
A General Tactile Approach for Grasping Unknown Objects with a
Humanoid Robot

Philipp Mittendorfer, Eichii Yoshida, Thomas Moulard and Gordon Cheng

Abstract— In this paper, we present a tactile approach to
grasp large and unknown objects, which can not be easily
manipulated with a single end-effector or two-handed grasps,
with the whole upper body of a humanoid robot. Instead
of conventional joint level force sensing, we equip the robot
with various patches of HEX-o-SKIN – a self-organizing,
multi-modal cellular artificial skin. Low-level controllers, one
allocated to each sensor cell, utilize a self-explored inverted
jacobian-like sensory-motor map to directly transfer tactile
stimulation into reactive arm motions, altering basic grasping
trajectories to the need of the current object. A high-level state
machine guides those low-level controllers during the different
states of the grasping action. Desired contact points, and key
poses for the trajectory generation, are taught through force-
less tactile stimulation. First experiments on a position con-
trolled robot, an HRP-2 humanoid, demonstrate the feasibility
of our approach. Our paper contributes to the first realization of
a self-organizing tactile sensor-behavior mapping on a full-sized
humanoid robot, which enables: 1) a new general approach for
grasping unknown objects with the whole-body; and 2) a novel
way of teaching behaviors using pre-contact tactile sensing.

I. INTRODUCTION
1) Motivation: Although a growing set of every day

objects can be potentially manipulated with common end-
effectors, there will always remain a large class of objects,
which can not be dealt with – e.g. due to size, weight, the
lack of stable grasping points or precise object models. Still
being able to efficiently grasp and hold those objects will
have a large impact in households, care giving or industrial
scenarios – robots could e.g. help to (un-)load airplanes,
handle bags of clothes in an industrial laundry or deliver
parcels in an office. For such tasks multi-modal, large-area
surface sensation seems predestined, as it provides a rich and
direct feedback from numerous simultaneous contact points
and from a potentially large area of contact. Programming
task and robot knowledge excludes non-specialists, is error
prone and cumbersome. We were thus motivated to let the
robot autonomously explore its configuration and teach the
task related knowledge through direct physical interaction.

2) Related Works: Common end-effector manipulations,
like in [1], imply a nearly perfect knowledge of the object,
the existence of suitable grasping points and a robot with
enough power along the entire kinematic chain. Providing
tactile sensors, like in [2], the required object knowledge
can be relieved – the grasp is becoming reactive [3]. As
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Fig. 1. A position controlled HRP-2 humanoid, holding unknown objects
with the whole body, as result of a multi-modal tactile grasping sequence.

demonstrated in [2], the grasping sequence can be split into
discrete states with different sets of control parameters. In
contrary to control strategies, which we wish to extend from
manipulators to the whole body [4], we do not wish to lose
the controllability in the upper body of a humanoid robot,
excluding passive compliance as an option. Joint level force
sensing enables computed compliance [5], but in case of
an inaccurate kinematic/dynamic model or a multi-contact
scenario, joint level force sensing quickly reaches its limit as:
(i) forces sum up to zero; (ii) it is not possible to tell internal
from external forces; (iii) variable levers prevent magnitude
measurements. Artificial skin can fill this gap, providing a
rich and direct feedback, but has received little attention
yet. In [6] tactile sensors are utilized to control the contact
between a human-like object and the arms of a nursing
robot. The approach is currently limited to fine manipulation
around an initial contact state. In [7] tactile feedback and
additional contact points enable a humanoid to lift heavy
objects. Alas, the paper is not very precise on the haptic
control strategy – we estimate tactile feedback solely serves
to switch between pre-computed procedures. In this paper,
we utilize the second generation of our multi-modal sensors
[8], which we first introduced in [9]. Previously published
self-organization algorithms, like the structural exploration
[10] and the generation of the sensory-motor map [11], have
been fused. The HRP-2 [12] sub-joint space control has been
implemented with a generalized inverted kinematics – the
stack of tasks (SoT) [13].

