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J(x) interconnection matrix
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d , . . . , u
(k−1)
d ]T

v(t) new input after an input transformation
V (x, t) Lyapunov function
Vd̂ volume of the set Sd̂(0)
V discretization of the (n− 1)-dimensional unit sphere
Wi(x) time-invariant positive definite bounds for V (x, t) and −V̇ (x, t)
W(x) matrix with coefficient functions of a PDE (2.26), (6.16)
x(t) state vector
xα actuated coordinates
xν unactuated coordinates
x(t; x0, t0) solution of (2.7) or (2.72) starting from x0 at t0
xd(t) desired state trajectory
x∗ (desired) equilibrium point
x0 initial state x0 = x(t0)
x̂ point corresponding to ĉ (Section 3.2)
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d , i.e., Yk
d = [yd, y(1)

d , . . . , y
(k−1)
d ]T

z spherical coordinates [see (3.7)]
zp input-output coordinates of the pth subsystem of (7.1) (Section 7.2)
zp,d(t) desired trajectory of zp

Greek Symbols

αij(x) [αp,ij(x)] elements of Fα(x) [Fα
p (x)]

α̃1(z1) see (7.13)
α̂2(z2) see (7.16)
β̃1(z1) see (7.13)
β̂2(z2) see (7.16)
δmin accuracy with which M is approximated (Section 3.4)
∆(x) distribution
∆F,p(x) distribution spanned by the rows of Fν

p(x)
∆W (x) distribution spanned by the rows of W(x)
∆W,s(x) distribution spanned by the rows of [W(x), s(x)]
∆λmin minimum distance between adjacent points in V
∆λmax maximum distance between adjacent points in V
ηp(t) vector of internal dynamics states of the pth subsystem of (7.1)
ηp,d(t) desired trajectory of ηp
θi angles in the spherical coordinate system [see (3.7)]
θ parametric uncertainty (Section 6.6.2)
λ variable of gv,k(λ) and hv,k(λ) (Section 3.2)
λmink initial estimate of ρ

sD(vk) (Section 3.3)
νij(x) [νp,ij(x)] elements of Fν(x) [Fν

p(x)]
ξ(x) characteristic coordinates of a PDE (2.26), (6.16)
ξp(t) vector of input-output dynamics states of the pth subsystem of (7.1)
ξp,d(t) desired trajectory of ξp

xv



Glossary

ρD(·) radial function of a set D associated with the origin [see e.g. (3.3)]
σ(t) switching signal
σd(t) switching signal corresponding to xd and ud (see Section 7.3)
σe(t) switching signal of the error system (7.109)
φ(ξ(x)) homogeneous solution of a PDE (2.26), (6.16)
ϕ(x,u) function implicitly defining ∂χ by ∂χ = {(x,u)|ϕ(x,u) = 0}
ϕ̃(z1,u) function ϕ in z1 coordinates
ϕ̂(z2,u) function ϕ in z2 coordinates
ϕx(x), ϕu(x) parts of the function ϕ(x,u) [see (2.71)]
ϕ̃x(z1), ϕ̃u(z1) functions ϕx, ϕu in z1 coordinates
ϕ̂x(z2), ϕ̂u(z2) functions ϕx, ϕu in z2 coordinates
ϕp(x, yrpd ) function ϕ(x, u) with u = up,d (Section 7.2)
ϕ̃p(z1, y

rp
d ) function ϕ̃(z1, u) with u = ũp,d (Section 7.2)
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Chapter 1

Introduction

The objective of this thesis is to contribute to the development of constructive controller
design methods for nonlinear systems. While the first part of the thesis is devoted to
the control of smooth systems, the second part is dedicated to switched systems, which
have received growing attention in the last two decades. We start this introduction by
motivating our work in Section 1.1. Subsequently, we clarify the focus of the thesis and
point out the main contributions in Section 1.2. To put our results in perspective, we
review the state of the art in Section 1.3. In Section 1.4 we give an outline of the thesis,
and finally we introduce some notation in Section 1.5.

1.1 Motivation
The ever increasing demand for dynamic performance and efficiency of control systems
requires the use of sophisticated design methods which are based on precise models of the
plant. Most physical systems are inherently nonlinear and often no satisfactory result can
be achieved if only a linear approximation is considered for the controller design. For this
reason, various nonlinear control design methods have emerged. In the last two decades,
the notion of passivity has played a central role in this development (see e.g. the series of
books [46], [104], [134], [151], [174]), one reason being that the resulting control laws tend
to be more robust and energy efficient than those obtained by geometric design methods,
such as feedback linearization, which have been popular since the 1980’s (see e.g. [151]).
The passivity property essentially means that a system does not contain a source of

energy or, in other words, that it cannot store more energy than supplied to it from the
outside. The term passivity-based control (PBC) has been introduced in [136] to denote a
control technique that achieves stabilization by rendering the closed loop system passive
with respect to a desired energy function. However, the idea of shaping the energy of a
system by feedback control dates back to the famous paper by Takegaki and Arimoto
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[166] in 1981, where set point regulation of a robot manipulator is achieved by shaping
its potential energy and injecting damping. While in “standard” PBC the desired energy
function is specified a priori, at the beginning of the century, a second class of PBCs
emerged with the methods of Controlled Lagrangians [14], [15] and Interconnection and
Damping Assignment (IDA) [132], [140], where instead of the storage function the structure
of the closed loop system is fixed to be Lagrangian or port Hamiltonian (pH), respectively.
The set of assignable energy functions is then determined from the so-called matching
equation. Throughout this thesis, we will make extensive use of the method IDA, which
has already been successfully applied to a multitude of technical systems (see e.g. [4], [61],
[67], [80], [84], [93], [131]).
A major difficulty in IDA is the tuning of the numerous controller parameters with

respect to desired closed loop properties. Therefore, there is a need for tools and methods
which enable the systematic and transparent tuning of IDA controllers, also in order to
expedite the industrial application of the method. Besides the dynamic behavior of the
closed loop system, an aspect that plays a central role in this context is the domain of
attraction (DA) of the desired equilibrium point, which is the set of all initial states from
which the system trajectory tends to that equilibrium. As a matter of fact, knowledge
of the DA or at least a subset thereof is indispensable for the secure operation of the
closed loop system. Clearly, the control law has to ensure that the DA is large enough to
guarantee stability in the entire operating region. For example, when a set-point change is
made, the actual system state must be contained in the DA of the new operating point.
Moreover, the DA has to be large enough to provide robustness against disturbances, which
is of particular importance for systems that must have high reliability, such as flight control
or power systems. Let us briefly mention the Boeing F/A-18A/B/C/D Hornet aircraft
as a motivating example. Many of these aircrafts have been lost due to an out-of-control
flight departure phenomenon which is called “falling leaf” motion and can occur when the
system state leaves the DA of the desired flight state e.g. due to a wind gust [77]. All these
aspects have motivated us to come up with a systematic methodology to tune an IDA
controller such that the DA is maximized, while simultaneously fulfilling the requirements
regarding the dynamic performance. However, determining the DA of a general nonlinear
system is a difficult task which remains unsolved up to now. Therefore, usually an inner
estimate is determined using a Lyapunov function.
One central feature of IDA is that the assigned energy function qualifies as a Lyapunov

function for the closed loop system and hence allows for estimating the DA of the desired
equilibrium point. Since, in general, the energy function is not radially unbounded,
this includes determining its largest bounded sublevel set. However, as noted in [61],
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characterizing the largest bounded sublevel set of a general Lyapunov function is “a very
hard problem”. Moreover, if a suitable sublevel set is known, it consists, in general, of several
different connected components, and an estimate of the DA is given by the component
which contains the considered equilibrium point. Therefore, it is still difficult to decide
whether a given initial state is contained in the estimated DA or in some other connected
component of the sublevel set. In the case of time-varying systems, as they occur in the
context of trajectory tracking control of nonlinear systems, estimating the DA is more
complicated due to the explicit time-dependence of the energy function. Motivated by
this, in this thesis we develop an approach that allows to estimate the closed loop DA
with the help of the assigned energy function for both time-invariant and time-varying
systems. Moreover, we obtain a representation of this estimate that enables us to easily
decide whether a given state is contained therein.
Recently, the notions of dissipativity and passivity have been extended to the class of

switched systems (see e.g. [191], [193], [194]), which has received a great deal of attention
in the last decade, from both practitioners and researchers. One of the main reasons for
the interest in this class of systems is the fact that, for a wide variety of technical systems,
it is beneficial or even necessary to use a modeling framework which combines logic based
switching with continuous differential equations, e.g. when the plant system contains
switching elements, such as valves or electric switching devices, or when it has multiple
modes of operation. Also, when modeling complex physical systems, some components
are often approximated by switching elements in order to simplify the model and to avoid
complex nonlinearities and stiffness [126]. Loosely speaking, switched systems are described
by a state differential equation whose right-hand side is selected from a given family of
vector fields (characterizing the dynamics of the so-called subsystems) by some switching
rule. The latter is usually assumed to be either externally specified as a function of time
(trajectory-independent switching) or to be state-dependent [113]. However, as can be
seen e.g. in the application paper [94], switching rules that depend on the control input
are of technical relevance as well. It is worth mentioning that piecewise affine (PWA)
systems (sometimes also called piecewise-linear systems), that have been studied by Sontag
already in the early 1980s (see [159], [160]), may be viewed as switched systems with
state-dependent switching law and affine subsystem dynamics. Practical examples of
switched systems can be found in various fields of application and include, for instance,
hydraulic systems [94], chemical processes [123], automotive applications [157], the flying
height regulation problem in hard disk drives [184], and even biological processes (see
Example 1.3 in [155]).
While there is a large number of publications dealing with the stability analysis of
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switched systems (see e.g. [7], [21], [38], [113], [114], [120], [192] and the references therein),
much less effort has been made so far on the controller synthesis for this class of systems,
despite its technical relevance. Therefore, as noted in [186], there is still a pressing need for
constructive analytic methods that allow the transparent design of stabilizing controllers
for switched systems. This control task is impeded by the fact that the stability properties
of switched dynamical systems are radically different from those of smooth ones. In
particular, systems of this class can exhibit unstable behavior, even if all subsystems taken
by themselves are asymptotically stable. Therefore, it is not sufficient to stabilize each
subsystem individually. In view of the successful application of passivity-based methods to
smooth systems, it can be expected that they are also useful for switched systems [194].
This motivates the development of controller design techniques for switched systems that
achieve stabilization by passivation. In particular, we present in this thesis an extension of
the IDA approach to the class of switched systems. As in the smooth case, a major aspect
we are concerned with is to put forth methods that enable the constructive design and the
transparent tuning of stabilizing controllers.
Besides the pure stabilization of a desired equilibrium, in practice, it is often required

that a specific quantity follows some predefined trajectory. Since that quantity is typically
defined to be the output of the system, this problem is referred to as output trajectory
tracking problem. This control task has been extensively studied for smooth systems (see
e.g. [89], [110] and the references therein) and it is evident that it is highly relevant also for
switched systems. It is desired that the reference trajectories can be freely chosen by the
control engineer or operator of the system. The desired trajectories are commonly specified
in terms of polynomials, trigonometric series or other smooth functions. Therefore, a
fundamental question arising in this context is under what conditions we can find a control
input such that a desired smooth output trajectory is tracked exactly [exact output tracking
(EOT) problem]. Not surprisingly, this question is more involved than in the case of smooth
systems, especially when the switching is trajectory-dependent, i.e., state- and/or input-
dependent. For it is closely related to the existence of solutions of discontinuous differential
equations and, as noted by Sussmann [163], this problem is more delicate than it is for
smooth systems. As far as we are aware, no results are available that provide conditions
under which the EOT problem is solvable for nonlinear switched systems. Therefore, we
address this problem in the present thesis for bimodal1 switched nonlinear systems with a
single input and a single output.
Since, in a practical setup, disturbances and model uncertainties are present, in order to

1A switched system is called bimodal if it has two subsystems.
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attain good tracking performance, normally a feedback controller needs to be designed
which asymptotically drives the system output towards the prescribed reference trajectory.
In the present thesis, we study this so-called asymptotic output tracking (AOT) problem
for bimodal switched nonlinear single-input-single-output (SISO) systems. To the best of
our knowledge, that problem has previously been considered only for one particular system
[94], but no general results are available. As in the case of smooth nonlinear systems,
the differential equations that govern the evolution of the tracking error are time-varying
even if the plant dynamics are described by a time-invariant switched nonlinear system.
This shows the need to develop also controller design methods for the stabilization of
time-varying switched systems.

1.2 Focus and Contributions of this Thesis
In this thesis, we present methods for the constructive and systematic design of controllers
for smooth and switched nonlinear systems. For both classes of systems we consider the
set-point as well as the trajectory tracking control problem, and we are concerned with
the systematic and transparent parametrization of the feedback laws regarding the size of
the resulting DA and the closed loop dynamics. The presented methods are illustrated by
means of several technical examples in order to demonstrate their practical applicability.
With the exception of Chapter 7, the results in this thesis complement or extend the
passivity-based controller design methodology IDA.
The main part of the thesis is divided into two parts. The first one is dedicated to

the control of smooth dynamical systems and comprises the chapters 3–5. The two main
problems addressed in this part are the estimation of the DA achieved by an IDA controller
utilizing the assigned energy function and, based on that, the systematic tuning of such a
controller to maximize the estimated DA and, at the same time, attain desired closed loop
performance. Both issues are addressed not only for the time-invariant case but also in
the context of time-varying systems as they arise when trajectory tracking is considered.
The second part of the thesis is devoted to the control of switched nonlinear systems

and consists of the Chapters 6–8. We consider the case of arbitrary switching as well
as the case of trajectory-dependent switching, where the switching law may depend on
the state and/or the control input. The first main problem addressed in this part is the
passivity-based stabilization of switched nonlinear systems, whose subsystems may, in
general, be time-varying. The second issue under investigation is the output trajectory
tracking problem, where we restrict our attention to bimodal switched SISO systems. We
are interested in conditions under which the exact output tracking problem is solvable and
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also study the asymptotic output tracking problem. The contributions of the individual
chapters are summarized in the following:

Chapter 3: Estimating the Domain of Attraction We address the question of how
to exploit the closed loop pH structure resulting from the application of IDA in order to
obtain an estimate of the DA of the desired equilibrium point. More precisely, we are
concerned with the problem of how to determine an as large as possible sublevel set of the
assigned energy function which qualifies as an estimate of the DA in spite of the fact that
this function is, in general, not radially unbounded. We develop an approach that allows
to determine a suitable sublevel set without formulating any conditions on the energy
function that go beyond those of the IDA method itself. For the effective computation of
the corresponding level value, we present two numerical algorithms. The first one is based
on a multidimensional grid and is relatively easy to implement, which is advantageous in
terms of broad practical applicability. It is extended also to the case of time-varying closed
loop systems. The second one uses numerically calculable bounds on real valued functions
together with a generalized bisection algorithm. It is computationally more expensive, but
bypasses the problem of choosing an appropriate grid. Both methods can also be applied
to switched pH systems as they emerge in the context of the control scheme proposed in
Chapter 6. The main contributions of this chapter are:

• an approach to estimate the DA achieved by an IDA controller based on the assigned
energy function which is applicable for both time-invariant and time-varying systems,
and

• two numerical algorithms for the effective computation of the estimated DA.

Chapter 4: Controller Design In this chapter we are concerned with the fundamental
question of how to tune the large number of parameters that occur in IDA. To simplify
the controller design process, we propose a specific parametrization which guarantees
the positive semidefiniteness of the dissipation matrix without considering cumbersome
inequality constraints, as they are obtained e.g. from Sylvester’s criterion. Moreover, we
outline a procedure to numerically approximate the boundary of the DA as estimated by
the methods from Chapter 3. This allows, on the one hand, to determine whether a given
initial state is contained in this set, and, on the other hand, to compute the volume of
the estimated DA, which can be used to quantify its size. Based on this scalar measure
we present an optimization approach to determine a controller parametrization which
maximizes the estimated DA and simultaneously takes into account the desired dynamic
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performance of the closed loop system. All methods presented in this chapter are applicable
for time-varying systems as well. The main contributions of this chapter are:

• a specific parametrization of the design matrix that guarantees the positive semidefi-
niteness of the dissipation matrix, and

• an optimization procedure to determine a controller parametrization that maximizes
the volume of the estimated DA while simultaneously taking account of desired closed
loop performance.

Chapter 5: Examples We illustrate the application of the methods presented in the
Chapters 3 and 4 and demonstrate their effectiveness for the set-point and trajectory
tracking control of technical systems. We first consider a 2-dimensional numerical example
for which the exact DA can be computed and an easy graphical visualization of the results
is possible. As a technical example for the stabilization of time-invariant systems we take
the excitation control of a synchronous generator, which is of major importance as it
enhances the resilience of a power system to disturbances. The objective is to enlarge
the DA and thereby to increase the so-called critical clearing time, which is an important
security measure of a power system. We provide a comparison with another IDA controller
from the literature [61] and show that considerably better results are achieved by employing
the proposed techniques. As a third example, we study the trajectory tracking control of a
magnetic levitation system – in particular the stabilization of the time-varying tracking
error dynamics – in order to show the applicability of the proposed methods also in the
time-varying case. In this context, experimental results obtained at a laboratory experiment
are presented. The main contribution of this chapter is:

• the demonstration of the viability and effectiveness of the methods proposed in the
Chapters 3 and 4 for the control of technical systems.

Chapter 6: Passivity-Based Control of Switched Nonlinear Systems An analytic
and constructive controller design methodology for switched nonlinear control affine systems
is presented. We introduce the class of switched port Hamiltonian (spH) systems and
discuss their stability properties. Motivated by the latter, we propose an extension of
the IDA approach to the class of switched systems that assigns an spH structure with
a common energy function to the closed loop system and thereby achieves (asymptotic)
stabilization. For a special class of switched systems, we derive a systematic procedure for
the construction of suitable design matrices and the subsequent controller design. In this
context, we derive conditions under which the matrix equation AX + XTAT = Q has a
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solution whose symmetric portion is positive semidefinite. We also briefly consider the
case where the switched system is already given in spH form, and we extend the method
to incorporate integral as well as adaptive control. Moreover, we generalize the method to
switched nonlinear systems with time-varying subsystems. The main contributions of this
chapter are:

• a constructive and analytic passivity-based controller design methodology for switched
nonlinear systems, and

• a systematic procedure for the construction of suitable design matrices and the
subsequent controller design for a special class of switched systems.

Chapter 7: Output Trajectory Tracking of Bimodal Switched Systems Both
the exact and the asymptotic output trajectory tracking problem are addressed for switched
nonlinear SISO systems with two subsystems. We study trajectory-independent as well
as trajectory-dependent switching, where in the latter case the switching law may also
depend on the input. We derive necessary and sufficient conditions for the solvability of
the exact output tracking (EOT) problem. Moreover, we explore the asymptotic output
tracking (AOT) problem using the well known two-degree of freedom structure. In the case
of trajectory-dependent switching, the stabilization of the tracking error dynamics is found
to be quite involved. Therefore, we identify two special classes of switched systems for
which the controller design simplifies considerably: a class of continuous bimodal switched
nonlinear systems, and a class of bimodal switched linear systems. For the latter, we
propose an LMI-based controller design approach. The main contributions of this chapter
are:

• necessary as well as sufficient conditions for the solvability of the EOT problem for
bimodal switched nonlinear SISO systems,

• the proof of a result that considerably simplifies the AOT problem for a class of
continuous bimodal switched nonlinear systems, and

• an LMI-based approach to solve the AOT problem for a class of bimodal switched
linear systems.

Chapter 8: Technical Applications We apply the results from the Chapters 6 and
7 to two technical systems in order to show their viability and effectiveness. First, we
study the problem of tracking a desired speed trajectory with a DC motor, whose friction
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characteristic is asymmetric in the angular velocity – a phenomenon that is well known for
DC motors (see e.g. [6], [23], [55], [96]). The different friction behavior for positive and
negative velocities leads to a plant model that exhibits state-dependent switching. As a
second example, we consider a self-supplied variable displacement axial piston pump, where
it is desired to make the load pressure track a prescribed trajectory. The model of this
device exhibits input-dependent switching. Both systems are analyzed with respect to the
solvability of the EOT problem and suitable feedforward controllers are designed. In order
to attain asymptotic output tracking, the switched error dynamics are stabilized using the
IDA-based controller design methodology from Chapter 6. To compute an estimate of
the DA the approach proposed in Chapter 3 is utilized. Simulation results illustrate that
a good dynamic performance is achieved by means of the proposed methods. The main
contribution of this chapter is:

• the demonstration of the practical applicability and effectiveness of the results
presented in the Chapters 6 and 7 using two technical application examples.

In summary, we present a variety of results on the constructive design of set-point as
well as trajectory tracking controllers for both smooth and switched nonlinear systems.

1.3 Related Work
To put the material in this thesis in perspective, we give an overview of the state of
the art in this section. In accordance with the main topics addressed in this thesis, the
literature review is focused on the estimation and enlargement of the DA, the stabilization
of switched systems, and the tracking control problem for switched systems. Each of the
following subsections is dedicated to one of these topics.

1.3.1 Estimating and Enlarging the Domain of Attraction

As a result of the importance of the DA in the analysis and synthesis of nonlinear systems,
its determination has been a topic of extensive research during the last 40 years. However,
the computation of the exact DA for a general nonlinear system is a very hard problem
and remains unsolved up to now despite intensive research efforts. A method which in
principle allows the numerical computation of the exact DA – provided that it is applicable
– has been proposed in [29]. It uses that, under some conditions, the boundary of the DA
is formed by the stable manifolds of the equilibrium points on this boundary. Hence, it
requires the identification of all relevant equilibrium points and the computation of their

9
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stable manifolds, which makes it very involved for systems of dimension greater than 2.
Moreover, the conditions for its applicability are restrictive as well as difficult to verify
in general. Therefore, numerous methods have been developed to determine an inner
approximation of the DA (see e.g. the survey paper [68]).
The vast majority of these methods is based on Lyapunov functions, i.e., the DA is

approximated by a positively invariant sublevel set of a Lyapunov function. The most
popular type of Lyapunov functions are definitely the quadratic ones [26], [37], [149],
[170], whose sublevel sets are of course guaranteed to be bounded. While the authors of
[37] and [26] aim to find the optimal quadratic Lyapunov function, i.e., the one which
maximizes the volume of the estimate, in [149], [170] the Theorem of Ehlich and Zeller
and its extensions are used to determine the largest sublevel set of a particular quadratic
Lyapunov function which can be guaranteed to be contained in the DA. For polynomial
systems, recently techniques which are based on sum-of-squares relaxations have become
popular (see e.g. [167], [171]), where a polynomial Lyapunov function is computed by
solving an optimization problem with LMI-constraints. In these approaches, boundedness
of the sublevel sets is guaranteed by lower bounding the solution by a predefined radially
unbounded function.
A method which utilizes Lyapunov functions that are not radially unbounded is the

closest unstable equilibrium point (UEP) method, which is frequently employed for the
transient stability analysis of electric power systems [27], [30] and has been formulated for
general dynamical systems with hyperbolic equilibrium points in [31]. It yields an optimal
estimate of the stability region in the sense that it is the largest one which can be obtained
with the corresponding Lyapunov function. However, it requires that along any system
trajectory the Lyapunov function is both strictly decreasing and a proper map. For network-
reduction models, which are traditionally used for the transient stability analysis of power
systems, such a function is known [27]. In general, however, these conditions are restrictive
and particularly the second one is not easy to verify [27]. Specifically, in the context of IDA,
usually none of the two conditions can be guaranteed. See also [61], in particular Remark 1,
for a related discussion. Moreover, a key step of the method is the numerical computation
of all equilibrium points of the system, which can be very involved and is a field of current
research, see e.g. [107] for a discussion. For instance, it is shown in [107] that the dynamic
gradient approaches, which have been proposed to overcome the drawbacks of the classic
quasi-Newton methods (see e.g. [116]), may fail even for second order systems.
In [61], strong convexity of the energy function in a certain region is exploited to show

boundedness of the sublevel sets. However, it can only be concluded that all sublevel sets
contained in that region are bounded, but no particular sublevel set is obtained. Moreover,
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strong convexity is only a sufficient condition and analytically verifying this property is
very difficult for general energy functions. In [101], [177], the Ridge method [88], which is
used in theoretical chemistry to find saddle points on potential energy surfaces, is employed
to identify a suitable sublevel set of the energy function. However, this method is, in
general, not suitable for determining a sublevel set that qualifies as an estimate of the
DA. First, the algorithm requires one point on each side of the energy ridge on which the
saddle point is located as input argument. Unlike when considering chemical reactions, in
the context of estimating the DA there is usually no indication on how to choose these
starting points. Moreover, even if a saddle point can be computed, there is no guarantee
that it is the desired one, and, as can be seen from the discussion in Section 3.1, it is in
general not true that the level value of interest is attained at a saddle point. In summary,
there is no satisfactory method available to date which enables to estimate the DA of an
IDA controller based on the assigned energy function. Therefore, we develop in Chapter 3
an approach to cope with this problem, which is applicable to any IDA controlled system
even if it is time-varying.
As far as the systematic and transparent parametrization of IDA controllers is concerned,

a useful contribution is the approach of Local Linear Dynamics Assignment (LLDA)
proposed in [102], [103] (see Section 2.3). The basic idea is the assignment of desired
eigenvalues to the closed loop linearization in order to specify (locally) the closed loop
dynamics in a transparent manner. From this, a system of linear equations is derived for
the design parameters. Moreover, a systematic procedure is outlined in these works, where
the design and tuning of an IDA controller is divided into several steps. As motivated
above, besides the transient behavior, another desirable objective is the enlargement of the
DA of the desired equilibrium point. This goal is pursued in [61], where IDA is employed
to enlarge the DA of the operating point of a synchronous generator. A comparison with
our results is given in Section 5.2.4.

1.3.2 Stabilization of Switched Systems

Concerning the stabilization of switched systems, three different problems can be dis-
tinguished. One is to stabilize a switched system without continuous control input by
identifying suitable switching signals or a suitable switching law. The paper [115] provides
a good survey of approaches that have been proposed for switched linear systems in this
regard. The design of switching laws and switching signals for switched nonlinear systems
is addressed for example in [32], [112], [121], [189]. In a second case, both a continuous
control input and the switching signal are available, i.e., the switched system can be

11
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stabilized by designing a controller and a suitable switching law or switching signal. For
this type of problem, several optimal control approaches have been proposed, e.g. in
[11], [188]. In [48], an integrated synthesis of output feedback controllers together with
switching laws has been proposed considering input constraints. In the third class of
problems, the switching signal is not controllable and the task is to design a controller
that stabilizes the switched system either for arbitrary (exogenous) switching signals or
under some prescribed trajectory-dependent switching law. This is the stabilization task
considered in this thesis. Therefore, our literature review is focused on this topic.
Numerous publications are available that deal with the controller synthesis for switched

linear systems under arbitrary switching, where techniques based on linear matrix inequal-
ities (LMI) are popular [34], [35], [125]. However, these methods are usually iterative
in nature and not as transparent and interpretable as the classical analytic techniques,
that are known from non-switched systems (such as pole-placement) [186]. An analytic
controller design method for a very special class of continuous-time linear systems has
been presented in [186] based on a stability result from [154] and has been transferred to
the discrete-time case in [158]. There is also a number of publications dealing with the
stabilization of PWA systems, i.e., state-dependent switching systems with affine subsys-
tem dynamics. For example, Feng [50] studies the LMI-based design of piecewise linear
controllers for uncertain PWA systems which achieve global stability or global stability
with H∞ performance. In [147], the Lyapunov-based design of both state and dynamic
output feedback controllers has been cast as biconvex optimization problem and iterative
algorithms for its suboptimal solution have been presented. In [146], the Lyapunov-based
design of PWA control laws for PWA systems is formulated as optimization problem which
is then relaxed to a finite set of convex optimization problems involving LMI constraints.
Less results are available for the stabilization of switched nonlinear systems and, to the

best of our knowledge, there are no publications dealing with the control of time-varying
switched systems (linear or nonlinear). In [180], an approach for the feedback stabilization
of multi-input switched nonlinear system with two subsystems has been presented based
on a common control Lyapunov function and an appropriate partitioning of the state
space. However, there are no methods to systematically construct such a function for
general switched systems, i.e., systems without a special structure. For switched nonlinear
systems in strict feedback form, the backstepping technique has been applied in [181] and
[118]. While the existence of a common stabilizing feedback function in every step of
the iterative procedure is assumed in [181], Ma and Zhao [118] address the construction
of such a function. Switched nonlinear feedforward systems are considered in [117] and
the integrator forwarding technique is extended to obtain a control law that stabilizes
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the system under arbitrary switching. In [25], another special class of switched nonlinear
systems is studied, where all subsystems are in (generalized) Byrnes-Isidori canonical form.
Under some further conditions, stabilization is achieved using the concept of Lyapunov
functions with homogeneous derivatives. A model predictive control approach for switched
systems has been presented in [123], which requires a control Lyapunov function for each
individual subsystem. However, it is assumed that the switching signal is fixed a priori and
thus the system is actually not a switched system, but a time-varying one (see Remark
2.4.1 and [78]).
In contrast to the LMI-based approaches mentioned above, the passivity-based controller

design methodology presented in Chapter 6 is completely analytic and thus more in the
spirit of classical techniques. Moreover, it is constructive in nature as opposed to the
method in [180], which makes it necessary to guess a common control Lyapunov function,
and, unlike the approaches in [25], [117], [118], [181], it is not restricted to a special class
of switched systems. Furthermore, our approach is the first which is applicable also to
time-varying switched systems.

1.3.3 Trajectory Tracking Control of Switched Systems

Even though output tracking in smooth systems has been widely studied (see e.g. [39],
[71], [82], [83], [89], [110]) and is well understood by now, for switched systems, both
the exact and the asymptotic output tracking problem pose different challenges due to
the discontinuities in the dynamics. In spite of their practical relevance, few results are
available on trajectory tracking control of switched systems. Some works deal with the
trajectory tracking problem for switched systems with linear or affine subsystems. In [40],
the EOT problem has been addressed for switched linear systems with predefined (finite)
switching sequence (hence, the systems are not switched systems in the proper sense any
more, see Remark 2.4.1). Li et al. [111] propose the design of a control law together
with a class of average dwell time switching signals for switched linear time-varying delay
systems such that the output tracks a reference signal. However, these reference signals
are restricted to belong either to the class of square integrable (L2) signals or to a set of
constants or step inputs. Moreover, the tracking error does not tend to zero, but instead
the tracking performance is intended to be optimal with regard to some performance index.
While in the latter papers the switching is trajectory-independent, most of the publica-

tions that are concerned with the tracking problem for switched linear systems deal with
the case of state-dependent switching. Sakurama and Sugie [148] consider bimodal PWA
systems and address the problem of asymptotically tracking a desired output trajectory,
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which is generated by another PWA system. However, the conditions for the existence of
the proposed controller are, in general, very difficult to check. The authors also consider a
special case, where the conditions become somewhat simpler, with one major restriction
being, however, that the switching law may only depend on the tracking output. In [182]
and [185], Wu and Ben Amara are concerned with the design of a regulator for switched
bimodal linear systems which makes the system output asymptotically track a known
sinusoidal reference trajectory while simultaneously being able to reject known sinusoidal
disturbances. The approach makes use of the Q parametrization of regulators for the
switched system and the proposed synthesis method is based on iteratively solving a set
of LMIs. A decisive feature of the considered class of systems is, however, that switching
from one mode to the other occurs when the regulation error exceeds or falls below a
prescribed nonzero value, i.e., in the context of exact output tracking, systems of this
type actually reduce to non-switched linear systems. Moreover, only sinusoidal reference
trajectories are considered. In [183], the authors are concerned with the same class of
systems, only in discrete time, and they adopt a similar approach in order to achieve
adaptive output regulation against unknown sinusoidal exogenous inputs representing
reference or disturbance signals. To this end, the Q-parameters are tuned online by an
adaptation algorithm. In [184], this approach is applied to an experimental setup motivated
by the flying height regulation problem in hard disk drives.
Galeani et. al [62] address the AOT problem for linear switched systems with state-

dependent switching law whose state trajectories may be discontinuous at the switching
times. The considered reference trajectories are periodic and parametrized as the output
of an undriven exosystem. The approach is based on a discontinuous version of the classic
internal model principle and the feedback gain design is done by iteratively solving a set
of LMIs. In order to guarantee the existence of closed loop solution trajectories for an
open set of initial conditions, the reference trajectories are assumed to be “admissible”
meaning that the EOT problem is solvable for these trajectories. The authors note that
“guaranteeing the existence of admissible periodic references [...] for hybrid systems is, in
general, rather complicated”. However, the problem of identifying such trajectories is not
addressed in detail, but only some comments are provided.
While the aforementioned works deal with the output trajectory tracking problem, which

is studied also in this thesis, in [173], the closely related problem of asymptotically tracking
a desired state trajectory is addressed for multi-modal PWA systems. Both a state feedback
and an observer-based output feedback control design are proposed instrumentalizing the
results in [143] on convergence properties of PWA systems. In general, the presented
approach requires the solution of a set of bilinear matrix inequalities, which is usually a
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nontrivial task. To guarantee the solvability of the tracking problem, it is assumed that
the desired state trajectory is an admissible solution of the system, i.e., that it can be
tracked exactly.
Bernardo et al. [42] propose a model reference adaptive control scheme for bimodal

PWA systems, where the objective is to track the states of a reference model either with
a bounded error or asymptotically. However, both subsystems are assumed to be in
controller canonical form, which means that the subsystems differ only in their actuated
portions, and the overall system is assumed to be continuous at the switching surface. The
approach utilizes the extension of passivity theory to switched systems presented in [194].
A preliminary experimental validation of the approach is presented in [41]. Recently, in
[44] the authors have proposed a similar approach for multimodal PWA systems, where
again all subsystems are assumed to be in controller canonical form.
To the best of our knowledge, there are no publications dealing with the exact or

asymptotic output trajectory tracking problem for nonlinear switched systems in a general
context. In [57], [94] the AOT problem is studied for a particular nonlinear system, namely
a self-supplied variable displacement axial piston pump, which is considered as an example
in Section 8.2. The mathematical model of this device is switching between two modes
depending on the sign of the control input – a case which, apart from these two works, has
not been addressed in the literature, yet, even for linear switched systems. In Chapter 7,
we investigate for the first time the EOT and the AOT problem for nonlinear bimodal
switched SISO systems and, in the case of trajectory-dependent switching, we allow the
switching law to depend not only on the state but also on the input. The reference
trajectories may be arbitrary smooth functions, i.e., we do not assume them to be periodic
or to be generated by an exosystem as done in many of the works mentioned above. We
obtain easily checkable conditions for the solvability of the EOT problem, and, for two
classes of switched systems, we give results which considerably facilitate the design of a
two-degree-of-freedom controller that solves the AOT problem.

1.4 Outline of the Thesis
The thesis starts with a review of some preliminaries in Chapter 2. The remainder of the
thesis is divided into two parts labeled by I and II. The first part contains the Chapters
3–5 and is dedicated to smooth dynamical systems. Chapter 3 is devoted to the estimation
of the DA based on the energy function assigned by the IDA method. The effective design
of an IDA controller with an as large as possible estimated DA and desired closed loop
performance is addressed in Chapter 4. The illustration and validation of the methods
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presented in the preceding Chapters by means of examples is the subject of Chapter 5.
The second part of the thesis comprises the Chapters 6–8 and is devoted to the control
of switched nonlinear systems. In Chapter 6, the passivity-based stabilization of this
class of systems is studied, while in Chapter 7 the exact and asymptotic output tracking
problems are investigated. The proposed methods are validated using two technical
examples in Chapter 8, and the thesis is concluded in Chapter 9. Appendix A reviews
some mathematical background and Appendix B contains some technical proofs.

1.5 Notation
We denote by R the set of real numbers, by R+ the set of (strictly) positive real numbers,
and by R+

0 the set of nonnegative real numbers. Furthermore, N is the set of positive
integers and N0 the set of nonnegative integers. The n-dimensional real Euclidean space is
denoted by Rn, and Rn×m is the set of real n×m dimensional matrices. The n-dimensional
complex Euclidean space is referred to as Cn, and the set of n×m dimensional complex
matrices as Cn×m. A usual convention adopted in this thesis (though not exhaustively)
is that scalars are denoted by lower case letters, vectors by bold lower case letters, and
matrices by bold upper case letters. We refer to the ith component of a vector x ∈ Rn

as xi, and to the (i, j)-entry of a matrix M as mij. We use the notation M = [mij],
i = 1, . . . , n, j = 1, . . . ,m for an n × m dimensional matrix with the entries mij, and
M = diag{m11, . . . ,mnn} is an n × n dimensional diagonal matrix. The transpose of a
matrix M ∈ Cn×m is MT , its conjugate complex is M, its conjugate transpose is M∗ = MT ,
and its pseudoinverse is M†. Furthermore, the inverse of an n× n-dimensional matrix M
is denoted by M−1, the transpose and the conjugate transpose of the inverse are denoted
by M−T and M−∗, respectively. The range (column space) of a matrix M is denoted
by R{M} and the nullspace (kernel) by N{M}. We use M > 0 (≥, <, ≤) to denote a
positive definite (positive semidefinite, negative definite, negative semidefinite) matrix M.
For x ∈ Rn, we denote by ‖x‖ the Euclidean vector norm, i.e., ‖x‖ = (xTx)1/2. Moreover,
In is the n-dimensional unity matrix and 0n×m the n×m dimensional zero matrix.
We denote by Ck the set of continuous functions that are at least k-times continuously

differentiable. The gradient of a scalar C1 function f : Rn → R with respect to x is denoted
by ∇xf(x) and, by convention, is a column vector, whereas ∂

∂xf(x) is a row vector, which
is consistent with the usual definition of the Jacobian, i.e., ∇xf(x) = [ ∂

∂xf(x)]T . The
Hessian of a scalar C2 function f : Rn → R is denoted by ∇2

xf(x). The transpose of the
gradient will oftentimes be denoted as ∇TH(x) = [∇H(x)]T . When clear from the context,
the subindex of the operator ∇ as well as the arguments of functions will be omitted. For
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a function f(·) with time-dependent arguments, e.g. f(x(t),y(t)), we will sometimes write
f(t) if we want to stress especially the time-dependency. Given a signal z, we denote by
z(t−) the limit of z(τ) as τ → t from below, i.e., z(t−) = limτ↑t z(τ), and z(t+) is defined
accordingly. Moreover, we use the notation d

dt
(·) = ˙(·) for the total time derivative.

We denote the boundary of a set S by ∂S, its interior by int S, its closure by S and its
complement by Sc.
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Chapter 2

Preliminaries

In this chapter, we introduce some further notation and recall some basic concepts and meth-
ods used throughout this thesis. First, we elaborate on the notion of the domain of attraction
of asymptotically stable equilibria and its estimation by means of Lyapunov functions. We
review the passivity-based control methodology Interconnection and Damping Assignment
(IDA) [132], [140] and the recent approach of Local Linear Dynamics Assignment (LLDA)
[102], [103], that enables the transparent tuning of IDA controllers. Further, we provide the
basic mathematical framework within which we study switched systems in Part II of this
thesis, and we review some results on the stability of this class of systems. Moreover, we out-
line an approach from [66] that is utilized in Section 3.4. It extends the Theorem of Ehlich
and Zeller [47] in order to obtain numerically computable bounds for real valued functions.

2.1 Stability of Equilibria and the Domain of Attraction
One of our concerns in this thesis is the estimation and the maximization of the domain
of attraction1 (DA) of an equilibrium in the context of IDA. Therefore, this section briefly
reviews the concept of the DA and its Lyapunov-based estimation for both time-invariant
and time-varying systems. For a general introduction to nonlinear dynamical systems the
reader is referred to the excellent books [95], [150], and [176].

2.1.1 Time-Invariant Systems

Consider the nonlinear time-invariant dynamical system

ẋ = f (x) , x(t0) = x0 (2.1)
1Some authors use also use the terms “region of attraction”, “basin of attraction”, or “stability region”

instead of “domain of attraction”.
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where x ∈ Rn and f : Rn → Rn is locally Lipschitz. The solution of (2.1) starting from
x0 at the initial time t0 ≥ 0 is denoted as x(t; x0, t0), so that x(t0; x0, t0) = x0. In the
time-invariant case, it holds for any T ∈ R that x(t+T ; x0, t0 +T ) = x(t; x0, t0). Therefore,
we assume, without loss of generality, that t0 = 0 and write x(t; x0) instead of x(t; x0, 0).
In the following, we are concerned with the stability and the DA of equilibrium points of
(2.1). Recall that a vector x∗ is an equilibrium of (2.1) if f(x∗) = 0.

Definition 2.1.1. An equilibrium point x∗ of (2.1) is stable if, for each ε > 0, there exists
a δ = δ(ε) > 0 such that

‖x0 − x∗‖ < δ ⇒ ‖x(t,x0)− x∗‖ < ε (2.2)

holds for all t ≥ 0. If, in addition, there is a ζ > 0 such that ‖x0 − x∗‖ < ζ implies that
limt→∞ x(t,x0) = x∗, then x∗ is said to be asymptotically stable.

If the considered equilibrium point x∗ is clear from the context, we will sometimes
say, with some abuse of terminology, that a system is stable, meaning that x∗ is a stable
equilibrium of the system. From a practical viewpoint, it is of great interest how far from
an asymptotically stable equilibrium point the trajectory may be and still converge to this
equilibrium. This leads us to the concept of the DA.

Definition 2.1.2. The domain of attraction (DA) of an asymptotically stable equilibrium
x∗ of (2.1) is the set of initial conditions

A(x∗) =
{
x0 ∈ Rn

∣∣∣∣ lim
t→+∞

x(t,x0) = x∗
}
. (2.3)

The DA is an open, invariant, and connected set. Its boundary ∂A(x∗) is called the
stability boundary (SB) of x∗ and is an (n − 1)-dimensional closed, invariant set. As
mentioned in Section 1.3, the problem of determining the exact DA for general nonlinear
systems is unsolved up to now. However, an inner approximation can be obtained by
instrumentalizing extensions of Lyapunov’s theory due to Barbashin and Krasovskii [9]
and La Salle [106].
To this end, let us first introduce some notation. We will call a function V : Rn → R

locally positive definite at x∗ if there is an open neighborhood Ω ⊂ Rn of x∗ such that
V (x∗) = 0 and V (x) > 0 ∀x ∈ Ω\{x∗}. It is called locally positive semidefinite at x∗ if
V (x∗) = 0 and the weaker condition V (x) ≥ V (x∗), ∀x ∈ Ω holds. A sublevel set of a Cr,
r > 0 function V (x) is defined as

SVc = {x ∈ Rn|V (x) < c} (2.4)
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Figure 2.1: Connected components of a level set Sc.

with some constant c ∈ R. When clear from the context, the superscript of Sc will be
omitted. The closure of Sc is sSc = {x ∈ Rn|V (x) ≤ c}. Its boundary ∂Sc = {x ∈
Rn|V (x) = c} is called level set. If c is a regular value2 of V (x), then, by the implicit
function theorem, ∂Sc is an (n − 1)-dimensional Cr submanifold of Rn. In general, Sc
consists of multiple connected components (see Figure 2.1). The connected component of
Sc that contains x∗ is denoted by Sc(x∗) [if c < V (x∗), then Sc(x∗) = ∅]. We are ready to
formulate the following theorem.

Theorem 2.1.1 (Krasovskii-LaSalle). Let x∗ be an equilibrium of the system (2.1) and
suppose there exists a C1 function V : Rn → R which is locally positive definite at x∗ and
a neighborhood ΩV̇ ⊂ Rn of x∗ such that

V̇ (x) = d

dt
V (x) = ∂V (x)

∂x
f(x) ≤ 0 (2.5)

holds for all x ∈ ΩV̇ . If c > 0 is such that sSc(x∗) ⊂ ΩV̇ , then sSc(x∗) is a positively invariant
set. If in addition sSc(x∗) is bounded and the set

E =
{

x ∈ sSc(x∗)
∣∣∣ V̇ (x) = 0

}
(2.6)

contains no trajectories of (2.1) except for x(t) ≡ x∗, then x∗ is asymptotically stable and
any solution starting in x ∈ sSc(x∗) approaches x∗ for t→∞.

Thus, a necessary condition is that sSc(x∗) contains no other equilibrium points than x∗.
A positive definite function V (x) satisfying (2.5) is commonly referred to as Lyapunov
function. It gets immediately clear that, under the conditions of the theorem, sSc(x∗) is
contained in the DA of x∗ and gives an inner approximation thereof.

2Recall that c is called a regular value of V : Rn → R, if ∇V (x) 6= 0 holds for all x ∈ V −1(c).
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2.1.2 Time-Varying Systems

An unforced time-varying system is described for all t ≥ 0 by a differential equation of the
form

ẋ = f(x, t) , x(t0) = x0 (2.7)

where f : Rn × [0,∞)→ Rn is locally Lipschitz and piecewise continuous in t. A vector
x∗ is an equilibrium of (2.7) if f(x∗, t) = 0, ∀ t ≥ 0. In contrast to the time-invariant
case, the solutions of (2.7) are not invariant under a translation of t0. As a consequence,
it is not without loss of generality to assume that t0 = 0 and hence we cannot omit the
corresponding argument in x(t; x0, t0). Moreover, the Definitions 2.1.1 and 2.1.2 need to
be refined to account for the fact that the stability properties of a time-varying system
may depend on t0.

Definition 2.1.3. An equilibrium point x∗ of (2.7) is

• stable, if, for each ε > 0, there is a δ = δ(ε, t0) > 0 such that

‖x0 − x∗‖ < δ ⇒ ‖x(t; x0, t0)− x∗‖ < ε , ∀ t ≥ t0 ≥ 0 . (2.8)

• uniformly stable, if δ can be chosen independently of t0, i.e., δ = δ(ε).

• asymptotically stable, if it is stable and there is a ζ = ζ(t0) > 0 such that ‖x0−x∗‖ < ζ

implies that x(t; x0, t0)→ x∗ as t→∞.

• uniformly asymptotically stable, if it is uniformly stable and there is a ζ > 0 such
that ‖x0 − x∗‖ < ζ implies that x(t; x0, t0) converges to x∗ uniformly in t0, i.e., for
each ε there is T = T (ε) such that

‖x0 − x∗‖ < ζ ⇒ ‖x(t; x0, t0)− x∗‖ < ε , ∀ t ≥ t0 + T (ε) . (2.9)

Definition 2.1.4. The domain of attraction of a uniformly asymptotically stable equilib-
rium x∗ of (2.7) is the set of initial conditions

A(x∗) =
{
x0 ∈ Rn

∣∣∣∣ lim
t→+∞

x(t; x0, t0) = x∗ , ∀ t0 ∈ [0,∞)
}
. (2.10)

Note that, according to this definition, a point x0 belongs to the DA only if for any initial
time t0 the trajectory starting from this point converges to the equilibrium x∗. Hence, it
is somewhat different from the definitions in [176] and [150], where the DA is defined for
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a particular initial time t0. Also in the time-varying case, an estimate of the DA can be
obtained by means of a Lyapunov function, which may in general also depend explicitly
on the time t. The following theorem is a direct consequence of the Theorems 3.8 and 4.4
in [95] and the proof of the latter3.

Theorem 2.1.2. Let x∗ be an equilibrium of the system (2.1) and suppose there exists a
C1 function V : Rn × [0,∞)→ R and an open neighborhood ΩW ⊂ Rn of x∗ such that

W1(x) ≤ V (x, t) ≤ W2(x) (2.11)

V̇ (x, t) = ∂V (x, t)
∂t

+ ∂V (x, t)
∂x

f(x, t) ≤ −W3(x) (2.12)

∀ t ∈ [0,∞), ∀x ∈ ΩW , where the Wi : Rn → R, i = 1, 2, 3 satisfy

Wi(x∗) = 0 , Wi(x) > Wi(x∗) , ∀x ∈ ΩW\{x∗} . (2.13)

Then x∗ is uniformly asymptotically stable. If c > 0 is such that sSW1
c (x∗) is bounded

and contained in ΩW , then all solutions of (2.7) with x0 ∈ sSW2
c (x∗) stay in sSW1

c (x∗) and
converge to x∗ as t→∞.

