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Abstract

Hematopoietic stem cells (HSC) reside in a specific supporting micro-environment
termed the bone marrow ’niche’, which is thought to regulate their self-renewal vs.
differentiation into mature blood cells, including lymphocytes, red blood cells, and
platelets. Curretnly, precise interaction networks between HSCs and their micro-environment
have remained poorly understood. Efforts to examine the reciprocal influence of these two
entities have led to the generation of in wvitro culture systems, including the UG26-1B6
stromal cell line, which supports the maintenance of HSCs, mostly via secreted factors, such
as Secreted frizzled-related protein 1 (Sfrpl) and Pleiotrophin (Ptn). In the present work,
by combining high-throughput ’omics’ assay and phenotype data with bioinformatics and
systems biology approaches, we hope to substantially facilitate and drive the discovery of novel
molecular players, and start to unravel the complexity of biological networks controlling HSC
behaviour within their 'niche’ As a starting point, we performed microarray gene expression
analysis of three different time-points of Lin-Scal+cKit+ (LSK, stem cells) co-cultured
with UG26-1B6 to investigate the initial interactions during culture stress. Our analysis
indicated that the most changes in gene expression in LSK and stromal cells occurred already
during the first 24 h of co-culture. In LSKs, gene function enrichment analysis
revealed up-regulation of transcripts associated with cell migration and proliferation, whereas
epigenetic modifiers mediating gene silencing were among the down-modulated transcripts.
In UG26-1B6, enrichment of molecular signatures localized to mitochondria and were as-
sociated with metabolism, such as the mTOR signaling , point at the metabolic stress
induced changes in gene expression, which may be LSK-independent. Further candidate gene
prioritisation using a training set of hematopoiesis-related genes ranked high a
secreted matrix remodeller, Connective tissue growth factor (Ctgf) which was among
the most significantly up-regulated transcripts in both LSK and stromal cells, although in
UG26-1B6 this activation was LSK-independent. Since Ctgf has been reported to auto-induce
its own expression, we hypothesized that its up-regulation in LSK (stem cells) may be
attributed to extrinsic, UG26-1B6-derived Ctgf. Therefore, we used RNAi perturbation
of secreted Ctgf levels in UG26-1B6 in order to investigate the role of extrinsic Ctgf in
hematopoiesis. Our phenotypic and functional assays using HSC co-culture with UG26-
1B6%¢*9/ demonstrated increased hematopoietic progenitor activity in vitro and decreased
engraftment potential in vivo. To delineate the possible underlying molecular mechanisms,
we constructed a literature-based network map delineating Ctgf auto-induction
and, considering the importance of cell cycle regulation in HSC fate decisions,
also linking Ctgf to HSC cell cycle progression, in particular GO/G1 transition and
G/S block. Dynamic simulation using the Boolean logic followed by experimental measure-
ments of mRNA and/or (phospho-)protein levels of several network species in 24 h
UG26-1B6*“*9/ co-culture-derived LSK cells suggested a possible cross-talk between the
Wnt/[(-catenin and PTEN/Akt(PKB)/Gsk3-5 pathways, leading to the inhibition
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of glycogen synthase kinase-3-beta (Gsk3-73) via Akt(PKB)-dependent phosphorylation of
Ser9, which, on its turn, facilitated the nuclear accumulation of S-catenin, resulting in the
induction of its downstream target Cyclin D1 and cell cycle progression. Whereas, the
absence of extrinsic Ctgf led to the activation of the tumor suppressor PTEN and the cell
cycle inhibitor p27Kipl, resulting in G1/S cell cycle block, which may be accompanied by
HSC differentiation, as indicated by our phenotypic and functional experiments. Hence,
this approach allowed us for the identification of functionally relevant interactions and new
molecular players, supporting the value of bioinformatics-assisted hypothesis-driven target
discovery.
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Zusammenfassung

Héamatopoetischen Stammzellen (HSZ) befinden sich in einer speziellen unterstiitzenden
Mikroumgebung des Knochenmarks,- der so genannten “Nische”, die vermutlich ihre Selb-
sterneuerung versus Differenzierung in reife Blutzellen, einschlieSlich Lymphozyten, rote
Blutkorperchen und Blutplattchen, reguliert. Derzeit sind prazise Interaktionsnetzwerke
zwischen HSZ und deren Mikroumgebung noch nicht erfasst worden. Die Bestrebung die
gegenseitige Beeinflussung der beiden Einheiten zu untersuchen hat zu der Generierung
von in-vitro-Kultur-Systemen gefiihrt, einschliellich der UG26-1B6 Stromazelllinie, die die
Aufrechterhaltung von HSCs unterstiitzt, meistens iiber sekretierte Faktoren wie das Sez-
ernierte frizzled-related protein 1 (Sfrpl) und Pleiotrophin (Ptn). In der vorliegenden Arbeit,
durch die Kombination von Hochdurchsatz-(“Omics”)-Assays und Phénotypdaten mit bioin-
formatischen und systembiologischen Anséatzen, hoffen wir, die Entdeckung neuer molekularer
Spieler voranzutreiben sowie die Komplexitat von biologischen Netzwerken die das Verhalten
der HSZ in dessen “Nische” steuern anfangen zu entratseln. Als Ausgangspunkt, fithrten wir
Microarray-Genexpressionsanalyse von drei verschiedenen Zeitpunkten der Lin-Scal-+cKit+
Zellen (LSK, Stammzellen) co-kultiviert mit UG26-1B6 durch, um die ersten Interaktio-
nen wihrend des Zellkulturstresses zu untersuchen. Unsere Analyse zeigte, dass die meisten
Veranderungen in der Genexpression in den LSK- und Stromazellen bereits wahrend der ersten
24 St. der Co-Kultur aufgetreten worden sind. In den LSK-Zellen, zeigten die Anreicherungs-
analyse der Genfunktion eine Hochregulierung der Transkripten, die mit der Zellmigration und
Zellproliferation assoziiert sind. Gleichzeitig waren die Gen-Silencing-vermittelnden epigenetis-
chen Regulatoren bei den geringer exprimierten Transkripten zu finden. In den UG26-1B6-
Zellen wurden Bereicherung molekulare Signaturen die in den Mitochondrien lokalisiert und
mit dem Stoffwechsel verbunden sind, wie z.B. mit den mTOR Signalweg, weisen wieder da-
rauf hin, dass die Veranderungen in der Genexpression méglicherweise von dem metabolischen
Stress induziert sein kénnten und daher unabhingig von den LSK-Zellen auftreten wiirden.
Weitere Kandidatengen-Priorisierung mit einem Trainings-Set von Hamatopoese-relevanten
Genen rangierte hoch einen sezernierten Matrixremodeler, Connective tissue growth factor
(Ctgf), der zu den meist hochregulierten Transkripten in den LSK- und Stromazellen gehorte,
wobei in UG26-1B6 wahr diese Hochregulation LSK-unabhéngig. Da es vorher berichtet
wurde, dass Ctgf seine eigene Genexpression induzieren kann, stellten wir die Hypothese auf,
dass dessen Hochregulierung in den LSK-Stammzellen eventuell ein Ergebniss des extrinsis-
chen, UG26-1B6-sekretierten Ctgf-Molekiils sein kénnte. Um die Rolle des extrinsischen Ctgf
in der Hamatopoese zu untersuchen, verwendeten wir die experimentelle Perturbation der
sekretierten Ctgf-Proteinmenge in den UG26-1B6-Stromazellen mit Hilfe der RN Ai-Technik.
Unsere phanotypischen und funktionellen Assays unter Verwendung von HSC-Co-Kultur
mit UG26-1B6°“*f demonstrierten eine erhéhte Aktivitdt der himatopoetischen Vorldufer
in wvitro, sowie ein verringertes engraftment Potential in vivo. Um die moglichen zugrunde
liegenden molekularen Mechanismen zu beschreiben, haben wir eine Netzwerk-Karte konstru-
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iert, die eine Verkniipfung zwischen Ctgf und der Regulation von Zellzyklus, insbesondere
dem GO/ G1-Ubergang und der G1 /S-Unterbrechung, sowie der Autoinduktion, erstelte. Die
Dynamische Simulation unter Verwendung der Booleschen Logik deutete darauf hin, dass Ctgf
moglicherweise mit dem kanonischen Wnt/S-Katenin, sowie dem PTEN/Akt(PKB)/Gsk3-3
Signalwegen in Verbindung gebracht werden kann. Die experimentelle Messungen der mRNA-
und/oder (Phospho-)Protein-Menge von einigen ausgewéhlten Netzwerk-Molekiilen in den
aus der 24 St. UG26-1B6°“*/ Co-Kultur-gewonnenen LSK Zellen erméglichten uns die
Simulationsergebnisse zu validieren. Im Einklang mit der Vorhersage konnte eine signifikante
Abnahme der Cyclin-D1-Proteinmenge, p21Cipl- und Ctgf-mRNA und Proteinmenge, sowie
eine signifikante Erhohung der p27Kip1l-Proteinmenge beobachtet werden. Wir konnten eben-
falls eine deutlich erniedrigte Menge von phospho-GSK3-3 (Ser9) experimentell bestéatigen,
wéhrend die Abundanz von phosphorylierten Ser33/Ser37/Thr41 S-Katenin signifikant erhéht
war. Daher erlaubte uns dieser Ansatz die Identifizierung von funktionell relevanten Inter-
aktionen und neuen molekularen Spielern. Damit konnten wir den Wert bioinformatischer
Methoden fiir die Generierung von Hypothesen zur HSZ /Stroma-Wechselwirkung zeigen.
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1 Introduction

1.1 Hematopoietic stem cells (HSCs), their origin,

development and characteristic properties

The lifelong maintenance of adequate numbers of mature blood cells (~ 4210 cells over a
lifetime)Y depends on a rare (~0.05%) subset of bone marrow (BM) cells® - hematopoietic
stem cells (HSC's). These cells are endowed with a dual capacity to self-renew, generating
a genetically identical copy of itself upon cell division, and to undergo multi-lineage differen-
tiation. Self-renewal is the capacity of the HSC to generate a genetically and functionally
identical copy of itself upon cell division. This can occur either asymmetrically, retaining
HSC potential in one daughter cell and generating further differentiated progeny in the other
daughter cell or symmetrically, expanding the number of HSCs. Alternatively, divisions that
generate two differentiated progeny daughter cells diminish the HSC pool. The decision
of self-renewal vs. differentiation is thought to be determined stochastically.® At different
times of ontogeny and in different environments, the probability of an HSC dividing either
symmetrically, asymmetrically or fully differentiating is believed to vary.* Postnatal HSC
self-renewal is closely related to a common property of stem cells - quiescence in terms of
the cell cycle. Adult HSCs have been shown to cycle with very slow kinetics: approximately
8% of long-term haematopoietic stem cells (LT-HSCs) asynchronously enter the cell
cycle per day and 99% of LT-HSC divide on average every 57 days. Under steady-state
conditions, most (~75%) HSC reside in GO (quiescent) phase of cell cycle, 20% are
in G1 phase, while only a small fraction (~5% of LT-HSCs) is in S or G2/M phase.”®
It is likely that maintenance of HSC quiescence and slow cell-cycle kinetics are critically
involved in sustaining a self-renewing HSC compartment for life, allowing HSCs to avoid
mutation accumulation.™ Indeed, when quiescence is disrupted (e.g., in case of p21Cipl
deficiency), HSCs long-term repopulating ability is lost.” Moreover, quiescent HSCs are
resistant to 5-fluorouracil (5-FU)-induced myelosuppression, suggesting protection of HSCs
from various stresses induced by myelotoxic insults.” In contrast to senescence, where the
ability to undergo cell divisions is lost, under certain physiological conditions (e.g., after

the balance of blood cells or HSC pool is disturbed)* a cell can reawaken from the state



1 Introduction

of quiescence and enter the cell cycle in order to undergo different fate decisions, including

HALT ypon which HSCs rapidly lose their self-renewal potential, producing

differentiation,
a hierarchy of increasingly committed progenitor cells (see Figure . In particular,
long-term HSCs (LT-HSCs) give rise to short-term HSCs (ST-HSCs) , which in turn
generate common myeloid progenitors (CMPs) , common lymphoid progenitors
(CLPs) and lymphoid primed multi-potent progenitors (LMPPs) . CLPs are the
precursors of B and T cells and also to natural killer (NK) and dendritic cells. CMPs
give rise to megakaryocyte/erythroid (MEPs) , granulocyte/macrophage (GMPs)
and eosinophil (CFU-FEo) and basophil (CFU-Ba) progenitors. GMPs differentiate
into the committed precursors of neutrophils and macrophages. In fact, the distinction
between the myeloid and lymphoid lineages has recently been challenged by the finding that

T cell precursors retain the ability to ultimately give rise to macrophages,'8*

pointing at
the fact that the “fate decision window” may actually be wider than once thought.

Remarkably, the stem cell model of hematopoiesis has also been extended to the concept of
‘leukemic stem cells’ (LSCs) as critical components in a leukemic cell hierarchy. Stem
and cancer cells share certain signaling pathways, regulating essential HSC attributes of
self-renewing, replication and differentiation into progenies of leukemic blasts. Despite recent
advances, treatment of leukemia is often not curative, which may be attributable to this small
population of therapy-resistant malignant cells leukemia-initiating cells, commonly referred
to as leukemia stem cells (LSCs). Contemporary leukemia research has focused on ways
to specifically eliminate LSCs, since these are regarded as the root of leukemia origin and
leukemia recurrence after seemingly successful therapy.1#10:21724

The ex vivo expansion of human hematopoietic stem cells (HSCs) has remained an important
goal to develop advanced cell therapies for bone marrow transplantation and many blood
disorders. Over the last several decades, there have been numerous attempts to expand
HSCs in vitro using purified growth factors that are known to regulate HSCs. However,
these attempts have been of limited success for clinical applications and a routine method
for ex vivo expansion of human HSCs is still not available. It is known that in vivo adult
hematopoietic stem cells in the bone marrow (BM) reside within micro-environmental niches
created by non-stem cells,, where they remain undifferentiated. Therefore, the signaling
pathways occurring in this niche are important to understand and examine for the ex vivo

expansion of HSCs.*

1.2 The bone marrow niche

The concept of a ‘niche’ as a specific supporting tissue locale or micro-environment housing

stem cells was first proposed for the human hematopoietic system by Schofield“® more than
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Figure 1.1: Overview of the hematopoietic hierarchy model. In the hematopoietic system,
self-renewing HSCs reside at the top of the hematopoietic hierarchy, giving rise
to at least 14 types of functional effector cells produced in successive differen-
tiation processes of increasingly committed progenitor cells. Long-term HSCs
(LT-HSCs) give rise to short-term HSCs (ST-HSCs), which in turn generate com-
mon myeloid progenitors (CMPs), common lymphoid progenitors (CLPs) and
lymphoid primed multi- potent progenitors (LMPPs). CLPs are the precursors
of B and T cells and also to natural killer (NK) and dendritic cells. CMPs give
rise to megakaryocyte/erythroid (MEPs), granulocyte/macrophage (GMPs) and
eosinophil (CFU-Eo) and basophil (CFU-Ba) progenitors. GMPs differentiate into
the committed precursors of neutrophils and macrophages.™®

30 years ago. Shortly thereafter, a connection between bone and blood dyscrasias was
suggested.?T The existence and importance of such micro-environments was later proven
for the germ stem cell system of Drosophila melanogaster. Here, germline stem cells were
demonstarted to be attached to differentiated somatic cells, essential for maintaining their
survival and divisions.?® Today, hierarchical stem cell systems and their niches have been
identified in different mammalian tissues, including in hematopoiesis, muscle cells, central
nervous system, intestinal epithelium, bulge region of the hair follicles, interfollicular epidermis
and spermatogonial stem cells.2%30 For a long time, the haematopoietic stem cell (HSC)
niche was poorly defined and considered a discrete site within the bone marrow. However,
current evidence has pointed to the existence of different types of niches in the BM: most
prominently, (i) an endosteal osteoblastic and (ii) a vascular/perisinusoidal niche.
The osteoblastic niche is located near the endosteum and consists of osteoblasts derived
from mesenchymal precursors. Sinusoidal endothelial cells in bone marrow form the vascular

niche. ™13 Although the functional differences between these spatially distinct niches are
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still unclear, they may play a complementary role in the regulation of HSCs in the BM. For
example, it has been proposed that the osteoblastic niche, which is a hypoxic niche, maintains
hematopoietic stem cells in a quiescent (slow cycling or GO) state, while the vascular niche, an
oxygenic niche, supports stem/progenitor cell proliferation, differentiation and mobilization.**
Indeed, recently, using real-time imaging, it has become possible to explore the localization
of HSCs in relation to their function. It has been observed that HSCs lodge in the endosteal
surface, osteoblasts or osteoprogenitor cells and blood vessels, particularly in trabecular
regions, in the mouse calvaria, whereas more mature hematopoietic cells reside away from

the endosteum. 2832

1.2.1 Cellular compostion

Bone marrow is a soft, spongiform tissue composed of blood and blood vessels, fat,
connective tissue and small segments of bone (termed trabecular bone), where the
connective tissue forms a meshwork of delicate bony plates and strands, permeated by
numerous thin-walled blood vessels. Within the spaces of this tissue, hematopoietic cells at
different stages of differentiation and their stromal cells are suspended. The trabecular surfaces
are covered by a layer of endosteal cells, osteoblast (OB) lineage cells at many stages
of maturation, osteoclasts and their precursors (developed possibly from mesenchymal
stem cells (MSCs).*%3% All these diverse cell types have been implicated in regulation of
HSC maintenance within the niche, however the precise cellular and molecular contribution

of each cell population to the HSC-supportive microenvironment is still unclear.””

1.2.2 Biophysical properties

More recently, the stem cell field has begun to appreciate that stem cell micro-environments
present specific biophysical cues that may influence stem cell behavior. An important
component of the niche are diverse mechanobiological inputs, resulting from stiffness
(elastic modulus), which varies widely both between different tissues and within individual
tissues. For example, cells near vasculature experience a 1 Hz cyclic strain or repetitive
stretch, due to pulsatile blood flow. It has been shown that this strain is able to interact
synergistically with secreted factors in conditioned media such as members of the Tgf-
[/activin signaling pathway, thus, transducing the mechanical signal (cyclic strain) into
intracellular biochemical signals, resulting in inhibition of cell differentiation. More recently,
the contribution of contractile forces to the determination of the stem cell fate was also
reported. Shin et. al. showed that myosin-II isoforms sense matrix stiffness in hematopoietic
stem and progenitor cells, with polarized myosin-I1IB promoting asymmetric self-renewal and

constitutive myosin-ITIA activation promoting cytokine-triggered differentiation.®® Similarly,
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the spatially inhomogeneous presentation of extracellular ligands and surrounding cells
contributes to the induction and maintenance of cell and tissue polarity, relevant to
cell division, homeostasis and tumorigenesis and differential segregation of stem cell fate
determinants to daughter cells. Finally, the role of temporally dynamic signaling is
already well recognized in developmental biology, as distinct morphogen gradients regulate
tissue patterning at different stages of development. Recent work has also shown that cells in
general and stem cells in particular respond not only to static concentrations and gradients,
but can also be strongly influenced by exposure to temporally evolving ligand fields. In
addition, improved imaging technologies have allowed observations of intracellular signaling
fluctuations at the time scale of minutes and seconds, providing further evidence that cells
can track and respond to these temporally encoded signals.®” These observations may be of
relevance when modeling the interactions between HSCs and their micro-environment and

should be considered in future.

1.2.3 Biochemical properties of the niche and extrinsic regulation of
HSCs

Direct physical cell-cell and cell-extracellular matrixz interaction between HSCs and
specific supportive micro-environmental cells, expressing diverse adhesion molecules may
localize stem cells within specific niche compartments, where they are in close proximity
to locally secreted or membrane-bound cytokines, chemokines, hormones and
growth factors forming gradients that can initiate specific signal transduction within the
HSC.*Y Moreover, the role of miRNAs (such as miR-125b, miR-126) in coordinating these

processes is also beginning to emerge.*"42

Tie2/Angiopoietin-1 (Ang-1) HSCs expressing the Tie2 receptor tyrosine kinase are qui-
escent and anti-apoptotic and comprise a side population of HSCs, which adheres to the
osteoblastic niche in adult BM. Angiopoietin-1 (Ang-1), a ligand of Tie2, is predomi-
nantly expressed by osteoblastic cells in endosteum. Functionally, it has been reported that
Tie2/Ang-1 signaling activates cell adhesion molecules, such asf1-integrin and N-cadherin,
promoting HSC interactions with extracellular matrix and cellular components of the niche.
In addition, it has been also found that Ang-1 inhibits HSC division in vitro and promotes

quiescence of HSCs in vivo.”

Mpl/Thrombopoietin (THPO) Mpl/Thrombopoietin (Thpo) signaling synergistically in-
duced HSC proliferation with other cytokines. When focusing on the effects of exogenous
Thrombopoietin (Thpo) on HSCs in mouse long-term bone marrow cultures (LTBMC) | it
was shown that it can mediate the self-renewal of HSCs.%# In addition, Thpo or Mpl deficient



1 Introduction

mice showed fewer HSCs in the BM,**4% suggesting that Mpl/Thpo signaling is crucial for
the maintenance of LT-HSCs. It was observed that Mpl expression in LT-HSCs was
closely correlated with cell cycle quiescence and Mpl4+ HSCs were in close contact with THPO

producing osteoblastic cells at the endosteal surface in trabecular bone area.’

Wnt/-catenin signaling Wnt ligands have been identified as a key-signaling pathway
for normal HSC homeostasis in vitro and in vivo.*® Wnt /B-catenin signaling can induce
the expansion of HSCs and is activated in both myeloid and lymphoid malignancies.
Constitutively active nuclear [-catenin signaling reduces quiescence of HSCs and blocks
multi-lineage differentiation. Loss of hematopoietic stem cell function was associated, among
others, with decreased expression of Cdknla gene encoding the cell cycle inhibitor p21Cip1
and altered integrin expression in LSK cells. Hence, activation of [-catenin enforced
cell cycle entry of hematopoietic stem cells, leading to exhaustion of the long-term stem
cell pool.##Y Tt has also been reported that Wnt-inhibited microenvironments, created by
the osteoblast-specific overexpression of Dkk1, result in increased numbers of proliferating
HSCs and reduced ability to reconstitute the hematopoietic system of irradiated recipient
mice, indicating that microenvironment-related Wnt/S-catenin activity is crucial for the
maintenance of HSC quiescence. Recently, the results from our group demonstrated that
microenvironment-derived Sfrpl is required to maintain HSC homeostasis through extrinsic
regulation of S-catenin, and that the general level of Ctnnbl is decreased in Sfrpl-/- LSKs,
MPPs and CLPs.? Hence, the fine-tuning of Wnt/3-catenin activity seems to be crucial for

the long-term maintenance of stem cell quiescence.”?

Tgf-5 signaling The transforming growth factor beta (Tgf-3) superfamily is a large family
of structurally related growth factors, including Tgf-3, activins and bone morphogenetic
proteins (BMPs) . In the context of hematopoietic system, Bmp4 and Tgf-41, have emerged
as important regulators of HSCs.®® Bmp4 is mainly known to be involved in the development
of the hemangioblast,>*>® however it also may act on self-renewal of HSCs as part of their
microenvironment.”**% In contrast, the role of Tgf-31 on HSCs is more controversial.
In witro, it has been shown to inhibit the growth of primitive hematopoietic progenitor cells
and maintain HSC properties®®* by regulating cell cycle molecules, including the induction
of cell cycle inhibitors from the CIP/Kip (e.g., p57Kip2, p21Cipl) or INK4 families®*!
and repression of Cdk4 or c-Myc.%® Experiments performed at the single-cell level have
revealed that Tgf-51 maintains HSCs in quiescence by inhibiting cytokine-mediated lipid raft
clustering.®¥ On the other hand, in vivo experiments using knockout animals have failed to
conclusively demonstrate the involvement of Tgf-31 in HSC maintenance, in part due to the
embryonic lethality of Tef-51 KO models.??
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Cell adhesion molecules Physical interaction between stem cells and their niche compo-
nents are thought to participate in stem cell regulation through processes such as contact
dependent inhibition of proliferation. N-cadherin, $1-integrin, osteopontin and other
cell adhesion molecules might not only be required for HSC anchoring to the niche, but
also involved in the regulation of cell cycle status of HSCs. For example, in Drosophila
germline stem cell, cadherin-mediated cell adhesion also regulates asymmetric cell division.*
The increase in the number of spindle-shaped N-cadherin+Cd45- osteoblastic (SNO) cells
was shown to correlate with an increase in the number of HSCs and the long-term HSCs
were found to be attached to SNO cells.®” Tie2/Ang-1 signaling induces 31-integrin and
N-cadherin dependent HSC adhesion™. Mpl/THPO signaling also up-regulates 31-integrin in
LT-HSCs.*" Moreover, it has been shown that the conditional inactivation of c-Myec induces
excessive expression of integrins and N-cadherin in HSCs and Myc-deficient HSCs are not able
to proliferate and detach from the niche due to uncontrollable cell adhesion.®® Osteopontin
(OPN) negatively regulates HSC number in the BM niche, and the lack of OPN results in an
increase in the number of HSCs, 0408

Metabolites and other small molecules The bone marrow is a highly complex system in
which gradients of nutrients and other chemicals exist between areas of bone and areas of

vascularization. Thus far, the contribution of these possible metabolic cues to hematopoietic

stem cell function has not been well understood.®?

Reactive oxygen species (ROS) Quiescent stem cells reside in the low-oxygenic niche,
hypoxic regions of tissues not rich in vasculature, such as the trabecular zone for hematopoietic
stem cells (HSCs) with the lowest end of an oxygen gradient within the bone marrow. Here,
within the osteoblastic niche, in contact with osteoblasts, HSCs remain quiescent. Such low-
oxygenic milieu in bone marrow limits reactive oxrygen species (ROS) production,
thus providing long-term protection from ROS-related oxidative stress. In addition, stem
cells have developed a unique mechanism to cope with the cumulative ROS load, which
involves increased antioxidant defenses and unique redox-dependent effects on growth and
differentiation. At the same time, in the relatively more oxygenic vascular niche, due to the

proximity to blood circulation, stem cells actively proliferate and differentiate.™

Retinoic acid (RA) The retinoic acid receptor (RAR) agonist, all-trans retinoic acid
(ATRA) , has been demonstrated to enhance the maintenance and self-renewal of
short- and long-term re-populating hematopoietic stem cells from Lin-Scal+cKit+ (LSK)
hematopoietic precursors cultured in liquid suspension for 14 days. ATRA also prevented
the differentiation of these primitive stem cells into the more mature pre-CFU-S population

during the 7 to 14 days of culture.”™@
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Calcium and calcium-sensing receptor (CaR) High concentration of calcium ions at
the HSC-enriched endosteal surface is among the features of bone that contribute to a
micro-environmental niche for stem cells. HSCs have been shown to express the seven-
transmembrane-spanning calcium-sensing receptor (CaR), needed to respond to changing
extracellular ionic calcium concentrations, which, on its turn, dictate the preferential
localization of adult mammalian haematopoiesis in bone. For example, CaR-/-
HSCs from mouse fetal liver were highly defective in localizing anatomically to the endosteal

niche, due to defective adhesion to the extracellular matrix protein, collagen 1.7

1.3 Intrinsic regulation of HSCs

Cell cycle regulators

The distinct hematopoietic stem cell fates of self-renewal and differentiation likely depend on
the entry into the cell cycle and the cell division, necessitating the presence of appropriate cell
cycle machinery to effect passage into and through G1 phase. This depends on competing
actions of Cyclin-dependent kinase (CDKs) , driving cell cycle progression, and
CDK inhibitors (CKIs) , which hinder progression through the cell cycle.™%
For example, conditional deletion of retinoblastoma (Rb) , family of transcriptional
repressors (consisting of the pRb, p107 and p130 proteins) results an increase in both HSC
proliferation and absolute cell numbers, as well as by severe defects in HSC self-renewal.
Mice deficient in all three D-cyclins have lower numbers of HSCs and progenitor populations
in the fetal liver, with decreased frequency of HSCs in S and G2-M stages of the cell cycle.
Deletion of p18Ink4c (a cell cycle inhibitor (CKI) of the Ink4 family), the expression of
which is highest in quiescent HSCs, results in increased numbers of actively cycling HSCs,
without affecting HSC self-renewal activity. Initially, a role for p21Cip in regulating HSC
quiescence was suggested,” however more recent reports indicate that the function of p21Cip
in regulating HSC cell cycle activity may be restricted to periods of stress rather than

I K2 7Kipl deficiency appears to affect the cell cycle activity of more

during homeostasis.
committed progenitor populations.™ A more recent work also suggests that p57Kip2 is critical

for maintaining HSC quiescence.™
Transcription factors

Transcription factors (TFs) have attracted much attention, since the key regulators of both
HSC self-renewal and differentiation into the various mature hematopoietic lineages are
commonly encoded by transcription factor genes. ™" Recently, genome-wide analysis of
hematopoietic TFs has provided new evidence that they operate in a complex combinatorial

manner.®? For example, Gfil, Pten and Foxo have been found to restrain HSCs from excessive
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cycling, whereas Zfx and Tel/Etv6 are critical in suppressing HSC apoptosis. &1

Epigenetic modifiers

Findings from studies on transcription factors have also increasingly focused attention
on the epigenetic modifications as a way of coordinating the expression and activity of
transcription factors and their target genes by changing the chromatin structures and hence
influencing the accessibility of transcription factors to DNA.B#485 Iy this context, it has
been demonstrated that hematopoietic differentiation correlates to a stepwise decrease in
the transcriptional accessibility of multi-lineage-affiliated genes, as a result of concerted
epigenetic modifications by DNA methylation and histone modification.®® Interestingly,
myeloid commitment involved less global DNA methylation than lymphoid commitment.“"
In general, undifferentiated human and murine hematopoietic cells display less-condensed
chromatin structures and exhibit a higher rate of histone acetylation, indicating a state of

higher turn-over of chromatin structures.”!

Polycomb-group (PcG) proteins are histone modifiers residing in two multi-protein com-
plexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). PRC2 catalyses and
maintains trimethylation at lysine 27 of histone 3 (H3K27me3) responsible for the recruit-
ment of a second complex, PRC1.7? H3K27me3 mark has been generally associated with
transcriptional repression.”” In the context of hematopoiesis, (PcG) proteins have been
shown to be involved in the regulation of balance between self-renewal and differentiation of
hematopoietic stem cells (HSCs) by repressing genes involved in cell-cycle regulation and
differentiation.”® Likewise, aberrant expression of, and mutations in, PcG genes have been
associated with hematopoietic malignancies, such as hematopoietic neoplasms, where these

histone modifiers display both tumor-suppressor and oncogenic activities.””

H3K4me3 trimethylation at lysine 4 of histone 3 has in general been associated with gene
expression.” In fact, several H3K4me3 regulators have been implicated in the ability of
stem cells to self-renew and differentiate.”® For example, an H3K4me3 methyltransferase -
MIl1 - has been shown as essential for the maintenance and self-renewal of fetal and adult
hematopoietic stem cells (HSC).*"

DNA methyltransferases Dnmt3a and Dnmt3b are mainly involved in de novo estab-
lishment of methylation patterns during cellular differentiation, whereas DINA methyltrans-
ferase 1 (Dnmitl1) is responsible for maintaining genomic methylation. Dnmt3a silences
hematopoietic stem cell self-renewal and is essential for hematopoietic stem cell differentiation,
as in Dnmt3a-null HSCs up-regulation of HSC multipotency genes and down-regulation of
differentiation factors has been observed.”® In Dnmt1-deficient HSCs, defects were observed

in self-renewal, niche retention, as well as in the ability of HSCs to give rise to myeloid
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progenitor cells.””
micro-RNAs

More recent studies are also beginning to reveal the role of microRNAs in the regulation of
hematopoietic stem/progenitor cells (HPSCs) in the hematopoietic system.**4 An evolution-
arily conserved microRNA cluster consisting of miR-99b, let-7e and miR-125a was found to be
preferentially expressed in long-term hematopoietic stem cells. MicroRNA miR-125a controls
the size of the stem cell population by regulating HPSC apoptosis, possibly through targeting
multiple proapoptotic genes. "™ Another miRNA, expressed in HSCs and early progenitors,
miR-126 has been reported to play a role in restraining cell-cycle progression of HSCs in wvitro
and in vivo, most likely by regulating multiple targets within the PI3K/Akt(PKB)/Gsk3-3
pathway.t!

Lipid rafts and fatty acids

Lipid rafts The regulation of lipid raft clustering on the surface of HSCs may be a critical
determinant of HSC quiescence by dictating the level of Akt activation induced by cytokine
receptors. Quiescent HSCs show minimal amounts of lipid raft clustering, while actively
proliferating hematopoietic progenitor cells have high levels of clustering and Akt pathway
activation. Interestingly, lipid raft clustering in HSCs has been demonstrated to be suppressed

TO2103

by Tgf-3 signaling.

Fatty acids Recently, a previously unknown promyelocytic leukemia (PML) -peroxisome
proliferator-activated receptor 6 (PPAR-J) -fatty-acid oxidation (FAO) pathway was identified
to be involved in the maintenance of hematopoietic stem cells (HSCs) by controlling the
asymmetric division (retaining HSC potential in one daughter cell and generating further
differentiated progeny in the other daughter cell) of HSCs.®"

1.4 HSCs regulate their niche

Currently, little is known about whether and how HSCs themselves regulate the maintenance
or development of the niche. Although reciprocal cooperation between HSCs and the elements
of their microenvironments in establishing the niche has been proposed, there is little direct
experimental evidence that would support the concept. For example, it has been suggested
that HSCs may guide mesenchymal differentiation toward the osteoblastic lineage under
basal conditions and that HSC-derived bone morphogenic factors such as Bmp2 and Bmp6
could be responsible for these activities’® In another study, HSCs in Nf2-deficient mice were
increased in number and demonstrated a marked shift in location to the circulation. with
an associatedincrease tn trabecular bone mass and stromal cell numbers, as well

as vascularity and Vegf levels.1%
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1.5 Biological networks and systems biology of

hematopoiesis

“If there is any area in which a network thinking could trigger a

revolution, I believe that biology is it.”

~Albert Laszlé Barabdst

Like other cells, hematopoietic stem cells (HSCs) constantly receive environmental cues in

7IRITOBHITO TIITTITTZ

many forms: soluble cues such as mitogens and cytokines, small molecules

TSI 55 well as 'solid phase’ cues such as cell-cell contacts and the biochemical

and nutrients,
and mechanical properties of the extracellular matrix.* 2 These signals guide the stem cell
towards specific fate decisions: quiescence, differentiation, self-renewal, migration, senescence
or apoptosis.t” Hence, HSC behavior is guided by molecular interactions and reactions
involving receptors, signaling intermediates and transcription factors. In particular, signal
processing networks relaying input signals from the extracellular space and cell surface to the
nucleus feature complex, non-linear components such as feed-forward and feedback loops,
signal amplification cascades and cross-talk between multiple signaling pathways. Thereafter,
information processing further continues within the cell nucleus where transcription factor
networks control the expression of themselves and each other, as well as of their corresponding
target genes that are required for execution of the particular fate decisions. This results in a
complex, multi-level, non-linear system, which can exhibit a number of different behaviors,
including switches and oscillations. Such behaviors are difficult to investigate and interpret
intuitively without the aid of systems-level analysis.*®

Systems biology approaches offer advantages that complement and enhance traditional
experimental strategies tending to focus more on individual components than on interactions
occurring within a larger system. Systems biology analyses often rely on computational
models that: (1) summarize our knowledge of and assumptions about a system into formal,
mathematical statements; (2) highlight gaps in our knowledge of a system; (3) help to generate
hypotheses about the behavior of the system that guide experimentation and further modeling;
(4) aid in the analysis of large datasets, such as those generated by genomic, transcriptomic,
proteomic and kinomic experiments, thus summarizing the data and highlighting important,
potentially unintuitive behavior for future experimentation and, finally, (5) highlight critical
loci within a system that can be manipulated to generate a desired outcome. Hence, a

combination of experimental approaches with mathematical, engineering and computational

11
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tools is being used in order to gain global insights into complex biological systems and

phenomena, 18120

The experimental techniques utilized for systems biology studies usually tend to have
high-throughput capabilities, being able to determine the abundance and/or activity of large
numbers of components simultaneously. For example, the abundance of mRNA transcripts
of thousands of genes can be profiled by microarrays or RNA-seq. Quantitative protein
concentrations and post-translational modifications can be determined using proteomics and
phosphoproteomics approaches, such as mass spectrometry (MS) or two-dimensional (2D) gels.
Metabolomic profiles generated by gas chromatography (GC)-MS or liquid chromatography
(LC)-MS can measure the composition and concentration of both targeted and untargeted
metabolites. Moreover, high-throughput techniques exist that can detect the interactions
among components such as protein-protein interactions, transcriptional regulations (TF-DNA
interactions) and genetic interactions. In addition to high-throughput assays, decades of
genetic and molecular analyses using small-scale experiments studying fewer components
and interactions involved in specific biological processes provide high-quality and reliable
focused knowledge for biological systems. Altogether, these data provide a rich source for
understanding the system-level mechanisms of biological processes and the identification and
characterization of the molecular components and their reciprocal interactions involved in

cell signaling has become possible in a systematic way.

