance, type of fragment ions and the fragment ion tolerance. As a result, the 

search engine reports a set of peptide spectrum matches (PSM) ranked by a score 67. 
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Figure 3. Sequence database searching (adapted from 49). Correlation of experimental (acquired) 
and theoretical spectrum constructed from a protein sequence database. The candidate peptides 
are ranked based on a score, reflecting the quality of the match. 
 

 

Databases 

A sequence database is indispensable to database searching, illustrating the potential identifiable 

entities of a single or multiple organisms. Additional is the content of databases varying, due to 

manual or automatic curation, mostly reflecting the quality of the database 68.  

In MS-based proteomics the default database type, are protein sequence databases, provided by 

consortia such as UniProt, European Bioinformatics Institute (EBI), Wellcome Trust Sanger Institute 

or National Center for Biotechnology (NCBI). In general, are protein sequence databases, the result 

of integrating genome and transcriptome information, namely expressed sequence tags (EST), 

complementary DNA (cDNA) or messenger RNA (mRNA), and at times supplemented with protein 

level evidence.  

With the advent of next generation sequencing, arises a plethora of genomes and transcripts even 

down to a cell specific level. To make use of this genomic information in proteomics, the field of 

proteogenomics is providing the means to combine sequence data from various sources and make it 

attainable for database searching 69 - 71.  

In database searching, sequence databases constitute the theoretical search space, and therefore 

restrict the number of peptides assigned to a spectrum, also referred to as candidate peptides. 

 

In silico digest 

To generate the candidate peptide list and respective theoretical fragment spectra to compare the 

experimental against, the amino acid sequence database is subject to in silico digestion, considering 

the protease cleavage pattern, missed cleavages as well as fixed and variable modifications.  

The in silico digest, simulates a biological protease, including incomplete digestion caused by unread 

cleavage sites, also referred to as missed cleavages. Another parameter to consider are  

modifications, occurring on all acceptor amino acids (fixed) or on some (variable). The parameters 
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influence the combinatorial peptide space and therefore the list of candidate peptides for each 

spectrum. 

To filter the candidate peptide masses, the database searching parameter ion tolerance is 

considering the accuracy of the mass spectrometer to detect a parent (precursor). 

 

Construction theoretical spectrum 

To construct a spectrum from the candidate peptide list, the fragmentation type is a vital parameter. 

The theoretical fragmentation, results in a complete spectrum that would consist of all possible 

peaks or in a sparse spectrum under consideration of fragment type probabilities. To derive the peak 

intensities, three types are used, namely the uniform theoretical spectra (UT spectra), fragment 

theoretical spectra (FT spectra) and residue theoretical spectra (RT spectra).  

After filtering the peptide fragment spectra based on the fragment ion tolerance, the resulting 

candidate list is ranked based on a score. 

 

Scoring  

The score (S) is a measure for the matching similarity or quality of the experimental and theoretical 

MS/MS spectrum. The spectral comparison algorithms, include simple dot product, cross-

correlation, empirical rules and statistical fragmentation frequencies. The cross-correlation function 

is the most popular, implemented in search engines, such as Mascot 72, Andromeda 73, Sequest 74 

and OMSSA 75. 

A naive approach is the dot product or inner product of all matching peak intensities of the 

theoretical (T) and experimental spectra (R), following 

 

  ∑  
   
 

 

   

 

 

where n is the number of matching peaks. The cross correlation function, introduces a relative 

displacement factor to measure similarity more exact between spectra (τ ≠ 0). 

 

  ∑  
     
 

 

   

 

 

Each candidate MS/MS spectrum is scored, resulting in multiple score-ranked peptide spectrum 

matches (PSM) to each experimental MS/MS spectrum. 

 

Statistical confidence scores and error rates for peptide to spectrum matches 
A major issue to assign correct peptide sequences to a spectrum is among others data generated by 

low mass accuracy mass spectrometers. Multiple approaches are in use to distinguish true and false 

identifications. To assess the confidence, a single PSM or the whole dataset can be considered. 

 

Single spectrum confidence scores 

The best hit of a PSM, can be converted into a p-value or E-value 76, in looking at the score 

distribution of all candidate peptides to the spectrum (null distribution). The significance can be 
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derived in comparing the best match against the null distribution 77 - 80. The E-value takes into 

account the scores of all expected peptides with equal or higher score than the observed, assuming 

peptides are matching the MS/MS by chance. 

 

Posterior probabilities and false discovery rates (FDR) 

In the presence of many MS/MS spectra is the p-value not discriminative alone and requires multiple 

testing correction. A common approach in MS-based proteomics is the false discovery rate (FDR) 81, 82 

as correction. Two concepts are prevalent, the global FDR on the entire PSM collection and the local 

FDR (posterior “error” probability) for individual PSMs. 

 

Target-decoy strategy for FDR assessment 

To assess the (global) FDR a common approach is the target-decoy strategy (TDA) 83. Therefore the 

MS data has to be searched against a target and decoy database (Fig. 4). A basic assumption for the 

approach is the decoy peptide sequences and false matches in the target database follow the same 

distribution 84 - 86. After filtering the PSMs (e.g. ion score cutoff Mascot), the target and decoy PSMs 

are used to calculate the FDR: 

 

FDR = Nd / Nt, where d (decoy) and t (target) 

 

Decoy hits correspond to false positive and target hits are true positive identifications. The 

construction of the decoy database (e.g. random or reverse) can vary but in general does not 

influence the outcome 87. The target and decoy can be searched separately or concatenated. 

 

 

 
 
Figure 4. Target-decoy approach (adapted from 49). Comparison of experimental spectra against 
theoretical spectra from a target and decoy database to estimate the false discovery rate. 
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Mixture model methods for computing posterior probabilities and FDR 

PeptideProphet 88 uses the EM-algorithm to fit a bimodal distribution (unsupervised) into the 

distribution of PSMs to distinguish true and false PSMs (mixture model), referred to as empirical 

Bayes approach 89. The correct identifications are a gaussian distribution and the incorrect a gamma 

one. PeptideProphet may be also supplemented by decoy hits to make the estimation more robust 

(semi-supervised) 90. 

 

 

Post translational discovery (PTM) discovery 
MS-based proteomics is capable of identifying and localizing thousands of transient and stable PTMs, 

such as O-GlcNAcylation, methylation, acetylation, ubiquitination and phosphorylation. 

Modifications play an important role as cellular regulatory mechanism. 

The strategies range from the conventional database search with user-defined PTMs to unrestrictive 

or “blind” searches trying to cover all possible post-translational or chemical modifications 91 - 94. 

 

The most interesting PTM is phosphorylation, involved in many aspects of the cell regulatory 

response 95 - 97.  

In contrast to default database searching, are multi stage search strategies, first assessing high 

quality spectra and sequence, second identify PTM and position. This post-processing strategy is 

common to supplement the search engine score with a measure of the reliability of the modification 

site localization. Two strategies are quite common, probabilistic approaches 98 - 101 (e.g. PTM-Score, 

A-Score, phosphoRS) to assess the chance of randomness in the site assignment and a delta 

approach (e.g. Mascot Delta Score), search engine score difference for different localizations 102, 103. 

A concept to validate the localization of a PTM is the false localization rate (FLR), similar to the FDR. 

The concept requires decoy residue site localizations, except in the case of synthetic peptides, where 

a true FLR can be derived. 

 

Objective and outline of the thesis  
Computational proteomics is an upcoming field with a multitude of challenges to solve due to the 

ever increasing technological advance in mass spectrometry. A central task of computational 

proteomics is the correct assignment of peptide fragment spectra to a sequence. In the common 

database searching approach, assignment issues arise from the database size, unexpected peptide 

modifications, sequence conflicts or variants, number of missed cleavages or complete absence of 

the sequence in the database 104 - 106. The objectives of this thesis were to address a few of these 

issues, namely improve the sensitivity of peptide identification in respect to the database size and 

content, validation of peptide identification and phosphorylation site localization. 

 

Chapter 2 describes a novel clustering approach to build a protein sequence database representing 

the peptide centric and inference-prone character of MS-based proteomics data. The peptide centric 

clustering algorithm is part of a pipeline, referred to as mass spectrometry centric protein sequence 

database (MScDB). In contrast to common sequence clustering approaches, is MScDB increasing the 

peptide to protein ratio in a comparable protein sequence space and hence enables the 

identification of peptides and putative single amino acid polymorphisms not present in UniProtKB. 
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In chapter 3 a large (> 200,000 peptides) synthetic peptide and phosphopeptide library was 

generated to derive objective false discovery rate (FDR) and false localization rate (FLR) models. The 

library is a valuable resource for the evaluation of peptide identification algorithms, such as Mascot 

and Andromeda. Additional benchmarks of common phosphorylation site localization tools, namely 

Mascot Delta (MD) Score, PTM-Score and PhosphoRS, were performed. The information about true 

and false identifications helps to address fundamental issues in MS-based proteomics, such as 

database search result validation, phosphorylation localization and the chromatographic behavior of 

modified and unmodified peptides in a reverse phase HPLC system. 

 

Chapter 4 covers the merits of MS-based proteomics for annotation of the recently sequenced 

porcine genome. The proteogenomic analysis, is based on a tailored strategy to combine search 

results from multiple database searches, an objective criteria to filter low scoring peptide 

identifications and the notion of genome inference. The results suggest improvement in existing and 

identification of novel gene models with unprecedented protein evidence from juvenile organs and 

embryonic stages.  
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Abbreviations 

 
AMT accurate mass and time tag 
bp base pairs 
cDNA complementary DNA 
CID beam-type collision induced dissociation 
CRM charge residue model 
DNA deoxyribonucleic acid 
EBI European bioinformatics institute 
ECD electron capture dissociation 
ESI electrospray ionization 
EST expressed sequence tags 
ETD electron transfer dissociation 
FDR false discovery rate 
FLR false localization rate 
FT spectra fragment theoretical spectra 
FT-ICR Fourier transform ion cyclotron resonance 
IEM ion evaporation model 
LC-MS/MS liquid Chromatography tandem mass spectrometry 
m/z mass-to-charge ratio 
MALDI matrix assisted laser desorption / ionization 
MD Score Mascot delta score 
MRM multiple reaction monitoring 
mRNA messenger RNA 
MS mass spectrometry 
MS/MS tandem mass spectra 
MScDB mass spectrometry centric protein sequence database 
NCBI national center for biotechnology 
NGS next generation sequencing 
PAGE polyacrylamide gel electrophoresis 
PMF peptide mass fingerprinting 
PPI protein protein interaction 
PSD post source decay 
PSM peptide spectrum match 
PTM post translational modification 
QQQ triple quadrupole 
Q-TOF quadrupole and TOF 
Q-TRAP quadrupole and ion trap 
RNA ribonucleic acid 
RNA-Seq RNA sequencing 
RT spectra residue theoretical spectra 
SAX strong anion exchange 
SDS sodium dodecyl sulfate 
SRM selected reaction monitoring 
TDA target-decoy strategy 
TOF time-of-flight 
UT spectra uniform theoretical spectra 
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Abstract 

 
Protein sequence databases are indispensable tools for life science research including mass 

spectrometry (MS)-based proteomics. In current database construction processes, sequence 

similarity clustering is used to reduce redundancies in the source data. Albeit powerful, it ignores the 

peptide centric nature of proteomic data and the fact that MS is able to distinguish similar 

sequences. Therefore, we introduce an approach that structures the protein sequence space at the 

peptide level using theoretical and empirical information from large-scale proteomic data to 

generate a mass spectrometry centric protein sequence database (MScDB). The core modules of 

MScDB are an in-silico proteolytic digest and a peptide centric clustering algorithm that groups 

protein sequences that are indistinguishable by mass spectrometry. 

Analysis of various MScDB use cases against five complex human proteomes, results in 69 peptide 

identifications not present in UniProtKB as well as 79 putative single amino acid polymorphisms. 

MScDB retains ~99% of the identifications in comparison to common databases despite a 3 - 48% 

increase in the theoretical peptide search space (but comparable protein sequence space). In 

addition MScDB enables cross-species applications such as human/mouse graft models and our 

results suggest that the uncertainty in protein assignments to one species can be smaller than 20%. 

 

Introduction 

 
The most common approach in mass spectrometry (MS)-based bottom-up proteomics for the large-

scale identification of proteins is the matching of peptide tandem mass spectra (MS/MS) to 

theoretical spectra constructed from an in-silico digested protein sequence database 1. In this 

process the protein sequence database constitutes the available sequence space which should 

ideally be both complete and correct. The most widely used and well annotated databases in the 

proteomics field are the International Protein Index (IPI) 2, the UniProt Knowledgebase (UniProtKB) 3, 

the NCBI Protein sequence database 4 and the NCBI Reference Sequence collection (RefSeq) 5. 

RefSeq and UniProtKB derive protein sequences from the International Nucleotide Sequence 

Collaboration (INSDC) 6, a repository comprising the European Nucleotide Archive 7, the DNA Data 

Bank of Japan 8 and GenBank 9 whereas IPI is a consensus of different source databases, including 

UniProtKB, Ensembl 10, RefSeq, H-InvDB 11, Vega 12 and TAIR 13. A more recent consensus approach is 

the consensus coding sequence (CCDS) project to track protein sequences in the context of the 

genome sequence. The CCDS collaboration consists of the Ensembl Genome Browser, NCBI Map 

Viewer, the University of California Santa Cruz (UCSC) Genome Browser and the Wellcome Trust 

Sanger Institute (WTSI) Vertebrate Genome Annotation (Vega) Genome Browser 14. 

In general, the source database content reflects alternate views and/or versions of a protein 

sequence resulting in often significant redundancies (mainly homologous sequences) which, in turn, 

can complicate protein identification in proteomics. To provide a less redundant sequence space, 

simple rules like one record per gene in one species (UniProtKB/SwissProt) or one record for 100% 

identical full-length sequences in one species (UniProtKB/TrEMBL) can be employed. To group 

closely homologous sequences, IPI and UniProt reference clusters (UniRef) 15 use sequence similarity 
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clustering algorithms, such as CD-HIT 16. In principle, current sequence clustering algorithms 17, 18, 19, 

20, 21, 22, 23 perform an all-against-all comparison of all source sequences, calculating pair-wise 

alignments scores using the degree of sequence similarity 24 as a distance measure. The composition 

of a sequence cluster is therefore affected by the similarity threshold used and directly influenced by 

the relatedness of sequences and/or members of a protein family. Therefore, the UniRef provides 

releases with different levels of granularity on the clustered sequences. In particular, sequence 

similarity clustering is useful for generating databases of higher eukaryotes due to the high 

abundance of similar sequences from e.g. alternative splicing, speciation, duplication or other 

transcriptional and evolutionary events. 

In shotgun proteomics, proteins are digested into peptides which are then analyzed by mass 

spectrometry generating thousands of tandem mass spectra. In the process of protein identification, 

these spectra are then matched to peptide sequences in the search database and proteins are 

assembled from the list of identified peptides. The latter is a significant challenge because a single 

peptide may point to more than one protein. The loss of information between peptides and proteins 

arising from the proteolytic digest leads to ambiguities in the identification and quantification of 

proteins due to the set of shared (degenerate) peptides. This so-called protein inference problem 25 

is obviously more pronounced the more redundant the information in the underlying protein 

sequence database is. Therefore, Nesvizhskii and Aebersold proposed to report a minimal list of 

proteins, consisting of groups of indistinguishable proteins explaining all of the experimentally 

observed peptides 25. This may be achieved in a number of ways and several mostly a posteriori 

approaches have been published using techniques such as expectation-maximization 26,27 bayesian- 
28,29 non-probabilistic- 30 or deterministic methods 31,32 as well as graph theory 33,34 and a heuristic 

approach utilizing empirical information on peptide detectability by mass spectrometry 35, 36, 37.In a 

recent publication, the tool IsoformResolver 38 combines a priori and posteriori information by 

matching experimentally observed peptides to connected components (i.e. proteins sharing one 

peptide) derived from a peptide centric database (mapping peptide to protein). Other peptide 

centric databases use the raw genome information to identify novel protein isoforms or single 

nucleotide polymorphism (SNP) variations 39. In addition, some specialized databases extend the 

sequence space by modifying existing sequences in the source sequence databases 40 or construct a 

database with sequence clustering from genome sequences 41 to cover isoforms, N-terminal 

peptides and single amino acid polymorphisms (SAPs) not present in underlying protein databases 

used. 

All of the above approaches have in common that they employ protein sequence similarity in some 

shape or form to construct the database used for searching proteomic data. Albeit powerful and 

widely used, this neither reflects the peptide centric nature of MS-based bottom-up proteomics nor 

does it acknowledge the general ability of mass spectrometry to distinguish similar sequences by 

virtue of the masses of the constituent amino acids (with the exception of the isomers L/I). In 

keeping with the above, we here propose to restructure the protein sequence space in a peptide 

centric fashion to create a mass spectrometry centric sequence database (MScDB) for proteomics. In 

contrast to current protein sequence databases, MScDB features the differences of proteins on the 

level of peptide sequence instead of the protein sequence. 

In doing so, MScDB reduces the protein sequence redundancy by 17% in comparison to IPI although 

MScDB increases the theoretical search space by 35,975 in-silico peptides. It also provides an 

efficient way to resolve sequences over time, a situation created by the fact that the content of the 

major source sequence databases are in constant flux. Our experimental data using MScDB show 
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that hundreds of true peptide identifications missed by the most current UniProtKB complete 

proteome can be recovered in this way. The peptide centric core of MScDB also enables cross-

species applications such as human/mouse graft models and our results suggest that the uncertainty 

in species assignment in such studies can be smaller than 20%. 

We believe that MScDB has the potential to complement or replace the discontinued IPI 42 as the 

standard protein database in proteomics and we provide ready to use MS searchable FASTA files and 

the corresponding cluster XML files for a number of use cases. We encourage the community to 

participate in the further development of MScDB by making the source code available and providing 

pre-built MScDB versions to download (https://sourceforge.net/projects/mscdb/ and 

https://www.wzw.tum.de/proteomics/). 

 

Material and methods 

 

Datasets 
Dataset I : Kinobead pull-downs of  HeLa and K562 cells 

To identify and explore the peptide parameters relevant for the construction process of MScDB, we 

used data from published kinobead pull-down experiments comprising over 500,000 identified 

tryptic peptides from HeLa and K562 cells 43. 

 

Dataset II: Cancer cell line proteomes 

To obtain complex proteome datasets for the experimental validation of the MScDB pipeline, 

shotgun proteomics experiments were performed on four human cancer cell lines (SKNBE2, 

OVCAR8, Colo205 and K562) and a post-delivery human placenta (Supplemental Experimental 

Procedure). Cell lines were lysed using Tris-HCl buffer containing 4 % SDS. The lysate was 

ultracentrifuged for 1h at 20 °C and 52000x g. Samples were reduced and alkylated by 10 mM DTT 

and 55 mM iodoacetamide. The protein extract was digested using Filter Aided Sample Preparation 

(FASP) as described previously 44. 200 µg protein extract was digested using Trypsin (Promega) at 

final ratio of 1:100 (here 2 µg). To reduce sample complexity peptides were separated into six 

fractions using Strong Anion Exchange Chromatography (SAX) in tip columns. Peptides were 

fractionated at pH 11, pH 8, pH 6, pH 5, pH 4 and pH 3. Samples were desalted using C18 stage tips 
45. 