3) Contribution: For the first time, we apply our multi-
modal artificial skin, and its self-organizing features, on a
full-sized humanoid robot. A general tactile approach for

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4747



grasping unknown objects is introduced, which efficiently
takes advantage of a distributed, multi-modal sense of touch.
In comparison to existing approaches, our novel grasping
algorithm requires little knowledge on the robot it controls
(no kinematic/dynamic model) and the object it handles (no
object model). Utilizing pre-contact sensors for a novel way
of teaching behaviors through direct tactile interaction, it is
not necessary to apply force on the robot or even touch it
– making heavy or position controlled robots featherlight
to interact with. Relying on artificial skin, no joint level
force sensing is required. Our approach provides a new and
complementary level of direct physical interaction.

II. SYSTEM DESCRIPTION
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Fig. 2. System diagram: Showing the data exchange between the robot,
the artificial skin, the long term memory and the controller sub-blocks. The
state machine controls sub-block activity and parameter distribution.

In this section, we introduce the artificial skin system and
describe the control interface to the humanoid robot.

A. Artificial Skin

1.4 cm
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Fig. 3. HEX-o-SKIN unit cell. Front side with 4 sensor modalities. Back
side with micro controller and 4 power/data ports. The micro-structured
composite cover supports and protects all four embedded sensor modalities.

Our artificial skin (HEX-o-SKIN) builds from rigid,
hexagonally shaped sensor cells (SCs) (see Fig. 3). Multiple
SCs are directly placed next to each other into elastomer
molds, resulting in flexible entities called skin patches (SPs)
(see Fig. 1 on robot). Every SC features a set of multi-
modal tactile sensors on the front side and a local controller
on the back side. Each SC can locally convert, pre-process,
package and forward sensor signals. Neighboring SCs are
connected through flexible 4-wire data and power links. The
bidirectional cell-2-cell communication allows to organize an
arbitrary network of SCs and interconnection of SPs. At least
one boundary port of the SC network has to be connected

to a computer interface – more connections can be added on
demand. Keeping certain data (bandwidth, worst case delay)
and power (voltage drop) network limitations in mind, it is
possible to serialize a high number of SPs – e.g. to easily
equip robots with skin. In this paper, we utilize 3 of the
4 modalities: (i) a tri-axial accelerometer for the open-loop
self-organization of SCs on the robot; (ii) a proximity sensor
for the detection of approaching objects and contact; (iii)
three normal force cells to detect and control contact forces.
Currently set to 250 Hz, the update rate of the utilized touch
sensors is higher than the 200 Hz control loop of the robot.

B. Robot
Our approach is independent of a specific robot, but does

not yet support complex actuation mechanisms, beyond com-
mon rotatory degrees of freedom (DoFs). The requirements
for the control interface are: (i) to publish the number
of rotatory degrees of freedom; (ii) to accept (emulated)
velocity control values and (iii) to give position feedback.
In order to minimize control delays, we utilize the second
on board computer (i686, 1.6 GHz, 2 cores, 3 MB L2, 32 GB
RAM, Ubuntu 10.04) of HRP-2, to locally process all tactile
data. The primary computer executes the 200 Hz real-time
control loop of the stack of tasks (SoT). A stable central body
part, like the torso of a humanoid robot or the platform of
a mobile robot, is required during self-organization, making
it the reference of actions for the motion primitives. With
a humanoid robot like HRP-2, a stable balancing controller
is thus required. This is no constraint, as our algorithm cur-
rently only takes a subset of the available actuators/degrees of
freedom (DoFs) into account - namely those related to both
arms. The HRP-2 controller generates actuator commands
by resolving, in real-time, a set of prioritized tasks. In our
experiments, equilibrium is achieved by fixing feet and center
of mass position to a static position. Redundancy then allows
HRP-2 to realize whole-body manipulation while satisfying
the equilibrium tasks. To generate grasping motions with the
robot upper-body, a low-priority task is added to the SoT,
enforcing both arm velocities.

III. Self-Organization
In this section, we describe how open-loop motions and

accelerometer readings enable a quickly self-organizing skin.