Moreover, the systematic collection of this molecular information into web-accessible
databases, has facilitated the reconstruction and mapping of ever larger and more complex
biological networks.™* In addition, a large amount of knowledge about functional regulatory
interactions and the components involved in these interactions is embedded in the biomedical
research literature. Text mining is used to extract interactions using natural language

processing (NLP) and information retrieval technologies.'!

Using network modeling, experimentally obtained signaling pathway and protein-protein
interaction (PPI) information can be translated into a graph (network) by representing
proteins, transcripts and small molecules as network nodes and denoting the interactions
between them as edges. The direction of edges follows the direction of the mass or information
flow, from the upstream (source) node to the downstream (product or target) node. In
addition, the edges are characterized by signs, where a positive sign indicates activation,

whereas a negative sign indicates inhibition. 122

Computational methods that have been used in systems biology to analyze biological
networks can be classified into top-down and bottom-up approaches. Top-down ap-
proaches, including statistical analyses and static network models, are commonly applied to

high-throughput omics data and aim to decipher the organization of the underlying systems

12
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and mine information specific to a biological process under study. Such methods do not
require kinetic parameters and can be used for the analysis of genome-scale data with tens of
thousands of components or interactions to obtain coarse-grained knowledge about biological
systems.™ By this, important clues about the topological organization of the networks can
be obtained and relationships between the topological characteristics and biological properties
of the involved molecules elucidated. For example, studies on protein-protein-interaction
(PPI) networks have revealed complex relationships between the number of neighbors of
a node or vertex degree, network modularity (organization into connected subnetworks),
gene essentiality and pleiotropy, and are being used increasingly to predict functionality
of individual molecules in the network, membership in protein complexes, association with
signaling pathways and disease-associated subnetworks.*##42% On the other hand, bottom-up
methods model how interacting components, e.g., genes, proteins and metabolites achieve
the dynamic behaviors of cellular systems. In this case, one usually starts with hypotheses of
biological mechanisms generated from individual small-scale experiments.* 4713 This class of

methods is further described in the section Mathematical modeling.

Taken together, as opposed to the traditional biological studies dealing with relatively
few components and using intuitive reasoning to guide hypotheses and experiments, systems
biology approaches, although still in their infancy, allow the collection of molecular information
in a systematic way and formulation of a hypothesis that can be a powerful source in directing

targeted experiments.

1.5.1 Different types of biological networks

Protein-protein interaction (PPIl) networks, stored as undirected graphs, mainly hold
information of how different proteins operate in coordination with others to enable the
biological processes within the cell. Several large-scale and high-throughput techniques have
been developed enabling to detect interacting proteins within an organism. Among them, the
most well-known are the tandem affinity purification (TAP),** yeast two-hybrid (Y2H),%
protein microarrays®®? and flow cytometry enabling single cell proteomics.™® To make this
information concerning PPI data more readily available, a number of publicly available
databases have set out to collect and store protein-protein interaction data, such
as The Human Protein Reference Database (HPRD)! the Molecular INTeraction database
(MINT) 434 and IntAct.™#* Additionally, well-documented services infer and store mammalian
protein-protein interactions using orthologs, meaning that PPIs identified in lower organisms
are identified to also exist in, mammalian cells, for example, IntNetDB"% and STRING .17
A number of data warehouses also consolidate different protein-protein databases by merging

networks stored in different formats, including Pathway Commons®*® and UniHI."*? Systems

13
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4 provide integration and querying capabilities

such as BioWarehouse™ and the Gaggle
with other types of biological data in addition to protein-protein interactions, metabolic,
gene-regulation and cell-signaling networks. Several studies have attempted to compare

these different mammalian PPI databases to assess their overlap and coverage. 142143

Gene-regulatory networks (GRNs), abstracted as directed graphs with activation/inhibition
links, contain information concerning the control of gene expression in cells. Here, genes
are translated to transcription factors (TFs), i.c., more distal regulators, regulating
the expression of other genes. Besides TFs, this process is modulated by many other
variables, such as post-translational modifications of TFs or their association with other
molecular factors. TFs often exhibit specific motifs and patterns concerning their topology.
Data collection, data integration and rapidly emerging high- throughput technologies that
can experimentally map gene-regulatory networks give now the possibility to study them in a
larger scale. Gene expression microarrays time-series data derived from perturbation stud-
ies, ChIP-chip and ChIP-seq, comparative genomics (identifying conserved non-coding
sequences as potential binding sites) or purely computational approaches that use known con-
sensus DNA binding motifs are typically used to reconstruct gene-regulatory networks. 12444
Several databases and tools are developed to collect and integrate such datafor example,

JASPAR™ and TRANSFAC,1#% while post-translational modification can be found in
databases like Phospho. ELM*47 and PHOSIDA .14®

Signal transduction networks, commonly represented as directed graphs with three types
of links: activation, inhibition and neutral, in contrast to protein-protein interaction networks,
capture functional relationships between different bioentities. Besides proteins, sig-
naling networks also include small molecules such as calcium and cAMP. Signal transduction
networks investigate how signal transmission is performed either from the outside to the
inside of the cell, or within the cell in order to regulate the response of cells to changes in the
extracellular environment where signals, received at the cell surface by receptors, transduce
information to effector proteins through cascades of coupled biochemical reactions (most
commonly, phosphorylation). Thus, environmental parameters change the homeostasis of
the cell and, depending on the circumstances, different responses can be triggered. Simi-
larly to GRNs, these networks also exhibit common patterns and motifs concerning their
topology. 12144 Databases that store information about signal transduction pathways include
the Cancer Cell Map (http://cancer.cellmap.org/cellmap/), KEGG (Kyoto Encyclopedia of

Genes and Genomes)*™* and BioCarta (http://biocarta.com).

Metabolic and biochemical networks are collections of pathways, holding information

about a series of biochemical events and the way they are correlated and are being
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constructed in order to study the metabolic pathways of an organism. Metabolic pathways
consist of a series of biochemical reactions occurring within a cell at different time points.
In general, metabolic networks are more complete and rich in quantitative information as
compared with protein-protein interaction (PPI), cell-signaling and gene-regulatory networks.
Within a metabolic network, the main role is played by the enzymes, since they are the main
determinants in catalyzing biochemical reactions. Enzymes are often dependent on other co-
factors such as vitamins for proper functioning. #4144 Currently, modern sequencing techniques
have allowed the reconstruction of the network of biochemical reactions in many organisms,

L0 Several public databases exist holding information about

from bacteria to human.
biochemical networks in many organisms, including KEGG*2, BioCyc%?? and metaTIGER.1>4
In addition, analysis methods have also been proposed to elucidate the pathway structure of

metabolic networks. 195156

MicroRNA networks In addition, there is also a growing appreciation for non-canonical
metabolites, non-protein biomolecules and non-conventional post-translational modifications
functioning in intracellular regulation, for example, miRNA networks. miRNAs are short
(~22 nucleotide) transcripts that pair with (full-length) mRNAs of transcribed and translated
genes, thereby suppressing their translation into proteins. As microRNA sequences
are usually known, it is computationally possible to construct the network of interactions
between miRNAs and their putative targets within the expressed genome.**! Such

examples include the work of Shalgi et al.,*57

who developed and analyzed a network of
transcription factors and miRNAs. Cui et al.1* used a large-scale signaling network extracted
manually from the literature in order to assess how endogenous miRNAs target and regulate

components in the cell-signaling system.

1.5.2 Computer readable formats describing biological networks and

network visualization

Many computer readable formats have been proposed to describe biological networks in an
attempt to develop standards for data sharing and exchange between isolated data sets and
analysis tools. The Systems Biology Markup Language (SBML)**? is an XML-like machine-
readable language, designed to represent network models to be analyzed by a computer.
SBML can represent metabolic networks, cell signaling pathways, as well as regulatory
networks. Biological networks can also be described using file formats, such as the Proteomics
Standards Initiative Interaction (PSI-MI),"*" Chemical Markup Language (CML)*! for
chemicals or BioPAX"%? for pathways. Several secondary network formats, which can also
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be used in for similar purposes include the Cell Markup Language (CellML),"%* which is an

XML-like machine-readable language mainly developed for the exchange of computer-based
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164 which is a language

mathematical models, the Resource Description Framework (RDF),
for the representation of information about resources on the World Wide Web. Each of
these storage schemata is designed for handling different types of biomolecular networks. For
example, PSI-MI is most appropriate for describing details about experiments, SBML is can
be used in order to directly explore biological networks into quantitative modeling tools such
as the SBMLToolbox,*% BioPAX has the advantage that it does not require quantitative
information, therefore it is useful for network visualization and data exchange. In addition, in
recent years several desktop and web-based applications for pathway and network visualization
have emerged, for example, Cytoscape®® and CellDesigner,*%” supporting different network

storage formats.

1.5.3 Topological structure analysis of biological networks

The availability of large-scale curated interaction datasets has given rise to the opportu-
nity to investigate topological organization of these interactomes using graph theoretic
analysis.*®® Such analysis can be particularly useful in large signaling networks, where a
simple visual inspection is not possible and at the same time the construction of precise
quantitative models is practically infeasible due to the huge amount of required, but generally
unknown, kinetic parameters and concentration values.™® The topological structure of a
network is thought to contain significant biological properties and plays an important role in
understanding network architecture and performance. Several commonly used topological
parameters include (Figure|1.2)): (1) Node degree or the number of links connected to that
node. For directed networks, a separation between the “in-degree” or the number of edges
that end at the node and the “out-degree®, which is the number of edges that start from
the node is being made. Functionally, a node with high degree is better connected in the
network and therefore may play a more important role in maintaining the network structure.
(2) Distance or the shortest path length between two nodes, where the maximum distance
between any two nodes is termed as the graph diameter. The average distance and diameter
of a network measure the approximate distance between nodes in a network. A network
with a small diameter is often termed as a ”"small world“ network, in which any two nodes
can be connected with relatively short paths. Actually, many real world networks such as
metabolic networks have a small world architecture, which is thought to serve to minimize
transition times between metabolic state. (3) Clustering coefficient of a node is calculated
as the number of links between the nodes within its neighborhood divided by the number of
links that are possible between them. A high clustering coefficient for a network is another
indicator of a small world. (4) Betweenness is the fraction of the shortest paths between

all pairs of nodes that pass through one node or link. Betweenness estimates the traffic
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1.5 Biological networks and systems biology of hematopoiesis

load through one node or link assuming that the information flows over a network primarily
following the shortest available paths. Biological networks significantly differ from random
networks, often exhibiting ubiquitous properties in terms of their structure and organization.
For example, biological networks have a ”scale-free* format containing hubs with many
connections and a large number of nodes that have one or a small number of connections. In
contrast toa bell-shaped degree distribution in random networks, scale-free networks have
a typical ”power law* distribution, P(k) ~ k=7, in which £ is the node degree and P(k)
is the probability that a randomly selected node will have a degree k. Functionally, the
advantage of this type of organization is that the system is more robust, meaning that
random loss of individual non-hub or peripheral nodes is less disruptive. On the other hand,
hub nodes are extremely important and therefore usually play essential roles in biological
systems.*™ Many real-world networks, were demonstrated to be modular and hierarchically
organized.*®® Such modules can be identified using network clustering algorithms, for example,
betweenness centrality clustering. ™™ Moreover, after modules have been identified with only
considering the network topology, the modules can be further validated by exploring whether

2 or GO terms and network

the components in the module also share similar GO terms*
connectivity can be combined for module identification.™™ Several tools have been developed

to identify modules in networks. For example, MoNet,*™ MCODE,™ MCL..%®

1.5.4 Mathematical modeling

Experimentally and computationally derived biological networks such as protein-protein
interaction networks provide static depictions of the dynamically changing cellular environ-
ment. Clearly such large-scale interaction maps, usually including numerous intertwined
feedback circuits, are not directly interpretable and sufficient by themselves, as they do
not provide insights on the logic of signaling networks and their spatio- temporal
behavior.'?¥ Moreover, we still lack technology that would allow high-throughput detailed
measurement of activity of all signaling molecules and their interactions. This necessitates
developing methods to prioritize selection of the molecules such that measuring their activity
would be most informative for understanding the molecular crosstalk within the network. In
this respect, computational modeling and simulation tools become a necessary complement,
allowing the formulation of a systems-level hypothesis that can be a powerful source in direct-
ing targeted experiments. Generally, the roles of mathematical models for gene regulatory
networks include: (1) describing genetic regulations at a system level; (2) enabling artificial
simulation of network dynamic behavior; (3) predicting new structures and relationships
among the network components; and, finally, (4) making it possible to analyze or intervene

in the network through signal processing methods.™® Different mathematical approaches
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A Degree k; =number of links connected to node i
i

B A . Distance d/.j: shortest path length between node i and j

i

= - T~

- Q \

c vl RN J Diameter D = max {d,-l-\i,jeN} N : all nodes in the network
~_ &

i 2e;
ClUSt?r_mg C=—F—"— e; : number of existing links (labeled in
Coefficient ki(ki—1) red) among the k; nodes that
connect to node i

Betweenness p, = Zi[pi/([)/pii p..  :number of shortest paths between
’ - iandj
Pij 1) : number of shortest paths between
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Figure 1.2: Topological parameters of a network. Five commonly used topological parameters
are illustrated in both graphs and formulae, based on an undirected network. (A)
Node degree measures the number of connections of that node. (B) Distance
is the length of the shortest path between two nodes. (C) Diameter is the
maximum distance between any two nodes in a network. (D) Clustering coefficient
measures the percentage of existing links among the neighborhood of one node.
(E) Betweenness is the fraction of those shortest paths between all pairs of nodes
that pass through one node or link 1™

have been proposed to model such regulatory networks and to simulate their dynamical

124H1261177

behavior, including also hybrid approaches.™™

Boolean mathematical formalism

Quantitative and continuous modeling (e.g., using differential equations) typically requires
precise mechanistic details on molecular mechanisms and experimentally determined kinetic
parameters describing the individual reactions such as synthesis and degradation rates.
Consequently, such studies have been limited to a couple of small-scale (with only tens
of components or less) well-understood sub-networks. On a genome-wide scale and for
newly discovered pathways such detailed data may not be available. At the same time,
a wealth of molecular level qualitative data on individual components and interactions
can be obtained from the biomedical literature and high-throughput technologies, making
methods, which are straightforward, robust and compatible with qualitative data,

highly attractive to model and analyze essential properties of genetic regulatory and signaling
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1.6 Computational modeling of the hematopoietic system

networks TI9I220124 T30/179

180U8L are among the simplest discrete models that have been

Boolean network models
applied to systems biology. In terms of complexity, Boolean networks lie between static
network models and continuous dynamic models,*# making them a tractable and powerful
approach to modeling also large-scale biological systems. BNs are able to capture some
fundamental characteristics of gene regulations, are conceptually simple and their rule-based
structures bear physical and biological meanings. Hence such models can lead to predictive
testable hypotheses which is especially valuable in poorly understood large-scale systems. 183154
Boolean networks have been successfully applied in modeling many gene regulatory and
signaling networks in a variety of organisms.'*#185180 The attractors or stable states of BNs
have been associated with cellular phenotypes, inspiring the development of control strategy
to try to increase the possibility of reaching desirable attractors or “good” phenotypes and
decrease the likelihood of undesirable attractors or “bad” phenotypes. Clearly, such efforts
are especially appealing in the medical community, since they hold potential to guide the
effective intervention and treatment in different cancers.™

A Boolean network model is a directed graph in which the nodes represent elements (e.g.
genes or proteins) and edges represent interactions (e.g. transcription, phosphorylation)
between these elements. Every node is assigned one of two possible binary states in
the network: ON (above threshold/expressed/high or 1) or OFF (below thresh-
old /unexpressed/low or 0), corresponding to the logic values TRUE and FALSE. At each
time point, the state of a node is determined by the states of its upstream neighbors (inputs)
via a Boolean logical transfer function, depending on the updating schemes used in the model.
For k variables, the Boolean logical transfer function can be written as B : {0, 1}* — {0,1}.
The basic logical operations include AND, OR and NOT. For example, D = (A OR B) AND
NOT C is a Boolean function with three variables. A Boolean function can also be represented
by a truth table, wherein each row lists a combination of values of Boolean variables and its
associated output value. The truth table of a Boolean function with k& variables would have

2k rows and k + 1 columns. 12122179

1.6 Computational modeling of the hematopoietic system

The validity of mathematical modeling in hematopoiesis was established early by the pioneering
work of Till and McCulloch.* #8189 Since then, deterministic, stochastic, statistical and network-

based models have been used to better understand a range of topics in hematopoiesis.*2"

Deterministic models In hematopoietic progenitor cells, the transcription factors GATA-1
and PU.1 are known to act as key regulators and potential antagonists in the erythroid

vs. myeloid differentiation processes, where low GATA-1 and PU.1 expression maintain
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the cell in an undifferentiated state, whereas dominant expression of GATA-1 promotes
the erythroid /megakaryocyte lineage, and PU.1 promotes the myeloid lineage. In addition,
GATA-1 and PU.1 both stimulate their own transcription and inhibit that of the other,
resulting in a network that generates a bistable, genetic toggle switch™®. Roeder and
Glauche®™ have proposed a quantitative model which, was able to account for the observed
behavior: depending on the parameters used, the model predicted two different possibilities
to explain the experimentally observed priming state of low level co-expression, whereas
increasing transcription rates was sufficient to induce differentiation in one scenario. The

same system was also studied by Huang et al.191192

using a simple mathematical model
supplemented by experimental measurements to analyze the dynamics of this binary fate
decision governed by a gene-circuit containing both auto-stimulation and cross-inhibition.
Their model yielded stable attractors corresponding to erythroid and myelomonocytic fates, as
well as an uncommitted metastable state characterized by co-expression of GATA-1 and PU.1,
which would explain the phenomenon of “multi-lineage priming”. Recently, a literature-derived
11-factor Boolean network modeling myeloid differentiation from common myeloid progenitors
to megakaryocytes, erythrocytes, granulocytes and monocytes has been constructed**¥ and
validated by comparing the attractors with gene expression profiles of differentiating and
mature myeloid blood cells, leading to a conclusion that the steady states of the model can

be directly attributed to known biological cell phenotypes.

Stochastic models Experimental evidence exists that stochastics may be important in
networks that control stem cell behavior.™** Intriguingly, it has been established that, in
hematopoietic stem cells, after being separated by flow cytometry, high or low Sca-1 expressing
populations reestablish the original distribution within several population doublings. Moreover,
low Sca-1 expressing cells preferentially differentiate into the erythroid lineage, whereas high
Sca-1 expressers favor the myeloid lineage. This process could be described by a Gaussian
mixture model that incorporated noise-driven transitions between discrete subpopulations,
suggesting hidden multi-stability within one cell type.1%

A single cell-based stochastic model studying the concept of within-tissue plasticity has also
been described.™ It demonstrates how individual cells may reversibly change their actual
set of properties depending on the influence of the local growth environment. Stochastic
switching between the growth environments introduced fluctuations generating heterogeneity.

Stochastic models have also been used to study the dynamics of clonal repopulation following
hematopoietic stem cell transplant, where trajectories of HSC/P counts and differentiated
hematopoietic cell counts were simulated and subsequently compared with experimentally
observed cell counts. Rates of self-renewal, differentiation and elimination of cells were

estimated. As a result, these stochastic trajectories were found to match experimental results.
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1.6 Computational modeling of the hematopoietic system

Altogether, these models predicted that hematopoiesis is probabilistic in nature and that
clonal dominance can occur by chance. Moreover, stochastic simulation can be used to
incorporate elements of the stem cell niche, such as surrounding stromal cells and thus model
cell-cell and cell-microenvironment interactions. Such models could identify regulators of

stem cell fate and explore the dynamics of this regulation.®
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1.7 Motivation

Recent advances in genome research and gene profiling technologies have resulted in ac-
cumulation of global gene expression patterns of primitive hematopoietic stem cells and
their more differentiated progeny, such as. 2097 At the same time, efforts to examine the
interactions between HSCs and their micro-environment have led to the generation of in witro
culture systems. We have previously established that two midgestation-derived stromal
clones—UG26-1B6, urogenital ridge-derived, and EL0O8-1D2, embryonic liver-
derived—support the maintenance of murine adult BM and human cord blood
hematopoietic repopulating stem cells (HSCs). 198199

We have already identified several UG26-1B6 and EL08-1D2-derived secreted factors,
including Secreted frizzled-related protein 1 (Sfrp1) and Pleiotrophin (Ptn) and
demonstrated their critical role in the maintenance of HSCs.?12% Hence, it appears that such
co-culture systems can, at least partially, mimic the hypothetic in vivo stem cell nice and as
such provides a useful model system for investigating stem cell-stromal cell interactions.™®
Changes in gene expression in both HSC and niche cells over time, after being
in direct contact, to the best of our knowledge, have not been elucidated, so far. Moreover, at
present, precise signaling mechanisms coordinating HSC-fate decisions have remained largely
elusive.

In this study, by combining time-series (T'S) gene expression analysis and phenotype data
with bioinformatics and systems biology approaches, we aim to get deeper insights
into the two-way communication between HSC and UG26-1B6 stromal cells, thus facilitating
the discovery of novel molecular players and starting to unravel the complexity of biological

networks controlling this “bidirectional dialogue”.
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2 Materials, methods and data

2.1 Materials

Table 2.1: Instruments

Product

Manufacturer

Agilent 2100 Bioanalyzer

Animal Blood Counter Scil Vet AbcTM
Cell incubator Hera Cell 240

Cell sorter MoFlo High Speed

Centrifuge Megafuge 3.0 RS, Multifuge 3S
Flow cytometer CyAn ADP Lx P8
Fluorescent microscope Leica DM RBE
Hematocytometer Neubauer improved

Ice maschine S.-No: 061244

Laminar flow hood ANTAES 48/72
Linear accelerator Mevatron KD2
Microscope Axiovert 25

NanoDrop ND-1000 UV /Vis-spectrophotometer
Precision scales PLJ 2100-2M
QuadroMACS Separator

Real-Time PCR System ABI PRISM 7900
Real-Time PCR System StepOne
Spectrophotometer SmartSpec Plus
Thermomixer comfort

Vortex IKA® MS1 minishaker

Water bath SUB

Agilent Technologies, Santa Clara, CA, US
Scil vet academy, Viernheim, Germany
Heraeus Instruments, Hanau, Germany
BeckmanCoulter, US

Heraeus Instruments, Hanau, Germany
BeckmanCoulter, US

Leica, Wetzlar, Germany

Marienfeld Superior, Germany

Ziegra Eismaschinen, Isernhagen, Germany
BIOHIT, Germany

Siemens, Germany

Carl Zeiss, Jena, Germany

NanoDrop Technologies, Wilmington, DE, US
Kern, Germany

Miltenyi Biotec, Germany

Applied Biosystems, Foster City, US
Applied Biosystems, Foster City, US
Bio-Rad, US

Eppendorf, Germany

Werke & Co., Staufen im Breisgau, Germany
Grant, UK
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2 Materials, methods and data

Table 2.2: Consumables

Product

Manufacturer

Blood lancets Supra

Disposable bags
Disposable UV cuvettes
Filters 0.45/30/70/100 pm

Filter tips TipOne
10/100/200/1000 pL
MACS LS cell separation columns

GeneChip Mouse Genome 430 2.0 Arrays
MicroAmp® Fast 96-Well Reaction Plate with Barcode
Microcentrifuge safe-lock tubes,

1.5/2 mL

Monoject blunt cannula needles

Needles BD MicrolanceTM, 27/30 gauge
Poly-L-lysine-coated glass slides
Polypropylene conical and

round-bottom tubes 5/12/15/50 mL
Serological Pipets,

2/5/10/25/50 mL

S-Monovetted

Blood Collection System

Syringes BD PlastipakTM 1 mL

Tissue culture bottles 250 mL /550 mL
Tissue culture dishes 10/20 cm

Tissue culture plates 6/12 well

megro GmbH & Co KG,

Wesel, Germany

Carl Roth, Germany

Brand, Germany

BD FalconTM, BD Biosciences,
Heidelberg, Germany

Starlab, Germany

Miltenyi Biotec, Bergisch

Gladbach, Germany

Affymetrix, Santa Clara, US
Applied Biosystems, Foster City, US
Eppendorf, Germany

Kendall Healthcare, US

BD, Heidelberg, Germany
Thermo Fisher Scientific Inc., US
BD FalconTM, BD Biosciences
Heidelberg, Germany

BD FalconTM, BD Biosciences,
Heidelberg, Germany

Sarstedt AG & Co.,

Niimbrecht, Germany

BD, Heidelberg, Germany
Cellstar®, US

Corning Incorporated, Corning, US
Cellstar®, US
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2.1 Materials

Table 2.3: Chemicals

Product

Manufacturer

Albumin Fraction V; >98%, pulv., bovine
(BSA)

Ampicillin
Carboxyfluorescein = succinimidyl ester
(CFSE)

Ciprofloxacin
Dimethyl sulfoxide (DMSO)

Ethanol, 99.8%
Ethidium bromide, 1% solution
Fetal calf serum (FCS)
Formalin solution 10%
Gelatin

Glutamax

HBSS

HEPES

Horse serum (HS)
Isofluran Forened 100%
Isopropanol
Lipofectamine 2000
Pen/Strep

Peptone

Polybrened
Propidium-Jodid (PI)
Puromycin

Triton X-100

Trypan blue

Trypsin, 10x

Thirk’s solution
UltraPure DNase/RNase-Free Distilled
Water
B-Mercapto-ethanol

Carl Roth, Karlsruhe, Germany

Sigma Aldrich, Taufkirchen, Germany

Invitrogen, Darmstadt, Germany

Fresenius Kabi, Bad Homburg, Germany
SERVA Electrophoresis GmbH, Heidel-
berg, Germany

AppliChem, Darmstadt, Germany
Carl Roth, Karlsruhe, Germany
PAA, Coélbe, Germany

Sigma Aldrich, Taufkirchen, Germany
Sigma Aldrich, Taufkirchen, Germany
Invitrogen, Darmstadt, Germany
Invitrogen, Darmstadt, Germany
Gibco, Germany

BioWhittaker, Vallensbaek, Denmark
Abbott & Co., Taufkirchen, Germany
Sigma Aldrich, Taufkirchen, Germany
Invitrogen, Darmstadt, Germany
Gibco, Germany

Carl Roth, Karlsruhe, Germany
Sigma Aldrich, Taufkirchen, Germany
Invitrogen, Darmstadt, Germany
Invitrogen, Darmstadt, Germany
Sigma Aldrich, Taufkirchen, Germany
Invitrogen, Darmstadt, Germany
Gibco, Germany

Merck, Germany

Invitrogen, Darmstadt, Germany

Gibco, Germany




2 Materials, methods and data

Table 2.4: Home-made solutions, buffers and media

Product Recipe
FACS buffer (500 mL) 500 mL DPBS
0.5% BSA

Gelatin solution (1%, 500 mL)

Gelatin solution (0.1%, 500 mL)

HF2+ buffer (1000 mL)

LB medium

Phoenix Eco culture medium

Trypsin solution (1x, 50 mL)

UG26-1B6 cell culture medium (500 mL)

5 g Gelatin powder
500 mL deionized H50

50 mL 1% Gelatin solution
450 mL deionized H50

100 mL HBSS 10x

20 mL FCS

10 mL HEPES

10 mL Pen/Strep

860 mL deionized H30

6 g Peptone

3 g Yeast extract

1,5 g NaCl

Ampicillin (50ug/mL)
300 mL deionized Hy0

DMEM
10% FCS

5 mL 10x Trypsin
45 mLL DPBS

400 mL Alpha MEM

75 mL FCS

25 mL Horse Serum (HS)
5 mL Pen/Strep

100 pL. f-Mercaptoethanol
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2.1 Materials

Table 2.5: Commercial buffers and media

Product

Manufacturer

ACK Lysing Buffer

Invitrogen, Darmstadt, Germany

Alpha MEM Invitrogen, Darmstadt, Germany

DMEM Invitrogen, Darmstadt, Germany

Dulbecco’s PBS (DPBS) PAA, Coélbe, Germany

M5300 Stemcell Technologies, Canada

MethoCult M3434 Stemcell Technologies, Canada

Opti-MEM Invitrogen, Darmstadt, Germany
Table 2.6: Kits

Product Manufacturer

APC BrdU Flow Kitl

GeneChip Hybridization, Wash, and
Stain Kit

HiSpeed6 Plasmid Maxi Kit

Lineage cell depletion kit
MessageAmp aRNA Amplification Kit
Mouse Ctgf ELISA Kit

Power SYBR Green PCR Master Mix
QuantiTect Reverse Transcription Kit
RNA fragmentation reagent

RNeasy Micro Kit

BD Pharmingen, San Diego, CA, US
Affymetrix, Santa Clara, CA, US

Quiagen Inc, Hilden, Germany

Miltenyi Biotec, Germany

Ambion, Austin, TX, US

Uscn Life Science Inc., Wuhan, China)
Applied Biosystems, Foster City, CA, US
Quiagen Inc, Hilden, Germany

Ambion, Austin, Tx, US

Quiagen Inc, Hilden, Germany

27



2 Materials, methods and data

Table 2.7: Flow cytometry antibodies

Antigen Clone Fluorochrome Manufacturer
Cd4 GK1.5 PE-Cyb eBioscience, San Diego, CA, US
Cd4 GK1.5 PE-Cyb5 eBioscience, San Diego, CA, US
Cd8a 53-6.7 PE-Cyb eBioscience, San Diego, CA, US
Cd11b M1/70 APC-eFluor® eBioscience, San Diego, CA, US
780
Cd16/32 93 PE eBioscience, San Diego, CA, US
Cd34 RAM34 FITC eBioscience, San Diego, CA, US
Alexa Fluor 647
Cd45.1 A20 PE eBioscience, San Diego, CA, US
Cd45.1 FITC
Cd45.1 eFluor® 450
Cd45.2 104 FITC eBioscience, San Diego, CA, US
Cd45.2 PE
Cd4br (B220) RA3-6B2 PE-Cy7 eBioscience, San Diego, CA, US
Cd117 (cKit) 2B8 PE eBioscience, San Diego, CA, US
APC
APC-eFluor®
780
Cd127 (I7ra) ATR34 APC eBioscience, San Diego, CA, US
PE
Cd150 TC15-12F12.2 APC BioLegend, San Diego, CA, US
Gr-1 RB6-8C5 eFluor® 450 eBioscience, San Diego, CA, US
Mouse eBioscience, San Diego, CA, US
Hematopoi-
etic

Lineage Biotin
Panel

Sca-1 D7

PE-Cy7

eBioscience, San Diego, CA, US
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Table 2.8: Immunofluorescence (IF) antibodies

2.1 Materials

Product Manufacturer Catalog # Dilution Species
anti-Cdc25A Cell Sign. Techn., US 3652 1:50 rabbit
anti-Cdk2 Cell Sign. Techn., US 2546 1:50 rabbit
anti-Cdk4 Cell Sign. Techn., US 2906 1:50 mouse
anti-Ctgf Santa Cruz Biotec., US sc-25440  1:50 rabbit
anti-Cyclin D1 Cell Sign. Techn., US 2978 1:25 rabbit
anti-Cyclin E2 Cell Sign. Techn., US 4132 1:100 rabbit
anti-p21Cipl Santa Cruz Biotec., US sc-271532  1:50 mouse
anti-p27Kipl BD Transduct. Laborat., US 610242 1:100 mouse
anti-p300 Upstate/Millipore, US 05-2576 1:100 mouse
anti-phospho-Akt (Ser473) Cell Sign. Techn., US 9271 1:25 rabbit
anti-phospho-Akt (Thr308) Cell Sign. Techn., US 2965 1:100 rabbit
anti-phospho-f-catenin Cell Sign. Techn., US 9561 1:100 rabbit
(Ser33/37/Thr4l)

anti-phospho-FAK (Tyr925)  Cell Sign. Techn., US 3284 1:50 rabbit
anti-phospho-FoxO1 (Ser256) Cell Sign. Techn., US 9461 1:50 rabbit
anti-phospho-GSK3-4 (Ser9)  Cell Sign. Techn., US 5558 1:400 rabbit
anti-phospho-Lrp6 (Ser1490)  Cell Sign. Techn., US 2568 1:200 rabbit
anti-phospho-p44 /42 Cell Sign. Techn., US 4377 1:200 rabbit
MAPK (Erk1/2)

anti-phospho-p53 (Ser15) Cell Sign. Techn., US 9284 1:50 rabbit
anti-phospho-Rb (Ser780) Cell Sign. Techn., US 8180 1:200 rabbit
anti-phospho-Smad2 Cell Sign. Techn., US 9510 1:200 rabbit
(Serd65/467)/

Smad3 (Ser423/425)

(Thr202/Tyr204)

PTEN Cell Sign. Techn., US 9552 1:100 rabbit
Skp2 Cell Sign. Techn., US 4358 1:50 rabbit
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2 Materials, methods and data

Table 2.9: Secondary detection reagents for flow cytometry

Reagent Conjugate

Manufacturer

Streptavidin ~ Alexa Fluor 610 Invitrogen, Darmstadt, Germany

Streptavidin ~ PE-Cyb.5
Streptavidin ~ eFluor®450
Streptavidin ~ APC

Invitrogen, Darmstadt, Germany
Invitrogen, Darmstadt, Germany

Invitrogen, Darmstadt, Germany

Table 2.10: Secondary antibodies for immunofluorescence (IF)

Product Manufacturer Catalog §  Dilution
Alexa Fluor®488 Invitrogen, Germany A11008 1:1000
Goat Anti-Rabbit IgG (H+L)

Alexa Fluor®488 Invitrogen, Germany A11001 1:1000

Goat Anti-Mouse IgG (H+L)

Table 2.11: Mice

Strain

Provider

C57BL/6.J (B6, B6.Cd45.2)

B6.SJL-Ptprca Pepchb/BoylJ

Harlan Laboratories Inc., The Nether-
lands
(Cd45.1) Taconic, Denmark

Table 2.12: Cell lines

Cell line

Description

UG26-1B6

NX (Phoenix) Eco 293T

stromal cell line derived from murine embryonic

urogenital ridge

cell line with vectors for retroviral packaging and

envelope protein infectious for murine cells
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2.2 Methods and data

2.2 Methods and data

2.2.1 Experimental methods

Isolation of hematopoietic stem cells for co-cultures

Bone marrow (BM) cells were harvested from 7-10-week-old male and female (1:1) C57BL/6J
mice (Harlan,Indianapolis,US) by flushing from both hind legs the tibiae and femora with
ice-cold HF /2 (Hank’s balanced salt solution without Ca2+ and Mg2+; Invitrogen, Germany,
supplemented with 2% FCS, 10 mM HEPES, and antibiotics). The obtained cell suspension
was passed through a 30 pm nylon filter (BD FalconTM, Germany) to remove bone debris and
clumps, then washed once. The number of viable BM cells was estimated using a Neubauer
hematocytometer by counting the number of Trypan blue (Invitrogen, Germany) unstained
cells under an optical microscope. Lineage marker positive cells were depleted using the
Lineage Cell Depletion Kit (Miltenyi Biotec, Bergisch Gladbach, Germany), according to
the manufacturer’s recommendation. Briefly, the cells were incubated with biotinylated
anti-lineage markers Cd5, Cd45r (B220), Cd11lb, Gr-1 (Ly-6G/C), 7-4, and Ter-119 at ratio
10 pL of antibody cocktail per 107 cells for 10 min at 4°C and washed once with cold HF /2
at ratio 1 mL buffer per 107 cells. Streptavidin-conjugated magnetic beads were added at
ratio 40 uL beads per 107 cells and incubated for 15 min at 4°C. The lineage-depleted cell
population was then collected after passing the cell suspension through a magnetic separation
column and washed once with cold HF /2. The number of viable lineage negative cells was
estimated by counting the number of Trypan blue (Invitrogen, Germany) unstained cells
under an optical microscope. Lineage negative cells were then incubated with equal amounts
(1 pL antibody per 10° cells) of Mouse Hematopoietic Lineage Biotin Panel antibodies,
PECyT7-anti-Sca-1 and PE-anti-c-Kit (all purchased from eBiosciences; San Diego, CA, USA)
and PE-Cyb5.5-streptavidin (Invitrogen, Germany) for 15 min at 4°C in the dark, the cells
were washed once and then resuspended in PBS (supplemented with 0.5% BSA) containing 0.5
pg propidium iodide (PI) to exclude the dead cells. After antibody staining, Lin-Sca-1+c-Kit+
cells (LSKs) were selected based on surface marker expression by flow cytometry on a MoFlo
cell sorter (Cytomation-Beckman Coulter) supplied with Summit 4.3 software (Beckman
Coulter). Flow cytometry data were analyzed using the FlowJo 8.8.3 software (Tree Star,
Inc. Ashland, OR, USA).