Nanoflow LC-MS/MS was performed by coupling an Eksigent nanoLC-Ultra 1D+ (Eksigent, Dublin, CA) 

to an Oribtrap Velos (Thermo Scientific, Bremen, Germany). Peptides were delivered to a trap 

column (100 μm i.d. × 2 cm, packed with 5 µm C18 resin, Reprosil PUR AQ, Dr. Maisch, Ammerbuch, 

Germany) at a flow rate of 5 µL/minute in 100% buffer A (0.1% FA in HPLC grade water). After 10 

minutes of loading and washing, peptides were transferred to an analytical column (75 µm x 40 cm 

C18 column Reprosil PUR AQ, 3µm, Dr. Maisch, Ammerbuch, Germany) and separated using a 220 

minute gradient from 7% to 35% of buffer B (0.1% FA in acetonitrile) at 300 nL/minute flow rate. The 

Orbitrap Velos was operated in data dependent mode, automatically switching between MS and 

MS2. Full scan MS spectra were acquired in the Orbitrap at 30,000 resolution. Internal calibration 

was performed using the ion signal (Si (CH3) 2O) 6 H + at m/z 445.120025 present in ambient 

laboratory air. The 10 most intense precursors were selected for Higher energy Collisional 

https://www.wzw.tum.de/proteomics/
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Dissociation (HCD) fragmentation with normalized collision energy of 30% at an AGC target setting of 

40,000. HCD spectra were acquired in the Orbitrap at 7,500 resolution. 

The raw files were processed into mascot generic format (mgf) files using Mascot Distiller 2.4.2.0 

and searched against Mascot 2.3.0 (MatrixScience, London, UK) using the following search 

parameters: peptide charge 2+ and 3+, maximum missed cleavage 2, variable modifications – 

oxidation of methionine, fixed modifications - carbamidomethyl cysteine, peptide tolerance 5 ppm, 

MS/MS tolerance 0.02 Da, instrument ESI-Trap (HCD), decoy search enabled, searched against 

various databases. 

 

Dataset III: Human Placenta Proteome 

To obtain a complex proteome dataset for the experimental validation of the MScDB pipeline, a 

shotgun proteomics experiment was performed on a post-delivery human placenta from a healthy 

female (provided by Freising hospital based on informed consent). 

The tissue was homogenized and lysed using 8M urea, 100mM TEAB, 1% Triton X-100, 10mM NaF 

and 20 mM nitrophenylphosphate. The protein extract was reduced with 10 mM dithiothreitol and 

alkylated with 55 mM iodoacetamide. Proteins were separated by 1D SDS gel electrophoresis and 

each lane was cut into 16 regions. The regions were digested with trypsin according to the 

procedure described in Shevchenko et al. Peptides were separated by a 120’ gradient on a nanoscale 

reversed phase liquid chromatography system (Agilent nanoLC G2226 with G1376 loading pump) 

coupled online to an amaZon ion trap mass spectrometer (BrukerDaltonik, Bremen, Germany). Each 

protein digest was measured eight times (one full mass range and three gas phase fractions; m/z 

350-580, m/z 575-800, m/z 795-1300; each by CID and ETD). For gas phase fractionation 

measurements, peptides already identified from the full scan range measurements were excluded 

from fragmentation based on m/z and retention time. The raw files were processed into mascot 

generic format (mgf) files using Data Analysis 4.0 (BrukerDaltonik, Bremen, Germany) and searched 

against Mascot 2.3.0 (MatrixScience, London, UK) using the following search parameters: peptide 

charge 2+ and 3+, maximum missed cleavage 3, variable modification of carbamidomethylation of 

cysteine residues, monoisotopic peptide mass (considering up to two 13C isotopes) tolerance 0.3Da, 

MS/MS tolerance 0.5Da, instrument ESI-Trap (CID) or ETD-Trap (ETD), decoy search enabled, 

searched against various versions of the IPI and MScDB databases. The resulting Mascot results files 

were exported to XML with default options but including same and sub set identifications (to 

investigate/demonstrate the extent of the protein inference problem). These data are available from 

the Tranche data repository using the following hash key: 

VnFzDb1JmH6ghvMP0YMcQbggv8nsuMirg9eRFEGjSCRWkm+aHqumS7Aj4D8ybtVIh5WhFszAgrqmcX

LLWDjlhWQ/nQ4AAAAAAABbRg==. 

 

Dataset IV: Xenograft tumors 

For the illustration of cross-species applications of MScDB we used a published dataset of primary 

tumor xenografts of human lung adeno and squamous cell carcinoma (in a mouse background) 45. 

112 of the 122 Orbitrap MS raw files (in mzXML format) were downloaded from the Tranche data 

repository (hash key: bMNHuK72kXYUnt0X1a/+xRu1ZCjvq/hWhgmVQgvRE1a/X3ocf2/ 

bBa0jPmyD4g0V/+Dv/QAAu206bNIi74/7AVDaYMEAAAAAAAA49Q==) (the remaining 10 files were 

corrupt). The raw files were processed into mascot generic format (mgf) files using Mascot Distiller 

2.4.2.0and searched against Mascot 2.3.0 (MatrixScience, London, UK) using the following search 

parameters: peptide charge 2+ and 3+, maximum missed cleavage 3, variable modifications – 
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oxidation of methionine, fixed modifications - carbamidomethyl cysteine, peptide tolerance 10ppm, 

MS/MS tolerance 0.4Da, instrument ESI-Trap (CID), decoy search enabled, searched against MScDB 

version of IPI Human v3.72 and IPI Mouse v3.72. 

 

Peptide and Protein identification acceptance criteria 
The Mascot result files were processed with the software Scaffold (Proteome Software, Portland, 

US) using default options. Scaffold reports for each peptide and protein identification a peptide 26 

and protein prophet probability 27. We exported the results as Peptide Reports filtering with 75% 

peptide and 50% protein probability to correct in a post-processing step for false positive exclusive 

identifications to a database. These occur due to the influence of the database size on the Mascot 

identity score (p = 0.05) respective on the Peptide Prophet discriminant score (Mascot Ion Score – 

Identity score). All peptide identifications were ≥ 94.5% peptide probability and exclusive 

identifications had to be unique to a Scaffold protein group (i.e. the peptide occurring only in the 

group). In contrast we counted in-silico peptides as unique if they occur once in the underlying 

database. The raw and Scaffold files are available to download 

(https://www.wzw.tum.de/proteomics/) and accessible with the free Scaffold Viewer (Proteome 

Software, Portland, US). 

 

MScDB Implementation  

The MScDB pipeline was written in the programming language Java. The distinct modules of the 

pipeline, including the import of protein sequence databases, the in-silico digest, the clustering of 

indistinguishable proteins, and the output of result files are extendable (e.g. other file formats and 

or clustering algorithms). The implementation of the Data Access Object (DAO) design pattern 

facilitates a flexible input layer for various file formats such as FASTA and IPI-EMBL. To centralize the 

configuration, parameters are stored in property files, enabling users to customize the pipeline to 

individual requirements. The pipeline generates a MS searchable FASTA file suitable for search 

engines from different vendors and well-formed, valid XML files to affiliate the FASTA entries to the 

respective protein clusters and optional information, e.g. gene loci and cross references. 

The source code of MScDB as well as pre-built FASTA formatted databases can be downloaded from 

https://sourceforge.net/projects/mscdb/ and https://www.wzw.tum.de/proteomics/. 

 

MScDB Pipeline 
The main components of the MScDB pipeline are the in-silico digest and the clustering (Fig. 1). The 

initial step is the sequential parsing of the source protein sequence database(s) entries. 

 

 

https://www.wzw.tum.de/proteomics/
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Figure 1. Workflow of the MScDB pipeline. The pipeline accepts protein databases in different file 
formats as input. Application of configurable parameters for the in-silico digest processes database 
entries into peptide lists. The peptide lists are clustered in a two-step process based on thresholds 
allowing their discrimination and, in the last step, the MScDB database itself is generated. 
 

 

In-silico digest  

To transform each entry protein sequence into a mass centric representation, the isomeric amino 

acids I and L are substituted by J. The sequence is then cut considering the cleavage site pattern of a 

protease in the form of a regular expression and n missed cleavages. Next, all peptides outside a 

certain mass (monoisotopic) and/or length interval are excluded (Fig. 1, see default parameters 

below).The resulting list of peptides is made non-redundant so that the peptides are only used once 

in the subsequent distance calculations (Fig. 2, and see below). To store and process peptides 

efficiently, distinct numbers are used to represent each peptide sequence. 

 

 



Chapter 2 | MScDB: A mass spectrometry-centric protein sequence database for proteomics 

31 
 

 
 
Figure 2. Peptide frequency in and over IPI proteins. (A) Redundancy of peptides in a single protein. 
22738 out of 86392 proteins contain multiple peptides of the same sequence (repeat sequences). (B) 
Frequency of peptides in the database, resulting in 3,345,248 redundant peptides, 1,337,103 non-
redundant and 579,546 unique peptides. 
 

 

Peptide-centric clustering  

The storage structure for the peptide lists, each representing a source protein sequence, is a non-

redundant list on the protein sequence (100% identical) and peptide level (100% same peptides) 

associating each peptide list entry with the identifiers of identical protein sequences. Identical 

peptide lists form trivial initial clusters of absolutely indistinguishable proteins. Empty peptide lists, 

i.e. proteins with no protease specific cleavage site, are not considered for the peptide centric 

clustering step. 

To address the incomplete sequence coverage in shotgun proteomics, the clustering algorithm 

calculates the asymmetric distances in an all against all comparison of the list of peptide lists 

validating each distance against a threshold. To calculate the distance d between peptide list Y = 

{y1,…,yn} and X = {x1,…,xm} each peptide is assigned a probabilistic weighting w. A simple and discrete 

weighting assigns each peptide an identical probability (w = 1) using the term Mismatch (MM). To 

introduce a continuous weighting (w = [0, 1]), we used the Peptide Sieve (PS) score 35 which assesses 

a proteotypic probability for each peptide, i.e. how likely it will be detected by the mass 

spectrometer. 
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The asymmetric distance is the sum of peptide weightings for the peptides not matching between 

the peptide lists, including the condition of at least one matching peptide. A large distance indicates 

distinguishable proteins. To decide on the ability to discriminate X and Y, the distances are compared 

against a threshold T (a value associated with the weighting, see default parameters), as follows: 

 

   ( (   )  (   ))    

 

The resulting intermediate clusters are connected components in which nodes represent the peptide 

list entries and edges are the connection of the indistinguishable ones (Fig. 1).To derive 

representative clusters (RC) from the connected component clusters (CCC), the final step of the 

clustering is the affiliation of the indistinguishable peptide list entry(s) to the respective 

representative(s). A representative peptide list features the largest distance to each of the nearest 

neighbors. Therefore the algorithm iterates through the CCC graph calculating the asymmetric 

distances and storing the representative to member affiliation on condition of a member not being a 

representative. In case the selected representative is a redundant entry (d(Y,X) = d(X,Y) = 0) on the 

peptide level in the list of peptide lists (see above), we chose the longest protein sequence. To 

create the MScDB output files from the RC, a second in-silico digest is performed (to save memory) 

assigning the source database annotation to the processed peptide lists. The representative protein 

and the non-proteolytic proteins (i.e. those not producing any peptides within the parameter range 

upon digestion) are written into a MS searchable FASTA file and the respective cluster information is 

available in a corresponding XML file. The FASTA file comprises the unmodified protein sequences 

from the input (source) databases. Peptide sequences are written into a separate XML file. 

 

Biological Homogeneity Index (BHI) 
To evaluate the peptide centric clustering algorithm and derive a meaningful default threshold for 

the distance calculation, we used the BHI 46 which is a measure for the biological homogeneity in 

clusters as a function of a certain class (annotation). In this work the class is the gene locus. To 

derive the BHI, we used the highest abundant gene locus of the distribution of gene loci in a cluster, 

excluding singletons and cluster without gene loci information and divide by the total number of 

gene loci in the cluster. We include all the gene loci for an entry in the case that multiple ones exist. 

Instead of averaging, we calculate the median over all clusters to derive the BHI. The range of the 

BHI is from 0.0 to 1.0, a high value indicating good performance of the clustering. 

 

MScDB Default Parameters 
The default parameters for the MScDB pipeline were chosen by extensive analysis of different 

parameter settings and experimental data. We note that users can customize the default settings to 

fit specific purposes. To derive the parameters for the in-silico digest, we analyzed the features of 

the peptides in Dataset I. The analysis comprised the peptide monoisotopic mass distribution (Fig. 

3A) and peptide length distribution (Fig. 3B) as well as the occurrence of missed protease cleavages 

(Fig. 3C). The quantile-quantile plot shown in Supplemental Fig. 3D depicts only marginal differences 

between mass and length. Therefore, we exclusively use the mass criteria in this work. The peptide 

mass [883.4605, 2825.4963], length [8, 26] and missed cleavages [0, 1] default parameter of MScDB 

includes 90% (median and 45% quantiles) of the experimental data which prevents 
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overrepresentation of peptides that are unlikely to be detected. To deduce the clustering threshold 

for MM and PS, we used the Biological Homogeneity Index (BHI) 46, resulting in MM = 2 and PS = 1.0. 

We reasoned that different gene products from the same gene locus as well as proteins arising from 

paralogous genes would be hard to distinguish by mass spectrometry. We therefore set the cutoff 

for the biological homogeneity index based on the maximum number of contributing clusters (for 

each threshold) resulting in 100% (median) for MM and PS (Fig. 4). We note again that the in-silico 

digest and clustering parameters can be configured by the user and are only used in these respective 

steps. All plots in this manuscript were generated using R 47 and networks were built using Cytoscape 
48. 

 

 

 
 
Figure 3. Properties of experimentally verified peptides to deduce default parameters for the in 
silico digest. (A) Monoisotopic mass distribution with median and 45% quantiles. (B) Length 
distribution with median and 45% quantiles. (C) Frequency of Arginine and Lysine, corresponding 
miss cleavages and cumulative percentage of frequency. (D) Quantile-quantile plot comparing the 
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monoisotopic mass and length distributions. 
 

 

 
 
Figure 4. Biological Homogeneity Index (BHI) of gene loci in cluster to derive the default parameter 
for the clustering. (A) Distribution of the BHI for each mismatch threshold with the number of 
contributing clusters. (B) Distribution of the BHI for each peptide sieve threshold with the number of 
contributing clusters. The maximum of contributing clusters (blue; MM - 19727, PS - 19702) indicates 
the default parameter for the respective threshold. 
 

 

Database reconstruction 
To compare peptide centric and sequence clustering, we used the source databases (RefSeq v40, 

UniProtKB v2010_05, Ensembl v56 2010, H-InvDB v6.2 and Vega Mar 2009) of the IPI HUMAN 

version v3.72. We were able to download Ensembl v56 2010 and Vega Mar 2009 for human, as well 

as the canonical release of UniprotKB v2010_05 (i.e. without isoforms) and extract all human entries 

for Swiss-Prot and TrEMBL. The European Bioinformatics Institute (EBI) provided us with the original 

H-InvDB v6.2 and the National Center for Biotechnology Information the RefSeq v40 because these 

databases were not anymore available online. To compensate for minor discrepancies between the 

source data and the IPI database, we extracted the master entries of IPI. 

 

 

Databases 
In this study we use various human protein sequence databases to benchmark these against MScDB 

(Table 1). The databases vary in the underlying source databases and the construction process 

(sequence and peptide clustering). Our implementation of a basic sequence clustering (SC) algorithm 

groups proteins with 100 % sequence identity. 

 

 

Name Description Clustering 

UniProtKB [cpl] UniProtKB (11/03/2012) complete including isoform Sequence 
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sequences 

UniProtKB [all] UniProtKB (11/03/2012) all including isoform sequences Sequence 

IPI [src] 
IPI v3.72 source database sequences; UniProtKB 
(04/20/2010), RefSeq 40, Ensembl 56, H-InvDB 6.2, Vega 
(Mar 2009) 

Sequence 

MScDB [src] 
UniProtKB (04/20/2010), RefSeq 40, Ensembl 56, H-InvDB 
6.2, Vega (Mar 2009) 

Peptide 

MScDB [ver] IPI v3.00 – v3.72 Peptide 

SC [ver] IPI v3.00 – v3.72 Sequence 

MScDB (T = 1, 2, 3, 4, 5) 
UniProtKB (11/03/2012), RefSeq (11/05/2012), Ensembl 
69 (all and ab inito), H-InvDB 8.0, Vega 49, CCDS 
(11/05/2012) 

Peptide 

 
Table 1. Human MScDB and common sequence databases. Nomenclature (in this work) for each 
database with description of sequence source or content and the respective clustering algorithm. 
 

 

UniProtKB protein evidence and sequence annotation 
In an attempt to classify the exclusive peptide identifications not present in IPI, UniProtKB [cpl] and 

UniProtKB [all], we used the web BLAST with the respective full length protein sequence and default 

parameters against UniProtKB, considering the highest ranking human hit.  

The classification includes the protein evidence categories ‘Evidence at protein level’, ‘Evidence at 

transcript level’, ‘Inferred from homology’, ‘Predicted’, ‘Uncertain’ and an additional category 

‘Unknown’ for BLAST searches with no result. Furthermore the classification includes the sequence 

annotation categories ‘Sequence conflict’ and ‘Alternative sequence’ 

(http://www.uniprot.org/manual/sequence_annotation). 

 

Results 

 

Building a mass spectrometry centric protein sequence database 
MScDB is the result of an attempt to restructure the protein sequence space on the level of peptides 

to make it conceptually better aligned with the mass spectrometric analysis of peptides in bottom-

up proteomics. Figure 1 depicts the process in which MScDB is built. Protein sequences are parsed 

from protein sequence databases and in-silico digested to generate lists of peptides. These lists are 

clustered using mass spectrometry centric parameters such as the protease used, the mass or length 

of the generated peptides as well as the number of allowed missed protease cleavages. We learned 

the latter parameters from a retrospective analysis of a large-scale proteomic study containing 

>500,000 high quality peptide identifications and found that 90% of the data are within a 

monoisotopic mass interval of 883.5 and 2,825.5 Da and that these peptides contained a maximum 

of one missed cleavage site. Clustering the peptide lists for all sequences in the public databases lead 

to the identification of representative protein sequences that can be used for protein identification 

by database searching (see below). This MScDB pipeline runs in quadratic time and using an Intel 

Core 2 - Quad@2.66 GHz machine with 8 GB RAM, the pipeline performs the in-silico digest in 13 s 

and the clustering (3.5 x 109 comparisons) in 23 min using default parameters and IPI Human v3.72 

(86392 proteins, 82893 peptide lists) as the source database. The performance of the pipeline is 
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largely governed by the size of the non-redundant list of peptide lists (i.e. the size and number of 

input sequence databases) but the above figures show that MScDB can be built using ordinary 

personal computers. 

 

A priori minimal list of protein groups 
The peptide centric representation of the protein sequence space in MScDB reduces its size 

compared to the source database (IPI Human v3.72) because many of the protein sequences are 

indistinguishable by mass spectrometry and are hence clustered together (Fig. 5 A).The applied 

clustering parameter thresholds (here mismatch, i.e. a peptide sequence is present in one list but 

not the other) obviously determines the extent of the reduction. Small values for the mismatch 

parameter threshold (i.e. T = 0-2 corresponding to > 95 % biological homogeneity index, BHI, see Fig. 

4 A) group together peptide lists of very similar proteins. Interestingly, 3499 non-identical protein 

sequences produce identical peptide lists upon in-silico digestion. Allowing for larger differences 

between peptide lists generated from proteins in the original sequence collection, the MScDB is 

further reduced in size (31105 distinguishable proteins at T=50). The observed reduction in database 

size with increasing clustering thresholds obviously correlates with an increase of protein sequences 

in a cluster because the process will cluster more and more dissimilar proteins (Fig. 5 B, also 

indicated by the increasing size of the quartiles). At our chosen default mismatch threshold of T=2, 

62 % of the clusters contain a single protein sequence (singletons). This indicates that MScDB strikes 

a good balance between reduction of redundancy and completeness at the peptide level, resulting in 

an a priori minimal list of protein groups for database searching. 

 

 

 
 
Figure 5. A priori minimal lists of protein groups. (A) Reduction of database size as a function of the 
mismatch threshold applied during clustering. Allowing for an increasing number of differences 
between peptide lists generated from proteins clusters more and more dissimilar proteins together. 
A mismatch threshold of two (black) strikes a good balance between redundancy and completeness 
of the sequence space. (B) Distribution of representative cluster sizes as a function of the mismatch 
threshold applied during clustering. The cluster size obviously increases with increasing the 
mismatch threshold. The median is indicated by a horizontal dark grey line, quartiles by boxes, 
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interquartile ranges by whiskers and outliers by grey dots. 
 