A. Structural Self-Exploration
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Fig. 4. Structural exploration result: kinematic tree HRP-2’s upper body,
visualizing the dependencies of joints (featuring one or multiple DoFs) and
body parts (featuring one or multiple SCs) towards the torso (root of tree)

The structural self-exploration is an algorithm to automat-
ically discriminate the robot’s kinematic tree as a sequence
of joints and body parts (see Fig. 3). Most importantly, the
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algorithm quickly discriminates which body parts the SCs
have been placed on. We utilize the structural information to
suppress cross-coupling effects (e.g. between left and right
arm) along the kinematic chain, which is extremely important
to avoid unrelated motions in the sensory-motor map – e.g.
for tactile guidance. As explained in [10], we measure the
normalized gravity vectors g⃗sdp of all SCs (s) in an initial
pose (p) before (b) and after (a) changing the position of
one DoF (d) after the other by ϕ△. Both values are compared
and if the distance between both normalized vectors is above
a pre-defined limit (lth), the according entry (being default
false) in the binary activity matrix (AM) is set true:

amsdp =
RRRRRRRRRRR

g⃗bsdp

∣g⃗bsdp∣
−
g⃗asdp

∣g⃗asdp∣

RRRRRRRRRRR
> lth, amsdp ∈ {0,1} (1)

With quasi-static measurements, the unknown robot dynam-
ics can not interfere, but changes in the gravity vector can
only be detected if the rotating DoF axis is not primarily
aligned with the gravity vector itself. In [10], we provide
a solution to this problem. Here, we only perform one
(position) incremental run, followed by one decremental run
on all DoFs, combining entries from different runs (p) with
an element wise ’or’. This simplified approach works, as long
as no actuator axis directly attached to the torso, is perfectly
aligned with the gravity vector. With a valid activity matrix (a
lower triangular form ensures that there is at least one sensor
per body part and exactly one stationary reference part),
sensor cells with the same activity vectors are body parts,
while actuators with the same activity vectors are joints. In
the reduced activity matrix (body parts and joints) there is
always a pair of body part activity vectors that only differs
by a single entry, being the joint connecting both.

B. Sensory-Motor-Map

The sensory-motor map is a set of matrices, relating SC
linear velocities and DoF angular velocities like an inverted
jacobian matrix. Each matrix is explored in a pose (p) of
the robot and valid around the same. Currently, we explore
one matrix of the map per key pose. Each matrix directly
maps tactile stimulations into motor velocity vectors, e.g.
via a proportional controller, decreasing or increasing tactile
stimulation of a SC by motions grounded on the torso (see
section V-A). A pose (p) is explored by playing a single
velocity sine wave on one DoF (d) after the other, while
sensing the generated accelerations with each SC (s) tri-axial
accelerometer. All DoF positions are stored to memorize
the pose (p) the matrix was explored in. The matrix entries
are computed by a weight formula, here along the surface
normal (z), relating the maximum deflection of the three
accelerometer axes(Ax,Ay,Az) and the polarity sign (ss,d,p):

wz
s,d,p = szs,d,p ⋅

Az
s,d,p

Ax
s,d,p +A

y
s,d,p +Az

s,d,p

(2)

We then fuse the structural exploration and the sensory-
motor map, by an element wise multiplication of matrix

elements (○) between the activity matrix (AM) and the
sensory motor map matrix (Wp) of the current pose (p):

Wp,new = AM ○Wp (3)

Absolutely small SC reaction vectors (w⃗z
s,p) need to be cut, as

those motions can not be grounded on the torso, but require
e.g. locomotion. If left unbalanced, the reaction of SCs at
the end of the kinematic chain would be stronger. It is such
necessary to normalize each SC vector.

IV. TACTILE TEACHING
In this section, we explain how we transfer knowledge

from human to robot through direct tactile interaction.