If a time-varying function satisfies the left inequality in (2.11), it is said to be positive
definite at x∗, if it fulfills the right inequality, it is called decrescent. The above theorem
makes clear that sSW2

c (x∗) is contained in the DA and thus represents an inner approximation
thereof. Note that we have presumed above that W3(x) is strictly positive in ΩW\{x∗}
implying that V̇ (x, t) is strictly negative within this set. This is in contrast to the
time-invariant case treated in the previous subsection, where we have required only
V̇ (x) ≤ 0. The reason is that there is no extension of Theorem 2.1.1 to general time-
varying systems, but only to special classes like periodic systems (see e.g. [176]) or
asymptotically autonomous systems (see Section 4.3 in [95] for a short discussion on that
topic).

2.2 Passivity-Based Control
This section provides the theoretical background of passivity-based control that will be
needed in this thesis. For a more complete overview over the field, the reader is referred

3The theorem is stated somewhat different, but it is straightforward to adapt the proof to our
formulation. In fact, the ball Br in the proof of Theorem 4.4 in [95] is only utilized to ensure that the
sublevel set of W1(x) is bounded.
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to the books [46], [134], [174]. In the first subsection, we motivate the basic idea of
passivity-based control by recalling some properties of passive systems. We then introduce
the class of port-Hamiltonian systems, which are passive by nature. Based on that, we
present the IDA method, which is the passivity-based control approach we will concentrate
on in this thesis.

2.2.1 Dissipativity and Passivity

In this subsection, we briefly review the concepts of dissipativity and passivity as well as
some related results that are relevant for the remainder. For a more general treatment the
reader is referred to [174] or [179]. Originally, the notion of passivity was used in network
theory to characterize rational transfer functions that can be realized solely with positive
resistances, capacitances and inductances. But already in the 1960’s it was studied in a
control theoretic context due to its connection to stability (see e.g. [190]). While before
passivity had been treated as pure input-output property, in the early 1970’s Willems [179]
studied passivity and the more general concept of dissipativity for nonlinear systems in
state space representation and provided a system theoretic framework by introducing the
notions of storage function and supply rate.
Consider a nonlinear system described by

ẋ = f(x) + G(x)u (2.14a)

y = h(x) (2.14b)

with the state x ∈ Rn, the control input u ∈ Rm, and the output y ∈ Rm, and let
f(x), G(x), and h(x) be smooth functions. Further, suppose that f(x∗) = 0. For a
particular u(t) the solution of (2.14a) is denoted as x(t; x0,u). We define the function
w : Rm×Rm → R, called the supply rate, and assume that for all u ∈ Rm and all x0 ∈ Rn

the output y(t) = h(x(t,x0,u)) of (2.14) is such that
∫ t

0 |w(u(τ),y(τ))| dτ <∞ holds for
all t ≥ 0.

Definition 2.2.1. The system (2.14) is said to be dissipative with supply rate w if there
exists a C0 nonnegative function H : Rn → R, called the storage function, such that for all
u ∈ Rm, x0 ∈ Rn, t ≥ 0

H (x(t))−H (x0) ≤
∫ t

0
w (u(τ),y(τ)) dτ . (2.15)
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Definition 2.2.2. The system (2.14) is said to be passive, if it is dissipative with the
supply rate w(u,y) = yTu.

The storage function can be interpreted as the energy of the system, the supply rate is
the input power, and

∫ t
0 w(u(τ),y(τ)) dτ is the energy supplied to the system from outside.

Hence, what makes up a dissipative system is that the increase in its energy cannot be
more than the energy supplied to it from outside. In other words, a dissipative system
does not contain energy sources.
If the storage function is continuously differentiable, (2.15) is equivalent to Ḣ(x) ≤

w(u,y) which is called the differential dissipation inequality and in case of passivity
amounts to

Ḣ(x) ≤ yTu . (2.16)

From (2.16), we see that for u ≡ 0 the storage function satisfies Ḣ(x) ≤ 0. Consequently,
if H(x) is positive definite at x∗, it qualifies as a Lyapunov function and we can conclude
that x∗ is a stable equilibrium of the unforced system. Asymptotic stability can be
established invoking the Krasovskii-LaSalle Theorem 2.1.1. To reinforce negativity of Ḣ(x),
additionally a feedback of the form u = −Kuy with Ku > 0 can be applied, which is
known as damping injection or LgV control4. If the system is zero-state detectable (see e.g.
Definition 3.2.7 in [174]), by this means, asymptotic stability is achieved. This motivates
the passivity-based control approach, which aims to render the closed loop system passive
with respect to a desired storage function in order to achieve asymptotic stability of the
desired equilibrium point.

2.2.2 Port-Hamiltonian Systems

In this subsection, we briefly describe the class of port-Hamiltonian5 (pH) systems and
review some of their properties. For further details we refer the reader to the important
monograph [174] and the recent book [46]. Port-Hamiltonian systems can be regarded
as a generalization of the well-known Hamiltonian systems, which are frequently used in
mechanics. They naturally arise from network modeling of lumped-parameter physical
systems and are inherently passive. In this thesis, we confine our attention to input-state-

4The name LgV control stems from the fact that according to the Hill-Moylan conditions [81] the
output must satisfy y = h(x) = LgV (x), if the system is passive with storage function V (x).

5We remark that systems of this type are also referred to as port-controlled Hamiltonian systems with
dissipation (PCHD systems), e.g. in [174], or as port-controlled Hamiltonian (PCH systems) systems,
e.g. in [140].
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output pH systems, which do not involve algebraic constraints, and are of the form

ẋ = [J(x)−R(x)]∇H(x) + G(x)u (2.17a)

y = GT (x)∇H(x) (2.17b)

where x ∈ Rn are the energy variables. The port variables u and y are conjugated variables,
i.e., their product gives the power exchanged between the system and its environment (e.g.
forces and velocities in a mechanical system). The C1 Hamiltonian function H : Rn → R

represents the total energy stored in the system. The interconnection matrix J : Rn → Rn×n

is skew symmetric JT (x) = −J(x) and captures the internal interconnection structure of
the system, while the full rank input matrix G : Rn → Rn×m represents the interconnection
of the system with its environment. The dissipation matrix R : Rn → Rn×n is positive
semidefinite RT (x) = R(x) ≥ 0 and specifies the resistive structure of the system.
Using the skew symmetry of J(x) we obtain

Ḣ(x) = −∇TH(x)R(x)∇H(x) + yTu (2.18)

for the rate of change of the system’s energy, where the first term on the right hand side
describes the dissipation of energy in the resistive elements of the system. This term is
nonpositive due to R(x) ≥ 0 and hence we see that Ḣ(x) ≤ yTu. Consequently, if H(x)
is bounded from below6, the pH system (2.17) is passive with storage function H(x). This
suggests that the passivation problem can be solved by assigning a pH structure to the
closed-loop system, leading to the IDA methodology treated in the next subsection.

2.2.3 Interconnection and Damping Assignment

The IDA methodology was first proposed in [140] for the stabilization of physical systems
described by pH models, and was then generalized in [132] to general affine systems of the
form (2.14a). The central idea of IDA is to determine a static feedback law u = r(x) + v
that transforms (2.14a) into pH form, i.e.,

f(x) + G(x) [r(x) + v] != [J(x)−R(x)]∇H(x) + G(x)v (2.19)

where J(x) and R(x) are the desired structure and dissipation matrix, respectively, and
H(x) is the desired energy function. The equation (2.19) is called matching equation. To

6With respect to the Definitions 2.2.1 and 2.2.2 note that, if H(x) is bounded from below, it can be
made nonnegative by simply adding a constant.
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simplify the notation in the following, we introduce the matrix

F(x) = J(x)−R(x) (2.20)

and refer to it as design matrix since it is selected by the control designer (the fact that
the interconnection and dissipation structure of the closed loop system is specified by the
designer actually led to the name IDA). Considering the symmetry properties of J(x) and
R(x) it clearly holds that

R(x) = −sym {F(x)} , where sym {F(x)} = 1
2
[
F(x) + FT (x)

]
. (2.21)

The energy function is required to have an isolated minimum at the desired equilibrium
x∗, i.e., there must exist a neighborhood Ω of x∗ such that

H(x) > H(x∗) , ∀x ∈ Ω\{x∗} . (2.22)

Since our primary goal is the (local) stabilization of x∗ it is sufficient that, unlike in the
previous section, the dissipation matrix R(x) = −sym{F(x)} is positive semidefinite only
in an open neighborhood ΩR ⊂ Rn of x∗. Then, there is an open neighborhood ΩḢ of x∗

such that, with v = 0, it holds for all x ∈ ΩḢ that

Ḣ(x) = −∇TH(x)R(x)∇H(x) ≤ 0 . (2.23)

Hence, the energy function qualifies as a Lyapunov function7 for the closed loop system
and can be used to establish (asymptotic) stability of x∗.
Clearly, it holds that ΩR ⊂ ΩḢ , but in general ΩḢ is larger than ΩR. This is due to

the fact that positive semidefiniteness of the dissipation matrix is necessary and sufficient
for ∇THR∇H ≥ 0 only if R is not a function of the states. Otherwise the expression
cannot be looked upon as pure quadratic form and R(x) ≥ 0 is only sufficient. In case
that ΩḢ 6= Rn, the inequality (2.16) is also satisfied only locally and hence (with some
abuse of notation) the closed loop system is “locally passive” with the new input v and
the output y = GT∇H.
It is immediately seen that there is a function r(x) such that (2.19) is satisfied only if

(f − F∇H) ∈ R(G). Since normally m < n, this imposes a restriction on the choice of
7Since a Lyapunov function is usually required to be positive definite at x∗ (see Theorem 2.1.1), but
H(x∗) is not necessarily equal to zero, actually, we would have to use V (x) = H(x)−H(x∗) as Lyapunov
function. Nevertheless, for simplicity, we say here and in the following that the energy function can be
used as a Lyapunov function.
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the design matrix F(x) and the energy function H(x), respectively. Using the elementary
result stated in Lemma 2 in [138] we deduce that (2.19) is fulfilled if and only if the control
law is chosen as

r(x) =
[
GT (x)G(x)

]−1
GT (x) [F(x)∇H(x)− f(x)] (2.24)

and F(x) and H(x) satisfy the projected matching equation

G⊥(x)F(x)∇H(x) = G⊥(x)f(x) (2.25)

where G⊥ is a full rank left annihilator of G, i.e., G⊥G = 0 and rank{G⊥} = n−m. The
calculation of a solution to (2.25) is a crucial step in the design of an IDA controller and
is therefore treated in the next subsection.

2.2.4 Solving the Projected Matching Equation

Three different ways have been proposed to solve the projected matching equation (2.25).
In [132], the different procedures are illustrated by means of an example. In algebraic
IDA, originally proposed in [59], the energy function is fixed making (2.25) an algebraic
equation for the elements of F(x). In parametrized IDA, a certain structure is specified for
the energy function. This approach has first been employed in [137] for the stabilization
of underactuated mechanical systems requiring the energy function to be the sum of a
kinetic energy term quadratic in the generalized momenta and a potential energy term
that depends only on the generalized positions. In this thesis, we proceed as in the original
paper [140], where the desired structure of the design matrix has been fixed. Then, (2.25)
is a linear partial differential equation (PDE) from which the set of admissible energy
functions has to be determined. This approach is known as non-parametrized IDA and is
by far the most common one.
If we define W(x) = G⊥(x)F(x) and s(x) = G⊥(x)f(x), we can rewrite (2.25) as

W(x)∇H(x) = s(x) . (2.26)

The solutions of this PDE – if they exist – are of the form H(x) = Ψ(x) + φ(ξ(x)) with
a particular solution Ψ(x) and a homogeneous solution φ(ξ(x)), which is an arbitrary
function of ξ : Rn → Rnξ . The components of ξ(x) are solutions of the homogeneous PDE
W(x)∇ξi(x) = 0 with independent differential at each point x (i.e., the gradient vectors
are linearly independent) and are called characteristic coordinates. The homogeneous
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solution φ(ξ(x)) has to be chosen such that (2.22) holds. A sufficient condition for that is

∇H(x)|x∗ = 0 , ∇2H(x)
∣∣∣
x∗
> 0 . (2.27)

The remainder of this subsection is devoted to the solvability as well as the solution of
the PDE (2.26). To this end, some differential geometric notions are required, which we
introduce below. It is, however, not our intent to deliver an introduction to differential
geometry or to PDEs in general. Rather, we aim to give an intuitive explanation of the
concepts that will be used in the subsequent chapters. For good introductions to differential
geometry in the context of control theory we refer the reader to [89] and [110] . For more
comprehensive elaborations on that topic, for instance, the books [108] and [161] can be
consulted. Since, for simplicity, no particular attention is paid to the domain of validity of
the statements below, we indicate at this point that in general all results hold true only
locally.
Let us recall the following differential geometric tools:

• Lie derivative: Given the C1 function h : Rn → R and the vector field f : Rn → Rn,
the Lie derivative of h along f is defined as

Lfh(x) = ∂h

∂x
f(x) . (2.28)

Moreover, Lkfh(x) = Lf(Lk−1
f h(x)) with L0

fh = h and L1
f = Lfh. If g : Rn → Rn is

another vector field, then LgLfh(x) = Lg(Lfh(x)).

• Lie bracket: Consider the C1 vector fields f : Rn → Rn and g : Rn → Rn. The Lie
bracket is defined by

[f ,g] = ∂g
∂x

f − ∂f
∂x

g . (2.29)

• Distribution: Let f1, . . . , fk be vector fields. The mapping

∆(x) = span {f1(x), . . . , fk(x)} (2.30)

which assigns to any point x a linear subspace is called a distribution. If its dimension

dim ∆ = rank
{[

f1(x) . . . fk(x)
]}

(2.31)

does not depend on x, we say that ∆ is regular.
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Figure 2.2: Solving the homogeneous PDE (2.33) by straightening out the distribution ∆W .

• Involutivity: A regular distribution ∆ = span {f1(x), . . . , fk(x)} is involutive if for all
x it holds that

[fi, fj] ∈ ∆ , ∀ i, j = 1, . . . , k . (2.32)

• Involutive closure: The involutive closure s∆ of a distribution ∆ is the smallest
involutive distribution containing ∆.

In order to determine the characteristic coordinates ξ(x) we have to consider the
homogeneous PDE

W(x)∇H(x) = 0 (2.33)

where we are looking for a function H(x), whose gradient ∇H(x) is at any point x orthog-
onal to the rows wT

i (x), i = 1, . . . , n−m of the matrix W(x). This is illustrated in Figure
2.2 (left) for the case n = 3, m = 1, where we assume that the rows of W(x) are linearly
independent for all x implying that ∆W (x) = span{w1(x),w2(x)} is a regular distribution.
If a solution H(x) of (2.33) exists, then the gradient vector ∇H(x) is not only orthogonal to
the rows of W(x) but also to the level sets ∂Sc of H(x). Hence, the vector fields w1(x) and
w2(x) are at any point x tangential to the manifold ∂Sc which contains that point. These
manifolds are called integral manifolds and are, in a sense, the generalization of integral
curves (solutions) of differential equations, which are everywhere tangential to a single
vector field. If we start at x0 ∈ ∂Sc0 and follow the solutions curves of ẋ = wi(x), i = 1, 2
in alternating order and for arbitrary time intervals we always stay within the level set ∂Sc0 .
Now suppose that we can find a coordinate transformation ζ = Φ(x) such that the third

component of the transformed vector fields w̃i(ζ) = ∂Φ
∂x wi ◦Φ−1(ζ) is zero [see Figure 2.2

(right)]. Then, the integral manifolds are parallel to the ζ1-ζ2-plane. This procedure is called
straightening out of the distribution ∆W (x). In the new coordinates, the homogeneous
PDE can be easily solved: The gradient vector ∇ζH̃(ζ) is orthogonal to the w̃i(ζ), i = 1, 2
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if and only if the function depends only on ζ3, i.e., H̃(ζ) = H̃(ζ3). Apart from that, it may
be chosen arbitrary. Hence, clearly, ξ(x) = Φ3(x) is a characteristic coordinate of (2.33).
In general, this amounts to the following problem: Given the k-dimensional regular

distribution ∆W (x) = span{w1(x), . . . ,wk(x)} (where in our case k = n − m), find a
diffeomorphism ζ = Φ(x) such that in ζ coordinates the image distribution satisfies

∆̃W (ζ) = span {w̃1(ζ), . . . , w̃k(ζ)} = span
{
∂

∂ζ1
, . . . ,

∂

∂ζk

}
(2.34)

where the ∂
∂ζi

, i = 1, . . . , k can be viewed as the first k basis vectors. We say that the
diffeomorphism ζ = Φ(x) straightens out the distribution ∆W . The Frobenius Theorem
gives an answer to the question under what condition such a diffeomorphism exists, see
e.g. [110], [108].

Theorem 2.2.1 (Frobenius Theorem). Let ∆W be a regular distribution with dimension k.
A necessary and sufficient condition for the existence of a diffeomorphism that straightens
out ∆W is that ∆W is involutive. In this case, each point x is contained in a k-dimensional
integral manifold of ∆W .

Hence, if ∆W is involutive, the PDE (2.33) is solvable with nξ = m characteristic
coordinates ξi(x) = Φk+i(x), i = 1, . . . ,m. The (n −m)-dimensional integral manifolds
can be represented as level sets {x ∈ Rn|ξ(x) = c} with c ∈ Rm. In the case where ∆W

is not involutive, we proceed along the same lines with its involutive closure s∆W . Since
dim s∆W > dim ∆W , the number of characteristic coordinates nξ is then less than m.
Now we consider the inhomogeneous PDE (2.26). In [24], a condition for its solvability

is given as follows.

Theorem 2.2.2. Consider the PDE (2.26) and define

∆W = span
{
WT (x)

}
, ∆W,s = span






W

T (x)
sT (x)





 . (2.35)

Assume that the involutive closures s∆W and s∆W,s are regular. Then (2.26) is solvable if
and only if

dim s∆W = dim s∆W,s . (2.36)

Frequently, the design matrix F is chosen constant. If then a constant left annihilator G⊥

can be used, a constant matrix W is obtained. In this case, both assessing the solvability
of the matching PDE (2.26) and determining its solutions simplify considerably. Therefore,
this special case is discussed separately in the remainder of this subsection.
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Figure 2.3: Solving the homogeneous PDE (2.33) with constant W by straightening out the
distribution ∆W .

First note that a distribution which is spanned by constant vector fields is of course
involutive. Consequently, the homogeneous PDE (2.33) is solvable with m characteristic
coordinates. In order to construct a coordinate transformation that straightens out ∆W ,
obviously, we can choose the n−m rows of W as new basis vectors (see Figure 2.3), i.e.,

x =
[
w1 . . . wn−m tn−m+1 . . . tn

]

︸ ︷︷ ︸
T−1

ζ . (2.37)

The vectors ti, i = n−m+ 1, . . . , n are chosen such that the columns of T form a basis
of Rn, i.e., rank{T} = n, but are otherwise arbitrary. Then, by construction, the vectors
wi transform to basis vectors, i.e., w̃i = ei, i = 1, . . . , n−m. Hence in ζ coordinates the
homogeneous PDE has the form

[
In−m 0(n−m)×m

]
∇ζH̃(ζ) = 0 . (2.38)

and is solved by any function of the form H̃(ζ) = H̃(ζn−m+1, . . . ζn).
Moreover, the solvability condition given in Theorem 2.2.2 simplifies considerably, if W

is a constant matrix.

Proposition 2.2.1 ([103]). The PDE (2.26) with a constant matrix W of full rank admits
a solution if and only if for all i, j = 1, . . . , n−m

Lwisj(x)− Lwjsi(x) = 0 . (2.39)

When it comes to computing the particular solution, the transformation (2.37) also is
helpful as illustrated in the following example.
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Example 2.2.1. Suppose the projected matching equation is given by

1 0 2

0 2 −1


∇xH(x) =


 2x2

1 + x2

sin(x2) + x3


 . (2.40)

It is easily verified that this PDE is solvable according to Proposition 2.2.1. With the
choice t3 = [0 0 1]T the matrix T−1 in (2.37) forms a basis of Rn, and in ζ coordinates
(2.40) takes the form



∂H̃(ζ)
∂ζ1
∂H̃(ζ)
∂ζ2


 =


 2ζ2

1 + 2ζ2

sin(2ζ2) + 2ζ1 − ζ2 + ζ3


 . (2.41)

By construction ξ(x) = ζ3 = −2x1 + 1
2x2 + x3 is a characteristic coordinate, i.e., the

homogeneous solution can be chosen as an arbitrary function of the form φ(−2x1+ 1
2x2+x3).

A particular solution is constructed from (2.41) as follows. From the first line we calculate

Ψ̃(ζ) =
∫

2ζ2
1 + 2ζ2 dζ1 + c(ζ2, ζ3) = 2

3ζ
3
1 + 2ζ2ζ1 + c(ζ2, ζ3) . (2.42)

To determine c(ζ2, ζ3), we substitute this expression into the second line of (2.41), with
H̃(ζ) = Ψ̃(ζ), which yields

∂

∂ζ2
c(ζ2, ζ3) = sin(ζ2)− ζ2 + ζ3 . (2.43)

By virtue of solvability of (2.40) the right hand side is independent of ζ1. Hence, c(ζ2, ζ3)
can be determined by integration with respect to ζ2 and we obtain

Ψ̃(ζ) = 2
3ζ

3
1 + 2ζ2ζ1 −

1
2 cos(2ζ2)− 1

2ζ
2
2 + ζ3ζ2 . (2.44)

Using the inverse coordinate transformation we finally get the general solution

H(x) = 2
3x

3
1 −

1
2 cos(x2) + 1

8x
2
2 + 1

2x2x3 + φ(−2x1 + 1
2x2 + x3) . (2.45)

2.2.5 IDA for Time-Varying Systems

It is straightforward to generalize the IDA approach to time-varying systems

ẋ = f(x, t) + G(x, t)u (2.46)
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if we allow the quantities in (2.17) to depend explicitly on the time t, yielding the class of
time-varying pH systems (see also e.g. [58], where the closely related concept of generalized
canonical transformations is applied for the stabilization of time-varying pH systems). The
matching equation then takes the form

f(x, t) + G(x, t) (r(x, t) + v) != F(x, t)∇H(x, t) + G(x, t)v (2.47)

where R(x, t) = −sym{F(x, t)} must be positive semidefinite for all (x, t) ∈ ΩR × [0,∞)
with ΩR an open neighborhood of the desired equilibrium x∗. Furthermore, the Hamiltonian
has to satisfyH(x, t) > H(x∗) for all (x, t) ∈ Ω×[0,∞), where Ω is some open set containing
x∗. The procedure for the design of the time-varying feedback function r(x, t) is completely
analogue to the time-invariant case and hence is not described here.
In contrast to the time-invariant case, however, the time-varying pH structure on the

right hand side of (2.47) does neither guarantee that the closed loop system is “locally
passive” nor that x∗ is a stable equilibrium. This is immediately seen by computing the
rate of change of the time-varying energy function, which is given by

Ḣ(x, t) = ∂

∂t
H(x, t)−∇T

xH(x, t)R(x, t)∇H(x, t) + yTv (2.48)

where y = GT (x, t)∇xH(x, t). Since nothing can be said, in general, about the first
summand ∇tH(x, t), it is not possible to conclude from R(x, t) ≥ 0 that Ḣ(x, t) ≤ yTv
holds. Moreover, H(x, t) > H(x∗), ∀ (x, t) ∈ Ω× [0,∞) does neither ensure that H(x, t) is
positive definite at x∗ nor that it is decrescent. As a consequence, the existence of functions
Wi(x), i = 1, 2, 3 satisfying (2.11), (2.12) has to be verified after the controller design.
Nevertheless, the energy function is usually a good candidate for a Lyapunov function.

2.3 Local Linear Dynamics Assignment

Usually, the IDA methodology provides a large number of free parameters that can be
utilized to achieve desired closed loop properties. Therefore, a key question is how to tune
these parameters in order to meet the design specifications, one of them being the desired
transient behavior. In [102], the approach Local Linear Dynamics Assignment (LLDA)
has been proposed for a transparent and systematic parametrization of IDA controllers.
This method has proven to be very useful and is frequently used throughout this thesis.
In this section, it is first described for time-invariant systems and then generalized to the
time-varying case in the second subsection.
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2.3.1 Time-Invariant Systems

It is assumed that the plant model (2.14) can be represented in the form

ẋα

ẋν


 =


f

α(x)
f ν(x)


+


Gα(x)

0


u (2.49)

where the state vector x is partitioned into actuated coordinates xα ∈ Rm and unactuated
coordinates xν ∈ Rn−m. The design matrix F(x) is partitioned accordingly, turning the
matching equation (2.19) into


fα(x)
f ν(x)


+


G

α(x)
0


 r(x) =


F

α(x)
Fν(x)


∇H(x) . (2.50)

The simplest left annihilator

G⊥ =
[
0(n−m)×m In−m

]
(2.51)

is used, yielding the projected matching equation

Fν(x)∇H(x) = f ν(x) . (2.52)

The basic idea of LLDA is to match the closed loop linearization with a predefined
asymptotically stable linear system ∆ẋ = Ad∆x, where ∆x = x− x∗, i.e.,

∂

∂x
[F(x)∇H(x)]

∣∣∣∣∣
x∗

= Ad . (2.53)

The matrix Ad can be obtained by applying linear state feedback techniques to the
linearization of the plant model (2.14) at (x∗,u∗), where u∗ = [Gα(x∗)]−1f ν(x∗) is the
constant control input associated with x∗. By this means, desired closed-loop dynamics,
that can be quantitatively assessed via the eigenvalues of the state matrix Ad, are achieved,
at least in some neighborhood of x∗. The matrix Ad is also partitioned into an actuated
and an unactuated part

Ad =

Aα

Aν


 , where Aν = ∂f ν(x)

∂x
. (2.54)

The following two assumptions are required for the applicability of LLDA.
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Assumption 2.3.1. The plant model is of the form (2.49) and its linearization at (x∗,u∗)
is stabilizable.

Assumption 2.3.2. The projected matching equation (2.52) is solvable with a matrix
Fν(x) which is such that the distribution ∆F,ν = span{(Fν(x))T} spanned by its rows is
regular with dimension n−m and involutive in an open neighborhood of x∗.

Concerning the first part of Assumption 2.3.1, note that any system of the form (2.14)
can be transformed into the form (2.49) by a change of coordinates if the columns of G(x)
span a regular involutive distribution (like e.g. in the case of a constant input matrix G).
The necessity of the second part of Assumption 2.3.1 is obvious since Ad is required to be
Hurwitz. Assumption 2.3.2 assures, on the one hand, that a design matrix F(x) with full
rank n can be chosen. This is required in order that (2.53) can be fulfilled with a Hurwitz
(and hence regular) matrix Ad. On the other hand, Assumption 2.3.2 ensures that the
PDE (2.52) is solvable with the maximum number of m characteristic coordinates (see
Theorem 2.2.1). The following theorem from [102], [103] summarizes the LLDA method.

Theorem 2.3.1. Assume that the Assumptions 2.3.1 and 2.3.2 hold. Let H(x) = Ψ(x) +
φ(ξ(x)) be the solution of (2.52) and define

Qαα
Ψ = Fα(x∗)

(
∇2Ψ(x)

∣∣∣
x∗

)
[Fα(x∗)]T , (2.55)

Qαα
φ = Fα(x∗)

(
∇2φ(x)

∣∣∣
x∗

)
[Fα(x∗)]T . (2.56)

If the parameters of φ(ξ(x)) and F(x) are chosen such that ∇Hd(x)|x∗ = 0, Rd(x∗) ≥ 0
and

Qαα
Ψ + Qαα

φ = Fα(x∗)(Aα)T , (2.57)

Aα[Fα(x∗)]T = Fα(x∗)(Aα)T , (2.58)

Aα[Fν(x∗)]T = Fα(x∗)(Aν)T , (2.59)

then (2.27) and (2.53) hold.

The equations (2.57)-(2.59) constitute a system of linear equations for the entries of
F(x∗) and Qαα

φ . The latter matrix can be arbitrarily set by means of the homogeneous
solution φ(ξ(x)). Moreover, also the requirement ∇Hd(x)|x∗ = 0 can be fulfilled by an
appropriate choice of φ(ξ(x)) (see Propositions 4 and 11 in [103]). For instance, if we take
φ(ξ) = µT1 ξ+ ξTµ2ξ with µ1 ∈ Rm and µ2 ∈ Rm×m constant, then ∇Hd(x)|x∗ = 0 can be
ensured by µ1, while µ2 can be used to adjust the entries of Qαα

φ . Normally, (2.57)-(2.59)
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do not determine all design parameters, thus leaving free parameters in F(x) and φ(ξ(x)),
which can be used to enlarge the DA or to tune the (semi-) global behavior of the closed
loop system.
In [102], [103], a systematic procedure is described for the application of LLDA with a

constant design matrix F.

Step 1: Specify the desired dynamics by choosing Ad.

Step 2: Establish algebraic relations for the elements of Fν such that the solvability
condition (2.39) is satisfied.

Step 3: Derive conditions for the elements of F to ensure R ≥ 0, e.g. by means of
Sylvester’s criterion (see [164]).

Step 4: Solve the PDE (2.52).

Step 5: Establish algebraic relations for the parameters in φ(ξ) such that ∇Hd(x)|x∗ = 0
holds.

Step 6: Solve the system of equations (2.57)-(2.59) and deduce from Qαα
φ suitable values

for the parameters in φ(ξ).

Step 7: Fix the remaining free parameters.

2.3.2 LLDA for Trajectory Tracking Control

In [101], the LLDA approach has been extended to the time-varying case, in particular
to the design of error controllers for trajectory tracking problems. Consider the system
(2.14) and assume, for simplicity, that it has a single input and a single output, i.e., m = 1.
Further, suppose that a desired output trajectory yd(t) is given for t ∈ [0,∞). In order to
make the system output asymptotically track yd(t), frequently a two-degree-of-freedom
structure [86] (see Figure 2.4) is employed. It consists of a feedforward part ΣFF and a
feedback part ΣFB. The former provides a control input ud(t), which makes the system
track the desired output trajectory in the open loop mode, and the corresponding state
trajectory xd(t). The purpose of the feedback part is to asymptotically stabilize the
tracking error in the presence of model uncertainties and disturbances. The design and
especially the tuning of a suitable feedback law by means of LLDA is the subject of this
subsection. For the sake of simplicity, we assume that y is a flat output [52] of (2.14).
Then, both the feedforward control ud(t) and the corresponding state trajectory xd(t) can
be given as functions of yd(t) and its time derivatives up to the order n, which we subsume
in the vector Yd.
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Figure 2.4: Two-degree-of-freedom control scheme with plant Σ, feedforward control ΣFF , and
feedback control ΣFB.

The objective is to design a controller that achieves ‖e(t)‖ → 0 as t → ∞, where
e = x− xd. To this end, the dynamics of the tracking error are calculated as

ė = f(x) + g(x)(ud + v)− f(xd)− g(xd)ud (2.60)

where we have used u = ud + v (see Figure 2.4). With x = e + xd and the fact that both
ud and xd can be expressed as functions of Yd we obtain the time-varying error system

ė = f e (e,Yd(t)) + ge (e,Yd(t)) v . (2.61)

To render e∗ = 0 asymptotically stable, the IDA methodology is utilized so that the closed
loop system can be represented in the form

ė = F(e, t)∇eH(e, t) . (2.62)

In order to apply the LLDA approach to the case at hand, effectively, we only have to
add a time argument to all quantities in the previous subsection. Therefore, Theorem 2.3.1
is not explicitly reformulated for the time-varying case. As a result, it holds for all t ≥ 0
that

∂

∂e
[F(e, t)∇H(e, t)]

∣∣∣∣∣
e∗

= Ad(t) and ∇2
eH(e, t)|e∗ > 0 . (2.63)

It is important to note, however, that unlike in the time-invariant case, the time-varying
eigenvalues of Ad(t) do, in general, not provide information about the dynamic behavior
of the system ė = Ad(t)e. The trajectories may even become unbounded, although the
eigenvalues stay within the left halfplane (see e.g. [91], p. 607 for a simple example).
There are, in fact, techniques that enable pole placement for linear time varying system
(see e.g. [53], [172]) in the sense that the closed loop system is Lyapunov equivalent8 to

8Two systems are called Lyapunov equivalent if they can be carried into another by a Lyapunov
transformation. A transformation ξ = T(t)x is called Lyapunov transformation, if T(t), and dT(t)/dt
are continuous and bounded and det{T(t)} > c > 0 holds for all t ∈ [0,∞).
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a time-invariant system with prescribed poles. However, the resulting control laws tend
to be rather complicated rendering also Aα(t) quite complex. This makes the equations
(2.57)-(2.59) as well as the resulting expressions for the controller parameters cumbersome.

Therefore, it is suggested in [101], [102] to choose the matrix Ad(t) such that, for all
t ≥ 0, its eigenvalues are located in the left half plane without considering the stability
of ė = Ad(t)e. For it is expected that the eigenvalue locations provide a good indication
for the (local) dynamics of the closed loop error system if the desired trajectory yd(t)
is sufficiently slow. Moreover, the stability analysis of the closed loop system (2.62) is
done separately based on Theorem 2.1.2 using the energy function as Lyapunov function
candidate. The procedure proposed in [101], [102] is described next.

First note that the time dependency of (2.61) and consequently of Aν(t) is only due to
the time-variance of Yd(t). With some abuse of notation, we will therefore use Aν(t) and
Aν(Yd(t)) interchangeably. In order to determine (constant) values for the entries of Aα,
the matrix Aν is evaluated at an “average” value sY yielding sAν = Aν( sYd). Then Aα is
determined such that the eigenvalues of the matrix

sAd =

Aα

sAν


 (2.64)

are located at desired positions in the left half plane. The vector sYd may be an average
value along a particular trajectory yd(t) as in [101], [102] or an average point of an operating
region specified by Yd,min ≤ Yd(t) ≤ Yd,max, where the inequality is to be interpreted
component-wise (see Section 8.2). The latter is reasonable if the controller ought to be
applicable not only for a particular yd(t), but for a whole set of reference trajectories. For
LLDA, the matrix

Ad(t) =

 Aα

Aν(t)


 (2.65)

is used. Of course, its eigenvalues, and hence those of the closed loop linearization, vary
along yd(t), being identical to the prescribed ones for Yd(t) = sYd. Since Ad(t) depends
continuously on Yd(t), also the eigenvalues are continuous functions of Yd. In general, the
described procedure leads to a design matrix F(e, t) that explicitly depends on Yd(t).

As an alternative, we suggest in this thesis to solve the system of equations (2.57)-(2.59)
only for Yd(t) = sYd. Also in this case the eigenvalues of the closed loop linearization are
continuous functions of Yd and coincide with the prescribed ones for Yd(t) = sYd. It is not
clear, in general, which approach gives better results in terms of the closed loop behavior.
However, if LLDA is accomplished only for Yd(t) = sYd, the corresponding set of equations
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simplifies notably, and if a dependency of F on Yd(t) is not necessary to ensure solvability
of the projected matching equation, the resulting design matrix is independent of t (see
Section 8.2 for an example).

2.4 Switched Systems

The objective of this section is to introduce the class of switched systems and to review
some related results from the literature. As this topic has been and is still a field of
extensive research, that has attracted a large number of scientists from different disciplines,
it goes without saying that we cannot provide a comprehensive overview here but rather
present merely the material that is needed in this thesis. In particular, we first describe the
mathematical framework under which we study switched systems and define the solution
concept that will be used. Subsequently, we review the concept of uniform stability and
present some stability theorems including extensions of the Krasovskii-LaSalle Theorem to
switched systems. For further informations on switched systems in general the reader is
referred to the important book [113] and the survey paper [155] as well as the references
therein. Concerning solvability and solution concepts, still the classic book by Fillipov [51]
is an excellent reference, and the reader may also consult the tutorial account [33].

2.4.1 Notation and Solution Concept

Given the family of subsystems

ẋ = fp(x, t) + Gp(x, t)u , p ∈ P (2.66a)

y = hp(x, t) (2.66b)

with state x ∈ Rn, control input u ∈ Rm, output y ∈ Rm, and a finite index set
P = {1, . . . , N}, we consider switched systems described by

ẋ = fσ(x, t) + Gσ(x, t)u , σ ∈ S , t ≥ 0 (2.67a)

y = hσ(x, t) . (2.67b)

For all p ∈ P, the vector fields fp : Rn × [0,∞) → Rn and the columns of the matrices
Gp : Rn × [0,∞) → Rn×m are locally Lipschitz in x and continuous in t, the maps
hp : Rn × [0,∞)→ Rm are continuous. The switching signal σ : [t0,∞)→ P specifies the
active subsystem and is piecewise constant. By piecewise constant, we mean that the signal
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has a finite number of discontinuities in every finite time interval and takes a constant
value between its consecutive discontinuities. By convention, we take the switching signals
to be continuous from the right, i.e., σ(t) = σ(t+) for all t ≥ t0. Its discontinuities
tk, k ∈ N0 are called switching times and it holds that tk+1 > tk. Throughout this thesis,
we assume the switching signal to be minimal, i.e., σ(tk+1) 6= σ(t−k+1). The set of all
switching signals admissible in (2.67) is denoted by S. Besides the set Spc of all piecewise
constant switching signals σ(t), two different subsets of Spc will be needed. Adopting the
notation of [78], we denote by Saverage[τD, N0] the set of all σ that possess an average dwell
time τD > 0 and a chatter bound N0 > 0, i.e., the number of switching times in any open
finite interval (τ1, τ2) ⊂ [t0,∞) is bounded above by N0 +(τ2− τ1)/τD. Moreover, we define
the set Saverage = ⋃

τD>0,N0>0 Saverage[τD, N0]. Unless otherwise stated, we will assume that
S = Spc.
Throughout this thesis, the interpretation of the differential equation (2.67a) in terms

of its solution is as described in the following definition. It corresponds to the standard
solution concept usually applied in the switched systems literature, see e.g. [78], [120].

Definition 2.4.1. By a solution to (2.67a) we mean a triple (x,u, t) consisting of a
piecewise C1 curve x : I → Rn with I = [t0, T ) or I = [t0, T ], where t0 < T ≤ +∞, a
piecewise constant switching signal σ : I → P and a piecewise continuous input u : I → Rm

for which
ẋ(t) = fσ(t)(x(t), t) + Gσ(t)(x(t))u(t) (2.68)

holds for all (ti, ti+1) ∩ I, i = 0, 1, . . .. To indicate that the state trajectory starts from x0

at time t0 we use the notation x(t; x0, t0).

By a piecewise C1 curve, we mean a piecewise continuous signal whose derivative is also
piecewise continuous. Since the notion of a piecewise continuous function is needed later
on also in the context of multivariate functions, for convenience of the reader, we recall
here the definition (see e.g. [51], [130]).

Definition 2.4.2. A function f : Rr → Rs is called piecewise continuous in a finite domain
G ⊂ Rr, if the domain G consists of a finite number of domains Gi, i = 1, . . . , l with
disjoint interior and of a set M = ⋃l

i=1 ∂Gi of measure zero, which consists of boundary
points of these domains, such that the function f(·) is continuous in each Gi and, when
its argument approaches each point of the boundary, tends to a finite limit, possibly to
different limits for different boundary points. If the domain G is infinite, then each finite
part of the domain G must have common points only with a finite number of domains Gi.
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Thus, a signal s : [t0,∞)→ Rn is piecewise continuous, if it exhibits a finite number of
discontinuities in any finite time interval and s(t+i ) as well as s(t−i ) are finite for all ti. As
in the case of the switching signal, we take piecewise continuous signals to be continuous
from the right, i.e., s(t) = s(t+i ) for all t ≥ t0.

Remark 2.4.1. Frequently the question arises as to what is the difference between a switched
system such as (2.67) and a time-varying system such as (2.7) or (2.68). As already pointed
out by Hespanha in [78], the key distinction is that a time-varying system admits a family
of solutions which is parametrized solely by the initial condition x(t0), whereas the set
of solutions to a switched system is parametrized by both the initial condition and the
switching signal σ. Hence, when studying switched systems, one is typically interested in
the properties of its solutions when the switching signal ranges over the set S, and whether
these properties are uniform over S. For a particular switching signal (2.67) and (2.68)
are of course identical.

If σ(t) is an arbitrary function of time, we say that we have trajectory-independent switch-
ing. In many technical applications, however, we have to deal with trajectory-depedent
switching, i.e., the value of the switching signal σ(t) = σ(x(t),u(t)) depends on the state
x or on the input u. Therefore, as done in [78], we define S to be a relation between the
set of piecewise C1 signals x(t), the set of piecewise continuous input signals u(t), and
the set of piecewise constant switching signals σ(t). As a consequence, S is actually a
set of admissible triples (x,u, σ). Nevertheless, as in [78], we call S, with some abuse of
notation, the set of admissible switching signals. If the switching is trajectory-independent,
(x,u, σ) ∈ S implies that also (sx, su, σ) ∈ S for all other signals sx and su such that the
triple (sx, su, σ) is a solution to (2.67a). In this case, we simply write σ ∈ S with the
understanding that (x,u, σ) ∈ S for any admissible combination of x and u.
In this thesis, trajectory-dependent switching is addressed only in the context of two

subsystems, i.e., P = {1, 2}. Given the closed covering χ = {χp|p ∈ P} of Rn ×Rm (i.e.,
the χp are closed sets χp ⊂ Rn × Rm such that Rn × Rm = χ1 ∪ χ2), we consider the
switching rule

σ(t) = i if (x(t),u(t)) ∈ χi . (2.69)

The corresponding set of triples (x,u, σ) ∈ Spc satisfying (x(t),u(t)) ∈ χσ(t) is denoted by
S[χ]. Throughout this thesis, the covering χ is disjoint and defined by

χ1 = {(x,u) |ϕ(x,u) ≥ 0}
χ2 = {(x,u) |ϕ(x,u) ≤ 0}

(2.70)
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where ϕ(x,u) : Rn ×Rm → R is some smooth (i.e. C∞) function affine in u, i.e.,

ϕ(x,u) = ϕx(x) +ϕTu (x)u . (2.71)

We assume that zero is a regular value of ϕ(x,u). Then, by the implicit function theorem,
the boundary ∂χ = ∂χ1 = ∂χ2 = {(x,u)|ϕ(x,u) = 0} is an (n + m − 1)-dimensional
submanifold of Rn ×Rm. Moreover, we assume that if there is an x̄ such that ϕu(x̄) 6= 0,
then ϕu(x) 6= 0 holds for all x ∈ Rn, i.e., if the switching is input-dependent, then this is
the case for all x. Note that (2.69) with (2.70) includes the cases, where the value of the
switching signal depends only on the state or only on the input if ϕ(x,u) is chosen to be a
function of the state or the input only.
Since ∂χ belongs to both sets χ1 and χ2, the switching law (2.69) is not well defined on

∂χ without making any further definition. Therefore, throughout this thesis, by convention,
(2.69) is to be interpreted as follows. Let σ(t0) = 1 if (x(t0),u(t0)) ∈ χ1 and σ(t0) = 2
if (x(t0),u(t0)) ∈ χc1, where χc1 is the complement of χ1. For all t > t0, if σ(t−) = i

and (x(t),u(t)) ∈ χi, then we keep σ(t) = i. If for some ti it holds that σ(t−i ) = 1 but
(x(ti),u(ti)) ∈ χc1, then switching to the second subsystem occurs, i.e., σ(ti) = 2. Similarly,
if σ(t−i ) = 2 for some ti but (x(ti),u(ti)) ∈ χc2, then we set σ(ti) = 1.
If we consider the unforced (i.e., u ≡ 0) system

ẋ = fσ(x, t) , σ ∈ S , t ≥ 0 (2.72)

the set S consists of admissible pairs (x, σ) and χ is a covering of Rn with ϕ(·) : Rn → R

being a function of the state only. Accordingly, the switching law (2.69) simplifies to

σ(t) = i if x(t) ∈ χi . (2.73)

Remark 2.4.2. Any solution according to Definition 2.4.1 satisfies (2.68) in the sense of
Carathéodory, but in the case of trajectory-dependent switching the converse is not true.
If we apply the switching law (2.69) with the covering (2.70) and specify a particular
piecewise continuous control input u(t), the switched system (2.67) is equivalent to a
differential equation ẋ = f(x, t) with f(x, t) piecewise continuous in Rn×[0,∞). A function
x(t) defined on an open or closed interval I and absolutely continuous on each closed
interval [α, β] ⊂ I is a Carathéodory solution to this differential equation if it satisfies the
integral equation x(t) = x(t0) +

∫ t
t0 f(x(s), s) ds for some t0 ∈ I [51], [33]. This solution

concept allows e.g. left- as well as right-accumulation points of event- or switching times9

9A point t̂ is called a right (left)-accumulation point of event times if there is a sequence {ti} of event
times with ti < (>) t̂ such that t̂ = limi→∞ ti = t̂ <∞ [76].
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Figure 2.5: Switching between asymptotically stable systems.

[51], [76], where infinitely many switching events occur in finite time, which in contrast are
ruled out by Definition 2.4.1.

Remark 2.4.3. If the switching law (2.69) is applied, there may be initial states for which
a solution in the sense of Definition 2.4.1 and also in the sense of Carathéodory does not
exist or only exists for finite T , even if it is bounded, i.e., does not exhibit finite escape
time. In this case, Filippov’s solution concept (see [51]) may be applied, which allows
the existence of sliding modes. Although sliding modes are important from a theoretical
as well as from a practical point of view, they may not be physically feasible, depending
on how the switching is realized, and, moreover, the occurrence of sliding modes is often
undesirable because of the chattering phenomenon, which causes excessive equipment wear,
see e.g. [113], [87].

2.4.2 Stability

Stability is one of the most prevalent issues in the switched systems literature. To illustrate
the basic problem, we consider the following situation. We have a planar (i.e., n = 2)
linear switched system with two subsystems , i.e., P = {1, 2}, which are asymptotically
stable. Exemplary trajectories of both subsystem are shown in Figure 2.5(a) and Figure
2.5(b), respectively. If we choose the switching signal σ, for instance, such that in the 1st
and 3rd quadrant the 1st subsystem is active and in the 2nd and 4th quadrant the 2nd
subsystem, as shown in Figure 2.5(c), the trajectory of the switched system diverges. This
simple example illustrates that switching can lead to instability even if all subsystems
are asymptotically stable. Therefore, it is not sufficient to consider only the behavior of
the individual subsystems, which makes the task of guaranteeing stability for a switched
system more challenging than it is in the non-switched case.
Let us consider an unforced switched system of the form (2.72) and assume that all

subsystems share a common equilibrium point denoted by x∗, i.e., fp(x∗, t) = 0 holds for
all t ≥ 0. Below we give the stability definitions used in the context of this class of systems.
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Instead of just (asymptotic) stability, normally stability properties that are uniform over
the set of admissible switching signals S are desired.

Definition 2.4.3. An equilibrium point x∗ of (2.72) is said to be uniformly stable, if, for
each ε > 0, there is δ = δ(ε) > 0, independent of t0 and σ, such that

‖x0 − x∗‖ < δ(ε) , t0 ≥ 0 ⇒ ‖x(t)− x∗‖ < ε , ∀ t ≥ t0 (2.74)

holds along all solutions (x, σ) ∈ S of (2.72). If, in addition, there is a number ζ > 0 such
that for each ε there exists a T = T (ε) such that for all (x, σ) ∈ S

‖x0 − x∗‖ < ζ , t0 ≥ 0 ⇒ ‖x(t)− x∗‖ < ε , ∀ t ≥ T (ε) (2.75)

then we say that x∗ is uniformly asymptotically stable.