 

Cluster characterization 
The clustering module of MScDB initially creates connected component clusters (CCC) by comparing 

all proteins against all others in the source database and by grouping these proteins by shared 

peptides considering the applied clustering threshold (Fig. 6). Consequently, a CCC does, to some 

degree, contain distinguishable proteins. To account for this, the next step of the clustering 

partitions the CCC into representative clusters (RC) where a representative protein (black) illustrates 

the greatest distance to the nearest neighbors not being representatives themselves (grey; i.e. 

sharing many of its peptides with its neighbors). As an example, Figure 6A shows the CCC of 

glycerate kinase family (GLYCTK) sequences in which the size of the cluster nodes corresponds to the 

degree of connectivity. The CCC contains all known isoforms of the GLYCTK family and also includes 

the two uncharacterized 17 kDa and 23 kDa proteins associated with the same gene name indicating 

that the chosen clustering thresholds are meaningful (IPI v3.72, default parameters, T=2 allowing 

two mismatches). The alignment shown in Fig. 6B illustrates the process of representative selection 

in more detail: Isoform 2 contains 3 exclusive peptides in comparison to Isoform 7 which only 

contains 2 exclusive peptides and, therefore, Isoform 2 represents Isoform 7.The selection of a 

representative sequence increases the number of peptides in the database in comparison to 

sequence similarity clustering where, in general, the longest sequence is chosen as the 

representative. 

 

 

 
 
Figure 6. Connected component clusters and representative clusters. (A) Proteins of the glycerate 
kinase family are shown as an example for a connected component cluster and for the transition to 
the respective representative clusters (black nodes are representatives, grey nodes are members 
and the size of a node represents its degree of connectivity). (B) Sequence alignment of the C-
terminal regions of Isoform 2 and 7 of glycerate kinase which highlighting the tryptic peptides of the 
two proteins. Using mismatch parameter of two, Isoform 2 represents Isoform 7 because the former 
contains more peptide information (three peptides in isoforms 2 but not Isoform 7; two peptides in 
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Isoform 7 but not Isoform 2). 
 

 

The representation of gene loci within and across clusters can serve as an indicator for the overall 

quality of the initial clustering and the transition process from CCCs to RCs. Figure 7A shows that the 

vast majority of CCCs and RCs point to only a single gene locus. The occurrence of a limited number 

of clusters with more than one gene locus can be rationalized by the occurrence of MS-

indistinguishable proteins (notably paralogs). It is also apparent that the representative selection 

process further improves the gene locus homogeneity in RCs in comparison to CCCs. In addition, we 

analysed how often the same gene locus is found in different clusters (Fig. 7B). Again, the majority of 

gene loci are found in just a single cluster. However, a significant number of gene loci can be found 

in multiple clusters showing that the proteins arising from these gene loci can often be distinguished 

by mass spectrometry. Collectively, the data indicate that the clustering method is working well and 

that the way in which representative proteins are chosen from a cluster (i.e. maximizing MS-

compatible peptides) may be advantageous to the more traditional approach in which mostly the 

longest sequence in a cluster is chosen. 

 

 

 
 
Figure 7. Cluster characterization. (A) Distribution of gene loci within clusters for connected 
component clusters (grey) and representative clusters (black). Proteins within a cluster tend to 
originate from an identical gene locus and the representative cluster selection further decreases the 
diversity of gene loci within a cluster. (B) Similarly, very few gene loci are distributed over several 
clusters (e.g. because of protein isoforms that can be distinguished by mass spectrometry). 
 

 

Sequence clustering versus peptide clustering 
To compare peptide and sequence clustering, we built an MScDB [src] version with default 

parameters of the six IPI [src] source databases (Table 1). We first evaluated if the contents of the 

source databases available for download are consistent with what is described for constructing the 

IPI [src] database and found a near to 100% consistency (Fig. 8A). The distribution of the MScDB [src] 
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representatives to the master entries of IPI [src] is also quite similar except for those derived from 

the UniProtKB/Swiss-Prot database which is default selected by the IPI [src] algorithm while MScDB 

[src] choses representatives on the bases of peptide sequence information (Fig. 8B). 

 

 

 
 
Figure 8. The IPI source databases. (A) Reconstruction efficiency of the source databases of IPI 
v3.72. In general, the efficiency was higher than 99.97 % (B) The distribution of master entry 
identifiers and representative identifiers over the underlying source databases. 
 

 

In comparison the MScDB clustering algorithm reduces sequence redundancy by 17% (15282 

proteins; Fig. 9A) and moderately (parameter driven) extends the theoretical search space compared 

to IPI [src] (35975 more in-silico peptides, 2.6 %, Fig. 9B) resulting in a slightly more comprehensive 

view of the MS-accessible sequence space.  The ratio of theoretical peptides to proteins increases 

from 15.46 in IPI [src] to 19.31 in MScDB [src] (Fig. 10A). The ratio of unique (once in database) to 

shared peptides is comparable (Fig. 10B). 
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Figure 9. Features of sequence and peptide clustered databases. (A) Database sizes of common 
protein sequence and custom databases (Table 1). Databases to benchmark MScDB against are 
referred to as reference databases. (B) Comparison of in-silico peptides of reference and custom 
databases. (C) Influence of the clustering parameter (T) on the number of in-silico peptides in the 
consensus MScDB version of the latest proteome databases in comparison to UniProtKB [all]. 
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Figure 10. Peptide to protein ratio of common and custom protein sequence databases. Peptide to 
protein ratio of shared, unique and all peptides. (A) Ratio for common and custom databases. (B) 
Ratio of MScDB versions with clustering parameter T= 1, 2, 3, 4, 5 as well as UniProtKB [all]. 
 

 

When searching the LC-MS/MS data derived from the human cancer cell lines and the placenta 

against both databases resulted in > 99% identical peptides (in cell lines 34221 peptides; in placenta 

8576 peptides) showing that MScDB [src] is equally useful for protein identification (Table 2). The 

remaining small number of exclusive identifications (Fig. 11A and Fig. 12A) in either database arises 

from the alternative perspectives of the clustering algorithms on the sequence space. We note that 

MScDB [src] identifies, in the cell lines, 106 (in placenta 44) exclusive peptides (corresponding to 91 

out of 6607 protein groups; in placenta 40 out of 1547 protein groups) and IPI [src] identifies 86 (in 

placenta 35) exclusive peptides (corresponding to 82 out of 6573 protein groups; in placenta 31 out 

of 1578 protein groups). 

 

 

Sample Database Proteins Protein FDR(< 0.05) Peptide FDR(< 0.05) 

Cell Lines 

UniProtKB [cpl] 6506 0.016 0.002 

IPI [src] 6573 0.017 0.001 

MScDB [src] 6607 0.017 0.002 

MScDB [ver] 6663 0.018 0.002 

SC [ver] 6622 0.019 0.002 

UniProtKB [all] 6588 0.015 0.001 

MScDB (T = 1) 6681 0.022 0.01 

MScDB (T = 2) 6657 0.022 0.009 

MScDB (T = 3) 6661 0.024 0.009 

MScDB (T = 4) 6654 0.024 0.009 

MScDB (T = 5) 6710 0.025 0.002 

Placenta 

IPI [src] 1578 0.044 0.003 

MScDB [src] 1547 0.044 0.003 

MScDB [ver] 1561 0.041 0.002 
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Table 2. Protein identifications in cell lines and placenta over various databases. Number of proteins 
over databases at a given Peptide and Protein FDR. 
 

 

 
 
Figure 11. Complement identifications and classifications of the peptide centric MScDB clustering 
against common sequence clustered databases. (A) The heat map is a representation of the protein 
probabilities of complement peptides (not present in at least one database) over various protein 
sequence databases (Table 1) to show the overall confidence in peptide identifications (light grey 
indicates a high probability and black the absence of the peptide). Peptides clustering together are 
likely to origin from the same protein (left dendrogram). Groups in the databases point to similar 
source databases (top dendrogram). (B) Classifications based on the UniprotKB protein evidence 
scheme for MScDB [src] and IPI [src] identifications not present in UniProtKB [cpl] against UniProtKB 
[all]. (C) Classifications for MScDB [ver] and SC [ver] identifications not present in UniProtKB [cpl] 
against UniProtKB [all]. 
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Figure 12. Complement identifications and classifications against UniProtKB. (A) The heat map is a 
representation of the protein probabilities of complement peptides (not present in at least one 
database) over various protein sequence databases (Table 1) to show the overall confidence in 
peptide identifications (light grey indicates a high probability and black the absence of the peptide). 
Peptides clustering together are likely to origin from the same protein (left dendrogram). Groups in 
the databases point to similar source databases (top dendrogram). (B) Classifications based on the 
UniprotKB protein evidence scheme for complement identifications in MScDB [src] not present in IPI 
[src] against UniProtKB [all]. (C) Classifications based on the UniprotKB protein evidence scheme for 
complement identifications in MScDB [ver] not present in IPI [src] against UniProtKB [all]. 
 

To analyze the effect of the discontinuation of IPI, we compared the substitute database UniprotKB 

complete proteome set (UniProtKB [cpl]) against IPI [src] and MScDB [src]. The theoretical peptide to 

protein ratio (Fig. 10A) decreases in UniProtKB [cpl] to 13.9 (11 % more in IPI [src] and 29% in MScDB 

[src]). The MS analysis of the cell lines reveals for most complement identifications an association 

with high protein probabilities (Fig. 10A). We identify 132 IPI [src] and 193 MScDB [src] peptides not 

present in UniProtKB [cpl]. The non-redundant total are 208 peptides, where 76 (66 proteins) are 

present in MScDB [src], 15 (15 proteins) in IPI [src] and 117 (89 proteins) in both. 

Using the UniProtKB protein evidence and sequence annotation classification scheme on the non-

redundant set against all available UniProtKB sequences (UniProtKB [all]; placenta classification in 

Fig. 12B) results in first time protein evidence for 76% of the identifications (Fig. 11B). 62% (103 

proteins) have evidence on the transcript level, illustrating an overrepresentation in comparison to 

the 35% in UniProtKB [all] (Fig. 13). The remaining 14% are 21 automatic annotated proteins (12%) 

and 4 unknown proteins to UniProtKB [all] (2%). 24% (46 proteins) have protein evidence, due to the 

absence of natural variants and sequence conflicts in the downloadable UniProtKB FASTA files. 

Over the protein evidence categories we provide evidence for 4 unknown peptides and 15 putative 

single amino acid polymorphisms (SAPs). 
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Figure 13. Protein evidence in UniProtKB. The UniProtKB protein evidence categories and 
distribution for the proteins in UniProtKB [all]. 
 

 

Comprehensive protein space 
The content of sequence databases is in constant flux because of multiple reasons including altered 

gene models or experimental evidence (e.g. cDNA, protein level). When analyzing IPI v3.72 for the 

version numbers of IPI sequence identifiers, we found that about one third of IPI entries had 

undergone changes in their sequences (28915 of 86392 sequences have a version number greater 

than 1). This carries the risk that valid sequences are removed from a database version despite the 

possibility that the corresponding protein may physically exist. We therefore constructed an MScDB 

version from IPI Human versions 3.00 to v3.72 (92,934 entries) and compared it to IPI v3.72 (86,392 

entries). This also allowed us to generate a peptide centric history for each IPI entry. 

Searching the aforementioned human cell lines and placenta data set against both databases (Table 

2) showed that >99% of all peptides are identical but that MScDB [ver] identified 132 peptides (115 

protein groups; 87 peptides (68 protein groups) in placenta) not present in IPI [src] (Fig. 11A and Fig. 

12A). 97 peptides (90 protein groups; 84 peptides (80 protein groups) in placenta) are in IPI [src] but 

not in MScDB [ver]. This is also reflected by an increase in the peptide to protein ratio from 15.46 (IPI 

[src]) to 17.88 (MScDB [ver]) (Fig. 9A and Fig. 10A). 

The construction of a database (SC [ver]) using a basic sequence clustering approach (100% 

sequence identity) on the identical set of source databases (Table 1) results in 151 exclusive peptides 

(132 protein groups) in comparison to IPI [src] (20 exclusive peptides (20 protein groups), likely to be 

false positive identifications). The theoretical search space of MScDB [ver] is a subset of SC [ver]. The 

peptide centric clustering increases the proportion of unique peptides by 28% and the ratio of 

peptides to proteins from 10.20 to 17.89 (Fig. 10A). The 45% decrease in database size (Fig. 9A) 

consequently decreases the search time by 19% (509.08 to 414.89 s on a single file; Fig. 14B). 
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Figure 14. Common protein sequence databases. (A) Source databases of MScDB (T = 1, 2, 3, 4, 5). 
(B) Influence of the clustering parameter on the size of the database in linear correlation to the 
search time for one fraction (numbers indicate identified proteins over Mascot identity score). 
 

 

In comparison to UniProtKB [cpl], MScDB [ver] results in 223 exclusive peptides (183 proteins) and 

SC [ver] in 250 (208 proteins) on the cell line data set (Fig. 11A). In total 256 peptides are not present 

in UniProtKB [cpl] (214 proteins). BLAST analysis of the 214 proteins (placenta analysis in Fig. 12C) 

found exclusively in MScDB [ver] and or SC [ver] showed that 11 are outdated IPI entries (12 

peptides) but valid protein groups (Fig. 11C). Furthermore our data provides protein evidence for 

116 protein groups (146 peptides) for the first time and we identified 3 alternative sequences and 37 

(35 peptides) putative single amino acid polymorphisms. The 87 known protein groups (98 peptides) 

relate to sequence conflicts and natural variants. 

 

The Mass Spectrometry centric Protein Sequence Database 
The prior use cases of MScDB indicate a beneficial perspective on the sequence space using peptide 

instead of sequence clustering. Therefore we constructed an MScDB version of the latest and most 

popular proteome databases (Fig. 14A), to create a consensus of the theoretical human proteome. 

Additionally, we further investigated the influence of the clustering parameter (T) in constructing 

versions with T = {1, 2, 3, 4, 5}. MScDB (T = 2; 170,218 proteins) is almost comparable in size to 

UniProtKB [all] (148,079 proteins; Fig. 9A) but provides 50% more tryptic peptides even over the 

varying cluster parameter (Fig. 15C). The peptide to protein ratio is 14.55 in MScDB (T = 2) to 8.90 in 

UniProtKB [all] (Fig. 10B) and the ratio of unique peptides (once in database) is three to one. 
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Figure 15. MScDB complement identifications and classifications based on the latest proteome 
databases against UniProtKB. (A) The heat map is a representation of the protein probabilities of 
complement peptides (not present in at least one database) over various protein sequence 
databases (Table 1), to show the overall confidence in peptide identifications. Peptides clustering 
together are likely to origin from the same protein (left dendrogram). Groups in the databases point 
to similar source databases or parameter settings (top dendrogram). (B) Classifications based on the 
UniprotKB protein evidence scheme for complement identifications in MScDB (T = 1, 2, 3, 4, 5) not 
present in UniProtKB [cpl] against UniProtKB [all]. (C) Number of in-silico peptides in MScDB (T = 2) in 
comparison to UniProtKB [all]. 
 

We were able to identify in the cell line data set 224 peptides complement (Fig. 15A; more robust 

identifications due to database size) to MScDB and 72 to the reference database UniProtKB [all] 

(Table 2). Out of these 72, only 8 were not present in MScDB, pointing to false positive 

identifications. Peptides with protein evidence (50%) are sequence conflicts or natural variants (Fig. 

15B). 21% of our exclusive identifications are unknown in UniProtKB. An increasing cluster 

parameter decreases the number of exclusive identifications, the size of the database and the search 

speed (Fig. 14B). The parameters result in 207 (190 proteins) peptides in MScDB (T = 1), 176 (160 

proteins) in MScDB (T = 2), 157 (143 proteins) in MScDB (T = 3), 150 (137 proteins) in MScDB (T = 4) 

and 142 (128 proteins) in MScDB (T = 5). Over all protein evidence categories, we identified 2 

alternative sequences and 46 sequence conflicts. Most interestingly we discovered 41 (46 peptides) 

hitherto unknown proteins. 

 

Cross-species protein identification 
As illustrated above, MScDB clusters together proteins that are indistinguishable by mass 

spectrometry. This is not only useful for protein identification from a single organism but can also be 

used across organisms. For example, mouse is a common model organism to investigate basic 

biology as well as human diseases. In particular, human cancer derived cell lines are often grafted 

into mice to study tumor biology in-vivo. In such systems, protein identification is complicated by the 

fact that the grafts are comprised of mixed human and mouse proteomes and that many protein 

sequences of mice and man are very similar. We constructed an MScDB version from human IPI and 
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mouse IPI (v3.72 for both) resulting in a combined database with approximately 120,000 clusters 

(mismatch threshold zero, Fig. 16A). It is evident that most human and mouse proteins should be 

distinguishable by MS but also that the cluster composition in terms of taxonomy becomes more 

heterogeneous with increasing the mismatch parameter, leading to more and more orthologous 

proteins contained in the same cluster. We next used experimental data generated by Wei et al. 45 

from a lung cancer xenograft study to identify proteins from the human/mouse MScDB. 

From the total of 1,412 identified proteins, 80% were unambiguously assigned either to mouse 

(19%) or human (61%) and 20% of all proteins were not distinguishable between these organisms 

(Fig. 16B). 

 

 

 
 
Figure 16. Cross-species protein identification. (A) Influence of the mismatch threshold on the 
taxonomic composition of MScDB clusters generated from human and mouse protein sequences. For 
increasing values of MM, more and more mouse and human proteins are clustered but the vast 
majority of proteins can be distinguished at the default parameter of T=2. (B) Experimental protein 
identification data from a human cancer xenograft model in the mouse showing that 80% of all 
proteins can be unambiguously assigned to one species. 
 

 

 

Discussion 

 
The common protein sequence databases used for mass spectrometry based proteomics strike a 

good balance between completeness and redundancy of the available protein sequence space. They 

all have in common that sequence similarity clustering is used to remove redundancy introduced by 

the vast number of sequences used for their construction (genomes, cDNA collections etc.). 

Redundancy reduction is important because redundancy aggravates the protein inference problem 

inherent to all bottom-up proteomics approaches. In our approach, we explored peptide sequence 

clustering as an alternative to protein sequence clustering to construct MScDB as a database for 
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protein identification. In clustering proteins on the basis of peptides that are distinguishable by mass 

spectrometry, MScDB is conceptually more aligned with the peptide centric procedure in which 

bottom up proteomics data is generated. 

The results show that MScDB is at least as useful for protein identification compared to any of the 

other common database used for this purpose. In all use cases MScDB improves the peptide to 

protein ratio to one of the common reference databases (Fig. 10), such as IPI or UniProtKB, in a 

comparable protein sequence space (Fig. 9). In addition, peptide centric clustering removes much 

more redundancy from the source sequence collection than the traditional sequence clustering 

approaches. This not only enables faster database searching (a convenience) but also reduces the 

extent of the protein inference problem although we stress that it does not remove the issue 

altogether and that a posteriori methods to generate minimal protein lists are still required. MScDB 

also provides a convenient mechanism to harmonize legacy protein identification data with new 

experiments as MScDB provides a history of all its sequences (accession history for each protein, 

cluster affiliation and the original source annotation). Importantly, it further enables the recovery of 

outdated but valid protein sequences and our example of searching an MScDB version built from the 

combined IPIs v.3.00 – 3.72 using a complex human proteome digest shows that many such proteins 

genuinely exist. 

As for any clustering approach, some sequences are ‘lost’ in the process of building MScDB. Although 

such sequences will be members of a cluster, they do not represent all the proteins in a cluster and 

are therefore not included in the FASTA file used for searching MS data. The extent to which this 

occurs obviously depends on the clustering parameters. For the default parameters used in this 

study, our comparisons indicate that the gains are larger than the losses and the MScDB code we 

provide allows scientists to choose the parameters at will (mass interval, mismatch, peptide sieve 

score). Hence, versions of the database can be generated to suit a particular purpose. 