A. Tactile Guidance
Tactile guidance is a direct evasive reaction of body parts

on multi-modal tactile stimulation, with the purpose to follow
the motion of a teacher. Utilizing simultaneous or sequential
contacts, the robot can be driven into different meaningful
configurations – here the key poses. We currently provide
two different modes: (i) force guidance; (ii) proximity guid-
ance. Force guidance takes the force modality into account
and thus requires physical contact with the robot and a
sufficiently high force to safely detect the stimulus from
background noise. With the pre-contact sensor, and thus
proximity guidance, the robot will start to react before the
teacher touches the robot (here ∼5 cm before). We utilize the
same low-level reaction controllers as for grasping objects.

B. Key Poses

(home) (open) (closed) (pulled)

Fig. 5. Key poses are taught to the robot via tactile guidance and serve
for the generation of grasping trajectories.

Tactile guidance is utilized to interactively drive the robot
into different key poses (see Fig. 5). The robot starts from a
’home’ key pose, which we store to be able to return to a safe
initial configuration. In the ’open’ key pose, both arms are
opened widely to make space for an object in between. The
’closed’ key pose brings both arms together so an object is
between must be made contact with. In the ’pulled’ key pose
both arms are still together, but the arms are pulled closer to
the chest, so any object between the arms necessarily comes
into contact with the chest. All key poses are added to the
sensory-motor map and serve for grasp trajectory generation.

C. Touch Areas
Tactile sensing allows to define areas of special interest

– the touch areas (see Fig. 6). For example, we activate the
grasping sequence by touching the robot in a ’pat’ area (PA)
(see Fig. 10). Teaching touch areas is done by selecting
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Contact Areas (CA)

Chest Area (CHA)

Pat Area (PA)

Fig. 6. Touch areas, allow the generation of special tactile events and a
differentiation of touch reactions with specialised parameter sets.

a label, activating the attention of the robot (e.g. pushing
a button), brushing over the desired area and deactivating
attention. While paying attention, the robot evaluates the
incoming event stream for new (close) contact events and
stores the related unit IDs in a binary vector. For the grasping
approach, the operator needs to define the expected contact
areas (CA), while remaining IDs are automatically allocated
to the non-contact area (NCA). Both areas are allocated
different reaction primitives and their events lead to different
state changes while grasping objects. The chest area (CHA)
serves as a third explicit contact point, besides the left and
right arm, which is necessary for a globally stable grasp.

V. CONTROL STRATEGIES

In this section, we describe the low and high level control.

A. Tactile Reaction Primitives

The direct sense of touch allows to implement meaningful
direct reactions on tactile stimulation. Here, we instantiate
one multi-modal reaction controller for every SC (s), of
which all parameters, like gains (Pm) and thresholds (tm)
(refer to Table II), are tunable by the high level state-
machine. We compute a proportional value for each sensor
modality above a threshold – in this paper only for the three
normal force and one proximity sensors (M=3+1). We then
calculate desired velocity vectors from the accumulated cell
reactions, via the related sensory-motor map vectors (w⃗s,p).
Super-imposing the resulting velocity vectors from all SCs,
leads to a global robot reaction (ω⃗re), which incorporates all
sensors:

ω⃗re =
S

∑
s=1

(w⃗s,p ⋅
M

∑
m=1

(ρm > tm) ⋅ (ρm − tm) ⋅ Pm) (4)

It is e.g. possible to counteract a slight, large-area pre-
contact reaction, by a strong point force. Modalities can be
inhibited or promoted by setting the gain, while the threshold
determines the activation level and is very important to
suppress the influence of sensor noise. We currently directly
act on incoming data, which results in potentially steep
velocity responses, but little delay and computational efforts.

B. Postural Trajectory Generation

The trajectory generation calculates (MATLAB notation
for element and boolean operators) velocity commands to

transition the robot from a current (ϕ⃗cur) to a desired (ϕ⃗des)
pose in joint space – e.g. to transition between key poses:

ω⃗tr =
ωmax(ϕ⃗des − ϕ⃗cur).∗(abs(ϕ⃗des − ϕ⃗cur) > ϕacc)

max(abs(ϕ⃗des − ϕ⃗cur))
(5)

Tunable control parameters define the maximum desired joint
velocity (ωmax), the desired postural accuracy (ϕacc), a hash
name of the pose and a flag if the postural control should be
deactivated once the accuracy range was reached. Reaching
a desired pose, the motion stops and an event, containing
the hash, is emitted. For the overall reaction of the robot,
the velocity vectors ω⃗re and ω⃗tr are super-imposed.