Stromal cell culture

The midgestation-embryo-derived stromal clone UG26-1B6 (urogenital ridge-derived) cells

198)

were cultured (as described in on 0.1% gelatin-coated tissue culture plates (Cellstar®,

US) in stromal cell medium (80% a-minimal essential medium («MEM), supplemented with
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15% fetal calf serum (FCS), 5% horse serum (HS), antibiotics penicillin and streptomycin
(PenStrep; Gibco, Germany), and 10 uM S-mercaptoethanol (Gibco, Germany)) with 30%

198 Briefly,

conditioned medium. Conditioned medium (CM) was prepared as described by.
after 1, 2 and 4 days of culture, CM was collected from confluent-grown stromal cell culture
plates, centrifuged and passed through a 0.2 pm filters to remove the dead cell debris. All

stromal cultures were maintained at 33°C, 5% CO2 in a humid atmosphere.

For freezing, cells were trypsinized briefly and resuspended in stromal cell medium. Sub-
sequently a centrifugation step (1400 rpm for 5 min at RT) was carried out to pellet the
cells. These were then resuspended in freezing medium (89% FCS, 11% DMSO), divided
into cryotube aliquots of approximately 0.5210° cells and frozen. For long term storage, cells
were stored in liquid nitrogen. Cells were thawed by incubating cryotubes in a water bath
at 37°C until the ice thawed. Then the cell suspension was immediately transferred into a
falcon tube with 10 mL pre-warmed stromal cell medium. To exclude the cytotoxic DMSO,
cells were subsequently centrifuged (1400 rpm for 5 min at RT), resuspended in fresh stromal

cell medium and seeded into appropriate culture plates.

LSK and UG26-1B6 stromal cell co-culture

Before seeding with LSK cells, UG26-1B6 stromal cells were plated into 0.1% gelatin-coated
12-well cell culture plates, (2x10° cells per well), grown to 100% confluence and irradiated at
30 Gy using a Mevatron KD2 (Siemens, Munich, Germany). Lin-Sca-1+c-Kit+ cells (LSKs)
cells (>95% pure) cells were resuspended in stromal cell culture medium and seeded with
stromal cells, ~10° cells per well. Plates were incubated at 33°C, 5% CO, in air and 95%
humidity for one to three days (Dayl-Day3), respectively. In addition, in order to obtain Day
0 (uncultured; Day0; d0; Oh) cells, ~2x105 UG26-1B6 stromal cells collected by trypsinization
and washed, as well as freshly sorted 10° Lin-Sca-1+c-Kit+ cells (LSKs) cells were pelleted by
centrifugation and stored by —80°C for subsequent RNA isolation. As an additional control,
UG26-1B6 cells 24 h after changing the cell culture medium were also used (Dayl medium
control; C).

After one (Day 1; d1), two (Day 2; d2) or three (Day 3; d3) days, co-cultured cells were
harvested by trypsinization, washed once washed once with HF /24 buffer and incubated with
equal amounts (1 pL antibody per 10° cells) PECy7-anti-Sca-1, PE-anti-c-Kit, APC-anti-
Cd150 (from BioLegend; San Diego, CA, USA), FITC-anti-Cd34, Pacific Blue-anti-Cd45 and
PE-Cy5.5-streptavidin-biotin-anti-lineage-markers for 15 min at 4°C in the dark. Thereafter,
cells were washed once and suspended with PBS supplemented with 0.5% BSA containing 0.5
ug propidium iodide (PI) to exclude dead cells. After antibody staining, Cd45-+hematopoietic

stem cells and Cd45-Scal+ stromal cells were separated by a MoFlo cell sorter (Cytomation-
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Beckman Coulter) supplied with Summit 4.3 software (Beckman Coulter). Flow cytometry
data were analyzed using the FlowJo 8.8.3 software (Tree Star, Inc. Ashland, OR, USA).
In case of a long-term (LT)-co-culture, ~1.5x10* LSK or ~5x10? Lin- cells/well were cultured
on stroma in long-term culture (LTC) medium (LTC) medium (Stem Cell Technologies, M5350,
Vancouver, Canada) with 1 gM hydrocortisone at 33 °C, 5% COs in a humid atmosphere. Each
week, half of the medium was removed and replaced with fresh medium and hydrocortisone.
After four days, one week, two weeks and three weeks, non-adherent and adherent cells were
harvested, pooled, and separated into Cd45+ hematopoietic cells and Cd45-Scal+ stromal

cells by cell sorting, as described above.
RNA extraction

Total RNA was isolated from sorted LSKs, Cd45+ hematopoietic cells (Cd454+HCs) and
UG26-1B6 stromal cells using RNeasy Micro Kit (Quiagen Inc, Hilden, Germany), according
to the manufacturer’s recommendation. RNA concentration, purity and integrity was assessed
using NanoDrop ND-1000 UV /Vis- spectrophotometer (NanoDrop Technologies, Wilmington,
DE, US) or/and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA),

respectively.
aRNA amplification and array hybridization

Biotin-labeled aRNA was obtained using MessageAmp aRNA Amplification Kit (Ambion,
Austin, TX, US), according to the manufacturer’s recommendation and fragmented in RNA
fragmentation reagent (Ambion, Austin, TX, US) by heating to 94 °C for 35 minutes. Subse-
quently, biotinylated and fragmented aRNA was hybridized to the GeneChip Mouse Genome
430 2.0 Arrays (Affymetrix, Santa Clara, US) using the GeneChip Hybridization, Wash, and

Stain Kit (Affymetrix, Santa Clara, US), according to the manufacturer’s recommendation.
Quantitative real-time PCR (qPCR)

Gene-specific primer design Gene-specific primers were designed using the NCBI primer
design tool Primer-BLAST http://www.ncbi.nlm.nih.gov/tools/primer-blast/, which imple-
ments Primer3“?™ and BLAST?" thus ensuring that the primers made are specific to the
input PCR template. Primer-BLAST was run using the default parameters, except that
the PCR product size was restricted to 100-150 bp and the primers were required to span
an exon-exon junction in order to eliminate genomic DNA amplification. Primer sequences,

melting temperatures (Tm) and the PCR product sizes are summarized in the Table S11.

cDNA synthesis Total RNA (seeRNA extraction) was immediately reverse transcribed
into cDNA using the QuantiTect Reverse Transcription Kit (Quiagen Inc, Hilden, Germany)

following the manufacturer’s instructions. Briefly, purified RNA was incubated in gDNA
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Wipeout Buffer (2 min at 42°C) in order to remove contaminating genomic DNA. The RNA
sample was then subjected to reverse transcription (15 min at 42°C) in a 20 pl reaction
volume, using a master mix prepared from Quantiscript Reverse Transcriptase, Quantiscript
RT Buffer, and RT Primer Mix containing a mix of oligo-dT and random primers that enable
cDNA synthesis from all regions of RNA transcripts. The reaction was then inactivated at
95°C for 3 min.

RT-qPCR reaction and thermal cycling conditions The resulting cDNA was quantified
by real time PCR (RT-qPCR). The reaction was performed in a 20 ul reaction volume
containing 1 x Power SYBR® Green PCR Master Mix (Applied Biosystems, Foster City,
CA, US), primers at 100 nM concentrations and 1 ul of the sample cDNA (dilution factor 1:6
or 1:8 for the hematopoietic or stromal cells, respectively). RT-qPCR run was performed on
the ABI PRISM 7900 or StepOne Real-Time PCR System (Applied Biosystems, Foster City,
CA, US) with the following conditions: 95°C for 10 min, 40 cycles of 95°C for 15 sec and
60 °C for 1 min. This was followed by the default dissociation cycle for melt curve analysis in
order to determine the specificity of the amplification reaction. Each experiment was done in
triplicate, including also a minus template control for each gene. Cycle threshold (Ct) values

were calculated using the SDS software v.2.4 or the StepOne’™ Software v2.2.2.

RT-qPCR data analysis Rpl39, Gorasp2 and Rpl13a (hematopoietic cells) or Rplp0 (UG26-
1B6 stromal cells) were used as endogenous control genes to convert Ct values into normalized
relative quantities (NRQs), using the formula 2.1 as described by:4%

ACt,goi

_ got
NRQ = i A, (2.1)

refo

where PCR efficiency (E) was assumed to be 100%.

Immunocytofluorescence (IF) microscopy

Since the amount of protein extracted from sorted Lin-Sca-14c-Kit+ (LSK) cells would be
too low to quantify protein expression and/or activation by Western blot, immunofluorescence
staining was utilized to analyze intracellular protein expression and phosphorylation status.
For this purpose, 10 sorted freshly isolated or 24 h co-culture-derived LSK cells were spotted
on poly-L-lysine-coated glass slides (Thermo Fisher Scientific Inc., US) and incubated on ice
for 30 min. After fixation in PBS-4% PFA for 10 min and permeabilization with blocking
buffer (10% FCS, 0.1% Triton-X in PBS) for 1 h at room temperature, cells were incubated
with primary antibodies diluted in blocking buffer overnight at 4°C. The cells were then

washed three times with PBS and were incubated with a secondary antibody overnight
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at 4°C. The primary and secondary antibodies used are listed in Tables and
respectively. After final washes, the cover-slips were mounted in SlowFade® Gold Antifade
Reagent supplemented with DAPI (4,6-diamino-2-phenylindole, dihydro-chloride) nuclear
stain (Invitrogen, Germany). Fluorescence digital images were taken using constant settings
on an Leica DM RBE fluorescent microscope (Leica, Wetzlar, Germany) using AxioVision
software (Carl Zeiss, http://www.zeiss.com). For each particular sample, images at 100x
magnification of at least 30 randomly captured cells were taken.

Fluorescence digital images, were then analyzed using the digital image processing software
ImageJ (NIH, Bethesda, US). The obtained measurements were expressed in arbitrary units
called norlamized relative quantities (NRQ) . For this purpose, the mean fluorescence intensity
(MFI, average intensity of pixels per cell) and the cell area (number of pixels) were first
determined. Fluorescence intensity values were expressed as fluorescence density (protein
per pixel) after dividing MFT by the area, thereby normalizing for cell size.“** Background
was calculated using pixels around the perimeter of the area being quantified and was
removed from pixels/area measurements. In order to compare measurements from separate
experiments, they were additionally normalized to the mean of a set of control samples and

expressed as fold changes in relation to the control samples.

Enzyme-linked immunosorbent assay (ELISA) for quantification of conditioned media

Ctgf protein levels

For this assay, UG26-1B6 stromal cells were cultured for 24 h as described above (see Stromal
cell culture). The resulting condition media was decanted, filter-sterilized through a 0.45 pm
filter, and stored at —80°C until further use. The thawed conditioned media was used for
quantitative measurements of secreted Connective tissue growth factor (Ctgf) protein with a
sandwich ELISA (USCN Life Science, Wuhan, China). Samples were diluted at least 100
times with PBS and assayed in duplicate, according to the manufacturer’s instructions. As a
background control, blank culture medium sample was used. The concentration of Ctgf in

the samples was then calculated by comparing the O.D. of the samples to the standard curve.
Cell cycle analysis

S-phase analysis using bromodeoxyuridine (BrdU) uptake The BrdU assay is used to
quantitate cell proliferation (i.e., the percentage of cells entering and progressing through the
S (DNA synthesis) phase of the cell cycle) based on the measurement of bromodeoxyuridine
(BrdU) incorporation into newly synthesized DNA. Here, the APC BrdU Flow Kit (BD
Pharmingen, San Diego, CA, US) was used to profile the cell cycle status of co-culture
derived hematopoietic cells following the manufacturer’s instructions. Briefly, during the

final 30 min of co-culture, BrdU was added to the culture medium at a final concentration
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of 10 uM. Immediately following this pulse of BrdU labeling, cells were harvested and
Cd45+hematopoietic stem cells and Cd45-Scal+ stromal cells were separated by a cell sorting
as described above. Thereafter, cells were fixed with paraformaldehyde and permeabilized
with saponin. After washing and re-fixation, to expose incorporated BrdU, treatment of
cells with 30 pg of DNase for 1 hour at 37°C was performed. Finally, immunofluorescent
staining for cell-associated BrdU was done by incubating cells with fluorescent anti-BrdU
overnight at 4°C protected from light. After washing cells once and adding 20 ul. of the
7-amino-actinomycin D (7-AAD) to stain for total DNA, flow cytometric analysis was used to
enumerate and characterize cells in terms of their cell cycle position (i.e., GO/1, S, or G2/M

phases defined by 7-AAD staining intensities).

Cell division tracking using 5- and 6-carboxyfluorescein diacetate succinimidyl ester
(CFSE) labeling Lineage negative (Lin-) BM cells (see Isolation of hematopoietic stem cells
for co-cultures) to be labeled with CFSE (Invitrogen, Darmstadt, Germany) were resuspended
PBS supplemented with 0.2% FCS. CFSE was then added at a final concentration of 1.5
uM. After incubation for 10 min at 37 °C, further dye uptake was prevented by the addition
of a quarter volume of ice-cold FCS. Cells were washed once in stromal cell medium and
cultured overnight at 37°C in conditioned medium (CM). Thereafter, CFSE+LSK cells
were selected by cell sorting using a narrow gate (~ 40-channel width on a 1024-channel log
amplifier), as previously described®* and co-cultured with UG26-1B6 stromal cells for 4 days.
In each experiment, 0.1 pug/mL of colcemid (Karyomax, Gibco BRL Life Technologies, Grand
Island, NY) was added to a separate control culture containing 10° cells, which was used to
calibrate the fluorescence intensity of cells that did not undergo a any divisions during the
time course of the experiment. Alternatively, for 24 h co-culture experiments, CFSE-labeled
Lin- cells were co-cultured with UG26-1B6 stromal cells either with or without colcemid
and the fluorescence distribution of the CFSE+LSK cells was analyzed by comparing to

colcemid-treated cells.

Annexin V/Propidium lodide (Pl) apoptosis assay

Propidium iodide (PI) in conjunction with Annexin V is used to discriminate viable (PI-
/Annexin V-), apoptotic (PI-/Annexin V+) and necrotic (PI4-/Annexin V+) cells. Briefly,
after harvesting cells by centrifugation (1400 rpm for 5 min at RT), they were resuspended
in 100 xL 1 x Annexin V binding buffer (10x Annexin V Binding buffer consisting of 0.1 M
Hepes (pH 7.4), 1.4M NaCl and 25 mM CaCl, was diluted to 1 x with deionized water prior
to use), 5 puL of Annexin V-FITC (BD Pharmingen, US) and 5 uL of a 50 pg/mL PI solution
was added to each sample and incubated for 15 min at RT in the dark. Thereafter, 400 uL of
1x Binding Buffer was added to each tube and analyzed immediately by flow cytometry.
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Colony-forming cell (CFC) assay

For LSK cells, ~ 250 fresh vs. 24 h co-culture-derived sorted PI- cells were plated in
duplicate in 35 mm culture dishes in MethoCult M3434 (Stemcell Technologies, Vancouver,
Canada) according to the manufacturer’s instructions. Cultures were grown at at 37°C
in a 5% COy environment, and colonies containing more than 30 cells were subjected for
morphological examination and scoring after 12 days. Burst forming unit-erythrocyte (BFU-
E), colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte (CFU-GEMM)
and colony-forming unit-granulocyte, monocyte (CFU-GM) were scored using standard

scoring criteria.
In vivo transplantation assay

The congenic Cd45.1/Cd45.2 mouse model was used for the in vivo transplantation assay.
Briefly, 103 fresh and 24 h co-culture-derived sorted LSK (C57BL/6-Cd45.2; for the phenotypic
and functional validation of the microarray data) or the input equivalent of 2500 1 week
co-cultured (with pLKO.1 and siCtgf stroma) Lin- (B6.SJL-Ptprca Pepch/BoyJ-Cd45.1; to
investigate the putative functional role of Ctgf on hematopoiesis) donor cells were injected
intravenously into lethally irradiated (9.0 or 8.5 Gy) 129SvxB6.SJL-Ptprca Pepcb/BoylJ
(129xCd45.1) or C57BL/6-Cd45.2 congenic mice, respectively, along with 10° freshly isolated
syngeneic bone marrow (BM) and 5x10° spleen cells. A total of 3 independent experiments
were performed, using 5 8-week-old male mice for each treatment group as recipients. The
reconstitution of donor myeloid and lymphoid cells was monitored by analyzing peripheral
blood (PB) samples (100-200 pL) at 5 and 10 and at 16 weeks post-transplantation, mice
were sacrificed, and BM, spleen and blood cells were analyzed by flow cytometry, using
the following antibodies: anti-Cd45.2-FITC, anti-Cd45.1-PE, anti-Cd4-PE-Cyb5, anti-CD8a-
PE-Cy5, anti-CD11b-APC-Cy7, anti-Cd45r (B220)-PE-Cy7 and anti-Ly-6G (Grl, RB6-8C5)
(all purchased from eBiosciences; San Diego, CA, USA). For stem cell analysis, Lin- cells
were isolated and analyzed as described above (see Isolation of hematopoietic stem cells for
co-cultures). Positively reconstituted mice were defined as having a minimum of 1% total
donor cells (Cd45.2+ or Cd45.1+, respectively), from which a minimum of 1% had to be of
the myeloid (Grl+/med, Cd11b+) or lymphoid (B220+, Cd4/Cd8a+) lineages.

Stable knock-down cells for Ctgf

Stable knock-down of Ctgf in UG26-1B6 stromal cells was made using the lentiviral shRNAmir
system (Open Biosystems, Huntsville, AL, USA). The vectors containing Ctgf shRNA
sequences (TRC Mouse Ctgf shRNA; Clone ID: TRCN0000109665), as well as the empty
pLKO.1 control vector were packaged into lentiviral envelopes using the NX (Phoenix) Eco

packaging cell line and two additional vectors a packaging vector psPax2 and an envelope
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vector pMD2.G. For this purpose, 2x10° Phoenix Eco cells were seeded on 6 cm culture
dishes 24 h prior to transfecting equal amounts (4 pg of each vector) of either the pLKO.1-
shCtgf or the empty pLKO.1 vector, as well as the additional vectors pMD2.G and psPax2
with the help of Lipofectamine 2000 (Invitrogen, Germany), following the manufacturer’s
instructions. Briefly, vectors and Lipofectamine 2000 were both separately diluted with
OptiMEM (Invitrogen, Germany) and subsequently mixed. The mixture was incubated for
30 min at RT to allow for the complex formation. These complexes were then added to
the Phoenix Eco cells. After 4-6 h of transfection, the medium was changed to stromal cell
medium. Thereafter, the virus containing supernatant was harvested three times with an
interval of about 12 h. Each time, the harvested supernatant was filtered (0.45um), polybrene
(Sigma-Aldrich, Germany) was added to a final concentration of 8 ug/mL and the supernatant
was added to the stromal cells to be infected (10° cells/6 cm cell culture dish). Finally, 12 h
after the last infection, the virus supernatant was replaced with fresh stromal cell medium,

followed by puromycin-selection (5 pug/mL) for three days.

2.2.2 Computational methods and data

Microarray data pre-processing and quality control

Microarray data analysis was performed using R%% and Bioconductor packages.?"” Probe
intensity data from Affymetrix GeneChip .CEL files were accessed using the affy package.?"®
Pre-processing of the microarray chips, including background correction, quantile normal-
ization and summarization of the probe set values into expression measure was carried out
using the GeneChip RMA (gcRMA)4™ algorithm, as implemented into the gcrma package.!
The log2 scale data from gcRMA was used in statistical testing. The quality assessment of
the data, both prior to and after the normalization, was performed using the Bioconductor

package arrayQualityMetrics.*H

Clustering of time-series gene expression data

Short Time-series Expression Miner (STEM) http://www.cs.cmu.edu/ jernst/stem/*? time-
series gene expression data clustering algorithm was chosen to search for the most relevant
time point, at which the most changes in gene expression patterns could be observed. STEM
was designed for the analysis of short (3-8 time points) time series microarray gene expression
data and it also implements the gene ontology (GO) enrichment analyses for sets of genes
having the same temporal expression pattern, providing the means for an efficient and
statistically rigorous biological interpretation of significant temporal expression patterns.
Default parameters were used. As input, the complete dataset without prior non-specific

filtering or any other pre-selection was used. In case of the GO enrichment analysis, processes
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corrected for multiple hypothesis testing (at false discovery rate (FDR) < 0.05) were selected

for representation.
Two-way comparisons of consecutive time points

For the two-way analysis, gcRMA-normalized gene expression data were first divided into
pairs of consecutive time points, such as freshly isolated LSK cells or UG26-1B6 stromal cells
cultured separately (0 h) vs. 24 h-co-culture derived cells, as well as 24 h vs 48 h and 48 h vs
72 h-co-culture- derived hematopoietic or stromal cells, respectively. For stromal cells, an
additional control 24 h (Dayl; d1) after changing cell culture medium was used, in order to
also take into account gene expression differences possibly resulting from the stromal cell
medium components. Co-culture-derived transcripts that did not show significant positive
(p-Value < 0.05) associations with medium-control-derived transcripts in terms of Pearson’s
correlation coefficient, as well as transcripts that were part of our microarray validation set
(Table , for which we explicitly tested for this association using qPCR, as summarized
in Figure and Table S4) were considered for further analysis. Thereafter, the empirical
Bayes test statistics, as implemented in the 1imma package“!® was used to select genes whose
expression differed (-1 > log2FC > 1, p-Value < 0.05) across the two consecutive time points

being compared.
Signal detection analysis of the microarray data

Using RT-qPCR measurements as the gold standard, a 2x2 contingency table was constructed
against the microarray data, containing the counts of the 4 combinations of classification: true
positives (TP, differential expression defined as log2FC > 1.0 or log2FC < -1.0 and p-Value
< 0.05 detectable by both RT-qPCR assay and microarray), true negatives (TN, differential
expression not detectable by either RT-qPCR assay and microarray i.e., log2FC < 1.0 or
log2FC > -1.0 and/or p-Value > 0.05), false positives (FP, differential expression detectable
by microarrays but not by RT-qPCR), and false negatives (FN, differential expression
detectable by RT-qPCR but not by MOE430.2). Based on this matrix, the following statistics
were calculated for the microarray: SENSITIVITY (i.e., recall rate or true positive rate;
TPR) (Equation assesses the probability that the test correctly classifies a positive
subject as positive. SPECIFICITY (Equation assesses the probability that the test
correctly classifies a negative subject as negative. ACCURACY (Equation quantifies the
difference between a measurement and the true value. PRECISION (i.e., reproducibility or
repeatability) (Equation quantifies the variability of a measurement under unchanged

conditions.

TP
ENSITIVITY = ———— 2.2
SENSITIV TP+ FN (2:2)
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TN
TP+TN
ACCURACY = 75 +FP+FN+TN (2.4)
TP

The trade-offs between the measures were then represented graphically as a receiver
operating characteristic (ROC) curve (ROCR package)“ which is a plot of SENSITIVITY on
the y axis against (1—SPECIFICITY) on the x axis for varying values of the threshold t.
The 45° diagonal line connecting (0,0) to (1,1) is the ROC curve corresponding to random
chance. The area under the ROC curve (AUC) is a summary measure that averages detection
accuracy across the spectrum of test values, where AUC of 1 represents a perfect test; an

area of 0.5 represents a worthless test.“0

Functional enrichment analysis and candidate gene prioritisation using ToppGene

In order to perform functional enrichment analysis of the differentially expressed genes
(DEGs) after 1imma“!¥ two-way comparison , we utilized ToppFun from the ToppGene suite
http://toppgene.cchmc.org, ™ which detects functional enrichment of a given gene list based
on 14 different features (e.g., GO, human and mouse phenotype, protein domains, pathways,
pubmed abstracts, PPIs, cytoband, TF binding site, co-expression, gene family, microRNA
and drug target and disease). Default parameters were used. Candidate gene prioritisation
was performed using either functional annotation-based algorithm (ToppGene) or or network
analysis (ToppNet), both implemented also from the ToppGene Suite. Both algorithms were

run using the default settings.

ToppGene: Functional annotation-based candidate gene prioritisation method first gen-
erates a representative profile of the training genes (a set of genes known to be associated
with a particular phenotype) using ToppFun to first identify over-representative terms from
the training genes. Next, for each test gene, a similarity score to the training profile for each
of the 14 features is derived, using a fuzzy-based similarity measure to compute the similarity

between any two genes based on semantic annotations, as described in.2

ToppNet: protein—protein interaction network (PPIN)-based candidate gene prioritisa-
tion. Based on the observation that biological networks share many properties with Web
and social networks, ToppNet uses modified versions of three algorithms - PageRank with
Priors, HITS with Priors and K-step Markov- to prioritize candidate genes by estimating their
relative importance in the PPIN to the phenotype-related genes. Here, the K-step Markov
algorithm with a step size 6 (default) was used. For detailed description of the algorithm
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see.*10

Literature mining using EXCERBT

The text-mining system EXCERBT (Extraction of Classified Entities and Relations from
Biomedical Texts) http://mips.helmholtz-muenchen.de/excerbt /*8 was used for automated
extraction and inference of relations between entities of interest such as protein-protein
interactions or regulatory interrelations, which is done by performing an extensive search
of the biomedical literature. EXCERBT is based on a sophisticated neural network-based
natural language processing approach Semantic Role Labeling (SRL), which explores the
syntactic constituents of a sentence and determines their semantic roles in relation to a
certain predicate. This implicates ‘predicate- argument-structure’ (PAS) sets of sentences,
containing the predicate (e.g. a verb) and its corresponding semantic arguments (e.g. noun
phrases) with their semantic roles. For PAS generation, a modified variant of the SENNA

algorithm, a deep convolutional neural network architecture has been applied.
Network visualization and topological analysis

Cytoscape http://www.cytoscape.org/“ bioinformatics package was used for biological

network visualization.

yEd Graph Editor |http://www.yworks.com/ desktop application (version 3.9.2) was utilized
to draw network diagrams using the modified Edinburgh Pathway Notation (mEPN) scheme
http://www.mepn-pathway.org/,“" designed to allow the logical depiction of process diagrams

for a diverse range of biological pathways.

NetworkAnalyzer is a Cytoscape plug-in, was used for the topological analysis of biological

networks. %%

GraphWeb http://biit.cs.ut.ee/graphweb??? web server was used for the detection of gene

modules from networks.

Dynamical network analyses using Boolean logic

t%23 was used for the analysis of Boolean networks. A logical model is

R package BoolNe
defined by a regulatory graph, in which the nodes represent the regulatory components and
edges define the interactions among them. Logical functions can then be used to define the
dynamical behavior of each component, depending on the activity level of its regulators:
OR represents the combined effect of independent upstream regulators on a downstream
node, whereas AND indicates the conditional dependency of upstream regulators to achieve
a downstream effect. NOT represents the effect of inhibitory regulators and can be combined

with activating regulations by using either OR or AND. The dynamics of the system is
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represented by a state transition graph. In this case, the nodes denote states of the system
(i.e., a vector giving the levels of activity of all components), and the edges denote their state
transitions (i.e., a change in the value of one or several component(s), depending on the values
of the relevant logical functions or parameters). In state transition graphs, terminal nodes
correspond to "stable states or attractors. Here, the original network was splitted into three
sub-networks, each containing less than 29 variables, therefore steady state analysis could be
implemented as exhaustive search of the state space, meaning that the both possible initial
levels (ON or OFF) for each network element were considered. Steady-state attractors are
the same in asynchronous and synchronous networks. Due to this, in all cases, the simplest
update mode, the synchronous scheme was used. In all cases, the initial levels of Ctgf, WNTs
and Tgf-41 were set to 1, in the unperturbed/wt system, whereas for the Ctgf loss-of-function

simulations (extrinsic) Ctgf was set to 0.
Statistics

Unless otherwise indicated, data are presented as the mean =+ the standard error associated
with the mean. The two-tailed Mann-Whitney t-test with a level of significance set at 0.05
was performed to compare the differences between the samples under study. All analyses

were performed in the R4" statistical environment (v2.14.1).
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3 Results

3.1 Time-series (TS) gene expression data generation

In this study, insights on the reciprocal influence of HSCs and their 'niche’ cells on each other
during initial stem cell activation events, and to determine possible key extracellular and
intracellular molecular players governing these behavioral responses, we performed time-
series (T'S) gene expression analysis, in which a purified population of stem/progenitor
cells, defined as Lin-Scal+c-Kit+ (LSK) were co-cultured with a confluent layer
of the urogenital ridge-derived UG26-1B6 stromal cells, as described in.**® For
this purpose, LSK cells were selected from the bone marrow (BM) by flow cytometry cell
sorting and seeded on a feeder layer of irradiated (30 Gy) UG26-1B6 stromal cells. After
one (Day 1; d1), two (Day 2; d2) or three (Day 3; d3) days in co-culture, cell sorting
was used again to separate Cd45+LSK cells from Cd45-Scal+ stromal cells. As a control
(Day 0; dO; uncultured cells), freshly isolated LSKs and UG26-1B6 stromal cells prior to
co-culture were used. For stromal cells, an additional control 24 h (Day 1 medium control,
C) after changing the culture medium was used, in order to account also for the effects of
undefined medium components (Figure step 1 and Figure . This yielded in total four
cell populations in LSK and five cell populations in stromal cells for analysis in biological
triplicate, however, some of the samples had to be discarded due to insufficient RNA quality
or quantity. The remaining 22 samples (9 LSK and 14 UG26-1B6) were subjected to gene
expression analysis using Affymetrix Mouse430.2 microarrays. Interestingly, LSK cells seem
to change their surface marker expression pattern already during the first three days in
co-culture. After 24 h (Day 1; d1), the expression of the Sca-1 marker decreases, followed also
by partial loss of c-Kit on Day 2 (d2), whereas on Day 3 (d3) three distinct cell populations
already can be observed: Lin-Scal4c-Kit+4, Lin-Scal-c-Kit+, as well as Lin-Scal-c-Kit-,
corresponding to LSKs, multipotent progenitors (MPPs), as well as oligopotent progenitors

(OPPs) , respectively.
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Figure 3.1: Workflow representing computational analysis (in green) vs. experimental vali-
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dation of the results (in blue). Gene expression time-series data of co-cultured
LSK and UG26-1B6 stromal cells were independently confirmed by RT-qPCR and
using phenotypic and functional assays. STEM clustering and GO enrichment
analysis followed by ToppGene candidate gene prioritization identified Connective
tissue growth factor (Ctgf) as a co-culture induced gene in both LSK and stromal
cells, which could be confirmed experimentally. Phenotypic and functional assays
of HSCs co-cultured with UG26-1B65C*9f stromal cells demonstrated that Ctgf
promotes hematopoietic progenitor activity, leading to decreased engraftment
potential in vivo. In order to explore the molecular mechanisms, a network map
was constructed linking Ctgf to the HSC cell cycle progression, as well as its
auto-induction. Boolean logic was employed to simulate the behaviour of the
network and repeated co-culture experiments followed by measurements of the
network node mRNA and/or protein levels or phosphorylation states were used to
validate the prediction results.



3.1 Time-series (T'S) gene expression data generation
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Figure 3.2: Time-series (TS) gene expression data generation from co-cultured Lin-Scal+cKit+
(LSK, stem cells) and UG26-1B6 stromal cells. LSK cells were purified from bone
marrow (BM) by flow cytometry and seeded on a previously irradiated (30 Gy)
UG26-1B6 stromal cell feeder layer. Both cell populations were then co-cultured
for one (Day 1; d1), two (Day 2; d2) or three (Day 3; d3) days. After this period
of time, Cd45+ LSK cells and Cd45-Scal+ stromal cells were separated by flow
cytometry. As a control (Day 0; dO; uncultured cells), we used freshly isolated
LSK cells or UG26-1B6 stromal cells prior to co-culture. For stromal cells, an
additional control 24 h (Day 1 medium control; C) after changing the culture
medium was used, see SI). (A) Schematic representation of the experimental setup
showing the cell populations and time points, from which gene expression data
were generated. (B) FACS gating strategy demonstrating the selection of LSK cells
on Day 0(d0; uncultured cells) and the separation of co-culture into Cd45+LSK
cells and Cd45-Scal+ stromal cells on day one (Day 1; d1), day two (Day 2; d2)
or day three (Day 3; d3).
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3 Results

3.2 Microarray data pre-processing and quality control

Microarray data analysis was first pre-processes as described in the Materials and methods
section, including background correction, quantile normalization and summarization of the
probe set values into expression measure, using the GeneChip RMA (gcRMA )%™ algorithm.
The quality assessment of the microarray data, both prior to and after the gcRMA normaliza-
tion, was performed using arrayQualityMetrics“* and can be inferred from the Figure
As already described before, the UG26-1B6 cell samples also included an additional control
24 h (Dayl; d1) after changing cell culture medium.

Individual array quality As indicated by the so called Bland—Altman (MA) plots (where M
is the log intensity ratio and A is the average log intensity), in LSK cells, prior to normalization
(Figure[3.3(A)), there were a couple of scatter plots, where in MA-plot the dependence between
the intensity levels and the distribution of the log-ratios tended to be non-linear, however, as
expected, in most cases, the gcRMA normalization seems to have corrected for
these intensity-dependent biases (Figure [3.3(B)). In general, the same was also true for
the stromal cells (Figure 3.3(C) and (D), respectively). Nevertheless, there were still a couple
of arrays, which may suffer from quality problems also when considering the normalized data:
#4 in LSK cells, corresponding to the 24 h (Dayl; d1) co-culture derived cell sample and £7
in UG26-1B6, one of the Day2 (d2) co-culture samples. In either case, the variability of the
M values (the log-ratio intensity of each array to the reference median array, i.e., the median
intensity of the same probe across all arrays) seemed to be greater than that of other arrays
in the data set. Other quality metrics, such as feature intensities were forming a uniform
distribution, sets of features with particularly high or low intensities were not observable;
boxplots and density plots of the log2-intensities, assessing the homogeneity between arrays,
applied to raw array intensities indicated rather variable median and midspread, however, in

most cases, this variance decreased after the gcRMA normalization of the signal intensities.

Between array comparison Heatmap representation of the distance between arrays in-
dicated that in LSK cells, both on raw data and on the normalized data (Figure [3.3[(A)
and (B), respectively), most arrays did not seem to cluster accordingly to their biological
replicates. An exception to this were the samples derived from freshly isolated LSKs, which
had similar distance matrix entries in the heatmap. However, there was no distinction
between the consecutive time points of the co-culture. The variance mean dependency plot
demonstrated that on raw data, in both LSK and stroma (Figure[3.3[A) and (C), respectively)
a convex curvature on the right hand of the x-axis could be observed, indicating that higher
intensities may have a higher variance, symptomatic of a saturation of the intensities. The
RNA degradation plots showed that in either LSK or UG26-1B6 stromal cells, a rather strong
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3.3 Computational analysis of the time-series (TS) gene expression data

shift towards lower signal values for the probes closer to the 5° end was observed, meaning
that the effect of degradation was rather strong, nevertheless, the shift seemed
to be systematic and there were no outlier arrays with a slope being very different from
the others. The relative log expression (RLE) plot that compares the expression levels on
each array to a reference median of all arrays in the data set again revealed that the boxplot
of the arrays 4 in LSK and £7 in UG26-1B6 deviating among the samples, as they had an
apparently larger midspred and were not centered on zero. Finally, as expected, the mismatch

(MM) oligonucleotide probes had poorer hybridization than the perfect match (PM) probes

(Figure [3.3)).

3.3 Computational analysis of the time-series (TS) gene

expression data

In order to reduce the data set to those expressed genes which might have relevance to the
activation of HSC and stromal cells in co-cultures, The Short Time-series Expression Miner
(STEM) http://www.cs.cmu.edu/ jernst/stem/ algorithm with default parameters was used
(see*!? for details), which clusters short time-series (TS; 3-8 time points) gene expression data
and performs functional characterization of the clusters using Gene Ontology (GO) Term
enrichment analyses for sets of genes having the same temporal expression pattern, providing
the means for additional biological interpretation of significant temporal expression patterns.
In each cells, two most significant clusters were selected for presentation. In LSK cells, this
algorithm identified 17 significant model profiles, which were further grouped together based
on similarity to form five clusters of significant profiles (Figure [3.4[A)). According to the
analysis results, the largest cluster (1434 genes, 878 annotated genes) (profiles 12,1,9 and 0; C1
in Figure (A)) contained genes, whose expression was suppressed in co-culture derived LSK
cells compared to freshly isolated ones. More specifically, it seems that the most intense
molecular cross-talk between LSK and stromal cells occurs already during the
first 24 h of the co-culture. Gene Ontology (GO) enrichment analysis provided by STEM
of the (annotated) cluster genes, showed significant over-representation (FDR < 0.05) of
genes whose products were associated with biological processes (BP) such as chromatin
and histone organization and modification. The second largest gene cluster (see profiles
42, 48 and 49; C2 in Figure [3.4(A)) (651 genes, 504 annotated) comprised genes whose
expression was induced during the co-culture. GO BP enrichment (FDR < 0.05) indicated
over-representation of cell activation (4.45%), communication (18.59%), motility (5.53%) and
death (9.06%), response to stress (11.83%), wounding (6.25%) and chemical stimulus (13.36%),
(regulation of) cytokine production (4.3%), phagocytosis (2.15%) and signal transduction
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Figure 3.3: The quality assessment of time-course gene expression data of co-cultured Lin-
Scal+cKit+ (LSK) and HSC-supportive UG26-1B6 stromal cells before and after
gcRMA normalization. (A) LSK and (C) UG26-1B6 cell samples prior to nor-
malization: (a) the MA plot for each array; (b) spatial distribution of feature
intensities; (c) the boxplot of the log2-intensities; (d) density plot; (e) heatmap
representation of the distance between arrays; (f) variance mean dependence; (g)
RNA degradation plot; (h) relative log expression (RLE) plot; (i) normalized un-
scaled standard error (NUSE) plot; (j) diagnostic plot recommended by Affymetrix;
(k) perfect matches and mismatches. (B) LSK and (D) UG26-1B6 cell samples
after gcRMA normalization: (a) the MA plot for each array; (b) the boxplot of
the log2-intensities; (c) density plot; (d) heatmap representation of the distance
between arrays; (e) variance mean dependence.
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3.3 Computational analysis of the time-series (TS) gene expression data

17.35%), as well as members of various metabolic processes.