Over all human use cases we could identify 69 peptides (64 unknown and 5 alternative sequences) 

not in UniProtKB and 79 putative SAPs. We note that most of these identifications are from the 

consensus MScDB of the latest proteome databases. Our approach will gain more and more 

unknown evidence to date over experiments, regarding the efforts to describe the complete human 

proteome and as shown in Fig. 17 for the placenta and cell line data set which illustrates a minor 

intersection between these samples. We can therefore argue that MScDB is perhaps the better 

option for the discovery process of the complete human proteome than the well annotated 

UniProtKB. 
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Figure 17. Intersection of complement peptides from MScDB use cases over the cell line and 
placenta data set. 
 

 

MScDB focuses on the restructuring of the available sequence space from a MS centric perspective. 

In the process, MScDB addresses the protein inference problem in reducing the number of shared 

peptides but does not eliminate redundancy to the same extent as suffix arrays 50. Furthermore, 

suffix arrays comprise a set of non-redundant peptides to search against, whereas MScDB uses the 

set of non-redundant peptides to construct a peptide-centric protein database and therefore does 

not reduce the peptide space to a pre-set in-silico digest parameter interval. 

Perhaps the most interesting use case of MScDB that we have explored is the identification of 

proteins from systems of mixed species proteomes. Such experiments are not only relevant for the 

illustrated case of a xenograft cancer model, but also for the growing field of metaproteomics in 

general (e.g. the human microbiome) 51, 52. We were somewhat surprised to learn that the level of 

uncertainty in assigning identified proteins to one species or the other is only about 20% indicating 

that experiments may not be as difficult to interpret as previously anticipated 53. As far as we are 

aware, MScDB is the first demonstration of the merits of a fully peptide-centric view of the protein 

sequence space for proteomics. In light of the conceptual advantages, the presented data and the 

fact that the very popular IPI database has been discontinued 42, we consider MScDB to be a viable, 

indeed attractive alternative for bottom-up proteomics. To facilitate its use in the community, ready 

to use FASTA files for MScDB for human and mouse are available from our web site and we will 

continue to expand the list of available species in the future. 
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Abbreviations 

 
BHI biological homogeneity index 
CCC connected component cluster 
CCDS consensus coding sequence 
DAO data access object 
EBI European bioinformatics institute 
HCD higher energy collisional dissociation 
INSDC International nucleotide sequence collaboration 
IPI International protein index 
mgf mascot generic format 
MS mass spectrometry 
MS/MS tandem mass spectra 
MScDB mass spectrometry centric protein sequence database 
RC representative cluster 
RefSeq reference sequence collection 
SAP single amino acid polymorphisms 
SAX strong anion exchange 
SC sequence clustering 
SNP single nucleotide polymorphism 
UCSC university of California Santa Cruz genome browser 
UniProtKB UniProt knowledgebase 
UniRef UniProt reference clusters 
Vega Wellcome Trust Sanger institute vertebrate genome annotation 
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Abstract 

 
We present a peptide library and data resource of >100,000 synthetic, unmodified peptides and 

their phosphorylated counterparts with known sequences and phosphorylation sites. Analysis of the 

library by mass spectrometry yielded a data set that we used to evaluate the merits of different 

search engines (Mascot and Andromeda) and fragmentation methods (beam-type collision-induced 

dissociation (HCD) and electron transfer dissociation (ETD)) for peptide identification. We also 

compared the sensitivities and accuracies of phosphorylation-site localization tools (Mascot Delta 

Score, PTM score and phosphoRS), and we characterized the chromatographic behavior of peptides 

in the library. We found that HCD identified more peptides and phosphopeptides than did ETD, that 

phosphopeptides generally eluted later from reversed-phase columns and were easier to identify 

than unmodified peptides and that current computational tools for proteomics can still be 

substantially improved. These peptides and spectra will facilitate the development, evaluation and 

improvement of experimental and computational proteomic strategies, such as separation 

techniques and the prediction of retention times and fragmentation patterns. 

 

Introduction 

 
The gold standard in molecular analytical sciences for the identification of a new substance is the 

synthesis of a reference standard and to compare its physico-chemical properties to that of the 

analyte in question. If both molecules are identical in all measurable parameters, they are 

considered the same. However, the vast number of possible peptides derived from a proteome 

together with the phenomenal speed at which peptide identification data can be generated by state-

of-the-art mass spectrometers has largely precluded the systematic validation of peptide identities 

by synthetic standards beyond relatively few examples with limited scope 1-6. Instead, mass 

spectrometry based proteomics has come to rely on computational tools that match an 

experimental peptide tandem MS spectrum to in silico generated spectra derived from protein 

sequence databases using statistical models and empirical knowledge about peptide fragmentation 

behavior inside a mass spectrometer(reviewed in 7, 8). Albeit proven powerful, one can never be 

certain if the computational models correctly identify a given peptide (and thus a protein). 

Therefore, a number of probabalistic and decoy count models have been devised in order to 

estimate the false discovery rate (FDR) of peptide and protein identifications in a proteomic 

experiment 9-11. Surprisingly, and to the best of our knowledge, none of the protein identification 

algorithms in popular use today have ever been rigorously validated on a significant number of 

synthetic peptide standards or controlled digests of known proteins leaving considerable room for 

uncertainty with respect to their performance 12. However, considerable effort has gone into the use 

of several thousand synthetic peptides to characterize LC-MS/MS instrumentation and the physical 

properties that govern peptide identification 13 and at least a few approaches based on synthetic 

phosphopeptide libraries 14, 15 or individual phosphopeptides 16-18 have been taken to develop 

computer models for phosphorylation site localization within peptides. Still, concerns have been 

voiced that the numerically small and possibly biased sets of synthetic peptides used in these studies 



Chapter 3 | A large synthetic peptide and phosphopeptide reference library for mass spectrometry-

based proteomics 

60 
 

may be insufficient to arrive at firm conclusions. To address the above shortcomings, we have 

synthesized 96 peptide libraries representing >100,000 peptides and their phosphorylated 

counterparts and analyzed these by high-performance liquid chromatograph tandem mass 

spectrometry (LC-MS/MS). We show that the physical library and the generated data can be used in 

numerous ways to develop, evaluate and improve proteomic experiments and data evaluation 

strategies. We are making the physical library and the mass spectrometric data publically available 

so that the research community can further explore and refine methodologies. 

 

Material and methods 

 

Data from public repositories 
Tryptic phosphopeptides were selected from five large scale human phosphorylation studies 19-23 to 

compile a representative set of 96 peptides that formed the basis for the synthesis of peptide 

libraries (Fig. 1). Briefly, the initial step in the selection process created a subset of 851 peptides 

present in at least three studies. Subsequently, 96 peptides residing in a 5th to 95th percentile 

interval of length and hydrophobicity as estimated by the GRAVY Score 47 were picked evenly across 

this area and also balancing the number of C-Terminal Arginine (n=47) and Lysine (n=49) residues as 

well as a similar distribution of the site of phosphorylation. In case the sample peptides contained 

multiple sites of phosphorylation, one of them was picked at random. 
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Figure 1. Library design and synthesis. (A) Number and distribution of identified mono-and multi 
phosphorylated peptides from published large scale datasets, that were used for the sample peptide 
and seed peptide selection in this study. Reported datasets contained many redundant peptides 
(gray) that were removed prior to sample selection. (B) Number and relative abundance of non-
redundant serine, threonine and tyrosine phosphorylation sites identified in five large-scale human 
phosphoproteomic datasets 19-23. (C) Hydrophobicity (GRAVY score) plotted against sequence length 
for the 851 peptides (black diamonds) identified in three out of the five large-scale datasets. The 96 
representative ‘seed’ peptides in the 5–95% percentile interval (dashed box) were selected manually 
for subsequent library synthesis. Selected peptides are depicted in red, showing a representative 
distribution of both length and hydrophobicity. The selection of peptides also contains a 
representative distribution of phosphorylation sites of the sequence and a representative 
distribution of lysine or arginine residues at the C terminus. (D) Schematic representation of the 
peptide library design in which position x0 of a seed peptide represents the site of phosphorylation 
and is synthesized with either S, T or Y or their phosphorylated forms pS, pT or pY. Both positions x-1 
and x+1 are permutated with all 20 natural occurring amino acids during synthesis, creating up to 
2,400 different (phospho)peptides for each library (E) Number of serine (dark grey), threonine 
(black) and tyrosine (light grey) phosphorylated peptides and their relative abundance, identified 
from LC-MS/MS analysis of the library using both HCD and ETD fragmentation. In total 57,830 
phosphopeptides with equal representation of all phosphate acceptor amino acids were identified. 
 
 

 

Library design and synthesis 
Each of the so called 96 seed peptides represents a permutation template for the generation of 96 

peptide libraries. The applied permutation scheme incorporates (S, T, Y, pS, pT, pY) at the position of 

the phosphosite (X0)(in the original peptide from the literature) and the 20 standard amino acids in 

the direct vicinity (X-1 and X+1) resulting in libraries of size 2,400 peptides (n=84) or 120 peptides 

(n=12) in case the phosphorylation site is either at the peptide N-terminus or directly N-terminal to 

the C-terminal Lys and Arg residues of the tryptic peptides. The total number of theoretical peptides 

across the 96 combinatorial libraries amounts to 203,040. The combinatorial libraries were 

synthesized at 2 µmol scale by standard solid-phase synthesis following the Fmoc strategy on a 

parallel peptide synthesizer (Intavis, Cologne). Fmoc protected amino acids were obtained from 

Intavis. Specifically, Fmoc-Ser(PO(OBzl)OH)-OH, Fmoc-Thr(PO(OBzl)OH)-OH and Fmoc-

Tyr(PO(OBzl)OH)-OH were used as building blocks for the synthesis of the phosphopeptides. Briefly, 

the synthesis started with a C-Terminal tryptic amino acid (Arginine, Lysine) and then proceeds 

sequentially to concatenate single amino acids, except at the permutation site(s), where isokinetic 

mixtures of amino acids (20 or 6) were incorporated to attempt to create a discrete uniform 

distribution. An acetylation step was added after each synthesis cycle to block any remaining free 

amino group in order to prevent the synthesis of mixed sequences. Following completion of 

synthesis, peptides were deprotected and released from the solid phase using 92.5% trifluoro acetic 

acid, 5% tri-isopropyl silane , 2.5% water. Crude synthetic peptide libraries were subjected to Liquid 

Chromatography Tandem Mass Spectrometry (LC-MS/MS) without further work up or purification. 

 

Liquid Chromatography Tandem Mass Spectrometry 
Peptide library HCD data were acquired by coupling an Eksigent nanoLC-Ultra 1D+ (Eksigent, Dublin, 

CA) to an Oribtrap Velos (Thermo Scientific, Bremen, Germany). Peptides were delivered to a trap 
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column (100 μm i.d. × 2 cm, packed with 5µm C18 resin, Reprosil PUR AQ, Dr. Maisch, Ammerbuch, 

Germany) at a flow rate of 5 µL/minute in 100% buffer A (0.1% FA in HPLC grade water). After 10 

minutes of loading and washing, peptides were transferred to an analytical column (75µmx40 cm 

C18 column Reprosil PUR AQ, 3µm, Dr. Maisch, Ammerbuch, Germany) and separated using a 110 

minute gradient from 2% to 35% of buffer B (0.1% FA in acetonitrile) at 300 nL/minute flow rate. Full 

scan MS spectra were acquired in the Orbitrap at 30,000 resolution. The 5 most intense precursors 

were selected for HCD fragmentation (isolation width 2.0 Th) with normalized collision energy of 

40% at an AGC target setting of 50,000. HCD spectra were acquired in the Orbitrap at 7,500 

resolution. Dynamic exlusion was enabled for a 10 s repeat duration and a 10 s exclusion duration 

with a repeat count of 1. 

Peptide Library ETD data (with Orbitrap readout, ETD-FT) were acquired on an ETD enabled Orbitrap 

Velos instrument (Thermo Fisher Scientific, Bremen) connected to a UHPLC Proxeon EASY-nLC 1000 

(Thermo Scientific). Peptides were trapped on a double-fritted trap column (Dr. Maisch ReproSil C18, 

3 μm, 2 cm x 100 μm) and separated on an analytical column (Agilent Zorbax SB-C18, 1.8 μm, 40 cm 

x 75 μm). Solvent A consisted of 0.1 M acetic acid (Merck), solvent B of 0.1 M in 80 % acetonitrile 

(Biosolve). Samples were first loaded at a maximum pressure of 980 bar with 100 % solvent A. 

Peptides were separated by a 110 min gradient from 10% to 40% of buffer B at a flow rate of 200 

nL/minute. Full scan MS spectra were acquired at 30,000 resolution. The 5 most intense precursors 

were selected for ETF FT fragmentation (isolation width 1.5 Th) at 7,500 resolution and a target 

setting of 100,000. Supplemental activation was enabled, the activation time was 50 ms and target 

setting was 300,000 for the ETD reagent. Dynamic exlusion was enabled for a 30 s repeat duration 

and a 30 s exlusion duration with a repeat count of 1. 

As an example for a biological sample, phosphopeptides from a total of 2 mg desalted K562 digest 

were enriched using Ti4+-IMAC as described (Zhou et al. (2013) Nat Protocols, 8, 1-22, in press). 

Briefly, the enriched sample was analyzed on a nanoLC-MS/MS platform consisting of UHPLC 

instrument (EASY-nLC 1000, Thermo) connected to a Q Exactive quadrupole orbitrap mass 

spectrometer (Thermo Fisher Scientific, Bremen), in a 3 hour run. Mass spectra were acquired with 

an automatic switch between a full scan (target value 3,000,000, resolution 35,000) and up to 20 

most intense ions were sequentially isolated and accumulated to a target value of 50,000 with a 

maximum injection time of 120 ms and were fragmented by HCD at a normalized collision energy of 

25%. The spectra of the fragmented ions were acquired in the Orbitrap analyzer at a resolution of 

17,500. 

 

MS data processing and database search for Mascot 
Raw MS data files were converted into Mascot generic format files (MGF) using Mascot Distiller 

(2.4.2.0, www.matrixscience.com). Important parameters included: i) signal to noise ratio of 20 for 

MS/MS and ii) time domain off (no merging of spectra of the same precursor). The MGF files were 

searched against human IPI v3.72 including the sequences of all 96 libraries, each comprising 

concatenations of all theoretically possible peptides within a synthesized library) using the Mascot 

search engine (2.3.1, www.matrixscience.com). Important parameters for ETD and HCD: decoy 

search using a randomized version of the human IPI v3.72 including the sequences of all 96 libraries 

was enabled; monoisotopic peptide mass (considering up to two 13C isotopes); trypsin/P as 

protease; a maximum of four missed cleavages; peptide charge +2 and +3; peptide tol. +/- 5 ppm; 

MS/MS tol. +/- 0.02 Da; instrument type ESI-Trap (for HCD data) or ETD-Trap (for ETD data) 

respectively; Cys residues were unmodified; variable modifications: oxidation (M), phospho (ST), 
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phospho (Y). The result files were exported to pepXML and Mascot XML (www.matrixscience.com) 

with default options provided by Mascot. 

 

MS data processing and database search for PhosphoRS 
PhosphoRS site localization was performed using the PhosphoRS 2.0 embedded in the Proteome 

Discoverer 1.3 software (Thermo Fisher Scientific, Bremen, Germany). Raw MS data files were 

converted into Mascot generic format files (MGF) using Mascot Distiller (2.4.2.0) as described above. 

The MGF files were searched against human IPI v3.72 (supplemented with additional 96 entries, 

each comprising concatenations of all theoretically possible peptides within a synthesized library) 

using the Mascot search engine (2.3.1) embedded in the Proteome Discoverer 1.3 software. In the 

spectrum selector node, the unrecognized mass analyzer replacements was set as FTMS and the 

unrecognized activation type replacements as HCD or ETD, respectively. Search settings for Mascot 

were identical to described above. Phosphorylation site localization was performed on the Mascot 

results using PhosphoRS 2.0. The result files were exported to csv format. Note that the authors had 

no opportunity to influence extra data processing steps potentially performed by Proteome 

Discoverer such as spectral filtering or grouping. We suspect that some data processing not 

transparent to the authors is performed in Proteome Discoverer because the number of 

spectra/PSMs in the PhosphoRS result files are not the same as for our Mascot analysis despite the 

fact that both analysis were performed on the same input files (i.e. mgf produced by Mascot 

Distiller, see above). 

 

MS data processing and database search for Andromeda 
MaxQuant, version 1.3.0.3 was used to generate peak lists from the MS/MS spectra for database 

searching. High-resolution profile MS/MS data was deconvoluted before extraction of the ten most 

abundant peaks per 100 Th. All statistical filters in MaxQuant such as peptide and protein false 

discovery rates and mass deviation filters were disabled in order to score all submitted MS/MS 

spectra. Peptide masses were recalibrated by MaxQuant prior to Andromeda searches. Peak lists 

were searched against human IPI v3.72 (supplemented with additional 96 entries, each comprising 

concatenations of all theoretically possible peptides within a synthesized library). Oxidation (M), 

phosphorylation (STY) were used as variable modifications. A mass tolerance of 5 ppm was used for 

the peptide mass. Both HCD and ETD data were searched with a 0.02 Da tolerance window. 

Trypsin/P was set as proteolytic enzyme and a maximum of four miss cleavages were allowed. The 

MS/MS.txt output file of the software was used for further data analysis 

 

Data analysis 
The pepXML (Mascot) and MS/MS.txt (Andromeda) files provide detailed information about the 

database search results including precursor intensity, retention time and charge state, etc. as well as 

up to 10 peptide spectrum matches (PSMs; Mascot; 15 for Andromeda). The PSMs were classified 

into true positive (TP: PSM with the highest score that matches to a sequence that is present in the 

library) and false positive (FP: PSM with the highest score that matches to a sequence that is NOT 

present in the library, i.e. it matches to a sequence in the IPI human database). To get an overview of 

the global detection of synthesized peptides (Fig. 3), we counted all TPs as defined above. For all 

subsequent data analysis steps, we counted TPs and FPs as follows: for single PSMs with highest 

ranking score, we count the highest ranking PSM as one FP (or TP if it is not a library peptide) and 
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ignore all PSMs with lower scores. For multiple highest ranking PSMs (i.e. identical score), three 

scenarios are possible: i) all PSMs are TPs in which case we count one TP to avoid inflating the 

number of TPs; ii) all PSMs are FPs in which case we count one FP to avoid inflating the number of 

FPs; and iii) PSMs are a mix of TPs and FPs in which case we count one TP and one FP. For the 

retention time analysis, we used the retention time value associated with the highest intensity of a 

particular precursor ion at the time it was picked for MS/MS. The average LC peak width across the 

LC separation was 10-25s full width at half maximum (FWHM) which is why we considered peptide 

isomers eluting within 25s to be indistinguishable by retention time. All statistical analysis was 

performed using the R Statistical Programming Language (www.r-project.org). The False Discovery 

Rate (FDR) was calculated as the ratio of FP to the sum of FP and TP. To calculate the local FDR, the 

score distributions were divided in bins of width one (Mascot score, Mascot delta score, Andromeda 

score, PTM-score). In case a bin contained less than 100 classifications, the width was extended by 

one as often as necessary to meet the minimum criterion. A similar criterion applies for computing 

global FDRs, calculating from highest to lowest score until at least 100 classifications are 

accumulated. The determination of local and global False Localization Rates (FLR) for MD-score, 

phosphoRS and Andromeda followed the same scheme as the FDR calculation described above. The 

Mascot-Delta Score 17 was calculated by subtracting the highest ranking PSM from the subsequent 

PSM. Curve fitting was performed using the Non-Least Square function in the stats library of R with 

the prot algorithm and the formula FDR (or FLR) = A * exp-B * Score + C * exp-D * Score. Initial 

parameters were estimated for the nonlinear modeling using the optim function in the stats library. 