C. Tactile Events

TABLE I
HEURISTIC TACTILE EVENT LEVELS

Force Cells Pre-contact Sensor
pain force close contact

0.45 0.80
high force low proximity

0.30 0.10
medium force medium proximity

0.10 0.02
low force high proximity

0.04 0.01
no force no proximity

In order to reduce the computational overhead with a
growing number of SCs and high update rate, we pre-process
tactile signals into events. This is currently done on the
computer, as we still wish to log all experimental data.
HEX-o-SKIN allows to shift a controllable event generation
onto the SCs, extracting information at the earliest stage.
This feature will dramatically reduce the average networking
and processing load, as most skin areas are not or in
constant contact. All high level algorithms already make
use of abstract tactile events. Here, we utilize force and
proximity events, with a coarse separation into heuristically
pre-defined levels (refer to Table I). A new tactile event
is emitted on changes between those levels, with a small
hysteresis to prevent sensor noise repetitively triggering the
same event. Low-level controllers, like the tactile guidance,
have to request the full data stream on demand.

D. Grasp State Machine
The whole grasping sequence is split into multiple states

(see Fig. 7). On entry, each state sends a set of control
directives to the low-level controllers. State changes are trig-
gered by completion events from the low-level controllers,
tactile events or user commands. Each state is also assigned
a transition to cancel the grasp, which exits the super-
state ’execute grasp’ and drives the robot into a safe mode.
By experience (and two burnt motors) the safest action is
not to stop all upper body motions. We now consider the
’open’ pose and slow evasion of all pre-contacts to be best.
States desiring to interact with an object (e.g. the approach,
contact, load or pull state), fail if the desired key pose can
be reached without a satisfactory object interaction. In the
’approach’ state, the object for example needs to come close
to the expected contact area (CA), while forces have to be
applicable in the ’load’ state. In general, the tactile reaction
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Fig. 7. Control state-machine of the grasping sequence. Trigger events
or high level commands transition between discrete grasping states. Entry
or exit actions send new parameters to the low-level postural trajectory
or tactile reaction controllers. Being in a state activates the conversion of
different tactile/proprioceptive events into trigger events.

and the trajectory generation speed become the slower, the
closer the robot and object interaction are (refer to Table II).
Here, we specifically make use of the pre-contact modality
to increase the speed in the approach and contact phase (see
Fig. 10). Purely relying on force sensors, a quasi-rigid robot
could not interact with a potentially rigid object at high
speeds. Forces would ramp up quicker than the reaction time
of the robot (due to delays), damaging the robot or the object.
There is only three way’s out of this dilemma: (i) to add soft
compliance to the robot body; (ii) to minimize control delays;
(iii) to add further ranging sensor modalities. With HRP-2
and HEX-o-SKIN we utilized: (i) the on-board computer to
minimize delays; (ii) a foam layer between the robot and the
skin to provide (sensor) hysteresis free compliance; and (iii)
pre-contact sensors to slow down motion before contact.

VI. EXPERIMENTS

In this section, we explain results from our autonomous
self-organization algorithms to first grasping experiments.

A. Structural Exploration
74 SCs have been distributed on the upper body of HRP-2

(see Fig. 4), while having control on 14 actuators (DoFs)
of the left and right arm. All SC gravity vectors were
measured before and 500 ms after (to attenuate vibrations)
each postural change by ϕ△ = 0.1rad. We sampled each
vector with an averaging window of 1.0 s length. The total
exploration lasts approximately 70 seconds. A binarizing
threshold of lth = 0.01g, which is 10% of the maximum
value of 0.10 g, proved to be sensitive enough, but robust
against sensor noise and balancing motions of the robot. We
could not detect any failure with all (N≈10) conducted runs.