In UG26-1B6 stromal cells, when suing culture medium filtered time-series (TS) data (see
the Methods and materials section for details), STEM identified 12 significant model profiles,
forming three clusters of significant profiles (Figure [3.4[B)). Also in stroma cells, the largest
cluster (profiles 12, 0, 1 and 9; C1 in [3.4(B); 1404 genes, 1191 annotated) unified genes
whose expression was down-regulated after the first 24 h of co-culture. The same GO-based
functional enrichment analysis in the category biological process (FDR < 0.05) revealed
over-representation of metabolism (43.59%) and gene expression (22.65%). The second largest
cluster (profiles 48, 49 and 42; C2 in Figure [3.4[B); 1139 genes, 589 annotated) also resembled
that of the LSK cells and contained genes whose expression was 24 h co-culture-induced
and was further increasing during the consecutive two days of contact with stromal cells.
Association with biological processes (FDR not controlled, p-Value < 0.01) immune response
(3.78%) and bone remodeling (0.44%) was found. Hence, clustering of the transcripts
revealed that the most prominent changes in gene expression levels occurred already during
the first 24 h of co-culture (Day 1; d1) (Figure[3.4). We focused our downstream
analyses on this time point (Figure ; step 2). For two-way comparisons, we utilized
the Linear Models for Microarray Data (Limma, as implemented in the R/1imma package)“
t-statistic approach, which fits a linear model to the expression data for each gene, using
Empirical Bayes to borrow information across genes making the analyses stable even for
experiments with small number of arrays. By this, we selected the differentially expressed genes
(DEGs) from the gcRMA-normalized (and medium-control pre-filtered in case of UG26-1B6,
as described above) gene expression data. Genes were defined as differentially expressed if they
had a -1 > log2FC > 1 and a p < 0.05 across the two consecutive time points being compared.
This analysis yielded 176 up- and 455 down-regulated transcripts in LSK cells, and in UG26-
1B6 stromal cells 930 up- and 1907 down-regulated transcripts were found (see Tables S1 and
S2, respectively). In order to interpret a set of differentially expressed genes obtained after the
two-way comparison of consecutive time points, again, functional enrichment analysis
was performed using ToppFun from the ToppGene*! suite http://toppgene.cchmc.org. A
complete list of the results is given in the Table S3. In LSK cells, among the up-regulated
genes, among the significantly over-represented Gene Ontology (GO) Biological Process
categories we observed GO:0043067-regulation of programmed cell death (Bonferroni
adjusted p-Value = 1.202E-9, 85 genes) and a Mouse Phenotype MP:0001819-abnormal
immune cell physiology (p-Value =1.313E-2, 64 up-regulated genes). The down-regulated
signature was most significantly enriched for the GO: Biological Processes such as GO:0000278-
mitotic cell cycle (p-Value = 9.548E-7, 60 Dayl co-culture down-regulated genes) and
GO:0016568-chromatin modification (p-Value = 1.414E-10, 47 genes). Interestingly, in
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UG26-1B6 cells, although filtered for the possible metabolic effects arising from
the cell culture medium change (as described above and in 2.2.2.3 Two-way comparisons
of consecutive time points in the Materials and methods section, page 40), we observed
significant enrichment of the GO: Cellular Components GO:0044429-mitochondrial part
(p-Value=1.172E-2, 57 genes) and GO:0005759-mitochondrial matrixz (p-Value =1.256E-2,
29 genes), as well as the GO: Biological Processes GO:0006396-RNA processing (Bonferroni
adjusted p-Value = 1.054E-2, 65 genes) and GO:0042254-ribosome biogenesis (p-Value =
3.617E-2, 29 genes). As mitochondria constitute the most prominent source of ATP and are
known to be implicated in various anabolic and catabolic activities, associated with cellular
response to metabolic stress,?*” this analysis may suggest that the filtering of transcripts
based on their expression profile after adding fresh culture medium for one day (Dayl culture
medium control; C) may not have given the desired result, and the observed changes in
gene expression in UG26-1B6 cells may still be LSK-independent. Among the down-regulated
genes, the same functional enrichment analysis yielded a significant over-representation of
GO: Biological Process GO:0000278-mitotic cell cycle (p-Value=2.058E-31, 229 genes) and
Mouse Phenotype MP:0001672-abnormal embryogenesis/development (p-Value =1.449E-11,
192 genes).

3.4 Independent confirmation of the time-series gene

expression data

Commonly, independent confirmation of microarray data is needed using an independent
gene expression profiling method, usually RT-qPCR, which is then considered as the
”gold standard“ for gene expression measurements to estimate the performance
of the microarrays, due to its detection sensitivity, sequence specificity, large dynamic
range, as well as high precision and reproducible quantitation.“*¢%28 Here, to validate the
limma results, we performed RT-qPCR on mRNAs generated from independent co-culture
experiments (Figure step 3). Since in both LSK and UG26-1B6 stromal cells most
changes in gene expression seemed to occur already during the 24 h (Day1; d1) of co-culture
(Figure [3.4)), differentially expressed genes (DEGs) from these two time points (freshly
isolated LSK or uncultured UG26-1B6 stromal cells (Day0; d0) vs. 24 h co-culture-derived
(Dayl; d1) cells) were selected for microarray data validation by quantitative RT-PCR
(qPCR). In order for the validation conducted to be as comprehensive and unbiased as
possible, the target genes for RT-qPCR validation were selected based on the following
strategies: (1) ensure a large enough number of validation targets with diverse biological

functionality to provide a potentially representative overview of the microarray performance;
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Figure 3.4: STEM“!? clustering and Gene Ontology (GO) Term enrichment (biological process;
BP) analysis of the two most significant clusters. Clusters are ordered based on
number of genes and profiles are ordered by their p-Value significance, considering
the number of genes assigned to clusters versus the number of genes expected
to be assigned (default parameters). (A) In LSK cells, STEM identified five
clusters which included 17 significant model profiles. The largest cluster (C1; 1434
transcripts, 878 annotated) contained genes, whose expression was suppressed
after 24 h (Dayl; d1) in co-culture. Functional classification using Gene Ontology
(GO) enrichment analysis revealed significant over-representation (FDR < 0.05) of
biological processes (BP) related to chromatin and histone organization and modi-
fication. The second largest cluster (C2; 651 transcripts, 504 annotated) yielded an
immediate-induction response of gene expression changes and significantly enriched
GO BP categories included cytokine production and cell activation, response to
stress, as well as various metabolic activities. (B) In UG26-1B6 stromal cells,
three gene clusters including 12 significant model profiles were identified by STEM.
Similarly to LSKs, the largest cluster (C1; 1404 transcripts, 1191 annotated)
unified genes down-regulated in response to co-culture. Over-representation (FDR
< 0.05) of metabolism, gene expression, cell cycle and chromosome organization
could also be observed. The second largest cluster (C2; 1139 genes, 589 annotated)
contained 24 h (Day; d1) co-culture-induced transcripts mainly associated with
bone homeostasis.

(2) select genes with expression levels and statistical significance values spanning a wide
dynamic range. As a result, a total of 75 genes (46 in LSK cells and 29 in stromal
cells, respectively; Table with mRNA expression levels ranging from log2 fold change
(FC) 7.24 (or FC 151.17) to -3.97 (or FC 0.064) and statistical significance (p-Value <
0.001 to 1.0) were selected for real-time PCR (RT-qPCR) validation. Thus, several up-
regulated (log2FC > 1.0) and down-regulated (log2FC < -1.0) genes at different levels of
significance were tested. Again, for UG26-1B6 stromal cells, an additional control 24 h (Dayl1;
dl) after changing cell culture medium was used, in order to also take into account gene
expression differences possibly resulting from the stromal cell medium components. To do so,
for each co-culture-derived transcript (Dayl; d1; co-culture) we calculated the
Pearson’s correlation coefficient and its significance (p-Value < 0.05) with the

corresponding medium-control-derived transcript (medium control; C, Table S4).

The performance of the microarrays was evaluated focusing on the following criteria: (1)
fold change (log2FC) and p-Value correlation with real-time qPCR data in gene expression
profiles determined; (2) sensitivity, specificity, accuracy and precision in (see Equations
2.2 2.3 and [2.5 for definitions) detection of differential expression. The results of this
analysis are summarized in Figure 3.5 showing the log2FC comparison of the microarray data
(MOE430.2; black bars) to the real-time qPCR, (RT-qPCR; light gray bars) measurements for
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Table 3.1: Microarray validation results using RT-qPCR for selected target genes. Positives
(i.e., genes that are differentially expressed) and negatives (i.e., genes below differen-
tial expression threshold) were determined using the microarray results, according to
the differential expression thresholds defined as log2FC > 1.0 or log2FC < -1.0 and
p-Value < 0.05 and directly compared to their corresponding log2FC and p-Values
obtained using RT-qPCR (”ground truth“). Concordance with microarrays was
determined by counting the number of true positives (TP, differential expression
detectable by both RT-qPCR and microarray), true negatives (TN, differential
expression not detectable by either method), false positives (FP, differential ex-
pression detectable by microarrays but not by RT-qPCR) and false negatives (FN,
differential expression detectable by RT-qPCR but not by MOE430.2).

MOE430.2 RT-qPCR TP FP TN FN
Cells Gene log2FC p-Value 1og2FC p-Value
1 LSK Ctgf 5.58 0.00 3.60 0.00
2 LSK Fos 5.33 0.01 2.55 0.00
3 LSK Lgals3 5.03 0.00 2.46 0.11 *
4 LSK Itgh3 4.13 0.00 2.44 0.00
5 LSK Cebpb 3.01 0.00 2.37 0.02
6 LSK Pakl 2.48 0.08 -1.15 0.00 *
7 LSK Ttgav 2.29 0.04 -0.11 0.71 *
8 LSK Cdknla 2.22 0.05 2.83 0.00
9 LSK Foxol 2.20 0.03 0.71 0.06
10 LSK Ddit3 1.98 0.01 0.93 0.13 *
11 LSK Atf4 1.48 0.08 1.49 0.00 *
12 LSK Smad4 1.03 0.06 0.64 0.24 *
13 LSK Stat6 1.03 0.01 0.57 0.17 *
14 LSK Cxcr4d 0.65 0.46 -1.06 0.02 *
15 LSK Kdmbd  0.18 0.67 -0.25 0.20 *
16 LSK Ccndl 0.17 0.26 1.31 0.04 *
17 LSK Axin2 0.11 0.38 -0.81 0.23
18 LSK Tgfbrl 0.02 0.62 -0.20 0.08
19 LSK Lefl 0.00 1.00 1.59 0.05
20 LSK Tgfbr2 -0.01 0.72 1.07 0.04
21 LSK Cdknlb -0.07 0.94 0.16 0.71 *
22 LSK Hdac2 -0.14 0.74 -0.49 0.11 *
23 LSK Kdm6b -0.14 0.19 1.93 0.06 *
24 LSK Ep300 -0.30 0.46 0.42 0.14 *
25 LSK Smarcad -0.54 0.38 -1.06 0.07 *
26 LSK Meisl -0.58 0.51 -0.20 0.49 *
27 LSK Hdacl -0.81 0.13 0.06 0.79 *
28 LSK Kdmb6a -1.03 0.22 -0.15 0.87 *
29 LSK Hoxa9 -1.05 0.10 -0.32 0.10 *
30 LSK Pbxl -1.07 0.41 0.37 0.47 *
31 LSK Ccnel -1.29 0.00 1.30 0.00 *
32 LSK Ezh2 -1.29 0.17 -1.45 0.00 *
33 LSK Fzd7 -1.30 0.08 0.37 0.69 *

Continued on next page
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Table 3.1: — continued from previous page

MOE430.2 RT-qPCR TP FP TN FN
Cells Gene log2FC  p-Value log2FC p-Value
34 LSK Statl -1.67 0.06 -1.66 0.00 *
35 LSK Dnmt3a -1.89 0.03 0.03 0.53 *
36 LSK Suzl2 -1.96 0.13 0.34 0.33
37 LSK Mill1 -2.03 0.22 -0.37 0.43
38 LSK Eed -2.03 0.23 -0.23 0.54
39 LSK Cdc25a -2.04 0.02 1.35 0.01
40 LSK E2f1 -2.57 0.00 -0.74 0.10
41 LSK Pcbdl -2.62 0.03 2.14 0.13
42 LSK Radb41 -3.15 0.04 -1.59 0.00 *
43 LSK Rad51 -3.25 0.07 -1.76 0.03 *
44 LSK Ccne2 -3.30 0.03 0.14 0.59 *
45 LSK Pbrml  -3.52 0.06 -0.08 0.46 *
46 LSK Cdk2 -3.97 0.11 -0.94 0.04 *
47 UG26-1B6 Sphkl 7.24 0.00 6.42 0.01 *
48 UG26-1B6 Ctsg 5.13 0.00 2.27 0.01 *
49 UG26-1B6 Ctgf 3.53 0.00 5.95 0.007 *
50 UG26-1B6 Mbd1l 3.26 0.00 1.98 0.006 *
51 UG26-1B6 Prtn3 3.14 0.00 -0.36 0.68
52 UG26-1B6 Wnt2 2.77 0.00 1.92 0.12
53 UG26-1B6 Medl1 2.44 0.00 0.18 0.41
54 UG26-1B6 Plaur 2.33 0.00 3.41 0.03
55  UG26-1B6  Slit3 2.28 0.01 1.82 0.01
56 UG26-1B6 Esrra 2.05 0.03 1.79 0.14 *
57 UG26-1B6 Mmpls 1.70 0.20 2.03 0.11 *
58 UG26-1B6 Hmga2 1.69 0.06 4.63 0.00 *
59 UG26-1B6 Ltbp2 1.50 0.01 1.94 0.02
60 UG26-1B6 Nfkbia 1.30 0.00 2.54 0.02
61 UG26-1B6 Tgfb2 0.05 0.31 0.83 0.08 *
62 UG26-1B6 Tgfbl 0.00 0.77 0.89 0.01 *
63 UG26-1B6 Tgfb3 -1.51 0.04 0.21 0.66 *
64 UG26-1B6 Nfib -1.84 0.02 0.32 0.74 *
65 UG26-1B6 Cxcll2  -1.85 0.01 0.89 0.00 *
66 UG26-1B6 Thbsl -1.93 0.01 0.25 0.21 *
67 UG26-1B6 Brcal -2.01 0.03 -0.83 0.02 *
68 UG26-1B6 Jagl -2.11 0.00 1.18 0.25 *
69 UG26-1B6 Vcaml  -2.17 0.01 0.65 0.23 *
70 UG26-1B6 Cited2 -2.48 0.03 -0.73 0.14
71 UG26-1B6 Fbnl -2.55 0.02 -0.98 0.01 *
72 UG26-1B6 Adaml0 -2.74 0.00 0.53 0.23 *
73 UG26-1B6 Nrpl -2.91 0.03 -0.84 0.01 *
74 UG26-1B6 Npr3 -2.93 0.01 -1.03 0.056 *
75 UG26-1B6 Igfl -3.79 0.02 -1.08 0.03 *
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Figure 3.5: Microarray validation results using RT-qPCR for selected target genes, performed
on mRNAs from independent co-culture experiments: log2FC comparison of
microarray data MOE430.2 vs. RT-qPCR measurements. Results are sorted in
descending order based on the log2FC reported by the microarray, without taking
into account the statistical significance (p-Value) of the measurements. (A) LSK

cells and (B) UG26-1B6 stromal cells: (a) up-regulated genes; (b) down-regulated
genes.
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Figure 3.6: Microarray validation results using RT-qPCR for selected (A) up- and (B) down-
regulated genes in LSK cells. Results for a single gene, represented as its relative
expression (%) of the housekeeping gene (HKG), comparing freshly isolated LSK (0
h; Day0; d0, black bars) to the 24 h co-culture-derived cells (24 h; Day1; d1, light
gray bars). Rpl39, Gorasp2 and Rpll3a were used as HKGs. Primer sequences
used are given in Table S11. Results are shown as mean and standard error of at
least three independent samples. The one-tailed Mann-Whitney t-test was used in
order to test for the statistical significance in the one direction of interest, reported
by microarrays.
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Figure 3.7: Microarray validation results using RT-qPCR for selected (A) up- and (B) down-
regulated genes in UG26-1B6 stromal cells. Results for a single gene, represented as
its relative expression (%) of the housekeeping gene (HKG), comparing separately
cultured UG26-1B6 stromal cells (0 h; Day0; d0, black bars) to the 24 h co-
culture-derived cells (24 h; Dayl; d1, light gray bars), as well as to the medium
control (control; C, white bars) 24 h after changing cell culture medium. Rpl39,
Gorasp2 and Rplp0 were used as HKGs. Primer sequences used are given in Table
S11. Results are shown as mean and standard error of at least three independent
samples. The one-tailed Mann-Whitney t-test was used in order to test for the
statistical significance in the one direction of interest, reported by microarrays.
For the medium control (control; C, white bars), we also tested the statistical
significance in the same direction of interest, in order to compare those with the

Pearson’s correlation coefficient analysis, as described in Methods and Data.
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Table 3.2: The contingency table containing the counts of the 4 combinations of classification.

Using RT-qPCR measurements as the ”"gold standard“, a 2x2 contingency table was
constructed against the microarray data, containing the counts of the 4 combinations
of classification: true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN).

True positives (TP) | False Positives (FP)
(Type I error)
21 21
False Negatives (FN) | True negatives (TN)
(Type II error)
13 20

1.0 H

0.6

TPR

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

FPR

Figure 3.8: Receiver operating characteristic (ROC) curve of the microarray performance in

o8

terms of the fold change (log2 FC) and moderate t-test statistics (p-Value). The
(ROC) curve shows SENSITIVITY on the y axis against (1-SPECIFICITY ) on
the x axis for varying values of the log2 FC and p-Values indicating the significance
of the differential expression measures by the microarray. The 45° diagonal line
connecting (0,0) to (1,1) is the ROC curve corresponding to random chance.



3.4 Independent confirmation of the time-series gene expression data

the selected target genes in (A) LSK and (B) UG26-1B6 stromal cells, respectively, as well as
Figures and showing the results for a single gene, represented as normalized relative
quantity (NRQ) (see Methods and Data for details) x 100%, comparing freshly isolated LSK
or uncultured UG26-1B6 stromal cells (0 h; Day0; dO black bars) to the same cells after 24
h co-culture (24 h; Dayl; d1; light gray bars) or, in UG26-1B6 cells, also to the medium
control (control; C, white bars), for which we also tested the statistical significance in the
same direction of interest, in order to compare those with the Pearson’s correlation coefficient
analysis (Table S4).

In LSK cells, a total of 46 genes were selected for validation. From these, according to
Affymetrix chip profiling results, 13 had a positive log2 fold change (FC > 1.0) and 10
of them also a p-Value < 0.05 (Table 3.1). In 11 out of 13 cases (85%), real-time gPCR
analysis (Figure confirmed the direction of expression, however, only in 7 cases (54%) the
result was statistically significant (p-Value < 0.05) or just below the significance threshold
(p-Value < 0.06). In addition to this, for the majority of the genes examined, there were
significant quantitative differences between microarray- and qPCR-based data (Figure [3.5(A)).
In most cases, the real time PCR found a much lower fold change than the microarrays,
and only for one gene (Cdknla) the opposite was true (log2FC 2.83 vs. 2.22). Interestingly,
this is in contrast to a previous observation that Affymetrix microarrays underestimated
the relative changes in mRNA expression between experimental and control samples.??? In
the down-regulated (FC < -1) group, the measurements were less consistent. Only in less
than half of the cases (47%), real-time qPCR analysis (Figure confirmed the direction
of expression, in 5 (26%) cases the result was statistically significant. Indeed, a similar
trend of higher correlations among up-regulated genes than among down-regulated ones

d,228230 and it was proposed that this effect may be

has already previously been reporte
due to the increased variability observed in low-intensity array spots, i.e. down-regulated
genes.*V In addition, microarray results again over-estimated the fold-change detected by
qPCR. Actually, the quantitative differences between microarray- and RT-qPCR-based data
were more profound (Figure [3.5(A)). At the same time, in 6 of 14 (43%) negatives (i.e., genes
below differential expression threshold) compared, DNA microarrays failed to detect the
expression changes that were revealed by RT-qPCR, which can be attributed to the higher

detection sensitivity and large dynamic range of qPCR, as compared to the microarrays.

In UG26-1B6 stromal cells, analyses of the microarray showed that, of the 29 target genes
selected, 14 genes were induced, whereas 13 genes were suppressed at least two-fold during
the co-culture with LSK cells. In most induced genes (in 12 out of 14 cases (86%)), data
obtained with the two methods were consistent (Figure [3.5)). In 9 cases (64%) the result was

also statistically significant (p-Value < 0.05), however, in a number of cases, these changes
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3 Results

seem to be LSK-independent, as also observed after changing the cell culture
medium (control; C; white bars in Figure . Moreover, as already observed for LSK cells,
in most cases microarray results overestimated the fold-change detected by qPCR. However,
in 6 cases (Ctgf, Plaur, Mmp15, Hmga2, Ltbp2 and Nfkbia) the opposite was true. Similarly,
for the down-regulated genes, the comparison of microarray-based results with
qPCR yielded less agreement: 6 out of 13 (46%) of the measurements were consistent

in terms of the direction of the change in expression. In all cases, significant quantitative
differences were observed (Figure [3.5(B)).

Finally, to further evaluate the performance of our microarrays, we also calculated
the signal detection sensitivity, specificity, accuracy and precision of the mi-
croarrays. First, positives (i.e., genes that are differentially expressed) and negatives (i.e.,
genes below differential expression threshold) from the microarray data set were determined,
according to the differential expression thresholds defined as log2FC > 1.0 or log2FC < -1.0
and p-Value < 0.05. Thereafter, for each positive and negative, the microarray results were
directly compared to their corresponding log2FC and p-Values obtained using RT-qPCR
assay, the latter being regarded as the "ground truth®. Table lists both log2 fold changes
and p-Values (MOE430.2 Affymetrix chip vs. RT-qPCR) for the selected target genes. Con-
cordance with microarrays log2FC and p-Values was determined by counting the number of
true positives (TP, differential expression detectable by both RT-qPCR assay and microarray),
true negatives (TN, differential expression not detectable by either RT-qPCR, assay and
microarray i.e., log2FC < 1.0 or log2FC > -1.0 and/or p-Value > 0.05), false positives (FP,
differential expression detectable by microarrays but not by RT-qPCR), and false negatives
(FN, differential expression detectable by RT-qPCR but not by MOE430.2). Finally, a 2x2
contingency table was constructed (Table for the microarray data, containing the counts
of the 4 combinations of classification. Based on this matrix, the following statistics were cal-
culated for the microarray: SENSITIVITY, SPECIFICITY, ACCURACY and PRECISION
see Methods and Data for definitions).

As a result, we estimated that the microarray detection sensitivity and specificity was 62%
and 49%, respectively, meaning that more than a half of all differentially expressed genes
are detected by the microarray and a half of the negatives are genes expressed at a constant
level in either 0 h (Day0; dO; unclultured cells) or 24 h (Day1; d1; co-culture-derived cells).
An accuracy of 55% indicates that in more than a half of the cases the values measured
by the microarray are the same as those obtained by qPCR and 50% precision indicates
that in a half of the cases repeated measurements under unchanged conditions show the
same results. The trade-offs between the measures are represented graphically as a receiver
operating characteristic (ROC) curve (see Figure [3.8), showing the true positive rate (TPR)
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against the false positive rate (FPR) for the different possible fold changes (log2 FC) and
p-Values. According to the ROC curve, log2 fold change (FC) values from the microarray
analysis should be preferentially used to accurately select the differentially expressed genes
(DEGs) false positive rate. At the same time, selecting DEGs using their p-Values would
be worse than a random selection. This is reflected also by the area under the ROC curve
(AUC) , measuring the accuracy (where AUC = 1.0 represents a perfect test and an AUC of
0.5 represents a worthless test), which is 0.64 and 0.38 for log2FC and p-Values, respectively.

In conclusion, rigorous filtering of the microarray data is definitely necessary, both in
terms of fold change (log2FC > 1.0 or log2FC < -1.0) and p-Value (< 0.05) or even the
p-Value corrected for multiple testing such as using the Benjamini-Hochberg procedure (BH<
0.05).%3 In addition, independent validation of each selected target gene using qPCR is
necessary, whereas, for stromal cells, it is also essential to include an additional control 24 h
after changing the culture medium (medium control; C), since this may strongly influence

the observed gene expression patterns in UG26-1B6 cells.

3.5 Phenotypic and functional comparison of freshly

isolated vs. 24 h co-culture-derived LSK cells

In order to relate gene expression patterns observed after 24 h (Dayl; d1) co-
culture to phenotypic and functional changes occurring within LSK cell com-
partment, the cell cycle status and apoptosis rates, as well as the progenitor producing

property and in vivo engraftment potential was examined (Figure 3.1} step 3 and Figure [3.9)).

Cell proliferation quantitation using bromodeoxyuridine (BrdU) uptake The BrdU assay
was used to quantitate cell proliferation, i.e., the percentage of cells entering and progressing
through the S (DNA synthesis) phase of the cell cycle. As it can be seen in Figure [3.9(A),
the analysis revealed that in both fresh (Day0; d0) LSK and 24 h co-culture-derived (Dayl;
d1) Cd45+LSK cells, the distribution of the cell cycle positions and active DNA synthetic
activities of cells were approximately the same: 24.3 vs 21.8% resided in G0/G1, 5.16 vs 3.2%
in S and 0.71 vs 0.62 % of the cells resided in G2/M phase of the cell cycle. Thus, it can be
concluded that LSK cells, most probably, have not entered the S phase of the cell cycle (i.e.,
no recently synthesized DNA) during the first 24 h of co-culture, since there is no shift in the
distribution of the different cell cycle phases, as compared to fresh LSK cells.

Cell kinetics tracking using 5- and 6-carboxyfluorescein diacetate succinimidyl ester
(CFSE) labeling The cell proliferation kinetics tracking using 5- and 6-carboxyfluorescein
diacetate succinimidyl ester (CFSE) labeling was used to compare the proliferation kinetics
of 24 h co-culture derived LSK cells vs. colcemid treated cells (i.e., cells that did not
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undergo any cell divisions) (Figure [3.9(B)). This analysis demonstrated that 24 h (Dayl;
d1) co-culture-derived CFSE+4Cd45+LSK culture-derived cells form a single CFSE-high cell
population which overlaps with that of colcemid treated, that is undivided, control cells,

indicating that LSK cells have not undergone any cell divisions during this time in co-culture.

Apoptosis assay using Annexin V staining In order to get an estimate of the apoptosis
rates during the 24 h (Dayl; d1) co-culture with stromal cells, Annexin V apoptosis assay
was performed on both, freshly isolated and culture-derived Cd45+LSK cells. As a positive
control, cells treated with 2 mM H,05 for 4 h were used. As it can be inferred from Figure
3.9(C), no early apoptotic cells (PI-, AnnexinV+) cells could be detected within the LSK and
Cd45+4+LSK cell compartment. The identification of late apoptotic and necrotic cells LSK
cells (PI+, AnnexinV+) was hindered by the fact that PI+ cells are excluded prior to the

cell surface marker analysis.

Colony forming cell (CFC) assay In vitro colony-forming cell (CFC) assay was performed
to assess the numbers of CFU-GM, CFU-GEMM, and BFU-E colonies after LSK cells were
co-cultured with stromal cells for 24 h. Freshly isolated LSK cells gave rise to greater numbers
of colonies than 24 h co-culture-derived LSK cells (~59% vs. 38% out of 250 cells seeded;
Figure [3.9(D)), indicating a decreased progenitor forming capacity of LSK cells after the

co-culture.

In vivo transplantation assay To examine the HSC activity of the 24 h co-culture-derived
Cd45+LSK cells, we performed the in vivo transplantation assay, in which 1000 sorted fresh
or cultured cells were transplanted together with 10° helper BM and 5x10° helper SP cells
into lethally irradiated recipients. We observed that the repopulating capacity of Cd45+LSK
cells was significantly increased (48.6% vs. ~25 % donor cells) in the bone marrow (BM), 16
weeks after transplantation (Figure [3.9(E)). Hence, it seems that although the progenitor
forming capacity of LSK cells has dicreased, their repopulating capacity has
even increased after the 24 h in co-culture, indicating that co-culture-derived

cells have not lost their stem cell properties.**

3.6 ldentifying Ctgf using candidate gene prioritization

As our time-series (T'S) microarray data clustering using Short Time-series Expression Miner
(STEM) % http: //www.cs.cmu.edu/ jernst/stem/ and the 1imma ¥ analysis of differential
expression still resulted in hundreds of potential candidate genes (see Tables S1 and
S2), we thought to further reduce this to a manageable number of target genes
for further experimental validation and downstream analysis. Traditional candidate

gene selection approach is largely limited by its reliance on the priori knowledge about
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Phenotypic and functional characterization of freshly isolated (Day0; d0) vs. 24 h
co-culture-derived (Dayl; d1) LSK cells: (A) Cell incorporated BrdU and total
DNA content (with 7-AAD) to enumerate cells in GO/1, S and G2/M phases of
the cell cycle. (B) CFSE fluorescence profile of CFSE+LSK cells recovered 24 h
after co-culture with UG26-1B6 stromal cells either with (red peak) or without
(blue peak) colcemid. (C) Annexin V fluorescence profile of fresh (green peak) vs.
co-culture-derived (blue peak) LSK cells as compared to cells treated with 2 mM
H>0, for 4 h (red peak). (D) Percentage of progenitors scored from 250 fresh or
24 h co-culture-derived LSK cells (n = 3). (E) Frequency of donor (Cd45.24),
myeloid (Grl+/med, Cd11b+) and lymphoid (B220+, Cd4/Cd8a+) lineage cells

in the bone marrow (BM) of transplanted mice 16 weeks after transplantation.
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33 However,

the physiological, biochemical or functional aspects of possible candidates®
we wanted to select the candidates in a possibly unbiased way. To do so, several gene
prioritisation methods have been developed, 24234235 most of them relying on the assumption
that similar phenotypes are caused by genes with similar or related functions. Therefore
these algorithms make use of functional annotations, gene-expression data or sequence-based

2367243 also utilize protein-protein interactions (PPI) for

features. Several recent studies
candidate gene prioritisation, motivated by the observation that genes responsible for the
same phenotype, e.g. causing the same or similar diseases, tend to lie close to one another in a
network of protein-protein interactions.?* In addition, also mouse phenotype data have been
utilized.”*# In this study, candidate gene prioritisation was performed using the ToppGene

217

Suite http://toppgene.cchme.org,“* which enables both functional annotation-based and

PPI network analysis-based candidate gene prioritisation.

3.6.1 Candidate gene prioritisation in LSK cells after 24 h co-culture
(Dayl; d1)

For LSK cells, the training gene set was retrieved by performing extensive biomedical
literature search using the text-mining tool EXCERBT (Extraction of Classified Entities
and Relations from Biomedical Texts)“* http://mips.helmholtz-muenchen.de/excerbt/. Co-
occurrence search was employed in order to retrieve all the genes previously associated
with hematopoiesis. Thereafter, false positives (e.g., due to the intrinsic ambiguity in
most acronyms) were discarded by manual curation. By this, we compiled a list of 374 “seed”
training genes shown to modulate hematopoietic stem cells (HSCs) or hematopoiesis in general.
Thereafter, ToppFun from the ToppGene Suite was utilized to generate a representative
profile of the training genes (i.e., hematopoiesis-associated genes, in this case) using 14
different features and identifying over-representative terms from the training genes. As
a result, this analysis also yielded several mouse phenotypic data listing additional genes
associated with phenotypes such as 'Leukemia’ (HP:0001909), "Acute leukemia’ (HP:0002488),
"Hematological neoplasia’ (HP:0004377), ’abnormal hematopoiesis’ (MP:0002123), ’abnormal
hematopoietic cell number’ (MP:0011180) and "abnormal hematopoietic stem cell morphology’
(MP:0004808). Genes from these categories were added to the seed gene list, yielding a set of
training (hematopoiesis-associated) 1737 genes (Table S5). The test gene set consisted of 84
transcripts demonstrating a log2FC > 1.0 or < -1.0 at the FDR threshold of < 0.25 after 24
h co-culture (Day1; d1) with stromal cells.

As it can be inferred from Table in both scoring categories, the highest ranked gene
was a cytoskeletal element vimentin (Vim) (ToppGene score: 0.72 and p-Value: 4.74e-05;
ToppNet PPI count: 118 and p-Value: 6.7e-04). In the context of hematopoiesis, alterations
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3.6 Identifying Ctgf using candidate gene prioritization

Table 3.3: ToppGene candidate gene gene prioritization results in LSK cells showing the
top 15 highly ranked genes, when trained against a set of hematopoiesis-related
genes (Table S5). ToppGene: functional annotation based disease candidate gene
prioritization, which uses fuzzy-based similarity measure to compute the similarity
between differentially expressed genes (DEGs; test set) and hematopoiesis-related
genes (training set) based on semantic annotations. ToppNet: protein-protein
interaction network (PPIN) based candidate gene prioritization uses K-Step Markov
method (step size = 6, default) to estimates the relative importance of each test
set gene in the PPIN to the training genes.