Curve fitting was confined to the meaningful intervals of the FDR/FLR plots. 

 

Results 

 

Peptide library design and synthesis 
The guiding principles in the design of the library were (i) to represent the typical peptide sequence 

and composition space of bottom-up proteomics, (ii) to be sufficiently large to enable rigorous 

statistical treatment, (iii) to contain an equal representation of unmodified and S, T, Y 

phosphorylated peptides and (iv) to contain a large number of isomeric sequences (by amino acid 

sequence/composition) to enable the simultaneous assessment of a range of analytical parameters. 

We reviewed five large-scale human phosphoproteomic studies 19-23 representing some 40,000 

phosphopeptide identifications and 46,000 phosphorylation sites dominated by pS and pT 

phosphorylation (Fig. 1A, B and Fig. 2). We selected the 851 sample peptides common to at least 

three of the five studies and analysed them for hydrophobicity vs. length (Fig. 1C). From this plot, we 

selected 96 representative ‘seed’ peptides that cover 90% of this area and also contain the 

phosphorylation sites in representative positions along the peptide sequence. Each of the 96 seed 

peptides formed the basis for the synthesis of a library (Fig. 1D) in which one amino acid position x0 

was permuted to contain the six amino acids S, T, Y, pS, pT and pY. The flanking positions before (x-1) 

and after (x+1) were permuted by all 20 naturally occurring amino acids. This design resulted in 84 

libraries with 2,400 members each and a further 12 libraries with 120 members each, totalling 

203,040 theoretical unmodified and corresponding phosphorylated peptides. 
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Figure 2. Amino acid composition analysis at the x+1 and x-1 position of the phosphorylation site in 
(A) serine, (B) threonine and (C) tyrosine phosphorylated peptides that were identified in the 5 large 
scale phosphopeptide datasets (Fig. 1A). Fold changes were calculated on the basis of the amino acid 
composition of the IPI protein database. Proline is clearly overrepresented at the x+1 position for 
pS/pT peptides reflecting the abundance of SP, TP phosphorylation motifs in these data sets. 
Cysteine residues are clearly underrepresented at position x+1 and x-1 in both pS/pT containing, but 
not in pY containing peptides. Tryptophan is underrepresented at the x+1 and x-1 in pY containing 
peptides. The reasons for these over- and under-representations have not been investigated further. 
 

 

Peptide and phosphopeptide identification by LC-MS/MS 
Each of the synthesized libraries was subjected to LC-MS/MS analysis on an Orbitrap Velos 

instrument using either beam-type collision induced dissociation or electron transfer dissociation 

with Orbitrap readout of fragment ion spectra. Database searching using Mascot revealed that all 

but three libraries were synthesized successfully with an average detection efficiency of 63% (Fig. 

3a).  
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Figure 3. Peptide library identification rate. (A) Total sequence coverage of each peptide library 
showing an overall identification rate of 63% by Mascot (70% for unmodified peptides, 57% for 
phosphopeptides, not FDR adjusted). Libraries that were based on seed peptides with C- or N-
terminal phosphorylation sites only contain a maximum of 120 (phospho) peptides and are therefore 
marked as such. (B-D) Venn diagrams showing the overlap between peptides (b), phosphopeptides 
(C) and non-phosphorylated peptides (D) identified by HCD and ETD fragmentation. (E) Number of 
peptides identified from each precursor charge state (2+, 3+, 4+ and 5+) by HCD only (light grey), ETD 
only (black) or by both methods (dark grey). Further information can be found in Figure 4. 
 

 

The HCD and ETD data collectively provided raw analytical evidence (i.e. not FDR adjusted but 

requiring a correct library sequence and the correct phosphorylation site where applicable, Fig. 4) 

for 128,863 library peptides comprising 71,033 non-redundant unmodified peptides (70% of all 

possible) and 57,830 non-redundant phosphopeptides (57% of all possible, Fig. 3B-D) which formed 

the basis for all subsequent analysis.  
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Figure 4. Peptide classifications. (A) Distribution of correct (true positive, TP) and incorrect (false 
positive, FP) peptides as a function of the Mascot Score (HCD). FDR values are indicated within each 
score bin (bin width 10 score points) (B) analogous to (A) for ETD data. (C) MDscore distribution of TP 
peptides. 43,672 out of 114,048 peptides have an MDscore different from zero (HCD). (D) analogous 
to (C) for ETD data; 12,771 out of 54,706 peptides have an MDscore different from zero. 
 

 

The detected peptides show equal representation of pY, pS and pT and no significant compositional 

or phosphorylation motif bias (Fig. 1E). This is both notable and important as it can now be shown 

that the pS or pT peptides are not substantially more difficult to identify by (high resolution) mass 

spectrometry than pY peptides and that the dominance of SP and TP phosphorylation motifs in 

large-scale data sets from biological sources are not owing to bias in the LC-MS/MS readout of such 

studies. This very large library of synthetic peptides with known sequences and modification sites 

along with the associated mass spectrometric data enables a multitude of investigations relevant for 

proteomics, some of which are outlined below. Many peptides were identified by both HCD and ETD 
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fragmentation and Orbitrap readout but HCD identified substantially more peptides and with better 

Mascot scores (Fig. 3A-D and Fig. 5). The observed peptide charge state distribution follows 

expectations in light of the synthesis design (Fig. 3E). But contrary to commonly accepted notions in 

the field, ETD with Orbitrap readout provided no appreciable advantage for peptide identification at 

any charge state, and HCD was also substantially more successful for the analysis of 

phosphopeptides (Fig. 3C). 

 

 

 
 
Figure 5. Score distributions over libraries. Mascot score distributions of peptides identified in each 
library by either (A) HCD or (B) ETD as fragmentation method. Medians are marked with black lines 
and boxes indicate the middle two quartiles of the score distributions. For comparison, Mascot 
identity and homology scores are indicated by dotted lines. For HCD, most of the peptides are 
identified with scores higher than the Mascot Identity score. As depicted in panel b, Mascot scores 
are overall significantly lower when ETD is used as fragmentation technique. 
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Evaluation of peptide identification algorithms 
Owing to the fact that our peptide library is very large and the sequences of the synthetic peptide 

standards are known, we were able to address a fundamental issue in proteomics—namely, the 

merits of peptide identification by database searching. Using the popular search engines Mascot and 

Andromeda, we counted the number of correct and incorrect identifications to derive models for 

local and global false discovery rates as a function of the search engine score (Figs. 6-8). As expected, 

both score distributions show a rapid drop of FDRs as the search engine score increases. Notably, 

phosphorylated peptides appear to be easier to identify than the corresponding unmodified 

peptides as phosphopeptides show significantly lower FDR values at any search engine score. 

 

 

 
 
Figure 6. Spectra classification. Number of correct (blue) and incorrect (red) assigned spectra for 
each Mascot score, using either HCD (a) or ETD (b) as fragmentation technique. As can be clearly 
seen in both figures, for low Mascot scores, i.e. below Identity threshold, the number of incorrect 
assigned spectra rapidly increases. For Mascot scores higher then the Identity threshold, incorrect 
assignments rapidly decrease. 
 

 

An important consequence of this analysis is that actual global or local FDR values can now be easily 

computed from fit functions representing a sum of two exponentials of the form FDR=A*exp(–

C*Score)+B*exp(–D*Score) 17 for any peptide identification made by these two search. With the 

appropriate adaptations, such calculations can likely be applied to scores from any other search 

engines as well. A comparison of global FDR values (computed as above) with the decoy count 

approach used by Mascot shows that the decoy approach underestimates the genuine global FDR 

for most of the 96 libraries analyzed by a factor of 1.5 to 3. This raises questions about the general 

validity of a decoy count approach or at least about how decoy count methods should be devised 

and ‘calibrated’ to reflect the true FDR. The resource we provide in this work enables such valuable 

future investigations. 
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Figure 7. Local and global false discovery rate (FDR) analysis as a function of the Mascot score. 
Peptide identifications using (A, C) HCD and (B, D) ETD as fragmentation technique. Phosphorylated 
peptides are marked in red and non phosphorylated peptides are marked in blue. For HCD, the 
Mascot identity score nicely correlates with a 5% local FDR for phosphopeptides and a 10% local FDR 
for non phosphopeptides. The ETD data follows the same trend but with generally higher FDR values 
at a given Mascot score. Insets show expanded regions of the same plots. The score distributions can 
be approximated with a fit function of the form: FDR= A * exp(-C * Score) + B * exp(-D * Score). This 
allows the calculation of a local and global FDR for any identification at a particular Mascot score. 
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Figure 8. Local and global false discovery rate (FDR) analysis as a function of the Andromeda score. 
Peptide identifications using (A, C) HCD and (B, D) ETD as fragmentation technique. Phosphorylated 
peptides are marked in red and non phosphorylated peptides are marked in blue. For HCD, the 
Mascot identity score nicely correlates with a 5% local FDR for phosphopeptides and a 10% local FDR 
for non phosphopeptides. The ETD data follows the same trend but with generally higher FDR values 
at a given Mascot score. Insets show expanded regions of the same plots. The score distributions can 
be approximated with a fit function of the form: FDR= A * exp(-C * Score) + B * exp(-D * Score). This 
allows the calculation of a local and global FDR for any identification at a particular Mascot score. 
 

 

Phosphopeptide site localization 
Previous work has shown that synthetic phosphopeptides can be used to generate phosphorylation 

site localization scores14, 15, 17. Although these tools have proven to be very useful, the relatively small 

number of synthetic peptides used in these studies confines the scores to global assessments, thus 

leading to uncertainty with respect to their accuracy for individual phosphopeptides. The volume of 
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data generated in this study allowed us to refine the Mascot Delta Score (MD-score) for 

phosphorylation site localization in a number of ways. 

It is now possible to compute false localization rates (FLR) for global data sets as well as individual 

peptides using the same general equation as the one used for FDR calculations (Fig. 9). The results of 

the analysis of this bigger data set largely confirm the earlier studies 17 and extended its scope to 

ETD with Orbitrap readout. Furthermore, although ETD overall identifies fewer phosphopeptides 

than HCD (Fig. 3), the site localization for peptides that are identified by ETD tends to be more 

accurate (Fig. 9A, B). Notably, there are, albeit relatively small, differences in localization 

performance for the different phosphorylated amino acids (Fig. 9C, D), which should be investigated 

in more detail in the future. We noted before 17 that confident phosphorylation site localization 

becomes more difficult when two possible acceptor amino acids are directly adjacent. The larger 

data basis in the current study confirmed this for HCD data and also showed that no appreciable 

such effect is observed for ETD. 
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Figure 9. False phosphorylation site localization rate analysis for HCD and ETD data as a function of 
Mascot Delta score. (A) Plot showing Local FLRs in each MDscore bin and (B) plot showing global 
FLRs. ETD performs slightly better on site localization than HCD. For example, for a local FLR of 1%, 
ETD requires a MDscore of 15 whereas HCD requires a MDscore of 25. Insets show expanded regions 
of the same plots. The fit functions are the same as in Supplemental Figure 8 but with different 
coefficients. Insets show expanded regions of the same plots. (C, D) Global false localization rates as 
a function of Mascot delta score for serine (blue), threonine (red) and tyrosine (green) 
phosphorylated peptides. For both HCD (C) and ETD (D). Insets show expanded regions of the same 
plots. Slight differences are observed for the different phospho amino acids with pY localization 
being more easily correctly localized than serine (2nd best) and threonine phosphorylation sites, i.e. 
lower MDscores are required for pY peptides compared to pS and pT peptides to maintain the same 
FLR. 
 

 

We next applied our library data to benchmark three phosphorylation site localization tools (the MD-

score, the PTM-score of MaxQuant and its associated search engine Andromeda and the phosphoRS 

score embedded in Proteome Discoverer). Analysis of PSMs classified by all three localization tools 

shows that at 1% FLR all three tools cover 90–95% of the correct spectra (Fig. 10A, B). We then 

examined how well the probability reported by a given localization tool correlates with the FLR 

determined by counting correct and incorrect spectra (Fig. 10C). Of note, all localization tools 

underestimate the true FLR within a probability bin, suggesting that they can be improved. 

Reassuringly, however, the absolute error is small for the vast majority of the data. PhosphoRS 

appears to be a special case as the probability distribution is particularly narrow. As we used a 

commercial implementation of PhosphoRS (in Proteome Discoverer), the reasons for this 

unexpected behavior are unclear at present. Apart from the reliability with which a phosphorylation 

site can be called, it is obviously also important to know how many phosphopeptides can be 

correctly assigned by each of the tools. As can be seen in the inset of Figure 10A, the PTM-score and 

phosphoRS are more sensitive than the MD-score as they achieve the highest number of localized 

library peptides at 1% FDR/FLR. Notably, there is substantial complementarity between all 

localization tools, suggesting that their interpretation of the underlying tandem mass spectra follows 

different rules and that they can be improved. As a result, and at least for the time being, using more 

than one localization tool may lead to a more comprehensive analysis of a given phosphoproteome. 

We also applied the FDR/FLR models derived for the two search engines and three localization tools 

to a complex phosphoproteomic sample generated by Ti-IMAC enrichment from human K562 cancer 

cells. And similar to what was obtained for the library peptides, the different identification and 

localization tools showed substantial complementarity. The data also suggests that when applying 

very stringent requirements (e.g., 1% peptide identification FDR and 1% phosphorylation site FLR), 

the overall number of identified and localized phosphopeptides is comparable between the three 

tools (Fig. 10D). 
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Figure 10. False localization rate determination for phosphorylated peptides. Because the 
modification site of all library peptides is known, false localisation rates (FLRs) can be determined by 
counting the number of correct and incorrect matches. (A) Qualitative and quantitative comparison 
of PTM-score, MD-score and PhosphoRS for phosphorylation site localization (HCD data). Although 
all three scores exhibit comparable overall accuracy (using data from the intersection of all three 
tools), (B) the Venn diagram in the inset shows the complementarity of the different tools at 1% FDR 
and 1% FLR. (C) Histogram plot of the number of correctly and incorrectly assigned spectra within 
probability bins provided by the three localization tools. The graphs show that all localization tools 
underestimate the true FLR within most bins but also indicate that this error is small for the vast 
majority of the data (see Supplementary Fig. 20 for further information). (D) Application of the FDR 
and FLR models derived from library spectra to the analysis of a phosphoproteomic sample 
generated by Ti-IMAC enrichment from human K562 cells. The results confirm the complementarity 
of the different localization scores at the level of 1% FDR and 1% FLR shown here. 
 

 

Peptide separation by liquid chromatography 
Peptide separation by high performance liquid chromatography is an integral part of mass 

spectrometry based proteomic workflows. The design of our peptide library also facilitates the study 

of a number of topics in this area. 

First, the library contains a matched collection of peptides and their phosphorylated counterparts. 

More than 95% of the 11,381 peptide pairs (5% global FDR) from the HCD data set shown in Figure 

11A and 11B for ETD data were separated by the LC system (depending on gradient length and 

chromatographic resolution). As noted before 24, the majority of all phosphopeptides elute 
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substantially later than their unmodified counterpart when using formic acid or acetic acid in the LC 

mobile phase , but the extent of increased retention is not correlated with peptide length (Fig. 11A). 

However, we did observe that phosphorylation on Ser and Thr increases the retention time 

substantially more than does phosphorylation on Tyr (Fig. 11C), possibly because Tyr is the most 

hydrophobic amino acid of the three. 

 

 

 
 
Figure 11. Retention time analysis. (A) Distribution of the retention time shift introduced by the 
addition of a phosphate group to a peptide (HCD data, delta RT values were calculated by 
subtracting the retention time of the unmodified peptide from that of the corresponding 
phosphorylated peptide). The majority of phosphopeptides (70%) elute later than their non-
phosphorylated counterparts, 4% elute within the same time window and 26% elute earlier (25 
second window, corresponding to the width of an average LC peak at half maximum). Retention time 
shifts appear to be independent of peptide length (B) Distribution of retention time differences 
between an unphosphorylated peptide and its phosphorylated counterpart for ETD data collected on 
an Orbitrap Velos instrument and using acetic acid as the ion pairing agent in the LC solvent. Also for 
acetic acid, the vast majority of the peptides can be separated by the LC system (96%) and most 
phosphopeptides elute significantly later than their unphosphorylated counterparts. Only 4% of all 
peptides cannot be separated by the LC system (LC resolution as measured by the width of an LC 
peak at half maximum is ~25 seconds. (C) Contribution of the phosphate group to peptide retention. 
As can be seen, the contribution of the phosphate group to the overall retention of a peptide is small 
for pY peptides but significantly larger for pS and pT peptides. 
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Second, the library contains tens of thousands of paired sequence isomers because the x-1 and x+1 

positions were systematically permuted over all 20 amino acids. Isomeric peptides represent a 

challenge for mass spectrometric identification because their precursor masses are identical and the 

tandem mass spectra may also be rather similar if the discriminating b- and y-type fragment ions are 

missing, which can lead to ambiguity (Figs. 4, 12A and 12B). However, sequence isomers of the same 

amino acid composition may be separated by reversed phase chromatography. The one-dimensional 

LC system employed in this study allowed the separation of about 40% of all isomers (Fig. 12C; 

45,516 isomeric pairs, 5% global FDR, HCD data) using a conservative 25 s retention time window, 

within which eluting isomers were considered indistinguishable by chromatography (average LC 

peak widths were generally between 10 and 25 seconds; full width at half maximum, FWHM). 

Notably, we observed a massive under-representation of glycine in position x-1 and x+1 for these 

peptides, suggesting that an individual glycine residue exerts little or no influence on peptide 

retention on the stationary phase. About 60% of isomeric pairs could not be fully separated by the 

one dimensional LC system (Fig. 12C) but the information contained in the tandem mass spectrum 

allowed the assignment of 30% of these peptides (judged from non-identical Mascot scores). This is 

either because isomeric peptides did not exactly co-elute so that the respective tandem mass 

spectra are dominated by one species or because one isomer was more abundant than the other 

(i.e. higher synthesis yield). Isobaric, or near isobaric peptides may also arise from two amino acid 

combinations having the same or similar mass (e.g. AS/GT, same mass or DG/AT, similar mass). 

Because of the high mass accuracy afforded by the instrument used in this study for both precursor 

and fragment ions, most of the ‘similar mass’ cases can be readily distinguished by their precursor or 

fragment ion masses alone. Given the differences in contribution of individual amino acids to the 

retention of a peptide (see below), many such near-isobaric peptides can also be separated by a one 

dimensional, and likely much better by a two dimensional LC system. 
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Figure 12. Isomer analysis. (A) Analysis of the number of peptide spectrum matches (PSMs) for 
tandem mass spectra (assigned by Mascot) for both HCD and (B) ETD. It is apparent that a large 
number of spectra only result in a single PSM (i.e. matching peptide sequence). Spectra generating 2 
PSMs (with identical score) originate primarily from isomeric peptides generated by the permutation 
scheme used for the library synthesis. Spectra generating more than 2 PSMs are rare. The relative 
over-representation of 4, 6, 8, 10 PSMs also arise from the permutation scheme as there are a small 
number of amino acid compositions of identical mass (e.g. AS/GT) which may not always be 
distinguishable by the information contained in a tandem mass spectrum. For the FDR/FLR 
calculations used in this work, these cases are treated as one TP and one FP in order to avoid 
artificially inflating the number of TPs or FPs. (C) The library contains a large number of paired 
sequence isomers (x-1 and x+1 position around the phosphorylation site; n=45,516 pairs, 5% global 
FDR). Sixty-two percent of these positional isomers cannot be distinguished by a difference in 
retention time (red) whereas the remaining 38% can (blue, left panel. For the indistinguishable 
positional isomers, no clear over or underrepresentation of amino acids at the x+1 and X-1 positions 
are detectable (middle panel). In contrast, for the paired positional isomers that can be distinguished 
by retention time (right panel), a strong underrepresentation of glycine (G) at the x+1 and x-1 
positions is observed. 
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Third, we asked the question how much retention to the reversed phase material of the LC column is 

added by any of the individual amino acids. Based on 156 complete permutation sets (i.e. peptides in 

which all of the x-1 and x+1 amino acid permutations were observed), the trend closely follows the 

described hydrophobicity scales of amino acids during RP-HPLC published by Krokhin 25 with 

tryptophan and phenylalanine adding the most and histidine and lysine adding the least retention to 

a peptide (Fig. 13). It is likely that more factors influencing chromatographic behavior of tryptic 

peptides can be extracted from the data, which may be subject to future investigation. 