In order to avoid confusion, some comments on the usage of the term “uniform” are in
order. In Subsection 2.1.2, we have used this term to describe uniformity of the stability
properties with respect to the initial time t0 for time-varying systems. In the switched
systems literature, “uniformity” refers to the multiple solutions of a switched system with
time-invariant subsystems that one obtains as the switching signal ranges over S. The
stability definition above requires uniformity with respect to both the initial time t0 and
the switching signal σ ∈ S and includes the two definitions just mentioned as special cases.
The domain of attraction A(x∗) is defined as the set of initial conditions x0 such that for
all t0 ∈ [0,∞) and all [x(t; t0,x0), σ] ∈ S it holds that limt→+∞ x(t; t0,x0) = x∗.
Lyapunov’s direct method has a straightforward extension to switched systems, which

can be used to establish uniform asymptotic stability. We first formulate the result for the
general case, where the subsystems are time-varying, and then constrain our attention to
time-invariant switched systems, for which much more results are available in the literature.

Theorem 2.4.1. Let x∗ be an equilibrium of the switched system (2.72). If there exists a
C1 function V : Rn × [0,∞)→ R and an open neighborhood ΩW ⊂ Rn of x∗ such that

W1(x) ≤ V (x, t) ≤ W2(x) (2.76)

∂V (x, t)
∂t

+ ∂V (x, t)
∂x

fp(x, t) ≤ −W3(x) (2.77)

∀ p ∈ P, ∀ t ∈ [0,∞), ∀x ∈ ΩW , where the Wi : Rn → R, i = 1, 2, 3 satisfy (2.13), then
x∗ is uniformly asymptotically stable. Moreover, if c > 0 is such that sSW1

c (x∗) is bounded
and contained in ΩW , then sSW2

c (x∗) is a subset of A(x∗).
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The function V (x, t) is referred to as common Lyapunov function for the family of
systems ẋ = fp(x, t) , p ∈ P . For time-invariant switched systems

ẋ = fσ(x) (2.78)

the theorem simplifies as follows.

Theorem 2.4.2. If there is a C1 function V (x) that is positive definite at the equilibrium
point x∗ of (2.78), and an open neighborhood ΩV̇ ⊂ Rn of x∗ such that

∇TV (x)fp(x) < 0 , ∀x ∈ ΩV̇ \ {x∗} , ∀ p ∈ P (2.79)

then x∗ is uniformly asymptotically stable. If c > 0 is such that sSc(x∗) is bounded and
contained in ΩV̇ , then sSc(x∗) is contained in A(x∗).

Let us note that the condition (2.79) is sufficient only because P is a finite set. Otherwise
the zero on the right hand side would have to be replaced by −W (x) with W (x) positive
definite at x∗. Moreover, it is interesting to know that, under some technical conditions,
the existence of a common Lyapunov function can be shown to be not only sufficient but
also necessary for the uniform asymptotic stability of a time-invariant system (2.78) with
arbitrary switching. These conditions are satisfied under the assumptions made above,
namely that P is finite and that all fp are locally Lipschitz. This yields a justification for
the common Lyapunov function approach, which also will be pursued in this thesis.
In case that a common Lyapunov function does not exist or is not known, multiple

Lyapunov functions can be used to establish (asymptotic) stability for a particular class of
switching signals S ⊂ Spc. The approach has originally been proposed by Peleties [144] for
switched linear systems and has been generalized to the nonlinear case by Branicky in the
frequently cited paper [21]. Since then, a multitude of variants and extensions has been put
forth, see e.g. [192], [38], [78], [109] and the references therein. In [109], multiple Lyapunov
functions are employed for the stability analysis of time-varying switched systems, and
Corollary 2 in this paper contains Theorem 2.4.1 as a special case. Let us mention that also
the dissipativity and passivity concepts for switched systems that are based on multiple
storage functions and the associated stability results (see e.g. [194], [191]) are closely
related to the multiple Lyapunov function concept.
However, all these approaches have in common that further conditions have to be imposed

to guarantee stability. In the simplest case, one Lyapunov function Vp is associated with
each vector field fp satisfying ∇TVpfp < 0, which is analogue to (2.79), and additionally it is
required that the condition Vσ(ti)(x(ti)) ≤ Vσ(t−i )(x(t−i )) is fulfilled for every switching time
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ti (see [78]). For a time-dependent switching signal the latter condition is of course very
difficult, if not impossible, to check a priori, i.e., without knowledge of the actual values of
x(ti) at the switching times. In the context of state-dependent switching the condition has to
be satisfied only at the switching surfaces, but determining suitable Lyapunov functions for
a given nonlinear switched system is in general a difficult task. In the linear case, however,
this problem can be formulated as a linear matrix inequality (LMI) problem, for which
efficient solvers are available [38]. Moreover, the multiple Lyapunov function approach is
very useful for the construction of stabilizing state-dependent switching laws, see e.g. [113].
In the Theorems 2.4.1 and 2.4.2, the common Lyapunov function is required to be strictly

decreasing along the subsystem trajectories (strict common Lyapunov function) in order
to ensure asymptotic stability. In fact, the Krassovski-LaSalle Theorem, which allows us
to establish asymptotic stability of non-switched time-invariant systems using non-strictly
decreasing, so called weak Lyapunov functions, is not applicable to switched systems. In
general, only the following much weaker result holds.

Theorem 2.4.3. Let x∗ be an equilibrium of the switched system (2.72). Suppose there is a
C1 function V : Rn×[0,∞)→ R and an open neighborhood ΩW ⊂ Rn of x∗ such that (2.76)
and (2.77) hold for all p ∈ P, all t ∈ [0,∞) and all x ∈ ΩW , where W1(x) and W2(x) are
continuous functions satisfying (2.13) and W3(x) is continuous and positive semidefinite,
i.e., W3(x∗) = 0 and W3(x) ≥ 0, ∀x ∈ ΩW . Then, x∗ is uniformly stable. Moreover, if
c > 0 is such that sSW1

c (x∗) is bounded and contained in ΩW , then all trajectories starting
in sSW2

c (x∗) approach the set {x ∈ SW1
c (x∗)|W3(x) = 0} as t→∞.

This follows directly from Theorem 4.4 in [95]. For time-invariant switched systems
several extensions of the Krassovski-LaSalle theorem have been developed in the literature
under some regularity assumptions regarding the distance between the consecutive switching
times, see e.g. [7], [70], [78], [109], [120]. It has been illustrated by examples in [78] and [7]
that some type of regularity in the switching signals is indeed needed to obtain Krassovski-
LaSalle-like criteria for switched systems. The following theorem is contained in Theorem
2.3 in [120] as a special case, when only a single Lyapunov function is used instead of
multiple ones.

Theorem 2.4.4. Consider the switched system (2.78) and suppose that there is a function
V (x) that is positive definite at x∗ and continuous functions Wp(x), p ∈ P which are
nonnegative in an open neighborhood ΩW ⊂ Rn of x∗ such that

∇TV (x)fp(x) ≤ −Wp(x) , ∀x ∈ ΩW , ∀p ∈ P . (2.80)
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Further, suppose that for any δ > 0, any p ∈ P and any solution of ẋ = fp(x) satisfying
W (x(t)) = 0, ∀ t ∈ [0, δ), we have x(0) = x∗. Then, if S ⊂ Saverage, the equilibrium x∗ is
asymptotically stable. If S ⊂ Saverage[τD, N0] for some τD > 0 and some N0 > 0, then x∗

is uniformly asymptotically stable. Moreover, if c > 0 is such that sSVc (x∗) is bounded and
contained in ΩW , then sSVc (x∗) is contained in A(x∗).

In Section 2.2 we have addressed the passivity concept for non-switched systems and its
application for feedback stabilization. The classic notion of passivity from Definition 2.2.2
obviously can be carried over to switched systems

ẋ = fσ(x) + Gσ(x)u (2.81a)

y = hσ(x) . (2.81b)

We say that (2.81) is passive if there is a C0 storage function H : Rn → R such that for all
(x,u, σ) ∈ S and all t ≥ 0 it holds that

H(x)−H(x0) ≤
∫ t

0
uThσ(τ)(x(τ)) dτ =

∫ t

0
uTy dτ . (2.82)

2.5 Numerically Computable Bounds on Real-Valued
Functions

In this section, we review parts of the theory developed in [66] as an extension of the
Theorem of Ehlich and Zeller [47]. It will be used in Section 3.4 to compute guaranteed
bounds for real-valued functions on a rectangular region in Rn. Let Ji = [ai, bi], i =
1, . . . , n be subsets of the real line and Xi(Ni, Ji), Ni ∈ N the set of Chebyshev points
xj = ai+bi

2 + bi−ai
2 cos(2j−1

Ni

π
2 ), j = 1, . . . , Ni. Moreover, we define the hyperrectangle

J ⊂ Rn by J = J1 × . . . × Jn and the corresponding grid of Chebyshev points X =
X1(N1,N1)× . . .× Xn(Nn, Jn). Suppose the function F : J→ R can be approximated by
a polynomial P : J→ Rn of the form

P (x) =
%1∑

α1=0
. . .

%n∑

αn=0
aα1...αnx

α1
1 . . . xαnn (2.83)

such that maxx∈J |F (x) − P (x)| ≤ r. Moreover, assume that Ni > %i, i = 1, . . . , n and
define

K
(
%

N

)
= C

(
%1

N1

)
. . . C

(
%n
Nn

)
, where C(q) =

[
cos

(
π

2 q
)]−1

. (2.84)
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Then, the inequalities

‖F‖J ≤ B , F J
min ≥ B , F J

max ≤ B (2.85)

hold with

B = K( %
N

)‖F‖X +
(
K( %

N
) + 1

)
r (2.86a)

B = 1
2

{(
K( %

N
) + 1

)
FX
min −

(
K( %

N
)− 1

)
FX
max

}
−
(
K( %

N
) + 1

)
r (2.86b)

B = 1
2

{(
K( %

N
) + 1

)
FX
max −

(
K( %

N
)− 1

)
FX
min

}
+
(
K( %

N
) + 1

)
r (2.86c)

where we have used the notations ‖F‖J = supx∈J |F (x)| as well as F J
min = minx∈J F (x)

and F J
max = maxx∈J F (x).

Note that the polynomial P (x) is not explicitly required but only the numbers %i and
the approximation error r. In order to determine these quantities it is suggested in [66] to
decompose F (x) into simple terms. We assume here, for simplicity, that the function F (x)
can be represented as

F (x) = Q0(x) +
l1∑

k=0
Q1,k(x)F1,k(x1) + . . .+

ln∑

k=0
Qn,k(x)Fn,k(xn) (2.87)

where Q0 : J→ R and the Qi,k : J→ R are polynomials, and the Fi,k : Ji → R are smooth
functions that depend only on one variable. For a more general treatment, the reader is
referred to [66]. We use the notation %i(Q0) and %i(Qi,k) for the maximum degree of xi
that appears in Q0 and Qik, respectively.

It is well known (see e.g. [162]) that there are (univariate) polynomials Pi,k : Ji → R in
xi with prescribed degrees %i(Pi,k) such that

‖Fi,k(xi)− Pi,k(xi)‖ ≤ ri,k = 2
(
bi − ai

4

)%i(Pi,k)+1 1
(n+ 1)!

∥∥∥F (%i(Pi,k)+1)
i,k

∥∥∥
Ji (2.88)

where F (q)
i,k = dq

dxqi
Fi,k(xi). These polynomials can be obtained by polynomial interpolation

using Chebyshev points as interpolation points. With Lemma 1.5 in [66] we get

r =
n∑

j=0

lj∑

kj=0
‖Qj,kj‖Jrj,kj , (2.89a)

%i = max
{
%i(Q0), %i(Qj,kj) + %i(Pj,kj), j = 1, . . . , n, kj = 1, . . . , lj

}
(2.89b)

49



Chapter 2 Preliminaries

where %i(Pj,kj) = 0 for i 6= j and the rj,kj are calculated according to (2.88). In (2.89a),
the values ‖Qj,kj‖J can also be substituted by upper bounds, which can be determined
likewise by applying the inequalities (2.85), (2.86) with r = 0. The latter is due to the
fact that the Qj,kj are polynomials.
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Chapter 3

Estimating the Domain of Attraction

As we have seen in the previous chapter, the IDA methodology assigns a pH structure with
a desired energy function to the closed loop system. In this chapter, we are concerned with
the question how this pH structure can be exploited to determine an estimate of the DA
of the desired equilibrium point. One central feature of IDA is that the energy function
represents a natural Lyapunov function for the closed loop system and hence allows for
estimating the DA. Since, in general, the energy function is not radially unbounded, this
gives rise to the question how its largest bounded sublevel set can be determined. As
outlined in Section 1.3.1, as yet there is no satisfactory method available to solve this
problem. Recall that the conditions for the applicability of the closest UEP method [27],
[31] can usually not be guaranteed in the context of IDA (see also Remark 1 in [61] and
Section 3.1 below) and that exploiting strong convexity of the energy function, as done
in [61], is only viable for simple energy functions and may lead to conservative estimates.
Therefore, we develop in this chapter a numerical approach to estimate the DA of an IDA
controller, which does not impose any requirements on the energy function that go beyond
the conditions of IDA itself. The proposed method is able to deal with systems whose
dissipation matrix is only locally positive semidefinite, and it can be extended also to the
time-varying case. Parts of the results in this chapter have been published in [97].

The remainder of the chapter is organized as follows. After a formal problem statement
in Section 3.1 we present the theoretical basis of the proposed method in Section 3.2. Based
on that, we derive in Section 3.3 a numerical algorithm that allows to estimate the DA for
both time-invariant and time-varying systems. In Section 3.4, an alternative algorithm is
presented, which makes use of the numerically calculable bounds on real-valued functions
reviewed in Section 2.5.
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3.1 Problem Statement
The IDA method endows the closed loop system with a pH structure

ẋ = F(x)∇H(x) (3.1)

where the energy function H(x) has a strict local minimum at the desired equilibrium
x∗ and R(x) = −sym{F(x)} ≥ 0 holds within an open neighborhood ΩR ⊂ Rn of x∗.
Without loss of generality, we assume throughout this first part of the thesis that x∗ = 0
and H(0) = 0. By virtue of the pH structure, the energy function satisfies Ḣ(x) ≤ 0 for
all x within an open neighborhood ΩḢ of x∗ = 0 and thus is a Lyapunov function for the
closed loop system.
In order to determine an estimate of the DA based on this Lyapunov function, we need

to identify a level value c > 0 such that sSc(0) is bounded and entirely contained in ΩḢ .
Then, we can invoke the Krassovski-LaSalle Theorem to verify that all trajectories starting
within this set tend to the origin as t→∞. Since an as large as possible estimate of the
DA is wanted, we are interested in the largest value c that satisfies these requirements. In
the case of radially unbounded Lyapunov functions, that are typically used in this context,
all sublevel sets are bounded and thus the only concern is negative (semi-) definiteness
of their derivative along the system trajectories. However, the energy function H(x) in
(3.1), which is determined from a set of linear PDEs during the IDA controller design, is
usually not radially unbounded. Moreover, the origin is usually not the only critical point1

of the energy function. Since these points are equilibria of the closed loop system (3.1), a
necessary condition for sSc(x∗) to be a subset of A(0) is that it contains no critical points
of H(x) other than the origin. In summary, all of this amounts to the following problem
statement.

Problem 3.1.1. Find the largest level value ĉ – henceforth called the critical level value –
such that Sĉ(0) is i) bounded, ii) a subset of ΩḢ , and iii) does not contain critical points
of the energy function other than the origin.

This is illustrated in Figure 3.1, where the sublevel set Sĉ is depicted in green and its
connected component containing the origin Sĉ(0) is marked red. In the Figures 3.1(a)
and 3.1(b), it is assumed that Ḣ ≤ 0 holds globally, i.e., the critical level value is solely
determined by the requirements that Sĉ(0) has to be bounded and may not contain critical
points of H(x) other than the origin. While in Figure 3.1(a) the level value can be increased

1Recall that p is called a critical point of a function H : Rn → R, if ∇H|p vanishes.
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Figure 3.1: Estimating the DA by means of the energy function.

until ∂S(0) hits a critical point of H(x), in Figure 3.1(b) the only critical point is the
origin, but the sublevel sets become unbounded for level values c ≥ 1. In Figure 3.1(c),
the energy function is identical to the one in Figure 3.1(a), but Ḣ ≤ 0 is assumed to hold
only within a neighborhood ΩḢ of the origin.
Considering the different situations illustrated in Figure 3.1, it becomes clear that in

the context of IDA the energy function neither can be guaranteed to be (globally) strictly
decreasing nor to be a proper map along any system trajectory. Hence, in general, none of
the conditions for the applicability of the closest UEP method mentioned in Section 1.3.1
is fulfilled. This is of course even more so, if the closed loop system is a time-varying pH
system

ẋ = F(x, t)∇H(x, t) , sym{F(x, t)} ≤ 0 , ∀x ∈ ΩR , ∀ t ≥ 0 (3.2)

as it is the case e.g. in tracking control problems (see Section 2.3.2 and the examples in
the Sections 5.3 and 8.2), because there is no generalization of the closest UEP method to
time-varying systems. As for time-invariant energy functions, we assume, without loss of
generality, that H(0, t) = 0 ∀ t ≥ 0. We have seen in Section 2.2.5, that in the time-varying
case, the pH-structure does not guarantee stability any more. Hence, we use H(x, t) as a
Lyapunov function candidate to verify that the IDA controller renders the origin uniformly
asymptotically stable and to estimate the corresponding DA. According to Theorem 2.1.2
this amounts to the following Problem.

Problem 3.1.2. Find, if possible, positive definite functions Wi(x), i = 1, 2, 3 satisfying
(2.11), (2.12), and determine the largest level value ĉ such that SW1

ĉ (0) is bounded and
contained in ΩW3 .
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An estimate of the DA is then given by SW2
ĉ (0). Similar to the time-invariant case, W1(x)

is in general not radially unbounded and hence boundedness of SW1
c (0) can usually be

ensured only for sufficiently small level values c.

3.2 Theoretical Basis
In this section, we lay the theoretical foundation for the algorithms presented in the current
chapter. In the course of that, the notion of (proper) star-shapedness with respect to
(w.r.t) the origin will be needed. A set T is said to be (properly) star-shaped w.r.t. the
origin, if for all x ∈ sT the line segment between the origin and x is in (int T) sT, where
int T is the interior and sT the closure of T. The following definition is equivalent and more
suitable for our needs.

Definition 3.2.1 ([54]). A simply connected set T ⊂ Rn is called star shaped w.r.t. the
origin if, for each x ∈ ∂T, the angle ω(x) between the outer normal to ∂T and the radial
direction x satisfies ω(x) ≤ π/2. It is called properly star shaped w.r.t. the origin, if
ω(x) < π/2 holds.

The proofs of the following lemma and of Lemma 3.2.2 use some ideas from [28].

Lemma 3.2.1. Let D ⊂ Rn be a simply connected bounded set containing the origin. If
ĉ = minx∈∂D H(x), then Sĉ(0) ⊂ D and hence is bounded.

Proof. Let x̂ = arg minx∈∂D H(x). Since x̂ ∈ ∂D, Sĉ(0) ∩ ∂D = ∅. Hence, Sĉ(0) ∩ sDc = ∅,
since otherwise Sĉ(0) would not be connected. It follows that Sĉ(0) ⊂ int sD, and since D is
bounded, Sĉ(0) is bounded.

Based on this lemma, a bounded set Sĉ(0) could be determined. However, it might
be very small or even an empty set, if D is chosen such that ĉ < 0. Moreover, it is not
guaranteed that Sĉ(0) contains no other critical points of H(x) than the origin.
Now we consider the restriction of H(x) to a straight line gv(λ) = H(λv) with λ > 0 and

v ∈ Sn−1, where Sn−1 denotes the (n− 1)-dimensional unit sphere. We have the following
lemma.

Lemma 3.2.2. Let D ⊂ Rn be an open simply connected bounded set which is star-shaped
w.r.t. the origin. Assume that d

dλ
gv(λ) > 0 holds for all v ∈ Sn−1 and all λ > 0 such that

λv ∈ D. If ĉ = minx∈∂D H(x), then

1) Sĉ(0) ⊂ D and hence Sĉ(0) is bounded.
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2) the only critical point of H(x) in Sĉ(0) is x∗ = 0.

3) the set {Sb(0) ∩ sDc} is nonempty for any b > ĉ.

4) all sets Sa(0) with a < ĉ are properly star-shaped w.r.t. the origin.

Proof. Part 1) follows readily from Lemma 3.2.1. Part 2) is obvious from the fact that
d
dλ
gv(λ) = (∇H(x)|x=λv)Tv > 0 for all λv ∈ D\{0}. Now consider any number b > ĉ.

Then, there is a point y ∈ ∂D with y ∈ Sb(0). By the assumption made on d
dλ
gv(λ), y

belongs to the component Sb(0). Since y ∈ ∂D for any neighborhood N of y, it holds
that N ∩ sDc 6= ∅. If N is chosen small enough, we have that N ∩ sDc 6= ∅ and N ⊂ Sb(0),
which proves Part 3) of the lemma. It follows from Part 1) that for a < ĉ we have that
sSa(0) ⊂ int D and therefore d

dλ
gv(λ) = (∇H(x)|x=λv)Tv > 0 holds for all x ∈ ∂Sa(0).

Since at any point x = λv ∈ ∂Sa(0) the outer normal to ∂Sa(0) is given by ∇H(x) it
follows that ω(x) < π

2 . This proves Part 4) of the lemma.

Given a function H(x), the above results motivate the search for the largest set D which
satisfies the conditions of Lemma 3.2.2 or, in particular, for the minimum value of H(x)
over its boundary ∂D. To guarantee that the algorithm presented in Section 3.3 converges
in a finite number of steps, the search is restricted to a ball BR = {x ∈ Rn : ‖x‖ ≤ R},
which is chosen considering the operating range of the system. Hence, it is desired to
determine the maximum set D ⊂ BR which satisfies the conditions of Lemma 3.2.2. This
is illustrated in Figure 3.2. The radial function ρ

sD : Sn−1 → R+
0 of sD associated with the

origin

ρ
sD(v) = sup

{
a ≥ 0 : av ∈ sD

}

= sup
{

0 < a < R : d

dλ
gv(λ)

∣∣∣∣∣
λ=a

> 0
} (3.3)

uniquely determines the set sD [8]. In general, the boundary of D is made up of parts of
∂BR, parts of the manifold M defined by ∇TH(x)x = 0, and possibly (n− 1)-dimensional
objects Ti which are such that at all points x ∈ Ti the radial direction x is tangential to
Ti, see Figure 3.3. The following lemma is derived from (3.3) and Lemma 3.2.2.

Lemma 3.2.3. Given a ball BR, let sD be defined by (3.3). Then, ĉ = minx∈∂D H(x) is
the maximum level value such that i) Sĉ(0) ⊂ BR, ii) Sĉ(0) contains no critical points of
H(x) except the origin, and iii) for all 0 < a < ĉ, the set Sa(0) is properly star-shaped
w.r.t. to the origin.
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Figure 3.2: Contour plot of an exemplary energy function H(x) with the largest set D (black
solid) within BR (green dashed) which satisfies the conditions of Lemma 3.2.2, points
x̂ where H(x) attains its minimum over ∂D (blue markers), and the corresponding
level set ∂Sĉ(0) (red dashed-dotted).

Figure 3.3: The boundary ∂D (thick lines) is, in general, composed of parts of M (blue), parts of
∂BR (grey), and (n− 1)-dimensional objects Ti (green).

In case that Ḣ(x) ≤ 0 holds globally, this lemma provides a solution to Problem 3.1.1,
however, with the restriction that the sublevel sets Sa(0), 0 < a < ĉ are properly star-
shaped w.r.t. the origin. That means that there might be larger sublevel sets which meet
all requirements of Problem 3.1.1 but are not star-shaped w.r.t. the origin. It should be
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pointed out, however, that we have not imposed any conditions on the energy function
except those of IDA itself. Also, it is remarked that, to our experience, most energy
functions indeed have the property that the sublevel sets of interest are star-shaped w.r.t.
the origin.
In case that Ḣ(x) ≤ 0 is guaranteed only in a neighborhood ΩḢ of the origin, we

additionally consider the restriction of Ḣ(x) to a straight line defined by hv(λ) = Ḣ(λv)
with λ > 0 and v ∈ Sn−1. Similar to (3.3), we introduce the set sE characterized by its
radial function ρ

sE associated with the origin

ρ
sE(v) = sup

{
0 < a < R : d

dλ
gv(λ)

∣∣∣∣∣
λ=a

> 0 , hv(av) ≤ 0
}
. (3.4)

Then, the following lemma follows from Lemma 3.2.2 and (3.4).

Lemma 3.2.4. Given a ball BR, let sE be defined by (3.4). Then, ĉ = minx∈∂E H(x) is
the maximum level value such that i) Sĉ(0) ⊂ BR, ii) Sĉ(0) contains no critical points of
H(x) except the origin, iii) Ḣ(x) ≤ 0 holds for all x ∈ Sĉ(0), and iv) for all 0 < a < ĉ,
the set Sa(0) is properly star-shaped w.r.t. to the origin.

The application of the Krassovski-LaSalle Theorem requires a compact positively invariant
set, but Sĉ(0) is not closed and sSĉ(0) might contain equilibrium points of the system
other than the origin (see Figure 3.2). Therefore, in order to estimate the DA, we take a
somewhat smaller level value d̂ < ĉ and the corresponding compact sublevel set sSd̂(0).

Remark 3.2.1. The proposed approach can be easily adapted to control systems with
constrained control inputs |ui| ≤ ūi, i = 1, . . . ,m by one of the two means outlined below.
For simplicity of notation, we restrict ourselves to the case of a single input u with |u| ≤ ū,
but the generalization to the multi-input case is straightforward.

1) If the controller saturates, the derivative of the energy function, which is used for
the definition of sE in (3.4), is given by

Ḣ(x) =




−∇TH(x)R(x)∇H(x) if |r(x)| ≤ ū

∇TH(x) {f(x) + g(x)sgn[r(x)]ū} if |r(x)| > ū
. (3.5)

A function Ḣ(x) of this form can be handled by the algorithm proposed in the subsequent
section without any problems.
2) A somewhat simpler method, which, however, leads to more conservative estimates,
is to determine the largest sublevel set of the energy function that, on the one hand,
qualifies as an estimate of the DA for the unconstrained system and, on the other hand,
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satisfies that |r(x)| ≤ ū holds for all x contained therein (see e.g. [73]). To guarantee
the latter property, we define the function rv(λ) = (λv) and add |rv(av)| ≤ ū in the
definition (3.4). Although we will not elaborate on that, the algorithm presented in the
next section can be adapted accordingly in an obvious manner.

The approach can also be extended to the time-varying case (Problem 3.1.2), if continuous
functions Wi(x), i = 1, 2, 3 are available that satisfy (2.11) and (2.12) and are locally
positive definite at the origin. In addition, W1(x) has to be continuously differentiable.
Note that, if the Wi(x) are C2-functions, a sufficient condition for them being locally
positive definite is that

∇Wi(x)|x∗=0 = 0 , and ∇2W (x)|x∗=0 > 0 , i = 1, 2, 3 . (3.6)

If we identify W1(x) with H(x) and −W3(x) with Ḣ(x), i.e., gv = W1(λv) and hv =
−W3(λv), Lemma 3.2.4 can be used to determine a suitable level value ĉ. In order that
W3(x) is positive definite on SW1

ĉ (0), we change the ’≤’ in (3.4) to a strict ’<’. Then SW2
ĉ (0)

is the largest estimate of the DA within BR that can be obtained with the functions Wi(x),
again with the restriction that SW1

a (0) is properly star-shaped w.r.t. the origin for all
0 < a < ĉ.

3.3 Determining the Critical Level Value: Algorithm 1
In this section and the subsequent one, we present two numerical algorithms that allow
to determine the critical level value ĉ. To this end, the method proposed in this section
numerically approximates the radial functions (3.3) or (3.4). In the first subsection we focus
our attention on the time-invariant case, the second subsection is devoted to time-varying
pH systems.

3.3.1 Time-Invariant Systems

We divide the algorithm into five steps, each of which is illustrated in Figure 3.4. For ease
of presentation, we assume for the moment that R(x) ≥ 0 holds globally guaranteeing
Ḣ(x) ≤ 0 for all x ∈ Rn. Hence, our objective is to approximate ρ

sD as defined in (3.3).
Further, we assume that ∇2H(x)|x=0 > 0. However, as will be outlined subsequent to the
description of the algorithm, this assumption is actually not absolutely necessary.
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(d) Step 5.

Figure 3.4: Algorithm for the computation of ĉ via discrete approximation of ρ
sD.

Step 1: Discretization of Sn−1 In the first step of the algorithm, the unit sphere Sn−1

is discretized using n-dimensional spherical coordinates z = [r, θ1, . . . , θn−1]T introduced by

x1 = r sin(θn−1) . . . sin(θ3) sin(θ2) sin(θ1)

x2 = r sin(θn−1) . . . sin(θ3) sin(θ2) cos(θ1)

x3 = r sin(θn−1) . . . sin(θ3) cos(θ2)
...

xn−1 = r sin(θn−1) cos(θn−2)

xn = r cos(θn−1)

(3.7)
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with r ∈ [0,∞), θ1 ∈ [0, 2π], and θ2, . . . , θn−1 ∈ [0, π] (see e.g. Appendix VII.2 in [127]).
In the following, the mapping (3.7) is denoted by x = Ψ(z). We obtain a uniform
discretization V = {vk|k = 1, . . . , K} of Sn−1 using (3.7) with v = x, r = 1 and the
sequences θ1,k1 = k1

2π
K1

, k1 = 1, . . . , K1, θi,ki = ki
π
Ki
, ki = 0, . . . , Ki, i = 2, . . . , n− 1. The

cardinality of the set V is K = K1
∏n−1
j=2 (Kj + 1).

Next, the functions gv,k(λ) = H(λvk), 0 < λ ≤ R, k = 1, . . . , K or, actually, their
derivatives g′v,k(λ) = d

dλ
gv,k(λ) are analyzed in terms of the maximum λ such that λvk ∈ sD.

This is done in the three steps described below, which are repeated for every direction
vk ∈ V .

Step 2: Initial estimate of ρD̄(vk) In this step, a value λmink is computed such that
g′v,k(λ) is guaranteed to be strictly positive within the interval (0, λmink ). We invoke Taylor’s
Theorem (see e.g Theorem 2.1 in [129]) to deduce that for some κ ∈ (0, λ) we have that

g′v(λ) = g′v,k(0)
︸ ︷︷ ︸

=0

+ d

dλ
g′v,k(λ)

∣∣∣∣∣
λ=0︸ ︷︷ ︸

>0

λ+ 1
2
d2

dλ2 g
′
v,k(λ)

∣∣∣∣∣
λ=κ

λ2 . (3.8)

For the first term in this expression, we calculate g′v,k(0) = ∇TH(0)vk = 0. The second
term in (3.8) is strictly positive because we have assumed that ∇2H(0) > 0 and

d

dλ
g′v,k(λ) = vTk ∇2H(x)

∣∣∣
λvk

vk ⇒ d

dλ
g′v,k(λ)

∣∣∣∣∣
λ=0

= vTk∇2H(0)vk > 0 . (3.9)

Using this, we deduce from (3.8) the lower bound

g′v,k(λ) ≥ λ

[
g′′v,k(0)− 1

2 max
κ∈[0,λ]

(∣∣∣g′′′v,k(κ)
∣∣∣
)
λ

]
, λ > 0 (3.10)

where we have used the notation g′′v,k(λ) = d
dλ
g′v,k(λ) and g′′′v,k(λ) = d2

dλ2 g
′
v,k(λ). Since λ > 0,

this bound is positive as long as the term in brackets is positive. As argued above, the
first term in the bracket is a strictly positive constant, the second summand is zero for
λ = 0 and monotonically decreasing with λ > 0. Thus, it is not difficult to see that the
expression in brackets is positive for small λ and has a unique positive root λmink , where
it changes its sign from positive to negative. This root can be easily calculated using a
simple one-dimensional root finding technique. The max-term in (3.10), or at least an
upper bound for it, can be calculated quite easily in most cases, possibly supported by
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computer algebra system like Maple or Sage. This is illustrated by the following example
(see also the example in Section 5.2).

Example 3.3.1. Let us consider the energy function

H(x) = 5x2
1 + 2x1x2 + 8x2

2 − 7x3
1 − x4

2 cos(x1x2) , (3.11)

which is positive definite at the origin, but not radially unbounded. We compute

g′′′v,k(λ) = −42v3
k,1 + 96vk,1v5

k,2λ
3 sin(λ2vk,1vk,2) + 60λ5v2

k,1v
6
k,2 cos(λ2vk,1vk,2)

− 8λ7v3
k,1v

7
k,2 sin(λ2vk,1vk,2)− 24λv4

k,2 cos(λ2vk,1vk,2) .
(3.12)

In order to determine an upper bound for maxκ∈[0,λ](|g′′′v (κ)|) we use

|a+ b| ≤ |a|+ |b| , max
a∈[0,b]

| cos(a)| = 1 , max
a∈[0,b]

| sin(a)| =





sin b |b| < π
2

1 |b| ≥ π
2

(3.13)

and obtain

max
κ∈[0,λ]

(∣∣∣g′′′v,k(κ)
∣∣∣
)
≤ 42

∣∣∣v3
k,1

∣∣∣+ 96
∣∣∣vk,1v5

k,2λ
3 sin(λ2vk,1vk,2)

∣∣∣+ 60
∣∣∣λ5v2

k,1v
6
k,2

∣∣∣

+ 8
∣∣∣λ7v3

k,1v
7
k,2 sin(λ2vk,1vk,2)

∣∣∣+ 24
∣∣∣λv4

k,2

∣∣∣
(3.14)

for |λ2vk,1vk,2| < π
2 and

max
κ∈[0,λ]

(∣∣∣g′′′v,k(κ)
∣∣∣
)
≤ 42

∣∣∣v3
k,1

∣∣∣+96
∣∣∣vk,1v5

k,2λ
3
∣∣∣+60

∣∣∣λ5v2
k,1v

6
k,2

∣∣∣+8
∣∣∣λ7v3

k,1v
7
k,2

∣∣∣+24
∣∣∣λv4

k,2

∣∣∣ (3.15)

for |λ2vk,1vk,2| ≥ π
2 . Of course the bound (3.15) would also be valid for |λ2vk,1vk,2| < π

2 ,
but we use a piecewise defined function to obtain a tighter bound and thereby a better
estimate for ρD̄(vk). Since (3.14) and (3.15) are identical for |λ2vk,1vk,2| = π

2 , the overall
expression is continuous and the desired root λmink can be computed numerically without
any problems, for instance, by means of the bisection method (see e.g. [145]).

Step 3: Discretization of the interval [λmink , R] In the third step, the interval [λmink , R]
is discretized into a sequence L = {λk,l|l = 0, . . . , Lk}, where λk,l = λmink + l∆λk and
∆λk = (R − λmink )/Lk for some positive integer Lk. The number λmink can provide an
indication on how fine the discretization should be, i.e., on how to choose the number of
points Lk. We specify a priori a maximum and a minimum distance for the discrete points,
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denoted by ∆λmax and ∆λmin, respectively, which is valid for all k. Then, we set

Lk =
⌈(
R− λmink

)/
max

(
min

(
λmink ,∆λmax

)
,∆λmin

)⌉
(3.16)

where dxe denotes the ceiling function.

Step 4: Line Search In the fourth step, l is increased from 0 to Lk− 1 until the interval
[λk,l, λk,l+1] brackets a root of g′v,k(λ), in the sense that g′v,k(λk,l+1) < 0 < g′v,k(λk,l), or
until l = Lk − 1 is reached. In the latter case, we set ρ

sD(vk) = R. If a root of g′v,k(λ) is
bracketed in an interval [λk,l, λk,l+1], a one-dimensional zero-finding technique is applied to
determine the root, say λ̂k, where a technique is preferable which maintains the bracketing,
such as regula falsi or Brent’s method [145]. Then, we set ρ

sD(vk) = λ̂k.

Step 5: Determining the critical level value After the Steps 2–4 have been conducted
for every vk ∈ V , the pairs [vk, ρsD(vk)] constitute an approximation of the radial function
ρ

sD(v) and thus a discrete representation of ∂D. As H(x) ∈ Cr holds with r ≥ 1 the
function g′(λ,v) = g′v(λ) is uniformly continuous in sD. Hence, if the grid size is sufficiently
small, it can be concluded that g′v,k(λl) > 0 for all vk and λk,l < ρ

sD(vk) implies that
the conditions of Lemma 3.2.2 are satisfied. To obtain ĉ = minx∈∂D H(x), first the value
â = mink∈{1,...,K}H(ρ

sD(vk)vk) is determined. The associated index is denoted by k̂a and
the corresponding point is x̂a = ρ

sD(vk̂a)vk̂a . Moreover, let k̂i, i = 1, . . . , n− 1 be defined
by x̂a = Ψ([ρ

sD(vk̂a), k̂1
2π
K1
, . . . , k̂n−1

π
Kn−1

]).

Remark 3.3.1. Actually, the pairs [vk, ρsD(vk)] form a discrete representation only of those
parts of ∂D that belong to ∂BR and M, i.e., there are no points on the Ti (see also Figure
3.3). However, since at every point x ∈ Ti the radial direction x/‖x‖ is tangential to Ti

and ∇TH(x)x is positive everywhere on Ti, the function H(x) cannot adopt its minimum
there.

To take into account that x̂ might not be captured by the grid, optionally one of the
following minimization problems can be solved with the initial point x̂a. If ρsD(vk̂a) = R,
i.e. x̂a ∈ ∂BR, the minimization problem is formulated in spherical coordinates

min
θ

H(Ψ([R, θ1, . . . , θn−1]T )) (3.17a)

s.t. θi,k̂i−1 ≤ θi ≤ θi,k̂i+1, i = 1, . . . , n− 1 (3.17b)
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where θ = [θ1, . . . , θn−1]. If ρ
sD(vk̂a) < R the problem

min
x

H(x) (3.18a)

s.t. ∇TH(x)x = 0, xTx ≤ R (3.18b)

is solved. Assuming a sufficiently small grid, it can be expected that x̂a is close enough to
the desired point such that a gradient based solver converges to that point. This finally
yields x̂ and ĉ = H(x̂). If the optimization step is skipped for the sake of computational
efficiency, then we have, of course, x̂ = x̂a and ĉ = â.
As mentioned in the previous section, the sublevel set sSĉ(0) is not suitable as an estimate

of the DA since it might contain other critical points of the energy function than the origin.
For this reason, and in order to compensate for numerical errors, we take the level value
d̂ = (1 − εc)ĉ, where εc > 0 is small2. A point x̂d with H(x̂d) = d̂ is given by x̂d = λ̂dx̂,
where λ̂d is the (unique) solution of

H(λx̂)− d̂ = 0 λ ∈ (0, 1) (3.19)

which is determined by a one-dimensional root finding technique.

Note that we can of course skip Step 2 of the algorithm and instead choose λmink = 0,
which means that in Step 3 the complete interval [0, R] is discretized with an a priori fixed
step size ∆λ. This obviates also the assumption ∇2H(0) > 0 made at the beginning of
this section as it is only required for the estimation of λmink . However, Step 2 reduces the
number of function evaluations, since it is not necessary to examine the interval [0, λmink ),
and, as already utilized above, the size of λmink gives an indication on how to choose the
discretization of the remaining interval [λmink , R].
In case that Ḣ(x) ≤ 0 can be guaranteed only locally, the algorithm proceeds in the same

way, only that we do not merely examine g′vk(λ) but simultaneously also hv,k(λ) = Ḣ(λvk)
in terms of the largest λk such that λkvk ∈ sE (c.f. (3.4)). As a consequence, in Step 2 we
determine two estimates λming,k and λminh,k such that g′v,k(λ) is positive within (0, λming,k ] and
hv,k(λ) is negative within (0, λminh,k ]. Then we take λmink = min(λming,k , λ

min
h,k ) and determine in

Step 3 a discretization of [λmink , R] as above. In Step 4, we then increase l until [λk,l, λk,l+1]
brackets a root of either g′v,k(λ) or hv,k(λ), or until we have reached ∂BR. In case that
both g′v,k(λ) and hv,k(λ) change their sign in the same interval [λk,l, λk,l+1], we determine

2If the optimization step is omitted, εc might be chosen somewhat larger to take into account that x̂
might not be captured by the grid.
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both roots and take the smaller one as λ̂k. In this way, we obtain a discrete approximation
of the radial function ρ

sE(v) and hence of ∂E, based on which ĉ can be computed. This
is also done analogously to above with the only difference occurring, if a gradient based
optimization is conducted after â and x̂a have been determined. Then, if ρD̄(vk̂a) < R, we
have to distinguish whether x̂a corresponds to a zero of g′v(λ) or of hv(λ). In the former
case, we solve the minimization problem (3.18a), (3.18b) with the additional constraint
Ḣ(x) ≤ 0. In the latter case, we set up the problem

min
x

H(x) (3.20)

s.t. Ḣ(x) = 0, ∇TH(x)x > 0, xTx ≤ R . (3.21)

The procedure described above is exemplarily sketched in the Algorithm 3.1 for the 3
dimensional case, i.e., n = 3. The reason why we fix the dimension here is that we need to
generate permutations of n− 1 coordinates to build up the discretization V of the unit
sphere. This is usually done by nesting n− 1 for loops3 as in the lines 4-10. Note further
that, for brevity, we have omitted the optimization step in Algorithm 3.1 and thus x̂ = x̂a
and ĉ = â.

Algorithm 3.1
Input: number of points K1, K2, max. and min. distance ∆λmax, ∆λmin, radius R
Output: level value d̂
1: K := K1K2;
2: V := {};
3: k := 1;
4: for k1 = 1 . . . K1 do # Discretization V of Sn−1

5: for k2 = 1 . . . K2 do
6: vk := [sin(θ2,k2) sin(θ1,k1), sin(θ2,k2) cos(θ1,k1), cos(θ2,k2)];
7: V := V ∪ {vk};
8: k := k + 1;
9: end for

10: end for
11: ĉ :=∞;
12: x̂ := 0;
13: for k = 1 . . . K do # Loop over all vk ∈ V

3Another method that allows to do this in a generic way, i.e., without having different code for different
dimensions, is described in Section 4.3.2 in [36].
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14: determine λming,k ; # Estimate of λming,k , such that g′v,k(λ) > 0 within (0, λming,k )
15: determine λminh,k ; # Estimate of λminh,k , such that hv,k(λ) < 0 within (0, λminh,k )
16: λmink := min(λming,k , λ

min
h,k );

17: ∆λk := (R− λmink )/Lk with Lk according to (3.16);
18: L := {λk,l = λmink + l∆λk|l = 0, . . . , Lk}; # Discretization L of [λmink , R]
19: flag:=0; # flag = 1 indicates that a root has been found

20: λ̂g,k := R;
21: λ̂h,k := R;
22: l := 0;
23: while flag = 0 ∧ l < Lk do # Line search until l = Lk − 1 or a root is

found

24: if g′vk(λk,l+1) < 0 then # [λk,l, λk,l+1] brackets a root of g′vk(λ)
25: λ̂g,k := determine root of g′vk(λ) within [λk,l, λk,l+1]; # e.g. Illinois

algorithm

26: flag = 1;
27: end if
28: if hv,k(λk,l+1) > 0 then # [λk,l, λk,l+1] brackets a root of hvk(λ)
29: λ̂h,k := determine root of hvk(λ) within [λk,l, λk,l+1];
30: flag = 1;
31: end if
32: l := l + 1;
33: end while
34: λ̂k := min(λ̂g,k, λ̂h,k);
35: if H(λ̂kvk) < ĉ then
36: ĉ := H(λ̂kvk);
37: x̂ := λ̂kvk;
38: end if
39: end for
40: d̂ := (1− εc)ĉ;
41: λ̂d := solve H(λx̂)− d̂ = 0, λ ∈ (0, 1);
42: x̂d := λ̂dx̂;

Remark 3.3.2. Several modifications of this procedure are conceivable to increase the
computational efficiency, e.g. the while loop in line 23 could be terminated as soon as
gv(λk,l+1vk) > ĉ. This, however, cannot be realized, if the execution of the loop ought to
be parallelized. As an alternative, the search radius R could be gradually increased. That
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means, the algorithm is first applied to a ball with radius R1. If the resulting point x̂ is on
the boundary of the ball, the region BR2\BR1 with R2 > R1 is examined, and so on.

3.3.2 Time-Varying Systems

This section is devoted to the numerical solution of Problem 3.1.2, where the right hand
side of the closed loop pH system is not only a function of the state but also exhibits an
explicit dependence on the time t. In principle, the time-varying case differs from the
time-invariant one only in that we have to determine time-invariant positive definite bounds
Wi(x), i = 1, . . . 3 on the energy function H(x, t) and its derivative Ḣ(x, t) satisfying
(2.11), (2.12). Once such functions are available, clearly the algorithm from the previous
section can be applied verbatim to find the largest level value ĉ such that SW1

ĉ (0) is bounded
and entirely contained in the region ΩW3 within which W3(x) is positive definite. To this
end, we redefine the functions gv,k and hv,k as gv,k = W1(λvk) and hv,k = −W3(λvk).
However, in many cases, the expressions H(x, t) and Ḣ(x, t) are too cumbersome to

derive suitable bounds Wi(x), i = 1, . . . , 3 analytically. Therefore, a numerical approach is
pursued in the following. We assume that the behavior of the system (3.2) is of interest only
on a finite time interval [0, T ] or that (3.2) is T -periodic in t, i.e., for all (x, t) ∈ Rn× [0,∞)
it holds that H(x, t + T ) = H(x, t) and F(x, t + T ) = F(x, t). In the context of output
trajectory tracking, as treated in Section 2.3.2, this corresponds to the assumption that
yd(t) is either defined only on a finite interval [0, T ] or T -periodic in t (see Remark 3.3.3
below for a relaxation of this assumption). Then, bounds Wi(x) satisfying (2.11), (2.12)
are given by

W1(x) = min
t∈[0,T ]

H(x, t) , W2(x) = max
t∈[0,T ]

H(x, t) , W3(x) = min
t∈[0,T ]

−Ḣ(x, t) . (3.22)

In order to numerically compute the expressions (3.22) for a particular point x, different
strategies can be applied. It has to be noted, however, that usually H(x, t) and Ḣ(x, t) are
not convex in t (or at least this cannot be easily proven) and hence the mere application
of gradient based techniques might not yield the global minimum. The simplest strategy
is to discretize [0, T ] into a sequence of NT equidistant points T = {tj|j = 1 . . . NT} and
to approximate the extrema (3.22) by

W1(x) ≈ min
tj∈T

H(x, tj) , W2(x) ≈ max
tj∈T

H(x, tj) , W3(x) ≈ min
tj∈T
−Ḣ(x, tj) . (3.23)

The error made in doing so is taken into account in the choice of the scaling factor (1− εc).
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Optionally, we can of course add some steps of a gradient based minimization technique to
improve the accuracy of the result.
We remark that a very similar procedure has been applied in [101], [102] to determine

the bounds Wi(x). However, in this work the expressions (3.23) are a priori evaluated on
a rectangular grid around the origin x = 0 and then the required values Wi(x) are gained
by interpolation. In contrast, we compute the Wi(x) exactly at those points at which they
are requested by the algorithm. This seems to be more reasonable since it increases the
accuracy, it avoids the interpolation operation, and it can reduce the number of points at
which the expressions (3.23) must be evaluated. The latter is due to the fact that the line
search in the direction vk (Step 4 of the algorithm) stops as soon as it encounters a root
of gv,k(λ) or hv,k(λ) implying that the functions Wi(x) don’t have to be evaluated at the
remaining grid points in this direction.