ToppGene ToppNet
Rank Gene Score pValue Gene PPI Score
1 1 Vim 0.72  4.74e-05 Vim 118 6.7e-04
2 2 Ctgf 0.70  1.28e-04 Igtbp3 28 3.3e-04
3 3 Lpl 0.63  1.58e-04 Ascc2 38 2.0e-04
4 4 Igfbp3 0.67  1.73e-04 Rrplb 28 1.8e-04
5 5 Cengl 0.61  3.47e-04 Ctgf 10 1.5e-04
6 6 Tyms 0.51  1.16e-03 Igtbpd 7 1.1e-04
7 7 Treml 0.48  1.72e-03 Cd200r1 1 1.1e-04
8 8 (Cd163 0.47  3.99e-03 Htral 13 9.7e-05
9 9 Csnklg3 0.57  4.47e-03 Thxa2r 11 8.3e-05
10 10 Pkm2 0.48 4.56e-03 Lpl 15 8.2e-05
11 11 Zfand5  0.49  4.64e-03 Golga3 10 7.3e-05
12 12 Thxa2r 0.53  5.18e-03 Hif3a 5 6.8e-05
13 13 Hif3a 0.60  5.80e-03 Cttnbp2nl 16 6.6e-05
14 14 Igfbp4 0.51  6.52e-03 Pkm2 12 5.7e-05
15 15  Degsl 0.36  9.03e-03 Cengl 9 4.9e-05

of vimentin intermediate filament (IF) expression have been observed in human hemopoi-
etic committed precursors as they differentiate into mature cells of the erythroid, granu-
lomonocytic, megacaryocytic and lymphoid lineages.*** Connective tissue growth factor
(Ctgf/Cen2)(ToppGene score: 0.70 and p-Value: 1.28e-04) is the second and
fifth highest ranked gene based on its functional annotation and protein-protein
interactions (PPIs) to known hematopoiesis regulators, respectively. Ctgf has
been found to be the highest over-expressed gene in B-cell ALL (acute lymphoblastic leukemia),
suggesting it might have prognostic relevance.?* Moreover, another CCN family member,
nephroblastoma over-expressed (Nov/Ccn3), has been connected with the modulation of
self-renewal and maturation of a number of cell lineages including hematopoietic, osteogenic
and chondrogenic, and its expression has been shown to be disrupted in chronic myeloid
leukemia (CML) as a consequence of the BCR-ABL oncogene and allows the leukemic clone

to evade growth regulation.“!® Interestingly, connective tissue growth factor (Ctgf) and
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insulin-like growth factor binding proteins (Igfbp3 and Igfbp4) were shown to be higher
expressed in primitive hematopoietic progenitors supportive feeder layers of human mes-
enchymal stromal cells.**” Similarly, insulin-like growth factor-binding proteins 3 and 4 were
also found among the genes expressed at a higher level in our HSC-supporting stromal cell
lines, EL08-1D2 and UG26-1B6."* Interestingly, insulin-like growth factor-binding protein 3
(Igftbp3; ToppGene score: 0.67 and p-Value: 1.73e-04; ToppNet PPI count: 28 and p-Value:
3.3e-04) and insulin-like growth factor-binding protein 4 (Igfbp4; ToppGene score: 0.51 and
p-Value: 6.52e-03; ToppNet PPI count: 7 and p-Value: 1.1e-04) are also among the top 15
highest scoring candidate genes from the 24 h-co-culture-derived LSK cell signature. Igfbp3 is
a hypoxia-regulated factor, inducing growth inhibition.?*¥ Igfbp4 is an inhibitor of canonical
Wht signaling.** Lipoprotein lipase (Lpl) (ToppGene score: 0.63 and p-Value: 1.58¢e-04;
ToppNet PPI count: 15 and p-Value: 8.2e-05) promotes binding of lipoproteins to cell surface
heparan sulfate proteoglycans and LDL receptors.?” Lpl would be interesting to further inves-
tigate in the context of lipid rafts, which have been shown to play a critical role in HSC fate
decisions, as freshly isolated HSCs from the BM niche lack lipid raft clustering, accompanied
by repression of the AKT-FOXO signaling pathway and abundant p57Kip2 cyclin-dependent
kinase inhibitor expression. Conversely, lipid raft clustering induced by cytokines was essential
for HSC re-entry into the cell cycle.™% In the pool of myeloid progenitors, differentiation
toward CMP and MEP displays accumulation of a limited number of mitotic cyclins (mostly
cyclin G1 (Cengl)(ToppGene score: 0.61 and p-Value: 3.47e-04; ToppNet PPI count: 9 and
p-Value: 4.9e-05)) that likely contribute to their intrinsic proliferation index.**! Scavenger
receptor cysteine-rich type 1 protein M130 (Cd163), the hemoglobin-haptoglobin receptor, has
been mostly reported to be expressed on monocytes/macrophages, however, it has also been
demonstrated that a sub-population of hematopoietic stem/progenitor cells is also expressing
it.2>2 Pyruvate kinase (Pkm2) is a glycolytic enzyme that has been associated with metabolic
regulation of hematopoietic stem cells in the hypoxic niche.?¥ Thromboxane A2 receptor
(Thxa2r) is known as a potent stimulator of platelet aggregation.>* Hypoxia-inducible factor
3-alpha (Hif3a) together with Hypoxia-inducible factor 1-alpha (Hifla) and Hypoxia-inducible
factor 2-alpha (Hif2a) constitutes the HIF-a family of transcription factors. Hifla is part of

252 Hence, based on knowledge from

the hypoxia response system in hematopoietic stem cells.
the literature, the top ranked genes seem to be involved in diverse aspects of the hematopoietic

system.
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3.6.2 Candidate gene prioritisation in UG26-1B6 cells after 24 h

co-culture

A similar strategy was adapted to rank the differentially expressed genes in stromal cells.
In all cases, the test gene set consisted of genes differentially expressed (log2FC > 1.0 or
< -1.0, FDR < 0.25) after 24 h in co-culture with LSK cells (Dayl; d1), and additionaly
filtering for metabolic effects, as described in previous sections. In addition, we included
also genes from our microarray validation set, for which we explicitly tested for the culture
medium effects (see Table S4 and Figure . This resulted in a set of 2837 test genes. As
already mentioned above, two midgestation-derived stromal clones UG26-1B6 (urogenital
ridge-derived) and EL08-1D2 (embryonic liver-derived) have been earlier demonstrated to
preserve the maintenance of repopulating HSCs in an in wvitro co-culture, without added
cytokines, for periods of at least four weeks.™% In order to search for factors that might be
involved in HSC maintenance, the gene expression profile of ELO8-1D2 and UG26-1B6
stromal cells was also compared with that of four HSC-non-supportive clones
(UG15-1B7, AM20-1B/, EL28-1B3 and AMS80-3F4).*® This list of 450 factors
being higher expressed (log2FC > 1.0, p-Value < 0.05) in HSC maintaining cell lines was
used as the first training data set. ToppGene again first generated a representative profile of
the training genes using 14 different features and identified over-representative terms from
the training genes. In HSC-supporting factor list, following GO categories were found to
be enriched: (1) Biological processes embryonic limb morphogenesis (GO:0030326, p-Value:
1.580e-3, 11 factors) and response to wounding (GO:0009611, p-Value: 2.863e-3, 37 factors)
and (2) Cellular Component extracellular region part (GO:0044421, p-Value: 4.119E-4, 38
factors). Over-represented Mouse Phenotypes were mostly associated with abnormalities
in morphology: abnormal jaw morphology (MP:0000454, p-Value: 1.184e-2, 16 factors),
abnormal mandible morphology (MP:0000458, p-Value: 1.713e-2, 13 factors) and abnormal
sphenoid bone morphology (MP:0000104, p-Value: 3.545¢-2, 9 factors). In addition, the list
contained 14 Cebp targets (term "TF binding site’, p-Value: 4.332e-2) and 47 Eed targets
(term ’Co-expression’ , source 'MSigDB: C2.cgp’, p-Value: 5.309e-9), 40 Suzl2 targets (term
"Co-expression’, source 'MSigDB: C2.cgp’, p-Value: 1.636e-5), as well as 44 genes possessing
the trimethylated H3K27 (H3K27me3) mark in their promoters (term 'Co-expression’ , source
'MSigDB: C2.cgp’, p-Value: 1.256e-6). Again, the top 15 highest ranked genes after both
prioritisation analysis are shown (Table . In this case, scoring results differ between the two
(ToppGene vs. ToppNet) methods. Among the ToppGene highest ranked co-culture induced
genes, that could also be validated using RT-qPCR analysis (Figure (A), however, note that

in several cases the induction seems to be LSK-independent) were a component of the latent
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TGF-S complex Latent-transforming growth factor beta-binding protein 2 (Ltbp2) (ToppGene
score: 0.32 and p-Value: 3.43e-08) and a matrix remodeling protein Connective tissue growth
factor (Ctgf) (ToppGene score: 0.32 and p-Value: 3.52e-05, also among the highest scored
genes in LSK cells). Stromal cell-derived factor 1 (Cxcl12)(ToppGene score: 0.23 and p-

27 and mobilization,?*® was also

Value: 2.66e-04), a factor associated with HSC maintenance
among the significantly induced genes after the co-culture, as opposed to the microarray
results (Figure [3.5(B)). Among the ToppGene highest ranked co-culture suppressed genes
that could also be validated using RT-qPCR (Figure [3.7(B)) were Atrial natriuretic peptide
receptor 3 (Npr3) (ToppGene score: 0.24 and p-Value: 2.04e-05), a factor which, among
others, may regulate skeletal development,** Insulin-like growth factor I (Igfl) (ToppGene
score: 0.25 and p-Value: 2.09e-04), known for its growth-promoting effects on hematopoietic
cells,*® Fibrillin-1 (Fbnl) (ToppGene score: 0.29 and p-Value: 3.88e-04), a modulator of
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endogenous TGF-3 and BMP bioavailability during bone formation“®! and Neuropilin-1

(Nrpl) (ToppGene score: 0.20 and p-Value: 6.59e-04), proposed to act as a receptor on
stromal cells mediating interactions between stroma and primitive hematopoietic cells.“04
The differential expression of adhesion-associated molecule?*® Thrombospondin-1 (Thbs1)

(ToppGene score: 0.23 and p-Value: 3.11e-05) could not be confirmed by RT-qPCR, (Figure
57B)).

Alternatively, the previously compiled literature-derived list of hematopoietic regulators,
supplemented with ToppGene-provided mouse and human prophenotypic data (as described
above) was searched for factors with GO CC annotations 'GO:0005615:extracellular space’ and
'’GO:0044421:extracellular region part’, in an attempt to select possible external e.g., niche-
associated regulators of hematopoiesis. This yielded a sub-set of 245 training genes (Table
S5). As it can be inferred from Table also when trained against a literature-derived set of
extrinsic (secreted) hematopoiesis regulators, high rankings achieve previously found factors
such as Neuropilin-1 (Nrpl) (ToppGene rank 5, score: 0.58 and p-Value: 2.10e-08; ToppNet
rank: 26, score: 8.93e-04, PPIs: 20), Connective tissue growth factor (Ctgf) (ToppGene
rank 6, score: 0.66 and p-Value: 2.93e-08;ToppNet rank: 40, score: 5.83e-04, PPIs: 10)
and Latent-transforming growth factor beta-binding protein 1 (Ltbpl) (ToppGene rank: 34,
score: 0.66 and p-Value: 1.18e-05). Among the ToppGene highest ranked co-culture induced
genes, that could also be validated using RT-qPCR analysis (Figure [3.7(A)) were Urokinase
plasminogen activator surface receptor (uPAR/Plaur) (ToppGene rank 23, score: 0.57 and
p-Value: 2.28e-06; ToppNet rank: 21, score: 5.75e-04, PPIs: 21), demonstrated to regulate
the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic

264

stem/progenitor cells*** and a coordinator of the commitment of mesoderm to hematopoietic,

endothelial, and cardiac lineages in embryoid bodies®®® and Wnt2 protein (ToppGene rank
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3.6 Identifying Ctgf using candidate gene prioritization

Table 3.4: ToppGene candidate gene gene prioritisation results in UG26-1B6 stromal cells
showing the top 15 highly ranked genes, when trained against the gene set of 450
factors being higher expressed (log2FC > 1.0, p-Value < 0.05) in HSC maintaining
EL08-1D2 and UG26-1B6 stromal cell lines as compared to the HSC-non-supportive
clones (UG15-1B7, AM20-1B4, EL28-1B3, and AM30-3F4).%>% ToppGene: func-
tional annotation based disease candidate gene prioritization, which uses fuzzy-based
similarity. measure to compute the similarity between differentially expressed genes
(DEGs; test set) and hematopoiesis-related genes (training set) based on semantic
annotations. ToppNet: protein-protein interaction network (PPIN) based candidate
gene prioritization uses K-Step Markov method (step size = 6, default) to estimates

the relative importance of each test set gene in the PPIN to the training genes.

ToppGene ToppNet
Rank Gene  Score pValue Gene PPI Score
1 1 Ltbpl 0.32 3.43e-08 Egfr 256 1.82e-03
2 2 Prrxl 0.30  3.09e-07 Tgfbrl 163  1.79e-03
3 3 Nr3cl 0.25 3.61e-07 Esrl 308 1.74e-03
4 4 Pdedb 0.26 2.23e-06 Hdac2 195 1.65e-03
5 5 Tpml 0.26 2.88¢-06 Clgaltlcl 3 1.57e-03
6 6 Gjal 0.28  2.96e-06 Prkca 187 1.47e-03
7 7 Prelp 0.27  4.54e-06 Ctnnbl 199  1.45e-03
8 8 Cdhl13 0.25 1.68e-05 Calml 124 1.41e-03
9 9 Npr3d 0.24 2.04e-05 Csnk2al 195 1.36e-03
10 10 Tnc 0.30  2.91e-05 Ywhaz 185 1.27e-03
11 11 Thbsl 0.23  3.11e-05 Mapkl 190 1.18e-03
12 12 Ctgf 0.32 3.52e-05 Pik3rl 146 1.17e-03
13 13 Cdh2 0.25  3.64e-05 Aktl 155 1.13e-03
14 14 Zebl 0.26  3.74e-05 Fyn 168 1.06e-03
15 15  Fut8 0.20  6.17e-05 Mark2 34 1.01e-03
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Table 3.5: ToppGene candidate gene gene prioritization results in UG26-1B6 stromal cells
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showing the top 15 highly ranked genes, when trained against a set of hematopoiesis-
related genes with GO CC annotations ’GO:0005615:extracellular space’ and
’G0O:0044421:extracellular region part’ (Table S5). ToppGene: functional annota-
tion based disease candidate gene prioritization, which uses fuzzy-based similarity
measure to compute the similarity between differentially expressed genes (DEGs;
test set) and hematopoiesis-related genes (training set) based on semantic annota-
tions. ToppNet: protein-protein interaction network (PPIN) based candidate gene
prioritization uses K-Step Markov method (step size = 6, default) to estimates the
relative importance of each test set gene in the PPIN to the training genes.

ToppGene ToppNet
Rank Gene Score pValue Gene PPI  Score
1 1 Colla2 0.71  2.06e-10 Sumo2 1165 2.55e-03
2 2 Fef7 0.67 1.88e-08 Kiaa0101 853  2.21e-03
3 3 Jagl 0.58  3.91e-08 Cul3 1115 2.13e-03
4 4 Nrpl 0.63  1.37e-07 Jakl 78 1.71e-03
5 5 Timp3 0.69  1.57e-07 Pik3r1l 168  1.65e-03
6 6 Pik3rl 0.62  3.57e-07 Sirt7 657  1.45e-03
7 7 Ctgf 0.68  5.31e-07 Rad21 225  1.44e-03
8 8 Tefbrl 0.61 5.65e-07 Fyn 188 1.34e-03
9 9 Wnt2 0.54  7.28e-07 Traf6 201  1.30e-03
10 10 Cd44 0.62 8.24e-07 Fbxo6 149 1.28e-03
11 11  Actnl 0.62 1.14e-06 Candl 645 1.20e-03
12 12 Cdk6 0.57  1.27e-06 Prkca 209  1.18e-03
13 13 Ctss 0.58  1.38e-06 Ywhaz 341  1.13e-03
14 14 Mmpl4 0.63  1.52e-06 Ctnnbl 243  1.11e-03
15 15 Plaur 0.59  1.82e-06 Ikbkg 228  1.09e-03




3.7 Experimentally investigating the functional role of UG26-1B6-derived Ctgf in hematopoiesis

25, score: 0.53 and 2.69e-06: 2.28e-06; ToppNet rank: 31, score: 7.46e-04, PPIs: 4). The
up-regulation of HSC mobilization- associated molecule?% Proteinase 3 (Prtn3) (ToppNet
rank: 29, score: 8.29e-04, PPIs: 14) could not be confirmed by RT-qPCR (Figure [3.7(A)).

LSK UG26-1B6

894

Figure 3.10: The Venn diagram showing the overlap of the ToppGene
http:/ /toppgene.cchmc.org candidate gene prioritization results in
LSK and UG26-1B6 stromal cells.  Significant hits (p-Value < 0.05)
from the functional annotation-based analysis were selected (27 and 897
in LSK and UG26-1B6 cells, respectively). There were 3 overlapping
genes: Ctgf, Ccngl, Degsi. The diagram was generated using VENNY
http://bioinfogp.cnb.csic.es/tools/venny /index.html. 267

Interestingly, the overlap between test genes prioritized in this manner in LSK
and UG26-1B6 stromal cells was minimal: Ctgf, Ccngl, Degs1 (Figure . Con-
nective tissue growth factor (Ctgf) was one of the genes induced in both LSK (log2FC 5.6,
FDR < 0.05) and stromal (log2FC 3.5, FDR < 0.03) cells after 24 h in co-culture. According
to the ToppGene functional annotation-based prioritization results, Ctgf was the second
and seventh highest ranked gene in LSK and stromal cells, respectively (Figure step
4). Therefore, we first wanted to see, whether we can independently confirm our microarray
results, reporting the up-regulation of Ctgf in both LSK (log2FC 5.6, FDR < 0.05) and
stromal (log2FC 3.5, FDR < 0.03) cells after 24 h in co-culture (Figure 3.1} step 5).

3.7 Experimentally investigating the functional role of
UG26-1B6-derived Ctgf in hematopoiesis

3.7.1 Independent confirmation of microarray results

In LSK cells, the induction of Ctgf could be confirmed both on mRNA and relative protein level,
using RT-qPCR and Immunofluorescence (IF) staining, respectively (Figure [3.12(A)(a,c,e)).
In particular, it seems that Ctgf is barely expressed by freshly isolated Lin-Scal+c-Kit+ cells,

however, its expression increases ~ 10-fold after the co-culture. In stromal cells, Ctgf has
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been found previously among the genes highly expressed by UG26-1B6 in the extracellular
space.?%® Indeed, our experiments also demonstrate that UG26-1B6 culture medium contains
high levels (~ 14 ng/mL) of secreted Ctgf already prior to the co-culture (Figure [3.12] (A)(d);
Oh). The presence of LSK cells does not seem to change its secreted protein levels (Figure
3.12(A)(d); 24h). On the mRNA level, we could confirm an up-regulation of Ctgf after 24
h co-culture (Figure [3.12(A)(b)), however, the up-regulation of Ctgf mRNA seems to be
LSK (co-culture) independent (Figure [3.7(A)), as its gene expression appears also to be
activated 24 h after adding fresh culture medium to the cells (metabolic effects). In fact,
Ctgf transcription levels are known to be modulated by factors such as high glucose.? In
addition, Ctgf seems to be more highly expressed in stromal cells, compared to hematopoietic
cells (Figures and for mRNA and protein measurements, respectively), and it has
been shown previously that human MSCs, a component of the hematopoietic stem cell 'niche’,

express high levels of Ctgf compared with leukemia cells.*™

3.7.2 Biological description and role in hematopoiesis

Clearly, HSC behavior within their 'niche’ involves complex multi-level bidirectional signal
processing networks, where mutliple environmental cues (cytokines, small molecules cell-
cell contacts) guide the stem cell towards specific fate decisions. An ideal experimental
technology would be able to measure accurately the concentrations of hundreds and even
thousands of different mRNAs and proteins, each possibly subject to a variety of post-
translational modifications and should be able to measure all this in a time-dependent, cell
and compartment specific manner, under various conditions.?™ Unfortunately, we currently
lack such sophisticated experimental technologies which necessitates selection of candidate
molecules, in an ideal case, such that measuring their activity would be most informative for

understanding the molecular crosstalk within the network.

In this study, after providing independent confirmation that Ctgf is indeed differentially
expressed under the circumstances we used to generate the gene expression profiles, we will
focus our downstream analysis on Ctgf and its regulatory networks. Connective tissue growth
factor (Ctgf) is a secreted 36-38 kDa cysteine-rich matrix remodeling protein that was first
identified in conditioned medium of human umbilical vein endothelia cells. It belongs to a
CCN family of secreted proteins consisting of six members as follows: Cyr61
(cysteine-rich protein 61, Ccnl), Ctgf (connective tissue growth factor, Ccn2),
Nov (nephroblastoma over-expressed gene, Ccn3), Wispl (Wnt-1-induced se-
creted protein 1, Ccn4), Wisp2 (Cecnb), and Wisp3 (Ccn6). These structurally
conserved proteins share an NH2-terminal signal peptide and four modular domains with

sequence similarities to insulin-like growth factor-binding proteins, von Willebrand factor
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type C repeat, thrombospondin type 1 repeat and growth factor cysteine knots characteristic
of other growth factors, including platelet-derived growth factor, nerve growth factor and
transforming growth factor 5 (see Figure [3.11)).

Each of these domains is encoded by a separate exon, suggesting that CCN genes arose
through exon shuffling of pre-existing genes to form proteins with multiple functional domains.
The recent emergence of these matricellular regulators has called attention to their functional
versatility and mechanisms of actions, which have been ascribed to activities encoded within
the four component modular domains, each of which can bind several ligands. Amongst
these are other growth factors (e.g., Tgf-5, Bmp4 and -7, Igf1, Vegf), whose function is then
modified; cell surface proteins (e.g. integrins, Lrpl, heparan sulphate proteogycans, tyrosine
receptor kinase, through which intracellular signaling may be initiated; and extracellular
matrix proteins (e.g. fibronectin) which may act as a sink for CCN proteins and modify their
turnover. With so many potential interactions it is predictable that CCN proteins will
influence many different biological events.*™ > Ctgf is typical in this respect. Many
responses triggered by it, or by fragments derived proteolytically from it, have been described
since it was discovered in 1991. Inasmuch as Ctgf was first identified as a growth factor, it
has been tempting to postulate that it might function as a classical growth factor, although
a cell surface receptor for Ctgf that resembles a classical growth factor receptor has not been
identified to date. Alternatively, the term matricellular coordinator has also been used to

designate Ctgf“™ and probably more properly characterizes its functionality.*t3*>™

Although, Ctgf is best known as a downstream mediator of Tgf3, which also reg-
ulates its synthesis and secretion, it has been associated also with Wnt, BMP and
p42/p44 MAP kinase signaling.**<™ Other signaling pathways and transcription fac-
tors directly stimulated by Ctgf and mediating pertinent biological effects include Akt/PKB,
JNK and NF-xB pathways. In addition, the expression of Ctgf is also regulated by vari-

ous other stimuli including hypoxia, shear stress, bio-mechanical deformation“4™

and, as already mentioned above, high glucose.*%%®

In bone development, Ctgf is produced from a small population of chondrocytes
and acts on all of the mesenchymal cells inside the bone callus to promote the
integrated growth of the bone,*™ at the same time haematopoietic stem cells derive
regulatory information from bone,*! and Ctgf was also found to be more highly expressed in
human mesenchymal stromal cells maintaining primitive HPC.24” Moreover, in vivo studies

2801281

suggest a role of Ctgf in cell cycle control and proliferation, and several studies

have demonstrated that Ctgf may have an important role in a variety of human cancers.

Over-expression of Ctgf is found in prostate cancers, gliomas, and breast cancers.?™

In leukemia, when comparing the gene expression profile of adult acute lymphoblastic
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A diagram showing the arrangement of CCN domains. (A) The signal peptide
(SP), insulin-like growth factor binding domain (IGFBP) in shown in red, von
Willebrand factor C repeat (VWC) is in blue, thrombospondin type-1 repeat
(TSP-1) in yellow and cysteine knot (CT) in green. (B) A multiple sequence
alignment of the CCN protein family. The sections of the sequence corresponding
to each domain are shaded according to the colour scheme used in (A). The
conserved residues, including the 38 cysteines that form part of the key motifs of
each domain, are highlighted using asterisks the conserved residues and include

the 38 cysteines that form part of the key motifs of each domain.™
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Figure 3.12

leukemia (ALL) to normal hematopoietic and non-ALL samples using microarray analysis, Ctgf
was the relatively highest over-expressed gene in precursor B-acute lymphoblastic
leukemia (ALL) compared with the other groups and that increased expression of Ctgf is
associated with inferior outcome in B-ALL.?** More recently, Lu and Battula®*? have also
characterized the functional role and down-stream signaling pathways of Ctgf in ALL cells
by utilizing lentiviral sShRNA knock-down of Ctgf in RS4;11 and REH ALL cells express-
ing high levels of Ctgf mRNA. Their experiments demonstrated that silencing of Ctgf
resulted in significant suppression of leukemia cell growth compared to control
vector, which was associated with AKT/mTOR inactivation and increased levels
of cyclin-dependent kinase inhibitor p27. Moreover, Ctgf knock-down sensitized ALL
cells to vincristine and methotrexate. On the other hand, treatment with an anti-Ctgf

monoclonal antibody, FG-3019, significantly prolonged survival of mice injected with pri-
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Figure 3.12: Ctgf regulates hematopoietic stem/progenitor cell (HSC/P) activity and engraft-

ment potential. (A) Independent confirmation of microarray results for Ctgf.
RT-qPCR results confirming the up-regulation of Ctgf mRNA levels in LSK cells
after co-cultured with UG26-1B6 stromal cells for 24 h (Day1; d1) and vice versa
(a, b). Immunofluorescence (IF) staining results confirming the up-regulation of
Ctgf relative protein levels in co-culture-derived LSK cells and ELISA results
comparing secreted Ctgf protein levels in 24 h conditioned culture media when
culturing LSK and stromal cells separately or after the co-culture (c-e). (B)
Generation of Ctgf siRNA knockdown and determination of knockdown efficiency
in UG26-1B6 stromal cells at mRNA and secreted protein levels (a-c), using RT-
qPCR, ELISA and intracellular protein staining combined with flow cytometry,
respectively. (C) Colony-forming cells (CFCs) number (%) in methylcellulose (n
= 4). (D) HSC/P analysis using flow cytometry, where LSKs and MMPs were
gated as Lin-Sca-1+c-Kit+ cells and Lin-Sca-1-c-Kit+ cells, respectively. (E)
Frequency of donor (Cd45.1+), myeloid (Grl+/med, Cd11b+) and lymphoid
(B220+, Cd4/Cd8a+) lineage cells in the peripheral blood (PB) of transplanted
mice 5, 10 and 16 weeks after transplantation.
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Figure 3.13: Real-time (RT)-qPCR analysis of Ctgf mRNA expression in the indicated bone
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marrow (BM) purified populations, normalized to the expression level in UG26-
1B6 stromal cells. LSK: Lin-Scal+cKit+ hematopoietic stem cells; MPP: Lin-
Scal-cKit+ cells multipotent progenitor cells; CLP: common lymphoid progenitor
cells; T: T-cells; B: B-cells; Gran:granulocytes and Mono: monocytes. Primer
sequences used are given in Table S11. Results are shown as mean and standard
error of three independent experiments.
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mary xenograft B-ALL cells when co-treated with conventional chemotherapy (vincristine,
L-asparaginase and dexamethasone). Therefore, the authors concluded that Ctgf represents
a targetable molecular aberration in B-ALL, and blocking Ctgf signaling in conjunction
with administration of chemotherapy may represent a novel therapeutic approach for ALL
patients. In addition, Battula and colleagues“® have also investigated the role of Ctgf
in mesenchymal stromal cells (MSCs), a major component of the normal as well as
leukemia bone marrow (BM) microenvironment, since Connective tissue growth factor (Ctgf)
is highly expressed in MSCs. They found that Ctgf knocked down (KD) human BM-derived
MSCs exhibited fivefold lower proliferation compared with control MSCs and had
markedly fewer S-phase cells. Moreover, Ctgf KD MSCs differentiated into adipocytes
at a sixfold higher rate than controls in vitro and in vivo. In order to study the effect of Ctgf on
engraftment of leukemia cells into BM, the authors developed an in vivo model of humanized
extramedullary BM (EXM-BM) in NOD/SCID/IL-2rg(null) mice, and demonstrated that
transplanted Nalm-6 or Molm-13 human leukemia cells engrafted at a threefold higher rate

in adipocyte-rich Ctgf KD MSC-derived EXM-BM than in control EXM-BM.

Currently, to the best of our knowledge, Ctgf has not been characterized in the
context of normal hematopoiesis. Although, another CCN family member, Nov (Ccn3)
has already been identified as a regulator of human hematopoietic stem and progenitor
cells.”®¥ In addition, from systems biology point of view, Connective tissue growth factor
(Ctgf) represents an interesting challenge as its functions and mechanisms of regulation are
rather complex, producing non-trivial, at times opposite, phenotypic outcomes in response
to various related stimuli, since its actions are highly concentration- and molecular context-
and cell type- or tissue-dependent, modulated by its numerous interaction partners.2847280
Thus, we decided to select Ctgf for further study and focus on Ctgf, its interactome and
biological function as a model for other molecules identified above. Since Ctgf has been
reported to auto-induce its own expression,“*” we hypothesized that its up-regulation

in LSK (stem cells) may be attributed to extrinsic, UG26-1B6-derived Ctgf.

3.7.3 Generation of Ctgf shRNA knockdown in UG26-1B6 stromal cells

In order to study the putative functional impact of extrinsic stromal cell-derived Ctgf on
hematopoiesis (Figure [3.1} step 6), we utilized RNAi to experimentally induce a stable
knock-down of the corresponding protein in UG26-1B6 stromal cells (see the
Materials and methods section, 2.2.1.13 Stable knock-down cells for Ctgf on page 38 for
details). We validated the shRNAs according to their knock-down efficiency at both mRNA
and protein levels by RT-qPCR, ELISA and intracellular protein staining combined with
flow cytometry, respectively (see Figure [3.12B)(a-c)). We obtained ~ 60% knock-down
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Figure 3.14: Immunofluorescence analysis (IF) of Ctgf relative protein levels in the indicated
bone marrow (BM) purified populations, normalized to the expression level
in UG26-1B6 stromal cells. LSK: Lin-Scal+cKit+ hematopoietic stem cells;
MPP: Lin-Scal-cKit+ cells multipotent progenitor cells; CLP: common lymphoid
progenitor cells; T: T-cells; B: B-cells; Gran: granulocytes and Mono: monocytes.
The primary and secondary antibodies used are listed in Tables [2.8] and [2.10],
respectively. Results are shown as mean and standard error of three independent
experiments.
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3.7 Experimentally investigating the functional role of UG26-1B6-derived Ctgf in hematopoiesis

efficiency on Ctgf at the mRNA and protein level, as compared with control shRNA
(pLKO.1) transfection.

3.7.4 Ctgf regulates hematopoietic stem/progenitor cell (HSC/P)

activity and engraftment potential

As already described above, we hypothesized that the up-regulation of Ctgf in 24 h co-culture-
derived Lin-Scal+cKit+ (LSK) hematopoietic stem cells (as shown in Figure 3.12(A)(a,c,e))
could be attributed to extrinsic, UG26-1B6-derived Ctgf. To test this hypothesis and to
explore the behavior of HSCs within a Ctgf-deficient niche’, we performed a series of in vitro
co-culture experiments, by considering various different time points (24 h to three weeks).
In all cases, the system was perturbed by knocking down (KD) Ctgf in UG26-1B6 stromal
cells by lentivirally transduced shRNAmir targeting Ctgf (see Figure 3.12(B)(a-c)). The
cultures using perturbed stromal cells were then compared with those using the unperturbed
counterpart (pLKO0.1 empty vector carrying stroma). In this regard, the hematopoietic
stem /progenitor cells (HSC/Ps) were characterized in terms of their cell surface marker
expression, cell cycle status and apoptosis rates, progenitor generating capacity, as well as the
in vivo engraftment potential. First, we performed co-culture studies of isolated wild-type
LSK cells on perturbed and unperturbed UG26-1B6 cells.

As a result, in vitro, when comparing 1 week co-cultures of Lineage-depleted (Lin-) cells (see
SI Materials and methods for details) on siCtgf stromal cells with the control (pLKO.1), our
experiments revealed a significant increase (p < 0.05) in colony-forming cells (CFCs; 2.2% vs.
0.6% , Figure[3.12C)), suggesting that a decrease of microenvironmental Ctgf may promote
hematopoietic progenitor activity in vitro. Further supporting this hypothesis, FACS
analysis (Figure [3.12(D)) showed a significant increase in Lin-Scal-cKit+ early multipotent
progenitors (MPPs; 24.9% vs. 12.6%).

In order to also investigate the effect of extrinsic Ctgf levels on the in vivo HSC activity,
the lineage negative (Lin-) fraction of total bone marrow (BM) cells (5000 Lin- cells/well) of
Ly5.1 mice co-cultured for 1 week with irradiated UG26-1B6°“*9/ or control stromal cells
were transplanted into WT B6.Ly5.2 recipients (the input equivalent of 2500 co-cultured
Lin- cells) together with 10° normal syngeneic bone marrow (BM) and 5x10° spleen (SP)
cells. Peripheral blood was analyzed after 5, 10 and 16 weeks of transplantation. In addition,
bone marrow and spleen were also analyzed after 16 weeks. After 16 weeks, we observed
a significantly decreased donor cell compartment (8.9% vs. 19.8% Cd45.1+ donor cells) in
the peripheral blood (PB) of recipients (Figure 3.12(E)), indicating that the absence of
extrinsic Ctgf significantly reduces the repopulating capacity of HSCSs.
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3 Results

3.8 Network model predicting the role of Ctgf in
regulating the LSK cell-cycle status

3.8.1 The top-down approach to Ctgf network modeling

Culling Ctgf interactome from literature and public databases

Ctgt was established as a model molecule possibly playing a role in HSC activatiuon in
co-cultures with UG26-1B6 cells. In marticular, our results show that the presence or absence
of Ctgf significantly affects the maintenance of repopulating HSC in co-cultures of LSK
cells and UG26-1B6 stromal cells. As a next step, to elucidate possible underlying reg-
ulatory networks and molecular mechanisms, we first cataloged the complete
interactions of Ctgf (Figure ; step 7). To do so, we first performed an extensive
literature search using the automatic text-mining engine EXCERBT (Extrac-
tion of Classified Entities and Relations from Biomedical Texts)*® http://mips.helmholtz-
muenchen.de/excerbt /.  Co-occurrence search was employed in order to retrieve all the
molecular species associated with Ctgf. Thereafter, false positives (e.g., due to the intrinsic
ambiguity in most acronyms) were discarded by manual curation. By this, we compiled
a list of 274 unique interactions (since in some cases controversial results were reported
and/or more than one source yielded the association, the total number of interactions was
548), involving 260 interactors, including genes/proteins, microRNAs, pathways, as well as
some drugs and chemicals (Table S6). When searching the Pathway Commons database
http://www.pathwaycommons.org’®® for PPIs within the interactome of Ctgf, the
number of interactions in the network increased to 1742 interactions, involving
260 interactors, including genes/proteins, miRNAs, pathways, as well as some drugs and
chemicals (Table S7 and Figure [3.15[(A)). The resulting network will be further referred to as
the Ctgf interactome.

Gene set enrichment analysis of the Ctgf interactome

Protein-protein interaction (PPI) information is frequently used as a starting point for
the functional annotations of unknown proteins according to the principle of
‘quilty by association’.”®® Similarly, here, in order to get the first insight about the
functionality of Ctgf, we performed gene set enrichment analysis of the its interactome. Again,
we used ToppFun from the ToppGene Suite http://toppgene.cchmc.org.*? A complete list of
ToppFun results is given in Table S8. Briefly, this analysis revealed that Ctgf interactome was
mainly associated with biological functions such as cell proliferation, activation, migration

and adhesion, as well as programmed cell death (see *’GO: Biological Process’ in Table S8).
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Hemato Cell proliferation

Figure 3.15: From top-down to bottom-up approach to Ctgf network modeling. (A) Ctgf
interactome obtined after an extensive literature search using the text-mining
tool EXCERBT followed by a collection of PPIs within the Ctgf interactome
from the Pathway Commons database. The network diagram was created using
Cytoscape? http:/ /www.cytoscape.org/. (B) Compiling a list of seed genes
from the Ctgf interactome (in yellow) by searching for genes: (1) associated
with HSC maintenance or hematopoiesis (in blue); (2) genes involved in cell
proliferation (Table S8, GO:BP, GO:0008283-cell proliferation p-Value: 2.9e-61,
106 PPIs) (in red); (3) genes present in our differentially expressed gene set
(freshly isolated LSK cells vs. 24 h co-culture-derived ones) (in green). The Venn
diagram of the corresponding gene sets and their overlaps was generated with
the program VENNY http://bioinfogp.cnb.csic.es/tools/venny /index.html.267
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3 Results

At the molecular pathway level (see ’Pathway’ in Table S8), Ctgf and its interaction partners
were associated with integrin signaling, canonical Wnt and Tgf-5 pathways, as well
as with the G1/S check point of the cell cycle. Intriguingly, the analysis yielded
also a number of both steady-state and malignant hematopoiesis-related activities, including
commitment to the B- and T-lineages, and acute/chronic myeloid leukemia. Moreover, the
Hedgehog (HH) pathway, angiopoietin/Tie2 signaling, Ifn-y pathway, as well as osteopontin-
and Il6-mediated signaling events have been linked with the self-renewal and maintenance of
HSCs, PA80289290 R emarkably, beside the well-described functions of Ctgf such as involvement

in wound healing,*! angiogenesis®?? and bone formation,?%

mouse phenotype enrichment
analysis (see 'Mouse phenotype’ in Table S8) also revealed a number of hematopoietic
phenotypes, including abnormal hematopoietic cell number, morphology and physiology. In
addition, abnormalities related to the cell cycle were also over-represented within the Ctgf

network.

Topological property analysis and module discovery in the Ctgf interactome

Topological network analysis is motivated by the evidence that the topology (architecture)
of biological interaction networks is closely related to their function, thereby
contributing to better understanding of organization, network-wide interdepen-
dencies, causal relationships, and key aspects of network functionality '5%2%
First, several topological parameters of the Ctgf interactome were computed using Network-
Analyzer.22! The results of this analysis are summarized in Table [3.6f The network was

analyzed as an undirected network, and compared to the Erdés-Rényi random graph model“?

with the same number of nodes and edges, generated using R package igraph.?%

Topological property analysis NetworkAnalyzer recognized 236 nodes (interactors) and
1580 edges (interactions). The Clustering coefficient, which measures the degree to which the
neighbors of a particular node are connected to each other was calculated to be 0.387 meaning
that ~39% of the possible connections between neighbors existed as compared to
0.057 for the random network. Generally, it is thought that the closer the local clustering
coefficient is to one, the more likely it is for the network to form clusters. In average, biological
networks tend to have a significantly higher average clustering coefficient compared to random
networks, indicating their modular nature where cellular processes are governed by subsets of
biomolecules that form an interaction module.t4

As it can be seen from the Table [3.6] the Ctgf interactome graph was itself connected
and thus had exactly one connected component, consisting of the whole graph.
The network diameter or the largest distance between two nodes was five and seven for

the undirected and directed network, respectively. Apparently, the topology of the Ctgf
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Table 3.6: Ctgf interactome topology analysis using NetworkAnalyzer.22

1

Topological parameter

Ctgf interactome

ER random graph

© 00 O Ui W N -

[ = T S SOy
TR W NN~ O

Clustering coefficient
Connected components
Network diameter
Network radius
Network centralization
Shortest paths
Characteristic path length
Avg. # of neighbours
# of nodes

# of edges

Network density
Network heterogeneity
Isolated nodes

# of self-loops
Multi-edge node pairs

0.387
1

5

3

0.939

55460 (100%)
2.038

8.229

236

1580

0.035

1.970

1

141

609

0.057
1

4

3

0.055

55460 (100%)
2.394

13.254

236

1580

0.056

0.284

0

16

0
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interactome resembled a star with centralization close to one (0.939), which could be
explained by the fact that the network was built by first doing an extensive literature search
to find all Ctgf PPIs, which were then themselves connected by searching for PPIs within the
public databases. For the random graph, this number was 0.055. The network heterogeneity or
the tendency of the network to contain hub nodes was 1.97 and 0.284 for the Ctgf interactome
an the random graph, respectively. The characteristic path length, which offers a measure

20 was 2.038 and 2.394, respectively, meaning that given

of a network’s overall navigability
two nodes, two to three links would be needed to pass through to travel between the two
nodes. In the Ctgf interactome network, each node had ~ 8.229 neighbors, however, was
rather sparsely populated with edges, since its density was only 0.035 (for comparison, the
density of a clique would be one). Hence, these parameters were lower as for the random
graph (13.254 and 0.056, respectively). Finally, in 609 cases neighboring nodes were linked

by more than one edge within the Ctgf network. This was not true for the random graph.