 

 

 
 
Figure 13. Amino acid retention time behavior. (A) The influence of individual amino acids on 
retention behavior was studied using peptides for which all 156 possible amino acid permutations in 
the x+1 and x-1 positions were observed by HCD. The observed trend clearly follows the general 
hydrophobicity and charge properties of the amino acids as approximated by the GRAVY score and 
reported by others (see Supplementary Fig. 23 for further details). (B) Contribution of individual 
amino acids on retention time shifts observed during reversed phase chromatography. Data derived 
in this study correlates very well with data derived by Krokhin (Anal Chem, 2006) (r=0.93). 
 

 

Discussion 

 
We have created the largest physical synthetic peptide library (>200,000 theoretical members) and 

associated mass spectrometric data set (>50,000 identified phosphopeptides, >70,000 identified 

unmodified peptides) available for proteomic research to date. We are making this resource 

available to the scientific community with the aim to provide a reference standard for the evaluation 

of proteomic data acquisition and analysis platforms and to foster the development of novel 

experimental and computational approaches. Many applications of the library and data can be 

envisaged. Within the space and scope constraints of this article, we could only outline a few that 
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are of particular relevance for the field and all of which were facilitated by the design and size of the 

library. Collectively, the data obtained confirms many earlier findings but also holds some rather 

unanticipated surprises. 

As for mass spectrometric data acquisition, the merits of ETD, CID and HCD for the analysis of 

peptides in general and phosphopeptides in particular are subject to much debate in the community 
26-32. The data presented in this study show that HCD (i.e. beam type CID with Orbitrap read out) is 

generally more successful than is ETD with Orbitrap readout, both for the identification of ordinary 

and phosphopeptides. Inspection of the raw MS data suggests that this is largely due to the fact that 

the ETD spectra contain fewer and less intense signals (owing to factors such as the generally lower 

duty cycle of the instrument in ETD mode, the low mass cut-off of ion traps, the general tendency to 

produce fewer signals in the low m/z region, inefficient fragmentation of precursor ions and ion 

losses during the ETD experiment). Notably, phosphopeptides turned out to be more readily 

identified than unmodified ones. We attribute this observation primarily to the addition of a highly 

mass-deficient phosphate group, which shifts the precursor and part of the fragment ion mass 

distributions away from that of unmodified peptides, creating a discriminating feature over 

unmodified peptides in a database search that considers variable modifications. Clearly, HCD and 

ETD are complementary fragmentation techniques. Still, we were surprised to find that ETD (with 

Orbitrap readout) did not perform appreciably better than HCD for peptide and phosphopeptide 

identification at higher charge states because prior work using ETD with ion trap read out had 

demonstrated superior performance on mis-cleaved tryptic peptides (typically having higher charge 

than fully cleaved tryptic peptides) 32. For now, we are taking these observations at face value, but 

they are consistent with general past experience that results obtained by one type of fragmentation 

technique on one mass analyzer may not translate easily to a different mass analyzer. Nevertheless, 

our physical peptide library provides a means to address issues as the ones described above in a 

systematic manner for any mass spectrometric platform in the future. 

It is well established, that different search engines generate somewhat different peptide 

identification results from the same mass spectrometric data 33. Based on the example of the 

popular search engines Mascot and Andromeda, the MS data generated from the peptide library can 

be used to assess the merits of a search engine in an objective fashion and without the need for 

applying a decoy count or probabilistic error rate model as a proxy for false discovery rate 

computation. In general, the data shows that the Mascot score performs quite well, as the 5% global 

FDR value obtained by counting correct and incorrect matches for unmodified peptides is very close 

to the Mascot identity threshold, which corresponds to a 5% probability of a match to be a random 

event. For phosphopeptides however, the Mascot score model appears to be rather too 

conservative. Analogously, it was also possible to establish objective FDR criteria for peptides and 

phosphopeptides for Andromeda, which will aid in the further development of this search engine. In 

addition, the observed differences in FDR values generated by counting true and false positives (our 

approach) and by decoy counting (generally used by database search engines) suggests that the 

decoy approach often underestimates the true FDR and these results indeed raise questions as to 

the general validity of estimating FDR values from decoy counts. Hence, one notable outcome of the 

current study is the documentation that different and more refined computational models for 

peptide identification by database searching are needed depending on which fragmentation method 

is used, which peptide modification is considered and how FDRs should be estimated. The value of 

the data provided from this study is that these models can now be built using the MS data for HCD 

and ETD directly or using the physical library for those instrument platforms not covered here 34, 35. 
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In light of the rapidly increasing volume of phosphoproteomic data 36, we and others have devised 

computation approaches for the localization of phosphorylation sites within peptides 14, 15, 17, 18, 20, 37-

39. Again, the peptides and data generated in the current study can be used to assess and improve 

existing methods. The increase in available peptides has allowed us to refine the MD-score for 

phosphorylation site localization at several levels (fragmentation technique, type of phosphorylated 

amino acid, effect of distance between two possible phosphorylation sites, global and local FLR). 

Similarly, the comparison of the MD-score, phosphoRS and PTM-score showed that despite their 

similar overall accuracy, there is substantial complementarity, suggesting that all of the methods can 

be improved. Again, our data and peptides should facilitate such improvements or perhaps spur the 

development of entirely new ideas, which may be needed to address the considerable challenge of 

scoring multiply phosphorylated peptides having many potential acceptor sites. 

Lastly, we demonstrated the utility of the synthetic library for analyzing peptide-retention behavior 

on reversed phase liquid chromatography. Our analyses confirmed previous empirical observations 

and the library can be similarly applied to analyze multidimensional separations. Although this is 

beyond the scope of the current study, we anticipate that the diversity and size of the library may 

stimulate further research, for example, into how retention time prediction models can be refined, 

and how such refinements may be used to improve peptide identification algorithms, targeted 

peptide quantification or modification site analysis 40-43, particularly with a view to distinguishing 

isomeric (phospho) peptides. Future work could also address topics such as (i) ion mobility 

measurements and their value for peptide identification and modification analysis 44, 45, particularly 

for isomers, (ii) understanding more fundamentally how the presence of a phosphate group 

influences fragmentation behavior and how that may be used for better computational tools (see 

Fig. 3) and (iii) the comparison of upstream peptide separation and enrichment methods 46 as well as 

alternative fragmentation techniques and instrument platforms 17, 31. 

Despite all the described useful features, the library is not perfect. The libraries are mixtures of 

unpurified, synthesized peptides. The presence of the inevitable synthesis artifacts in the data may 

render the statistical analysis more conservative than necessary because tandem mass spectra from 

synthesis artifacts are more likely to contribute more to false positives than true positives. The 

permutation scheme purposely generated many isomeric peptides, which represents a challenge for 

applications requiring the analysis of single species. The large number of isomers in our library may 

not exist in nature to a similar extent and which, again, may make it harder for database search 

algorithms to identify the correct one. However, the data may also facilitate the development of 

computational tools to deal with mixed tandem mass spectra resulting from the co-elution and co-

fragmentation of (isomeric) peptides. The library does not contain any positional phosphorylation 

isomers. We had addressed this topic in previous work 17 using individually synthesized peptides, but 

a broader collection of these would certainly be desirable to refine further localization scores and 

models of retention time. Another important future step would be the extension of the library to 

multiply phosphorylated peptides to learn if and how experimental and computational approaches 

have to be adapted to enable the analysis of these potentially important peptides in a more 

comprehensive fashion than currently possible. 

In conclusion, we believe that the synthetic peptide library and derived mass spectrometric data 

described in this manuscript will serve as a valuable resource for the experimental and 

computational research community. We are confident that its use will generate many new ideas and 

multiple lines of follow-up investigation including the generation of further physical libraries tailored 

to particular questions and new computational tools that collectively improve proteomic technology. 
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ETD electron transfer dissociation 
FDR false discovery rate 
FLR false localization rate 
FP false positive 
FWHM full width at half maximum 
HCD beam-type collision-induced dissociation 
LC-MS/MS liquid chromatograph tandem mass spectrometry 
MD score mascot delta score 
mgf mascot generic format 
PSM peptide spectrum match 
TP true positive 
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Abstract 

 
We present the first draft of the porcine proteome to date. The recent sequencing of the Sus Scrofa 

(pig) genome and its importance as a potential mammalian model organism and livestock species 

necessitate the structural and functional genome annotation. Mass spectrometry based 

proteogenomics facilitates the identification of novel genes as well as the validation and refinement 

of gene and transcript models.  

We searched nine juvenile organs and six embryonic stages against one of the latest genome 

assemblies, transcript entities (EST, cDNA, mRNA) and protein sequences. We also proposed a 

tailored strategy to combine inference-prone data from multiple proteogenomics experiments into a 

consensus set of peptide and protein identifications. Using this approach we identified 7,108 

proteins originating from 5,968 known, 690 novel and 176 refined gene models. 

 

Introduction 

 
The morphological and physiological resemblance of Sus Scrofa to Homo Sapiens facilitates the study 

of human diseases in a potential mammalian model organism 1. The recent genome sequencing 2 

and prior physical mapping 3 revealed also a close phylogenetic relationship on a molecular level. 

Furthermore is the domestic pig an important livestock species to produce various commodities. It is 

therefore critical to improve and extend the structural and functional genome annotation to 

advance medical and biological research 4. 

A popular example for a genome annotation pipeline is Ensembl 5 comprising ab initio gene 

predictions, the projection of orthologous information and integration of available gene, transcript 

and protein data. Mass spectrometry (MS) based proteogenomics is able to provide unprecedented 

protein level evidence to supplement and improve the annotation 6, 7. The merits of proteogenomics 

were highlighted for various model organisms including plants such as Arabidopsis thaliana 8, 9, 

Medicago truncatula 10, Zea mays 11 and eukaryotes namely Saccharomyces cerevisiae 12, Mus 

musculus 13, 14, Rattus norvegicus 15 as well as Homo Sapiens 16, 17 uncovering novel gene models, 

alternative splice products and refining, validating existing gene and transcript models. 

Even though proof of concept for proteogenomics has been shown over a variety of taxa, analysis of 

higher eukaryotes continues to be a computational challenge 18, due to the complexity of alternative 

splicing, the large amount and varying sources of sequences and the respective data processing and 

validation. The technological advance in high resolution mass spectrometry envisages a 

comprehensive and deep proteome coverage generating more and more data not interpretable with 

common protein sequence databases necessitating the addition of other sequence sources. 

Therefore a common approach in proteogenomics is to extend the protein sequence search space by 

including genome or transcriptome data. In doing so, the genome is translated in all six reading 

frames 19 and valid exon information is used to construct exon graphs 20 to cover all possible 

alternative splicing events. Alternative splice variants are also investigated by transcript data, such as 

ESTs 21, 22, cDNA and lately RNA-Seq 23, 24. The ready access to RNA-Seq data drove recent 

proteogenomic studies 25, 26, 27 to cope with the extensive search space of exon graphs by pruning the 
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exons to the ones covered in RNA-Seq data. Even though beneficial, RNA-Seq solely covers a set of 

transcripts in a cell state, type or tissue and the complementarity of each platform (RNA-Seq, MS-

based proteomics) is also able to provide unique insights 11, 28, 29. 

The ultimate goal of a proteogenomic experiment is to predict novel and refined gene models, e.g. 

with Augustus 30 supplementing the gene predictor with extrinsic information such as transcript 

information and interpreted data from MS-based proteomics 31. 

In this study, we provide the first draft of the porcine proteome by MS-based proteomics. Our 

biological samples comprise most of the juvenile organs and early embryonic stages after gestation. 

The resulting protein level evidence facilitates the annotation of the corresponding genome. 

As introduced, we pursue the idea of extending the search space and hence search the peptide 

fragment spectra against the latest genome assembly (Ensembl, 10.2.70), transcript entities (EST, 

cDNA, mRNA) and protein sequences 32 from the Ensembl, NCBI (RefSeq, GenBank) and UniProt 

consortia. To this end, the genome was translated to a six-frame translation and exons to a compact 

representation of the exon graph as a peptide centric version 33. The peptide centric exon graph 

(PEPcEX) covers the theoretical splice search space based on Ensembl predicted and valid exons. To 

minimize the accumulation of false positive peptide spectrum matches (PSM) in multi database 

searches, we introduced a naive PSM grouping approach and also investigate the influence of 

statistical measures 34 to validate peptide and protein identifications. The strategy could be used as a 

guideline to standard data processing in a proteogenomic context, stating not to take identifications 

at face value. 

 

Material and methods 

 

Animal welfare and keeping 
The juvenile domestic German landrace pigs (gilts), age 5.5 to 6 months, were kept in compliance 

with the animal welfare for pigs of the EU (directive 2008/120/EC) at a livestock breeding in 

Thalhausen at one of the agricultural experimental stations of the Technische Universitaet 

Muenchen (Center of Life and Food Sciences Weihenstephan, Germany). 

 

Sample extraction 
Embryos 

To initiate synchronous estrous, the gilts were treated as standard ovulation synchronization 

schedule with Altrenogest® (progesteron) for 18 days followed by 750 IE Intergonan® (PMSG, 

Gonadotropin) 24h after the last Altrenogest and 750 IE Ovogest® (hCG, Chorionic gonadotropin) 

80h after Intergonan application. Twenty-four hours later they are artificially inseminated with the 

semen of the same boar, which is repeated again 12 h later. The day after the last insemination was 

determined as day one. The gilts were slaughtered at days 18, 22, 25, 28, 32 and 39, respectively, at 

the local slaughterhouse. The uterus was an animal by-product of the slaughtering and is collected 

immediately after slaughtering. The implanted embryos were excised from the endometrium, 

washed with PBS and stored on dry ice. 

 

Gilt organs 
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A female gilt was sedated and bled out (euthanized). The organs were excised shortly after, washed 

with PBS and stored on dry ice for the transportation. In total nine organs were extracted, namely 

diaphragm, spleen, biliary, kidney, liver, lung, brain, pancreas and heart. 

  

Sample preparation 
The juvenile organs and embryos were washed multiple times with cold PBS. 10g sample (random 

location) were lysed using Tris-HCl buffer containing 4% SDS and a Miccra D-9 homogenizer (ART 

Labortechnik, Germany). The lysate was ultracentrifuged for 1 h at 20 °C and 52000× g. The protein 

extract ~ 1.3 - 15.5 µg / µl (Bradford Protein Assay) was reduced with 10 mM dithiothreitol and 

alkylated with 55 mM iodoacetamide. Proteins were separated by 1D SDS gel electrophoresis and 

each lane was cut into 12 regions. The regions were digested with trypsin 35. 

 

LC-MS/MS analysis 
Nanoflow LC-MS/MS was performed by coupling an Eksigent nanoLC-Ultra 1D+ (Eksigent, Dublin, CA) 

to a Velos-Oribtrap Elite (Thermo Scientific, Bremen, Germany). Peptides were delivered to a trap 

column (100 μm i.d. × 2 cm, packed with 5µm C18 resin, Reprosil PUR AQ, Dr. Maisch, Ammerbuch, 

Germany) at a flow rate of 5 µL/minute in 100% buffer A (0.1% FA in HPLC grade water). After 10 

minutes of loading and washing, peptides were transferred to an analytical column (75µmx40 cm 

C18 column Reprosil PUR AQ, 3µm, Dr. Maisch, Ammerbuch, Germany) and separated using a 55 

minute gradient from 2% to 35% of buffer B (0.1% FA in acetonitrile) at 300 nL/minute flow rate. The 

Velos-Orbitrap Elite was operated in data dependent mode, automatically switching between MS 

and MS2. Full scan MS spectra were acquired in the Orbitrap at 30,000 resolution. Internal 

calibration was performed using the ion signal (Si (CH3)2O) 6 H + at m/z 445.120025 present in 

ambient laboratory air. Tandem mass spectra were generated for up to 15 peptide precursors in the 

linear ion trap for fragment by using Higher energy collisional dissociation (HCD). 

 

Search databases 
The Ensembl genome (DNA) assembly (Sscrofa10.2.70 build) and the respective gene, exon, 

transcript models and protein sequences (Ensembl - all) were the reference to compare or rather 

classify against. All other databases cover EST, cDNA, mRNA and Protein (PEP) sequences from the 

Ensembl, NCBI (RefSeq, GenBank) and UniProt consortium (Table 1). The [cDNA] Ensembl - all 

sequences comprise EST, cDNA and RNA-Seq data (see supplementary information, Groenen et al., 

Nature, 2012) 2. 

 

 

Name Molecule Type Size (Entries) Version 

Ensembl - all PEP 25,883 10.2.70 

Ensembl - ab initio PEP 52,372 10.2.70 

RefSeq PEP 59,991 01.03.2013 

UniProtKB PEP 33,205 28.02.2013 

Ensembl - all cDNA 82,635 10.2.70 

Ensembl - ab initio cDNA 157,116 10.2.70 

RefSeq mRNA 195,291 28.03.2013 

GenBank EST 10,034,796 28.03.2013 

PEPcEX DNA 2,936,004 10.2.70 
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Ensembl DNA 85,738,772 10.2.70 

 
Table 1. Databases meta information. Database names, size, molecule type (DNA, EST, cDNA, 
mRNA, PEP) and version. 
 

 

Search database construction - Frame translation 

The pre-masked genome sequence, i.e. low complexity regions were masked with RepeatMasker 36, 

was translated in all six reading frames (+1, +2, +3, -1, -2, -3), where each FASTA entry in the 

resulting database is an open reading frame (ORF). Transcript sequences (cDNA, mRNA and ESTs) 

were translated in all three forward frames (+1, +2, +3). 

 

Search database construction - Peptide centric Exon graph (PEPcEX) 

In brief, each node of the exon graph represents an exon from Ensembl (validated and predicted) 

and the edge the splice site. In higher eukaryotes exist for each locus theoretical 2n - 1 linear exon (n) 

combinations 37. Exon phases restricted the number of valid combinations. To reduce the size of the 

resulting database, we perform an on-the-fly in silico digest to construct a peptide centric database 

(PEPcEX). The most notable digest parameter is the mass interval required to omit undetectable 

peptides. The monoisotopic precursor mass interval was derived from the peak lists based on [min. - 

5 ppm, max. + 5 ppm] mass resulting in [299.0049, 8373.878] [Da]. 

 

Search database construction - Consensus 

To derive a consensus database of known and novel transcripts (proteins), we used a peptide centric 

clustering algorithm 32. The input databases comprised all identified transcript models (PEP, cDNA, 

mRNA) and the Augustus gene predictions. Notable parameters are T = 0, Length = true, Length_Min 

= 7, Length_Max = 52 and Miss_Cleavages = 2. 