Remark 3.3.3. In the context of trajectory tracking control, if y is a flat output, we have
H(e, t) = H(e,Yd(t)) and Ḣ(e, t) = Ḣ(e,Yd(t)) (see Section 2.3.2). In this case, we can
determine functions Wi(e), i = 1, 2, 3 that are valid not only for a particular trajectory, but
for all trajectories satisfying Yd(t) ∈ Dop, ∀ t, where Dop is an a priori specified operating
region. To this end, we determine the extrema (3.23) over Dop instead of the time interval
[0, T ]. Then, any desired trajectory with Yd(t) ∈ Dop, ∀ t can be chosen (e.g. by the
operator) without repeating the stability analysis and the computation of the DA for each
yd(t) (see the Example in Section 8.2).

For the application of the algorithm described in the previous section, the derivatives
g′v,k(λ) = d

dλ
gv,k(λ) of the functions gv,k = W1(λvk) are required. Since no symbolic

expression is available forW1(x), they also have to be computed numerically, e.g. by means
of finite differencing (see Chapter 8 in [129]). Using a forward difference approximation we
obtain

g′v,k(λk,lvk) ≈
W1(λk,lvk + εvk)−W1(λk,lvk)

ε
. (3.24)

The parameter ε is typically chosen as the square root of the unit roundoff (see [129] for a
discussion).
To evaluate the expression (3.24), the value of W1(x) at the point λk,lvk and at the

point λk,lvk + εvk is needed, which entails that the function H(x, t) has to be evaluated
2NT times. Hence, calculating the derivative g′v,k(λ) is twice as expensive as computing
gv,k(λ). In Step 4 of Algorithm 3.1, g′v,k(λ) is determined at every grid point, i.e., for every
vk and every λl,k. In order to reduce the computational effort, we can make the following
modification.
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(a) Sign change of g′v,k(λ) in [λk,l̂, λk,l̂+1]. (b) Sign change of g′v,k(λ) in [λk,l̂−1, λk,l̂].

Figure 3.5: Line search in the time-varying case.

While increasing l, we do not check whether the interval [λk,l, λk,l+1] brackets a root of
g′v,k(λ) but whether gv,k(λk,l+1) < gv,k(λk,l), which requires only NT evaluations of H(x, t).
In case that for some l̂ it holds that gv,k(λk,l̂+1) < gv,k(λk,l̂), it can be concluded, using the
mean value theorem, that a sign change in g′v,k(λ) must have occurred within [λk,l̂, λk,l̂+1]
or in the previous interval (see also Figure 3.5). Thus, to identify the interval that brackets
a root of g′v,k(λ), for each vk the derivative g′v,k(λ) has to be evaluated at most at two
points (see Algorithm 3.2 below).
If it happens that already in the first step of the line search it holds that gv,k(λk,1) <

gv,k(0) = 0 or hv,k(λk,1) > hv,k(0) = 0, then either the grid has been chosen too coarse or
at least one of the functions W1(x) or W3(x) is not locally positive definite. In this case,
the grid size can be reduced, or we can check whether ∇W1(0) = 0 and ∇W3(0) = 0 as
well as ∇2W1(0) > 0 and ∇2W3(0) > are satisfied. Both the gradients and the Hessians
can also be computed using a finite difference approximation (see [129], pp. 195-202).
Another modification of Algorithm 3.1, that we make in the time-varying case, is that

Step 2 of Algorithm 3.1 is omitted since no symbolic expressions are available for the
functionsW1(x) andW3(x). As a consequence, we have λmink = 0. The step size ∆λk = ∆λ
is chosen identical for all k and such that R = L∆λ where L ∈ N is the number of discrete
points in each direction vk. The resulting procedure is sketched below in Algorithm
3.2., again for the 3-dimensional case and without the optimization step. For ease of
presentation, it is not checked in the pseudo code whether gv,k(λk,1) < 0 or hv,k(λk,1) > 0,
i.e, whether a sign change occurs already in the first step of the line search.
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Algorithm 3.2
Input: number of grid points K1, K2, step size ∆λ, radius R
Output: level value d̂
1: determine V := {vk|k = 1, . . . , K}; # As in Algorithm 3.1, lines 1-10

2: ĉ :=∞;
3: x̂ := 0;
4: for k = 1 . . . K do # Loop over all vk ∈ V
5: L := {λk,l = l∆λk|l = 0, . . . , L}; # Discretization L of [0, R]
6: flag := 0; # flag = 1 indicates that a root has been found

7: λ̂g,k := R;
8: λ̂h,k := R;
9: l := 0;

10: while flag = 0 ∧ l ≤ L do # Line Search

11: if gvk(λk,l) ≥ gvk(λk,l+1) then
12: if g′vk(λk,l)g

′
vk

(λk,l+1) < 0 then
13: λ̂g,k := determine root of g′vk(λ) within [λk,l, λk,l+1];
14: else
15: λ̂g,k := determine root of g′vk(λ) within [λk,l−1, λk,l];
16: end if
17: flag = 1;
18: end if
19: if hv,k(λk,l+1) > 0 then # [λk,l, λk,l+1] brackets a root of hvk(λ)
20: λ̂h,k := determine root of hvk(λ) within [λk,l, λk,l+1];
21: flag = 1;
22: end if
23: l := l + 1;
24: end while
25: λ̂k := min(λ̂g,k, λ̂h,k);
26: if W1(λ̂kvk) < ĉ then
27: ĉ := W1(λ̂kvk);
28: x̂ := λ̂kvk;
29: end if
30: end for
31: d̂ := (1− εc)ĉ;
32: λ̂d := solve W1(λx̂)− d̂ = 0, λ ∈ (0, 1);
33: x̂d := λ̂dx̂;
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Figure 3.6: Algorithm for the computation of ĉ using the bounds (2.86b) and (2.86c) on real
valued functions.

3.4 Determining the Critical Level Value: Algorithm 2

In this section, an alternative to the algorithm proposed in the previous section is presented
(see also [36]). While the success of the latter depends to some extent on the choice
of the discretization, this problem is mostly mitigated here by applying the approach
from Section 2.5, which enables the numerical computation of guaranteed bounds on
real-valued functions, together with a generalized bisection algorithm. To this end, a
symbolic expression for H(x) is needed and consequently the method is restricted to the
time-invariant case. Also, we require that the Hamiltonian H(x) is smooth, i.e., H(x) ∈ C∞
and can be represented in the form (2.87). This implies that also the function

g(x) = ∇TH(x)x (3.25)

can be expressed in this form. For simplicity, we assume that R(x) ≥ 0, ∀x ∈ Rn such
that Ḣ(x) ≤ 0 holds everywhere. The algorithm, which is illustrated in Figure 3.6, aims
to determine the largest set D within a prescribed hyperrectangle Dmax that is star-shaped
w.r.t. the origin and has the property that g(x) = ∇TH(x)x > 0 holds for all x ∈ D \ {0}.
This set clearly satisfies the conditions of Lemma 3.2.2. For the computation of the
minimum value ĉ of H(x) over the boundary of this set, also the theory from Section 2.5
is employed. The algorithm can be divided into the following four steps:
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3.4 Determining the Critical Level Value: Algorithm 2

Step 1: Initial estimate Dmin In the first step, an open set Dmin ⊂ Rn that contains the
origin and within which g(x) is positive definite is identified. To this end, we first determine
a function γ : R+

0 → R that satisfies γ(r) ≤ g(x) with r = ‖x‖. With ∇H(0) = 0 and
∇2H(0) > 0 it is not difficult to compute g(0) = 0, ∇g(0) = 0 and∇2g(0) = 2∇2H(0) > 0.
Then, we deduce from Taylor’s Theorem that

g(x) = g(0)︸ ︷︷ ︸
=0

+∇Tg(0)︸ ︷︷ ︸
=0

x + 1
2xT ∇2g(0)︸ ︷︷ ︸

>0

x +R(x) with R(x) =
∑

|α|=3

Dαg(κx)
α! xα (3.26)

holds for some κ ∈ (0, 1), where we have used multi-index notation (see Appendix A.1).
Hence, it holds for ‖x‖ = r that

g(x) ≥ 1
2r

2λmin
{
∇2g(0)

}
+R(x) ≥ 1

2r
2λmin

{
∇2g(0)

}
− max
‖x‖=r
κ∈(0,1)

|R(x)| , (3.27)

where λmin{∇2g(0)} is the minimum eigenvalue of ∇2g(0) and we have used that xTPx ≥
λmin‖x‖2 holds for any P > 0. An upper bound for the maximum term in (3.27) is given by

max
‖x‖=r
κ∈(0,1)

|R(x)| ≤ max
‖x‖≤r

∣∣∣∣∣∣
∑

|α|=3
Dαg(x) xα

α!

∣∣∣∣∣∣
≤ 1

6r
3 ∑

|α|=3
max
‖x‖≤r

|Dαg(x)| (3.28)

Using this in (3.27) we conclude that

γ(r) = 1
2r

2λmin
{
∇2g(0)

}
− 1

6r
3 ∑

|α|=3
max
‖x‖≤r

|Dαg(x)| (3.29)

fulfills γ(r) ≤ g(x). The maximum terms can of course also be replaced by upper bounds.
If we let rmin be the unique positive root of γ(r), then γ(r) > 0 holds for all r < rmin and
thus g(x) > 0 is satisfied for all x within the ball {x : ‖x‖ < rmin}. Since a rectangular
Dmin will be beneficial in the following, we take the largest square within that ball, i.e.,
Dmin = {x : |xi| < rmin/

√
2}.

Example 3.4.1. To illustrate how an upper bound on the maximum term in (3.29) can be
obtained, we consider the Hamiltonian

H(x) = 5x2
1 + 2x1x2 + 8x2

2 − x2x
6
1 − x3

2 cos(x1) . (3.30)

One of the derivatives Dαg(x), |α| = 3 is

∂3g(x)
∂x3

1
= −840x2x

3
1 − x1x

3
2 cos(x1)− 6x3

2 sin(x1) . (3.31)
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Figure 3.7: Illustration of the bisection.

For the maximum of its absolute value, we compute an upper bound as

max
‖x‖≤r

∣∣∣∣∣
∂3g(x)
∂x3

1

∣∣∣∣∣ ≤ 840r4 + r4 + 6r3 = 841r4 − 6r3 (3.32)

where we have used (3.13) and | sin(x1)| ≤ 1. Of course, we also could have determined a
piecewise defined bound like in Example 3.3.1 taking into account that max‖x‖≤r sin(x1) =
sin(r) for r ≤ π

2 . Upper bounds for the remaining derivatives can be calculated analogously
and we finally obtain

∑

|α|=3
max
‖x‖≤r

|Dαg(x)| ≤ 1051r4 + 9r3 + 21r2 + 30r + 8 . (3.33)

Step 2: Approximation of {x ∈ Dmax|∇TH(x)x = 0} In this step, the theory from
Section 2.5 is combined with a bisection algorithm to determine an approximation of the
set

M = {x ∈ Dmax|∇TH(x)x = 0} . (3.34)

The procedure is inspired by the papers [149], [170]. The basic idea is illustrated in Figure
3.7. Suppose the rectangular region Dmax has been subdivided into a number of equally
sized hyperrectangles qi, i = 1, . . . , Nq [Figure 3.7 (left)]. On each qi we compute a lower
bound and an upper bound for g(x) using the inequalities (2.85), (2.86). The number of
Chebyshev points in each dimension Ni is equal and denoted by N . Also, the degrees
%i(Pi,k) of the polynomials Pi,k that appear in (2.88) and (2.89b) are chosen identical, i.e,
%i(Pi,k) = d for all i, k. The grid of Chebyshev points on a hyperrectangle qi is denoted by
X(qi), and we use the notation gX(qi)

min = minx∈X(qi) g(x) as well as gX(qi)
max = maxx∈X(qi) g(x).

Three cases are distinguished: If the lower bound is positive or the upper bound is
negative, then M does not intersect the rectangle and it is discarded. These rectangles
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are flagged with status(qi) = 2 and are marked green in Figure 3.7. If gX(N,qi)
min ≤ 0

and gX(N,qi)
max ≥ 0, the intersection of M and the rectangle is nonempty. In this case,

the rectangle is further subdivided into 2n rectangles, which means that every edge is
bisected [Figure 3.7 (right)]. Rectangles of this type are flagged with status(qi) = 1
and are illustrated in blue. If the value of g(x) is negative at all points in X(N, qi),
but the computed upper bound is positive, it is not clear whether M has a nonempty
intersection with the rectangle. In this case, either the polynomial degree d or the
number of Chebyshev points N is incremented depending on which of the positive
terms in (2.86c) is the larger one. As suggested in [149], we increase d if (K + 1)r >
−1

2(K − 1)gX(N,qi)
min , otherwise N is raised (Of course increasing d could make it necessary

to increment also N in order to ensure that N > %i.). This is repeated until either
status(qi) = 1 or status(qi) = 2 can be assigned to the rectangle, or until N or d reach
the prescribed bounds Nmax or dmax, respectively. In the latter case, status(qi) = 3
is assigned. These rectangles are marked red in Figure 3.7. Like the rectangles with
status(qi) = 1, they are further subdivided into 2n rectangles [Figure 3.7 (right)]. If
g(x) > 0 for all x in X(N, qi), but the lower bound is negative, we proceed analo-
gously. The whole procedure is repeated until the length of all edges of the qi is smaller
than a prescribed number δmin. This amounts to Algorithm 3.3 which is given be-
low.

Algorithm 3.3
Input: Dmax, δmin, Nmin, dmin, Nmax, dmax
Output: list Mq of qi whose intersection with M is nonempty
1: list := {Dmax}; # list of qi that are to be analyzed

2: status(Dmax) := 0;
3: while list 6= ∅ do
4: for ∀qi ∈ list do
5: N := Nmin, d := dmin;
6: loop
7: determine gX(qi)

min , gX(qi)
max , K, r, B, B on qi according to Section 2.5;

8: if B < 0 ∨B > 0 then
9: status(qi) := 2;

10: break;
11: else if (B > 0 ∧ gX

max ≥ 0) ∧ (B < 0 ∧ gX
min ≤ 0) then

12: status(qi) := 1;
13: break;
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14: else if (B > 0 ∧ gX
max < 0) then

15: if −1
2 · (K − 1) · gX

min < (K + 1) · r then
16: increment d;
17: else
18: increment N ;
19: end if
20: else if (B < 0 ∧ gX

min > 0) then
21: if 1

2 · (K − 1) · gX
max < (K + 1) · r then

22: increment d;
23: else
24: increment N ;
25: end if
26: end if
27: if N ≥ Nmax ∨ d ≥ dmax then
28: status(qi) := 3;
29: break;
30: end if
31: end loop
32: end for
33: for ∀qi ∈ list do
34: list := list \ {qi};
35: if status(qi) = 2 then
36: next;
37: end if
38: if status(qi) = 1 ∨ status(qi) = 3 then
39: if size(qi) ≤ δmin then
40: Mq := Mq ∪ {qi};
41: else
42: [qi,1, qi,2, . . . , qi,2n ] := bisect every edge of qi;
43: list := list ∪ {qi,1, qi,2, . . . , qi,2n};
44: status([qi,1, qi,2, . . . , qi,2n ]) := 0;
45: end if
46: end if
47: end for
48: end while
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Step 3: Computation of ∂D̃ In this step, an approximation ∂D̃ of the relevant part of
the boundary ∂D is determined. Recall that for the computation of ĉ only those parts ∂D
are relevant which belong to M or ∂Dmax (see Remark 3.3.1). Since D is star-shaped w.r.t.
the origin, a point x of M or ∂Dmax belongs to D if and only if the line segment between
the origin and x does not intersect M, i.e., kx /∈ M, ∀ k ∈ (0, 1). Loosely speaking, the
point has to be “visible” from the origin (see Figure 3.3). Thus, we are interested in those
hyperrectangles q ∈ Mq that “can be seen” from the origin, or, more precisely, in their faces
that contain at least one visible point. Also, we subdivide ∂Dmax into n− 1-dimensional
rectangles and determine the visible ones among them.
As g(0) = 0, also the origin is contained in M. However, since 0 /∈ ∂D, the corresponding

2n rectangles in Mq can be discarded. To guarantee that they do not comprise other parts of
M, only rectangles contained in Dmin may be removed. Therefore, the minimum length δmin
in Algorithm 3.3 has to satisfy δmin < rmin/

√
2. In case that rmin is very small, of course one

could choose a larger number δmin and then analyze the region around the origin separately.
In order to determine ∂D̃, we proceed as outlined in Algorithm 3.4. First, we create a

list F that contains the n− 1 faces ♦f of all q ∈ Mq except for those which are contained
in Dmin (lines 1-2). Each ♦f ∈ F is represented in the form

♦f = {x |a♦f ≤ x ≤ b♦f } (3.35)

where the inequalities are to be interpreted componentwise. By construction, one component
of all x ∈ ♦f is identical, say the lth one. Hence, it holds that b♦f − a♦f = δ♦f with
δ♦f,l = 0 and δ♦f,j = δf,j > 0 for j 6= l. We define δf = [δf,1, . . . , δf,n]T and assign to
every ♦f ∈ F a normal vector n♦f which is either el or −el with el the lth unit vector.
The orientation is chosen such that it points outward from the corresponding rectangle
q. Elements of F that exist twice, are removed since these are those faces, where two
rectangles q adjoin each other (line 3). Moreover, faces ♦f whose normal vector satisfies
nT♦f (af +0.5δ♦f ) < 0 can be discarded, where (af +0.5δ♦f ) is the center of ♦f (line 4). For
they cannot be part of ∂D̃ according to Definition 3.2.1. In the next step, the boundary
∂Dmax is subdivided into n− 1-dimensional rectangles, whose size corresponds to δf , i.e.,
∂Dmax is discretized into rectangles that can be represented by (3.35) with δ♦f,l = 0 for
some integer 0 < l ≤ n and δ♦f,j = δf,j for j 6= l (line 5).
Now it is checked for every element ♦̂f of F that is not part of ∂Dmax whether it hides

vertices of the other elements ♦f ∈ F (lines 6-19). The vertices of ♦f are denoted by
vm(♦f) ∈ Rn, m = 1, . . . , 2n−1. A point vm(♦f) is hidden by ♦̂f if and only if there is
0 < k < 1 such that

0 ≤ kvm(♦f)− a
♦̂f
≤ δ

♦̂f
(3.36)
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where a
♦̂f

and δ
♦̂f

correspond to ♦̂f . Since δ
♦̂f,l̂

= 0, it follows from the l̂th line of this
inequality that k = a

♦̂f,l̂
/vm,l̂(♦f). In case this k satisfies 0 < k < 1, with this value

the remaining n− 1 inequalities are checked. To each vertex a status is assigned, where
status{vm(♦f)} = 1 means “hidden” and status{vm(♦f)} = 0 “not hidden”. If all vertices
of a face ♦f have status 1 it is regarded as hidden and removed from the list F (lines
15-17).

Algorithm 3.4
Input: Dmax, Dmin, Mq

Output: list ∂D̃ of n− 1 faces that approximate the relevant part of ∂D
1: F := F ∪ {♦f |q ∈ Mq }; # n− 1-faces of all q ∈ Mq

2: F := F \ {♦f |♦f ∈ Dmin}; # Remove faces contained in Dmin

3: F := F \ {♦f |∃♦p ∈ F \ {♦f} s.t. ♦f = ♦p}; # Remove multiple elements

4: F := F \ {♦f
∣∣∣nT♦f (af + 0.5δ♦f ) < 0};

5: F := F ∪ {♦f |♦f ∈ ∂Dmax}; # Add discretized boundary ∂Dmax

6: for ∀♦̂f ∈ F \ {♦f |♦f ∈ ∂Dmax} do
7: for ∀♦f ∈ F \ {♦̂f} do
8: for m := 1, . . . , 2n−1 do # Loop over all vertices of ♦f

9: if vm(♦f) is hidden by ♦̂f then
10: status{vm(♦f)} = 1;
11: else
12: status{vm(♦f)} = 0;
13: end if
14: end for
15: if status{vm(♦f)} = 1 , ∀m = 1, . . . , 1n−1 then # ♦f hidden

16: F := F \ {♦f}; # Remove ♦f from F
17: end if
18: end for
19: end for
20: ∂D̃ := F ;

Step 4: Estimate of ĉ In the last step, the minimum value of H(x) on ∂D̃ is determined
using again the inequality (2.85) with (2.86b). For the first element ♦f ∈ ∂D̃, a lower
bound of H(x) is determined according to (2.85), (2.86b), with a maximum number Nmax

of Chebyshev points and a maximum polynomial degree dmax, and is assigned to ĉtmp.
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Then on the next ♦f ∈ ∂D̃ a lower bound of H(x) is calculated with Nmin and dmin. If
the obtained bound is larger then ctmp, we move on to the next element. Otherwise, N and
d are increased according to the same strategy as in Algorithm 3.3 until either Nmax or
dmax are reached or the obtained bound is larger than ctmp. In the first case, the computed
value is assigned to ctmp, in the second case, we continue with the next element. After this
procedure has been repeated for all elements in ∂D̃, an estimate c̃ ≤ ĉ of the critical level
value ĉ is given by c̃ = ctmp. Since the lower bound (2.86b) is used to determine c̃, usually
it holds that c̃ < ĉ and hence we do not scale c̃ like in (3.19), which entails that d̂ = c̃.

We would like to bring to the readers attention that the algorithm proposed in the present
section does not require the choice of a discretization in the narrow sense. We merely
have to choose δmin which specifies the accuracy with which M is approximated. Since the
algorithm is based on the bounds (2.85), (2.86b), (2.86c) it is, in principle, guaranteed,
irrespective of the value δmin, that the determined sublevel set sSd̂(0) is a subset of A(0).
That means, it is not possible that the computed d̂ is too large, but for great values δmin
we might obtain a quite conservative estimate. The only source of error is the procedure
in Step 3. For it is not sure that a face is completely hidden if all its vertices are hidden.
Although this case is very unlikely to cause problems, it cannot be ruled out theoretically.
Of course the procedure could be modified accordingly, but only at the cost of increased
numerical effort.

3.5 Concluding Remarks
In this chapter, we have addressed the question how the closed loop pH structure, which
arises from the application of IDA, can be exploited to the full extent in the sense that
one cannot only establish local stability of the desired equilibrium point by using the
energy function as Lyapunov function, but also determine an as large as possible estimate
of the corresponding DA. This is complicated by the fact the energy function, which is
obtained by solving a system of linear PDEs, is in general not radially unbounded making
it necessary to determine its largest bounded sublevel set. Additionally, the dissipation
matrix might be positive semidefinite only in some neighborhood of the desired equilibrium
entailing that the closed loop system is only “locally passive”. The main contribution of
this chapter is a novel approach to estimate the DA of an equilibrium of a pH-system,
which is applicable for both time-invariant and time-varying systems. We have established
a theoretical result which allows to determine the largest bounded sublevel set of the
energy function which is star shaped w.r.t. origin, positively invariant and does not contain
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equilibrium points other than the origin. Based on that, we have developed two numerical
algorithms. The first one uses a multidimensional grid, obtained from a discretization of
the (n− 1)-dimensional unit sphere, and is relatively easy to implement, which is desirable
with regard to broad practical applicability. The second one combines the extension of
the Theorem of Ehlich and Zeller reviewed in Section 2.5 with a generalized bisection
algorithm. It is computationally more intense but circumvents the problem of choosing a
suitable discretization.
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Controller Design

The previous chapter has been devoted to the problem how an estimate of the DA can be
obtained by means of the closed loop energy function after an IDA controller has been
designed and parametrized. In this chapter, we address the fundamental question of how
to tune the large number of parameters, that typically occur in the IDA design process,
such that the following requirements are met:

1) The most basic requirements are that the resulting dissipation matrix is positive
semidefinite and that the energy function has a strict local minimum at the desired
equilibrium, which guarantees stability of this point (at least in the time-invariant case).
2) Clearly, the dynamic behavior, specified in terms of the speed of the closed loop
response, should be as desired.
3) As motivated already in Section 1.1, the DA of the desired equilibrium point should
be as large as possible to assure stability in the operating region and robustness against
disturbances.

A very useful tool that will be used in the following to achieve desired closed loop
dynamics and to guarantee that the energy function has an isolated minimum at the
desired equilibrium point is the LLDA approach [102], [103], which has been reviewed in
Section 2.3. In order to guarantee positive (semi-) definiteness of the dissipation matrix, a
specific parametrization of the design matrix is proposed in Section 4.1. To maximize the
estimated DA, we first elaborate in Section 4.2 on the computation of its volume, which is
used to quantify its size. Based on this measure, in Section 4.3 an optimization procedure
is proposed to determine a controller parametrization which maximizes the estimated
DA, while simultaneously taking account of desired closed loop performance. Parts of the
results in this chapter have been presented in [97], [98].
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4.1 Positive Semidefiniteness of the Dissipation Matrix

When designing an IDA controller, we have to ensure that the desired dissipation matrix
R(x) = −sym {F(x)} is positive semidefinite, at least in some environment ΩR of x∗ = 0.
In order to identify admissible design matrices, we can invoke Sylvester’s criterion1 for
positive semidefinite matrices (see [164] or [64], pp. 305-308) as done for instance in
[102], [103]. This yields ∑n

j=1

(
n
j

)
inequalities for the (in general state-dependent) elements

of F(x), e.g. 7 inequalities in the case n = 3. Even for problems of low dimension
these inequalities can get very cumbersome making it quite difficult to determine a
suitable controller parametrization, which in addition guarantees positive definiteness of
the energy function and desired dynamic behavior. Therefore, we propose in this section a
specific parametrization of the design matrix which assures positive semidefiniteness of the
dissipation matrix by construction.
It is well known that a matrix R is positive semidefinite if and only if R = TTT holds

for some upper triangular matrix2 T [12]. Now define the matrices Tij ∈ Rn×n and
Rij ∈ Rn×n as

Tij = [tkl] , tkl =





1 , k = i ∧ l = j ∧ k ≤ l

0 , otherwise
(4.1)

Rij = Tij + TT
ij . (4.2)

Then every upper triangular matrix T(x) : Rn → Rn×n can be represented in the form

T(x) =
n∑

i=1

n∑

j=i
kij(x)Tij (4.3)

with functions kij(x) : Rn → R. Consequently,

R(x) =



n∑

i=1

n∑

j=i
kij(x)Tij



T 


n∑

i=1

n∑

j=i
kij(x)Tij




=
n∑

i=1

n∑

j=i

i∑

k=1
kki(x)kkj(x)Rij

(4.4)

is a set of positive semidefinite matrices. If kii(x) 6= 0, ∀ i, then R(x) > 0. Hence, if
the design matrix is chosen as F(x) = J(x)−R(x) with J(x) = −JT (x) and R(x) as in

1Frequently, the term “Sylvester’s criterion” is used only in the context of positive definite matrices.
Following [164], we use it here also for its generalization to positive semidefinite matrices.

2For positive definite matrices R > 0 this is the Cholesky factorization.
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4.2 Quantifying the Domain of Attraction

(4.4), then the entries of J(x) and the functions kij(x) can be varied arbitrarily and it is
guaranteed that R(x) = −sym{F(x)} ≥ 0. In general, of course also functions kij(x, t),
which explicitly depend on the time t, may be used in (4.4). This can be of interest, if
an IDA controller is to be designed for a time-varying system. In this case, it might be
desired that the design matrix is a function not only of the state but also of the time t.

Example 4.1.1. Consider the case n = 2. Then, the matrices Rij are

R11 =

1 0

0 0


 , R12 =


0 1

1 0


 , R22 =


0 0

0 1


 (4.5)

and

R =

 k2

11 k11k12

k11k12 k2
12 + k2

22


 , kij ∈ R (4.6)

is the set of all constant positive semidefinite matrices R.

4.2 Quantifying the Domain of Attraction

In the previous chapter, we have presented two algorithms that allow to determine a level
value d̂ such that the connected component sSd̂(0) qualifies as an estimate of the DA of
the desired equilibrium. Our objective in the sequel is to adjust the controller parameters
so as to maximize the estimated DA, while simultaneously taking into account desired
transient behavior. A quite natural measure to quantify the size of the estimated DA is
the volume Vd̂ of Sd̂(0). For its computation an explicit representation of the manifold
∂Sd̂(0), implicitly defined by H(x)− d̂ = 0, is needed. This section describes an easy to
implement procedure to numerically approximate ∂Sd̂(0) and to calculate Vd̂. While we
explicitly consider only time-invariant systems here, the procedure applies verbatim also
to the time-varying case, where an estimate of the DA is given by the sublevel set sSW2

d̂
(0)

of W2(x). The only difference is that, in order to numerically approximate the latter, the
gradient of W2(x) has to be determined numerically, e.g. by finite differencing as described
in Section 8.1 of [129], since usually no symbolic expression is available.
It is desired to approximate the radial function ρS(v) of the properly star shaped set Sd̂(0)

(c.f. (3.3)). Since any v ∈ Sn−1 has a unique description in spherical coordinates with r = 1,
ρS(v) can be considered as a function of θ = [θ1, . . . , θn−1], i.e., ρS(v) = ρS(θ) (with some
abuse of notation). Hence, it is convenient to solve the problem in spherical coordinates
z = Ψ−1(x). Let H̃(z) = H ◦Ψ(z), S̃d̂ = Ψ−1(Sd̂(0)) and ẑ = [r̂, θ̂1, . . . , θ̂n−1] = Ψ−1(x̂d).
Moreover, we denote by H̃ ′(z) the Jacobian of H̃(z).
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Chapter 4 Controller Design

Figure 4.1: Numerical approximation of the level set ∂Sd̂(0): the 2-dimensional case.

At first, the case n = 2 is discussed, in which ∂Sd̂(0) has dimension 1 and its numerical
approximation reduces to the well-known problem of tracing an implicitly defined curve
w(s) ⊂ Ĥ−1(0), where Ĥ(z) = H̃(z)− d̂ (see [1]). The curve is the local solution of the
initial value problem

d

ds
w = t

(
Ĥ ′(w)

)
, w(0) = ẑ . (4.7)

Therein, t(A) ∈ Rn denotes the unique tangent vector induced by a matrix A ∈ R(n−1)×n

satisfying

At = 0 (4.8)

‖t‖ = 1 (4.9)

det

AT

tT


 > 0 . (4.10)

This is illustrated in Figure 4.1 (in x-coordinates). With x̂d = Ψ(ẑ) one point of the
desired curve w(s) is already known. According to (4.8), the vector t(Ĥ ′) is at any point
orthogonal to the gradient ∇H = (Ĥ ′)T and thus tangential to the level curve. Hence, it is
clear that we obtain ∂Sd̂(0), if, starting from ẑ, we always move in the direction given by
t(Ĥ ′). By the relation (4.9), the tangent vector is scaled to have unit length, and (4.10)
specifies the direction in which the curve is traversed.
The problem (4.7) can be solved using solvers for initial value problems or, which is

more efficient, by Predictor-Corrector methods described e.g. in [1], which exploit that the
curve is a set of zero points of Ĥ(z). In (4.7), it holds that Ĥ ′(z) = (H ′ ◦Ψ(z)) ∂

∂zΨ(z)
and

t
(
Ĥ ′(w)

)
= ‖H̃ ′(w)‖−1

[
− ∂H̃

∂θ1

∣∣∣∣
w

∂H̃
∂r

∣∣∣∣
w

]T
. (4.11)

Now w(s) is traced via (4.7) until w2(s)− w2(0) = 2π. The interval [0, 2π] is discretized
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4.2 Quantifying the Domain of Attraction

by θ1,k1 = k1
2π
K1

, k1 = 0, . . . , K1, where K1 is not necessarily the same as in Section 3.3.
By linear interpolation, pairs [θ1,k1 , ρS(θ1,k1)] are obtained from the calculated path which
approximate the function ρS(θ1).
The volume of Sd̂(0) is given by Vd̂ =

∫
Sd̂(0) dV . By one of the fundamental properties of

multiple integrals it holds that [108]

Vd̂ =
∫

S̃d̂
|det(Ψ′(z))| dr dθ1 . . . dθn−1 (4.12)

i.e., for n = 2

Vd̂ =
∫

S̃d̂
r dr dθ1 ≈

π

K1

K1∑

i=0
ρ2
S(θ1,i) (4.13)

where the discrete approximation of ρS(θ1) and rectangular integration have been used.
This procedure readily generalizes to the higher-dimensional case. To this end, several

curves wi(s) are calculated on ∂Sd̂(0) defined by Ĥi(z) = 0, where along wi(s) all
components of θ are held constant except for θi. Consider e.g. n = 3. Then, Ĥ1(z) =
[H̃(z) − d̂, θ2 − θ̄2]T and Ĥ2(z) = [H̃(z) − d̂, θ1 − θ̄1]T with θ̄1 and θ̄2 some fixed values.
The curves wi(s) are local solutions of

d

ds
w = t

(
Ĥ′i(w)

)
, i = 1, 2 , w(0) = w0 . (4.14)

As in the 2-dimensional case, our objective is to compute ρS(θ1,k1 , θ2,k2) on a grid given
by θ1,k1 = k1

2π
K1

, k1 = 0, . . . , K1 and θ2,k2 = k2
π
K2

, k2 = 0, . . . , K2. In a first step, we
determine a sequence of values ρS(θ̂1, θ2,k2), k2 = 0, . . . , K2. To this end, we follow the
solution of (4.14) for i = 2 and w0 = ẑ (i.e., θ̄1 = θ̂1), forward and backward in s, and
apply linear interpolation to obtain the desired values from the calculated path. In view of

Ĥ′2 =


∂H̃
∂r

∂H̃
∂θ1

∂H̃
∂θ2

0 1 0


 (4.15)

it becomes clear that the vector t(Ĥ′2(w)) which satisfies (4.8)-(4.10) is given by

t
(
Ĥ′2
)

=
∥∥∥∥
[
− ∂H̃
∂θ2

0 ∂H̃
∂r

]T ∥∥∥∥
−1 [
− ∂H̃
∂θ2

0 ∂H̃
∂r

]T
. (4.16)

In a second step, for each w0 = [ρS(θ̂1, θ2,k2), θ̂1, θ2,k2 ]T a curve w1(s) is determined from
(4.14), where t(Ĥ′1(w)) is given by

t
(
Ĥ′1
)

=
∥∥∥∥
[
∂H̃
∂θ1

−∂H̃
∂r

0
]T ∥∥∥∥
−1 [

∂H̃
∂θ1

−∂H̃
∂r

0
]T

. (4.17)
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Figure 4.2: Numerical approximation of the level set Sd̂(0) using the approach described in this
section (left) and by means of the piecewise linear approximation method developed
in [69] (right).

Applying again linear interpolation we finally obtain a discrete approximation of ρS(θ) by
the K = K1K2 values ρS(θ1,k1 , θ2,k2).
This is illustrated in Figure 4.2 (left) for an exemplary level set of the energy function

that results from the IDA design for a synchronous generator in Section 5.2. We remark
that there are alternative techniques for approximating implicitly defined manifolds, for
instance the piecewise linear approximation method developed in [69] (see also [1]). If the
level set shown if Figure 4.2 (left) is approximated using this approach, the result depicted
in Figure 4.2 (right) is obtained. For our purposes, the method described above has proven
to be more suitable and, furthermore, the effort required for the implementation of the
piecewise linear approximation methodology is considerably higher.
Also in the 3-dimensional case, we apply rectangular integration to (4.12) and obtain

the formula

Vd̂ =
∫ 2π

0

∫ π

0

∫ ρS(θ)

0
r2 sin(θ2) dr dθ2 dθ1

≈
K2∑

j=0

K1∑

i=0

2π
3K1

ρ3
S(θ1,i, θ2,j) [cos(θ2,j)− cos(θ2,j+1)] .

(4.18)

for the volume.
Besides the computation of the volume, the numerical approximation of ∂Sd̂(0) allows

to validate the critical level value to some extent: Clearly, none of the curves wi(s) may
leave BR. Another benefit is that, once ρS(θ) is available, it can be easily determined,
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whether a given initial state x(0) is contained in the estimated DA by representing it in
spherical coordinates, e.g. in the 3-dimensional case [r(0) θ1(0) θ2(0)]T = Ψ−1(x(0)). If
r(0) ≤ ρS(θ1(0), θ2(0)) then x(0) ∈ sSd̂(0). The value ρS(θ1(0), θ2(0)) can be determined
from the discrete approximation of ρS(θ) by interpolation.

4.3 Enlarging the Domain of Attraction
In this section, the maximization of the DA is formulated in terms of two slightly different
optimization problems that can be solved using numerical methods. We first concentrate
on the time-invariant case and briefly comment on the time-varying one at the end of the
section. The objective function to be maximized is the volume Vd̂ of Sd̂(0). In order to
take into account desired dynamic behavior, the eigenvalues of the closed loop linearization
are considered. If fixed eigenvalues are specified and the Assumptions 2.3.1 and 2.3.2 are
fulfilled, we make use of LLDA to establish dependencies between the controller parameters.
The parameters that are not determined by the system of equations (2.57)-(2.59) are
subsumed in the vector γ, and we wish to determine a γ∗ that maximizes Vd̂. If the
approach proposed in Section 4.1 is used to parametrize the design matrix, it is guaranteed
that R(x) ≥ 0 holds globally for all choices of γ. Together with LLDA this ensures that
H(x) has a strict local minimum at the origin. Then, γ∗ can be determined by solving the
unconstrained optimization problem

max
γ

Vd̂(γ) . (4.19)

In case it is not guaranteed for all γ that R(x) is positive semidefinite, the solver might
evaluate the objective function at points γ where H(x) is not a suitable Lyapunov function.
Then, actually it holds that d̂ = H(0) and the algorithms presented in Chapter 3 cannot
yield a meaningful result. Therefore, we check in advance whether the Hessians ∇2H(x)
and ∇2(−Ḣ(x)) are positive definite. If not, the minimum eigenvalue of these matrices
is returned to the solver instead of Vd̂. Note that this does not ensure that R(x) ≥ 0 is
satisfied for the resulting controller parametrization, if this matrix is a function of the
state. To enforce positive semidefiniteness of R(x) in this case, appropriate constraints
need to be added to the optimization problem.
Instead of fixing the eigenvalues of the closed-loop linearization we can also merely specify

an admissible region of the complex plane within which the eigenvalues may take any
position (see Figure 4.3). This approach does of course not require the Assumptions 2.3.1
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Figure 4.3: Admissible region for the eigenvalues.

and 2.3.2, and it provides more degrees of freedom that can be used for enlarging the DA.
Rather than solving the system of equations (2.57)-(2.59), we formulate the constrained
optimization problem

max
γ

Vd̂(γ) (4.20a)

s.t. rmin ≤ Re(λi) ≤ rmax (4.20b)

|Re(λi)| ≥ tan(ψ) |Im(λi)| (4.20c)

where the parameters rmin < 0, rmax < 0 and 0 ≤ ψ ≤ π
2 characterize the admissible region

for the closed loop eigenvalues λi (see Figure 4.3). If R(0) ≥ 0 holds (e.g. because of the
parametrization proposed in Section 4.1) and the constraints (4.20b) and (4.20c) are satis-
fied, then the HamiltonianH(x) has an isolated minimum at the origin and is a suitable Lya-
punov function (see Proposition 10 in [103]). However, it might happen during the optimiza-
tion that the solver evaluates the objective function at a γ for which either R(0) ≥ 0 is vio-
lated or the closed loop linearization has eigenvalues with nonnegative real part. Therefore,
the objective function is appropriately modified as described subsequent to equation (4.19).
If the dissipation matrix is only positive semidefinite for the computed controller pa-

rameters, it has to be checked whether the trivial solution x∗ = 0 is indeed the only one
which can stay identically in {x ∈ sSd̂(0)|Ḣ(x) = 0}, as this cannot be accomplished during
the optimization. It is noted that only the inner approximation sSd̂(0) of the DA can be
maximized, which does not ensure that also the exact DA is enlarged. However, from a
practical point of view, this estimate is of primary interest, since usually it is not possible
to determine the exact DA.
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Let us finally comment on the time-varying case. In Section 2.3.2, we have reviewed
the application of LLDA for the stabilization of the time-varying error systems arising
in trajectory tracking problems. In view of that, it is clear that with some obvious
modifications the methods presented above can also be employed for this case of application,
although we have explicitly treated only time-invariant control systems in the present
section (see also the example in Section 5.3).

4.4 Concluding Remarks
In this chapter, we have been concerned with the problem of finding a suitable parametriza-
tion for an IDA controller, that satisfies the requirements regarding i) positive semidef-
initeness of the dissipation matrix, ii) size of the DA, and iii) dynamic behavior of the
resulting closed loop system. The main contributions can be summarized as follows: First,
we have proposed a specific way of parameterizing the design matrix which guarantees
positive semidefiniteness of the dissipation matrix irrespective of the chosen parameter
values. To this end, we have exploited the fact that any positive semidefinite matrix can be
represented as the product of a lower triangular matrix and its transpose. The approach
makes it unnecessary to deal with the cumbersome inequalities resulting from Sylvester’s
criterion, which constitutes a clear practical advantage. Second, we have presented a
method to determine a controller parametrization that maximizes the estimated DA and
takes into account the desired speed of the closed loop response. To quantify the size of
the estimated DA, a discrete approximation of its boundary is determined and, based on
that, the enclosed volume is computed by numerical integration. An optimal controller
parametrization is then obtained by maximizing this volume using a numerical optimization
method. The desired dynamic behavior is specified in terms of the eigenvalues of the closed
loop linearization. Either fixed eigenvalue locations are assigned prior to the optimization
using the LLDA approach, or an admissible region is defined for the eigenvalues and
considered as a constraint in the optimization.
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Examples

In this chapter, the methods developed in the preceding two chapters are applied to three
example systems in order to demonstrate their practical applicability and effectiveness.
We start in Section 5.1 with a numerical example, which is only 2-dimensional and allows
the computation of the exact DA as well as an easy graphical visualization of the results.
In this context, a comparison with a linear state feedback law is included since this type of
controller is still frequently used in practice also for nonlinear systems. Subsequently, we
address the excitation control of a synchronous generator, which is a problem of major
technical relevance. The objective is to enlarge the DA in order to increase the so called
critical clearing time, which is an important security measure of a power system. To
show the capability of the proposed approach we compare the obtained controller to a
benchmark controller, which has been designed in [61] using also the IDA methodology.
As a third example, we consider the trajectory tracking control of a magnetic levitation
system to demonstrate the effectiveness of the proposed methods also for time-varying
systems. The controller that results from the optimization procedure is compared to the
original one from [102] using a laboratory experiment.

5.1 Numerical Example

Consider the unstable nonlinear system [97]

ẋ =

x2 + 2x1

x1 + x2
2


+


1

0


u (5.1)

which is to be stabilized in x∗ = 0 by means of the IDA method. The design matrix F is
chosen according to Section 4.1 resulting in a dissipation matrix of the form (4.6). With
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G⊥ = [0, 1] the projected matching equation

[
−j12 − k11k12 −k2

12 − c2
22

]
∇H(x) = x1 + x2

2 (5.2)

is obtained, which is solvable according to Proposition 2.2.1. A solution of (5.2) is

H(x) = x3
2

3ν12
− x2

2ν11

2ν2
12

+ x1x2

ν12
+ µ2

(
x1 −

x2ν11

ν12

)2
(5.3)

where ν11 = −j12 − k11k12, ν12 = −k2
12 − k2

22 and we have chosen φ(ξ) = µ2ξ
2. As desired,

it holds that ∇H(x)|x=0 = 0. LLDA is employed with the prespecified system matrix Ad

possessing two eigenvalues in −2. The equations (2.57)–(2.59) are solved for µ2 and j12.
The parameters k11, k12 and k22 remain as degrees of freedom for the enlargement of the
DA. As an initial guess, the choice kini11 = kini22 = 1, kini12 = 0 is made resulting in Rini = I.
We apply the algorithm presented in Section 3.3 to determine an estimate of the DA.

We omit the second step of the algorithm and instead discretize the whole interval [0, R].
The Illinois algorithm, a variant of regula falsi, is employed as 1-dimensional root-finding
technique. Moreover, the choices R = 4 and εc = 0.02 are made. The level set ∂Sini

d̂
(0),

approximated as described in Section 4.2, is displayed in Figure 5.1 (left) together with
a contour plot of the energy function H ini(x) and the exact stability boundary ∂Aini(0),
which has been identified by the method proposed in [29].
A genetic optimization algorithm provided by Matlab (ga) is used (40 individuals,

15 generations) to solve the optimization problem (4.19) with γ = [k11, k12, k22]T . For
the initial population, the ranges k11, k22 ∈ [0, 100] and k12 ∈ [−100, 100] are specified.
The resulting controller configuration is kopt11 = 244.2, kopt12 = −39.2, kopt22 = −8.1, jopt12 =
−6936, µopt2 = 3.63 · 10−5. Figure 5.1 (right) shows a contour plot of Hopt(x) together
with ∂Sopt

d̂
(0) and ∂Aopt(0) (Observe the different scale of Figure 5.1 left and right). In

Figure 5.2 (left) the estimated stability boundaries are compared, in Figure 5.2 (right)
the exact ones. In both figures, the circular markers denote equilibrium points of the
corresponding closed loop system. It can be seen that not only the estimated DA can be
significantly enlarged by optimizing the controller parametrization, but also the exact one.
It is remarked that x̂ ∈ ∂BR, i.e. a larger estimate of the DA could be achieved for the
optimized controller by choosing a larger R and possibly also a further enlargement of the
DA via (4.19).
Since linear state feedback controllers are still frequently used in practice also for

nonlinear systems, such a controller has been designed for comparison. To this end, (5.1)
is linearized at x∗ = 0 and the control law u = −rTx = −[6, 5]x is determined, which
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assigns two eigenvalues in −2 to the linearization, and thus the same eigenvalues which
have been used for LLDA above. To determine an estimate of the DA which is achieved
by this controller, a standard procedure is applied. First, the Lyapunov equation

AT
dP + PAd = −I (5.4)

with Ad the state matrix of the closed-loop linearization is solved to obtain a local quadratic
Lyapunov function V (x) = xTPx. Then the largest sublevel set is determined within
which it holds that V̇ (x) < 0 except at x∗ = 0, where V̇ (x) is the derivative of V (x)
along the trajectories of (5.1) with u = −rTx. Figure 5.2 shows the estimated (left) and
the exact SB (right) for the linear controller as orange dotted line. As can be seen, both
the estimated and the exact DA corresponding to the initial IDA controller are smaller
than those of the linear one. However, after the optimization significantly larger DAs –
estimated as well as exact – are achieved by the IDA controller. For a comparison of the
time response curves of the different closed loop sytems the reader is referred to [97].
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Figure 5.1: Contour plot of the energy function together with ∂Sd̂(0) (red solid) and ∂A(0) (black
dashed) for the initial (left) and the optimized (right) IDA controller.

5.2 Excitation Control of a Synchronous Generator
The problem of transient stability is of fundamental importance for the secure operation
of power systems and has become a major operating constraint especially in regions that
rely on long distance transfers of bulk power [27]. It is associated with the question
whether a power system reaches an acceptable steady-sate operating condition after a large
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Figure 5.2: Comparison of the estimated (left) and exact stability boundaries (right): initial IDA
controller (blue solid), optimized IDA controller (red dashed), and linear controller
(orange dotted).

disturbance or fault (e.g. a short circuit) has occurred. The fault changes the network
topology whereby the system is driven away from its stable steady state. After some
time, called the clearing time, the fault is cleared by the protective system operation. The
key issue is, whether at this point the system state belongs to the DA of the post-fault
equilibrium. For a particular fault, the maximum clearing time for which this is the case is
called the critical clearing time.
Numerous control strategies have been proposed to improve the transient stability of

power systems, including feedback linearization (see e.g. [124]) and more recently also
passivity-based techniques (see e.g. [10], [61]). To reduce the complexity, often each
generator is considered separately, while the other machines and components are regarded
as infinite bus. A frequently used model for this single machine infinite bus system (SMIB)
is the classical third-order flux-decay model [142] given by




ẋ1

ẋ2

ẋ3


 =




b3 cos(x2)− b4x1 + E

x3

−b1x1 sin(x2)− b2x2 + P


+




1
0
0


u (5.5)

where x1 is the internal voltage, x2 the load angle and x3 the shaft speed deviation from the
synchronous speed. The mechanic input power P and the field voltage E are held constant
and the control input u is added to the field voltage. The values of the parameters bi,
i = 1, . . . , 4 as well as of P and E are taken from [60], [61] and are given in Table 5.1. The
parameter b2 is assumed to be zero, which is a typical assumption for machines with round
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Table 5.1: Parameters of the SMIB model.