Module discovery GraphWeb http://biit.cs.ut.ee/graphweb /%4 was used for module dis-

covery within the Ctgf interactome.

The maximal cliques algorithm First, network module detection was performed using the
maximal cliques algorithm, that finds groups of four or more nodes where each node
is connected to every other node. Cliques in PPI networks have often been related to
protein complexes and common functions.??2 As a result, 326 modules were found,
from which top three are shown in Table 3.7 Each module consisted of seven nodes
and 21 edges and was 100% connected. Functional annotation of the modules revealed
key aspects of Ctgf molecular roles within a cell. Module § one mostly contained
genes, whose products are associated with cell-matriz adhesions (KEGG, map04510
Focal adhesion, p-Value = 1.84e-08), including integrins Integrin alpha-V (Itgav, Cd51) and
Integrin beta-3 (Itgh3, Cd61), Transforming protein RhoA (Rhoa) and Rho-associated protein
kinase 1 (Rockl). Module # two contained TGF-5 (REACTOME, Signaling by TGF-§,
p-Value = 1.79e-06) pathway genes, such as Mothers against decapentaplegic homologs
(SMADs) 2, 3, 4 and 7, as well as Wnt pathway (KEGG, Wnt signaling, p-Value = 9.57e-07)
transcription factors Catenin beta-1 (Ctnnbl) and Lymphoid enhancer-binding factor 1 (Lefl).
Moreover, this module is also associated with regulation of cell cycle (GO:BP, p-Value
= 8.79¢-03). Module £ three mostly contains several MAPK pathway kinases (GO:MF,
MAP kinase activity, p-Value = 2.51e-009): Extracellular signal-regulated kinases ERK1/2
(Mapk1, Mapk3), Mitogen-activated protein kinase p38 alpha (Mapk14) and Stress-activated
protein kinase JNK1 (Mapk8).
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Table 3.7:

Gene module detection within Ctgf interactome using the Maximal cliques algorithm
provided by GraphWeb http://biit.cs.ut.ee/graphweb/.%22 The maximal cliques
algorithm finds groups of 4 or mode nodes where each node is connected to every
other node. For Ctgf interactome, 326 such modules were found, first three of which
are shown below, including their functional scores based on g:Profiler annotations,
as well as the annotations contributing to the score and their statistical significance.
Each module consisted of 7 nodes and 21 edges and was 100% connected.

Module Score g:Profiler annotation p-Value
GO:BP-cell migration 2.59e-08
#1 110 GO:MF-VEGF receptor binding 6.41e-05
KEGG-Focal adhesion 1.84e-08
GO:BP-regulation of cell cycle 8.79e-03
# 2 183 KEGG-Wnt signaling 9.57e-07
REACTOME-Signaling by TGF-3 1.79e-06
#3 110 GO:MF-MAP kinase activity 2.51e-009
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3 Results

The hub-based algorithm Alternatively, the hub-based algorithm provided by GraphWeb
was also utilized in order to detect groups of genes consisting of a central hub (a
node with many connections) and related genes/proteins within distance d, which
was set to one in this case. GrapwWeb found 248 such modules, the top nine of them (re-sorted
by the functional Score based on g:Profiler annotation) are provided in Table . The highest
scoring module (Score: 190) consisted of a hub gene Signal transducer and activator
of transcription 1 (Stat1) and 19 of its connections and is associated with regulation of
signal transduction (GO:BP, p-Value: 8.94e-17) and apoptosis (REACTOME, p-Value: <
0.04). The second module is centered around Nuclear factor NF-kappa-B p105 subunit
(Nfkb1, Score: 170, 20 Nodes) and associated with signaling by NGF (REACTOME, p-Value:
8.59¢-06). Other modules involved in the same pathway include: Signal transducer and
activator of transcription 3 (Stat3, Score: 139, Nodes: 28, p-Value: 3.51e-06) and RAC-alpha
serine/threonine-protein kinase (Akt1/PKB, Score: 137, Nodes: 30, p-Value: 5.27e-12; Table
. This could be explained by the fact that Ctgf interacts with TrkA and p75™MTE, two
receptors that are known to be activated by the neurotrophin nerve growth factor (NGF).*%
The top three module involves Catenin beta-1 (Ctnnbl, Score: 161) and 38 of its PPIs, and its
functionality is associated with Wnt (KEGG, p-Value: 6.27e-13) and TGF-4 (KEGG, p-Value:
2.37e-40) signaling pathways, as well as the Cell cycle (KEGG, p-Value: 2.13e-30) and cell
proliferation (GO:BP, p-Value: 1.1e-30). TGF-$ signaling pathway is also associated with
several other hubs from the Ctgf interactome, including the SMAD family of signal transducer
proteins: Smad2 (Score: 161, Nodes: 23, p-Value: 4.97¢-07)(Table [3.§), Smad3 (Score: 135,
Nodes: 28, p-Value: 8.31e-09) and Smad4 (Score: 131, Nodes: 26, p-Value: 6.39e-07), as well
as Stress-activated protein kinase JNK1 (Mapk8, Score: 121, Nodes: 28, p-Value: < 0.0006),
Transcription factor Spl (Score: 104, Nodes: 22, Patway: REACTOME-Phospho- R-SMAD
forms a complex with CO-SMAD, p-Value: 3.71e-05), as well as Transforming growth factor
beta-1 itself (Tgfbl, Score: 95, Nodes: 18, p-Value: 1.79¢-10). Interestingly, several modules
(Akt1/PKB, MAP kinase p38 a/Mapkl14, Smad3, Glycogen synthase kinase-3 beta/Gsk3b,
ERK1/2, as well as Ctgf itself), seem to involve Zinc finger protein 161 (Zfp161/ZF5)
transcription factor binding motif. ZF5 is thought to be a putative murine repressor
for Myc, with a growth-inhibitory function, also expressed at a very high level in human
CD34+ cells.** Direct association between Ctgf and Zfp161/ZF5 could not be found in the
literature, however, Ctgf was reported to be up-regulated in kidneys of Glis2 mutant mice.
Gli-similar 1 (Glisl) through Glis3 form a subfamily of Kriippel-like zinc finger proteins that

share a highly conserved tandem repeat of five C2H2-type zinc finger (ZF1 to ZF5) motifs. =™
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3 Results

3.8.2 The bottom-up or “seed-gene” approach to Ctgf network

modeling

The topological analysis above provides first insights regarding the organization and key
aspects of possible networks operated by Ctgf, as well as their network functionality.16%2%4
However, such large-scale interactomes are clearly not directly interpretable and suffi-
cient by themselves, as they do not provide information on the logic of signaling
networks and their spatio-temporal behavior. Moreover, we still lack technology that
would allow high throughput detailed measurement of activity of individual signaling molecules
and their interactions. Computational modeling can aid in simulating the dynam-
ical input/output behavior of a network, allowing the formulation of a systems-level
hypothesis that can be a powerful source in directing targeted experiments12#12418301
However, the size of a constructed network should be limited, since computationally and
mathematically, it is more feasible to model and simulate a network with a small number of
genes (up to 30 species). In addition, it is more likely that a small set of genes maintains
a specific core regulatory mechanism. Finally, such modeling requires a certain amount of
mechanistic detail, which may not be available for larger networks. 2122124 13079I5020 The
construction of such models can be better approached in a bottom-up directionality, where a
small number of ’seed-genes* are first extracted from within the experimental

data and then used to grow the network in several ways.*"?

Here, we first selected a list of “seed genes” from the reference network, according to the
following criteria: (i) hematopoiesis-associated genes (Table S5); (ii) genes involved in cell
proliferation (Table S8, GO:BP, GO:0008283-cell proliferation p: 2.9¢-61, 106 PPIs); (iii)
genes differentially expressed in LSK cells after the 24 h co-culture (Dayl; dl;
see Table S1). Figure [3.15(B) shows a Venn diagram of the corresponding gene sets and
their overlaps, while (A) uses the same color code within the Ctgf interactome to illustrate
these overlaps graphically. As a result, we obtained 12 genes which satisfied all three criteria
(Table [3.9). Seven genes were also part of our limma validation set (Table [3.1], Figure [3.5(A)
and Figure 3.6(A)). From these, we further focused on a subset including: Ctgf,
Cyclin D1 (Ccdnl), p21Cip1 (Cdknla), ForO1 Foxol, Lef (Lef1) and Integrin
3-8 Itgb3. Next, a strategy similar to that described by Hwang and co-workers®* was
adopted. Given the seed, we first identified the starting and ending genes/ proteins. According
to the definition of signaling pathways by which cells convert extracellular signals into cellular
responses, start proteins are defined as ligands or transmembrane receptors; end proteins
are transcription factors or some molecular players whose roles are clearly known in cells. In

addition, since signals are transmitted from the extracellular space into the nucleus, the right
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Table 3.9: Compiling a list of seed genes from the Ctgf interactome (Figure in yellow)
by searching for genes: (1) associated with HSC maintenance or hematopoiesis in
general (Figure in blue, see Table S5), (2) genes involved in cell proliferation as
reported by ToppFun Gene Ontology enrichment analysis of the Ctgf interactome
(Figure in red, see Table S8: GO:BP, GO:0008283-cell proliferation p: 2.9e-61,
106 PPIs); (3) genes present in our differentially expressed gene set in LSK cells
after 24 h co-culture (Figure in green, Dayl; d1, see Table S1). As a result,
a "seed“ list of 12 genes satisfying all the above mentioned criteria was obtained.
For genes, which were also part of our LIMMAZ3 validation set (Table Figure
B-5(A) and Figure[3.6(A)), an arrow indicating the direction of the fold change is

added.

f Gene RT-qPCR
1 Cendl 0
2 Cdknla 0
3 Foxol T
4  Foxo3
5 Lefl 0
6 Statl 1
7 Agpl
8 Thbsl
9 Serpinel

10 Nfatc2

11  Cebpb T

12 Ttgb3 0
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orders of factors can be defined: extracellular space — plasma membrane — cytoplasm —
nucleus.®*™ Following this strategy, our starting proteins were Connective tissue growth factor
(Ctgf) and Integrin beta-3 (Itgh3), since their GO annotations according to SWISSPROT
http: / /www.uniprot.org/uniprot/ were “secreted” and “receptor activity”, respectively. Since
the main regulatory activity in the maintenance of HSC lies in self-renewal, which is a
special functional form of cell division, the cell cycle as our terminal node. According to this,
we identify the two identified cell cycle regulators in the seed list: G1/S-specific cyclin-D1
(Cendl) and p21Cipl (Cdknla) as terminal nodes. W also considered two transcription
factors (TFs): Forkhead box protein O1 (Fozxol) and Lymphoid enhancer-binding factor 1
(Lef1), which could be possibly involved in the Ctgf-regulated cell cycle progression. The
right order of the “seed genes” would be as follows: Ctgf — Itgb3 — Foxol, Lefl — Cendl,
Cdknla.

Literature-based network construction

Next, we performed manual literature search to identify the pathways and major molecular
players relaying a signal from our start genes/proteins to the terminal nodes. Important to

127 we also consider here only local interactions (e.g.,

note, similarly as already described by,
a kinase phosphorylates its substrate). At the same time, in order to keep the size of the
network meaningful, parts of it were simplified: for example, the MAPK cascade, in which a
series of nodes and edges impinge only on each other, was reduced to FAK — FErk1/2.

The resulting network contained four inputs (Ctgf, Tgfs WNTs, and Dkk1) as external
stimulus from the 'niche’; 25 internal regulatory nodes, including membrane receptors (integrin
aV 33, Tgf-fRI/II and Frz/Lrp6), key signaling intermediates (e.g., kinases Gsk3-3, Akt(PKB)
and Erk1/2), key transcription factors (SMAD complex, FoxO1 and TCF/LEF), two G1/S
transition cyclins and their respective CDKs (Cyclin D1:Cdk4/6 and Cyclin E:Cdk2), as
well as CDK inhibitors (p21Cipl and p27Kipl) and G1/S transition molecules (Rb1l and
E2f1). More importantly, the network not only linked molecular pathways regulated by Ctgf,
but also inferred three functional outcomes with direct relevance to the description of HSC

behavior:

« GO0/G1: Cyclin D:Cdk4/6 activation is the readout for the G0-to-G1 transition or
exit from the quiescence. When active Cyclin D:Cdk4/6 complex accumulates, Rb is

activated through hypo-phosphorylation. Active Rb is able to bind E2f and keep a cell
in the G1/G0 phase.

« G1/S block: cyclin-dependent kinase inhibitors (CKIs) p21Cipl and p21Kipl insure
that the cell cycle remains arrested at G1/S until an external signal relieves the break.

In this case, the activation of p21Cipl and/or p21Kipl serves as the readout.

90


http://www.uniprot.org/uniprot/

3.8 Network model predicting the role of Ctgf in regulating the LSK cell-cycle status

o i-Ctgf: Ctgf can be induced via S-Catenin/Tcf/Lef signaling or TGF-/ induces Ctgf
by the "classical” Smad pathway. Here, the readout is the induction of intrinsic Ctgf

expression.

The modified Edinburgh Pathway Notation (mEPN) scheme“4? was utilized for the graphical
depiction of signaling pathways, since it allows the detailed representation of a diverse range
of biological entities, interactions and pathway concepts and enables to represent pathway
knowledge in a semantically and visually unambiguous manner. A complete network diagram
is shown in Figure [3.16] This network will be further referred as the Ctgf signaling network.
Table S9 summarizes the information used to construct the network in the form of 32 unique
nodes and 95 edges, giving the source (upstream regulator) node, the target (down-stream
regulated) node, a qualifier of the nature of the relationship such as ’activates’ or "inhibits’ and
references where this relationship was reported. The biological description of the biological

events occurring within the Ctgf signaling network is given below.

G0/G1; Ctgf promotes GO/G1 transition The current paradigm of GO/G1 cell-cycle
progression argues that sufficient amounts of growth factor (GF) stimulation of GO quiescent
cells results in gradual accumulation of Cyclin D:Cdk4/6 complexes that trigger the hypo-
phosphorylation and activation of pRb, promoting its assembly with E2Fs and chromatin
remodeling proteins, such as histone deacetylase and SWI/SNF to repress E2F target gene
expression. @0 Thys Cyclin D1 serves as a sensor of the mitogenic potential of the
micro-environment and its activation seems to be the key event facilitating emergence from
quiescence or the GO/G1 transition.*+# =4 Ctgf has been reported to induce cell proliferation
by enhancing the expression of Cyclin D1 mRNA and protein level, 4@ and Ctgf
shRNA significantly prevented Ctgf and Cyclin D1 expression, arrested cell cycle at GO/G1
phase and suppressed cell proliferation.*} Due to this, Ctgf induced G0/G1 transition was
attributed to its activating effect on Cyclin D1 expression and the biomedical literature
was surveyed for molecular interactions that would lead to this activation. By this, we
found that secreted Ctgf binds the integrin aVb3,2™ which leads to the phosphorylation of
focal adhesion kinase (FAK)<™%18 and activation of MAPK pathway resulting in activation
of Erk1/2 via phosphorylation on Thr202/Tyr204.%18 As described above, for the sake
of simplicity, the activation of the MAPK cascade was compressed to FAK — Erk1/2 in
this network. Erk1/2 then increases transcription of c-Fos (AP1)% and c-Myc,*# the
transcriptional target of which is Cyclin D1.%%%22 Turnover of Cyclin D1 also depends on
the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) pathway, which negatively
regulates the phosphorylation of Cyclin D1 on Thr286 by glycogen synthase kinase3-/5 (Gsk3-
3).4%3 Ctgf binding to the integrin aVb3 is known to activate PI3K/Akt(PKB) pathway,=4*
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which may lead to the inhibition of Gsk3-5 via Akt(PKB)-dependent phosphorylation of
Ser992% and thus facilitate the nuclear accumulation of 3-catenin. Alternatively, Ctgf requires
the Lrp6 receptor to activate the canonical Wnt signaling,®® resulting in accumulation and
nuclear translocation of g-catenin, which is coincident with decreased phosphorylation of
p-catenin on Ser33/37 and increased phosphorylation on Tyrl42. Thereafter, it engages
transcription factors Tcf/Lef to activate expression of downstream genes, such as Myc and
Cend1.%#% In early G1, cyclin kinase complexes Cyclin D:Cdk4/6 accumulate and Rb is
activated through hypo-phosphorylation (pRb). Active Rb is able to bind E2f and keep a cell
in the GO/G1 phase.*%8
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Figure 3.16: The graphical network map depicting Ctgf regulated G0-to-G1 transition, G1/S
block, as well as its auto-induction derived from the biomedical literature. The
"modified Edinburgh Pathway Notation“ (mEPN) scheme?2% http://www.mepn-
pathway.org/ was used to graphically visualize the constructed network. Ctgf,
Tgf-5, WNTs and Dkkl constitute the input and GO/G1, G1/S and i-Ctgf
represent the outputs (functional readouts) of the network. The interaction
information used to construct the network in the form of 32 unique nodes and
95 edges can be inferred from Table S9. The experimental validation results on
mRNA (Figure and/or protein levels or phosphorylation status (Figure
were superimposed on the network: nodes, for which a significant increase
in mRNA /protein/phosphorylation level was observed after 24 h in Ctgf deficient
environment are ON (in red), whereas nodes for which the opposite is true are
OFF (in dark blue). Since most biological functions are mediated by proteins
and changes in their post-translational modifications (e.g., phosphorylation), we
focused more on the protein level data, where available.

G1/S block; Ctgf contributes to the G1/S block via inducing p21Cipl and p27Kipl
Ctgf induced G1 phase arrest appears to be due to the induction of the cyclin-dependent
kinase inhibitors (CDKI) p15INK4, p21Cipl, and p27Kipl, which are known to bind and
inactivate Cyclin D:Cdk4/6 and the Cyclin E:Cdk2 kinase complexes. To determine the
possible role of Ctgf in G1/S block, it is good to briefly have a closer look at the mechanism
of G1/S transition regulation. It is well known that active Cyclin D:Cdk4/6 complexes have
a second, non-catalytic function, e.g. the sequestration of CKls, including p21Cipl and
p27Kip1, which lowers their inhibitory threshold and facilitates activation of the Cyclin E:Cdk2
complex. Cyclin E:Cdk2 further antagonizes p21Cipl by phosphorylating it and triggering its
proteolysis. Similarly, Cyclin D- and E-dependent kinases also contribute sequentially to Rb
hyper-phosphorylated on Ser-795, canceling its ability to repress E2f family members, which
are being activated and can control the transcription of cell division essential genes (e.g.,
Cyclin E and Cdc25A and E2f). E2f1 can be inactivated by binding to dephosphorylated
Rb and by degradation through ubiquitination after phosphorylation by Cyclin E:Cdk2 The
activity of the Cyclin E:Cdk2 complex is modulated by transcriptional regulation of its
catalytic partner Cyclin E and post-translational modification of the Cyclin E:Cdk2 complex
itself, where the transcription of Cyclin E, in addition to E2f1, is also promoted by c-Myec,
followed mitogenic stimulation. Post-translationally, another transcriptional target of c-Myc
and E2f1- Cdc25A- dephosphorylates and activates the Cdk2 kinase. Interestingly, for Cdc25A
to become active it must itself be phosphorylated, which is catalyzed by the active Cyclin
E:Cdk2 complex. Finally, the inactivation of the Cyclin E:Cdk2 complex, as well as the
32313291331

Cdc25A phosphatase, is achieved by ubiquitin-mediated degradation.
In order for the G1/S arrest to be enforced, high levels of active CKIs p21Cipl and
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p27Kipl have to be maintained, which can be achieved either by increased transcription,
reduced degradation or through the release of p21Cipl and p27Kipl from complexes with
Cyclin D:Cdk4/6.%%8 Since we observe elevated Cdknila mRNA levels in LSK cells after 24
h (Dayl; d1) in our co-culture experiments (Table [3.1] Figure 3.5(A) and Figure [3.6(A)),
it is tempting to hypothesize that Ctgf is responsible for the first one of these, namely,
the increased transcription of Cdknla mRNA. Thus, we further focus our attention to the
molecular mechanisms by which Cdknla transcription could be possibly induced. In this
regard, probably the best known is the up-regulation of p21Cipl by p53 following DNA
damage,*? and it has been shown that p21Cipl transcription can be induced by Ctgf via
a phospho-Ser15 p53-dependent mechanism.*!? Since Erk1/2 is able to phosphorylate p53
at Ser-15,%%% this mechanism could be involved in the Ctgf mediated p53 phosphorylation.
Furthermore, evidence exists that p300/CBP-mediated acetylation may be a universal and
critical modification for p53 function.*” In addition, Akt(PKB) can indirectly hinder p53-
dependent p21Cipl induction by phosphorylating Mdm?2 (compressed to Akt(PKB) - p53)

or it can directly phosphorylate p21Cipl and restrict it to the cytoplasm for degradation.”*

Alternatively, Ctgf can enhance Tgf3-Smad2/3 signaling by binding directly to the growth
factor, promoting its interaction with the Tgf3 receptor. Tgf-8 has been reported to up-
regulate Cdknla mRNA levels.”** Tgf- binding to its transmembrane type II receptor (TSRI)
initiates formation and activation of a heteromeric complex with the corresponding type I
receptor (TSRI). Upon activation, TSRI initiates intracellular signaling by phosphorylation
of the receptor-regulated SMAD (R-SMAD) proteins Smad2 and Smad3. Phosphorylated R~
SMADs complex with the common mediator Smad4, translocate to the nucleus, and modulate
target gene transcription together with numerous other factors.#**3¢ Aslo Smad2/3/4 complex

requires the presence of the co-activator p300/CBP, =348

which itself may be a direct
transcriptional target of Tgf-3.23%340 SNMAD proteins have also been reported to form a
complex with FoxO proteins.®*# In particular, SMADs, together with FoxO and p53 form
large transcriptional complexes on the p21Cipl promoter enhancer.®*? These complexes,
together with p300/CBP could also be responsible for the inhibition of c-Myc.*#347 Besides
the "classical* TGF-/ pathway described above, TGF- may also induce p21Cipl through
mechanisms that involve Erk1/2%4%. Also Erk1/2 has been reported to act inhibitory on
FoxO transcription factors.*" Ctgf has been reported to activate Akt(PKB) and Erk1/2.4
Furthermore, Tgf-g8 has also been described to rapidly activate PI3K, as indicated by the
phosphorylation of its downstream effector Akt(PKB). This activation appeared to be

independent of Smad2/3 activation.*

Finally, the cell cycle inhibitor p27Kipl has been shown to be regulated by FoxQ.3%
Alternatively, Erkl/2 phosphorylates p27Kipl at Ser178 increasing its expression.“** On
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the other hand, Akt(PKB) decreases p27Kipl by increasing proteolysis and reducing its
transcription.®® Cyclin E:Cdk2-dependent phosphorylation of p27Kip1 results in elimination
of p27Kipl from the cell, allowing cells to transit from G1 to S phase.”® In all cases, the
nuclear ubiquitin ligase (E3) SCF(Skp2) is implicated in p27Kipl degradation.=>*

iCtgf; Ctgf is able to auto-induce its own expression Ctgf has also been reported to
auto-induce its own expression.“*” A S-catenin:Tcf/Lef-binding site (TBE) was identified
in the promoter region of Ctgf and it was found that Ctgf is a transcriptional target of
p-catenin:Tcf/Lef signaling, thus the cross-talk between Ctgf and Wnt signaling seems to
form a positive feedback loop.?™ In addition, Tgf-/3 induces Ctgf by the “classical” SMAD
pathway via a SMAD binding element located within its proximal promoter.“® Moreover,
Ctgf is one of genes that, in addition to p15Ink4b and p21Cipl, are jointly induced by SMAD

and FoxO proteins.?

Dynamic network analysis using Boolean mathematical formalism

As a next step, in order to understand the dynamics of the Ctgf signaling network, ex-
amine its qualitative stimulus-response behavior, as well as to verify the coherence of the
literature-derived interaction graph, we translated it into a computational model by employing
the Boolean logic. This mathematical framework was chosen due to its straightforward-
ness, robustness and compatibility with qualitative data. The regulatory activity of
genes/proteins is being simplified by considering them as all or none devices. More precisely,
each gene/protein is defined as being either active (ON/value 1) or inactive (OFF/value 0)

1 12401250127)128)305

depending on its abundance or activity leve The Boolean logical framework

has already been successfully applied in modeling many gene regulatory and signaling net-

1221850187 and it has been shown to lead to predictive testable

works in a variety of organisms,
hypotheses also in poorly understood large-scale systems.'®#18% For Boolean networks, the
major task is the identication of attractors. Attractors are stable cycles of states in
a Boolean network in which the network resides most of the time.**> Attractors
in models of gene-regulatory networks are expected to be linked to phenotypes cellular
phenotypes. %223 Transitions from all states in a Boolean network eventually lead to an
attractor, as the number of states in a network is finite. All states that lead to a certain
attractor form its basin of attraction.??¥ For more details see the 1. Introduction
section, 1.5.4.1 Boolean mathematical formalism on page 19.

In this study, the basis of the Boolean model were the known molecular interactions
and regulatory relationships from the published literature, as summarized in Table S9 and
graphically visualized in Figure These interactions between mRNAs/proteins, leading

to the above described functional outcomes were then translated into logical (Boolean)
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functions (Figure [3.1} step 8). To do so, each network node (mRNA /protein or one of the
three functional outcomes “G0/G1”, “G1/S” or “i-Ctgf”) was described by one of the two
possible states: active (ON/value 1) or inactive (OFF /value 0), representing the transcription
and translation of a gene or the activation of a protein or process or the absence of a gene
transcript or the inhibition of a protein or process, respectively. The state of each node
depends on the states of its upstream regulators and the type of regulation (activation vs.
inhibition). The effects of the combinations of interactions on the activity of each network
species (node) was defined in terms of logical rules using the Boolean operators AND, OR and
NOT, where OR (” | “) represents the combined effect of independent upstream regulators on a
downstream node, whereas AND (” & “) indicates the conditional dependency of upstream
regulators to achieve a downstream effect. NOT (7 ! “) represents the effect of inhibitory
regulators and can be combined with activating regulations by using either OR or AND. Hence,
we transferred the natural-language statements on gene/protein dependencies from literature
(Table S9) and expressed them as Boolean rules shown in Table [3.10] According to these
rules, for example, for the Smad2/3/4 protein complex to be active (ON/value 1), first of all
the Tgf-( receptors I and II (TgfbRI/II) have to be active (ON/value 1), and, at the same time
none of its negative regulators (Gsk3-5, Akt(PKB), Erk1/2 or Myc) is allowed to be active
(ON/value 1), in other words, they all have to be inactive (OFF/value 0). In case, Gsk3-/ or
Akt(PKB), or Erkl/2, or Myc would be active (ON/value 1), the state of Smad2/3/4 would
be inactive (OFF/value 0).

Moreover, as it also can be seen in Table [3.10 we decided to simulate the three processes
separately: (1) Ctgf contribution to GO/G1 transition via inducing Cyclin D1, (2) Ctgf
involvement in the G1/S cell cycle arrest due to the activation of p21Cipl and/or p27Kipl
cell cycle inhibitors, as well as (3) Ctgf induced auto-expression in LSK cells via a positive
feedback loop. It has already been recognized earlier®¥ that a logical approach is to model
the individual cell cycle components (e.g., the G1/S transition) separately before linking
them together. In addition, it has been reported®* that Ctgf stimulates the cells to actively
enter the G1 phase from GO, however, they do not then progress further through the cell
cycle, which appears to be due to the induction of the cyclin-dependent kinase inhibitors
p15INK4, p21Cipl and p27Kipl. Apart from this, Ctgf has also been reported to auto-induce
its own expression“*”, and since we see an increase in Ctgf mRNA and protein levels (Figure
3.12(A)(a,c,e)) after 24 h co-culture with UG26-1B6 stromal cells, it was modeled here as a

separate sub-network.

The Boolean models of Ctgf signaling were defined and analyzed using the R package

BoolNet.?2d Since the steady-state attractors are the same in asynchronous and synchronous

119

networks,"* we used the synchronous updating scheme and performed an exhaustive attractor
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Table 3.10: Boolean rules underlying the definition of the logical parameters describing Ctgf

promoted GO-to-G1 transition, G1/S block and auto-induction. The names of the
components of the regulatory graph of Figure are listed in the first column.
The description is based on the logical formalism, where "&* stands for JAND¢, ”|”
denotes “OR”, and the negation “NOT” is written as “!”. The rules were derived
from the references listed in Table S9.

Process Product Boolean rules
eCtgf eCtgf
WNTs WNTs
TGFb TGFb & eCtgf
aVb3 eCtgf
FZD_Lrp6 I Dkk1 & ((WNTs & eCtgf) | Erk1_2)
Dkk1 Dkk1
TegfbRI_II TGFb & eCtgf
Smad2_3_4 TefbRIII & ! (GSK3beta | Akt | Erk1_2 | Myc)
Pten Pten
FAK (aVh3 | TgfbRLII) & ! Pten
beta_Catenin ! GSK3beta | (! GSK3beta & (Akt & Smad2_3.4))
GSK3beta | (FZD_Lrp6 | Akt | Erkl.2)
Akt FAK
Erkl.2 FAK
Fos Erkl 2
G0/G1 Foxol I (Akt & Erkl.2)
CycD_Cdk4 6 (Myc | TCF_LEF | Fos ) & ! (GSK3beta | Foxol)
Rb CycD_Cdk4 6
G0_G1 Rb
G1/S block Foxol I (Akt | Erk1.2 | CycE_Cdk2)
p53 (Erk1_2 | p300) & ! Akt
p300 Smad2_3.4 & ! CycD_Cdk4_6
TCF_LEF beta_Catenin
Mye (Erk1.2 | TCF_LEF) & ! (Smad2.3.4 & p300 & Foxol & p53)
p21Cipl (Smad2_3 4 & p300 & Foxol & p53) & ! (CyeD_Cdk4 6 |
CycE_Cdk2 | SCF_Skp2 | Akt | Myc | GSK3beta)
p27Kipl (Foxol | Erk1_2 | GSK3beta) & ! (CycD_Cdk4_6 | Myc |
(CycE_Cdk2 & SCF_Skp2) | (Akt & SCF_Skp2))
Cdc25a (CycE_Cdk2 | (E2f1_-Dpl & Myc)) & ! Smad2_3_4
SCF_Skp2 E2f1 Dpl | Akt
CycE_Cdk2 ((E2f1_Dpl & Myc) | Cdc25a) & ! (p21Cipl | p27Kipl |
(SCF_Skp2 & CycE_Cdk2 & GSK3beta) | RB)
CycD_Cdk4 6 (Myc | TCF_LEF | Cdc25a | Fos) & ! (Foxol |
p21Cipl | p27Kipl | GSK3beta)
RB (p21Cipl | p27Kipl) & ! (CycD_Cdk4_6 & CycE_Cdk2)
E2f1 Dpl (Myc | E2f1.Dpl) & ! (RB | (RB & CycE_Cdk2 & SCF_Skp2))
G1-S_block RB & ! E2f1_Dpl
i-Ctgf Foxol I (Akt & Erk1.2)
p300_CBP Smad2_3_4
iCtgf (Smad2-3_-4 & p300_CBP & Foxol) | (beta_Catenin & TCF_LEF)
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search in all cases. Importantly to note, since we do not know the states of the network
entities a priori, we used an “exhaustive” attractor search here, meaning that the starting
state can be either ON or OFF for each network node. Of note, “exhaustive” attractors are
identified by exhaustive search of all 2" states, where n is the number of nodes that are
not set to a fixed value. Although, we restricted the number of nodes in our models to 29,
which was the maximum number of nodes allowed for exhaustive search,**¥ for the G1/S
sub-model, R could not allocate memory for the state tables. Since Ctgf, WNTs and Tgf-/3
are external factors constantly being secreted by our stromal cells (e.g., Wnt5a**? and Tyfb1
in Figure[3.7(A)), we assumed here that these are always present, and fixed the states of these
factors at ON (or in the state ” 1 “) in the wild type. In addition, for the GO/G1 and i-Ctgf
sub-models, we also did and “exhaustive” attractor search without fixing the state of any of
the nodes (see Figure . In all cases, for loss-of-function simulations, we performed an in
silico knock-out of extrinsic Ctgf by fixing its level to ”0“, meaning that the corresponding
protein was always inactive or OFF. For detailed description see 2.2.2.8 Dynamical network

analyses using Boolean logic on page 43 in the 2. Materials, methods and data section.

G0/G1; Ctgf promotes G0-G1 transition In the wild type situation (WT HSC cultured
on WT stromal cells), the GO-G1 transition model generated four simple attractors, each
consisting of one state and having a basin of 65536 states (Figure [3.17 top left panel).
Fifty percent of the attractors represented the activation of Cyclin D1 and, hence, the
GO/G1 phenotype. According to the Boolean model (Table , the activation of Cyclin D1
results from the activity of the transcription factors S-catenin-TCF /LEF, c-Myc and Fos,
and repression of Gsk3-f5 and FoxO1. Strikingly, in the second stable state, where the Wnt
inhibitor Dkk1 stabilized at ON, leading to an inactive state of the FZD/Lrp6 receptor complex,
the simulation still yielded the same GO/G1 output. This can be explained by the OFF state
of Pten, resulting in active FAK, Akt(PKB) and/or Erk1/2. In such a case, on one hand,
Erk1/2 can induce Fos (AP1), a positive regulator of Cyclin D1, and, on the other hand, Akt
(PKB) can inhibit the activity of Gsk3-, leading to the activation of S-catenin-TCF/LEF
and c-Myc. Such an observation would suggest a possible cross-talk between the Wnt and
Integrin/FAK(Focal adhesion kinase)/MAPK/PI3K/Akt (PKB) pathways. In addition, there
were also two stable states, where no activation of Cyclin D1 could be observed. In both
cases, this seemed to result from the activity of Pten, inhibiting the Akt (PKB) and Erk1/2
kinases. As a consequence, Foxol was stabilized at ON and would inhibit Cyclin D1. In the
fourth attractor, the WNT inhibitor Dkk1 was active and Gsk3-/ stabilized at ON, providing
an additional inhibition to Cyclin D1. Accordingly, the absence of Ctgf did not result in
activation of Cyclin D1/Cdk4/6, due to the activity of FoxO1 and Gsk3-3, two downstream
targets of Akt (PKB) in this model. In fact, fixing its state at ON was sufficient to restore
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Figure 3.17: Attractor ("stable state“) analysis of the Boolean networks modeling Ctgf regu-
lated GO-to-G1 transition, G1/S block, as well as its auto-induction. Using the
synchronous updating strategy and Boolean logical rules listed in Table an
exhaustive attractor search was performed for either the wild type (left panel)
or Ctgf loss-of-function (right panel) case. For the Ctgf loss-of-function case,
a comparison (see "Protein data“) of the prediction results (attractors 1-4) to
discretized (binarized) values (see Table S10 for details) of the experimental
validation results of protein levels or phosphorylation status, were available
(Figure . Otherwise, a white rectangle is left in the column ”Protein data‘“
An exception to this was E2f1_Dpl, where we used the mRNA levels (Figure

-; E2f1) instead.
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Figure 3.18: Attractor (”stable state“) analysis of the Boolean networks modeling Ctgf regu-
lated GO-to-G1 transitionand its auto-induction without fixing Ctgf, WNTs and
Tgf-3 states. Using the synchronous updating strategy and Boolean logical rules
listed in Table an exhaustive attractor search was performed for either the
wild type (left panel) or Ctgf loss-of-function (right panel) case. Since exhaustive
attractors are identified by exhaustive search of all 2" states, where n is the
number of nodes that are not set to a fixed value, for the largest of the sub-models,
G1/S-block, also when restricting the number of nodes to 29, which was the
maximum number of nodes allowed for exhaustive search,22¥ R could not allocate
memory for the state tables.
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the activation of Cyclin D1 and the subsequent exit from quiescence. Interestingly, Ctgf has
been reported to induce Gsk3-/3 phosphorylation and decreased the active pool of Gsk3-/3.3%0
In the case, where Ctgf, WNTs and Tgf-5 states were not fixed, a very large number of
attractors was found (Figure [3.18] top panel).