 

False discovery rate (FDR) models 
In a recent study 38, we were able to derive (objective) false discovery rate (FDR) models as a 

function of a search engine score (Mascot, MaxQuant) based on a synthetic (phospho-) peptide 

library. To optimize the local confined models we applied four new models (m1 (Score) = A exp (B 

Score), m2 (Score) = A exp (B Score) + C, m3 (Score) = A exp (B Score) + exp (C Score), m4 (Score) = A 

exp (B Score) + D exp (C Score)). The respective coefficients are available for unmodified (Table 2) 

and phosphorylated (Table 3) peptides. We rank the models based on ANOVA p-value and the 

Residual Sum of Squares (RSS). If applicable we illustrate beside the i) best fit also the ii) original or a 

more iii) asymptotic model. To smooth the distribution of data points for the local FDR models we 

omit FDRs following the condition FDRn-1 < FDRn and fit a model according to Jones et al. 39 (Fig. 1). 
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   m4 [21.60, 100.38] 0.14802 -0.01921 -0.16158 4.54646 

  Global m4 [0.0, ∞] 0.25637 -0.13345 -0.01574 0.06859 

ETD  Local m3 [0.0, ∞] -0.08910 -1.36322 -0.04568 - 

   m4 [31.88, 124.65] 1.95789 -0.07292 -0.14787 -1.04657 

  Global m3 [0.0, ∞] -0.31956 -0.04985 -0.04985 - 

   m4 [0.0, ∞] 0.085207 -0.001163 -0.082414 0.687492 

HCD Andromeda Local m1 [0.0, ∞] 1.20968 -0.02002 - - 

   m4 [75.84, 155.76] 0.085097 -0.004016 -0.066623 26.825405 

  Global m3 [0.0, ∞] -0.42677 -0.02988 -0.02988 - 

   m4 [0.0, ∞] 0.048624 -0.002116 -0.038946 0.542661 

ETD  Local m1 [0.0, ∞] 0.99025 -0.03332 - - 

  Global m2 [0.0, ∞] 0.70867 -0.03743 0.08729 - 

   m4 [0.0, ∞] 0.765448 -0.032880 0.008588 0.026013 

 
Table 2. False Discovery Rate (FDR)-Models and coefficients for unmodified peptides. Non-linear 

least square regression using four base models: m1 (Score) = A exp (B ∙ Score) , m2 (Score) = A exp (B  

Score) + C,m3 (Score) = A exp (B Score) + exp (C ∙ Score) ,m4 (Score) = A exp (B Score) + D exp (C Score)  and 
deriving the respective coefficients. The models are functions of the score and applicable for the 
fragmentation methods HCD and ETD, search engines Mascot and Andromeda, FDR methods Local 
and Global. 
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HCD Mascot Local m3 [0.0, ∞] -0.17458 -5.67732 -0.07704 - 

   m4 [16.12, 100.97] 0.09376 -0.0339 -0.15771 2.13304 

  Global m4 [0.0, ∞] 0.38796 -0.19020 -0.02567 0.03268 

   m4 [3.99, 100.10] 0.39446 -0.19036 -0.0249 0.03166 

ETD  Local m1 [0.0, ∞] 1.11225 -0.07547 - - 

   m4 [18.57, 105.16] 0.01828 0.01105 -0.08226 0.81877 

  Global m3 [0.0, ∞] -0.2228 -0.1035 -0.1035 - 

   m4 [0.0, ∞] 0.78917 -0.12750 0.00534 0.03336 

HCD Andromeda Local m1 [0.0, ∞] 1.42325 -0.02339 - - 

   m4 [69.55, 180.49] 0.003722 0.004204 -0.060589 13.43191 

  Global m4 [0.0, ∞] -0.70316 -0.10613 -0.05393 1.37562 

   m4 [29.61, 149.41] 0.01111 -0.00384 -0.05423 1.16356 

ETD  Local m1 [0.0, ∞] 1.12449 -0.03691 - - 

  Global m4 [0.0, ∞] 1.82587 -0.06963 -0.14468 -1.04418 

 
Table 3. False Discovery Rate (FDR)-Models and coefficients for phosphorylated peptides. Non-

linear least square regression using four base models: m1 (Score) = A exp (B ∙ Score) , m2 (Score) = A exp 
(B  Score) + C,m3 (Score) = A exp (B Score) + exp (C ∙ Score) ,m4 (Score) = A exp (B Score) + D exp (C Score)  and 
deriving the respective coefficients. The models are functions of the score and applicable for the 
fragmentation methods HCD and ETD, search engines Mascot and Andromeda, FDR methods Local 
and Global. 
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Figure 1. Novel ETD and HCD False Discovery Rate (FDR) models based on a synthetic library. Non-
linear least square regression using four base models: m1 (Score) = A exp (B Score) , m2 (Score) = A exp (B 

Score) + exp (Score) ,m3 (Score) = A exp (B Score) + exp (C Score) ,m4 (Score) = A exp (B Score) + D exp (C Score) and 
deriving the respective coefficients.(a) Local HCD, Mascot. (b) Global HCD, Mascot. (c) Local ETD, 
Mascot. (d) Global ETD, Mascot. (e) Local HCD, Andromeda. (f) Global HCD, Andromeda. (g) Local 
ETD, Andromeda. (h) Global ETD, Andromeda. 
 

 

MS Data processing 
Peak picking and database searching 

MaxQuant version 1.3.0.3 was used to generate peak lists (apl files) from the raw MS files for 

subsequent database searching (single search against each database). Notable parameters for the 

search were: Oxidation (M) and Acetyl (Protein N-Term) as variable modifications, a mass tolerance 

window of 5 ppm for MS1 and 20 ppm for MS2, trypsin as enzyme, up to 2 max. missed cleavages 

and enabled reverse decoy database option. The resulting peptide spectrum matches (PSMs) were 

used from evidence.txt for each search. 

 

Peptide spectrum match grouping 

We introduce a naive spectrum clustering approach to reduce false positive peptide spectrum match 

(PSM) assignments over multiple database searches. First, we extracted the spectrum meta 

information, i.e. raw file name and respective scan number. Second, we assigned the PSMs of each 

individual database search to the distinct spectrum meta information. The trivial case was a 1 : 1 

relation of a spectrum to a PSM (identical sequence and score over all searches) and hence classified 

as unique. In case of a 1 : n relation, were the PSMs classified into representatives, member and 

chimeric (second peptides). A representative PSM had the highest score in comparison to the other 

assigned PSMs (member) except for chimeric PSMs. In case of identical scores for multiple 

representative PSMs were all counted as valid. In general was the highest scoring PSM for each 

spectrum subject of further analysis as well as chimeric PSMs. 

 

Score and FDR Filtering 

The filtering of the PSMs was at a 0.01 peptide FDR and protein FDR (MaxQuant). Additional 

Andromeda Score (SA) filtering (SA ≥ 58.44, FDR (Library) ≤ 0.10) removed low (quality) scoring 

spectra in the qualitative analysis based on the Non-Phospho global FDR HCD Andromeda model 

(see FDR models). 

To reduce the chance of false positives in an increasing search space additional criteria beyond 

standard proteomics approaches are required in proteogenomics. To this end were all peptide 

classifications (not matching in reference annotations) subject to additional local FDR (MaxQuant 

posterior error probabilities) filtering < 0.01 in contrast to the prior global FDR filters 40, 41. 

 

Gene prediction 
To train the gene predictor Augustus, we built a valid GenBank file comprising 11,636 Ensembl 

(Sscrofa10.2.70 build) genes (forward strand) and randomly select a set of 1,100 entries (see 

Augustus Online Tutorial). The set is split in a training set (1,000 entries) and a test set (100 entries). 
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The ab initio training resulted in a gene level sensitivity of 0.16 and specificity of 0.109. Subsequent 

parameter optimization did not improve the outcome. 

Extrinsic sources, i.e. EST, cDNA, mRNA, PEP were subjected to Augustus as hints. To prepare the 

hints, pre-processing of the information was necessary. To derive valid exons of alternative splice 

variants on the protein evidence of the various databases we used 7,841 exon branches (PEPcEX) 

and 12,990 protein groups (no inference) in conjunction with exonerate (--model protein2genome --

showtargetgff T). 

We used the BLAST-like Alignment tool (BLAT) (-noHead -minIdentity=92) on the masked 

(RepeatMasker) genome to map the EST, cDNA and mRNA sequences to the genome. And post-

processed these with pslCDnaFilter (-minId=0.9 –localNearBest=0.005 –ignoreNs -bestOverlap) to 

find the best match. We ran exonerate (--model protein2genome --showtargetgff T) on the BLAT 

output and merge  all the exonerate results in a single file (extrinsic information). 

Augustus was run in parallel for each chromosome (--protein=on,--introns=on,--start=on, --stop=on,-

-cds=on,--codingseq=on,--alternatives-from-evidence=true,--alternatives-from-sampling=false,--

sample=100,--extrinsicCfgFile=extrinsic.MPE.cfg). The gff output was parsed to retrieve exon, 

transcript, protein coordinates and sequences. 

 

Peptide coordinates 
Mapping 

To derive peptide coordinates relative to the genome, we searched against the i) six-frame 

translation of the genome, ii) the peptide centric exon graph and the remainders iii) with BLAT (-

out=pslx, -t=dnax, -q=prot) and iv) with BLAST (-word_size 2 -matrix PAM30 -seg "no" -evalue 20000 

-comp_based_stats 0). Criteria for the best BLAST and BLAT matches were to allow a single amino 

acid polymorphism (SAP) in the alignment and in case of splice events, i.e. spanning the N-Terminal 

and C-Terminal subsequences over separate alignments, no SAP. Splice peptides, reaching over 

alignments would generate a tree structure, therefore we limit the depth = 2 and the occurrence of 

a consecutive alignment in a genomic interval of 9,369 bp (median gene size, Fig. 2A). 
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Figure 2. Inter- and intragenic length. (A) Number of inter (between genes)- and intragenic (in 
genes) distance as a function of the distance in [bp]. (B) Number of introns [exon end, exon start] as 
a function of the distance in [bp] 
 

 

Single linkage clustering 

To estimate the correctness of known gene model boundaries or identification of novel gene models 

we applied single linkage clustering.  

In brief, each peptide with a genomic coordinate was linked to its nearest neighbours, considering a 

threshold T, following 

 

d(x,y) ≤ T, 

 

where x, y are peptide coordinates and d the distance. The threshold was set to 12,373 bp 

corresponding to the 0.95 quantile intron length (Fig. 2B). 

 

Annotations 
Ensembl gene  

The reference gene annotation includes the information of the Ensembl gene biotype and status. 

The top-tier biotype categories are Non-Coding (misc_RNA, snRNA, antisense, miRNA, 

processed_transcript, snoRNA, non_coding, lincRNA), Pseudogene (IG_V_pseudogene, pseudogene) 

and IG gene (IG_C_gene, IG_J_gene, IG_V_gene). The gene status is Known, Known by Projection, 

Novel and Merged (www.gencodegenes.org gencode biotypes.html ). 

 

Peptide classification 

The top-tier peptide classification were intra- and intergenic events. We differentiated classifications 

over the genome, transcriptome and proteome (Fig. 3). Fusion (Genome, Proteome) classifications 

were peptides mapping between two genes, distances were defined over single linkage peptide 

cluster or the transcript boundaries (mapped protein). Exon skipping classifications were peptides 

matching to exon combinations in PEPcEX or BLAT, BLAST not present in [PEP] Ensembl - all. Exon 

boundary classifications were peptides reaching over the exon C-terminus indicating the splice site 

to be in a false position. UTR exons had no Ensembl phase (-1/-1) information and are by definition 

part of the UTR region. Phase shift classifications were peptides matching to another frame and 

consequently not matching to the assigned phases of the exon. 
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Figure 3. Peptide classification. Schematic of intergenic (N-Term ext., C-Term ext., Fusion Gene and 
Protein) and intragenic events (UTR-Exon, Exon boundary, Exon skipping) over the genome, 
transcriptome and proteome. 
 

 

Inference problem 
Genome and protein inference 

In general, inference in MS-based proteomics distinguishes unique and shared peptides. In protein 

inference a peptide is shared or unique in the proteome 42, whereas in genome inference a peptide 

is distinct (unique) to a genomic location or to multiple (shared).  

All gene, transcript models and proteins were subject to genome inference, requiring at least a 

single genomic unique peptide 43. In addition proteins required at least a single unique peptide on 

the proteome level. 

 

Model grouping 

The gene model, transcript model and protein grouping is a naive approach to remove subsets and 

same-sets of peptide identifications, i.e. assigning to each model or protein all peptide 

identifications. In case of multiple sequences sharing all peptide identifications the longest sequence 

was selected as representative for the group. 

 

Results 

 

Workflow 
In this study, we profiled the proteome of 15 porcine biological samples, nine juvenile organs and six 

embryonic stages using a conventional GeLC-MS/MS approach 44 in combination with a high 

resolution mass spectrometer (Fig. 4). 
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Figure 4. Workflow figure. The biological samples as a morphological timeline of Sus Scrofa 
embryonic stages 18d, 25d, 28d, 32d, 35d, 39d and a 180d female juvenile (adapted from Nature, 
Volume 491, 2012). In total nine juvenile organs were analyzed, namely Diaphragm, Spleen, Biliary, 
Kidney, Liver, Lung, Brain, Pancreas and Heart (top panel). The samples were lysed and subjected to 
LC-MS/MS analysis. Subsequent the data was searched against various databases covering the 
Genome, Transcriptome and Proteome including a six-frame translation and a peptide centric exon 
graph. The qualitative analysis comprises peptide event classification (intergenic, intragenic), novel 
gene model identification and refinement (bottom panel). 
 

 

The subsequent database search of the acquired peptide fragment spectra covers a comprehensive 

search space including ten databases (Table 1) comprising EST, cDNA, mRNA and protein sequences 

(PEP). Additionally we constructed from the genome (DNA) a six frame translation database enabling 

the identification of exact peptide matches to the Ensembl reference genome and an exon graph 

resulting in a peptide centric database (PEPcEX) to cover splice matches and alternative starts. The 

exon graph construction runs with polynomial time complexity (Fig. 5A). Therefore we restricted the 

input to a maximum of 24 exons per transcript covering 0.95 of the transcripts in Ensembl all and ab 

initio (Fig. 5B) resulting in  2,936,004 peptide sequences. 
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Figure 5. Exon graph construction. (A) Runtime analysis of the exon graph construction as an 
exponential function of the number of exons (n) per gene locus. (B) Number of transcripts (m) to 
exons(n). To cover 95% of all possible exon combinations all gene loci with up to 24 exons are 
considered. 
 

 

The peptide fragment spectra were searched against all databases with MaxQuant resulting in 

810,225 peptide spectrum matches (PSM) and 93,494 peptide identifications. To derive valid PSMs 

respectively peptide identifications in a proteogenomic context, we introduced a PSM inference 

grouping, an objective criteria to control the quality of the spectra based on the search engine score 

and the notion of genome inference (Fig. 6). The subsequent two-tier analysis, includes i) qualitative 

aspects, i.e peptide event classification, gene and transcript model identification and validation, 

whereas the ii) quantitative analysis will include expression profile analysis over embryonic stages 

and gene ontology (GO) enrichment. 

 

 



Chapter 4 | Annotation of the pig genome by mass spectrometry-based proteomics 

101 
 

 
 
Figure 6. Data processing. (A) Ten database searches filtered with a 0.01 peptide and protein FDR. 
Additional all PSMs were subject to score filtering (score ≥ 58.44). Subsequent PSMs are grouped to 
derive a representative match for each spectrum. (B) The resulting peptide identifications are 
mapped to the genome. Peptides not matching to a known gene model were filtered with a 
posterior error probability of 0.01 and required a distinct genome coordinate (genome inference) 
before classification into inter- and intragenic events. Peptides matching to known genome models 
were grouped together, whereas classified peptides are input to a gene predictor to derive novel 
and refined gene models. 
 

 

PSM grouping and peptide evidence validation  
Searching the peptide fragment spectra separately against each database requires post processing 

steps to derive reliable identifications, i.e. conclusive PSMs and respective quality validation. 

To omit ambiguities in the PSMs over search spaces, we introduced a naive PSM grouping approach 

to reduce the number of false positive assignments (varying peptide sequence matches to a 

spectrum) (Fig. 6). The majority (763,677) are singletons or rather unique (Fig 7A) assignments, but 

46,548 of 810,225 PSMs were degenerate. We define three classes for degenerate spectra, namely 

chimeric, representative and member. The 12,540 chimeric classifications are not a result of the data 

processing and therefore valid. The remaining 34,008 (4.20 %) are subject to PSM grouping. We omit 

all members from further analysis due to higher scoring PSMs. In the case of [PEP] Ensembl - all , we 

see the highest number of PSMs sharing information (member) with other databases. 

Representative PSMs are overrepresented due to indistinguishable PSMs in case of identical scores 

(Fig 7A). 
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Surprisingly in 221 cases even though a 1 : 1 relation of peptide sequence to spectrum existed, were 

the Andromeda scores (SA) differing by ∆ = 7.19 (median; Fig. 7 B). We were proceeding in this cases 

with the higher scoring PSM. In total we identify 800,195 conclusive and valid PSMs. 

 

 

 
 
Figure 7. PSM grouping (A) The spectrum inference leads to false positive peptide spectrum 
assignments therefore we remove these with a naive spectrum grouping approach. The inference 
categories are unique and degenerate, where we define subcategories (representative, member, 
origin, chimeric) for degenerate PSMs. (B) Spectrum to PSM scores. 109 pairs and one triple. 
 

 

In a second post processing step, we omit low (quality) scoring and insignificant peptide 

identifications based on the assigned search engine score and the posterior error probability. 

In a recent study 38 we were able to derive objective false discovery rate (FDR) models as a function 

of the search engine score based on a large synthetic (phospho-) peptide library for ETD and HCD 

data. The optimization of the models was on a local scale, we refine these to be more 

comprehensive (Fig. 1) and use the HCD-Global model to process the data at hand (Fig. 1F). The 

derived Andromeda score criteria (sA ≥ 58.4376) allows us to omit 6,683 low (quality) scoring 

peptides out of 93,494 (Fig. 8A). 

Even though the importance of statistical validity for single PSMs is critical in proteogenomics, did 

we apply the MaxQuant posterior error probability (< 0.01) only for peptide identifications not 

matching to the reference (Ensembl) annotation. Otherwise would be the criteria too conservative, 

filtering another 0.14 of all peptides (Fig. 8B). In total we identified 86,811 valid peptides and applied 

the posterior error probability in case of peptides not matching to a known gene model. 
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Figure 8. Peptide evidence validation. (A) Peptides as a function of the Andromeda score (sA). FDR-
thresholds (0.10, 0.05, 0.01) derived from the Global HCD, Andromeda FDR Model. To omit low 
quality spectra (red) we apply the 0.10 (sA ≥ 58.44) filter and use the subset for all subsequent data 
analysis (blue). (B) SA as a function of the MaxQuant posterior error probability. To be more 
conservative about single PSM identifications and classifications, we use a posterior error probability 
threshold ≤ 0.01 covering 0.86 of the data (ECDF). 
 

 

Initial database and sample characterization 
To illustrate the merit of multi database searches, we characterize the 86,811 peptide identifications 

against the reference [PEP] Ensembl - all database (Fig. 9A, top histogram). The majority of peptides 

intersected (black bar) between reference and other databases. Of interest were the 19,008 

complement non-reference peptide identifications, featuring prevalence in transcript databases (Fig. 

9B). 
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Figure 9. Peptide evidence characterization. (A) Sample to database characterization as a function 
of peptide abundance omitting peptides intersecting between the reference database (Ensembl 
[PEP] - all) and other databases. (B) Peptide identifications specific to a database and (C) biological 
sample. 
 

 

The characterization over the biological samples resulted in 71,609 organ and 52,775 embryonic 

peptides (Fig. 9A, left histogram). The embryonic stages yield a gain of 15,202 specific peptide 

identifications over 34,036 in juvenile organs with most peptide identifications in brain and pancreas 

(Fig. 9C). In comparison are most peptides in embryonic stages part of early development (Fig. 9C). 

The embryonic peptide identifications supported the functional annotation of proteins associated to 

fetal development. As an example we could provide evidence for a homologous protein  

(sp|Q9UEE9|CFDP1_HUMAN, UniProtKB, evidence at protein level) related to craniofacial 

development that was predicted as part of the [PEP] and [mRNA] RefSeq databases. The protein 

sequence is highly conserved with a 95% identity and 97.2% similarity between Homo Sapiens and 

Sus Scrofa. Additional we were able to associate proteins to a specific sample type, e.g. the RefSeq 

sequence gi|343790858|ref|NP_001230566.1 that is homologous to the uncharacterized proteins in 

Bos Taurus (UniProtKB, F1MC76_BOVIN) and Homo Sapiens (UniProtKB, CF211_HUMAN). The 

sequence was supported by EST and mRNA evidence and exclusively identified in embryonic stages 

32d and 35d. 