Parameter Value (pu)

b1 34.29
b2 0
b3 0.149
b4 0.3341
E 0.2593
P 28.22

rotor [60]. Therefore, the corresponding term in (5.5) is omitted in the following. The
open loop system has an asymptotically stable equilibrium point at x∗ = [1.055 0.8945 0],
which is to be stabilized. The adjacent equilibrium at x∗u = [0.8287 1.452 0] is unstable
[61], [142]. The control objective is to enlarge the DA of x∗ in order to increase the critical
clearing time. Another aspect which is of major importance is the transient performance
of the machine following a fault.

5.2.1 IDA Controller Design

Our objective in the following is to perform a systematic IDA design and to optimize
the controller parameters regarding the size of the DA by means of the tools presented
in the Chapters 3 and 4. Note that the system (5.5) is of the form (2.49) enabling the
application of LLDA. The design matrix F = J−R is chosen constant and is parametrized
as suggested in Section 4.1 yielding

J =




0 j12 j13

−j12 0 j23

−j13 −j23 0


 , R =




k2
11 k11k12 k11k13

k11k12 k2
12 + k2

22 k12k13 + k22k23

k11k13 k12k13 + k22k23 k2
13 + k2

23 + k2
33


 . (5.6)

In the notation of Section 2.3, the first row of F is Fα, the remaining two rows form Fν .
Using the left annihilator G⊥ = [0, I2] the projected matching equation Fν∇H(x) =

f ν(x) is obtained. Since Fν is constant, the Proposition 2.2.1 can be used to assess its
solvability yielding the condition

ν23 + b1 sin x2ν11 + b1x1 cos(x2)ν12 = 0 , ∀x ∈ Rn (5.7)

where, for compactness, the elements of Fν have been abbreviated by νij. Thus, we have
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to choose the parameters in (5.6) such that

0 = ν11 = k11k12 − j12 (5.8a)

0 = ν12 = k2
12 + k2

22 (5.8b)

0 = ν23 = k2
13 + k2

23 + k2
33 . (5.8c)

It is easily seen that this requires k12 = k22 = k13 = k23 = k33 = 0 and j12 = 0 resulting in1

J =




0 0 j13

0 0 j23

−j13 −j23 0


 , R =




k2
11 0 0
0 0 0
0 0 0


 . (5.9)

Consequently, it is not possible to solve the matching PDE with a strictly positive definite
dissipation matrix.
To determine the set of admissible energy functions from the projected matching equation,

we straighten out the distribution ∆F,ν by means of the coordinate transformation (2.37)
with t3 = [1 0 0]T . The particular solution thus obtained is

Ψ(x) = 1
2j23

x2
3 −

b1

j2,3
cos(x2)x1 + b1j13

j2
23

sin(x2)− P

j23
x2 . (5.10)

The homogeneous solution is selected as

φ(ξ) = µ1ξ + µ2ξ
2 (5.11)

with the characteristic coordinate

ξ = ζ1 = x1 −
j13

j23
x2 . (5.12)

Taking into account that, being an equilibrium of the SMIB model (5.5), the point x∗

satisfies P − b1x
∗
1 sin(x∗2) = 0, the necessary condition ∇H(x)|x∗ = 0 is met with the choice

µ1 = b1

j23
cos(x∗2) + 2µ2

(
j13

j23
x∗2 − x∗1

)
. (5.13)

The remaining parameters j13, j23, c11 and µ2 have to be selected such that ∇2H(x)|x∗ > 0

1For another – as far as the definiteness of the dissipation matrix is concerned, considerably more
complex – example the reader is referred to [98], where the proposed parametrization has been used to
guarantee the positive definiteness of a 4× 4 dimensional dissipation matrix.
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and such that the requirements regarding transient behavior and size of the DA are
satisfied.

5.2.2 Application of LLDA

At first, we apply LLDA in order to specify desired closed loop dynamics and to guarantee
a strict local minimum of the energy function at x∗. The eigenvalues of the matrix Ad

in (2.53) are located in −7 by an appropriate choice of Aα. From the system of equations
(2.57)–(2.59) we deduce j13 = 1.2119k2

11, j23 = 0.2606k2
11, and µ2 = 10.5/k2

11 leaving k11

as free parameter. It turns out, however, that the value of k11 can be set arbitrarily
as it has no influence on the resulting control law or the estimate of the DA. If we set
k11 = 2, we obtain jini13 = 4.8475, jini23 = 1.0425 and µini2 = 2.6250, i.e., for this particular
system no degrees of freedom remain for the optimization of the DA if we assign fixed
eigenvalues.
We apply the algorithm from Section 3.3 to determine the critical level value and

therewith an estimate of the DA. First, we observe that H(x) can be represented as

H(x) = 1
2j23

x2
3 +H12(x1, x2) (5.14)

i.e., the coordinate x3 enters the energy function only in the purely quadratic term 1
2j23

x2
3,

where j23 > 0. Consequently, it suffices to merely consider H12(x1, x2) for the computation
of the critical level value. Furthermore, we don’t have to examine Ḣ(x) since R ≥ 0 is
guaranteed by the parametrization of the design matrix (5.6). In order that the equilibrium
point is the origin, we introduce the coordinate system z = x− x∗.
For the calculation of λmink in the second step of the algorithm, the terms g′′v,k(0) and

maxξ∈[0,λ](|g′′′v,k(ξ)|) are required (c.f. (3.10)). The calculation of the former is straight-
forward. An upper bound for the max-term can be determined similar to Example 3.3.1.
After the coordinate shift the energy function contains sine and cosine terms which depend
on the argument z2 + x∗2, where x∗2 = 0.8945. Thus we apply the addition theorems for
trigonometric functions to express the function g′′′v,k(λ) as

g′′′v,k(λ) =
v2
k,2vk,1

j23
(64.4 cos(λvk,2)− 80.2 sin(λvk,2))

− v3
k,2

j23
(22.6 sin(λvk,2) + 28.2 cos(λvk,2)) +

v3
k,2vk,1λ

j23
(26.7 cos(λvk,2)− 21.5 sin(λvk,2))

+
j13v

3
2,k

j2
23

(26.7 sin(λvk,2)− 21.5 cos(λvk,2)) .
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Then, as in Example 3.3.1, we use the relations in (3.13) to derive the upper bound

max
ξ∈[0,λ]

(∣∣∣g′′′v,k(ξ)
∣∣∣
)
≤ 64.4

∣∣∣∣∣
vk,2

2vk,1
j23

∣∣∣∣∣+ 80.2
∣∣∣∣∣
vk,2

2vk,1 sin(λvk,2)
j23

∣∣∣∣∣+ 21.5
∣∣∣∣∣
vk,2

3λvk,1 sin(λvk,2)
j23

∣∣∣∣∣

+ 22.6
∣∣∣∣∣
vk,2

3 sin(λvk,2)
j23

∣∣∣∣∣+ 26.7
∣∣∣∣∣
vk,2

3λvk,1
j23

∣∣∣∣∣+ 28.2
∣∣∣∣∣
vk,2

3

j23

∣∣∣∣∣

+ 21.5
∣∣∣∣∣
j13vk,2

3

j23
2

∣∣∣∣∣+ 26.7
∣∣∣∣∣
j13vk,2

3 sin(λvk,2)
j23

2

∣∣∣∣∣

for |λvk,2| < π
2 and

max
ξ∈[0,λ]

(∣∣∣g′′′v,k(ξ)
∣∣∣
)
≤ 144.6

∣∣∣∣∣
vk,2

2vk,1
j23

∣∣∣∣∣+ 48.2
∣∣∣∣∣
vk,2

3λvk,1
j23

∣∣∣∣∣+ 50.9
∣∣∣∣∣
vk,2

3

j23

∣∣∣∣∣+ 48.2
∣∣∣∣∣
j13vk,2

3

j23
2

∣∣∣∣∣

for |λvk,2| ≥ π
2 .

As one-dimensional root-finding technique, again the Illinois algorithm is employed.
Moreover, we choose R = 2, εc = 0.01, ∆λmax = 0.02, and ∆λmin = 1

5∆λmax = 4 · 10−3.
The number of grid points K1 is set to 200. We apply the interior-point algorithm provided
by the Matlab function fmincon to solve the optimization problems (3.17), (3.18) and
provide the solver with analytic expressions for the gradients. The level value d̂ is 0.0142,
the corresponding level set, which is the estimated stability boundary, is depicted in Figure
5.3(a). The volume of the estimated DA is calculated as described in Section 4.2 and
amounts to V ini

d̂
= 0.0669. We remark that the chosen grid is so fine that the optimization

at the end is actually unnecessary. It changes the result only from the 7th decimal place
on.

Since the dissipation matrix is only positive semidefinite, we invoke the Krasovskii-
LaSalle Theorem to establish asymptotic stability of x∗. This has already been done in
[60]. However, in this analysis it is assumed that b2 is a positive parameter, although it
is later set to zero. If we take into account that b2 = 0, it becomes more elaborate to
show that no trajectory can stay identically in {x ∈ sSd̂(x∗)|Ḣ(x) = 0} except for x∗. For
convenience, the analysis in the following is conducted in x coordinates, and we assume
for obvious reasons that k11 6= 0.

It follows from

0 = Ḣ(x) =
(
∂H

∂x

)T
R∂H

∂x
= k2

11

(
∂H

∂x1

)2

(5.15)

that along any trajectory x(t) that belongs identically to the set {x ∈ sSd̂(x∗)|Ḣ(x) = 0} it
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(a) Initial controller with LLDA.
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(b) Optimized controller.

Figure 5.3: Estimated stability boundary for (a) the initial IDA controller parametrized by LLDA
and (b) the controller resulting from the optimization.

must hold that a(x) = ∂H
∂x1
≡ 0. Substituting this into the closed loop dynamics yields

ẋ1 =j13
∂H

x3
= j13

j23
x3 (5.16a)

ẋ2 =j23
∂H

∂x3
= x3 (5.16b)

ẋ3 =− j23
∂H

∂x2
. (5.16c)

It follows from a(x) ≡ 0 that also

ȧ(x) = b1

j23
sin(x2)x3 ≡ 0 (5.17)

ä(x) = b1

j23
cos(x2)x2

3 − b1 sin(x2)∂H
∂x2
≡ 0 . (5.18)

At first, our objective is to show that x3 ≡ 0 has to be satisfied along any trajectory x(t)
that satisfies a(x(t)) ≡ 0. It can be seen from (5.17) that for any point of such a trajectory
either sin(x2) = 0 or x3 = 0 must be fulfilled. Now assume that x3 6= 0 at some point. Then,
sin(x2) = 0 must hold. Substituting this into (5.18) it follows immediately that this implies
also x3 = 0. Hence, we conclude that x3(t) ≡ 0. Since ∂H

∂x3
= 1

j23
x3 this implies that ∂H

x3
≡ 0.
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Another implication is that ẋ3 ≡ 0 and thus it follows from (5.16c) that ∂H
∂x2
≡ 0. Summa-

rizing, we have shown that any trajectory that stays identically in {x ∈ sSd̂(x∗)|Ḣ(x) = 0}
satisfies ∇H(x(t)) = 0. Since x∗ is the only critical point contained in the positively
invariant sublevel set sSd̂(x∗) any trajectory starting within this set converges to x∗.

5.2.3 Maximization of the DA

Now the proposed optimization is conducted. Since all controller parameters are set, if the
eigenvalues of the closed loop linearization are fixed, the constrained optimization problem
(4.20) is solved. It holds for any c ∈ R that H(x, cj13, cj23, µ2/c) = 1/cH(x, j13, j23, µ2)
and F(cj13, cj23,

√
c k11) = cF(j13, j23, k11) (with obvious abuse of notation) and hence,

without loss of generality, we can fix j23 as j23 = 10. Consequently, the vector of design
variables is γ = [j13, µ2, k11]T . The admissible region for the eigenvalues is specified by
rmax = −1, rmin = −20 and ψ = π

4 (see Figure 4.3). To determine the critical level value,
we again employ the algorithm from Section 3.3 with all parameters as given above except
for the radius R, which is increased to R = 4.
First, we apply a genetic optimization algorithm provided by Matlab (ga) with 350

individuals and the maximum number of generations set to 25. After the genetic algorithm
terminates, the optimization is continued using fmincon. By this means, we obtain the
controller parameters jopt13 = 262, µopt2 = 5.95 · 10−2, and kopt11 = 18.7. The corresponding
estimate of the DA is shown in Figure 5.3(b). Its volume is V opt

d̂
= 22.92 and hence 342

times the volume V ini
d̂

before the optimization. The corresponding closed loop linearizion
has one real eigenvalue in −16.4 and a conjugate complex eigenvalue pair in −12.6± 12.2i.
In Figure 5.4, the transient response curves of the states z1 and z2 (the deviations of
the internal voltage and the load angle from their stationary values) are shown for both
controller parametrizations – the initial one determined by means of LLDA and the one
obtained from the optimization. The initial value is z(0) = [−0.1, 0.1,−0.2]T and has been
chosen such that it is contained in the estimated DA of both closed loop systems. It can
be seen that the optimized controller achieves a faster and still sufficiently damped system
response. We remark that, not surprisingly, the control effort of the optimized controller is
higher than that of the initial one.

5.2.4 Comparison with a Benchmark Controller

Galaz et al. [60], [61] also have designed an IDA controller for the synchronous generator
(5.5) with the objective to enlarge the DA and to increase by this means the critical
clearing time. To this end, they first transform the SMIB model into pH form and, based
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Figure 5.4: Transient responses for the initial controller (LLDA) and the controller obtained from
the constrained optimization problem.

on that, deduce a physically motivated IDA controller. As mentioned in Section 1.3.1, the
authors exploit that the sublevel sets of a strongly convex function are bounded, i.e., they
determine a controller parametrization such that ∇2H(x) > εI holds for some ε > 0 and
all x within a certain region around x∗. Then the largest sublevel set which is entirely
contained in this region is an estimate of the DA. However, neither is the corresponding
level value explicitly known nor is it possible to conclude that the DA of the closed loop
system contains the DA of the open loop system (see Remark 3 in [61]).
In order to demonstrate the effectiveness of the methods proposed in this thesis, we

compare our results with those achieved in [60], [61]. In these works, three differently tuned
IDA controllers are applied to the SMIB model under consideration. The estimated DA is,
however, for all three parameterizations identical since they only differ in the damping
injection term, that is denoted by kv and does not influence the energy function. From the
three controllers we have taken the one2 with kv = 0.07 as it achieves the best transient
behavior. If we choose jbm13 = 10.761, jbm23 = 13.451, µbm2 = 2.858 and kbm11 = 1, the control
law derived above is identical to this controller. The volume of the corresponding estimate
of the DA is V bm

d̂
= 26.14 and is thus slightly larger than the value V opt

d̂
achieved in the

2The values of the two remaining parameters are α1 = −0.8 and α2 = 76.88. They are given here
because they cannot be found in the paper [61] but only in the thesis [60].
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Figure 5.5: Comparison of the controller from [61] and the controller obtained from the uncon-
strained optimization in terms of the transient behavior.

previous subsection. If we have a look at the eigenvalues of the linearization, however,
we find that aside a real eigenvalue at −4.94 there is a complex eigenvalue pair located
at −0.39± 6.33i. Obviously, the oscillation that corresponds to this pair is very weakly
damped, which also becomes apparent in the time response curves shown in Figure 5.5.

Therefore, we repeat the optimization of the DA without the constraints (4.20b), (4.20c),
i.e., without specifying desired dynamic behavior. In this case, the vector of design
variables γ consists only of j13 and µ2 because the energy function is not affected by
k11 and hence neither is the estimated DA. To solve the optimization problem, we again
employ the genetic algorithm provided by the Matlab function ga with 250 individuals
and a maximum number of 30 generations. This yields the parameter values jopt,213 = 32.55
and µopt,22 = 0.5564. The estimated DA is depicted in Figure 5.6(a) and has a volume of
V opt,2
d̂

= 73.27. It is thus almost 3 times as big as the estimated DA that corresponds
to the controller parametrization from [60], [61]. A comparison of both estimates in the
z1-z2-plane is shown in Figure 5.6(b). The value of kopt,211 is set to 1.5. The eigenvalues
of the closed loop linearization are then located in −14.09 and −1.86± 7.35i. In Figure
5.5, the time response curves of z1 and z2 are depicted for both closed loop systems
and z(0) = [−0.1, 0.1,−0.2]T . It can be seen that the controller which results from the

102



5.2 Excitation Control of a Synchronous Generator

−4

−2

0

2

4

−1
012

−5

0

5

z1

z2

z 3

(a) Estimated stability boundary.
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Figure 5.6: Estimated DA for the controller that results from the unconstrained optimization (a)
and comparison with the estimated DA achieved with the controller from [61] (b).

optimization achieves a much less oscillating system response. The control effort of the
two controllers is very similar.
Recall that, in the context of power systems, the primary objective, which motivated

the maximization of the DA, was to increase the critical clearing time. Therefore, we
compare the controller obtained from the latest optimization with that from [60], [61] also
in terms of this security measure. Like in Section 6.1 of [61], we consider a short circuit
that results from connecting the machine’s terminal to ground via a small impedance.
After the clearing time the short circuit is removed. As in [61] and [10], the critical clearing
time is determined by simulating short circuits with increasing clearing time. For the
controller from [61], the critical clearing time is found to be 220ms, which matches the
value given in the paper, whereas for the optimized controller determined above the critical
clearing time is 310 ms.

5.2.5 Application of Algorithm 2

For the purpose of illustration, we finally apply the algorithm from Section 3.4 to determine
an estimate of the DA. The controller parameters are set to jbm13 = 10.761, jbm23 = 13.451,
µbm2 = 2.858 and kbm11 = 1, which corresponds to the controller from [61]. The function
γ(r) is determined similar to Example 3.4.1. Its positive root is rmin = 0.41, which yields
Dmin = {x : |xi| < 0.29, i = 1, 2}. The rectangle Dmax is chosen as Dmax = {x : |xi| ≤
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Figure 5.7: Estimating the DA with Algorithm 2.

4, i = 1, 2} and δmin is set to 0.2 < rmin/
√

2 = 0.29. The result is depicted in Figure 5.7,
where the piecewise linear approach from [69] has been used to approximate ∂Sd̂(0). The
obtained level value is d̂ = c̃ = 0.0438. It is slightly smaller than the value computed above
with Algorithm 1, which has been 0.0443. One reason for this is that the minimum of
H(x) on ∂D̃ is calculated by means of the inequality (2.85) (2.86b) and thus is actually a
lower bound.

5.3 Trajectory Tracking Control of a Magnetic Levitation
System

This section deals with the trajectory tracking control of a levitated ball, in particular
with the estimation and the maximization of the DA of the time-varying error system.
The lab setup is depicted in Figure 5.8 (left), a schematic diagram is shown in Figure 5.8
(right). The system essentially consists of an iron object in the magnetic field generated
by an electromagnet and a laser sensor, that allows to determine the distance s. The
mathematical model of the plant is given by [102]




ẋ1

ẋ2

ẋ3


 =




− R
L(x2)x1
x3
m

1
2

L′(x2)
L2(x2)x2

1+mg


+




1
0
0


u (5.19)
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Figure 5.8: Magnetic levitation system: lab setup (left) and schematic diagram (right).

Table 5.2: Parameters of the magnetic levitation system [102].

Model parameter Symbol Value Unit

Mass of the ball m 91.8 · 10−3 kg
Inductance of the magnet Linf 62.8 · 10−3 H
Parameter of the inductance model a 9.89 · 10−5 H
Parameter of the inductance model b 4.97 · 10−3 H
Resistance of the magnet R 2.19 Ω

where x1 is the magnetic flux, x2 = s the distance of the ball from the magnet, x3 = mṡ the
momentum of the ball, and the control input u is the voltage at the coil. The inductance
is approximated by

L(x2) = L∞ + a

b+ x2
= a

c

b+ c+ x2

b+ x2
, c = a

L∞
(5.20)

and we have used the abbreviation L′(x2) = ∂L(x2)
∂x2

in (5.19). The model parameters are
given in Table 5.2.

The control objective is to levitate the ball such that its position x2 = s, that we define
as output of the system y = x2, (asymptotically) tracks a desired periodic trajectory given
by

yd(t) = C1 + C2 sin(ωt) (5.21)

with C1 = 10 mm, C2 = 5 mm and ω = 6 1
s . In order to solve this problem, in [101], [102] a

two-degree-of-freedom control scheme is applied (see Section 2.3.2). Using that y = x2 is a
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flat output it is straightforward to derive a suitable feedforward control

ud(t) =
√

2am(g − ÿ(t))
(
ẏd(t)
c

+ R

a
(b+ yd(t))

)
− am(b+ c+ yd(t))

...
y d(t)

c
√

2am(g − ÿd(t))
(5.22)

and corresponding trajectories of the state variables

xd,1(t) = 1
c

√
2am(g − ÿd(t))(b+ c+ yd(t))

xd,2(t) = yd(t)

xd,3(t) = mẏd(t) .

(5.23)

After the input transformation u = ud(t)+v the dynamics of the tracking error e = x−xd(t)
are given by

ė =




−R c
a

(
β(e2,t)
γ(e2,t)(xd,1(t) + e1)− β(0,t

γ(0,t)xd,1(t)
)

e3
m

− c2

2a

(
(xd,1(t)+e1)2

γ2(e2,t) − x2
d,1(t)
γ2(0,t)

)




+




1
0
0


 v (5.24)

with the abbreviations

β(e2, t) = b+ xd,2(t) + e2

γ(e2, t) = β(e2, t) + c .
(5.25)

In order to asymptotically stabilize e∗ = 0 and achieve desired closed loop dynamics,
in [101], [102] an IDA controller has been designed and parametrized by means of LLDA
(see Section 2.3.2). The derivation is briefly summarized below. A subtle choice of
F(e, t) makes it possible to achieve both solvability of the matching PDE and (local)
positive definiteness of the dissipation matrix. The design matrix can be represented
as

F(e, t) =




1 0 0
0 ν̂23γ2(0,t)

2mν̂12xd,1(t)(γ(0,t)+e2) 0
0 0 c2

2aγ2(e2,t)







α̂11 α̂12 α̂13

0 ν̂12 ν̂13

ν̂21 0 ν̂23




︸ ︷︷ ︸
F̂(t)

(5.26)

where the time argument has been omitted for the elements of F̂(t). The corresponding
energy function H(e, t) = Ψ(e, t) + φ(ξ) consists of the particular solution

Ψ(e, t) = 1
2eTQΨ(t)e− 1

3ν̂21
e3

1 +
x2
d,1(t)

ν̂23γ2(0, t)

(
e2

2e3 −
ν̂13

3ν̂12
e3

2

)
(5.27)
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where

QΨ(t) = 2




−xd,1(t)
ν̂21

0
0 − ν̂13x2

d,1(t)
ν̂12ν̂23γ(0,t)

x2
d,1(t)

ν̂23γ(0,t)

0 x2
d,1(t)

ν̂23γ(0,t) 0




(5.28)

and the homogeneous solution φ(ξ) = 1
2µ2ξ

2, where the characteristic coordinate is given
by

ξ =
[
1 0 0

]
F̂−T (t)e . (5.29)

In order to simplify the dissipation matrix, the choices

α̂12 = 0 , ν̂21 = −2a
c2 γ

2(0, t)α̂13 (5.30)

are made. Moreover, the application of LLDA yields

α̂13 = c2

2a
aα,13ν̂23 + 2α̂11xd,1(t)

aα,11γ2(0, t) , ν̂13 = −aα,12ν̂12

aα,13
+ 2ν̂12

aα,13ν̂23

α̂13x
2
d,1(t)

γ(0, t) (5.31)

µ2 = aα,11α̂11 + aα,13α̂13 −
c2

a

α̂2
11xd,1(t)

α̂13γ2(0, t) . (5.32)

The entries aα,1i, i = 1, 2, 3 of Aα are determined such that the eigenvalues of sAd =
[(Aα)T ( sAν)T ]T are located in −50, where sAν is obtained by evaluating the unactuated
part of the linearization of (5.24) at an average point x̄d of the desired state trajectory
xd(t), which corresponds to the steady component C1 of yd(t). The resulting values are
aα,11 = 150, aα,12 = 2164.55, and aα,12 = 676.19.
With the choices made for the parameters above, ν̂12 disappears from both the design

matrix and the energy function. Thus, α̂11 and ν̂23 remain as free parameters, which
are to be chosen such that H(e, t) qualifies as a Lyapunov function and, what is more,
the estimated DA of e∗ = 0 is as large as possible. In [101], the values of these two
parameters have been determined by a heuristic approach (see [177] for details): First, a
genetic optimization algorithm is used to maximize the smallest eigenvalue of R(0, t) in the
(discretized) interval [0, T ], where T = π

3 is the period of yd(t), in order to achieve R(0, t) >
0, ∀ t. It turns out, however, that the resulting dissipation matrix becomes indefinite already
for very small values of e2. Therefore, the optimization is repeated with the eigenvalues of
R(e, t) not only evaluated at the origin but also at 4 other points of the form [0 ē2 0]T . In this
way, a notable enlargement of the estimated DA is achieved. The obtained parameter values
are α̂ini11 = −1·106 and ν̂ini23 = −500. As mentioned already in Section 3.3.2, the computation
of the functionsWi(x), i = 1, 2, 3 is done in a way very similar to that used in this thesis. In
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order to determine the largest suitable sublevel set ofW1(e) in [101], [177] the Ridge method
is applied, which, as discussed in Section 1.3.1, is in general not applicable for this task.
We apply the algorithm presented in Section 3.3 to estimate the DA of e∗ = 0 for

α̂11 = α̂ini11 and ν̂23 = ν̂ini23 . For convenience, we convert the components e2 and e3 in mm
and mm

s , respectively. Furthermore, considering the values of x1 that are necessary to
levitate the ball at a position x2, we scale e1 for the computation by a factor 100 in order
that it is approximately in the same magnitude as e2 and e3. The parameters of Algorithm
3.2 are chosen as follows: R = 25, εc = 0.05, ∆λ = 0.5, K1 = 100 and K2 = 50.
A closer examination reveals that the energy function H(e, t) only depends on xd,1(t)

and xd,2(t) but not on xd,3(t). From (5.23) we observe that xd,2(t) = yd(t) and that xd,1(t)
is a function of yd(t) and ÿd(t) = −C2 sin(ωt)ω2 only. Hence, the time t enters into H(e, t)
only via the function sin(ωt) and, consequently, for the computation of W1(e) and W2(e)
according to (3.23) only two subintervals of [0, T ] need to be discretized, e.g. [0, T4 ] and
[T2 ,

3T
4 ]. The derivative of the energy function Ḣ(e, t) contains both sine and cosine terms,

and thus the whole interval [0, T ] must be considered to determine W3(e). The number
of points NT in T is set to 60, and accordingly the two subintervals [0, T4 ] and [T2 ,

3T
4 ] are

each discretized with 15 points.
As a consequence, computingW3(e) is twice as expensive as computingW1(e). Therefore,

some adjustments are made to the algorithm described in Section 3.3. Instead of computing
directly the discrete approximation of ρĒ(v), we determine in a first step ρD̄(v) and the
minimum value of W1(e) over ∂D, say d̃. To this end, we don’t have to evaluate W3(e).
Then a discrete representation of the level set ∂SW1

d̃
(0) is computed as described in Section

4.2, which means that its radial function ρS,d̃(v) is numerically approximated. In a second
step, we determine the radial function of the set sE ∩ sSW1

d̃
(0) and the minimum value of

W1(e) over its boundary, which clearly is equal to the critical level value. To do so, we
proceed in the same way as described in Algorithm 3.2 only that we do not consider gv(λ)
and that we restrict the search to SW1

d̃
(0) instead to the ball BR. For the line search the

intervals [0, ρS,d̃(vk)] are discretized with

Lk =
⌈
ρS,d̃(vk)/∆λ

⌉
(5.33)

points. This procedure yields of course the same critical level value as Algorithm 3.2,
but has proven to be somewhat faster for this particular case, because W3(e) has to be
evaluated only within SW1

d̃
(0). For α̂11 = α̂ini11 , and ν̂23 = ν̂ini23 , the computed level value

d̂ = 0.6327 and the corresponding volume of SW2
d̂

(0) is V ini
d̂

= 4.42 Vmm2. The gradients
of W1(e) and W3(e), which are needed for the numerical approximation of ∂SW1

d̃
(0) and

∂SW3
d̂

(0), have been computed using a forward difference approximation [129].
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Figure 5.9: DA of e∗ = 0 with the optimized error controller.

In order to enlarge the estimated DA, we apply the optimization approach proposed
in Section 4.3. Since LLDA has already been accomplished, we solve the unconstrained
maximization problem (4.19) with γ = [α̂11 ν̂23]T . We apply the simplex search method
fminsearch, which is provided by Matlab, and use α̂ini11 and ν̂ini23 as initial values. The
result is α̂opt11 = −1.13 · 106 and ν̂opt23 = −443. The estimated DA is depicted in Figure 5.9
and has a volume of V opt

d̂
= 5.59 Vmm2, which is an improvement of 26.5% as compared to

the initial parametrization. We remark that also by means of the genetic algorithm ga
no better results could be obtained. Recall, however, that the initial parametrization was
already the result of a heuristic optimization conducted in [101], [177].
The control law resulting from the choice α̂11 = α̂opt11 and ν̂23 = ν̂opt23 has been implemented

at the lab setup and compared to the initial controller. In Figure 5.10, the measurement
results are shown for both controllers. Repeated disturbances, realized by short voltage
pulses, drive the ball away from the desired reference trajectory. While the optimized
controller achieves a larger (estimated) DA than the initial one, it can be seen that the
dynamic behavior of the two controller is very similar and that both of them are able to
compensate errors in a fast way.

5.4 Concluding Remarks
In this chapter, we have demonstrated by means of three examples how the methods
presented in the Chapters 3 and 4 can be applied to systematically design IDA controllers
for nonlinear systems and to effectively estimate and enlarge the DA of the closed loop
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Figure 5.10: Comparison of the initial controller from [101] and the controller obtained from the
optimization: While the optimized controller achieves a larger (estimated) DA, the
dynamic behavior of the two controllers is very similar.

system. In the first two examples we have illustrated how the parametrization of the
design matrix proposed in Section 4.1 simplifies the systematic IDA design procedure
by guaranteeing positive semidefiniteness of the dissipation matrix without cumbersome
inequality constraints. With the aid of the optimization procedure from Chapter 4, together
with the algorithms from Chapter 3 in all three examples a considerable enlargement of
the DA has been achieved as compared to the initial controller parametrizations, that have
been obtained by sole application of LLDA. Simultaneously, it has still been possible to
transparently specify desired transient behavior in terms of eigenvalue locations. In the
first example, the resulting controller has been found to give better results than a linear
controller. In the example of the synchronous generator, our controller has outperformed
an IDA controller designed in [60], [61] with respect to both size of the DA and the
closely related critical clearing time as well as transient performance. In the example
of the magnetic levitation system, the proposed methods have proven to be successfully
applicable also to the most general case, in which the energy function is time-varying
and the dissipation matrix is only positive definite in some neighborhood of the desired
equilibrium point.
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Switched Systems
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Chapter 6

Passivity-Based Control of Switched
Nonlinear Systems

With this chapter we start the second part of the thesis which is devoted to the control
of switched systems and consists of three chapters. The present Chapter 6 addresses the
problem of stabilizing a switched system at a desired equilibrium point. Subsequently, in
Chapter 7, both the exact and the asymptotic tracking of a desired output trajectory are
treated. In Chapter 8, the theoretical results are applied for the tracking control of two
technical systems.
The aim of this chapter is to develop an analytic and constructive controller design

method for the asymptotic stabilization of switched nonlinear and in general time-varying
systems which undergo arbitrary switching. To this end, we introduce the class of switched
port-Hamiltonian (spH) systems and discuss their stability properties. Motivated by that,
we extend the IDA methodology, which has proven to be a powerful tool for the control of
smooth nonlinear systems in the first part of this thesis, to the class of switched systems.
We propose to assign an spH structure with common energy function to the closed loop
system in order to solve the asymptotic stabilization problem. Like in the non-switched
case, the set of energy functions which can be assigned to the closed loop system is obtained
from the solution of a system of linear PDEs, which are parametrized by the chosen design
matrices. However, it is often not easy to find admissible design matrices for all subsystems
such that these PDEs are solvable and, additionally, there remain enough degrees of
freedom for the shaping of the energy function. Therefore, a systematic procedure for the
choice of these matrices and the subsequent controller design is proposed for a special
class of switched systems. In this context, we present a new result on the matrix equation
AX + XTAT = Q. A preliminary version of the results in this chapter has been presented
in [99].
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This chapter is organized as follows: In Section 6.1, we give a formal statement of the
considered controller synthesis problem. Subsequently, we introduce in Section 6.2 the
class of spH systems. In Section 6.3, the proposed design methodology is presented in
its general form. In Section 6.4, we develop for a special class of systems a systematic
procedure for the controller design. In Section 6.5, we briefly elaborate on the case that
the plant is already in spH-form, and in Section 6.6 the proposed method is extended to
include integral and adaptive control. The stabilization of switched nonlinear systems
with time-varying subsystems is addressed in Section 6.7. In Section 6.8, we comment on
the tuning of the controllers, and in Section 6.9, the proposed procedure is illustrated by
means of two numerical examples.

6.1 Problem Statement

In this chapter, we consider switched nonlinear and in general time-varying systems of the
form

ẋ = fσ(x, t) + Gσ(x, t)uσ , σ ∈ S (6.1)

with the state x ∈ Rn, the input vectors up ∈ Rmp and rank{Gp(x, t)} = mp for all p ∈ P
and all t ∈ [0,∞). The vector fields fp : Rn × [0,∞) → Rn and the mp columns of the
matrices Gp : Rn × [0,∞) → Rn×mp are continuous in t and locally Lipschitz in x on
[0,∞)×D, where the domain D ⊂ Rn contains the equilibrium x∗ which is to be stabilized.
The switching can be either trajectory-independent or trajectory-dependent according
to the switching rules (2.69) or (2.73). For the basic definitions on switched systems as
well as for a differentiation of this class of from the class of (non-switched) time-varying
systems, the reader is referred to Section 2.4. We assume throughout this chapter that the
switching signal is piecewise constant, which, together with the regularity assumptions
imposed on the drift vector fields and the input matrices, ensures the existence of a solution
in the sense of Definition 2.4.1 for piecewise continuous input signals. If the switching is
trajectory-dependent, this is of course not guaranteed in general and has to be checked for
the closed loop system in each particular case.
The assignable equilibria of the pth subsystem are the elements of the set

Ep =
{
x ∈ Rn

∣∣∣G⊥p (x, t)fp(x, t) = 0, ∀ t ∈ R+
0

}
(6.2)

with G⊥p (x, t) a full rank left annihilator of Gp(x, t). We assume that the intersection
E = ⋂N

p=1 Ep is nonempty and x∗ ∈ E holds for the desired equilibrium point x∗. The latter
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is necessary for the stabilizability of x∗ for all σ ∈ Spc. The controller synthesis problem
considered in this chapter can be formally stated as follows.

Problem 6.1.1. Given (6.1) and a desired equilibrium x∗ ∈ E , find functions rp : Rn ×
[0,∞)→ Rmp such that x∗ is a uniformly asymptotically stable equilibrium of the closed-
loop system

ẋ = fσ(x, t) + Gσ(x, t)rσ(x, t) , σ ∈ S (6.3)

in the sense of Definition 2.4.3.

We make the following assumption.

Assumption 6.1.1. The switching signal is not known a priori, but its instantaneous
value is detectable in real time.

As a matter of fact, this will be satisfied in many applications, see e.g. [157]. If the
switching is trajectory-dependent according to (2.69) or (2.73), the assumption is without
loss of generality since in the context of state feedback u = rσ(x, t) both the state and the
control input are known. Also, if the switching is orchestrated by a supervisory controller,
the switching signal is normally available. Moreover, it will be possible in some cases to
design a common control law for all subsystems, i.e., rp(x, t) = r(x, t), ∀ p ∈ P, which
obviates Assumption 6.1.1.

6.2 Switched Port-Hamiltonian Systems
In this section, we introduce the class of switched port-Hamiltonian (spH) systems, which
are a generalization of the pH models reviewed in Section 2.2.2, and discuss some of its
stability properties. An spH-system is described by

ẋ = [Jσ(x)−Rσ(x)]∇Hσ(x) + Gσ(x)uσ (6.4a)

y = GT
σ (x)∇Hσ(x) (6.4b)

with the state x ∈ Rn, the input vectors up ∈ Rmp , the collocated outputs given by GT
σ∇Hσ,

and the switching signal σ : [0,∞)→ P . The structure matrices Jp : Rn → Rn×n are skew
symmetric JTp = −Jp, the dissipation matrices Rp : Rn → Rn×n are positive semidefinite
Rp = RT

p ≥ 0, and the input matrices Gp : Rn → Rn×mp satisfy rank{Gp} = mp. The
energy functions have a strict local minimum at the common equilibrium point x∗, i.e.,
there is an open neighborhood Ω ⊂ Rn of x∗ such that

Hp(x) > Hp(x∗) , ∀x ∈ Ω\{x∗} (6.5)
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holds for all p ∈ P. By virtue of the pH-structure, the rate of change of energy in each
individual subsystem is

Ḣp(x) = −∇THp(x)Rp(x)∇Hp(x) + yTup ≤ yTup (6.6)

which shows that every subsystem taken by itself is passive, and if we take into account
(6.5), also stable. But, as illustrated at the beginning of Section 2.4.2, this does not imply
stability of x∗ for arbitrary switching signals. In order to identify an admissible subset of
Spc for which x∗ is a stable equilibrium of (6.4), the multiple Lyapunov function approach
mentioned in Section 2.4.2 could be used.
However, if we confine ourselves to spH systems with a common energy function H(x),

i.e., Hp(x) = H(x), ∀ p ∈ P , the overall system (6.4) is passive with respect to the storage
function H(x). In view of (6.5) and (6.6), the function H(x) qualifies as a common
Lyapunov function and hence the following stability result is a direct consequence of
Theorem 2.4.2.

Theorem 6.2.1. Consider an spH system (6.4) with common energy function H(x), i.e.,
Hp(x) = H(x), ∀ p ∈ P, satisfying (6.5) and uσ ≡ 0. The following properties hold: (i)
The equilibrium x∗ is uniformly stable. (ii) If, additionally, Rp(x) > 0, ∀x ∈ Ω is fulfilled
for all p ∈ P, then x∗ is uniformly asymptotically stable.

If Rp(x) > 0, ∀x ∈ Ω, ∀ p ∈ P, uniform asymptotic stability directly follows from
Theorem 2.4.2, because H(x) is guaranteed to be a strict common Lyapunov function. If,
for one or more p ∈ P , the dissipation matrix is only positive semidefinite, H(x) might be
merely a weak common Lyapunov function, in which case Krassovski-LaSalle-like criteria,
like Theorem 2.4.4, have to be invoked to establish asymptotic stability of x∗. An estimate
of the DA can be obtained by means of H(x) as described in Section 2.4.2.

6.3 Controller Design
In this section, we present an analytic and constructive1 controller design methodology
which solves Problem 6.1.1. For now, we confine ourselves to the case where the fp(x) and
Gp(x) are time-invariant, i.e.,

ẋ = fσ(x) + Gσ(x)uσ , σ ∈ S . (6.7)
1The method is constructive in the sense that the solution of the stabilization problem is characterized

by a set of linear PDEs and a set of inequalities (see the example in Section 8.1).
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The general time-varying case will be treated in Section 6.7. Motivated by the stability
properties of spH systems with common energy function (see Theorem 6.2.1), we intend to
design a switched static feedback controller uσ = rσ(x) which transforms (6.7) into spH
form

ẋ = [Jσ(x)−Rσ(x)]∇H(x) (6.8)

where Jp(x) = −JTp (x) and Rp(x) = RT
p (x) ≥ 0, p ∈ P are some desired interconnection

and dissipation matrices, and the common energy function H(x) has a strict local minimum
at the desired equilibrium point x∗.

The following theorem presents the method in its general form. A systematic procedure
for the controller design is proposed in the subsequent Section 6.4 for a special class of
switched systems.

Theorem 6.3.1. Assume there are matrices G⊥p (x), Jp(x) = −JTp (x), Rp(x) = RT
p (x) ≥ 0

and a function H(x) satisfying the system of linear partial differential equations

G⊥p (x) [Jp(x)−Rp(x)]∇H(x) = G⊥p (x)fp(x) (6.9)

for all p ∈ P, where G⊥p (x) : Rn → R(n−mp)×n is a full rank left annihilator of Gp(x) (i.e.,
G⊥p (x)Gp(x) = 0). Further, suppose that there is an open neighborhood Ω ⊂ D of the
desired equilibrium x∗ such that

H(x) > H(x∗) , ∀x ∈ Ω\{x∗} . (6.10)

Then, the switching controller

uσ =
[
GT
σ (x)Gσ(x)

]−1
GT
σ (x)

{
[Jσ(x)−Rσ(x)]∇H(x)− fσ(x)

}
(6.11)

transforms (6.1) into spH-form

ẋ = [Jσ(x)−Rσ(x)]∇H(x) (6.12)

and x∗ is a uniformly stable equilibrium.
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Proof. Similar to the proof of Proposition 1 in [132] (see also Section 2.2.3), we set the
right hand side of (6.1), with u = rσ(x), equal to the right hand side of (6.12) to obtain
the set of matching equations

fp(x) + Gp(x)rp(x) = [Jp(x)−Rp(x)]∇H(x) , p ∈ P . (6.13)

Multiplying (6.13) with G⊥p (x) for all p ∈ P yields the set of projected matching equations
(6.9). The control law (6.11) is obtained by solving (6.13) for rp(x) for all p ∈ P by means
of the pseudo inverse. Uniform stability of x∗ directly follows from Theorem 6.2.1.

To simplify the notation, as in the first part of this thesis, we define the design matrices

Fp(x) = Jp(x)−Rp(x) (6.14)

which satisfy
Rp(x) = −sym {Fp(x)} = −1

2
[
Fp(x) + FT

p (x)
]
≥ 0 . (6.15)

If the structure of these matrices is fixed, the equations (6.9) constitute a system of
Npde = ∑N

p=1(n−mp) linear PDEs




G⊥1 (x)F1(x)
...

G⊥N(x)FN(x)




︸ ︷︷ ︸
W:Rn→RNpde×n

∇H(x) =




G⊥1 (x)f1(x)
...

G⊥N(x)fN(x)




︸ ︷︷ ︸
s:Rn→RNpde

(6.16)

from which the set of admissible energy functions has to be determined. This is similar
to the non-switched case, with the difference that the total number of PDEs Npde is, in
general, greater than n. Nevertheless, the solvability can be assessed using Theorem2 2.2.2.
Hence, if the involutive closures s∆W , s∆W,s of the distributions

∆W = span{WT (x)}, ∆W,s= span






WT (x)

sT (x)





 (6.17)

are regular, there exists a function H(x) satisfying (6.16) if and only if

dim s∆W = dim s∆W,s . (6.18)

2Let us remark that in [24] this solvability condition has indeed been formulated only for the case
Npde < n. This assumption is, however, not necessary (see also [165]).
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Obviously, it is necessary for the solvability of (6.16) that s(x) ∈ R{W(x)}, or equiva-
lently dim ∆W = dim ∆W,s = r ≤ n. Since we assume ∆W and ∆W,s to be regular, this
implies that there are indices ki, i ∈ {1, . . . , r}, such that H(x) is a solution of (6.16) if
and only if it satisfies 



wT
k1(x)
...

wT
kr(x)




︸ ︷︷ ︸
W̃:R→Rr×n

∇H(x) =




sk1(x)
...

skr(x)




︸ ︷︷ ︸
s̃:R→Rr

(6.19)

where we denote by wT
i (x) the rows of W(x) and by si(x) the components of s(x).

If the solvability condition (6.18), or equivalently dim s∆
W̃

= dim s∆
W̃ ,s̃

, is fulfilled, as in
the non-switched case, the admissible energy functions are of the form

H(x) = Ψ(x) + φ (ξ(x)) (6.20)

i.e., they are composed of a particular solution Ψ(x) of (6.16) and a homogeneous solution
φ (ξ(x)), which is an arbitrary function of the characteristic coordinates ξ : Rn → Rnξ (see
Section 2.2.4). According to the Frobenius Theorem 2.2.1, the number of characteristic
coordinates that are available for the energy shaping is nξ = n− dim s∆W = n− dim s∆

W̃
.

The function φ (·) is chosen such that(6.10) holds, which is usually done using the sufficient
condition (2.27).
In [140], it is shown that the IDA methodology is“universally stabilizing”. This also holds

true for the proposed generalization to switched systems, in the sense that the approach
generates all control laws of the form uσ = rσ(x) which uniformly asymptotically stabilize
(6.7) under arbitrary switching, i.e., for S = Spc.

Lemma 6.3.1. Consider the finite family of C1 vector fields {fp(x), p ∈ P}. If the switched
system ẋ = fσ(x) possesses an equilibrium x∗ which is uniformly asymptotically stable for
arbitrary switching signals σ ∈ Spc, then there is a C∞ function H(x) satisfying (6.10) and
matrix-valued C0 functions Jp(x) = −JTp (x) and Rp(x) = RT

p (x) ≥ 0 such that for all
p ∈ P

fp(x) = [Jp(x)−Rp(x)]∇H(x) . (6.21)

Proof. From the converse Lyapunov theorem in [119] it is known that there is a neighbor-
hood Ω of x∗ such that all subsystems share a common C∞ Lyapunov function H(x) with a
strict local minimum at x∗ and ∇TH(x)fp(x) < 0 for all x ∈ Ω\{x∗} and all p ∈ P . Then
the desired result follows by applying the proof of Lemma 1 in [140] to every subsystem.
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An immediate consequence of this Lemma is the following Proposition.

Proposition 6.3.1. Consider the switched system (6.1) and let fp(x) and the columns of
Gp(x) be C1 vector fields. If there are C1 functions rp(x) : Rn → Rmp, p ∈ P such that the
closed loop system ẋ = fσ(x) + Gσ(x)rσ(x) possesses a uniformly stable equilibrium point
x∗ for arbitrary switching signals σ ∈ Spc, then there are matrices G⊥p (x), Jp(x) = −JTp (x),
Rp(x) = RT

p (x) ≥ 0 and a function H(x) satisfying the conditions of Theorem 6.3.1.

Remark 6.3.1. If a system with state-dependent switching law (2.70), (2.73) is to be
stabilized, it would be sufficient to assign an spH structure (6.4) with different energy
functions to the closed loop system, if we additionally require that these functions coincide
on the switching surface3, i.e.,

H1(x) = H2(x) , ∀x ∈ ∂χ . (6.22)

For (6.22) implies that Hσ(ti)(x(ti)) = Hσ(t−i )(x(t−i )) holds for all switching times, and
hence, taking into account (6.5) and (6.6), uniform stability of x∗ can be established
employing the multiple Lyapunov function approach (see Section 2.4.2). If we aim to
endow the closed loop system with a structure like that, we obtain two separate matching
PDEs – one for each energy function – which have to be solved under the additional
constraint (6.22). It turns out, however, that this poses a very difficult problem even for
simple numerical examples. Therefore, this approach is not pursued further in this thesis.