G1/S block; Ctgf contributes to the G1/S block via inducing p21Cipl and p27Kipl
In the G1/S block model, three out of five attractors reflected the activation of E2f1 leading
to the entry into the S phase of the cell cycle, whereas in two stable states the G1/S cell
cycle block occurred, due to the activity of solely p27Kipl or the joint activity of p27Kipl
and p21Cipl. In our model (Table , for the CKI inhibitor p21Cip1 to stabilize at ON,
all its positive regulators (Smad2/3/4, FoxO1, p53 and p300) had to be ON. However, for
p27Kipl to be induced, it was enough that one of its positive regulators, namely, FoxO1 or
Gsk3-( was active. Interestingly, previous model revealed that FoxO1 and Gsk3-3 could also
be involved in the suppression of Cyclin D1 protein levels. Thus, according to the model,
both the inhibition of Cyclin D1 and induction of p27Kipl can be attributed to the activity
of FoxO1 and Gsk3-3. Remarkably, in some of the attractors, where G1/S transition would
take place, Cyclin D1-Cdk4/6 complex stabilized at ON. Indeed, it has also been shown that
Cyclin D1 may stimulate E2f1.504552 The Ctgf loss-of-function simulation yielded four simple
attractors each consisting of one state and having a basin of 16777216 states. The activation
of p21Cipl, as well as E2f1 and the G1/S transition was completely abolished here. In
all stable states, the Gsk3-5 kinase was active. According to the literature, Gsk3-5 may

363 At the same time, Gsk3-/ activation is known to prevent

trigger p21Cipl degradation.
the degradation of p27Kip1.9%* Indeed, p27Kipl was still active in all cases. Again, Gsk3-f3

activity, also FoxO1 stabilized at ON.

iCtgf; Ctgf is able to auto-induce its own expression Finally, we simulated how extrinsic
Ctgf might induce its own expression in LSK cells via a positive feedback loop from Wnt, Tgf-5
or both signaling pathways (see Figure . In the wild type, the simulation again yielded
four simple attractors, each consisting of one state and having a basin of 8192 states (Figure
[3.17 bottom left panel). In three out of four cases, intrinsic Ctgf (7i-Ctgf*) stabilized at ON.
In two attractors, this induction was due to the activity of the Wnt pathway, in particular
the induction of -Catenin and TCF/LEF. In one case (attractor § 3), in addition to the
Wnt pathway, also a positive feedback loop from the Tgf-3 pathway could be established,
i.e., Smad2/3/4, FoxO1 and p300/CBP stabilized at ON. Attractor § four was a stable state,
where no Ctgf auto-induction occurred. Here, the Wnt inhibitor Dkkl was active, leading to
the induction of Gsk3-5. In the Ctgf loss-of-function attractor analysis, no auto-induction

of Ctgf could be observed. Similarly to the attractor f four in the wild type, this was due
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to the activity of Gsk3-5. Again, when the states of Ctgf, WNTs and Tgf-3 were not fixed,
BoolNet returned a rather large number of attractors (Figure [3.18| bottom panel).

Experimental validation of the Ctgf loss—of—function simulation results

Above, we established a Ctgf signaling network and determined possible ways how Ctgf
could affect GO/G1-transition, G1/S block, or its auto-induction. To find out which of these
possible phenotypes (”stable states“) and molecular mechanisms mechanisms driving them
actually occur in stem cells, we performed 24 h co-culture experiments of isolated wild-type
Lin-Sca-1+c-Kit+ (LSK) cells with either UG26-1B6PL59 or UG26-1B6°"C"9/ (Figure
step 9) and examined mRNA (see Figure and/or protein levels or phosphorylation
status (Figure of several network molecules in the co-culture-derived stem (LSK) cells,
including the cell cycle regulators Cyclin D1 (Cend1), p21Cipl (Cdknla), p27Kipl (Cdkn1b),
as well as Tgf-3, several Wnt, Integrin/FAK(Focal adhesion)/PI3K/Akt(PKB) and MAPK
pathway members, using RT-qPCR and Immunofluorescence staining, respectively. Note that
we only experimentally tested the Ctgf loss-of-function simulation results (Figure right
panel). Moreover, we noticed that most changes in the states of the network molecules in LSK
cells co-cultured with UG26-1B6°"“*9/ for 24 h were observed on the level of [phosphol-protein
rather than mRNA (Figure 3.20] and [3.19)), which is in line with previous findings that

the differential expression of mRNA can capture at most 40% of the variation of protein

expression.“* Since most biological functions are mediated by proteins and changes in their
post-translational modifications (e.g., phosphorylation), conveying information through a
network,?*® here, we also focused on the protein level data, where available. Since, using
the Boolean logical model, we predicted the binary network response (ON/OFF) to the
absence of stromal Ctgf, a comparison of the experimental data with the predictions requires
a discretization of the data, in our case, a binarization. The discretized values were obtained
manually, using the following line of reasoning: (i) we first looked at the ratio between the
measurement value at time after 24 h of co-culture on UG26-1B6°"“*9/ stromal cells and the
measurement value after 24 h of co-culture on control (pLKO.1) UG26-1B6 stromal cells
and its statistical significance; (ii) the biochemical knowledge (e.g., whether the measured
phosphorylation is activating or inhibiting) was taken into account. Hence, in order to
discretize the measured signal to "ON“, a statistically significant (p-Value < 0.05) increase
in the relative protein level or an activating phosphorylation, or a decrease in an inhibiting
phosphorylation in LSK cells co-cultured with UG26-1B6°"*/ for 24 h would have to
be observed, whereas a statistically significant (p-Value < 0.05) decrease in the relative
protein level, an increase in an inhibiting phosphorylation, or a decrease in an activating

phosphorylation would discretize the measured signal to "OFF“. The discretization of all
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3.8 Network model predicting the role of Ctgf in regulating the LSK cell-cycle status

Figure 3.19: Experimental validation of the Ctgf loss-of-function simulation results. Protein
levels or phosphorylation status of selected proteins. LSK (stem cells) were
co-cultured for 24 h with UG26-1B6%“*9/ or UG26-1B6P*XO-! (control) stro-
mal cells. Co-culture-derived Cd45+LSK cells were then separated by flow
cytometry and subjected to protein level or phosphorylation state profiling using
immunofluorescence staining (IC-IF) and antibodies listed in Tables [2.8| and
(as described in detail in Materials and methods, 2.2.1.7 Immunocytofluorescence
(IF') microscopy on page 36).
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Figure 3.20: Experimental validation of the Ctgf loss-of-function simulation results. mRNA
expression levels of selected genes. LSK (stem cells) were co-cultured for 24 h with
UG26-1B6°“19/ or UG26-1B6PLKO1 (control) stromal cells. Co-culture-derived
Cd45+LSK cells were then separated by flow cytometry and subjected to mRNA
profiling using RT-qPCR and primers listed in Table S11 (as described in detail
in Materials and methods, 2.2.1.6 Quantitative real-time PCR (¢qPCR) on page
35).
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Table 3.11: Agreement of Boolean attractors for the three sub-processes with experimental protein measurements. For each of
the three functional outcomes ("G0/G1%, ”G1/S block“ and ”i-Ctgf*) the total number of nodes in the network is
given (”"Total nodes*). Note that only a sub-set of network nodes were profiled for relative protein levels and/or
phosphorylation status ("Protein_tested“), hence, we only calculate the agreement between the simulation results and
experimental data for these nodes. Columns "Overlap* ”Attractor_1* to ”Attractor_4“ give, for each of the four Boolean
"stable states (attractors), the number and percentage of nodes, for which the simulation results were in agreement
with experimentally measured protein (as shown in Figure E An exception to this was E2f1_Dpl, where we used the
mRNA levels QﬂmimE E2f1) instead.

Overlap
Process Total_ nodes Protein_tested Attractor.1 Attractor.2 Attractor_.3 Attractor_4

1 GO/G1 20 11 7(63.6%)  7(63.6%) 8 (727%) 8 (72.7 %)
2 G1/S 28 19 14 (73.7%) 14 (73.7%) 15 (789 %) 15 (78.9 %)
3 i-Ctgf 18 11 7(63.6%)  7(63.6%) 8(727%) 8 (72.7%)
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3.8 Network model predicting the role of Ctgf in regulating the LSK cell-cycle status

network species, for which experimental measurements of protein levels or phosphorylation
status were available (Figure is given in Table S10. For the Ctgf loss-of-function case,
the discretized data were then compared to the predictions (Figure ; right panel; "Ctgf
loss-of-function®;”Protein data®). An exception to this was E2fl_Dpl, where we used the
mRNA levels (Figure ; E2f1) instead. A graphical overview of the validation results is
also provided in Figure |3.16]

G0/G1; Ctgf promotes GO-G1 transition As predicted by the model, our experiments
demonstrated that loss of stromal Ctgf leads to a significant decrease in Cyclin D1 protein
levels (Figure ; Cyclin D1 in row 5 and column 3), as could be confirmed experimentally
using Immunofluorescence staining. However, the protein levels of its associated Cdk4 kinase
remained unchanged (Figure ; Cdk4 in row 5 and column 2). Moreover, none of the
transcription factors, possibly involved in the activation of Cyclin D1 (as predicted by our
Boolean model), such as Fos, c-Myc and TCF/LEF demonstrated a significant decrease in
their mRNA levels after extrinsic Ctgf was being knocked-down (Figure ; see Fos, Myc
and Lef1), as it would be expected according to simulation results. Similarly, FoxO1 was
defined as a negative regulator of Cyclin D1 (Table and it stabilized at ON in all the
stable states in the Ctgf loss-of-function simulation (Figure , top right panel). However,
no increase in its mRNA levels could be detected (Figure [3.20; see Fozol). On contrary, our
Immunofluorescence (IC-IF) experiments revealed a significant increase in phosphorylation of
FoxO1-Ser256 (Figure [3.19 p-FoxO1 in row 3 and column 3), which results in nuclear export
and inhibition of transcription factor activity.=¢"

In all “stable states* (attractors) of our model (Figure [3.17] top right panel), S-catenin
stabilized at OFF and Gsk3-( was active, which also could be confirmed experimentally. As it
can be inferred from Figure (p-Gsk3p in row 1 and column 4), the levels of phospho-Gsk3-
B (Ser9), an indicative of its inhibition,*® significantly decreased in LSK cells co-cultured
with Ctgf KD stromal cells. At the same time, the abundance of Ser33/Ser37/Thr4l
phosphorylated -catenin (targeting it towards degradation)“* significantly increased (Figure
; p-f-catenin in row 2 and column 1). RT-qPCR analysis, however, demonstrated no
significant changes in mRNA levels for Ctnnbl and Gsk3b (see Figure .

The Boolean model also predicted that the activity of Cyclin D1 and Gsk3-53, as well as
the CDK inhibitors p21Cipl and p27Kipl depends on the activity state of the Erkl/2 and
Akt (PKB) kinases (Table . To test this prediction, we experimentally profiled the
levels of phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204), an indicative of its activation*™
and the phosphorylation of Akt (PKB) at regulatory residues Thr-308 and Ser-473, known
to lead to its full activation.*™ We observed unchanged levels of phospho-p44/42 MAPK

(Erk1/2) (Thr202/Tyr204) (Figure [3.19} p-Erk1/2 in row 2 and column 3). Nevertheless, our

107



3 Results

experiments reveled a significant down-regulation of Akt, as measured by the decrease in
p-Akt-Thr-308 and -Ser-473 (Figure [3.19} p-Akt (T308) in row 3 and column 2 and p-Akt
(S473) in row 3 and column 1).

It is known that, inactivation of PTEN, leads to the constitutive activation of protein kinase
B (PKB)/Akt via enhanced phosphorylation of Thr-308 and Ser-473.%™ In line with this, we
observed that the protein levels of PTEN, a lipid phosphatase upstream of protein kinase
B (Akt),"™ increased when LSK cells were co-cultured with UG26-1B65"“%/ (Figure
PTEN in row 2 and column 4), whereas its mRNA levels were significantly down-regulated
(Figure ; Pten). In the Ctgf loss-of-function simulation, PTEN took all its possible values
(1 and 0). In fact, this was one of the two network species (the other one being Dkk1), which
differed between the "stable states“: PTEN was inactive (OFF /value 0) in the first two cases
and active (ON/value 1) in the "stable states* three and four (Figure [3.17] top right panel).
Dkk1, on the other hand, was inactive (OFF/value 0) in the first and third attractor and
active (ON/value 1) in the "stable states“ two and four. The mRNA and/or protein levels of
Dkk1 remain to be validated experimentally, yet.

Of note, for the GO/G1 case, the "Protein data“ of Rb is marked as not profiled (Figure
, top right panel), since its phosphorylation on Ser-780 by Cyclin D1-Cdk4, which was
investigated in our experiments (see Figure ; p-Rb in row 6 and column 2), is specific to

SO9STESTE whereas here we are interested in GO and early G1

late G1 phase of the cell cycle,
phase cells. pRb is present as an unphosphorylated protein in GO (quiescent) cells and becomes
hypo-phosphorylated (activated) in early G1, and hype-rphosphorylated (inactivated) in late
G1 phase.""#% n early G1, the Cyclin D1:Cdk4/6 complexes convert unphosphorylated Rb
to hypo-phosphorylated pRb, thus activating it. This active (partially phosphorylated or
hypop-hosphorylated) Rb is able to bind and sequestrate transcription factors, such as FE2f,
and repress E2f-responsive genes, whereas the release of free E2f is thought to be required
for the G1/S transition, and Rb is supposed to keep a cell in the G1/GO0 phase as long
as it binds E2f 088050 At the same time, in late G1, the Cyclin D1:Cdk4/6 complexes
are responsible for iniciating the inactivation of Rb by hyper-phosphorylation.*" Due to
this, different Boolean rules were defined for the two sub-models: in the GO/ (early)G1 we
define CyclinD1/Cdk4/6 as a positive regulator of Rb, whereas in the (late)G1/S sub-model,
CyclinD1/Cdk4/6 is one of its negative regulators (see GO/G1 vs G1/S block in Table [3.10)).

Hence, experiments comparing the ratio of unphosphorylated vs. hypo-phosphorylated Rb
protein would need to be performed, in order to validate the Boolean model predictions in

GO/ (early)G1.
G1/S block; Ctgf contributes to the G1/S block via inducing p21Cipl and p27Kipl In

late G1, Rb inactivation and subsequent cell cycle progression requires an initial phosphoryla-
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tion by Cyclin D1:Cdk4/6, followed by Cyclin E-CDK2 phosphorylation.®™ Cyclin D1-Cdk4,
but not Cyclin E-Cdk2 phosphorylate Ser-780 in pRB, marking the conversion of Rb from a
transcriptionally repressive, hypo-phosphorylated state to an inactive, hyper-phosphorylated
state. Inactivation of pRb by hyper-phosphorylation in late G1 phase causes the release of
E2F, allowing transcription of genes important for DNA synthesis (S phase entry).=U#= 50
Our Boolean model predicted that Ctgf loss-of-function would lead to G1/S cell cycle block
in all ”stable states“, due to the ON state of Rb, resulting in E2f1 stabilizing at OFF (Figure
, middle right panel, rows 1, 2 and 10 for G1_S_block, E2f1_Dpl and Rb, respectively). In
agreement to this, our RT-qPCR analysis demonstrated significantly decreased (F2f7 mRNA
levels (Figure ; E2f1), however, the abundance of pRb-Ser780 significantly increased
(Figure m; p-Rb in row 6 and column 2), independently of the observed decrease in Cyclin
D1 (Figure ; Cyclin D1 in row 5 and column 3). In addition, we also used the BrdU assay
to quantitate the percentage of cells entering and progressing through the S (DNA synthesis)
phase of the cell cycle. However, as it can be seen in Figure [3.12(D) (middle panel), the
analysis revealed no significant differences in the distribution of the cell cycle positions in
LSK cells after 1 week co-culture on UG26-1B6°"“%/ vs. control (pLKO.1) cells.

Also in the context of G1/S cell cycle block, our Boolean attractor analysis revealed
that the activation of p21Cipl was abolished (Figure , middle right panel) in the Ctgf
loss-of-function case. Indeed, a significant decrease in Cdknia mRNA levels (Figure m
Cdknla) and p21Cipl total protein (Figure ; p21Cipl in row 4 and column 2) could
be confirmed experimentally. On the other hand, stable states where p27Kipl stabilized
at ON (active/value 1) were also obtained (Figure [3.17} middle right panel). In agreement
to the simulation results, we observed a significant up-regulation of p27Kip1 total protein
(Figure m; p27Kipl in row 4 and column 3), although its mRNA levels remained unchanged
(Figure [3.20F Cdkn1b). The Boolean model redicted that the activity of the CDK inhibitors
p21Cipl and p27Kipl depends on the activity state of the Erk1/2 and Akt (PKB) kinases
(Table , the experimental validation results for which were already described above (see
"G0/G1; Ctgf promotes GO-G1 transition®).

Finally, according to our Boolean rules (Table and simulation results (Figure [3.17]
middle right panel; Smad2_3_4 in row 22), SMAD was inactive (OFF /value 0). Nevertheless,
when profiling the levels of phospho-Smad2(Ser465/467)/Smad3(Serd23/425), a significant
up-regulation of p-Smad2/3 was observed in LSK cells co-cultured with UG26-1B6"¢!9/
(Figure [3.19} p-Smad2/3 in row 1 and column 2).

iCtgf; Ctgf is able to auto-induce its own expression Finally, for the Boolean sub-model
predicting how Ctgf would be able to auto-induce its own expression, a significant decrease
in both Ctgf mRNA (Figure [3.20; Ctgf) and protein (Figure [3.19; Ctgf in rowl and column
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1) levels could be confirmed experimentally.

In general, we noticed that most changes in the states of the network molecules in LSK
cells co-cultured with UG26-1B6°"“%/ for 24 h were observed on the level of [phosphol-
protein rather than mRNA, as it can be seen by comparing Figure vs. Figure [3.19]
which is actually in line with previous findings that the differential expression of mRNA
can capture at most 40% of the variation of protein expression.”®® Since most biological
functions are mediated by proteins and changes in their post-translational modifications (e.g.,
phosphorylation), we focused on the protein level data, where available (e.g., in Figure .

A summary of the above mentioned experimental validation results is given in Table
[3.11] Here, for each of the three functional outcomes ("G0/G1%, "G1/S block* and "i-
Ctgf“) we calculated the agreement of the obtained Boolean ”stable states® (attractors)
to the experimental protein measurements (Figure . Again, an exception to this was
E2f1 Dpl, where we used the mRNA levels (Figure [3.20} E2f1) instead. To do so, first we
determined the total number of nodes in the network (see "Total nodes* in Table [3.11]). Next,
since only a sub-set of network species were profiled for their relative protein levels and/or
phosphorylation status, we determine the number of those nodes (”Protein_tested“ in Table
, and we only calculate the agreement between the simulation results and experimental
data for these nodes. Finally, to determine this agreement, for each "Protein_tested“ node
within the network, we determine the experimentally (Immunofluorescence; IC-IF) measured
activity status (active/ON/value 1 vs. inactive/OFF/value 0) with the fixed state in the
Boolean "stable states“ (attractors), as shown in Table S10. For each "stable state* (Columns
"Overlap® ”Attractor_1“ to ”Attractor_4* in Table we then calculate the number and
percentage of nodes, for which the simulation results were in agreement with experimentally
measured protein. As it can be clearly seen from Table in all cases ("G0/G1“, "G1/S
block“ and "i-Ctgf*), the highest overlap with the measurement achieved to "stable states®
”Attractor_3“ and "Attractor_4“: 8 positive nodes or 72.7 % overlap for the GO-to-G1
transition case and for the Ctgf auto-induction case, whereas the highest overlap between
the Boolean predictions and experimental data was for the G/S block case was
78.9 % (15 positive nodes). As already described above, the protein levels (activity
status) of the dickkopf Wnt signaling pathway inhibitor 1 (Dkk1) remain to be
validated experimentally, in order to determine which one of these two Boolean
attractors represents the ”true phenotype“ of the LSK cells, derived from Ctgf
deficient micro-environment (UG26-1B6°"“%/), as, according to the simulation results (Figure
[3.17] right panel), Dkk1 was inactive (OFF/value 0) in the "Attractor_3‘ and active (ON/value
1) in the ”Attractor_4*
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4.1 Time-series (TS) gene expression data of co-cultured
LSK and UG26-1B6 stromal cells

4.1.1 Gene expression (microarray) data generation

Recent advances in genome research and gene profiling technologies have resulted in accumu-

lation of global gene expression patterns of primitive hematopoietic stem cells and their more

differentiated progeny, S2EGIIGIITIITS 585

386H392

as well as terminally differentiated hematopoietic
cells. There have also been attempts to compare HSCs to other stem cell popula-
tions. B93589 At the same time, efforts to examine the interactions between HSCs and their
micro-environmental cells have led to the establishment of in vitro culture systems. Several
stromal cell lines have been generated not only from adherent bone marrow (BM) cells,
but also from fetal liver (FL) and the aorta-gonad-mesonephros (AGM) region and have
been shown to maintain HSCs in vitro.** % Among others, two midgestation-derived stro-
mal clones UG26-1B6 (urogenital ridge-derived) and EL08-1D2 (embryonic liver-derived)™*®
have been earlier demonstrated to preserve the maintenance of repopulating HSCs in an
in witro co-culture, without added cytokines, for periods of at least four weeks.™ Further-
more, we have already identified several UG26-1B6 and EL08-1D2-derived secreted factors,
including Secreted frizzled-related protein 1 (Sfrp1) and Pleiotrophin (Ptn) and
demonstrated their critical role in the maintenance of HSCs.?2% Due to this, it appears that
such co-culture systems can, at least partially, mimic the hypothetic in vivo stem cell niche’
and as such provides a useful model system for investigating HSC-stromal cell interactions.’?
Gene expression studies profiling various micro-environment elements, such as comparing HSC
supporting with non-supporting niche cells, have also been reported in the literature. 24405400

In this study, we aimed to monitor how hematopoietic stem cells (HSCs) and their micro-
environmental stromal cells would influence each others expression pattern over time, after
being in direct contact, and to determine possible key extracellular and intracellular molecular
players governing these molecular responses. For this purpose, we performed time-course

gene expression analysis, in which a purified population of stem/progenitor cells, defined
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as Lin-Scal+c-kit+ (LSKs) were co-cultured with the urogenital ridge-derived UG26-1B6
stromal cells for 1, 2 and 3 days and compared to day 0 cells, i.e., freshly isolated LSKs
and cultured stromal cells (see Figure . Collection of this high-throughput data was
complicated by several obstacles. First, it was essential to identify and purify both cell types
unambiguously after the co-culture, which was hampered by the lack of known UG26-1B6
stromal cell-specific surface markers and the autofluorescence signals originating from these
cells. Second, it was challenging to isolate sufficient, measurable amounts of intact, clean, and
highly concentrated total RNA, needed as input for microarray hybridization, due to several
factors, including the extremely low frequency of HSC in the bone marrow (~0.05%),? the
fact that most (~70%) HSC reside in GO (quiescent) phase of cell cycle,” during which little
or no mRNA synthesis takes place,**” and the substantial cell losses (~ 80-90%) after the
first 24 h of co-culture. Moreover, in contrast to embryonic stem cells (ESCs), which when
derived from the inner cell mass can be maintained in vitro as cell lines, current attempts to
expand or even maintain HSCs ez vivo as homogeneous populations have been modest, so
far. As a result, successful development of HSC cell lines have not been reported, hampering

harvest of large numbers of HSCs, necessary for large-scale experiments. 4

Interestingly, as
it can be inferred from Figure [3.2] LSK cells seem to change their surface marker expression
pattern already during the first 3 days in co-culture. After the first 24 h, the expression of
Sca-1 decreases: ~50% of cells have lost their Sca-1 surface marker, however, the separation
into Sca-1+ and Sca-1- cells is not clear cut, namely, an intermediate Sca-1;, population
also seems to be present. Moreover, this is followed also by partial loss of c¢-Kit on day 2,
whereas on day 3 three distinct cell populations already can be observed: Lin-Scal-+c-Kit+,
Lin-Scal-c-Kit+, as well as Lin-Scal-c-Kit-, corresponding to LSKs, multi-potent progenitors
(MPPs), as well as oligopotent progenitors (OPPs), respectively. It has been demonstrated
that HSC activity was not detected in the Lin-Scal- fraction of the bone marrow.? At the
same time, however, it is also known that the expression of certain surface markers used in
HSC purification procedures may alter their expression profile when, for example, adult mouse
HSCs are stimulated to proliferate.*" This raises the question, if 50% of the co-cultured cells
have really lost the multipotency characteristic to HSCs or it is the in vitro co-culture which
modifies their surface marker expression, since it is also known that after facing the selective
pressures of in wvitro culture conditions, changes in cell phenotype can be observed, which
impedes HSC tracking.4"
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4.1.2 Computational analysis of the time-series (TS) gene expression
data

The emergence of microarray and other high-throughput technologies allows the simultaneous
measurement of the expression levels of many thousands of genes. Clearly, time-series
gene expression data has the potential to generate a great deal of biological knowledge
and the information gained from such studies offers an unprecedented opportunity to fully
characterize biological processes. However, as already has been recognized earlier, data
analysis still constitutes the most challenging step. In particular, there is little to no
consensus in the literature about the best method for analyzing (mainly, clustering) time
series microarray data despite the fact that hundreds of algorithms have been developed
for the task. Currently, the process of generating biological hypotheses from microarray
experiments is still rather complex.**0#12 The analysis of time-series gene expression data of
LSK and UG26-1B6 stromal cells both using the STEM (Short Time-Series Expression Miner)
clustering algorithm“*(Figure as well as the analysis of microarray data by two-way
comparisons of consecutive time points (e.g., 24h;Day1;d1 vs. 0h;Day0;d0, 48h;Day2;d2 vs.
24h;Dayl;d1, etc.) using the limma“" t-statistic approach indicated that the most changes
in gene expression levels in LSK and stromal cells occurs already during the first 24 h of
co-culture (Day 1; d1, Tables S1 and S2, for Lin-Scal+c-Kit+ (LSK) and UG26-1B6 cells,

respectively). Hence, we focused our downstream analyses on this time point.

In UG26-1B6 stromal cells, however, these changes in gene expression may not be LSK
(stem cell)-dependent. Instead, arising from the cell culture medium change (Figure
white bars), despite the filtering of UG26-1B6 transcripts based on their expression
profile 24 h (Day1 culture medium control; C) after adding fresh cell culture medium (as
described in 2.2.2.8 Two-way comparisons of consecutive time points in the Materials and

methodn section, page 40).

Also in LSK cells, as already discussed in the context of HSC surface marker expression,
it is known that shortly after being exposed to in wvitro culture conditions, changes in cell
phenotype can be observed.**? Moreover, in other systems, there have been reports that
cell culture and passaging alters gene expression pattern and proliferation rate.*4 This
raises the question, whether the molecular cross-talk between LSK and UG26-
1B6 stromal cells is indeed the most intense right after the first contact of the
cells, i.e., a rapid molecular response occurs, or the observed changes in gene
expression are in vitro culture induced, i.e. ”cell culture effects®“?. In general,
may not be a good idea to compare freshly isolated cells to the in vitro culture-derived ones.

Instead, two culture-derived samples, e.g. wild-type vs. perturbed, such as leukemic stem cells

113



4 Discussion

(LSCs) co-cultured with WT stroma or WT HSCs co-cultured with HSCs-non-supporting
stroma, or stromal cells where a knock-down of a putative or previously-demonstrated extrinsic

regulator of HSCs (e.g., Sfrp1®! or Ptn*") has been introduced, could be compared.

4.1.3 Independent confirmation of the microarray data

Unfortunately, the reliability of the microarray results is still being challenged due to both
systematic and random errors occurring at different stages along the experimental process, and
quantitative real-time PCR (RT-qPCR) is a commonly used validation tool for confirming
gene expression results obtained from microarray analysis.?207 22841440 Here  we wanted
to address, how well the microarray results correlate with gene expression measurements
obtained using RT-qPCR and whether there are differences in sensitivity among the two
methods. For follow-up analysis, the selection of the validation gene set is often rather biased,
as it usually depends on the aims of the study and may be influenced by factors such as the
relative difference in expression among the samples, biological function of the candidate genes,
their abundance levels and availability of appropriate reagents (e.g., probes and antibodies)
for the genes of interest (GOI). Often genes with the highest differential expression ratios
are selected for further study, as such differences are most likely to be valid. To overcome
these limitations, here, for the validation, 75 genes (46 in LSK cells and 29 in stromal cells
(Table with possibly diverse biological functionality and expression levels, and statistical
significance values spanning a wide dynamic range were selected and profiled by RT-qPCR,
which was then used as the "gold standard® in order to evaluate the performance of the
microarrays focusing on the fold change (log2FC) and p-Value agreement, as well as the
sensitivity, specificity, accuracy and precision in detection of differential expression. In general,
in both LSK and stromal cells, the expression data obtained with the two methods were
more consistent for the up-regulated genes (85 and 86% agreement; Figure 3.5(A) and (B),
upper panel, for LSK and UG26-1B6 stromal cells, respectively), whereas the comparison of
microarray-based results with gPCR yielded less agreement (47 and 46%; Figure [3.5(A) and
(B), bottom panel, for LSK and UG26-1B6 stromal cells, respectively). Of note, however,
in UG26-1B6 cells, in a number of cases, these changes seem to be LSK-independent,
as also observed after changing the cell culture medium (control; C; white bars in
Figure [3.7).

More consistent validation results for the up-regulated genes have been already reported
in the literature.?*¥230 To explain this, it was proposed that the effect may be due to the
increased variability observed in low-intensity array spots, i.e. down-regulated genes.“3"
Alternatively, it was observed that the data set of down-regulated genes included a greater

number of genes exhibiting low levels of change (<1.4 fold),**® for which the lack of concurrence
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between methods has been commonly reported. #5420 In this comparison, however, only genes
exhibiting a fold change of 2.0 were selected as differentially expressed, and the agreement
seems to be rather poor also for genes demonstrating a log2FC of ~ -3.0 (Table . Here,
another scenario seems more likely, namely, the lower correlation between the microarray and
qPCR for down-regulated genes may be due to the effects of greater variability associated
with decreased reaction efficiencies found in qPCR measurements at later cycles, where
genes with low expression levels respond.**® As already described above, we encountered
substantial cell losses (~ 80-90%) after the first 24 h of co-culture. Hence, the observed
effects are most likely influenced by the low amounts of mRNA that could be extracted from
these small numbers of cells. Furthermore, in most cases, microarray results over-estimated
the fold-change detected by qPCR, an observation also made by others,**! however, the
opposite has also been reported.#?? Possibly, these differences could be attributed to data
normalization, which fundamentally differs between microarray analysis and qPCR, the
former requiring global normalization, while the latter generally relies on the expression of
one or more reference genes or housekeeping genes (HKGs) against which all other gene
expression is calibrated. Therefore, as already recognized earlier,**® selection and appropriate
application of normalization criteria may also play a major role in the correlations between the
two methods. The statistical significance of the result could not be always confirmed. Among
others, this could be attributed to differences in significance testing. In case of RT-qPCR, a
simple t-test was used, however, it is well known that this test needs normally distributed
variables and is based in the statistical parameters mean and standard deviation. Since the
sample size is usually small (three biological replicates in this case), the standard deviation is
not well represented.#4¥ On the other hand, the 1imma package,*** used for microarray data
analysis, implements a better alternative, the so called, moderated t-statistics, which is a
variant of the t-test that uses linear models with an empirically moderated estimate of the
standard error, effectively borrowing information from across the genes to aid inference about
individual genes. This gives improved statistical power for even small sample sizes.#*¥ On the
other hand, a large number of t-tests are performed in such gene-by-gene analyses, and many
true-null hypotheses may produce small p-values by chance. As a consequence, numerous
false positives, or type I errors, may be obtained if p-Values are compared to standard
single-test thresholds.#*® Due to this, p-Values adjusted for multiple testing should have been
used for this comparison. Studies comparing both methods report several other causes of
variability, for example, the differences in probe sequence and thus target location.#2% In
general, increased distance between the location of the qPCR primers and microarray probes
on a given gene also decreased the correlation between the two methods.#?” Here, in order to

avoid such a bias, when a gene-specific primer pair was designed for qPCR, no efforts were
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maid in matching its location to that of corresponding probe on the microarray. In addition,
the same mRNA should be used for both microarray and real-time PCR analyses, however,
this was not possible in our study since the mRNA amount that could be isolated was limited.
Moreover, RNA amplification was done before hybridization to the microarray. Furthermore,
it is well documented that both qPCR and microarray analysis have inherent pitfalls that may
significantly influence the data obtained from each method.??® For example, one of the issues
about the microarray data is the non-specific and cross-hybridization. A significant number
of the DNA sequences being arrayed produce 'non-specific’ background signals as a result
of, e.g., repetitive elements, poly(A) tails or common motifs. When co-hybridized with two
cDNA samples labeled with different fluorophores, such DNA sequences may produce (often
strong) signals that are interpreted as ’equally expressed’ among the biological samples under
study.?29 On the other hand, RT-qPCR also has its sources of error including amplification
biases, the exponential amplification of errors, mispriming or the formation of primer dimers,
and the changing efficiency of qPCR at later cycles.**® In summary, similar to other laboratory
methods, data derived from microarray-based experiments must be interpreted cautiously
and skeptically.“?® Although, microarrays demonstrate acceptable reliability for genome-wide
gene expression screening, validation of putative changes in gene expression using alternative
methods remains necessary. However, for this purpose uniform validation methods and a
more complete understanding of how to compare and contrast results derived by different
gene expression profiling approaches need to be developed.?*® At the same time, the cost
and effort involved in carrying out follow-up studies on a large scale is rather high. More
recently, the development of high-throughput DNA sequencing methods has provided an
alternative approach for both mapping and quantifying transcriptomes. Hence, RNA-Seq

(RNA sequencing) has clear advantages over hybridization-based approaches. 44

4.1.4 Phenotypic and functional comparison of freshly isolated vs. 24 h

co-culture-derived LSK cells

In contrast to the the pluripotency tags of Oct4, Nanog, AP, or SSEAT1 for ESCs, we still
lack a stringent surrogate marker to follow the HSC multipotent state. Although, current cell
sorting strategies allow for the isolation of HSC population populations of interest based on
their surface marker expression, shortly after facing the selective pressures of in vitro culture
conditions, changes in cell phenotype are observed, which hampers HSC tracking.#"® In the
present study, as already discussed above, LSK cells seem to change their surface marker
expression pattern already during the first 24 h in co-culture, where ~ 50% of cells have lost
the Sca-1 surface marker (Figure [3.2)). Hence, several functional assays were performed in

order to confirm HSC activity. Cell proliferation quantitation using BrdU uptake (Figure
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3.9(A)) revealed that LSK cells, most probably, did not enter the S phase of the cell cycle
(i.e., had no recently synthesized DNA) during the first 24 h in co-culture. In line with this,
labeling experiments with CFSE suggested that LSK cells did not undergo any cell divisions
during this time period (Figure [3.9(B)). In fact, no explicit data can be found in the literature
regarding the time point of first HSC divisions in culture, however, a report by Jing and

collaborates,*2”

comparing three distinct localizations of HSCs relative to the mesenchymal
stromal cell layer: (i) those in supernatant (non-adherent cells); (ii) those adhering to
the surface of mesenchymal stromal cells (phase-bright cells) and (iii) those beneath the
mesenchymal stromal cells (phase-dim cells), states that at day two, approximately 50%
of phase-dim cells had not divided (generation 0), while less than 20% of the other two
cell fractions were generation 0 cells. As it can be inferred from Figure (C), no early
apoptotic cells (PI-, Annexin V+) cells could be detected within the LSK or Cd454+LSK cell
compartments. At the same time, we encounter substantial cell losses (~ 80-90%) after the
first 24 h in co-culture. Most probably, the numbers of necrotic cells (PI+, Annexin V+)
should be compared, however, PI+ cells together with cell debris are usually excluded from
data prior to selecting LSK cells. Alternatively, instead of comparing the rates of spontaneous
apoptosis, apoptosis could be first induced (e.g., by incubating the cells with various doses
of cycloheximide) in fresh and co-culture-derived LSKs and then a comparison of both cell
type susceptibility to induced apoptosis conducted. Interestingly, colony forming cell (CFC)
assay (Figure [3.9(D)) indicated a decreased progenitor forming capacity of LSK cells after
the co-culture. At the same time, in vivo repopulating capacity in the bone marrow (BM)
(Figure 3.9(E)) was significantly increased for the 24 h co-culture-derived LSK cells. These
observations could be interpreted in terms of cell resistance to stress and susceptibility to
apoptosis, where long-term repopulating cells or LT-HSC are known to be uniquely resistant

to stress.1”

4.2 ldentifying Ctgf as a novel regulator of hematopoiesis

Hematopoietic stem cell (HSC) cell cycle status is thought to be precisely coordinated by a
specific combination of 'niche’ signals. In the present study, we identified a secreted 36-38
kDa cysteine-rich matrix remodeller, Connective tissue growth factor (Ctgf), as a putative
novel regulator of early interaction events between HSC and stromal cells from our co-culture
experiments of Lin-Scal+cKit+ (LSK) and HSC-supportive UG26-1B6 stromal cells.