B. Sensory-Motor Map & Tactile Guidance
The effectiveness of tactile reactions, and their transfer to

motor actions through the sensory-motor map, can be best
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Fig. 8. Force guidance – Stimulations are directly mapped to evasive
motor reactions via the sensory-motor map. The first graph shows the force
stimulation intensity (grayscale value, white is sub-threshold) over the SC
ID and time. The two other graphs show the resulting position of both arms.

evaluated on tactile guidance. Fig. 8 shows a plot of force
guidance with both arms, first left then right. The activation
threshold of 0.05 force cell readings, approximately relates
to 0.6 N, the chosen force gain is 1.0. A single force cell
reading of ρF1 = 0.14, relating to a force of 1.0 N, leads to
commanded velocity of ω⃗re = 0.09rad/s on a single DoF –
which is approximately what can be seen in Fig. 8 between
75 s and 85 s with DoF ID1 (neglecting ID4 and 2) and
SC ID52. All key poses in Fig. 5 have been taught without
touching the robot, via the pre-contact sensor. As the sensory-
motor map builds on the fly, it operates as an extrapolation of
the closest explored pose – starting from the initial home key
pose (see Fig. 5). Due to the lack of the two shear sensing
directions on the current SC version, the rotation of some
DoFs require a postural change first – which is unintuitive.

C. Grasping of Unknown Objects
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Fig. 9. Objects utilized to test the graping approach: (A) plastic trash bin;
(B) sponge rock; (C) moving box; (D) lid of a paper box; (E) computer
delivery box. The objects have different weights, shape, hardness and size.

Fig. 9 shows a set of 5 objects with different weight,
size, shape and compliance, which we successfully tested
our approach on (see Fig. 1). We applied the same set of
heuristic parameters (refer to Table II) for all objects. A grasp
succeeds, when the robot is able to make contact with the

4751



TABLE II
EXPERIMENT GRASPING PARAMETERS

State Force Pre-Contact Pose
tF PF tP PP hash ωmax ϕacc

F-guide 0.05 1.0 - 0.0 - - -
open - 0.0 0.01 0.4 open 0.4 0.01

approach - 0.0 0.01 0.4 closed 0.4 0.01

contact - 0.0 - N 0.0 N closed 0.1 0.010.01 C 0.4 C

load - N 0.00 N 0.01 N 0.01 N closed 0.05 0.01- C 0.00 C - C 0.00 C

pull - N 0.00 N 0.01 N 0.01 N pulled 0.05 0.010.10 C 0.80 C - C 0.00 C

hold - N 0.00 N 0.01 N 0.01 N - - -0.10 C 0.80 C - C 0.00 C
release - 0.0 0.01 0.2 - - -
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Fig. 10. Proprioceptive and tactile feedback while grasping two objects
(E/B) with different compliance (hard/soft) and shape (regular/irregular).

object, apply forces on it and pull it to the chest (see Fig.
10). The robot infers that the graspable object is in between
both arms when receiving the initial command. If there is
no object, it is to small, too big or can not be pulled, the
robot automatically cancels the grasp. With big objects, like
A and C, this case is likely, as contacts on the insensitive
wrist disturb the expected sensory feedback. Alas, we could
not equip the wrist of the robot with skin sensors due to
mechanical constraints. The plastic cover after the wrist does

not support force and is such a NCA. We wish to emphasize
that no object has been damaged during all experiments. To
demonstrate our trust in the system, we let the robot grasp
human multiple times (first author). The advantages of the
multi-modal approach can be clearly seen in Fig. 10. The pre-
contact modality allows to speed up motions prior to contact
and robustly detects when the object touches the chest, which
is sufficient to prevent the rotation of objects. But only the
force sensor is able to detect and regulate the contact forces.

VII. CONCLUSION
In this paper, we presented a general tactile approach to

grasp unknown objects with a (position controlled) humanoid
robot. We demonstrated that a (imprecise) self-explored kine-
matic model and knowledge transfered by tactile interaction
is sufficient.
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