Remark 6.3.2. In some cases a switching controller can be beneficial for non-switched
systems as well, for instance when conflicting performance requirements are present. Then,
appropriately switching (or scheduling) between differently tuned controllers can often
considerably enhance the performance compared to a single control law, see e.g. [100] where
we have applied a control strategy of this kind for the driving state adaptive control of an
active vehicle suspension. In order to ensure uniform asymptotic stability of the desired
equilibrium for any switching sequence, a common Lyapunov function for all subsystems of
the resulting closed loop switched system is needed. However, to the best of our knowledge,
no methods are available for nonlinear systems that allow to guarantee the existence of
such a function in a constructive manner except for the one we have presented in [98].
The approach is contained in Theorem 6.3.1 as a special case, if all fp(x) and Gp(x) are
identical, but different Jp(x) and Rp(x) are chosen. In [98], we have proposed a systematic
procedure for the design of a suitable family of controllers and have applied it to an active
vehicle suspension. For details the reader is referred to this paper.

3Recall that, throughout this thesis, we consider, in the context of trajectory-dependent switching,
only bimodal switched systems.
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6.4 Systematic Controller Design for a Special Class of
Systems

In many cases, it is not an easy task to find suitable design matrices Fp(x), p ∈ P with
sym{Fp(x)} ≤ 0 such that the matching PDE (6.16) has a solution which attains a strict
local minimum at the desired operating point. That’s why, in this section, we present
for a special class of bimodal switched nonlinear systems a systematic procedure for the
construction of these matrices and the ensuing controller design.

6.4.1 The Considered Class of Systems

We consider switched nonlinear systems of the form

ẋα

ẋν


 =


f

α
σ (x)
f νσ (x)


+


Gα

σ(x)
0


u (6.23)

with xα ∈ Rm, xν ∈ Rn−m, u ∈ Rm consisting of only two subsystems, i.e., P = {1, 2}.
This type of systems may be viewed as the switched version of the class of systems (2.49)
considered in the context of LLDA. Note that, as opposed to the previous section, both
subsystems have the same number of control inputs m. It is not difficult to show that
a general switched system (6.7) with P = {1, 2} and m1 = m2 = m can be transformed
into the form (6.23) by a change of coordinates if and only if (i) the columns of the
input matrices span regular involutive distributions of dimension m, and (ii) it holds
that span{G1(x)} = span{G2(x)}. Otherwise, the form (6.23) with Gα

p = Im can be
achieved by a dynamical extension of both subsystems with xn+1 = u1, . . . , xn+m = um

and ẋn+1 = v1, . . . , ẋn+m = vm, where the vi, i = 1, . . . ,m are the new control inputs.
In accordance with (6.23), the design matrices are partitioned into submatrices Fα

p :
Rn → Rm×n and Fν

p : Rn → R(n−m)×n yielding the matching equations

F

α
p (x)

Fν
p(x)


∇H(x) =


fαp (x)
f νp (x)


+


Gα

p (x)
0


 rp(x) , p ∈ {1, 2} . (6.24)

With the simplest left annihilators G⊥p = [0, I] the projected matching equation (6.16) is

Fν

1(x)
Fν

2(x)




︸ ︷︷ ︸
W(x)

∇H(x) =

f ν1 (x)
f ν2 (x)




︸ ︷︷ ︸
s(x)

. (6.25)
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The matrices Fν
p(x) are chosen such that the distributions ∆F,p = span{(Fν

p(x))T} spanned
by their rows have constant dimension n−m in a neighborhood of the desired equilibrium
x∗. This is necessary in order that the design matrices Fp(x) can have full rank in a
neighborhood of x∗. If the latter is not the case, the closed loop system might have
equilibria that are not extrema of the energy function.
From dim ∆F,p = n−m it follows that dim s∆W ≥ dim ∆W ≥ dim ∆F,p = n−m, where

we have used that ∆F,p ⊆ ∆W . Thus, regarding the number of available characteristic coor-
dinates, we conclude that nξ = n−dim s∆W ≤ m. From an energy shaping perspective, it is
of course desirable that the projected matching equation is solvable with a maximum number
of nξ = m characteristic coordinates in order that the design freedom is as large as possible.
We remark that solvability of (6.25) with m characteristic coordinates is also necessary in
order that LLDA (see Section 2.3) can be applied for a systematic controller parametriza-
tion. According to the Frobenius Theorem 2.2.1 and Theorem 2.2.2, this is the case if
and only if dim s∆W,s = dim s∆W = n−m. Together with dim ∆F,p = n−m we deduce
the requirement s∆W,s= ∆W,s= span{[Fν

1(x), f ν1 (x)]T} = span{[Fν
2(x), f ν2 (x)]T}. Hence,

there must exist a regular matrix C(x) such that [Fν
2(x), f ν2 (x)] = C(x)[Fν

1(x), f ν1 (x)]
holds. While Fν

2(x) = C(x)Fν
1(x) can be achieved by a suitable choice of the design

parameters, the f νp (x) are determined by the system dynamics (6.23). Therefore, the
following assumption is imposed on the considered class of systems.

Assumption 6.4.1. There is a function C : Rn → R(n−m)×(n−m) with rank{C(x)} = n−m
such that f ν2 (x) = C(x)f ν1 (x) holds in a neighborhood of x∗. Moreover, in this neighborhood,
the algebraic and geometric multiplicity of all eigenvalues of C(x) with non-positive real
part is equal.

The first part of this assumption implies that the system of PDEs (6.25) is equivalent to

Fν
p(x)∇H(x) = f νp (x) (6.26)

with p = 1 or p = 2, if the matrices Fν
p(x) are chosen as suggested above, i.e., Fν

2(x) =
C(x)Fν

1(x). The second part of the assumption is of technical nature. It is used to simplify
the proof of Theorem 6.4.3 later on.

6.4.2 Positive Semidefiniteness of the Dissipation Matrices

In order that the feedback law transforms the system (6.23) into spH form it is necessary
that both dissipation matrices are positive semi-definite

Rp(x) = −sym {Fp(x)} ≥ 0 , p ∈ {1, 2} . (6.27)
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In fact, it would be beneficial if both dissipation matrices are positive definite, which
means that each of them has n strictly positive eigenvalues. Because in this case, uniform
asymptotic stability for arbitrary switching signals σ ∈ Spc directly follows from Theorem
6.2.1, and there is no need to apply Krasovskii-LaSalle-like stability criteria, which impose
some restrictions on the admissible switching signals regarding the distance between the
consecutive discontinuities (c.f. Theorem 2.4.4).
Therefore, in the following, we analyze how many positive eigenvalues can at the

maximum be assigned to the dissipation matrices in case that we choose the design
matrices such that Fν

2(x) = C(x)Fν
1(x), as it is suggested by the discussion at the end of

the previous subsection. To begin with, we partition the design matrices according to

Fp(x) =

FA

p (x) FB
p (x)

FC
p (x) FD

p (x)


 , p ∈ {1, 2} (6.28)

with FA
p (x) : Rn → Rm×m and appropriate dimensions of the remaining submatrices. Com-

paring this with (6.24), we see that Fα
p (x) = [FA

p (x), FB
p (x)] and Fν

p(x) = [FC
p (x), FD

p (x)].
We have the following Lemma.

Lemma 6.4.1. Given C(x) and Fν
1(x), let Fν

2(x) = C(x)Fν
1(x). The dissipation matrices

R1(x) and R2(x) can be rendered positive semidefinite (definite) simultaneously if and
only if

FD
1 (x) +

(
FD

1 (x)
)T ≤ 0 (< 0) (6.29)

C(x)FD
1 (x) +

(
FD

1 (x)
)T

CT (x) ≤ 0 (< 0) . (6.30)

Proof. With the partitioning defined in (6.28) and FC
2 (x) = C(x)FC

1 (x) as well as FD
2 (x) =

C(x)FD
1 (x) we obtain

R1 = −1
2



FA

1 +
(
FA

1

)T
FB

1 +
(
FC

1

)T

FC
1 +

(
FB

1

)T
FD

1 +
(
FD

1

)T


 (6.31)

R2 = −1
2




FA
2 +

(
FA

2

)T
FB

2 +
(
FC

1

)T
CT

CFC
1 +

(
FB

2

)T
CFD

1 +
(
FD

1

)T
CT


 . (6.32)

Now suppose that R1(x) ≥ (> 0) and R2(x) ≥ (> 0). Then, (6.29) and (6.30) directly
follow from Theorem A.2.1 and Proposition A.2.1 in Appendix A.2, which proves necessity.
To prove sufficiency, let us first point out that the matrices Fα

p = [FA
p , FB

p ], p ∈ {1, 2} can
be chosen independently of each other. If we take e.g. FA

p = diag{αp,ii}, i ∈ {1, . . . ,m},
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p ∈ {1, 2} with αp,ii < 0 and FB
1 (x) = −[FC

1 (x)]T as well as FB
2 (x) = −[FC

1 (x)]TCT (x),
we get

R1 = diag
[
RA

1 , −sym
{
FD

1

}]
(6.33)

R2 = diag
[
RA

2 , −sym
{
CFD

1

}]
(6.34)

with RA
p = −diag{αp,ii}. If (6.29) and (6.30) are satisfied, then obviously it holds that

R1(x) ≥ 0 (> 0) and R2(x) ≥ 0 (> 0).

In the sequel, let, for a square matrix A ∈ Rn×n, the number of eigenvalues in the right
half plane, in the left half plane, and on the imaginary axis be denoted by i+(A), i−(A)
and i0(A), respectively. Moreover, let ir+(A), ir−(A), and ir0(A) be defined analogously for
real valued eigenvalues.

Lemma 6.4.2. Let RA ∈ Rm×m, RB ∈ Rm×(n−m), RD ∈ R(n−m)×(n−m), and

R =

 RA RB

(
RB

)T
RD


 . (6.35)

If R ≥ 0 and RD ≥ 0, then

max
RA, RB

i+(R) = m+ i+(RD) . (6.36)

Proof. see Appendix B.1.

In order that both dissipation matrices are positive semidefinite, according to Lemma
6.4.1, the matrix inequalities (6.29) and (6.30) have to be fulfilled. The latter can be
formulated equivalently as equation

C(x)X(x) + XT (x)CT (x) = Q(x) (6.37)

with X(x) = −FD
1 (x) and some (arbitrary) positive semidefinite matrix QT (x) = Q(x) ≥ 0.

For this reason, this type of matrix equation is analyzed in the next subsection with respect
to the question under what conditions it has a solution satisfying sym{X} ≥ 0.

6.4.3 The Equation AX + XTAT = Q

The matrix equation
AX + XTAT = Q (6.38)
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with A,Q ∈ Rn×n, Q = QT and the unknown X ∈ Rn×n, has been investigated in
several publications including e.g. [18], [85], [105], [169]. The following result from [169]
characterizes the solvability of (6.38) and the structure of its solution.

Theorem 6.4.1 ([169]). (a) The matrix equation (6.38) is solvable if and only if EAQEA =
0, where EA = I−AA† is the orthogonal projector onto the nullspace of A. The solution
X = Xp + Xh is composed of a particular part Xp and the solution Xh of the corresponding
homogeneous matrix equation (i.e., with Q = 0).

(b) In case that Q ≥ 0, the equation (6.38) is solvable if and only if R(Q) ⊆ R(A).

(c) If A is regular, then Xh = UAT with an arbitrary matrix U = −UT .

However, to the best of our knowledge, to date there are no results on the definiteness
of the symmetric part sym{X} of the solution of (6.38). Our results on this topic are
summarized in the theorem stated next.

Theorem 6.4.2. Consider the matrix equation (6.38) with Q = QT ≥ 0. Let the algebraic
and geometric multiplicity of all eigenvalues of A with non-positive real part be equal. There
are solutions X with sym{X} ≥ 0 if and only if all left eigenvectors of A corresponding to
real non-positive eigenvalues are in N{Q}. Then, it holds that

max
Xh,Q

i+
(
sym{X}

)
= n− ir−(A) . (6.39)

In particular, for all Q whose nullspace is spanned exactly by these left eigenvectors it
holds that

max
Xh

i+
(
sym{X}

)
= n− ir−(A) . (6.40)

Proof. see Appendix B.2.

Remark 6.4.1. The assumption in Theorem 6.4.2 that the algebraic and geometric multi-
plicity of all eigenvalues of A with nonpositive real parts is equal is of technical nature
and made to simplify the proof.

For the choice of the design matrices we deduce the following result.

Theorem 6.4.3. Given C(x) satisfying Assumption 6.4.1, there exist matrices F1(x) and
F2(x) with Fν

2(x) = C(x)Fν
1(x) such that both R1(x) and R2(x) are positive semidefinite

and it holds that

max i+
(
Rp(x)

)
= n− ir−

(
C(x)

)
, p ∈ {1, 2} . (6.41)
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Proof. In the sequel, let X(x) = −FD
1 (x). From Lemma 6.4.1 we known that Rp(x) ≥ 0,

p ∈ {1, 2} is possible if and only if X(x) + XT (x) ≥ 0 and

C(x)X(x) + XT (x)CT (x) = Q(x) (6.42)

are satisfied for a Q(x) ≥ 0. It is trivial to establish that such matrices always exist, take e.g.
X = 0, Q = 0. With X = −FD

1 and (6.32), (6.42), we find that RD
2 = 1

2 [CX + XTCT ] =
1
2Q. Hence, we conclude from Theorem 6.4.2 that a solution X with X+XT ≥ 0 exists if and
only if all left eigenvectors of C corresponding to real non-positive eigenvalues are contained
in N{RD

2 }. By Assumption 6.4.1, the matrix C has full rank and thus no zero eigenvalues.
For this reason, it holds that max i+(RD

2 ) = (n−m)− ir−(C). Furthermore, it follows from
Theorem 6.4.2 that the maximum number of positive eigenvalues of RD

1 = 1
2(X + XT ) is

also given by max i+(RD
1 ) = (n−m)− ir−(C). Since RA

p and RB
p , p ∈ {1, 2} can be chosen

freely via Fα
p (c.f. (6.31), (6.32)), the assertion follows with Lemma 6.4.2.

The following corollary is an immediate consequence of Theorem 6.4.3.

Corollary 6.4.1. Given C(x) satisfying Assumption 6.4.1, there exist matrices F1(x) and
F2(x) with Fν

2(x) = C(x)Fν
1(x) such that both R1(x) and R2(x) are positive definite, if

and only if ir−(C(x)) = 0.

6.4.4 Construction of the Design Matrices

In order to obtain suitable design matrices Fp(x), p ∈ {1, 2} with Rp(x) ≥ 0, p ∈ {1, 2}
we need to determine a matrix X(x) = −FD

1 (x) which satisfies sym{X(x)} ≥ 0 and (6.37)
for a positive semidefinite matrix Q(x). As the matrix Fν

1(x) has to be chosen such that
the projected matching equations are solvable, and it is desired to tune the controller by
varying the parameters in the design matrices, our objective is to construct not only one
such matrix but a whole set of admissible matrices.
Since, by assumption, C(x) is a regular matrix, the equation (6.37) has an infinite

number of solutions of the form X(x) = Xp(x) + Xh(x) with a particular solution Xp(x)
and the solution

Xh(x) = U(x)CT (x) (6.43)

of the corresponding homogeneous matrix equation CX + XTCT = 0, where U(x) =
−UT (x) can be chosen arbitrary (see Theorem 6.4.1). Moreover, there is of course an
infinite number of positive semidefinite matrices Q(x).
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As we have already seen in Section 4.1, we can obtain a set of positive semidefinite matrices
utilizing that, given an upper triangular matrix T(x), it holds that Q(x) = TT (x)T(x) ≥ 0.
Similar to the Rij in Section 4.1, let us define matrices Qij ∈ R(n−m)×(n−m), i = 1, . . . , n−m,
j = i, . . . , n−m with all entries equal to zero except for the ith entry in the jth row and
the jth entry in the ith row, which are both equal to one. Then, all matrices given by

Q(x) =
n−m∑

i=1

n−m∑

j=i

i∑

k=1
kki(x)kkj(x)Qij (6.44)

with arbitrary functions kij : Rn → R are positive semidefinite. For a more detailed
derivation the reader is referred to Section 4.1.

Now let Xp
ij(x) : Rn → R(n−m)×(n−m) be a particular solution of (6.37) for Q(x) = Qij.

Since C(x) has been assumed to be a regular matrix, solvability is guaranteed by Theorem
6.4.1. Then, due to linearity of the matrix equation (6.37)

Xp(x) =
n−m∑

i=1

n−m∑

j=i

i∑

k=1
kki(x)kkj(x)Xp

ij(x) (6.45)

represents a set of particular solutions to (6.37) for all Q(x) in (6.44). By adding the homo-
geneous solution (6.43), we finally obtain a set of matrices satisfying sym{C(x)X(x)} ≥ 0
as

X(x)=
n−m∑

i=1

n−m∑

j=i

i∑

k=1
kki(x)kkj(x)Xp

ij(x)
︸ ︷︷ ︸

Xp(x)

+ U(x)CT (x)︸ ︷︷ ︸
Xh(x)

. (6.46)

Unfortunately, in general, nothing can be said about the definiteness of the symmetric
part of the solutions (6.45) and (6.46). In order to ensure that sym{X(x)} ≥ 0, we
have to formulate conditions for the functions kij(x) and U(x) or, in particular, for their
parameters, e.g. by means of Sylvester’s criterion. Note that, if we have ir−(C(x)) = 0,
according to the last part of Theorem 6.4.2, positive semidefiniteness of sym{X(x)} can
always be achieved independently of the kij(x) in (6.44) and (6.46) by a suitable choice
of the homogeneous solution (6.43). In the following, two special cases concerning the
location of the eigenvalues of C(x) are discussed.

If the eigenvalues of C(x) satisfy λi + λ∗j 6= 0, ∀ i, j, then the Lyapunov equation

C(x)Xp
ij(x) + Xp

ij(x)CT (x) = Qij (6.47)

has a unique symmetric solution Xp
ij(x) = (Xp

ij(x))T [3]. This means that we can choose
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symmetric matrices Xp
ij(x), which implies that all particular solutions in (6.45) are sym-

metric and satisfy a Lyapunov equation

C(x)Xp(x) + Xp(x)CT (x) = Q(x) ≥ 0 . (6.48)

In case that the pair [C(x),Q(x)] is point-wise controllable in the linear sense, it follows
from Theorem 6.19 in [3] that i±(Xp(x)) = i±(C(x)).
Hence, if all eigenvalues of C(x) are located in the right half plane, we conclude that

Xp(x) = (Xp(x))T > 0. The controllability condition is trivially satisfied if the functions
kij(x) are chosen such that Q(x) in (6.44) is positive definite, i.e., kii 6= 0, ∀ i. Nevertheless,
for the solutions X(x) in (6.46), in general, we only can say that sym{X(x)} ≥ 0 holds for
sufficiently small U(x), unless the latter matrix can be chosen such that sym{Xh(x)} ≥ 0.

Example 6.4.1. Consider the matrix

C =

1 0

3 1


 (6.49)

with both eigenvalues equal to 1 and thus located in the right halfplane. By solving (6.37)
with Xp

ij(x) = (Xp
ij(x))T , or equivalently (6.47), for the right hand sides Q11, Q12, Q22 we

obtain the matrices

Xp
11 =




1
2 −3

4
−3

4
9
4


 , Xp

22 =

0 0

0 1
2


 , Xp

12 =

0 1

2
1
2 −3

2


 . (6.50)

The homogeneous solution (6.43) is given by

Xh =

 0 ρ

−ρ 0


CT =


 0 ρ

−ρ −3ρ


 . (6.51)

Then, according to (6.46), the general solution of (6.37) can be formulated as

X = k2
11X

p
11 +

(
k2

22 + k2
12

)
Xp

22 + k12k11Xp
12 + Xh

=

 −1

2k
2
11

3
4k

2
11 − 1

2k12k11 − ρ
3
4k

2
11 − 1

2k12k11 + ρ −9
4k

2
11 − 1

2k
2
22 − 1

2k
2
12 + 3

2k12k11 + 3ρ


 .

(6.52)

Obviously, the symmetric portion of the homogeneous solution

sym{Xh} = diag {[0 − 3ρ]} (6.53)
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is negative semidefinite for ρ > 0 and hence ρ has to be sufficiently small in order to
guarantee X + XT ≥ 0. Using Sylvester’s criterion we derive the condition

24ρ < 9k2
11 + 4k2

22 . (6.54)

For positive definiteness, additionally k11 has to be different from zero.

Next, we consider the case that C(x) has only complex-valued eigenvalues in the left
half plane. We know from Theorem 6.4.2 that positive semidefiniteness of sym{X(x)}
is possible. However, using the same arguments as in the previous case, we conclude
that Xp(x) is negative definite, if the controllability condition is fulfilled. Consequently,
sym{X(x)} ≥ 0 can only be achieved by a suitable choice of U(x) which guarantees that
sym{Xh(x)} is positive definite and sufficiently large.

Example 6.4.2. Consider the matrix

C =

−1 1
−1 0


 (6.55)

with the eigenvalues λ1,2 = −1
2 ± i1

2
√

3. Similar to Example 6.4.1 above we determine the
set of particular solutions (6.45) as

Xp = (Xp)T =

−

1
2(k2

11 + k2
22 + k2

12) −1
2(k2

22 + k2
12)

−1
2(k2

22 + k2
12) −1

2k
2
11 − k2

22 − k2
12 + k12k11


 (6.56)

and we assume that k11, k22 6= 0 to ensure Q > 0. The homogeneous solution and its
symmetric portion are given by

Xh =

ρ 0
ρ ρ


 , sym{Xh} =


 ρ

1
2ρ

1
2ρ ρ


 . (6.57)

It can be seen that Xp is indeed a negative definite matrix as both diagonal entries are
negative and their absolute value is greater than that of the off-diagonal entries. However,
the symmetric portion of Xh is positive definite for all ρ > 0. As a consequence, we can
achieve positive definiteness of sym{X} = Xp + sym{Xh} for all kij by choosing ρ > 0
sufficiently large.

6.4.5 Systematic Procedure

After we have determined a set of suitable matrices X(x), the matrix Fν
1(x) is chosen as

Fν
1(x) = [FC

1 (x), −X(x)]. Then, with some modifications, the systematic procedure, that
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has been proposed in [102], [103] for the design of (non-switched) IDA controllers (see
Section 2.3.1), can be applied to determine the feedback functions r1(x) and r2(x). This is
outlined in the following.

Step 1: Solvability of the matching equation The structure of the functions FC
1 (x),

kij(x) and U(x) has to be chosen such that the projected matching equation (6.26) is
solvable according to Theorem 2.2.2. This is especially simple if the structure of the
functions can be chosen such that (at least) one of the two matrices Fν

1(x), Fν
2(x) is

constant. In this case, according to Proposition 2.2.1, checking the solvability of the
projected matching equation (6.25) reduces to verifying that

∂

∂x
f νk,i(x)νk,j −

∂

∂x
f νk,j(x)νk,i = 0 (6.58)

for all i, j = 1, . . . , n−m, where k is the index of the constant design matrix Fν
k and νk,i

is the ith column of (Fν
k)T . From this condition, constraints for the (constant) entries of

Fν
k can be easily derived.

Step 2: Positive Semidefiniteness of Rp(x) In this step, conditions are formulated
for F1(x), F2(x) in order to guarantee Rp(x) ≥ 0, p ∈ {1, 2}. To this end, we first derive
conditions to ensure that RD

1 (x) = sym{X(x)} ≥ 0 (see the discussion in the previous
subsection). Positive semidefiniteness of RD

2 (x) = 1
2Q(x) is guaranteed by construction.

Subsequently, we formulate conditions for FC
1 (x), Fα

1 (x) and Fα
2 (x) in order to ensure that

the dissipation matrices are positive semidefinite. For this task, the following result can
be used, which is an immediate consequence of Proposition A.2.1 and Theorem A.2.1 in
Appendix A.2.

Proposition 6.4.1. If RD
p > 0, then Rp > 0 if and only if

RA
p −RB

p

(
RD
p

)−1 (
RB
p

)T
> 0 . (6.59)

If RD
p ≥ 0, then Rp ≥ 0 if and only if

(
I−RD

p

(
RD
p

)†) (
RB
p

)T
= 0 , (6.60a)

RA
p −RB

p

(
RD
p

)† (
RB
p

)T ≥ 0 . (6.60b)

The condition (6.59) allows to verify the positive definiteness of the n× n matrix Rp by
checking the positive definiteness of a smaller m×m-dimensional matrix. In the case of
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6.4 Systematic Controller Design for a Special Class of Systems

positive semidefiniteness, the additional condition (6.60a) appears. But this is an equality
constraint, which is much easier to handle than inequality constraints as they arise from
the application of Sylvester’s criterion. Note that the conditions of Proposition 6.4.1 can
be satisfied by choosing the matrices Fα

p (x) as in the proof of Lemma 6.4.1.

Step 3: Solving the matching PDE In this step, the projected matching equation
(6.26) is solved, where we can choose either p = 1 or p = 2 depending on which PDE is
easier to handle. This yields the set of common energy functions H(x) = Ψ(x) + φ(ξ(x))
which can be assigned to the closed-loop system.

Step 4: Controller tuning The parameters in Fν
1(x) and the function φ(ξ(x)) are

chosen such that (2.27) holds, guaranteeing a strict local minimum of H(x) at x∗. The
parameters in Fα

1 (x) and Fα
2 (x) as well as the remaining degrees of freedom in Fν

1(x) are
used to optimize the controller performance or to enlarge the estimated DA. For estimating
and enlarging the DA, the algorithms presented in Part I of the thesis can be applied
verbatim.

6.4.6 The case m1 6= m2

The procedure described above can be readily transferred to systems of the form (6.23)
with m1 6= m2, where we assume without loss of generality that m1 < m2. Analogously to
Assumption 6.4.1, we assume that there is a full rank matrix C : Rn → R(n−m2)×(n−m1)

such that f ν2 (x) = C(x)f ν1 (x) holds in some neighborhood of the desired equilibrium x∗.
As in the previous case, we choose Fν

2(x) = C(x)Fν
1(x). The set of admissible energy

functions has to be determined from (6.26) with p = 1. For what follows, we introduce a
partitioning of the submatrix FD

1 (x) according to

FD
1 (x) =


FDA

1 (x) FDB
1 (x)

FDC
1 (x) FDD

1 (x)


 (6.61)

with FDD
1 : Rn → R(n−m2)×(n−m2). Using similar arguments as in the proof of Lemma 6.4.1,

it follows that positive semi-definiteness of both dissipation matrices is possible if and only
if sym{FD

1 } ≤ 0 and

C(x)

FDB

1 (x)
FDD

1 (x)


+

[(
FDB

1 (x)
)T (

FDD
1 (x)

)T ]CT (x) = Q(x) (6.62)
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hold for some Q(x) ≥ 0. Hence, in order to construct a set of suitable matrices FD
1 , we need

to determine a general solution to the matrix equation (6.37), where, in contrast to the
case before, C and X = −[(FDB

1 )T (FDD
1 )T ]T are not quadratic. This can be done following

the same procedure as described in Subsection 6.4.4. According to Corollary 3.2 in [169],
the solutions Xp

ij(x) for the right hand sides Qij , i = 1, . . . , n−m2, j = i, . . . , n−m2 exist.
The homogeneous solution Xh is also given in [169]. The general solution is then

X(x) =
n−m∑

i=1

n−m2∑

j=i

i∑

k=1
kki(x)kkj(x)Xp

ij(x)
︸ ︷︷ ︸

Xp(x)

+ U(x)CT (x) +
(
I−C†(x)C(x)

)
V(x)

︸ ︷︷ ︸
Xh(x)

(6.63)

with both U(x) = −UT (x) and V(x) arbitrary. In comparison to (6.46), the only difference
occurs in the homogeneous solution. In order to guarantee that sym{FD

1 } ≤ 0, Sylvester’s
criterion is used.

6.5 Controller Design for SPH-Systems

The controller design can simplify considerably, if the plant model (6.7) is already given in
spH form with a common energy function, i.e., if the drift vector fields have the special
form

fp(x) = Fp(x)∇H(x) , p ∈ P (6.64)

with sym{Fp(x)} ≤ 0 and rank{Fp(x)} = n. This is the case, when energy-based
techniques have been applied to build the model (see e.g. [90], [46]) and the switching is
due to changes in the interconnection and damping structure. Since the minimum of the
open loop energy function is usually not the desired equilibrium point, control action is
added to stabilize the switched system at the operating point of interest. Moreover, it is
desired to improve the transient behavior and hence the performance of the system. For
the controller design, we again utilize Theorem 6.3.1. We leave the interconnection and
dissipation matrices unchanged and only intend to shape the energy in order to achieve
the control objectives. This obviates the nontrivial step of constructing suitable design
matrices and leads to a generalization of the so called basic IDA approach (see e.g. [139])
to the class of spH systems, which is stated in the following corollary of Theorem 6.3.1.

Corollary 6.5.1. Assume that the switched system (6.7) is given in spH form, i.e., the
drift vector fields are of the form (6.64), and that there is a function Ha : Rn → R such
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that 


G⊥1 (x)F1(x)
...

G⊥N(x)FN(x)


∇Ha(x) = 0 (6.65)

and Hd(x) = H(x) +Ha(x) has a strict local minimum at the desired equilibrium x∗. Then
the control u = G†σ(x)Fσ(x)∇Ha(x) transforms (6.7), (6.64) into ẋ = Fσ(x)∇Hd(x) and
x∗ is a uniformly stable equilibrium.

We assume, without loss of generality, that m1 ≤ mp, p ∈ P. Since the matrices Fp(x)
are regular, it follows from the Frobenius Theorem 2.2.1 that the maximum number
of independent solutions of (6.65) is m1. In order that the number of characteristic
coordinates is indeed equal to m1, which yields maximum freedom for the energy shaping,
it is necessary that there are full rank matrices Kp : Rn → R(n−mp)×(n−m1) such that

G⊥p (x)Fp(x) = Kp(x)G⊥1 (x)F1(x) , p ∈ P . (6.66)

In order that x∗ is an equilibrium of the closed loop system, the function Ha(x) has to
be chosen such that ∇Hd(x∗) = 0. For the case that (6.65) is solvable with the maximum
number of characteristic coordinates, i.e., ξ : Rn → Rm1 , we have the following result.

Proposition 6.5.1. Given a desired equilibrium point x∗ ∈ E , assume that (6.65) possesses
m1 independent solutions subsumed in the vector-valued function ξ(x) and let

Ha(x) = 1
2 [ξ(x)− c]T Ka [ξ(x)− c] (6.67)

with Ka > 0 and c = ξ(x∗) + K−1
a (∇ξ(x∗))†∇H(x∗). Then, x∗ is an equilibrium of the

closed loop system ẋ = Fσ(x)∇Hd(x).

Proof. First, we observe that ∇H(x∗) ∈ R{∇ξ(x∗)}, which can be seen as follows. It holds
that G⊥1 F1∇ξ = 0. Since G⊥1 and F1 are both full rank matrices, also G⊥1 F1 ∈ R(n−m1)×n

has full rank and thus an m1-dimensional nullspace. Since the m1 columns of ∇ξ are
linearly independent, they clearly span the nullspace of G⊥1 F1. Moreover, as x∗ ∈ E it
holds that G⊥1 F1∇H(x∗) = 0 and thus ∇H(x∗) ∈ N{G⊥1 (x∗)F1(x∗)} = R{∇ξ(x∗)}.
With the choice (6.67) we calculate

∇Hd(x∗) = ∇H(x∗) +∇Ha(x∗) = ∇H(x∗)−∇ξ(x∗)(∇ξ(x∗))†∇H(x∗) . (6.68)

Since ∇ξ(∇ξ)† is the orthogonal projector onto R{∇ξ} and ∇H(x∗) ∈ R{∇ξ(x∗)}, it
readily follows that ∇Hd(x∗) = 0.
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Additionally, it has to be verified, of course, that the choice (6.67) renders x∗ a strict
local minimum of Hd(x), i.e., that, for instance, ∇2Hd(x∗) > 0.

6.6 Some Extensions
In practical engineering, one usually has to deal with modeling errors and unknown
disturbances acting on the system, which can cause the closed loop system to behave in
an undesirable way, e.g. they may result in a steady state deviation from the desired
equilibrium point. An advantage of the control scheme proposed in this chapter is that it
can be extended in a quite straightforward manner to include integral and adaptive control
while preserving the closed loop spH structure. By these means, we are able to compensate
for model uncertainties and/or disturbances and, in this way, to increase the robustness of
the control system.

6.6.1 Integral Control

It is well known for (non-switched) pH systems that regulation of the passive output and
rejection of constant input disturbances can be achieved by adding integral control of the
passive output [135]. In [45], this concept is transferred to the closely related class of
Brayton-Moser models. Based on these ideas, we extend Theorem 6.3.1 in order to allow
for integral control of the switched system (6.7).

Proposition 6.6.1. Consider the switched nonlinear system (6.7) with mp = m, p ∈ P
and a constant input disturbance d ∈ Rm

ẋ = fσ(x) + Gσ(x)(u + d) , σ ∈ S . (6.69)

Assume that there are matrices Fp(x) = Jp(x) − Rp(x), p ∈ P and a function H(x)
satisfying the conditions of Theorem 6.3.1 for the desired equilibrium x∗ ∈ E. Moreover,
suppose the control law

η̇ = KIGT
σ (x)∇H(x)

u = rσ(x) =
[
GT
σ (x)Gσ(x)

]−1
GT
σ (x) [Fσ(x)∇H(x)− fσ(x)]− η

(6.70a)

with KI some constant positive definite matrix is applied to (6.69). Then the following
holds.

(i) The equilibrium (x∗,d) is stable.
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(ii) If in a neighborhood ΩR ⊂ Rn of x∗ it holds that Rp(x) > 0 for all p ∈ P, then there
is a constant c > 0 such that

lim
t→∞

x(t)→ x∗ (6.71)

for all (x(0),η(0)) with ‖(x(0),η(0))− (x∗,d)‖ < c.

Proof. If we define the new energy function

W (x,η) = H(x) + 1
2 (η − d)T K−1

I (η − d) (6.72)

the closed loop system (6.69), (6.70) can be represented in spH form

ẋ
η̇


 =


 Fσ(x) −Gσ(x)KI

KIGT
σ (x) 0




︸ ︷︷ ︸
FI,σ(x)

∇W (x,η) . (6.73)

Since, by assumption, H(x) possesses a strict local minimum at x∗, clearly (x∗,d) is a
strict local minimum of W (x,η). Moreover, it holds that RI,p = −sym{FI,p} ≥ 0, where
FI,p is defined in (6.73). Hence, (i) follows from Theorem 6.2.1.
In case that, for all p ∈ P, the matrix Rp(x) is positive definite in some neighborhood

ΩR ⊂ Rn of x∗, there is c > 0 such that SWc (x∗,d) is bounded and contained in ΩR ×Rm,
and it holds that

⋃

p∈P

{
(x,η) ∈ SWc (x∗,d)

∣∣∣∇TWRI,p∇W = 0
}

=

⋃

p∈P

{
(x,η) ∈ SWc (x∗,d)

∣∣∣∇THRp∇H = 0
}

=
{

(x,η) ∈ SWc (x∗,d) |x = x∗
}
.

(6.74)

Thus (ii) follows from Theorem 2.4.3 with W3(x,η) = minx∇THRp∇H.

Of course, the results hold globally, if H(x) is radially unbounded and all dissipation
matrices Rp(x) are positive (semi-)definite for all x ∈ Rn. Moreover, note that Proposition
6.6.1 (ii) says nothing about the limit of η as t→∞. If we assume that σ ∈ Saverage, then
the equilibrium (x∗,d) is asymptotically stable, which includes that η → d for t→∞. In
case that σ ∈ Saverage[τD, N0], the equilibrium (x∗,d) is uniformly asymptotically stable.
This follows from Theorem 2.4.4 as every closed loop subsystem is zero-state small-time
observable with the output y = −∇TWRI,p∇W . The latter is immediately seen by
substituting x = x∗ into (6.73).
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6.6.2 Adaptive Control

In case that there are parametric uncertainties in the model of the plant, adaptive control
can be applied to compensate for the errors induced by the uncertain terms in the feedback
functions. An adaptive controller for pH systems whose Hamiltonian depends linearly
on some uncertain parameters is presented in [187]. A similar idea is used in [72] in
combination with a Casimir function based energy shaping method for time-varying pH
systems. The adaptive control scheme proposed in [152] allows both the interconnection
and damping matrix as well as the Hamiltonian to depend on the perturbed parameters
as long as a certain matching condition is satisfied. A very similar approach is also used
in [178]. In [45], the power-based control method for Brayton-Moser equations, originally
proposed in [133] and [65], is extended to include adaptive control. Inspired by the ideas in
these papers, we expand in the following the result of Theorem 6.3.1 to obtain an adaptive
control scheme for nonlinear switched systems (6.7).
We suppose that only the drift vector fields of (6.7) involve parametric uncertainties

and that mp = m, p ∈ P , which means that the model is of the form

ẋ = fσ(x,θ) + Gσ(x)u (6.75)

where θ ∈ Λ ⊂ Rs is an unknown constant vector denoting the parametric uncertainty,
and the set Λ is such that it contains the origin. In case that θ = 0, the model (6.75) is
equal to the nominal one.

Proposition 6.6.2. Consider the system (6.75). Assume that there are matrices Fp(x,θ),
p ∈ P and a function H(x,θ) satisfying the conditions of Theorem 6.3.1 for all θ ∈ Λ.
Further, assume that the control law (6.11) can be represented in the form

u = γσ(x) + Υσ(x)z (6.76)

where γp : Rn → Rm and Υp : Rn → Rm×l, p ∈ P are known functions and z ∈ Rl is an
unknown constant vector related to θ. Now suppose the control law

˙̂z = −KzΥT
σ (x)GT

σ (x)∇H(x,θ) (6.77a)

u = γσ(x) + Υσ(x)ẑ (6.77b)

with ẑ the estimate of z and Kz some constant positive definite matrix is applied to (6.69).
Then the following holds.

(i) The equilibrium (x∗, z) is stable.
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(ii) If in a neighborhood ΩR ⊂ Rn of x∗ it holds that Rp(x) > 0 for all p ∈ P, then there
is a constant c > 0 such that

lim
t→∞

x(t)→ x∗ (6.78)

for all (x(0), ẑ(0)) with ‖(x(0),η(0))− (x∗, z)‖ < c.

Proof. The proof follows the same lines as the proof of Proposition 6.6.1. With the function

W = H(x,θ) + 1
2 (ẑ− z)T K−1

z (ẑ− z) (6.79)

we can express the closed loop system (6.75), (6.77) in spH form

ẋ

˙̂z


 =


 Fσ(x,θ) Gσ(x)Υp(x)Kz

−KzΥT
p (x)GT

σ (x) 0


∇W (x, ẑ,θ) . (6.80)

The rest of the proof is completely analogous to the proof of Proposition 6.6.1 and is
therefore omitted.

Requiring that the conditions of Theorem 6.3.1 are satisfied for all θ ∈ Λ means that
Rp(x,θ) = −sym{Fp(x,θ)} ≥ 0 holds for all θ ∈ Λ and all p ∈ P and that H(x,θ) has
a strict local minimum in x∗ for all θ ∈ Λ. Moreover, the information to evaluate the
update law (6.77a) has to be available, i.e., either the expression has to be independent
of θ or the terms containing θ must be known from the measurements. A case in which
these requirements are satisfied is e.g. the one in which the parameter uncertainties are
matched, i.e., there exist matrix valued functions Υp : Rn → Rm×l such that for all p ∈ P

fp(x,θ)− fp(x,0) = Gp(x)Υp(x)z . (6.81)

Then, the projected matching equations (6.9) are independent of θ. Hence, the design
matrices and the energy function are independent of θ which implies that also the update law
(6.77a) does not depend on the uncertainty. Moreover, the control law can be represented
in the desired form (6.76)

u = G†σ(x) [Fσ(x)∇H(x)− fσ(x,0)]︸ ︷︷ ︸
γσ(x)

+Υσ(x)z . (6.82)

Here we have used that G†p(x)f(x,θ) = G†p(x)f(x,0) + Υp(x)z which follows from (6.81).
It is interesting to note that the control law (6.11) is not required to depend linearly on
the unknown parameters θ but only a linear reparametrization in terms of z is necessary.
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The adaptive control approach does not require persistent excitation. However, it is in
general not guaranteed that ẑ converges to its true value z. In order to show convergence
of the estimate ẑ we again have to invoke Krasovskii-LaSalle-like criteria like Theorem
2.4.4. Therefore, it is worthwhile mentioning that, in case that Rp(x) > 0 holds for all
p ∈ P and all x ∈ ΩR, all subsystems of (6.80) are zero-state small-time observable with
the output y = −∇THRp∇H if and only if l < n and rank{Gp(x∗)Υp(x∗)} = l.

6.7 Controller Design for Time-Varying Switched
Systems

In this section, we deal with the stabilization of time-varying switched systems (6.1). In
principle, the ideas of the previous sections can be readily applied to this problem. We
aim at designing a time-varying state feedback law of the form uσ = rσ(x, t) such that the
closed loop system can be represented as time-varying spH system with common energy
function

ẋ = Fσ(x, t)∇H(x, t) (6.83)

where, for all t ∈ R+
0 and all x in some neighborhood ΩR ⊂ Rn of the desired equilibrium

point x∗, the design matrices Fp : Rn × R+
0 → Rn×n satisfy sym{Fp(x, t)} ≤ 0, and the

Hamiltonian H : Rn ×R+
0 → R has a strict local minimum at x∗, i.e. there exists an open

neighborhood Ω ⊂ Rn of x∗ such that

H(x, t) > H(x∗, t), ∀x ∈ Ω\{x∗} , ∀ t ∈ R+
0 . (6.84)

We assume, without loss of generality, that x∗ = 0. As in the non-switched case, the major
restriction is that, in contrast to time-invariant spH systems with common energy function,
the origin is not guaranteed to be stable, if the Hamiltonian explicitly depends on the
time t. In this case, the derivative of the energy function along the trajectories of the pth
subsystem is given by

∂H(x, t)
∂t

+
(
∂H(x, t)
∂x

)T
Rp(x, t)

∂H(x, t)
∂x

. (6.85)

Since nothing can be said, in general, about the sign of the first term in this expression,
the value of the energy function might also increase along the trajectories of the subsystem.
Nevertheless, H(x, t) is a good candidate for a common Lyapunov function, and, if we
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succeed in showing that (6.85) is (locally) non-positive for all p ∈ P , the following stability
properties can be deduced invoking the Theorems 2.4.1 and 2.4.3 in Section 2.4.2.

Theorem 6.7.1. Consider the system (6.83) and suppose that there is an open neighborhood
ΩW ⊂ Rn of x∗ = 0 such that

W1(x) ≤ H(x, t) ≤ W2(x) (6.86)

∂H(x, t)
∂t

+
(
∂H(x, t)
∂x

)T
Rp(x, t)

∂H(x, t)
∂x

≤ W3(x) (6.87)

holds for all p ∈ P, all t ≥ 0 and all x ∈ ΩW , where W1(x), W2(x) are continuous
positive definite functions and W3(x) is a continuous positive semidefinite function on ΩW .
Moreover, let c > 0 be such that sSW1

c (0) is bounded and contained in ΩW .

(i) The origin is uniformly stable. Moreover, all trajectories starting in sSW2
c (x∗) approach

the set {x ∈ SW1
c (0)|W3(x) = 0} as t→∞.

(ii) If W3 is positive definite on ΩW , then the origin is uniformly asymptotically stable
and all trajectories starting in sSW2

c (x∗) tend to the origin as t→∞.

In case that the functions Wi(x), i = 1, 2, 3 cannot be determined analytically due to the
complexity of the appearing expressions, with a minor adaptation, the procedure described
in Section 3.3.2 for non-switched systems can be applied in order to check the conditions
(6.86) and (6.87) and to obtain an estimate of the DA (see the example in Section 8.2).

The design of the control law uσ = rσ(x, t) such that for all p ∈ P it holds that

fp(x, t) + Gp(x, t)rp(x, t) = Fp(x, t)∇H(x, t) (6.88)

follows exactly the same steps as in the time-invariant case, with the only difference that
the design matrices, the left annihilators and the energy function are, in general, time
dependent. Of course, also the systematic procedure described in Section 6.4 can be applied
verbatim. The matrix C(x, t) as well as the functions kij(x, t) in (6.46) are then allowed
to be time-varying and Assumption 6.4.1 has to be valid for all t ∈ [0,∞).

6.8 Tuning of the Controller
As in the non-switched case in Part I of this thesis, a central question is how to choose the
large number of parameters in the switching control laws obtained by the methodology
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proposed in the preceding sections. In order to assess the dynamics of the individual
subsystems of the closed loop system, we can of course consider the eigenvalues of their
linearizations, and it is indeed common practice in the control of switched linear systems
to assign suitable eigenvalues to the closed loop subsystems, see e.g. [125], [186]. Moreover,
the methods from Chapter 3 clearly can be applied to determine an estimate of the DA of
the closed loop spH systems. Hence, the methods that have been used for the tuning of
non-switched IDA controllers in Part I, can also be applied to the case of switched systems,
one major benefit being that, in this way, it can also be ensured easily that ∇2H(x∗) > 0
and thus that the energy function has a strict local minimum at x∗.
If the plant model allows the application of the systematic procedure proposed in

Section 6.4, the LLDA methodology (see Section 2.3) can be utilized, at least for the
parametrization of one feedback function, i.e., either for r1(x) or for r2(x). Of course, also
for the parametrization of the second feedback function, the linearization of the closed loop
subsystem can be considered in order to get an idea of its dynamic behavior. However, it
will, in general, not be possible to assign arbitrary eigenvalues to this linearization.
If the procedure from Section 6.4 is not applicable, this implies that also the conditions

for the use of LLDA are not satisfied. However, we can prescribe an admissible region
for the closed loop eigenvalues of the linearized subsystems as in Figure 4.3 by specifying
suitable values for rmin, rmax and ψ. Then we solve the optimization problem (4.20), where
the constraints (4.20b), (4.20c) have to be fulfilled for the eigenvalues of all subsystems.
Moreover, we have to add constraints that guarantee the positive semidefiniteness of the
dissipation matrices.
Since, from a practical point of view, the issue of transient response is very important,

at this point the natural question arises whether it can be guaranteed that the closed
loop switched system exhibits good dynamic behavior, if the dynamics of the individual
subsystems are well-behaved. This will be briefly discussed in the following in terms of the
shape of the transient response and the rate at which the state trajectories converge to the
desired equilibrium point. We consider the switched linear system

ẋ = Aσx, σ(t) : [0,∞)→ {1, 2} (6.89)

which can be regarded as the linearization of the nonlinear closed loop system above.
The transient response of such a system is determined by the eigenvalues and by the
eigenvectors of the matrices Ap. Especially the overshoot in the transient phases after the
switching events depends to a large extent on the orientation of the eigenvectors, which
normally cannot be influenced by state feedback in a transparent way. It is due to these
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Figure 6.1: Transient response curves of the subsystems in comparison with those of the switched
system.

overshoots that the switched system (6.89) can exhibit a rather ugly transient response, as
illustrated in the following example. We remark that these overshoots are also the reason
why switching between asymptotically stable subsystems may lead to unbounded state
trajectories.