The initial characterization of peptide identifications illustrated the importance of RNA-Seq data in 

MS-based proteomics (Fig 9A, Fig. 9B, Fig. 10A). Additional were the embryonic stages a valuable and 

distinctive biological resource. 
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Peptide mapping 
To distinguish reference (Ensembl) and non-reference matches required the assignment of genome 

coordinates to each peptide identification. 

We could map 80,379 of 86,811 peptide identifications to 376,558 genomic locations. We 

distinguished two categories for the peptide mapping, exact (Six-Frame, Exon Graph) and 

approximate (BLAST, BLAT) matches, where approximate matches were supportive evidence, due to 

the mapping ambiguities resulting from nonsynonymous single nucleotide polymorphisms (SNPs). 67 

% of the mapped peptides match to the six-frame translation, 22 % to the exon graph, 9 % are BLAT 

and 2 % BLAST hits. 6,432 peptides were unmappable (Fig. 10B), 61 % originating from transcript and 

37 % protein databases. We assume, reasons were splice events not covered by the exon graph (> 24 

exons per transcript) or SNPs with no BLAT, BLAST matches. 

The peptide coordinates facilitate the notion of genome inference, resulting in 64,201 peptides with 

distinct genomic coordinates (unique) and 16,178 with multiple (shared). An example of an extreme 

shared peptide sequence is ILNPLSK, occurring in over 58,716 genome locations. Additional the 

peptide coordinates allowed to define 208,433 single linkage cluster 9.  

The genome inference and the single linkage clustering facilitate the distinct mapping of peptide 

identifications relative to the reference annotation or rather coordinates. 

 

 

 
 
Figure 10. Peptide mapping. (A) Sample to database characterization as a function of peptide 
abundance over juvenile organs and embryonic stages. (B) Number of peptides to the mapping 
source. 6,432 peptides have no genome coordinates. 
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Genome annotation with proteogenomics 
To annotate the genome, we defined events to classify the mapped peptides over the genome, 

transcriptome and proteome, referencing to the Ensembl gene, exon and transcript meta 

information (classification, coordinates). The top-tier classification discerns intergenic and intragenic 

events (Fig. 11). 

In total we classify 9,565 non-redundant peptides over genome, transcriptome and proteome out of 

19,008 peptides. 7,464 are intragenic and 6,266 intergenic, intersecting in 3,891 peptides due to 

ambiguities in classifications. 

 

 

 
 
Figure 11. Peptide classification over omics databases. Complement identified and classified 
peptides excluding protein coding entities. Additional nonclassified peptides as singleton or single 
linkage cluster. 
 

 

Peptide classifications - Genome 

The genome intergenic events include positional classifications (Fig. 3) such as N-Term extension, C-

Term extension and Fusion (between genes), as a result of the relative position of single linkage 

cluster members to the reference gene coordinates. Additional categories are IG-genes, 

pseudogenes, non-coding genes and novel genes (Fig. 11). 

The gene immunoglobulin (IG) family is important for the (pre-) immune response in embryos and 

adult pigs. In a previous porcine study using transcript data of fetal piglets, three IGLV genes were 

identified to be critical for the pre-immune repertoire 45, 46. Key players were the IGLV-3 and IGLV-8 

family 20 days after gestation. We identified in total 10 IG-genes including the IGLV-3, IGLV-7 and 

IGLV-8 families (Fig. 11). And were able to identify and confirm the presence of the IGLV-3 and IGLV-

8 gene exclusively in the 18d stage over the embryonic stages. 
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A gene class of much controversy are pseudogenes regarding the actual coding potential. We 

provide evidence matching distinct to 34 pseudogenes. The pseudogene ENSSSCG00000010221 has 

no protein product in Ensembl (UniProtKB, uncharacterized). The BLAST search in UniProtKB reveals 

close homology to other organisms with the general function “Heterogeneous nuclear 

ribonucleoprotein K”. 

Another class of non-coding genes (no protein product) are processed transcripts not containing an 

open reading frame (ORF). The majority of our 18 identified non-coding genes constitute of 

processed transcripts comprising genes with high coverage, such as SIGLEC1 (ENSSSCG00000007146) 

with 42 peptides and TXLNA  (ENSSSCG00000003617) with 10 peptides (Fig. 11). 

The positional classifications are N-Term classifications indicating upstream open reading frames 47 

or a misprediction of the translation start. Fusion classifications are likely intermediate evidence of a 

larger gene model including the previous models and C-Term extensions suggest a premature 

translation termination signal. 

Novel gene classifications are evidence mapping to an Augustus gene model not present in Ensembl. 

We discern refined and novel gene models, i.e. refined share a classification type and therefore may 

overlap with an Ensembl gene. We identify 912 peptides with ambiguous classifications, comprising 

99 non-coding, 211 C-Term, 65 pseudogene, 170 fusion and 367 N-Term. In total we could 

supplement 912 of the previous 1022 peptide classifications (0.89) with 216 respective refined gene 

models. The remaining 2,754 peptides are corresponding to 690 novel genes. As an example a novel 

gene (Augustus prediction) resides on chromosome 4, from 129,650,503 to 129,664,460 bp 

(c4.g2195.t1) with seven exons. A BLAST search in UniProtKB results in 95% identity with the 

“glycogen debranching enzyme” in Bos motus. 

 

Peptide classification - Transcriptome 

The transcriptome intragenic events include alternative start, phase shift, UTR-exon, exon boundary 

(exact DNA match reaching over the C-Terminus), exon skipping (alternative splicing) and novel 

exons (Fig. 3). 

Ambiguities to genome classifications are expected for UTR-exons, exon skipping and novel exons to 

refined and novel gene models (N-Term, Fusion, C-Term). 

We could identify 15 novel alternative start events (Fig. 11) not present in Ensembl [PEP] All, 

exclusive 6 in PEPcEX and the remaining with additional evidence (4 cDNA, 3 mRNA, 5 EST, 8 PEP). As 

an example the RefSeq [PEP] entry gi|311255064|ref|XP_003126064.1 with the predicted function 

“mitochondrial import receptor subunit TOM22 homolog” is uncharacterized in UniProtKB, but 

results in a close homolog after a BLAST search in Bos taurus with the function “Translocase of outer 

mitochondrial membrane 22”. 

Phase shift events match to a exon model, but in a differing frame, indicating an issue with the phase 

assignment in the exon prediction. 

The UTR-exons are similar to N-Term classifications, except the UTR-exon is part of a gene model. 

We identify 793 coding UTR exons, where 723 match to proteins. Ambiguities occur with exon 

skipping and exon boundary. 

The 983 exon boundary events are related to exact matches to the genome, where the reference 

classification suggests a splice event, indicating false splice sites. 

To count valid exon skipping events we omit all peptides present in Ensembl [PEP] all. Exon skipping 

is prevalent due to peptides originating from EST and mRNA sequences. 886 out of 1140 (0.78) 

match to (valid transcript models) proteins (cDNA, mRNA, PEP), remaining match to 193 EST and 61 
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PEPcEX. The majority of the mapping sources are 640 PEPcEX matches, additional 412 BLAT (high 

confidence) and 88 BLAST matches (low confidence). As a proof of concept for the construction of 

the exon graph with predicted exons are 441 PEPcEX (0.69) splice peptides originating from 

combinations of ab initio exons. 247 (101 Proteins, 118 Transcripts, 28 PEPcEX) of 441 ab initio are 

uniquely assigned to a database and 194 are in multiple databases. The exon skipping events match 

to 1,078 genes including 657 Augustus gene loci. 

Out of 1,706 novel exon events 1,436 match to proteins (cDNA, mRNA, PEP) including 86 with an 

exon model but in the false frame (phase shift). The majority of the peptides intersecting between 

intergenic and intragenic events are due to 3,042 (3,891) peptides matching exon predictions in 

Augustus and Genscan, ergo not present in Ensembl. 

 

Peptide classification - Proteome 

The proteome events are identical to the genome events except peptides do not have to be a 

member of a single linkage cluster, allowing for distances > 12,373 bp (Fig. 11). Still 2,463 of the 

genome classifications intersect to a certain extend. All N-Term genome classifications (0.51 of total) 

are subset of the respective protein classifications (Fig. 12A). 0.33 of the fusion events (Fig. 12B), 

0.25 of the C-Term events (Fig. 12C) and 0.45 novel events (Fig. 12D) intersect with genome 

classifications. The 1,815 of the 2,152 novel gene classifications intersect with the identical genome 

classification, representing 426 genes, the remaining are in 112 proteins (cDNA, mRNA, PEP). 715 

(772) N-Term, 523 (552) C-Term and 213 (216) Fusion events intersect with novel genes. 

An example of a novel gene exclusively present on the proteome level with no valid gene model is a 

Genscan transcript prediction, highly conserved in Bos Taurus related to the FAM107B family. An 

additional classification is slightly differing from fusion events, is the putative fusion, i.e. peptides 

matching to proteins reaching over multiple genes without evidence between genes. The 6,565 

events indicate potential issues with the protein (transcript) model or the respective gene models. 

Another reason could be actual biological gene fusion. 

In total 73,954 of 80,379 peptide identifications match in the boundaries of reference (Ensembl) 

genes (Fig. 12E) including the above classifications. The 24 exclusive peptides in the proteins set in 

comparison to the reference genes was due to peptides matching to non-coding genes. 
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Figure 12. Peptide classification ambiguities. (A) Overlap of N-Term classification, (B) Fusion, (C) C-
Term on genome and protein level. (D) Overlap of novel gene peptide evidence between genome 
and proteome. (E) Overlap peptide identifications matching to reference annotations. 
 

 

Peptide classification - Single linkage cluster 

The remaining unclassified peptides are in 2,220 single linkage cluster and products of DNA, PEPcEX, 

EST entities omitted in the protein classification, we identify 1,474 singletons (cluster with single 

evidence - 1,474 peptides) and 746 clusters (cluster with multiple evidence - 2,956 peptides). In total 

437 peptides match to novel genes. As an example of such a matching cluster is the Augustus gene 

prediction of the small protein (73 amino acids) with close homology to human in UniProtKB 

(C9IZF9_HUMAN, Evidence at transcript level) with the function “Programmed cell death 6-

interacting protein”. Therefore we argue that single-linkage cluster can be potential coding small 

ORFs 48 not always detectable by gene predictors. 

 

Inference in mass spectrometry based proteogenomics 
Ambiguities in protein identification (inference) are a common issue in mass spectrometry based 

proteomics due to multiple isoforms originating from one gene locus but also of protein families 

consisting of a multitude of gene loci of known (e.g. gene duplication) and unknown origin (e.g. 

pseudogenes).  

We investigate the inference phenomenon on the gene level in assigning to each Ensembl gene 

model the mapped peptide identifications. Of 7,702 identified genes, are 2,405 sharing information 
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in form of subsets and same sets, resulting in 1,713 links (Fig. 13). 36 % are connected in 

chromosomes (intra) and 64 % over chromosomes (inter). Links with a few peptides are putative 

noise, generating biological non meaningful links (light blue and red links). With increasing evidence 

are ambiguous genes an issue in the boundaries of a chromosome (84 % of all links ≥ 10 peptides) 

and not over chromosomes, most likely due to homologous recombination. 

To further illustrate the inference issue, we analyze the Ensembl biotypes of the 2,405 genes. In total 

the set comprises 285 genes (11.85 %) associated with no coding potential, i.e. respective gene 

products are not occurring in the Ensembl protein sequence database 49.  

We were able to unambiguously identify for example a processed transcript SLA-8 

(ENSSSCG00000001396) representing the pseudogenes ENSSSCG00000030299 and 

ENSSSCG00000023113. Additional we provide distinct evidence for the expression of the processed 

transcript GPX3 (ENSSSCG00000017092), representing the protein coding gene loci GPX5 

(ENSSSCG00000001214) and GPX6 (ENSSSCG00000001213). 

As a result, we suggest to supplement the protein inference with distinct genome (gene) information 

to discriminate bona fide protein coding gene loci. 

 

 

 
 
Figure 13. Gene level inference. Genome map (circle) of the autosomes (1-18), allosome (X, Y) and 
mitochondrial chromosome (MT). The ideogram contains 432 high confidence novel gene 
predictions (Augustus). Links indicate homology of genes in (red) and over (blue) chromosomes, 
color depth indicate the increasing amount of supporting evidence for gene loci. 
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Known and novel gene, transcript models and isoforms 
In an attempt to illustrate the diversity of gene models from Augustus and Ensembl, we were 

assigning each gene model all distinct identified peptides and compared the identity (same-set) 

resulting in 8,819 gene models (Fig. 14A). Augustus outperforms the Ensembl pipeline including valid 

extrinsic information. To represent a non-redundant (assuming the longest model is valid) set of 

gene models, we omit sub-sets resulting in 6,834 gene models. The Augustus gene predictions 

include the peptide classifications on the genome level and therefore are more complement with 

1,211 than 781 Ensembl non-redundant representative gene models. In 4,842 cases Augustus and 

Ensembl agree on the gene models. 

The gene status for 6,348 Ensembl genes (6,299 distinguishable) is Known (4,353), Known by 

Projection (3), Putative (1), Novel (1991). Novel meaning sequence match outside Ensembl. 

The identified Ensembl genes in each chromosome in comparison to the theoretical reference genes, 

results in an overall gene coverage of 24.34 %, where most are located on chromosome 2 (Fig. 14B). 

In accordance with the previous results on the peptide level we identify most genes in pancreas and 

the 28d stage (Fig. 14C). 
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Figure 14. Gene models. (A) Same-set peptide cluster model comparison. Augustus and Ensembl 
gene models. (B) Reference genes (black) and with evidence (red) over chromosomes. (C) Evidence 
genes over samples. 
 

 

In total we identify 12,120 transcript models (Fig. 15A), where Augustus provides most transcript 

models (7,478). The non-redundant set of Augustus and Ensembl transcript models results in 6,862 

(slight increase to genes), including Genscan reduces the transcripts to 6,828 (transcripts merge 

genes). 1,086 (746 without subsets) novel transcript models (Fig. 15B). Grouping of unique peptides 

to novel models, comparing against each, no ambiguous classification (potential overlap with 

Ensembl models). 
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Figure 15. Transcript models. (A) Augustus, Ensembl and Genscan transcript models. (B) Overlap of 
novel genes between the gene predictors Augustus and Genscan to the Proteome. 
 

 

9,632 protein groups, sharing 4,378 with 12,120 transcript models. Adding the transcripts, decreases 

the overall number of valid transcripts to 7,751 (Fig. 16A). 2,277 transcript models represent 5,180 

protein groups, 3,845 in both, 1,629 protein groups represent 5,726 transcript models. 7,751 

without subsets result in 7,108 after protein inference. Over all samples we identify a core proteome 

of 392 proteins (Fig. 16B). Pancreas (283) and brain (261) contain the most specific proteins (Fig. 

16C). Each individual sample contributed to an incremental and unique number of protein 

identifications, ranking the samples based on the provided protein information reveals most in 

pancreas and least in liver (Fig. 16D). 
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Figure 16. Protein models. (A) Overlap transcript and protein models. (B) Proteins over biological 
samples, red indicating the core proteome. (C) Proteins specific to biological samples. (D) Proteins 
over samples, in the order of a heuristic combination of samples. 
 

 

To search against a comprehensive search space including models with the highest peptide evidence 

and therefore most probable the longest sequence, we apply a peptide centric clustering algorithm. 

The input databases are the Augustus transcript predictions (48,575) and all identified transcript 

models (cDNA, mRNA, PEP) resulting in a database of 108,816 entries. Performing a standard 

proteomics search increases the number of protein groups from 7,108 to 8,172 (no score filter, no 

gene inference, protein inference, MaxQuant grouping). In comparison our processing results in 

8,067 protein groups (no score filter, no gene inference, protein inference, our grouping). We 

conclude that gene inference is conservative but can help in experiments addressing very specific 

issues (i.e. biomarker discovery) on a limited set of proteins. 

 



Chapter 4 | Annotation of the pig genome by mass spectrometry-based proteomics 

115 
 

 

Discussion 

 
Even though the annotation of the porcine genome and proteome is in an early stage and 

differences are to be expected, were we able to provide comprehensive information to help to 

improve the annotation process of each consortium (UniprotKB, RefSeq, Ensembl). Our results 

suggest the usage of multiple databases for newly sequenced genomes are effective to maximize 

outcome of a discovery experiment. RNA-Seq data is easily attainable and capable of supplementing 

protein sequence databases. Furthermore the inclusion of other sources increases the coverage of 

novel genes, transcripts and boundaries. We were able to identify 19,008 peptides (86,811) not 

present in Ensembl and classified these into 6,266 intergenic and 7,464 intragenic events 

intersecting in 3,891 and provide evidence for 6,834 genes including 690 (432) novel, 176 refined,  

34 pseudogenes, 18 non-coding and 10 IG-genes. In total we identify 7,108 proteins. Additional our 

data provides novel insight to proteins associated with specific functions in juvenile organs and 

embryonic stages. 

Even though proteogenomics is advantageous in many aspects, is the search space definition and 

data processing subject of discussion in the community. The size and content of search spaces can 

lead to ambiguities in PSM assignment, due to incomplete ion series and therefore aggravating the 

search for single amino-acid variations 50. Also peptide mapping is affected by the diversity in the 

source sequence space in comparison to the reference genome resulting in uncertainties in peptide 

coordinates 31, e.g. distinct peptides in proteins matching to different strands (2,365 peptides) and 

chromosomes (6,003 peptides). In addition is the validation of PSMs with local FDRs or rather 

posteriori error probabilities partly too conservative 34 leading to loss of valid peptide evidence. 

We conclude that the early efforts in genome annotation are in most cases accurate, but can be 

vastly improved by proteogenomics. Furthermore an overestimation of protein coding genes 

(25,322) is prevalent and comparable to the situation of early stage genome annotation in human. 
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MS-based proteomics is the central high throughput-technology to profile the proteome, in 

conjunction with sophisticated computational strategies to process and analyze the resulting data. 

The objective of this thesis was to develop novel approaches for database searching, in particular 

improve aspects of the theoretical search space and means to validate the results. The thesis 

concentrates on the construction process and composition of sequence databases and the 

subsequent statistical validation of peptide identifications and phosphorylation site localization. 

 

In database searching is the database choice of utmost importance, as the contents or rather 

proteins of the database restrict the success of a discovery experiment. To address this issue, a 

clustering algorithm was conceived, enabling the grouping of multiple protein sequence databases 

to construct a comprehensive search space as well as reflect the peptide centric nature of 

proteomics data. As part of a pipeline, referred to as mass spectrometry-centric database (MScDB), 

facilitates an increase in the peptide to protein ratio in contrast to common sequence clustering 

approaches. Analysis of database searching with MScDB against a cancer cell line and human 

placenta, results in peptide identifications and single amino acid polymorphisms undetectable by a 

sequence clustered database such as UniProtKB. 

 

In the next generation sequencing era, a plethora of genomes and transcriptomes for a multitude of 

organisms are available. To make this resources attainable to database searching, novel approaches 

in the field of proteogenomics are required. To this end a tailored strategy was developed to 

combine the search results of multiple databases and control with an objective criteria the quality of 

the data in a genomic search space. The proteogenomic analysis of nine porcine juvenile organs and 

six embryonic stages, yielded 176 refined and 690 novel gene models. 

 

The validation of the search results is an integral part of database searching, to discern true and false 

peptide identifications as well as the correctness of localization of post translational modifications. 

To address this predominant statistical issue, a synthetic reference peptide and phosphopeptide 

library was synthesized to derive a more objective criteria. The library enabled the validation of 

peptide identification and phosphorylation site localization algorithms. And also made the 

systematic analysis of the behavior of unmodified and modified peptides in a liquid chromatography 

system possible. 
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