4.2.1 ldentifying Ctgf using candidate gene prioritization

Connective tissue growth factor (Ctgf) was among the highest ranked genes using the

ToppGene suite http://toppgene.cchme.org,**? based on the similarity of its functional
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annotations to the genes previously associated with hematopoiesis (Table S5). In LSK cells,
its induction could be confirmed both on mRNA and protein levels (Figure B.12[A)(a,c,e)),
whereas the UG26-1B6 culture medium contained high levels (~ 14 ng/mL) of secreted Ctgf
already prior to the co-culture (Figure [3.12] (A)(d); Oh). Moreover, on the mRNA level, the
up-regulation of Ctgf was LSK (co-culture) independent, since an increase in Ctgf mRNA
levels was also observed 24 h after adding fresh culture medium to the cells (Figure [3.7(A),
white bars, Ctgf).

In the context of leukemia, Ctgf was shown to be the relatively highest over-expressed
gene in precursor B-acute lymphoblastic leukemia (ALL)** and, in a more re-
cent study, silencing of Ctgf resulted in significant suppression of leukemia cell
growth, which was associated with AKT/mTOR inactivation and increased levels
of cyclin-dependent kinase inhibitor p27.%*% Moreover, Battula and colleagues“™ have
also investigated the role of Ctgf in mesenchymal stromal cells (MSCs), finding
that Ctgf knocked down (KD) human BM-derived MSCs exhibited fivefold lower pro-
liferation compared with control MSCs, had markedly fewer S-phase cells and

differentiated into adipocytes at a sixfold higher rate than controls.

4.2.2 Ctgf regulates hematopoietic stem/progenitor cell (HSC/P)

activity and engraftment potential

Currently, to the best of our knowledge, Ctgf has not been characterized in the context
of normal hematopoiesis. We decided to select Ctgf for further study. Since Ctgf has been
reported to auto-induce its own expression,**’ we hypothesized that its up-regulation
in LSK (stem cells) may be attributed to extrinsic, UG26-1B6-derived Ctgf.
To test this hypothesis and to explore the behavior of HSCs within a Ctgf-deficient 'niche’,
we utilized RNAIi to experimentally induce a stable knock-down of the corresponding
protein in UG26-1B6 stromal cells (Figure [3.12[B)(a-c)) and performed a series of
in vitro co-culture experiments, in which we phenotypically and functionally characterized
hematopoietic stem /progenitor cells (HSC/Ps) after 1 week co-culture with UG26-1B65¢t9/
or control (pLKO.1) stromal cells. Our experiments revealed a significant increase (p < 0.05)
in colony-forming cells (CFCs; 2.2% vs. 0.6% , Figure 3.12C)) and Lin-Scal-cKit+ early
multipotent progenitors (MPPs; 24.9% vs. 12.6% , Figure [3.12(D)). Moreover, in vivo, 16
weeks after transplantation, we observed a significantly decreased donor cell compartment
(8.9% vs. 19.8% Cd45.14 donor cells) in the peripheral blood (PB) of recipients (Figure
3.12[(E)). These data demonstrated that stromal cell-derived Ctgf is involved in the
regulation of hematopoietic progenitor activity and numbers in vitro and affects

the overall engraftment potential of hematopoietic stem cells in vivo.
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Interestingly, the in vivo results of Lin— cell co-cultures of with UG26-1B6*¢*/ stromal
cells are similar to those we previously obtained when studying two other UG261-B6 stromal
cell secreted factors, Secreted frizzled-related protein 1 (Sfrp1)®! and Pleiotrophin (Ptn).“"
Here, the colony number of WT Lin- cells after 2 weeks of co-culture on UG26-1B65*5/77! or
UG26-1B6%F™ | respectively, was also significantly increased. At the same time, in contrast
to the significantly decreased regenerative capacity of 1 week UG26-1B6%“*9/ co-culture-
derived WT Lin- cells, found in this study (Figure [3.12(E)), when analyzed engraftment of
wild-type Ly5.1 HSC in Sfrp1(-/-) and control 129Ly5.1 mice, 16 weeks after transplantation,
a significant increase of engrafted wild-type cells in peripheral blood (PB) and also bone
marrow (BM) in Sfrpl(-/-) mice was observed.”! Similarly, also the transplantations of
wild-type (Ptn(+/+)) HSCs into Ptn(-/-) mice reveald increased donor cell production in
serial transplantations.””? On the molecular level, in terms of the canonical Wnt signaling, it
was demonstrated that the level of S-catenin and Cyclin D1 was decreased in Sfrpl(-/-) LSK
and Cd34-LSK cells, respectively,”! whereas, in the Pleitrophin study it was concluded that
microenvironmental Ptn regulates hematopoietic regeneration through g-catenin-independent

down-regulation of Cyclin D1 (Cendl).

4.2.3 Construction and dynamic analysis of the literature-derived

Boolean network of Ctgf-regulated HSC cell cycle progression

The top-down to bottom-up approach to Ctgf network modeling

To pinpoint the possible molecular mechanisms tied to Ctgf, we first used a top-down approach
to catalogue and analyze the complete Ctgf interactome (Tables S6 and S7). Functional
enrichment analysis of the network (Table S8) revealed association with Tgf3, MAPK, BMP
and Wnt signaling, cell cycle control, proliferation and adhesion, as well as extracellular matrix
binding. Remarkably, besides well-described Ctgf activities, such as involvement in wound

292 and bone formation,?*¥ the analysis also reported a number of

healing,*! angiogenesis
abnormal hematopoiesis-related phenotypes, including changes in hematopoietic cell number,
morphology, physiology and chemotaxis. These findings thus further underscored the
putative role of Ctgf in hematopoiesis and shed light on the possible pathways
involving Connective growth factor (Ctgf), according to the principle of ”guilty
by association“. >

However, large-scale interactomes, such as the complete Ctgf interaction network, are,
clearly, not directly interpretable and sufficient by themselves, as they do not provide
information on the logic of signaling networks and their spatio-temporal behav-

. (23124178301

tor Since, in this study, we were also interested in understanding the dynamical

input /output behavior of the Ctgf interactome, allowing us to formulation a systems-level
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hypothesis and direct targeted experiments, we decided to apply computational modeling to
our network. However, such approaches are currently limited to networks with a relatively
small number of genes/proteins (up to 30 nodes), therefore, we further used a bottom-up or
"seed-gene“approach in order to extract a smaller sub-network from the Ctgf interactome.
As the main regulatory activity in the maintenance of HSCs lies in self-renewal, which is a
special functional form of cell division, we selected the cell cycle as our terminal node, and set
up a literature-derived Boolean model (Figure and Table to predict the HSC cell
cycle status (GO-to-G1 transition and G1/S block) in response to changing levels of extrinsic,
UG26-1B6 stromal cell secreted, Connective growth factor (Ctgf). In addition, since Ctgf has
been reported to auto-induce its own expression,?*” and in 24 h co-culture-derived LSK cells,
the induction of Ctgf could be confirmed both on mRNA and relative protein levels (Figure

3.12[(A)(a,c,e)), we also modeled its auto-induction.

Dynamic network analysis using Boolean logic and experimental validation of the

simulation results

In the present study, we decided to use Boolean logic, since the simple design of such
qualitative discrete models has a number of advantages over more complex dynamic models
(e.g., quantitative and continuous modeling using differential equations). First of all, such
models do not require precise mechanistic details on molecular mechanisms and experimentally
determined kinetic parameters describing the individual reactions such as synthesis and
degradation rates. Instead, a wealth of molecular level qualitative data on individual
components and their molecular interactions obtained from the biomedical literature and
high-throughput technologies can be translated into a Boolean logical model. Second, while
differential equation-based dynamic models have been limited to a couple of small-scale

360 well-understood sub-networks the logical approaches enable

(only a few genes/proteins)
us to model relatively large-scale (up to 30 nodes) signaling networks allowing, for example,
also to study the effects of pathway cross-talk. Several other advantages of qualitative
models already recognized earlier’®® include the fact that such models can be easily expanded,
whereas adding a new reaction to a model of differential equations would usually require
the elaborate re-estimation of parameters. This flexibility also enables one to generate and
validate hypotheses rather quickly. Finally, the qualitative predictions derived from a logical

model do not depend on certain parameter values and are more generally valid.

Dynamic simulation using Boolean logic revealed that Ctgf mediated regulation of LSK
cell cycle and its auto-induction may depend on the activity of Gsk3-3. In all cases, Gsk3-/3
stabilized at ON in the Ctgf loss-of-function simulations (Figure [3.17] right panel). Indeed,
Ctgf has been reported to induce Gsk3-5 phosphorylation on Ser9, decreasing the active
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pool of Gsk3-3.4%" Ag it can be inferred from Figure (p-Gsk3-13), the levels of phospho-
Gsk3-3 (Ser9), indicating the inhibition of the kinase,®*® significantly decreased in LSK cells
co-cultured with siCtgf stromal cells. At the same time, the abundance of phosphorylated
Ser33/Ser37/Thr4l jS-catenin significantly increased (Figure [3.19} S-catenin), which is known
to target B-catenin towards degradation.®® In the G0/G1 sub-network, the induction of
Cyclin D1 was abolished, when Gsk3-/ stabilized at ON. According to the current literature,
the phosphorylation of Cyclin D1 at Thr286 by Gsk3-3 promotes its nuclear export and
degradation.®30 We observed a significant decrease in Cyclin D1 protein levels (Figure [3.19}
Cyclin D1). In the G1/S block case, when Gsk3-3 was active, p21Cipl was OFF, however,
p27Kipl was ON. Indeed, it has been reported that Gsk3-4 triggers p21Cipl degradation.”%
At the same time, Gsk3-3 activation prevents p27Kipl degradation.®®* In line with this, a
significant decrease in Cdknia mRNA levels (Figure ; Cdknla) and p21Cipl protein
levels (Figure [3.19} p21Cipl) could be confirmed experimentally. Remarkably, a significant
increase in p27Kipl protein levels could be observed (Figure , although the mRNA
levels remained unchanged (Figure [3.20f Cdkn1b). Intriguingly, in the i-Ctgf sub-network
also the Ctgf auto-induction was lost, when Gsk3-5 kinase stabilized at ON. A significant
decrease in both Ctgf mRNA (Figure [3.20) Ctgf) and protein (Figure [3.19 Ctgf) levels could
be also confirmed experimentally. The Boolean model also predicted that the activity of
Gsk3-3 depends on the activity state of Akt(PKB) (Table [3.10). Indeed, our experiments
reveled significant down-regulation of phospho-Akt (Thr308/Ser473), whereas we observed
that the protein levels of PTEN, a lipid phosphatase upstream of protein kinase B (Akt),=%
increased when LSK cells were co-cultured with UG26-1B6"“*/. Although we lack detailed
experiments to show the precise regulatory relationships between the above described network
species, it is tempting to hypothesize that there may be a cross-talk between the Wnt and
Akt(PKB) pathways, leading to the inhibition of glycogen synthase kinase-3-beta (Gsk3-5)
via Akt(PKB)-dependent phosphorylation of Ser-9,%* which, on its turn, facilitates the
nuclear accumulation of -catenin, resulting in the induction of its downstream target Cyclin
D1 and cell cycle progression. Whereas, the absence of extrinsic Ctgf leads to the activation
of the tumor suppressor PTEN and the cell cycle inhibitor p27Kip1, leading to G1/S cell cycle
block, which may be accompanied by HSC differentiation, as indicated by our phenotypic

and functional experiments discussed above.

Nevertheless, there were also several inconsistencies between the Boolean logical model
predictions and the experimental data. By contrast to what was predicted and expected
for the G1/S block sub-model, in the Ctgf loss-of-function case, we observed a significant
increase in retinoblastoma protein (Rb) phosphorylated on Ser780 (Figure p-Rb in

row 6 and column 2), marking the conversion of Rb from a transcriptionally repressive,
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hypo-phosphorylated state to an inactive, hyper-phosphorylated state. Inactivation of pRb
by hyper-phosphorylation in late G1 phase causes the release of E2F, allowing transcription
of genes important for DNA synthesis (S phase entry).2!%33%5 Our Boolean model predicted
that Ctgf loss-of-function would lead to G1/S cell cycle block in all ”stable states”, due to
the ON state of Rb, resulting in E2f1 stabilizing at OFF (Figure , middle right panel,
rows 1, 2 and 10 for G1_S_block, E2f1_ Dpl and Rb, respectively). Of note, our RT-qPCR
analysis actually demonstrated significantly decreased (£2f1 mRNA levels (Figure E2f1),
however, phosphorylation and subsequent inactivation of pRb represents a key event governing
cell proliferation.?"” Funtionally, we used the BrdU assay to quantitate the percentage of cells
entering and progressing through the S (DNA synthesis) phase of the cell cycle. However,
as it can be seen in Figure 3.12(D) (middle panel), the analysis revealed no significant
differences in the distribution of the cell cycle positions in LSK cells after 1 week co-
culture on UG26-1B6°"%9/ vs. control (pLKO.1) cells. Another discrepancy between the
experimental data and the model predictions in the G1/S sub-model, was the increase in
phospho-Smad2(Ser465/467)/

Smad3(Ser423/425) in LSK cells co-cultured with UG26-1B6°"“%/. This seems to support
another previously reported mechanism, where Ctgf stimulating the Tgf-5 type III receptor
(TBRIII) antagonizes TGF-S1-induced Smad2/3 phosphorylation.**¥ Furthermore, in our
Boolean model, FoxO1 was predicted to be in the ON state. Moreover, it is known that Akt
(PKB) phosphorylates FoxO1 at Ser-256, negatively regulating its function,2
the levels of active phospho-Akt (Thr308/Ser473) decreased in UG26-1B6°"¢9/-co-culture-

derived LSK cells. Indeed, a simultaneous increase in phosphorylation of Akt-Ser473 and

however, the

FoxO1-Ser256 has been previously detected, when stimulating rat primary skeletal muscle
satellite cells with insulin-like growth factor I (IGF-T).#*¥ Finally, the increase in p-Lrp6
(Ser1490) after 24 h co-culture with UG26-1B6°"¢9/ represents a discrepancy between the
simulation results and data. However, it is known that, upon stimulation with Wnt, Lrp6
activated by Glycogen synthase kinase 3 (Gsk-3) by phosphorylating it at Ser-1490,43

indicating missing edges in our initial model.

Taken together, the highest agreement of the Ctgf loss-of-function Boolean model pre-
dictions and experimental protein data in our logical analysis, in all cases (sub-models;
"G0/G1%, "G1/S block* and "i-Ctgf“) was achieved by two "stable states“ ”Attractor_3“ and
”Attractor_4%: 8 positive nodes or 72.7 % overlap for the GO-to-G1 transition case and for the
Ctgf auto-induction case, and 15 positive nodes (78.9 % overlap) for the G/S block case (Table
. As already discussed, the protein levels (activity status) of the dickkopf Wnt
signaling pathway inhibitor 1 (Dkk1) remain to be validated experimentally,

in order to determine which one of these two Boolean attractors represents
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the ’true phenotype“ of the LSK cells, derived from Ctgf deficient micro-environment
(UG26-1B65"C197) | as, according to the simulation results (Figure m, right panel), Dkk1
was inactive (OFF /value 0) in the ”Attractor_3‘ and active (ON/value 1) in the ”Attractor_4“,
in all three sub-models”G0/G1“, "G1/S block* and "i-Ctgf“. Hence, the highest overlap
(78.9 %) between the Boolean predictions and experimental data was for the
G /S block case (Table , despite the observed inactivation of pRb, indicating the oppo-
site BUBEESE Detailed cell-cycle studies profiling and quantifying the percentage
of cells in different cell cycle phases (including the distinction between GO and
G1; S and G2/M, i.e. the staining with anti-Ki67) at different time points
may still be necessary to experimentally determine which of the two cell cycle
functional outcomes (GO-to-G1 transition, G/S transition or cell cycle block,
or GO-to-G1 transition followed by G/S cell cycle block) would be observed in
LSK cells-residing in Ctgf deficient micro-environment, and whether the auto-
induction of Ctgf in these cells plays a role in the process. Importantly to note,
Lin-Scal+cKit+ (LSK) cells, used in our experiments, are actually a mixture of hematopoietic
stem cells (HSCs) and progenitors. Within the LSK population, more than 70% of highly
purified HSCs (Cd34-Cd48-Cd150hiL.SK) are in the GO phase, whereas less than 10% of
Cd34+LSK cells (differentiated progenitors) are in the quiescent phase.*** Moreover, even
after cell sorting based on their surface marker expression, the obtained cell sub-population is
dynamic, where some cells divide rapidly and others more slowly; some differentiate, others
self-renew; some can give rise to more lineages than others. Due to this variation, population
studies of hematopoietic stem cells are unable to accurately address essential questions.43¢
HSC cell cycle progression and the molecular changes coordinating and accompanying it could
be better adressed using a single-cell tracking approach enabling also automatic detection of
cell cycle phases.#37

The Boolean model constructed and employed in this study is, to the best of our knowledge,
the first existing computational model on the Ctgf-regulated cell cycle progression. The model
was capable to compile and structure the existing knowledge on cell proliferation and functional
interactions of the proteins and their regulatory effects. Given the high level of complexity and
missing information, the model is clearly far from being complete and inevitably does not allow
for a perfect interpretation of the experimental data collected in our study. Inconsistencies
observed allow for the expansion and improvement of the model searching for yet unknown
molecular players (e.g., additional cell surface receptors and signaling pathways associated
with Ctgf) or revising relations that might not be confirmed in experiments or conditionally
modified. It has already been acknowledged earlier that it is much more difficult to extract

information about combinatorial regulatory effects of different proteins affecting a given
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component than to extract information about individual interactions from the literature.=%>

Moreover, much of current available and rapidly accumulating experimental data attempting
to capture intracellular regulation is qualitative (limited mechanistic knowledge), noisy
(conflicting hypotheses), inaccurate and incomplete. For example, in spite of the intensive
study of NF-xB and TGF-f signaling pathways, new components of these pathways continue
to be discovered, indicating that our analysis of even the most well-studied pathways is likely
to be incomplete. U438 Therefore, the observed discrepancies between the network models
and the experimental data could be due to the incorporation of incorrect logical rules, missing
interactions or even missing components in the literature-based sub-networks. Another
important challenge with network inference and dynamical modeling methods is the fact
that many alternative model realizations can fit the same data. Hence, the question remains,
whether the model represents the real system under investigation.*2H70438 Fyrthermore, the
cellular reality is far from being boolean. Although regulatory models are handicapped by
unknowns, missing information on known relations, and the complexity of the biological
processes, they are very well suited to move away from the intuitive interpretation of complex
data such as expression profiles towards a rational, structured interpretation of experimental
data. Models generate clear hypotheses to solve inconsistencies as shown in our work,
eventually by precise perturbations using siRNA or similar approaches. As this and other
studies have shown, 28530239843 qegpite its simplicity, properties derived from logical models
can still provide valuable first insights into the transfer of signals in the cell. As more detailed
(qualitative and quantitative) molecular information on Ctgf and the regulatory networks
governing the HSC behavior within the micro-environment accumulates, this Boolean logical
model may serve as a useful basis for the development of more complex dynamic models. In
the meantime, further refinements could be possibly achieved by implementing fuzzy logic
description or by considering more precise time delays (early vs. late events, modeled on
different time scales) for the interactions and functional outcomes. Finally, we currently
lack sophisticated experimental technologies for systematic profiling of the molecule levels
and phosphorylation states to better understand the complexity of signaling networks. An
ideal technology would have to be able to measure accurately the concentrations of hundred
and even thousands of different proteins and their splice variants, each possibly subject to
a variety of post-translational modifications and should be able to measure all this in a

time-dependent, cell and compartment specific manner, under various conditions.#™
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4.2.4 Ctgf and its down-stream targets in the regulation of cell cycle

and hematopoiesis

In order to preserve the hematopoietic stem cell (HSC) pool throughout the adult life, it is
crucial to maintain the vast majority of HSCs (~ 75%) at any given time in the quiescent
(GO; dormant) phase of the cell cycle. HSC cell cycle status is thought to be precisely
coordinated by a specific combination of 'niche’ signals. In the present study, we identified
a secreted matrix remodeller, connective tissue growth factor (Ctgf), as a putative novel
regulator of early interaction events between HSC and stromal cells from our co-culture
experiments of Lin-Scal+cKit+ (LSK) and HSC-supportive UG26-1B6 stromal cells. By
using RNAi perturbation of secreted Ctgf levels in UG26-1B6, we demonstrate that the
absence of stromal Ctgf deficiency in stromal cells results in increased percentage of myeloid
progenitor cells (MPs) and increased colony numbers in vitro, whereas the overall engraftment

potential of shCtgf co-cultured cells was significantly reduced in vivo.

Nevertheless, on molecular level, it remains unclear, whether Ctgf is responsible for the
G1/S transition or the block of this transition, due to controversal experimental results. On
one hand, we observed up-regulation of the cell cycle inhibitor p27Kip1, but on the other hand,
hyper-phosphorylation and inactivation of Rb was also detected. Of note, the retinoblastoma
protein (Rb) exists in three general forms: unphosphorylated pRb, present in GO cells and
when pRb is newly synthesized; hypo-phosphorylated pRb, present in contact-inhibited
cells and in early G1; and hyper-phosphorylated pRb, that is inactive and present in late
G1, S, G2, and M phases of cycling cells. In early G1, the Cyclin D1:Cdk4/6 complexes
convert unphosphorylated pRb to hypo-phosphorylated pRb. However, Cyclin D1:Cdk4/6
complexes are responsible for inactivating pRb by hyper-phosphorylation in late G1.% The
retinoblastoma protein Rb is thought to be critical for the regulation of mammalian cell cycle
entry, where hypo-phosphorylated Rb is considered to be the active form and to direct G1
block, while hyper-phosphorylated Rb permits the transition from G1 to S phase for cell

proliferation.#4*

The role Ctgf plays in the hematopoietic system is not well characterized. However, experi-
mental evidence obtained in other cells and tissues, as well as by considering its down-stream
targets and their role in the regulation of cell cycle and hematopoiesis, can yield clues about
the biological effects of Ctgf and its molecular mechanisms. Ctgf is produced and secreted by
osteoblasts and can regulate osteoblast development and function. In particular, osteoblast
proliferation and differentiation.**” Osteoblasts play a key role within the hematopoietic
stem cell niche, where osteoblastic cells (OBs) are a critical components for sustaining the

slow-cycling HSC cell cycle kinetics through inter-cellular signaling pathways.#4® This leads
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to overall increased survival of HSCs.#4%448 Generally, loss of long-term hematopoietic stem
cell function in vitro has been associated with cell cycle progression. Hematopoiesis can be
optimally reconstituted by cells in GO phase, in either GO or G1 phase, or by cells which have
undergone cell division and subsequently entered G1 (but not GO) phase, whereas cells in S,

G2 or M phase have minimal engraftment potential. ™

In terms of the cell cycle regulation, contradicting reports on Ctgf can be found. On one
hand, Ctgf has been described as a potent mitogen for fibroblasts and smooth muscle cells,
controlling cell cycle progression through late G1 and S-phase entry.“sU449H42l At the same
time, Ctgf has been demonstrated to control the cell cycle restriction point in late G1, and
being responsible for the cell cycle block in very late G1.4%% In the first scenario, Ctgf induced
the S-phase entry by upregulating Cyclin A levels via reduction of p27Kip1, which resulted
in hyper-phosphorylation of pRb and release of E2f.%®" In the second case, where knocking
down Ctgf expression stimulated cell proliferation and enhanced G1/S cell cycle transition,
the activatation of FAK/PI3K/Akt and its downstream signals regulating the cell cycle was
found, including elevated activiation of pRb (Ser-780), Cyclin D1 and E2f1, and suppressed
expression of p15INK4 and p21Cip1, whereas the expression of Cdk4/6 were not affected.®!
Yet Ctgf can actually first stimulate the cells to exit from GO and enter G1, however, they do
not then progress further through the cell cycle, due to the induction of the cyclin-dependent
kinase inhibitors p15INK4, p21Cipl and p27Kip1.2

The decrease in engraftment potential we observed in HSC/Ps recovered from Ctgf deficient
microenvironment (Figure 3.12(E)), points to a possibly accelerated S phase entry. Similarly,
increased performance in colony-forming cell (CFC) assay and elevated percentage of myeloid
progenitor cells (MPs) is an indicative of increased cell proliferation and differentiation.
However, we do not observe any significant differences in the BrdU assay. At the same
time, it has been also demonstrated that Ctgf can also act as a growth inhibitor by inducing

40350 6 o via up-regulating Caspase 3.4°% Interestingly, in LSK cells co-cultured for

apoptosis,
24 h with shCtgf stromal cells, we observed a significantly lower Cdknla mRNA and p21Cipl
protein levels, whereas p27Kipl was elevated. Inverse correlated of p21Cipl and p27Kipl
expression levels has been observed earlier.#>? p27Kipl and p21Cipl were initially identified
as members of the kinase inhibitor protein (KIP) family of cdk inhibitors, however, further
studies showed that they also functions to mediate Cyclin D1:Cdk4/6 assembly and hence play
dual roles to both promote and inhibit cell cycle progression.**® In particular, in GO, p27Kip1l
translation and protein stability are maximal as it binds and inactivates nuclear Cyclin
E:Cdk2, whereas in early G1, p27Kipl promotes assembly and nuclear import of D-type
Cyclin-CDKs. The progressive decrease of p27Kipl in G1 permits Cyclin E:Cdk2 and Cyclin

A:Cdk2 to activate the G1-S transition.**” For p21Cipl, it has been shown that this regulation
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is concentration dependent: at low concentrations, p21Cipl promotes the assembly of active
kinase complexes, whereas at higher concentrations, it inhibits activity**®. p27Kip1 levels
can be affected by transcriptional and translational pathways, but the major mechanisms for
p27Kipl regulation are thought to be post-translational proteolytic degradation.*®” Similarly,
although most of the studies on p21Cipl regulation have concentrated on its transcriptional
regulation by pb3-dependent and p53-independent mechanisms, p21Cipl can also be regulated
by post-translational mechanisms. p21Cipl is an unstable short-lived protein with a half-life
of <30 min and with a high proteasomal degradation rate, whereby it is degraded in a
ubiquitin-independent manner.“%!' At the same time, in endothelial cells, the focal adhesion
kinase (FAK)-regulated degradation of p27Kipl was Skp2 (an F-box protein that targets
CDKIs) dependent, while levels of p21Cipl were regulated independent of Skp2 by inhibiting

mitogen-induced mRNA 462

Moreover, it has been shown that p21Cipl promotes assembly of Cyclin D1:Cdk4/6
and increases Cyclin D1 accumulation by direct inhibition of Gsk3-S-triggered nuclear
export.*3? Gsk3-3 phosphorylated p21Cipl specifically at Thr57 within the Cdk binding
domain and overexpression of Gsk3-3 decreased p21Cipl protein levels, indicating that Gsk3-/3
triggers p21Cipl degradation. In contrast, stimulation of Akt(PKB) increased p21Cipl via
inhibitory phosphorylation of Gsk3-3.%%4 Simultanously, Gsk3-/3 activation prevents p27Kipl

364 These observations are in line

degradation, whereas it decreases Cyclin D1 expression.
with our experiments, indicating a decrease in Akt(PKB), p21Cipl and Cyclin D1, whereas
Gsk3-4 and p27Kipl are both up-regulated (Figure [3.19)). In addition, another biological

function of p27Kip1 is the protection of cells from apoptosis by constraining Cdk2 activity.4%

In hematopoiesis, initially loss of p21Cipl has been demonstrated to promote HSC entrance
into the cell cycle and long-term loss of stem cells.” However, more recent reports suggest
that the function of p21Cip in regulating HSC cell cycle activity may be restricted to
periods of stress rather than during homeostasis.™™® Another member of CIP/KIP family of
CKIs, p57Kip2, has also emerged as a critical regulator of HSC quiescence.™ p27Kipl was
earlier reported to regulate the proliferation and pool size of more committed hematopoietic
progenitor cells (HPCs).™ More recently, however, a cooperation between p57Kip2 and
p27Kipl in the maintenance of hematopoietic stem cell quiescence has been suggested, with
p27Kipl compensating for p57Kip2 function, whereas only HSCs null for both p57Kip2 and
p27Kipl, were more proliferative and had reduced capacity to engraft in transplantation.4%4
Considering, the TGF-S-induced cell cycle arrest in HPCs® and HSCs® is correlated with an
increase in pb7Kip2 expression, pb7Kip2 could be included in our model and the expression

of p57Kip2 remains to be profiled.
Glycogen synthase kinase-3 (Gsk3-3) regulates both Wnt and mTOR signaling in mouse
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HSCs, with these pathways promoting HSC self renewal and lineage commitment, respectively,
such that inhibition of Gsk3-5 in the presence of rapamycin expanded the HSC pool in
viv0.4%9 Similarly, administration of a glycogen synthase kinase-3 inhibitor to recipient
mice transplanted with mouse or human HSCs resulted in enhanced sustained long-term
repopulation and improved neutrophil and megakaryocyte recovery.®® In our experiments, we
observed activation of Gsk3-3 in HSC/Ps after 24 h in Ctgf deficient environment (Figure[3.19),
followed by decreased engraftment potential in cells recovered from 1 week co-cultures (Figure
3.12(E)), linking stromal Ctgf regulated-Gsk3-3 activity to increased lineage commitment and
hence reduced repopulating capacity of co-culture-derived HSC/Ps. Yet, molecular profiling

of mTOR signaling may be necessary to further investigate this connection.

The tumour suppressor PTEN is known as a cell growth inhibitor: it induces apoptosis and
cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and [U+2010]independent
pathways. 2040 I particular, PTEN, induces G1 cell cycle arrest by reducing 3’ phos-
phoinositides levels and inhibiting Akt(PKB) activity. Moreover, p27Kip]1 is required for
PTEN-induced G1 growth arrest, and expression of PTEN is associated with increased ex-
pression of p27Kip1.49%470 In addition, PTEN also decreases the level and nuclear localization
of Cyclin D1.4% In agreement to this, we observe down-regulation of Akt/(PKB) and Cyclin
D1, whereas PTEN and p27Kipl are both activated, endorsing the G1/S block Boolean
model predicted cell cycle block in the absence of stromal Ctgf (Figure and Figure [3.17]
right panel). However, these molecular events are commonly accompanied by a decrease
in retinoblastoma (Rb) protein phosphorylation on Cyclin D/CDK4-specific sites, due to
the negative effect of PTEN on Rb inactivation,*®® whereas we observe the opposite: a
significant increase in pRb-Ser780, which is a Cyclin D/CDK4-specific site (Figure [3.19).
Strikingly, however, due to a considerable functional redundancy within Rb family, removal
of pRb had no effect on HSC self-renewal as assessed by serial transplantation.™ Hence
its inactivation we observe in our experiments (Figure ; p-Rb in row 6 and column 2)
may have not functional consequences to shCtgf co-culture- derived HSC/Ps. Similar to
the Rb proteins, mice deficient for a single D-cyclin, or for only one of the two associated
Cdks, have minimal hematopoietic defects.™ At the same time, PTEN has essential roles in
restricting the activation of HSCs, in lineage fate determination, and in the prevention of
leukaemogenesis,* as HSCs lacking expression of phosphatase and tensin homolog (Pten)

exhibit activation of cell cycling, 8341472

Ctgf is known as a positive mediator of wound healing, in particular of fibrosis and
scar formation, induced by and acting as a downstream effector of Tgf-3.4445 Iy general,
stromal wound healing involves activation of quiescent fibroblasts, migration of activated

fibroblasts to the site of injury, and differentiation of fibroblasts into myofibroblasts. #7047
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Mice overexpressing Ctgf in fibroblasts are susceptible to accelerated tissue fibrosis affecting
the skin, lung, kidney, and vasculature, most notably the small arteries. Interestingly, Ctgf
also induced phosphorylation of Akt in these transgenic mouse fibroblasts,*™ whereas Gsk3-3
may oppose Ctgf in this process, since mice harboring a fibroblast-specific deletion of Gsk3-/3
exhibited accelerated wound closure, increased fibrogenesis, and excessive scarring compared
with control mice.**” Loss of PTEN expression by dermal fibroblasts has also been reported to
cause skin fibrosis. Moreover, PTEN-deleted fibroblasts showed elevated Akt phosphorylation

and increased expression of connective tissue growth factor.“®!

Furthermore, tumors have been designated as "wounds that do not heal”, due to the

482 In leukemia, when

similarities between tumor stroma generation and wound healing.
comparing the gene expression profile of adult acute lymphoblastic leukemia (ALL) to normal
hematopoietic and non-ALL samples using microarray analysis, Ctgf was the highest over-
expressed gene in precursor B-acute lymphoblastic leukemia (ALL) compared
with the other groups and that increased expression of Ctgf was associated with inferior
outcome in B-ALL.?* More recently, Lu and Battula®®? have also characterized the functional
role and downstream signaling pathways of Ctgf in ALL cells. Their experiments demonstrated
that silencing of Ctgf resulted in significant suppression of leukemia cell growth, which was
associated with Akt/mTOR inactivation and increased levels of cyclin-dependent kinase
inhibitor p27Kipl. In addition, Battula and colleagues“™ have also investigated the role
of Ctgf in mesenchymal stromal cells (MSCs), a major component of the normal as well
as leukemia bone marrow (BM) microenvironment, since connective tissue growth factor is
highly expressed in MSCs. They found that Ctgf-KD human BM-derived MSCs exhibited
fivefold lower proliferation compared with control MSCs and had markedly fewer S-phase
cells. Moreover, Ctgf KD MSCs differentiated into adipocytes at a sixfold higher rate than

controls in wvitro and in vivo.

Hence, these reports suggest Ctgf as a positive regulator of cell growth and proliferation,
which is also in line with our G1/S block Boolean sub-model prediction and experimental
data, where, similarly to Lu and Battula,?®? we aslo observed that silencing of stromal Ctgf

resulted in Akt(PKB) inactivation and increased levels of p27Kipl.

Finally, Ctgf has been reported to auto-induce its own expression.**” In particular, a
p-catenin/ TCF /LEF-binding site (TBE) was identified in the promoter region of Ctgf and
it was found that Ctgf is a transcriptional target of S-catenin/TCF/LEF signaling, thus
the cross-talk between Ctgf and the canonical Wnt signaling appeears to form a positive
feed-back loop.“™ In addition, TGF-£ induces Ctgf by the ‘classical’ SMAD pathway via
a SMAD binding element located within the proximal promoter.*™ Moreover, Ctgf is one
of the genes that (in addition to p15Ink4b and p21Cipl) are jointly induced by SMAD and
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FoxO proteins.®® A significant decrease in both Ctgf mRNA (Figure Ctgf) and protein
(Figure ; Ctgf) levels in LSK cells co-cultured for 24 h with Ctgf KD stromal cells suggests
a positive feedback loop by which extrinsic Ctgf induces its own expression in LSK cells. This
could be regarded as part of a probably much more complex process, by which hematopoietic
stem cells may be themselves involved in the modulation of the hematopoietic niche in order
to inhibit their own proliferation and exhaustion.

In summary, using our strategy we have successfully identified and validated a novel role for
Ctgf in hematopoiesis. Despite a couple of inconsistencies between experimental results and
the current knowledge from the literature, our work demonstrates the utility of Boolean logic-
based models for explaining experimental observations and predicting phenotypic outcomes
of signaling networks. We believe that the results of this study brings us closer to the
comprehensive understanding of the molecular mechanisms regulating the function of HSC in
steady-state and regenerative hematopoiesis, and will help to pinpoint possible targets of

oncogenic transformation.
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1. Gene expression time-series (T'S) of LSK and UG26-1B6 stromal cells at three different time
points of co-culture were generated and microarray results were independently confirmed by
RT-qPCR, demonstrating ~ 62% sensitivity and ~ 49% specificity for the selected candidate

genes.

2. Functional assays of freshly isolated vs. 24 h co-culture-derived LSK cells demonstrated no
changes in the cell cycle status, however the progenitor generation capacity was decreased,

whereas the engraftment potential was increased 16 weeks after transplantation.

3. Clustering analysis of TS data suggested that the most intense molecular cross-talk between
LSK and UG26-1B6 cells occurred during the first 24 h of co-culture, whereas in stromal
cells these changes may also be culture medium dependent. Gene function enrichment
analysis revealed changes in cell adhesion and migration, TGFf signaling, metabolism,

MAPK-regulated cell proliferation, as well as epigenetic regulation of gene silencing.

4. Candidate gene prioritisation using a training set of hematopoiesis-related genes ranked high,
a secreted 36-38 kDa cysteine-rich matrix remodeller, Connective tissue growth factor (Ctgf).
Its interactome analysis revealed association with mouse phenotypes related to abnormal
hematopoiesis and topological property analysis and module discovery in the Ctgf interactome

indicated modular structure and small-world properties.

5. Phenotypic and functional comparison of shCtgf vs pLKO0.1 1 week co-culture-derived HSC/P
cells revealed increased numbers of MPP cells, as well as colony-forming cells (CFCs) in
methylcellulose, as well as reduced donor cell compartment in the peripheral blood (PB) 16

weeks after transplantation.

6. A bottom-up approach was used to construct a literature-based network model predicting the
possible role of Ctgf in (1) GO/G1 by inducing Cyclin D1, (2) G1/S block by inducing p21Cipl
and/or p27Kipl, as well as its (3) auto-induction in LSK cells. Dynamic network analysis
using the Boolean logic pointed to a possible association between Ctgf and Akt(PKB)/PTEN,

GSK3-8 and [-catenin activity, which also could be confirmed experimentally.
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