Example 6.8.1. Consider the switched linear system (6.89) with

A1 =

−10 −20

0 −5


 , A2 =


−15 54

0 −6


 . (6.90)

Due to the upper triangular structure of both matrices the subsystems are guaranteed
to have a common quadratic Lyapunov function [113]. The transient response curves of
x1 for the individual subsystems are shown in Figure 6.1(a). The transient response of
x1 for the switched system is depicted in Figure 6.1(b). The switching signal has been
chosen such that switching occurs every 0.05 s starting with σ(0) = 2. The initial state is
x(0) = [−1,−1]T . While the transient responses of the individual subsystems are fairly
well-behaved, that of the switched system exhibits a quite ugly shape since, in practical
applications, we are typically interested in smooth system responses.

A general discussion on the relationship between the eigenstructure (eigenvalues and
eigenvectors) of the matrices Ap and the shape of the transient response for systems, whose
subsystem matrices solely have real eigenvectors, is given by Shorten and Narendra in
[156]. The conclusion can be summarized as follows: In order to obtain a smooth transient
response, the matrices A1 and A2 should share as many eigenvectors and associated
eigenvalues as possible, and especially the eigenvectors corresponding to slow eigenvalues
should be common to both matrices. It is clear, however, that this requirement can be
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Chapter 6 Passivity-Based Control of Switched Nonlinear Systems

fulfilled by means of state feedback only in very special (academic) cases. Hence, we can
conclude that, in general, it is difficult to achieve a smoothly shaped transient response of
a switched system by means of state feedback in a constructive manner.
In contrast, in our experience, the rate at which the system states decay to zero can

normally be influenced quite transparently by specifying suitable eigenvalue locations.
However, since also the orientation of the eigenvectors changes, if the controller assigns
a different set of eigenvalues to the subsystem matrices, it is worthwhile pointing out that
also the rate of decay is not only determined by the eigenvalues but also by the eigenvectors.

Example 6.8.2 (Example 6.8.1 cont’d). Obviously, the matrices A1 and A2 in the previous
example have the eigenvalues λ1,1 = −10, λ1,2 = −5 and λ2,1 = −15, λ2,2 = −6, respectively.
The eigenvectors are v1,1 = [2, 0]T , v1,2 = [4,−1]T and v2,1 = [3, 0]T , v2,2 = [6, 1]T . While
leaving the eigenvalues and the second eigenvector of both subsystem matrices as they are,
we change the eigenvectors v1,1, v2,1 to ṽ1,1 = [2,−0.3]T , ṽ2,1 = [3, 0.1]T yielding the new
switched system ẋ = Ãσx with

Ã1 =

−17.5 −50

1.875 2.5


 , Ã2 =


 −17.5 −50
−0.375 −3.75


 . (6.91)

It can be verified that the function V = xTPx with

P =

3.13 7.46

7.46 141.65


 (6.92)

is a common quadratic Lyapunov function. In Figure 6.2(a), the evolution of the 2-norm
‖x(t)‖ is depicted for the 1st subsystem of both the original switched system (with A1

and A2) and the modified one (with Ã1 and Ã2). We observe that the curve which
corresponds to the subsystem with Ã1 shows a considerably higher overshoot than the
one of the original subsystem with A1. However, after the overshoot has been absorbed,
both trajectories decay to zero similarly fast. This is in contrast to the switched systems,
whose transient responses are depicted in Figure 6.2(b). Here, we observe a significantly
slower convergence of ‖x(t)‖ to zero for the modified switched system as compared to the
original one, although the eigenvalue locations are identical. The switching signal is the
same as in the previous example 6.8.1.

6.9 Illustrative Examples
The purpose of this section is to illustrate the use of the methods proposed in this chapter.
Both systems considered below allow the application of the design procedure described in
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Figure 6.2: Influence of the eigenvectors on the decay rate of a switched linear system.

Section 6.4. While in the first example the matrix C is constant, the second one illustrates
the case of a state-dependent matrix C(x). An example, where the controller design has
to be accomplished without the procedure from Section 6.4 is given in Section 8.1.

6.9.1 Constant Matrix C

Consider the system
ẋ = fσ(x) + gσ(x)u , σ ∈ Spc (6.93)

with

f1(x) =




−x1x
2
3 + 4x2

3x1

5x2 − 7x3
3


, g1(x) =




1 + x2
1

0
0


, f2(x) =




−x2x3 − x1

3x1

9x1 + 5x2 − 7x3
3


, g2(x) =




3 + x3

0
0




and the desired equilibrium x∗ = 0. The system is of the form (6.23) and it holds that
f ν2 (x) = Cf ν1 (x) with the matrix C given in (6.49). For this matrix, the set of solutions to
(6.37) has been constructed in Example 6.4.1 and is given in (6.52). Suitable matrices Fν

1

are then obtained by setting Fν
1 = [FC

1 , −X] with a constant matrix FC
1 = [ν1,11, ν1,21]T .

Step 1: Solvability of the matching equation Since Fν
1 is constant, we can employ

(6.58) in order to check the solvability of (6.25). We obtain the condition

3ν1,21 + 5
2k

2
11 + 21x2

3

(3
4k

2
11 −

1
2k12k11 − ρ

)
!= 0 (6.94)

which is satisfied, if we choose ν1,21 = −5
6k

2
1,1 and ρ = 3

4k
2
11 − 1

2k12k11.
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Step 2: Positive Definiteness of Rp In order to guarantee Rp > 0, p ∈ {1, 2}, as in
the proof of Lemma 6.4.1, we choose FB

p = −(FC
p )T , p ∈ {1, 2} such that the dissipation

matrices take the form (6.33), (6.34). Then, R1 > 0 holds, if FA
1 = α1,11 < 0 and

sym{X} > 0. With the choice made for ρ above, it follows from (6.54) that sym{X} > 0 if

− 4k2
22 + 9k2

11 − 12k12k11 < 0 . (6.95)

Similarly, for R2 > 0 it must hold that FA
2 = α2,11 < 0 and sym{CX} = Q > 0, where

the latter is guaranteed by construction if k11, k22 6= 0.

Step 3: Solving the matching PDE As νj,1 in Fν
1 is constant, the solution of the

projected matching equations (6.26) is easily calculated as described in Section 2.2.4. The
matrix T−1 in (2.37) is T−1 = [t1 (Fν

1)T ], where we set t1 = [ 1
k2

11(k2
22+k2

12) , 0, 0]T . Then, z1

is a characteristic coordinate and we choose φ(z1) = µ2z
2
1 .

Step 4: Controller tuning In order to obtain suitable parameters, LLDA is applied
to the first subsystem, where Ad,1 has three eigenvalues in −3. From the corresponding
system of equations (2.57)-(2.59), dependencies of the form α1,11 = α1,11(k11, k12, k22),
ν1,11 = ν1,11(k11, k12, k22), µ2 = µ2(k11, k12, k22) are obtained. For simplicity, k12 is fixed
at −1. The remaining free parameters α2,11, k11, and k22 are chosen such that the closed
loop linearization of the second subsystem has the eigenvalues λ1,2 = −0.91, λ2,2 = −7.9,
and λ3,2 = −12.9 yielding k11 = −407, k22 = −800, and α2,11 = −100. The corresponding
energy function H(x) is strongly convex on R3 and hence radially unbounded. This
together with the fact that both dissipation matrices are constant and positive definite
establishes global uniform asymptotic stability of x∗ = 0. Figure 6.3 shows the transient
response of the closed loop system and the corresponding control input u for an initial
state x(0) = [2, 1, −1]T and a random switching signal.

Now suppose that a constant input disturbance d = 5 is acting on the system (c.f.
(6.69)). Figure 6.4(a) shows the corresponding transient response curves of the closed loop
system for the initial state x(0) = [2, 1, −1]T and a random switching signal. Apparently,
the disturbance keeps the state from converging to the origin. If we add integral action
according to Proposition 6.6.1 with KI = 2 · 105, the result depicted in 6.4(b) is obtained.
We observe that, as expected, the integral controller drives the state to the origin despite
the disturbance.
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Figure 6.3: Transient response curves of the closed loop switched system with x(0) = [2, 1, −1]T
and a random switching signal (upper), and the corresponding control input (lower).

6.9.2 State-dependent Matrix C(x)

To illustrate the case of a state-dependent matrix C(x) we consider the system (6.93) with

f1(x) =




−2x2
2 + x1x2

3x1

−3x2
1 + 5x2 − 7x3

3


 , g1(x) =




3 + x3

0
0


 , f2(x) =




−x1x
2
3 + 4x2

3x1

5x2 − 7x3
3


 , g2 =




1
0
0




and x∗ = 0. The system is again of the form (6.23) and it is not difficult to see that
f ν2 (x) = C(x)f ν1 (x) holds with the state-dependent matrix

C(x) =

 1 0
x1 1


 . (6.96)

After a set of suitable matrices Fν
1(x) has been constructed as in the example above, the

matrix Fν
2(x) = C(x)Fν

1(x) is

Fν
2(x) =


 ν1,11(x) −1

2k
2
11 ν2,13(x)

ν1,11(x)x1 + ν1,21(x) ν2,22(x) −1
2k

2
22 − 1

2k
2
12


 . (6.97)
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Figure 6.4: Transient response of the closed loop system with a constant input disturbance.

with ν2,13(x) = 1
4k

2
11x1 − 1

2k12k11 − ρ(x), ν2,22(x) = −1
4k

2
11x1 − 1

2k12k11 + ρ(x). It can be
rendered constant by the choices ρ(x) = 1

4k
2
11x1 + κ1 and ν1,21(x) = −x1ν1,11 + κ2 with

constants ν1,11, κ1 and κ2. Now the simplified solvability condition (6.58) can be applied
with k = 2 to deduce that the projected matching equations are solvable, if we choose
κ1 = −1

2k12k11 and κ2 = −5
6k

2
11. The rest of the controller design is analogous to the

previous example and is therefore omitted.

6.10 Concluding Remarks

In this chapter, we have presented a passivity-based controller design method for the
uniform asymptotic stabilization of switched nonlinear systems, whose subsystems may, in
general, be time-varying. Instrumental for our developments were the stability properties
of spH systems discussed in Section 6.2, which suggested that the stabilization problem
can be solved by assigning an spH structure with common energy function to the closed
loop system. Our approach is thus a natural extension of the IDA method, which has been
successfully applied to various types of technical systems (see also Part I of this thesis).
The main features of the proposed control scheme can be summarized as follows: (i) It is
completely analytic and more in the spirit of classical techniques, like e.g. pole placement,
as opposed to LMI-based design methods which, although widely used for the stabilization
of switched linear systems, lack transparency and interpretability. (ii) It is constructive in
nature, i.e., there is, for instance, no need to guess a common control Lyapunov function.
(iii) It is not restricted to a special class of switched systems. In fact, it has been shown for
the case of time-invariant subsystems that the method generates all static feedback laws
for which the closed loop system is uniformly asymptotically stable. (iv) The special closed
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loop structure allows the straightforward incorporation of integral and adaptive control.
(v) The procedure is amenable for computer algebra systems like e.g. Maple or Sage.

Although the approach is constructive, the involved mathematical expressions can
get cumbersome making it often nontrivial to determine design matrices that satisfy all
conditions. For this reason, we have provided for a class of bimodal switched systems a
systematic procedure for the choice of suitable design matrices as well as for the subsequent
controller design. Extending this procedure to other classes of switched systems, possibly
supported by numerical tools, is a matter of future research. In this chapter, the proposed
control approach has been illustrated by means of numerical examples. In Chapter 8, its
effectiveness will be shown also for technical systems.
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Chapter 7

Output Trajectory Tracking of Bimodal
Switched Systems

In the previous chapter, we have proposed a control scheme for the set-point regulation
of switched nonlinear systems. Another typical control problem that frequently arises in
practical engineering is to make a certain (scalar) quantity track a predefined trajectory.
As this quantity is usually defined to be the output of the system, this problem is referred
to as output trajectory tracking. It has been extensively studied for smooth dynamical
systems, but, surprisingly, has not received much attention in the context of switched
systems. To the best of our knowledge, this problem has not been addressed for nonlinear
switched systems, yet (see also Section 1.3.3).
In this chapter, we consider both the exact and the asymptotic output tracking problem

for switched nonlinear single-input-single-output (SISO) systems with two subsystems. We
are concerned with trajectory-independent as well as trajectory-dependent switching. In
the latter case, we also study the situation where the switching law depends on the control
input. This situation, although of technical relevance (see e.g. [57], [94]), is usually not
treated in the hybrid and switched systems literature. The desired output trajectory can,
in principle, be freely chosen by the designer, i.e., we do not assume that the trajectories
are periodic or that they are generated by an exosystem like in the output regulation
framework (c.f. Section 1.3.3). Since the reference trajectories are commonly specified
in terms of polynomials, trigonometric series or other smooth functions, we focus our
attention on the class of smooth reference trajectories.
The main contribution of this chapter is twofold. First, we give necessary and sufficient

conditions for the solvability of the exact output tracking (EOT) problem. This issue is,
especially in the case of trajectory-dependent switching, considerably more delicate than
it is for smooth systems. In the latter case it is sufficient for the solvability of the EOT
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problem that the relative degree is well-defined and the internal dynamics are input-to-state
stable. In the case of switched systems, however, it could happen, for instance, that an
output trajectory is infeasible because at some point the corresponding state trajectory
enters the switching surface and cannot be continued on either side of it such that the
system output keeps tracking the reference. The result is an infinitely fast chattering.
Furthermore, we explore the asymptotic output tracking (AOT) problem for switched
nonlinear systems, which also turns out to be more involved than in the case of smooth
systems as soon as the switching law is trajectory-dependent. Therefore, we identify two
special classes of switched systems for which the controller design simplifies considerably.
This constitutes the second main contribution of this chapter.
The remainder is organized as follows. In Section 7.1, we give a formal statement of

the problems considered in this chapter, and we establish some notation needed in the
sequel. Section 7.2 is devoted to the solvability of the EOT problem for systems with both
trajectory-independent and trajectory-dependent switching. The asymptotic tracking of a
desired output trajectory is addressed in Section 7.3, and we wrap up the chapter with
some concluding remarks in Section 7.4.

7.1 Problem statement
Throughout this chapter we consider switched nonlinear SISO systems described by

ẋ = fσ(x) + gσ(x)u , σ ∈ S (7.1a)

y = h(x) (7.1b)

with state x ∈ Rn, control input u ∈ R, and output y ∈ R, which consist of two subsytems,
i.e, P = {1, 2}. The vector fields fp : Rn → Rn, gp : Rn → Rn, p ∈ P and the map
h : Rn → R are assumed to be sufficiently smooth1. Moreover, we can assume without
loss of generality that h(0) = 0. Note that the output function h(x) is identical for both
subsystems.
The problem we consider is the design of a control such that the output y(t) of (7.1)

tracks a desired output trajectory yd(t) either exactly or asymptotically. We assume that
the reference signals yd(t) satisfy yd ∈ Ck with k sufficiently large, and that all derivatives
up to the order k are bounded. The EOT problem for the case of trajectory-independent
and the case of trajectory-dependent switching can be formally stated as follows:

1By “sufficiently smooth” we mean that all partial derivatives that are needed in the following are
defined and continuous.
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7.1 Problem statement

Problem 7.1.1 (EOT problem for trajectory-independent switching). Given (7.1) together
with a switching signal σ ∈ S and a desired output trajectory yd(t) ∈ Ck with k sufficiently
large, find, if any, pairs consisting of an initial state xd(0) = x0 and a piecewise continuous,
bounded control ud(t) such that the corresponding solution xd(t) with xd(0) = x0 is
bounded and satisfies yd(t) = h(xd(t)) for all t ≥ 0.

Problem 7.1.2 (EOT problem for trajectory-dependent switching). Given (7.1) together
with the switching law (2.69) and a desired output trajectory yd(t) ∈ Ck with k sufficiently
large, find, if any, pairs consisting of an initial state xd(0) = x0 and a piecewise continuous,
bounded control ud(t) such that the corresponding solution xd(t) with xd(0) = x0 exists,
is bounded and satisfies yd(t) = h(xd(t)) for all t ∈ [0, T ) with T > 0.

Note that Problem 7.1.2 requires a solution only to exist locally, i.e., on a time interval
of positive length. A comment on this will be included in due course. If the EOT problem
is solvable, we can determine a pair or, in general, a set of pairs (xd(0), ud(t)) for which the
output y(t) of the switched system (7.1) exactly follows the desired reference trajectory
yd(t). However, we usually cannot expect that the actual initial state x(0) exactly coincides
with one of these suitable initial states xd(0). Moreover, in a practical setup, disturbances
and model uncertainties will cause a deviation of the output trajectory from the desired
one. Therefore, we need to introduce feedback action in order to appropriately stabilize
and robustify the system. It is desired to design a controller such that, for all initial states
x(0) sufficiently close to the desired one xd(0), asymptotic output tracking is achieved, i.e.
ey(t) = y(t)−yd(t)→ 0 as t→∞. Moreover, we demand that for every ε > 0 there is δ > 0
such that ey(0) < δ implies ey(t) < ε for all t ≥ 0, which entails that, if ey(0) = 0, then
ey(t) = 0 for all t > 0. This is a quite natural and common requirement, but not necessary
in general to achieve asymptotic output tracking (c.f. Remark 4.5.2 in [89]). Note that it
implies that solvability of the EOT problem is a necessary prerequisite for the solvability of
the AOT problem. Therefore, in what follows, we can always assume in the context of AOT
that a state trajectory xd(t) with yd(t) = h(xd(t)) and a corresponding input trajectory
ud(t) are available. Formally, all of this can be summarized for trajectory-independent
(trajectory-dependent) switching in the following problem.

Problem 7.1.3 (AOT problem). Given (7.1) together with a switching signal σ ∈ S (the
switching law (2.69)) and a desired output trajectory yd(t) ∈ Ck with k sufficiently large and
a corresponding trajectory xd(t), find a piecewise continuous function ζ : O1× [0,∞)→ R,
defined on an open neighborhood O1 of (xd(0),xd(0)) in Rn ×Rn, such that for all x(0)
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within an open neighborhood O2 of xd(0) in Rn the solution of

ẋ = fσ(x) + gσ(x)ζ(x,xd, t) (7.2a)

y = h(x) (7.2b)

satisfies:

1) for every ε > 0 there is δ > 0 such that ey(0) < δ ⇒ ey(t) < ε for all t ≥ 0.

2) ey(t)→ 0 as t→∞.

3) both the input u(t) and the state trajectory x(t) are bounded.

Assumption 7.1.1. Both subsystems ẋ = fp(x) + gp(x)u , y = h(x), p ∈ {1, 2} have well
defined relative degree rp in Rn, i.e., for all x in Rn it holds that

LgpL
k
fph(x) = 0 for k = 0, . . . , rp − 2 (7.3)

LgpL
rp−1
fp

h(x) 6= 0 (7.4)

We emphasize that the assumption that the relative degree is globally well defined is
not necessary and only made for simplicity of exposition (see Remark 7.2.2 for a short
discussion). Without loss of generality, we assume that r1 ≥ r2.
Using a notation similar to that in [83], we define the derivatives y(k)(t) = dk

dtk
y(t)

as well as Yk = [y, y(1), . . . , y(k−1)]T . Moreover, we set Uk = [u, u(1), . . . , u(k−1)]T . The
kth derivative of h(x) along the trajectories of the pth subsystem is denoted by h(k)

p .
Assumption 7.1.1 implies that

h(k)
p (x) = Lkfph(x) , k = 1, . . . , rp − 1 , h(rp)

p (x) = L
rp
fp
h(x) + LgpL

rp−1
fp

h(x)u . (7.5)

For k > rp it holds that

h(k)
p

(
x, u, . . . , u(k−rp)

)
=
∂h(k−1)

p

∂x
[fp(x) + gp(x)u] +

∂h(k−1)
p

∂Uk−rp

d

dt
Uk−rp . (7.6)

Similar to Yrp , let the maps hrpp : Rn → Rrp be defined by

hrpp (x) =
[
h(x) h(1)

p (x) . . . h(rp−1)
p (x)

]T
(7.7)

i.e., hrpp (x) contains the time derivatives of h(x) along the trajectories of the p-th subsystem
up to the order rp − 1. Correspondingly, we define for the case where r1 is strictly larger
than r2 the map hr1

2 : Rn ×Rr1−r2 , which subsumes the time derivatives of h(x) along the

152



7.2 The Exact Output Tracking Problem

trajectories of the 2nd subsystem up to the order r1 − 1, i.e.,

hr1
2 (x,Ur1−r2) =

[
h(x) h

(1)
2 (x) . . . h

(r1−1)
2 (x,Ur1−r2)

]T
. (7.8)

7.2 The Exact Output Tracking Problem

In this section, conditions for the solvability of the EOT problem for the switched system
(7.1) are presented. We begin performing the change of coordinates

z1 =
[
ξT1 ηT1

]T
= Φ1(x) (7.9)

with
ξ1 = Φ1,ξ(x) = hr1

1 (x) , η1 = Φ1,η(x) (7.10)

where Φ1,η(x) is chosen such that Φ(x) is a diffeomorphism, at least in a neighborhood
of some point x0. The existence of a suitable function Φ1,η(x) is guaranteed by virtue of
Assumption 7.1.1, see [89]. Throughout this chapter, we use a tilde to denote quantities
associated with these new coordinates, i.e. the subsystems of (7.1) are represented by

ż1 = f̃p(z1) + g̃p(z1)u (7.11a)

y = h̃(z1) = ξ1,1 (7.11b)

where p ∈ {1, 2} and

f̃p(z1) = ∂Φ1

∂x
fp ◦Φ−1

1 (z1) , g̃p(z1) = ∂Φ1

∂x
gp ◦Φ−1

1 (z1) . (7.12)

The change of coordinates (7.9), (7.10) puts the 1st subsystem in input-output normal
form2

ξ̇1,1 = ξ1,2

. . .

ξ̇1,r1−1 = ξ1,r1

ξ̇1,r1 = α̃1(ξ1,η1) + β̃1(ξ1,η1)u

(7.13a)

η̇ = p̃1(ξ1,η1) + q̃1(ξ1,η1)u (7.13b)

y = h̃(z1) = ξ1,1 (7.13c)

2We remark that some authors refer to (7.13) as normal form only when q̃1 = 0 (see e.g. [89]).
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where α̃1(z1) = Lr1
f1h ◦Φ−1

1 (z1), β̃1(z1) = Lg1L
r1−1
f1 h ◦Φ−1

1 (z1), p̃1(z1) = Lf1Φ1,η ◦Φ−1
1 (z1)

and q̃1(z1) = Lg1Φ1,η ◦Φ−1
1 (z1). The function3 h̃r1

1 (z1) = hr1
1 (x) ◦Φ−1(z1) is the identity

map, but will often be used for notational convenience.
Similar to (7.9), (7.10), we define the set of coordinates

z2 =
[
ξT2 ηT2

]T
= Φ̃2(z1) (7.14)

with
ξ2 = Φ̃2,ξ(z1) = h̃r2

2 (z1) , η2 = Φ̃2,η(z1) (7.15)

where h̃r2
2 (z1) = hr2

2 (x) ◦ Φ−1
1 (z1) and Φ̃2,η(z1) again is chosen such that Φ̃2(z1) is a

diffeomorphism in a neighborhood of x0. Obviously, the transformation from x to z2

coordinates is given by z2 = Φ2(x) = Φ̃2 ◦ Φ1(x). To indicate that a quantity is given
in z2 coordinates, in the sequel, the hat symbol will be used. In z2 coordinates, the 2nd
subsystem has input-output normal form, i.e.,

ξ̇2,1 = ξ2,2

. . .

ξ̇2,r2−1 = ξ2,r2

ξ̇2,r2 = α̂2(ξ2,η2) + β̂2(ξ2,η2)u

(7.16a)

η̇2 = p̂2(ξ2,η2) + q̂2(ξ2,η2)u (7.16b)

y = ξ2,1 (7.16c)

with α̂2(z2), β̂2(z2), p̂2(z2) and q̂2(z2) defined analogously to (7.13). Note that Φ̃2,1(z1) =
ξ1,1 and hence ξ2,1 = ξ1,1. The inverse of Φ̃2(z1) is partitioned as

z1 =

ξ1

η1


 = Φ̃−1

2 (z2) =

Φ̃−1

2,ξ(z2)

Φ̃−1
2,η(z2)


 (7.17)

with4 Φ̃−1
2,ξ : Rn → Rr1 and Φ̃−1

2,η : Rn → Rn−r1 . For notational convenience, we also
introduce the function Φ̃1(z1) = z1.
As Assumption 7.1.1 above, the following assumption is also made only for simplic-

ity of exposition and the presented results can be transferred to the general case in a
straightforward manner (see Remark 7.2.2).

Assumption 7.2.1. The mappings Φ1(x), Φ2(x) are global coordinate transformations.
3Recall that the Lie derivative is not affected by changes of coordinates [110].
4Note that, with some abuse of notation, the superscript “−1” of Φ̃−1

2,ξ(z2) and Φ̃−1
2,η(z2) is only used

to indicate that these functions are parts of Φ̃−1
2 (z2).
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As is well known from the theory on smooth systems (see e.g. [89]), in order to achieve
exact output tracking on intervals [ti, ti+1) within which the 1st subsystem is active, i.e.,
σ(ti) = 1, the state z1,d(ti) at time ti has to satisfy

h̃r1
1 (z1,d(ti)) = ξ1,d(ti) = Yr1

d (ti) . (7.18)

Moreover, for all t ∈ [ti, ti+1), the control input necessarily has to be chosen as

ud(t) = ũ1,d
(
ξ1,η1, y

(r1)
d

)
= β̃−1

1 (ξ1,η1)
(
y

(r1)
d − α̃1(ξ1,η1)

)
. (7.19)

Using this in (7.13) we obtain

ξ̇1,1 = ξ1,2

. . .

ξ̇1,r = y
(r1)
d (t)

η̇1 = p̃1(ξ1,η1) + q̃1(ξ1,η1)u .

(7.20)

Since by construction ξ1 = ξ1,d = Yr1
d , it can be seen from (7.19) that on [ti, ti+1) the

input trajectory ud(t) is given by ud = ũ1,d(Yr1
d ,η1,d, y

(r1)
d ), where

η̇1,d = p̃1
(
Yr1
d ,η1,d

)
+ q̃1

(
Yr1
d ,η1,d

)
ũ1,d

(
Yr1
d ,η1,d, y

(r1)
d

)
. (7.21)

Similarly, for exact output tracking on intervals [ti, ti+1) with σ(ti) = 2

h̃r2
2 (z1,d(ti)) = Yr2

d (ti) (7.22)

must be fulfilled and the control is

ud = û2,d(ξ2,η2, y
(r2)
d ) = β̂−1

2 (ξ2,η2)
(
y

(r2)
d − α̂2(ξ2,η2)

)
. (7.23)

The input trajectory that achieves exact output tracking on [ti, ti+1) is then given by
ud = û2,d(Yr2

d ,η2,d, y
(r2)
d ) with

η̇2,d = p̂2
(
Yr2
d ,η2,d

)
+ q̂2

(
Yr2
d ,η2,d

)
û2,d

(
Yr2
d ,η2,d, y

(r2)
d

)
. (7.24)

7.2.1 Trajectory-Independent Switching

Now we are ready to state the first proposition which gives necessary and sufficient
conditions for the solvability of the EOT problem for switched systems with a trajectory-
independent switching signal σ(t) ∈ Spc.
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Proposition 7.2.1. Suppose that the Assumptions 7.1.1 and 7.2.1 hold. Then Problem
7.1.1 is solvable if and only if there is z1,d(0) such that

1) at time t = 0 it holds that

h̃rσ(0)
σ(0) (z1,d(0)) = Yrσ(0)

d (0) . (7.25)

2) for every switching time ti with σ(t−i ) = 1, σ(ti) = 2 it holds that

Φ̃2,ξ
(
Yr1
d (ti),η1,d(ti)

)
−Yr2

d (ti) = 0 (7.26)

3) for all switching times ti with σ(t−i ) = 2, σ(ti) = 1 it is satisfied that

Yr1
d (ti)− Φ̃−1

2,ξ

(
Yr2
d (ti),η2,d(ti)

)
= 0 (7.27)

4) the trajectories ηp,d(t), p ∈ P, which satisfy (7.21) for all t in intervals (ti, ti+1) with
σ(ti) = 1, (7.24) for all t in (ti, ti+1) with σ(ti) = 2 and ησ(0),d(0) = Φ̃σ(0),η(z1,d(0)) as
well as

η1,d(ti) = Φ̃−1
2,η

(
Yr2
d (ti),η2,d(t−i )

)
, for ti with σ(t−i ) = 2, σ(ti) = 1 (7.28a)

η2,d(ti) = Φ̃2,η
(
Yr1
d (ti),η1,d(t−i )

)
, for ti with σ(t−i ) = 1, σ(ti) = 2 (7.28b)

are bounded.

Proof. To prove necessity, suppose that there is a piecewise continuous control input ud(t)
such that the corresponding solution z1,d(t) satisfies h̃1(z1,d(t)) = yd(t) for all t ≥ 0. Then
for all t in intervals [ti, ti+1) with σ(ti) = 1 we have

Yr1(t) = h̃r1
1 (z1,d (t)) = ξ1,d(t) = Yr1

d (t) . (7.29)

Accordingly, for all t in intervals [ti, ti+1) with σ(ti) = 2 it holds that

Yr2(t) = h̃r2
2 (z1,d(t)) = ξ2,d(t) = Yr2

d (t) (7.30)

From this, it gets immediately clear that (7.25) holds.
Being a solution of (7.11), the state trajectory z1,d(t) is continuous and therefore

z1,d(t−i ) = z1,d(ti) must be satisfied for any ti, which obviously implies z2,d(t−i ) = z2,d(ti).
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Thus, for any switching time ti with σ(t−i ) = 1, σ(ti) = 2, the relation

Φ̃2




ξ1,d(t−i )
η1,d(t−i )




 =


ξ2,d(ti)
η2,d(ti)


 (7.31)

holds, where we have used that z2,d(t−i ) = Φ̃2(z1,d(t−i )). Moreover, we observe from (7.29)
and (7.30) that ξ1,d(t−i ) = Yr1

d (ti) and ξ2,d(ti) = Yr2
d (ti). Substituting this into (7.31)

yields

Φ̃2




Yr1

d (ti)
η1,d(t−i )




 =


Yr2

d (ti)
η2,d(ti)


 . (7.32)

Note that, clearly, Yr1
d (t−i ) = Yr1

d (ti) holds for all ti due to the differentiability assumption
imposed on yd. From the first r2 rows of this equation, it can be seen that (7.26) holds.
In a similar manner, we obtain

Φ̃−1
2




Yr2

d (ti)
η2,d(t−i )




 =


Yr1

d (ti)
η1,d(ti)


 . (7.33)

for switching times ti with σ(t−i ) = 2, σ(ti) = 1, where we have used z1,d(t−i ) = z1,d(ti) and
z1,d(t−i ) = Φ̃−1

2 (z2,d(t−i )) together with ξ2,d(t−i ) = Yr2
d (ti) and ξ1,d(ti) = Yr1

d (ti). The first
r1 rows of this equation establish the condition (7.27).
As far as the evolution of ηp,d is concerned, it is clear that in intervals (ti, ti+1) with

σ(ti) = 1 the evolution of η1,d is governed by (7.21), and similarly in intervals (ti, ti+1) with
σ(ti) = 2 the behavior of η2,d is described by the differential equation (7.24). Moreover,
the initial condition clearly is determined by ησ(0),d(0) = Φ̃σ(0),η(z1,d(0)). The relations
(7.28a), (7.28b) are obtained from the last n− r1 rows of (7.33) and the last n− r2 rows
of (7.32), respectively. Furthermore, ησ(t),d has to be bounded in order that z1,d(t) is
bounded.
In order to prove sufficiency, we only need to show that under the conditions of the

proposition ξ1,d(ti) = Yr1
d (ti) holds for every ti with σ(ti) = 1 and ξ2,d(ti) = Yr2

d (ti) is
satisfied for every ti with σ(ti) = 2 (c.f. (7.18) and (7.22)). This easily follows by induction.
For t0 = 0 it holds true due to (7.25). Now assume that ξ1,d(ti) = Yr1

d (ti) holds for ti with
σ(ti) = 1. Then σ(ti+1) = 2 and ξ2,d(ti+1) = Yr2

d (ti+1). Because, if ξ1,d(ti) = Yr1
d (ti) holds,

then ud(t) = ũd,1 yields exact tracking within [ti, ti+1) and hence ξ1,d(t−i+1) = Yr1
d (t−i+1).

Using (7.26) we conclude that

ξ2,d(ti+1) = Φ̃2,ξ




ξ1,d(t−i+1)
η1,d(t−i+1)




 = Φ̃2,ξ




Yr1

d (ti+1)
η1,d(t−i+1)




 = Yr2

d (ti+1) . (7.34)
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In the same manner, it can be derived that ξ1,d(ti+1) = Yr1
d (ti+1) holds in case that

ξ2,d(ti) = Yr2
d (ti) is satisfied for σ(ti) = 2 using condition (7.27). Boundedness of the state

and input trajectory follows immediately from boundedness of ησ(t),d(t) and Yr1
d (t). This

completes the proof.

The first row of both (7.26) and (7.27) is of course trivially satisfied. The conditions
involve the switched differential equation determining the evolution of the internal states
ηp,d (see part 4) of the proposition), which makes them difficult to verify in general. If we
are given a finite time interval [0, tf ] and a particular output trajectory yd : [0, tf ] → R

together with a switching signal σ : [0, tf ]→ P with σ ∈ S, a solution can be obtained by
numerical integration. However, it is, in general, not possible to identify a set of output
trajectories for which exact tracking is possible a priori. In some cases, one can predefine
the structure of yd(t), e.g. by a polynomial of a certain order, and calculate an analytic
expression for ηp,d(t) depending on the polynomial coefficients. Then, a set of polynomial
output trajectories yd(t) can be identified which can be exactly tracked by the system
output.
If y = z1,1 is a flat output [52] for both subsystems, i.e., r1 = r2 = n, then there is no

internal dynamics and the conditions in the proposition become purely algebraic. Moreover,
(7.26) and (7.27) are equivalent, as can be easily verified. In this case, a set of output
trajectories for which the conditions are fulfilled can be immediately identified.

Example 7.2.1. Consider the linear switched system given in z1-coordinates

ż1 = Ãσz1 + g̃σu , Ã1 =

 0 1
−2 −4


 , Ã2 =


−1 2
−2 −4


 , g̃1 = g̃2 =


0

1


 (7.35a)

y = z1,1 . (7.35b)

Obviously, y is a flat output for both subsystems, i.e., r1 = r2 = 2. We determine

Φ̃2(z1) =
[
z1,1 −z1,1 + 2z1,2

]T
(7.36)

and from (7.26) (recall that (7.26) and (7.27) are equivalent when y is a flat output) we
get 

 yd(ti)
−yd(ti) + 2ẏd(ti)


−


yd(ti)
ẏd(ti)


 = 0 . (7.37)

We conclude that the EOT problem is solvable if and only if the desired trajectory satisfies
yd(ti) = ẏd(ti) for all ti.
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We remark that in the special case where both subsystems are linear, like in the
example above, also the conditions given in [40] could be used. However, the conditions in
Proposition 7.2.1 provide more insight and their application is much easier, especially in
the case where y is a flat output.

7.2.2 Trajectory-Dependent Switching: The Case r1 = r2

In the remainder of this section, we investigate the EOT problem for systems (7.1) with
state- and/or input-dependent switching according to (2.69), (2.70). In many applications,
it is desired that the control designer or even the operator can freely specify a trajectory
for the output quantity. Therefore, it is of interest whether a switched system is capable of
exactly tracking arbitrary trajectories yd(t). As we have seen in the previous subsection, this
is not possible for trajectory-independent switching as in this case exact output tracking
can only be achieved for suitable combinations of switching signal and desired trajectory.
If the switching is trajectory-dependent, exact tracking of arbitrary output trajectories
yd(t) is possible under some conditions. It is the main objective of this subsection and the
subsequent one to derive these conditions.
In this subsection, we consider the case that r1 = r2 = r. The next subsection will then

be devoted to systems with r2 < r1. First, we establish necessary conditions for the general
situation, in which r < n. Afterwards, sufficient conditions are deduced assuming that y is
a flat output for both subsystems, i.e., r = n.

7.2.2.1 Necessary Conditions

Let us define f̃1,d(z1, y
(r)
d (t)) = f̃1(z1) + g̃(z1)ũ1,d(z1, y

(r)
d (t)). We recall that Φ1,η(x) can

always be chosen such that LgΦ1,i = 0 for all r + 1 ≤ i ≤ n [89], which entails q̃1(z1) = 0.
Hence we can assume that ż1 = f̃1,d(z1, y

(r)
d (t)) can be represented component-wise as

ξ̇1,1 = ξ1,2

. . .

ξ̇1,r = y
(r)
d (t)

η̇1 = p̃1(ξ1,η1) .

(7.38)

In the same manner, we define f̂2,d(z2, y
(r)
d (t)) = f̂2(z2) + ĝ(z2)û2,d(z2, y

(r)
d (t)), and we also

assume in the following that Φ̃2,η(z1) has been chosen such that q̂2(z2) = 0.
We first identify points on the switching surface ∂χ at which switching can take place

for some yd(t). In z1 coordinates, the manifold ∂χ is described by ϕ̃(z1, u) = 0 where
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ϕ̃(z1, u) = ϕ(Φ−1
1 (z1), u) = ϕ̃x(z1) + ϕ̃u(z1)u. Similarly, in z2 coordinates we have

ϕ̂(z2, u) = ϕ̃(Φ̃−1
2 (z2), u) = ϕ̂x(z2) + ϕ̂u(z2)u. Let ϕ̃1(z1, y

(r)
d ) = ϕ̃(z1, ũ1,d) and

˙̃ϕ1(z1, y
(r)
d , y

(r+1)
d ) = ∂ϕ̃(z1)

∂z1
f̃1,d(z1, y

(r)) + ϕ̃u(z1) ˙̃u1,d(z1, y
(r)
d , y

(r+1)
d ) (7.39)

be the rate of change of ϕ̃(z1, u) along the trajectories of the 1st subsystem with the control
u = ũ1,d. The higher derivatives are denoted by ϕ̃

(j)
1 (z1, y

(r)
d , . . . , y

(r+j)
d ), j = 2, 3, . . ..

Accordingly, we define ϕ̃2(z1, y
(r)
d ) = ϕ̃(z1, ũ2,d), and we refer to the time derivatives

of ϕ̃(z1, u) along the trajectories of the 2nd subsystem with the input u = ũ2,d as
ϕ̃

(j)
2 (z1, y

(r)
d , . . . , y

(r+j)
d ), j = 1, 2, . . .. For compactness of notation, we will often write

ϕ̃p(t) and ϕ̃(j)
p (t), p ∈ P if we want to stress especially the time-dependency.

Let S1 be the set of z1 ∈ Rn for which there is (y(r)
d , y

(r+1)
d , . . .) such that ϕ̃1(z1, y

(r)
d ) = 0

and for some j ∈ N0 it holds that ϕ̃(i)
1 = 0 for i ≤ 2j and ϕ̃(2j+1)

1 < 0. Analogously, the set
S2 contains all z1 ∈ Rn for which there is (y(r)

d , y
(r+1)
d , . . .) such that ϕ̃2(z1, y

(r)
d ) = 0 and

for some j ∈ N0 it holds that ϕ̃(i)
2 = 0 for i ≤ 2j and ϕ̃(2j+1)

2 > 0. Moreover, we define
S = S1 ∪ S2. If ϕ̃(z1, u) depends on the control input, by assumption (see Section 2.4.1), it
holds that ϕ̃u(z1) 6= 0 for all z1. It is easily verified that in this case S1 = S2 = Rn.
The set S1 contains all points z1 with the property that we can find (y(r)

d , y
(r+1)
d , . . .) such

that ϕ̃1(z1, y
(r)
d ) = 0 and the first nonzero derivative ϕ̃(j)

1 is of odd order and negative. At
these points switching from the 1st to the 2nd subsystem can occur, as is easily seen by a
Taylor expansion of ϕ̃1(t) in t. Assume that ϕ̃1(τ) = 0 for some τ and ϕ̃(k)

1 (τ) < 0 with
k an odd integer and ϕ̃(i)

1 (τ) = 0 for all 0 < i < k. Since ϕ̃(k)
1 (z1(t), y(r)

d (t), . . . , y(r+k)
d (t))

is continuous in t there is an ε > 0 such that it remains negative within the interval
(τ − ε, τ + ε). Then, it follows from Taylor’s Theorem (see e.g. Theorem 2.1 in [129]) that
for any t̄ ∈ (−ε, ε) it holds that

ϕ̃1(τ + t̄) = ϕ̃1(τ) + ˙̃ϕ(τ)t̄+ . . .+ ϕ̃
(k−1)
1 (τ) t̄k−1

(k − 1)! + ϕ̃
(k)
1 (τ + δt̄) t̄

k

k! =

= ϕ̃
(k)
1 (τ + δt̄) t̄

k

k!

(7.40)

where δ ∈ (0, 1). Since τ +δt̄ ∈ (τ−ε, τ +ε), we have ϕ̃(k)
1 (τ +δt̄) < 0. Therefore, ϕ̃1(t) > 0

for t ∈ (τ − ε, τ) and ϕ̃1(t) < 0 for t ∈ (τ, τ + ε), which shows that the trajectory crosses
the switching surface. In the same manner, it can be derived that at all z1 ∈ S2 switching
from the 2nd to the 1st subsystem is possible.
In order that a particular trajectory yd(t) can be tracked exactly, as in the case of trajec-

tory-independent switching, the initial state z1,d(0) has to satisfy Yr
d(0) = h̃rσ(0)(z1,d(0)). In
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the present case of trajectory-dependent switching, the switching law depends, in general,
on the state and the input. Consequently, a necessary prerequisite for Problem 7.1.2 to be
solvable for all desired output trajectories yd(t) is that for all Yr

d ∈ Rr and all y(r+1)
d there

is at least one pair consisting of z1 ∈ Rn and p ∈ P such that

h̃rp(z1) = Yr
d and

[
zT1 ũp,d(z1, y

(r)
d )

]T ∈ χp . (7.41)

If there is more than one such pair, it is desirable that exact tracking is possible for all of
them – analogously to the non-switched case, where the initial value of η can be chosen
arbitrary.

Theorem 7.2.1. Consider the system (7.1) with the switching law (2.69) and suppose that
the Assumptions 7.1.1 and 7.2.1 are satisfied and that r1 = r2 = r. A necessary condition
for the solvability of Problem 7.1.2 for all yd(t) and all pairs satisfying (7.41) is that for
all z1 ∈ S and all i ∈ {2, . . . , r} it holds that

Li−1
f̃2
h̃(z1)− z1,i = 0 . (7.42)

Proof. We have already seen above that for every z̄1 ∈ S1 there is a trajectory z1,d(t) of
(7.38) satisfying z1,d(τ) = z̄1 for some time τ and z1,d(t) ∈ intχ1, t ∈ (τ − ε, τ) for some
ε > 0 as well as z1,d(t) ∈ intχ2, t ∈ (τ, τ + ε). An analogous result holds true for all z̄1 ∈ S2.
Hence, if we vary over all yd(t) and all pairs (z1,d(0), p) satisfying (7.41), exact tracking
requires that the switching surface is traversed at any point z1 ∈ S. Now suppose that, for
a particular yd(t), there is a solution z1,d(t) of

ż1,d(t) = f̃σ(t),d
(
z1,d(t), y(r)

d (t)
)

(7.43)

in the sense of Definition 2.4.1 such that h̃(z1,d(t)) = yd(t). Then, for all t in intervals
[ti, ti+1) with σ(ti) = 1, we have

Yr(t) = h̃r1(z1,d(t)) = ξ1,d(t) = Yr
d(t) (7.44)

and, for all t in intervals [ti, ti+1) with σ(ti) = 2, it holds that

Yr(t) = h̃r2(z1,d(t)) = ξ2,d(t) = Yr
d(t) . (7.45)

From (7.45), it can be seen that for switching times ti with σ(t−i ) = 1, σ(ti) = 2 we have
that h̃r2(z1,d(ti)) = Yr

d(ti) and it follows from (7.44) that Yr
d(ti) = ξ1(t−i ). Using this and
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continuity of z1,d(t), i.e., z1,d(t−i ) = z1,d(ti), we conclude that

ξ1,d(ti) = h̃r2
(
ξ1,d(ti),η1,d(ti)

)
. (7.46)

Obviously, the same relation must be satisfied for switching times ti with σ(t−i ) = 2 and
σ(ti) = 1. Thus, we conclude that

ξ1 = h̃r2 (ξ1,η) (7.47)

must hold for any point z1 at which switching can occur and hence for all z1 ∈ S . The
first row of this equation is trivially satisfied since h̃(z1) = ξ1,1, and thus (7.42) follows.

Since S = Rn if ϕ̃u(z1) 6= 0, in this case, the conditions (7.42) have to be satisfied for all
z1 ∈ Rn. This leads to the following corollary.

Corollary 7.2.1. Assume that the Assumptions 7.1.1 and 7.2.1 are satisfied and that
r1 = r2 = r. Moreover, suppose that ϕ̃u(z1) 6= 0. Then it is necessary for the solvability of
Problem 7.1.2 for all yd(t) and all pairs satisfying (7.41) that for all i ∈ {1, . . . , r − 1}

f̃2,i(z1) = ξ1,i+1 and g̃2,i = 0 . (7.48)

Note that the conditions (7.48) imply that, with the control u = ũσ,d, the input-output
dynamics of both subsystems are identical, i.e., only the internal dynamics are allowed
to switch. In the remainder of this subsection, we will therefore assume that ϕ̃(z1) is
independent of u, i.e., ϕ̃u(z1) = 0. In this case, verifying the conditions of Theorem 7.2.1
requires us to identify the set S, which sometimes may not be an easy task. The following
Lemma5 states that, if S 6= ∅ and we suppose that all functions in (7.1), i.e, fp(x), gp(x),
p ∈ P and h(x), and ϕ(x) are analytic in Rn, then we can just as well check whether
(7.42) holds for all z1 ∈ ∂χ.

Lemma 7.2.1. Assume that the Assumptions 7.1.1 and 7.2.1 are satisfied and that r1 =
r2 = r. Further, assume that fp(x), gp(x), p ∈ P and h(x) as well as ϕ(x) are analytic in
Rn. If S 6= ∅, a necessary condition for the solvability of Problem 7.1.2 for all yd(t) and
all pairs satisfying (7.41) is that (7.42) holds for all i ∈ {2, . . . , r} and all z1 ∈ ∂χ.

Proof. see Appendix B.3.

5The author thanks Prof. Ravi Banavar for help with the proof of this lemma.
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Now consider the special case of a linear switched system

ż1 = Ãσz1 + g̃σu , y = c̃Tz1 (7.49)

with r1 = r2 = r, and let ϕ̃(z1) = ñTz1 + m̃ be an affine function. Furthermore, let ãTp,i,
i = 1, . . . , n denote the rows of the matrices Ãp. For this class of systems, the coordinate
transformation Φ̃2(·) is linear and can be represented as Φ̃2(z1) = T̃2z1. According to the
partitioning of Φ̃2(z1) and Φ̃−1

2 (z1), we introduce the partitioning

T̃2 =

T̃2,ξ

T̃2,η


 , T̃−1

2 =

T̃−1

2,ξ

T̃−1
2,η


 . (7.50)

The following result can be deduced from Theorem 7.2.1.

Lemma 7.2.2. Consider the system (7.49) with the switching law defined by (2.70), (2.73)
with ϕ̃(z1) = ñTz1 + m̃, and suppose that S is nonempty. If m̃ 6= 0, the conditions (7.42)
are satisfied if and only if for all i ∈ {1, . . . , r − 1} it holds that ã2,i = ã1,i and g̃2,i = 0. In
the case where m̃ = 0, the conditions (7.42) are met if and only if

rank






 ñT

T̃2,ξ − Ir×n





 = 1 (7.51)

where Ir×n = [Ir×r, 0r×(n−r)].

Proof. For the considered class of systems, the conditions (7.42) are equivalent to z1 =
T̃2,ξz1 or (T̃2,ξ − Ir×n)z1 = 0 being satisfied for all z1 with ñz1 + m̃ = 0, where we have
used Lemma 7.2.1 and the fact that linear functions clearly are analytic. First, consider
the case, where m̃ 6= 0. The set of z1 satisfying ñz1 = −m̃ can be represented in the form
z1 = zp1 + zh1 with zp1 a fixed vector satisfying ñzp1 = −m̃ and zh1 an arbitrary element
of N{ñT}. Note that, since m̃ 6= 0, it must hold that zp1 /∈ N{ñT}. Now, observe that
(T̃2,ξ − Ir×n)z1 = 0 can only be fulfilled for all z1 = zp1 + zh1 , if zp1 ∈ N{(T̃2,ξ − Ir×n)} and
N{ñT} ⊂ N{(T̃2,ξ − Ir×n)}. Since the dimension of N{ñT} is n − 1 and zp1 /∈ N{ñT},
this entails that the nullspace of (T̃2,ξ − Ir×n) has to be n-dimensional, which is equivalent
to T̃2,ξ = Ir×n. It is easily verified that this holds if and only if ã2,i = ã1,i and g̃2,i = 0 are
fulfilled for all i ∈ {1, . . . , r − 1}. In the case where m̃ = 0, it holds that zp1 = 0 and hence
N{ñT} = N{(T̃2,ξ− Ir×n)} has to be satisfied. From this the condition (7.51) follows.

Note that, like (7.48), the conditions ãT2,i = ãT1,i and g̃2,i = g̃1,i = 0, i ∈ {1, . . . , r − 1}
imply that, after substituting the control u = ũd,σ(z1, y

(r)
d ) into (7.49), the input-output
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dynamics of both subsystems are identical and only the internal dynamics are allowed to
switch. Moreover, it is worthwhile noting that (7.51) is equivalent to the existence of a
vector6 k ∈ Rr such that T̃2,ξ = Ir×n + kñT , as this will be used in the proof of Theorem
7.2.3 later on in this subsection.
The following example illustrates some of the aspects treated above and shows that the

conditions in Theorem 7.2.1 are indeed only necessary.

Example 7.2.2. Consider the simple switched linear system

ż1 = Ãσz1 + g̃u , Ã1 =

 0 0
−1 −1


 Ã2


0 0

1 −2


 , g̃ =


1

0


 (7.52)

given in z1 coordinates and let y = z1,1 and ϕ̃(z1) = z1,2. Obviously, it holds that
r1 = r2 = r = 1, and we can choose z2 = z1, i.e., Φ̃2(·) is the identity map. Moreover, it is
easily seen that ũd,1 = ẏd and also ũd,2 = ẏd. The systems ż1 = f̃d,p(z1, ẏd(t)) are obtained
simply by replacing u in (7.52) by ẏd. Although the conditions of Theorem 7.2.1 are of
course satisfied due to the fact that r = 1, we determine the set S1 for the purpose of
illustration. With ϕ̃1(z1) = z1,2 we calculate

˙̃ϕ1(z1) = ż1,2 = −z1,1 − z1,2 . (7.53)

On the switching surface ∂χ we have z1,2 = 0 and therefore ˙̃ϕ1|∂χ = −z1,1. Thus, all states
z1 = [z1,1, 0]T with z1,1 > 0 are elements of S1, while all z1 = [z1,1, 0] with z1,1 < 0 do not
belong to this set. If z1 = 0 we obtain ˙̃ϕ1 = 0. It is not difficult to see that we can also
achieve ¨̃ϕ1 = 0 for z1 = 0 by choosing ẏd = 0. Now, we consider

ϕ̃
(3)
1 = −z1,2 − z1,1 + ẏd − ÿd (7.54)

for z1 = 0 and ẏd = 0. By choosing ÿd > 0, we get ϕ̃(3)
1 < 0, which shows that also z1 = 0

belongs to S1. In an analogous manner S2 can be determined.
As remarked above, the system at hand clearly satisfies the conditions of Theorem 7.2.1.

Nevertheless, the EOT problem is not solvable for all yd(t), as can be seen by looking at
the vector fields f̃d,p(z1, ẏd(t)) at the switching surface. This is illustrated in Figure 7.1.
The components in z1,1-direction are equal to ẏd and can be chosen arbitrary. The crucial
observation is that, for z1,1 > 0, the projections f̃Nd,p of the vector fields f̃d,p onto the normal
to ∂χ, i.e., their components in z1,2-direction, both point towards the switching surface,

6We remark that the first component of k is zero because the first row of T̃2,ξ is [1, 01×(n−1)].
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Figure 7.1: The vector fields f̃d,1 (blue) and f̃d,2 (green) at two exemplary points of the switching
surface ∂χ (red dashed).

which shows that the state trajectory cannot cross ∂χ. Hence, if z1 reaches ∂χ at some
time τ , no solution in the sense of Definition 2.4.1 exists7 for t > τ . Further, note that
there are yd for which the state trajectory necessarily reaches ∂χ irrespective of the choice
of z1,2(0), e.g. yd(t) = c with c a positive constant.

7.2.2.2 Sufficient Conditions

Of course it is desirable to have not only necessary but also sufficient conditions for the
solvability of the EOT problem. To derive such conditions, in the sequel, we consider the
special case where r = n, i.e., y is a flat output of both subsystems. We have the following
theorem.

Theorem 7.2.2. Consider the system (7.1) with the switching law (2.73) and suppose
that the Assumptions 7.1.1 and 7.2.1 are satisfied and that r1 = r2 = n. Then the EOT
problem 7.1.2 is solvable for all yd(t) if

1) it holds that
χ1 ∪ Φ̃2(χ2) = Rn (7.55)

2) for all z1 ∈ ∂χ and all i ∈ {2, . . . , n} it holds that

Li−1
f̃2
h̃(z1)− z1,i = 0 . (7.56)

Proof. It follows from (7.55) that for all Yn
d (0) there is either z1,d(0) ∈ χ1 such that

Yn
d (0) = Φ̃1(z1,d(0)) = z1,d(0) or z1,d(0) ∈ χ2 such that Yn

d (0) = Φ̃2(z1,d(0)). First assume
7For this example, a solution in the sense of Filippov exists and the motion of the system along the

sliding surface ∂χ would be determined by ż1 = [ẏd, 0]T . Thus, exact output tracking would be achieved.
It is, however, not difficult to find examples, where also with this solution concept exact output tracking
is impossible.
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that z1,d(0) ∈ χ1. Then the control ũ1,d(Yn
d (t), y(n)

d (t)) achieves exact output tracking as
long as z1,d(t) = Φ̃−1

1 (Yn
d (t)) ∈ χ1. Now suppose that, for some time t1 and for some ε > 0,

it holds that z1,d(t1) = Φ̃−1
1 (Yn

d (t1)) ∈ ∂χ and Φ̃−1
1 (Yn

d (t)) /∈ χ1 for all t ∈ (t1, t1 + ε) (If
z1(t1) ∈ ∂χ1 and there is no such ε, then Yn

d (t) is such that the trajectory z1(t) either only
“touches” the switching surface or remains within this surface. In both cases no switching
occurs.). Then, in order to track the desired output trajectory, we have to switch from the
1st to the 2nd subsystem. To show that, in spite of this switching, exact output tracking is
possible, we prove that z1,d(t) can be continued in χ2 such that Yn

d (t) = Φ̃2(z1,d(t)) for all
t ∈ [t1, t1 + ε). It follows from (7.56) that Φ̃2(z1,d(t1)) = Φ̃1(z1,d(t1)) = Yn

d (t1). Moreover,
since z1,d(t) = Φ̃−1

1 (Yn
d (t)) /∈ χ1, ∀ t ∈ (t1, t1 + ε) and (7.55) hold, we see that for any

t̄1 ∈ [t1, t1 + ε) there must be a z̄1 ∈ χ2 such that Yn
d (t̄1) = Φ̃2(z̄1). Hence, using continuity

of Φ̃2(z1) we conclude that there is z1,d(t) ∈ χ2 such that Yn
d (t) = Φ̃2(z1,d(t)) holds for

all t ∈ [t1, t1 + ε). Consequently, exact output tracking can be achieved using the control
û2,d(Yn

d (t), y(n)
d (t)) on [t1, t2), i.e., until the state trajectory hits the switching surface at the

second switching time t2 > t1 and switching from the 2nd to the 1st subsystem becomes
necessary. For this situation, the proof is completely analogous and is therefore omitted.
By repeating these arguments for all switching times, we obtain the desired result.

Recall that solvability of the EOT problem 7.1.2 means that exact tracking of yd(t) can
be achieved on a time interval [0, T ) of positive length T > 0. However, the only reason
that a global solution might not exist, i.e., T <∞, is that the intervals (ti, ti+1), on which
existence of a solution has been shown above, are getting smaller and smaller such that a
right accumulation point of switching times occurs. Since z1 = Φ̃1(z1) = h̃n1 (z1) and for
all z1 ∈ ∂χ it holds that h̃n2 (z1) = h̃n1 (z1) = z1, this would imply that ϕ̃(Yn

d (t)) has an
accumulation point of zeros in [0,∞), which can be ruled out for any reasonable reference
trajectory yd(t).
Note that in the case where fp(x), gp(x), p ∈ P and h(x) as well as ϕ(x) are analytic

functions, the conditions of Theorem 7.2.2 are also necessary. Necessity of (7.55) follows
from the fact that, if the EOT problem is solvable for all trajectories yd(t), then for every
Yn
d (0) there has to be either z1,d(0) ∈ χ1 such that Yn

d (0) = Φ̃1(z1,d(0)) = z1,d(0) or
z1,d(0) ∈ χ2 such that Yn

d (0) = Φ̃2(z1,d(0)). Necessity of (7.56) can be deduced from
Theorem 7.2.1 and Lemma 7.2.1, since S is clearly non-empty in the case r = n. This can
be seen from the fact that we can always choose a trajectory such that for some τ1, τ2 it
holds that Φ̃−1

1 (Yn
d (τ1)) ∈ χ1 and Φ̃−1

1 (Yn
d (τ2)) /∈ χ1.

It is interesting to note that, under the conditions (7.55) and (7.56), the initial state
satisfying Yn

d (0) = Φ̃1(z1,d(0)) = z1,d(0) with z1,d(0) ∈ χ1 or Yn
d (0) = Φ̃2(z1,d(0)) with

z1,d(0) ∈ χ2 is unique, which can be concluded from the following Lemma.
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Lemma 7.2.3. Under the conditions (7.55) and (7.56) the map Φ̃ : Rn → Rn defined by

Φ̃(z1) =





Φ̃1(z1) if z1 ∈ intχ1

Φ̃2(z1) if z1 ∈ χ2
(7.57)

is bijective.

Proof. see Appendix B.4.

Finally, consider again the special case of a switched linear system (7.49) with r = n

and ϕ̃(z1) = ñTz1. We have chosen m̃ = 0 since otherwise, according to Lemma 7.2.2, the
vector fields f̃1,d and f̃2,d have to be identical and consequently the solvability of the EOT
problem is obvious. In the proof of the following proposition, we will use the matrix T̃1,
which is such that Φ̃1(z1) = T̃1z1, i.e., T̃1 = I.

Theorem 7.2.3. Consider the linear switched system (7.49) with the switching law (2.73)
and ϕ̃(z1) = ñTz1. Assume, without loss of generality, that ‖ñ‖ = 1. Then the EOT
problem 7.1.2 is solvable for all trajectories yd(t) if and only if there is a vector k ∈ Rn

such that
T̃2 = I + kñT (7.58)

and it holds that
kT ñ > −1 . (7.59)

Proof. Necessity of (7.58) follows immediately from Lemma 7.2.2. Now let Q1 ⊂ Rn be
the set of vectors which can be represented in the form T̃1z1 with z1 ∈ χ1, i.e., satisfying
ñTz1 ≥ 0. Analogously define Q2 to be the set of of vectors which can be expressed as
T̃2z1 with z1 ∈ χ2. Since it is a necessary condition for the exact tracking of all yd(t) that,
for every Yn

d (0), there is p ∈ {1, 2} and z1,d(0) ∈ χp such that Yn
d (0) = Φ̃p(z1,d(0)), it

clearly must hold that Φ̃1(χ1) ∪ Φ̃2(χ2) = Rn and hence, in the linear case, Q1 ∪Q2 = Rn.
Now we introduce another coordinate system defined by z3 = T̃3z1 with the matrix T̃3

given by
T̃−1

3 =
[
ñ t̃3,2 . . . t̃3,n

]
(7.60)

where the vectors t̃3,2, . . . , t̃3,n are chosen linearly independent and such that t̃T3,iñ = 0
for i ∈ {2, . . . , n}. In these coordinates, clearly ϕ̆(z3) = ñT T̃−1

3 z3 = z3,1, i.e., switching
depends on the sign of z3,1. Moreover, the vectors Yn in Q1 can be represented by

Yn = T̃1T̃−1
3 z3 = T̃−1

3 z3 (7.61)
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with z3,1 ∈ R+
0 and z3,i ∈ R, i ∈ {2, . . . , n}. Similarly, the elements Yn of Q2 are given by

Yn = T̃2T̃−1
3 z3 = (I + kñT )T̃−1

3 z3 =
(
T̃−1

3 + k[1 01×(n−1)]
)

z3 (7.62)

with z3,1 ≤ 0 and z3,i ∈ R, i ∈ {2, . . . , n}. We conclude that Q1 is the set of all vectors
of the form γñ + w with γ ≥ 0 and w ∈ Λ where Λ denotes the n− 1-dimensional linear
subspace Λ = span{t3,2, . . . , t3,n}. Similarly, it follows from (7.62) that the elements of Q2

can be expressed by γ(ñ + k) + w with γ ≤ 0 and w ∈ Λ. Using that ñ is orthogonal to Λ,
we conclude that Q1 ∪Q2 = Rn holds true if and only if

{m |m = γñ, γ ≥ 0}∪
{
m
∣∣∣m = γ

[
(ñ + k)T ñ

]
ñ, γ ≤ 0

}
= {m |m = γñ, γ ∈ R} (7.63)

where [(ñ + k)T ñ]ñ is the orthogonal projection of (ñ + k) onto ñ. This is fulfilled if and
only if [(ñ + k)T ñ] > 0, from which (7.59) is obtained using ñT ñ = ‖ñ‖2 = 1.

Sufficiency now immediately follows noting that with Q1 ∪ Q2 = Rn and (7.58) the
conditions of Theorem 7.2.2 are satisfied.

7.2.3 Trajectory-Dependent Switching: The Case r1 > r2

In this subsection, we consider the case where the relative degrees of the two subsystems
are different, and, without loss of generality, we assume that r1 > r2. In this case,
ż2 = f̂2,d(z2, y

(r2)
d ) can be represented in the form

ξ̇2,1 = ξ2,2

. . .

ξ̇2,r2 = y(r2)(t)

η̇2 = p̂2(ξ2,η2)

(7.64)

where we have used that Φ̃2,η(z1) can always be chosen such that q̂2(z2) = 0. For exact
output tracking, the initial state has to satisfy

h̃rpp (z1(0)) = Yrp
d and

[
zT1 (0) ũp,d(z1(0), y(rp)

d (0))
]T ∈ χp (7.65)

for a p ∈ P. Note that, for simplicity of notation, we omit throughout this section the
index “d” of z1,d with the understanding that z1(t) = z1,d(t).
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7.2.3.1 Necessary Conditions

As in the previous subsection, we first derive necessary conditions for the solvability of the
EOT problem. Subsequently, we will establish also sufficient conditions assuming that y is
a flat output of the 1st subsystem. We have the following result.

Theorem 7.2.4. Consider the system (7.1) with the switching law (2.69), and suppose
that the Assumptions 7.1.1 and 7.2.1 are satisfied and that r1 > r2. Suppose further
that there is a z̄1 for which there exists (ȳ(r2)

d , ȳ
(r2+1)
d ) such that ϕ̃2(z̄1, ȳ

(r2)
d ) = 0 and

˙̃ϕ2(z̄1, ȳ
(r2)
d , ȳ

(r2+1)
d ) > 0. Then, it is necessary for the solvability of Problem 7.1.2 for all

yd(t) and all pairs satisfying (7.65) that

i) r1 − r2 = 1

ii) it holds for all i ∈ {1, . . . , r1 − 2} that

f̃2,i(z1) =ξ1,i+1 (7.66)

g̃2,i(z1) =0 (7.67)

iii) the switching surface ∂χ is identical to the manifold

N =
{

[zT1 , u]T
∣∣∣f̃2,r1−1(z1) + g̃2,r1−1(z1)u− z1,r1 = 0

}
. (7.68)

Proof. Suppose that exact output tracking is achieved for all yd(t) and all pairs satisfying
(7.65). Then the control necessarily has to be ũd,1(z1, y

(r1)
d ) for intervals [ti, ti+1) with

σ(ti) = 1 and ũd,2(z1, y
(r2)
d ) for intervals [ti, ti+1) with σ(ti) = 2. After substituting this

into (7.1), the switched system is of the form ż1 = f̃σ,d(z1, y
(rσ)). By assumption, there

is a point z̄1 = [ξ̄T1 , η̄T1 ]T and a corresponding (ȳ(r2)
d , ȳ

(r2+1)
d ) such that ϕ̃2(z̄1, ȳ

(r2)
d ) = 0

and ˙̃ϕ2(z̄1, ȳ
(r2)
d , ȳ

(r2+1)
d ) > 0. Consequently, there is a trajectory z1(t) of (7.64) and a

corresponding ũ2,d(t) satisfying [z1(τ), ũ2,d(τ)] = [z̄1, ũ2,d(z̄1, ȳ
(r2)
d )] ∈ ∂χ for some time τ

and [z1(t), ũ2,d(t)] ∈ intχ2, t ∈ (τ − ε, τ) for some ε > 0 as well as [z1(t), ũ2,d(t)] ∈ intχ1,
t ∈ (τ, τ + ε). Since y(t) = yd(t) is fulfilled for all t ∈ (τ − ε, τ + ε), it holds for this
trajectory that

Yr1(t) = h̃r1
1 (z1(t)) = ξ1(t) = Yr1

d (t) (7.69)

for all t ∈ [τ, τ + ε) and

Yr1(t) = h̃r1
2 (z1(t),Ur1−r2) = Yr1

d (t) (7.70)
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for all t ∈ (τ − ε, τ ]. It follows from (7.69) that Yr1
d (τ) = ξ1(τ) and from (7.70) that

Yr1
d (τ) = hr1

2 [ξ1(τ−),η1(τ−),Ur1−r2(τ−)]. Since z1(τ−) = z1(τ) = z̄1, we conclude that

ξ̄1 = h̃r1
2

(
ξ̄1, η̄1,Ur1−r2

d,2

(
z̄1, ȳ

r2
d , . . . , ȳ

(r1−1)
d

))
(7.71)

where Ur1−r2
d,2 contains ũ2,d and its derivatives up to the order r1 − r2 − 1. This relation

can be expressed component-wise as

ξ̄1,2 − h̃(1)
2 (ξ̄1, η̄1) = 0 (7.72a)

...

ξ̄1,r2 − h̃(r2−1)
2 (ξ̄1, η̄1) = 0 (7.72b)

ξ̄1,r2+1 − ȳ(r2)
d = 0 (7.72c)

ξ̄1,r2+2 − ȳ(r2+1)
d = 0 (7.72d)

...

ξ̄1,r1 − ȳ(r1−1)
d = 0 (7.72e)

where we have used that h̃(r2)
2 [ξ1,η1, ũd,2(z1, y

(r2)
d )] = y

(r2)
d by construction of ũd,2 and hence

h̃
(r2+1)
2 (ξ1,η1, ũd,2, ˙̃ud,2) = y

(r2+1)
d for all t ∈ (τ − ε, τ).

In order to see that r1 − r2 = 1 must hold true, assume that this is not the case, i.e.,
r1 − r2 > 1. Then the relation (7.72d) must be satisfied. Since ˙̃ϕ2(z̄1, ȳ

(r2)
d , ȳ

(r2+1)
d ) > 0

is fulfilled with strict inequality sign, there is an interval Ir2+1 = (ȳ(r2+1)
d − δ, ȳ(r2+1)

d + δ)
with δ > 0 such that ˙̃ϕ2(z̄1, ȳ

(r2)
d , y

(r2+1)
d ) > 0 is also satisfied for all y(r2+1)

d ∈ Ir2+1. This
means that (7.72d) has to be valid also for all y(r2+1)

d ∈ Ir2+1 (Note that ϕ̃(z̄1, ȳ
(r2)
d ) = 0

holds independently of the value of y(r2+1)
d ), which clearly leads to a contradiction. Hence,

we conclude that r1 − r2 = 1 (Recall that r1 > r2, by assumption).
Next, we prove that the switching surface ∂χ has to be identical to the manifold N

characterized in (7.68). To this end, we first show that ϕ̃u(z1) 6= 0. As can be seen from
(7.72c), it holds that8

ξ̄1,r1 − y(r2)
d = 0 (7.73)

with y(r2)
d = ȳ

(r2)
d . In the case where ϕ̃u(z1) 6= 0, there is a unique ȳ(r2)

d such that

ϕ̃(z̄1) = ϕ̃x(z̄1) + ϕ̃u(z̄1)ũd,2(z̄1, ȳ
(r2)
d ) = 0 . (7.74)

If, however, ϕ̃u(z1) = 0, then ϕ̃(z1) = ϕ̃x(z̄1) = 0 is valid independently of the value of
y

(r2)
d . Moreover, using the same argument as above, there is a δ > 0 such that, for all y(r2)

d

8In the index of ξ̄1,r1 we use that, as shown above, r2 + 1 = r1.
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in Ir2 = (ȳ(r2)
d − δ, ȳ(r2)

d + δ), it holds that ˙̃ϕ2(z̄1, ȳ
(r2)
d ) > 0. Consequently, if ϕ̃u(z̄1) = 0,

the relation (7.73) has to be fulfilled for any y(r2)
d ∈ Ir2 , which is a contradiction. Hence,

we conclude that ϕ̃u(z̄1) 6= 0 must be satisfied. This, by assumption (see Section 2.4.1),
entails that ϕ̃u(z1) 6= 0 holds for all z1 ∈ Rn.

Then, for any z1, there is a unique control input, given by uχ(z1) = −ϕ̃−1
u (z1)ϕ̃x(z1), such

that (z1, uχ) ∈ ∂χ. Considering the expression for ûd,2 in (7.23), we see that we can always
choose a y(r2)

d such that û2,d = uχ(z1). Moreover, it is easily checked that the value of ˙̃ϕ2

can be freely chosen via y(r2+1)
d and hence such that ˙̃ϕ2 > 0. Thus, at any point (z1, uχ(z1)),

z1 ∈ Rn switching from the 2nd to the 1st subsystem can occur. As a consequence, the
relation (7.71) must hold for any point (z1, u) of the switching surface, which implies that

ξ1,r1 − h̃(r2)
2 (z1, u) = ξ1,r1 − Lr2

f̃2
h̃(z1)− Lg̃2L

r2−1
f̃2

h̃(z1)u = 0 (7.75)

must be satisfied for every (z1, u) ∈ ∂χ. Due to the relative degree assumption, this
equation can be globally solved for

u =
ξ1,r1 − Lr2

f̃2
h̃(z1)

Lg̃2L
r2−1
f̃2

h̃(z1)
(7.76)

determining for every z1 the unique u for which (7.75) holds. Consequently, the set of
pairs (z1, u) satisfying ϕ̃(z1, u) = 0 has to be identical to the set of (z1, u) for which (7.75)
is fulfilled.

Since, for every z1 ∈ Rn, there is a corresponding uχ such that (z1, uχ) ∈ ∂χ, the first
r1 − 2 equations in (7.72), which do not depend on u, must be fulfilled for every z1 ∈ Rn.
From the first one we obtain

ξ1,2 = h̃
(1)
2 (ξ1,η1) = Lf̃2h̃(z1) + Lg̃2h̃(z1)u = f̃2,1(z1) (7.77)

where, for obvious reasons, we have assumed that r1 > 2, which entails that r2 > 1 and
hence Lg̃2h̃(z1) = g̃2,1(z1) = 0 (If r1 = 2, then (7.72) consists only of one equation, namely
(7.72c)).

If r1 > 3, we use (7.77) in the second equation of (7.72) and obtain

ξ1,3 = h̃
(2)
2 (ξ1,η1) = L2

f̃2
h̃(z1) + Lf̃2Lg̃2h̃(z1)u = f̃2,2(z1) + g̃2,2(z1)u = f̃2,2(z1) (7.78)

where Lf̃2Lg̃2h̃(z1) = g̃2,2(z1) = 0 follows from the fact that r1 > 3 implies r2 > 2. Con-
tinuing in this way, we get the conditions (7.66) and (7.67), and by substituting these into
(7.75), we obtain (7.68). This completes the proof.
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Note that the assumption in Theorem 7.2.4 that there is a z̄1 and a corresponding pair
(ȳ(r2)
d , ȳ

(r2+1)
d ) such that ϕ̃(z̄1, ȳ

(r2)
d ) = 0 and ˙̃ϕ2(z̄1, ȳ

(r2)
d , ȳ

(r2+1)
d ) > 0 is not very restrictive.

It is clearly satisfied if ϕ̃u(z1) 6= 0 holds. In case that ϕ̃u(z1) = 0, it simply means that
there is at least one point of the switching surface at which, for some y(r2)

d , the vector field
f̃2,d(z1, y

(r2)) points towards this surface.

In order that the necessary conditions in Theorem 7.2.4 are satisfied, the 2nd subsystem
ż1 = f̃2(z1) + g̃2(z1)u must be of the form

ż1,1 = ξ1,2

...

ż1,r1−1 = ξ1,r1 + [%̃x(z1) + %̃u(z1)u]

ż1,r1 = f̃2,r1(z1) + g̃2,r1(z1)u
...

ż1,n = f̃2,n(z1) + g̃2,n(z1)u

(7.79)

where %̃(z1, u) = %̃x(z1) + %̃u(z1)u is such that

{(z1, u) ∈ Rn ×R| %̃x(z1) + %̃u(z1)u = 0} = {(z1, u) ∈ Rn ×R| ϕ̃x(z1) + ϕ̃u(z1)u = 0} .
(7.80)

Furthermore, it holds that %̃u(z1) 6= 0, ∀ z1. The functions %̃p and %̃(i)
p , p = 1, 2, i ∈ N are

defined analogously to ϕ̃p and ϕ̃(i)
p . In view of (7.79), the control ũ2,d is given by

ũ2,d = %̃−1
u (z1)

(
y(r1−1) − z1,r1 − %̃x(z1)

)
. (7.81)

By substituting this into %̃(z1, u), we obtain

%̃2(z1, y
(r1−1)) = y

(r1−1)
d − z1,r1 . (7.82)

Moreover, h̃r2
2 (z1) is the identity map and hence Φ̃2(z1) can be chosen to be the identity

map.

As far as condition (7.65) is concerned, there is always an initial state z1(0) such that

h̃r2
2 (z1(0)) = Yr2

d and
[
zT1 (0) ũ2,d(z1, y

(r2)
d )

]T ∈ χ2 . (7.83)

Because the first condition can be satisfied by choosing [z1,1, . . . , z1,r1−1]T = Yn−1
d and the

second one can be fulfilled by choosing η2,1 = z1,r1 > y
(r1−1)
d (see (7.82)).
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Remark 7.2.1. No additional conditions are obtained if we consider a point of ∂χ, at which
switching from the 1st to the 2nd subsystem occurs. In this case, the analogue to (7.71) is
[ξ̄1,1, . . . , ξ̄1,r2 ]T = h̃r2

2 (z̄1), which is included in (7.71).

7.2.3.2 Sufficient Conditions

We observe from (7.79) that in z1 coordinates the first r1 − 2 components of the switched
system must be identical and the (r1 − 1)-th component has to be continuous (but not
differentiable!) at the switching surface. In order to derive not only necessary but sufficient
conditions, we will assume in the remainder of this subsection that r1 = n, i.e., y is a flat
output of the 1st subsystem, and that also the nth component of the switched system is
continuous at the switching surface. The 2nd subsystem is then of the form

ż1,1 = ξ1,2

...

ż1,n−1 = ξ1,n + [%̃x(z1) + %̃u(z1)u]

ż1,n = α̃1(z1) + β̃1(z1)u+ bn(z1) [%̃x(z1) + %̃u(z1)u]

(7.84)

with some function bn : Rn → R and %̃(z1, u) satisfying (7.80). This class of systems
belongs to the family of continuous switching system, which have been investigated in a
different context e.g. by Branicky [19], [20] (see also e.g. [41], [43]), and includes technical
examples like the self-supplied variable displacement axial piston pump treated in [57],
[94] (see also Section 8.2). Note that the question whether for that class of systems exact
tracking of all yd is possible is not trivial at all, as the following simple example illustrates.

Example 7.2.3. Consider the linear switched system given in z1 coordinates

ż1 = Ãz1 + g̃σu , Ã =

0 1

1 −4


 , g̃1 =


0

1


 , g̃2 =


 %̃u
k%̃u


 (7.85)

with %̃u and k some constants, and let the switching surface be characterized by ϕ̃ = u. It
is easily determined that

ũ1,d = ÿd + 4ẏd − yd and ũ2,d = %̃−1
u (ẏd − z1,2) (7.86)

where the evolution of z1,2 in the second relation is governed by

ż1,2 = yd − (4 + k)z1,2 + kẏd . (7.87)
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We observe that the value of ũd,1 is determined by yd, ẏd and ÿd, whereas ũd,2 only depends
on ẏd and the solution of (7.87), which is also not affected by ÿd but only by yd and ẏd.
Note that, contrary to the state, the input is allowed to jump at the switching instants.
Already in this simple example, it is far from being obvious whether the EOT problem is
solvable for all yd. If we consider, for example, the situation where the 2nd subsystem is
active, then it is not evident whether ũ1,d is nonnegative in case that ũ2,d becomes positive.
In the case where the 1st subsystem is active and ũd,1 becomes negative at some switching
time ti, it holds that u2,d(ti) = 0. This is because exact output tracking with the 1st
subsystem implies z1,2,d(ti) = ẏd(ti). However, it is not easy to decide if from there u2,d

will evolve towards u2,d < 0.

Before we present the sufficient conditions for the solvability of the EOT problem, we
first state the following lemma, which will be needed in the proof of the theorem below.

Lemma 7.2.4. Consider the system (7.1) with r1 = n and assume that in z1-coordinates
the second subsystem is of the form (7.84). Further, let κ(z1,γ) : Rn × Rk → R and
γ : R+

0 → Rk be sufficiently smooth functions. If κ̇1(z1,γ, γ̇) is the derivative of κ(z1,γ)
along the trajectories of ż1 = f̃d,1(z1, y

(n)
d ), i.e.,

κ̇1 = ∂κ

∂z1
f̃1,d + ∂κ

∂γ
γ̇ (7.88)

then the derivative of κ along the trajectories of ż1 = f̃d,2(z1, y
(n−1)
d ), i.e.,

κ̇2 = ∂κ

∂z1
f̃2,d + ∂κ

∂γ
γ̇ (7.89)

can be represented in the form

κ̇2 = κ̇1 +
[

∂κ

∂z1,n−1
+ ∂κ

∂z1,n

(
β̃1

%̃u
+ bn

)]
%̃2 −

β̃1

%̃u

∂κ

∂z1,n
%̃1 . (7.90)

Proof. See Appendix B.5.

Theorem 7.2.5. Consider the system (7.1) with the switching law (2.69), (2.70) and
suppose that the Assumptions 7.1.1 and 7.2.1 are satisfied. Moreover, assume that r1 = n.
Let the 2nd subsystem be of the form (7.84) with (7.80) satisfied, and assume that fp(x),
gp(x), h(x), and %(x, u) are analytic functions. Further suppose that the scalar system

ż1,n = α̃1(Yn−1
d , z1,n)− β̃1(Yn−1

d , z1,n)
%̃u(Yn−1

d , z1,n)
%̃x(Yn−1

d , z1,n) + ρ(Yn−1
d , z1,n)

(
y

(n−1)
d − z1,n

)
(7.91)
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with
ρ(Yn−1

d , z1,n) =
(
β̃1(Yn−1

d , z1,n)
%̃u(Yn−1

d , z1,n)
+ bn(Yn−1

d , z1,n)
)

(7.92)

is input-to-state stable with respect to the inputs Yn−1
d , y(n−1)

d . Then, the EOT problem
7.1.2 is solvable for all yd(t), analytic on [0,∞), if it holds that β̃1(z1)

%̃u(z1) > 0.

Proof. The result can be proven by induction. It follows from the discussion above that
there is always a z1(0) and a p ∈ P such that (7.65) holds. Hence, exact output tracking is
achieved either by ũ1,d(t) or ũ2,d(t) until the trajectory traverses the switching surface ∂χ
at some time t1. We show in the following that exact tracking is attained in any interval
[ti, ti+1), if the desired output trajectory has been exactly tracked in [ti−1, ti). We will make
use of the fact that, since (7.80) holds, the switching surface is equivalently described by
the function %(·). In the remainder of this proof we assume that (z1, u) ∈ χ1 if %̃(z1, u) ≥ 0
and (z1, u) ∈ χ2 if %̃(z1, u) ≤ 0. For the other case that (z1, u) ∈ χ1 if %̃(z1, u) ≤ 0 and
(z1, u) ∈ χ2 if %̃(z1, u) ≥ 0 the proof follows exactly along the same lines. At first, we
consider the situation where [z1(t), ũσ,d(t)] traverses the switching surface from χ1 to χ2,
i.e., where σ(t−i ) = 1 and σ(ti) = 2. We have that

%̃1
(
z1(ti), y(n)(ti)

)
= %̃x (z1(ti)) + %̃u (z1(ti)) β̃−1

1 (z1(ti))
(
y

(n)
d (ti)− α̃1(z1(ti))

)

︸ ︷︷ ︸
ũd,1(ti)

= 0 .

(7.93)
Using that the composition of analytic functions is again analytic and the fact that the
solution z1(t) of ż1 = f1,d(z1, y

n
d (t)) is analytic if the right hand side is an analytic function

(see e.g. [75]), we conclude that %̃1(t) is an analytic function of t. Consequently, if it
changes its sign at ti from positive to negative, then there is an odd integer i′ > 0 such
that %̃(i′)

1 (ti) < 0 and %̃(j)
1 (ti) = 0 hold for all 0 ≤ j < i′.

Since h̃r2
2 (z1) is the identity map, it holds that ξ2(ti) = [In−1, 0]ξ1(t−i ) = Yn−1

d (ti) and,
consequently, the control ũd,2(z1, y

(n−1)
d ) makes the system output exactly track the de-

sired trajectory, provided that, for this control and the corresponding z1(t) satisfying
ż1(t) = f̃2,d(z1(t), y(n−1)

d (t)), there is ε > 0 such that [zT1 (t), ũ2,d(t)] ∈ χ2 holds for all
t ∈ [ti, ti + ε). To show that this is satisfied, we consider %̃2(z1, y

(n−1)
d ) and its deriva-

tives along the trajectories of ż1 = f̃2,d(z1, y
(n−1)
d ) at ti. According to (7.82), we have

that
%̃2(z1, y

(n−1)
d ) = y

(n−1)
d − z1,n . (7.94)

Since yd(t) is exactly tracked for t ∈ [ti−1, ti), it holds that z1,n(ti) = y
(n−1)
d (ti) and hence
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%̃2(z1(ti), y(n−1)
d (ti)) = 0. The rate of change of %̃2(z1, y

(n−1)
d ) calculates to

˙̃%2
(
z1, y

(n−1)
d , y

(n)
d

)
= y

(n)
d −α̃1(z1) + β̃1(z1)

%̃u(z1) %̃x(z1)−
(
β̃1(z1)
%̃u(z1) + bn(z1)

)
(y(n−1)
d − z1,n)

︸ ︷︷ ︸
−ż1,n

.

From this and (7.93), it is not hard to see that

˙̃%2
(
z1, y

(n−1)
d , y

(n)
d

)
= β̃1(z1)
%̃u(z1) %̃1(z1, y

(n)
d )−

(
β̃1(z1)
%̃u(z1) + bn(z1)

)

︸ ︷︷ ︸
ρ(z1)

%̃2(z1, y
(n−1)
d ) . (7.95)

Hence, with (7.93) and %̃2(z1(ti), y(n−1)
d (ti)) = 0, it follows that ˙̃%2(ti) = 0. Now we

use Lemma 7.2.4 to calculate the derivative of %̃1(z1, y
(n)
d ) along the trajectories of

ż1 = f̃2,d(z1, y
(n−1)
d ) and therewith obtain

¨̃%2 = ∂(β̃1/%̃u)
∂z1

f̃2,d%̃1 + β̃1

%̃u

[
∂%̃1

∂z1
f̃2,d + ∂%̃1

∂y
(n)
d

y
(n+1)
d

]
− ∂ρ

∂z1
f̃2,d%̃2 − ρ ˙̃%2

= β̃1

%̃u
˙̃%1 + ∂(β̃1/%̃u)

∂z1
f̃2,d%̃1−

β̃2
1
%̃2
u

∂%̃1

∂z1,n
%̃1+ β̃1

%̃u

(
∂%̃1

∂z1,n−1
+ ∂%̃1

∂z1,n
ρ

)
%̃2 −

∂ρ

∂z1
f̃2,d%̃2 − ρ ˙̃%2 .

(7.96)

It is important to note here that ˙̃%1 denotes the derivative of % along the trajecto-
ries of the first subsystem ż1 = f̃1,d(z1, y

(n)
d ) (see Lemma 7.2.4 and the definition of

˙̃%1 in (7.39)). With %̃1(ti) = 0, %̃2(ti) = 0 and ˙̃%2(ti) = 0 as well as β̃1(z1)
%̃u(z1) > 0 we

obtain
¨̃%2(ti) = β̃1(z1(ti))

%̃u(z1(ti))
˙̃%1(ti) ≤ 0 . (7.97)

If ˙̃%1(ti) = 0, we use again Lemma 7.2.4 to calculate %̃(3)
2 (ti), and with %̃1(ti) = 0, %̃2(ti) = 0,

˙̃%1(ti) = 0, ˙̃%2(ti) = 0, and ¨̃%2(ti) = 0 we can conclude that %̃(3)
2 (ti) = β̃1(z1(ti))

%̃u(z1(ti))
¨̃%1(ti) = 0.

Continuing in this way we finally get

%̃
(i′+1)
2 (ti) = β̃1(z1)

%̃u(z1) %̃
(i′)
1 (ti) < 0 . (7.98)

From this we conclude that there is ε > 0 such that [z1(t), ũ2,d(t)] ∈ χ2 for all t ∈ [ti, ti + ε)
using a Taylor argument.
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Next, we examine a switching time ti at which [z1(t), ũσ,d(t)] traverses the switching
surface from χ2 to χ1. At ti it holds that

%̃2(ti) = y
(n−1)
d (ti)− z1,n(ti) = 0 . (7.99)

Moreover, using the same arguments as before, %̃2(t) is analytic, and hence, if its sign
changes at ti from negative to positive, there is an odd integer i′′ > 0 such that %̃(i′′)

2 (ti) > 0
and %̃

(j)
1 (ti) = 0 for all 0 < j < i′′. Since y(t) = yd(t) for all t ∈ [ti−1, ti) we have

[z1,1(ti), . . . , z1,n−1(ti)]T = ξ2(t−i ) = Yn−1
d (ti) (recall that Φ̃2(·) is the identity map). More-

over, we observe from (7.99) that z1,n(ti) = y
(n−1)
d (ti) and hence ξ1(ti) = z1(ti) = Yn

d (ti).
Consequently, the control ũd,1(z1(t), y(n)

d (t)) achieves exact output tracking, provided
that there is an ε > 0 such that [zT1 (t), ũ1,d(t)] ∈ χ1 holds true for all t ∈ [ti, ti + ε)
where z1(t) fulfills ż1(t) = f̃1,d(z1(t), y(n−1)

d (t)). In order to show that such an ε exists,
similar to above, we consider %̃1(z1, y

(n)
d ) and its derivatives along the trajectories of

ż1 = f̃1,d(z1, y
(n)
d ) at ti. Making use of (7.95) and (7.99) as well as β̃1(z1)

%̃u(z1) > 0 we infer
that

%̃1(z1, y
(n)
d ) = %̃u(z1)

β̃1(z1)
˙̃%2(z1, y

(n−1)
d , y

(n)
d ) ≥ 0 . (7.100)

If %̃1(z1, y
(n)
d ) > 0, then [z1(ti), ũ1,d(ti)] ∈ intχ1, and thus clearly there is an ε > 0 such

that [z1(t), ũ1,d(t)] ∈ χ1 for all t ∈ [ti, ti + ε). Now assume that %̃1(ti) = 0, which implies
that ˙̃%2(ti) = 0. By substituting this together with %̃1(ti) = 0 and %̃2(ti) = 0 into (7.96)
we deduce that

˙̃%1(ti) = %̃u(z1(ti))
β̃1(z1(ti))

¨̃%2(ti) = 0 . (7.101)

Then we further differentiate (7.96) along the vector field f̃2,d applying again Lemma 7.2.4.
Utilizing %̃1(ti) = 0, %̃2(ti) = 0, ˙̃%1(ti) = 0, ˙̃%2(ti) = 0 as well as ¨̃%2(ti) = 0 in the obtained
expression, we deduce that

¨̃%1(ti) = %̃u(z1(ti))
β̃1(z1(ti))

%̃
(3)
2 (ti) ≥ 0 . (7.102)

This argument can be repeated until we arrive at

%̃
(i′′−1)
1 (ti) = %̃u(z1(ti))

β̃1(z1(ti))
%̃

(i′′)
2 (ti) > 0 . (7.103)

From this we conclude that there is ε > 0 such that [zT1 (t), ũ1,d(t)] ∈ χ1.
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As far as boundedness of z1(t) is concerned, we only have to consider the state η2,1 = z1,n

since boundedness of all other components of z1 is guaranteed by virtue of z1,j(t) = y
(j−1)
d (t),

∀ j = 1, . . . , n− 1, where y(0)
d = yd. In intervals [ti, ti+1) with σ(ti) = 1 it also holds that

z1,n(t) = y
(n−1)
d (t). However, one may wonder whether it could happen that beyond some

finite switching time the system remains in the 2nd mode and z1,n diverges. But this
is prevented by the input-to-state stability of (7.91), which guarantees that z1,n remains
bounded while σ(t) = 2.

Remark 7.2.2. All results in this section can be easily transferred to the case where the
Assumptions 7.1.1 and 7.2.1 do not hold, i.e., where the relative degrees and the coordinate
transformation Φ1 and Φ2 are only locally well defined. Then we consider some open set
O ⊂ Rn within which both the relative degrees and the coordinate transformations are
well defined. The trajectories yd and the initial values of η1 and η2 then have to be such
that the state trajectory remains within O. Obviously, this set has to be chosen such that
∂χ ∩ O 6= ∅ since otherwise no switching can occur.

7.3 The Asymptotic Output Tracking Problem

In this section, the AOT Problem 7.1.3 is considered. To solve it, we apply the well known
two-degree-of-freedom control scheme [86] consisting of a feedforward and a feedback
part (see Figure 7.2). The feedforward controller essentially solves the EOT problem,
i.e., it provides an input trajectory ud(t) and the corresponding signal xd(t) such that
h(xd(t)) = yd(t). In the case of trajectory-dependent switching, the switching signal that
corresponds to the trajectories ud(t) and xd(t) is denoted by σd(t), and we also use the
index “d” to distinguish the discontinuities ti,d of σd(t) from those of σ(t). In the case of
trajectory-independent switching, the switching signal is externally specified and we have
σd(t) = σ(t).
We can assume that suitable ud(t), xd(t) exist since solvability of the EOT problem is

necessary for solvability of the AOT problem, as outlined in Section 7.1. The feedback
controller is provided with xd(t) and σd(t) and is designed such that the system is stabilized
and robustified against disturbances. The overall control law is of the form

u = ζ(x,xd, t) = ud(t) + v(t) = ud(t) + r(x,xd, t) (7.104)

with r : O1 × [0,∞)→ R a piecewise continuous function constituting the feedback part
ΣFB and O1 an environment of (xd(0),xd(0)) in Rn ×Rn.
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Figure 7.2: Two-degree-of-freedom control scheme with the switched system Σ, the feedforward
control ΣFF , and the feedback control ΣFB for trajectory-independent switching (left)
and trajetory-dependent switching (right).

7.3.1 Trajectory-Independent Switching

We begin with the AOT problem for systems with trajectory-independent switching. We
first calculate the dynamics of the state tracking error e = x− xd as

ė = ẋ− ẋd = fσ(x)− gσ(x)(ud + v)− fσd(xd)− gσd(xd)ud (7.105a)

= fσd(e + xd)− fσd(xd) + gσd(e + xd)ud − gσd(xd)ud︸ ︷︷ ︸
feσd (e,t)

+ gσd(e + xd)︸ ︷︷ ︸
geσd (e,t)

v . (7.105b)

To obtain the last equality, we have used x = e + xd and the fact that, in the case of
trajectory-independent switching, it holds that σ(t) = σd(t). The objective is to design the
feedback part ΣFB in Figure (7.2) such that the equilibrium e∗ = 0 of this error system is
(uniformly) asymptotically stable. If we succeed in doing so, clearly, the AOT problem is
solved.

The error system is a switched nonlinear system with two time-varying subsystems

ė = f eσd(t)(e, t) + geσd(t)(e, t)v . (7.106)

In order to determine a stabilizing feedback

v = r(x,xd, t) = rσd(t)(e, t) (7.107)

with continuous functions rp(e, t) the passivity-based controller design methodology pro-
posed in Chapter 6 can be applied. To the best of our knowledge, so far there are no other
approaches for the stabilization of time-varying switched nonlinear systems.
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7.3.2 Trajectory-Dependent Switching

The situation is more involved, if we consider the AOT problem for systems with state-
and/or input-dependent switching. This is due to the fact that, in the case where e 6= 0,
or equivalently x 6= xd, there is no reason why [xd(ti,d), ud(ti,d)] ∈ ∂χ should imply
[x(ti,d), u(ti,d)] ∈ ∂χ. Thus, in general the discontinuities ti of the switching signal σ(t) do
not coincide with the discontinuities ti,d of σd(t), which means that σd(t) 6= σ(t). As a
consequence, the error system

ė = ẋ− ẋd = fσ(e + xd)− gσ(e + xd)(ud + v)− fσd(xd)− gσd(xd)ud (7.108)

is a switched system with four subsystems

ė = f eσe(e, t) + geσe(e, t)v (7.109)

where the switching signal σe : [0,∞)→ Γ, Γ = {1, . . . , 4} is defined as

σe(t) =





1 if σ(t) = 1, σd(t) = 1

2 if σ(t) = 2, σd(t) = 2

3 if σ(t) = 1, σd(t) = 2

4 if σ(t) = 2, σd(t) = 1

. (7.110)

The subsystems
ė = f eγ(e, t) + geγ(e, t)v , γ ∈ Γ (7.111)

are defined accordingly. In order to solve the AOT problem, our objective is to determine
a controller

v = r(x,xd, t) = rσe(t)(e, t) (7.112)

which makes e∗ = 0 a uniformly asymptotically stable equilibrium of (7.109).
The design of a stabilizing feedback for a switched nonlinear system with four time-

varying subsystems is of course not an easy task at all. In addition, note that e∗ = 0 is
not an admissible equilibrium of the 3rd and the 4th subsystem. Nevertheless, e∗ = 0 is of
course an equilibrium of the overall error system (7.109) for v = 0 since the 3rd and the
4th subsystem do not become active, if the deviation between x(t) and xd(t) vanishes, and
for γ ∈ {1, 2} it holds that f eγ(e∗, t) = 0. However, the fact that the equilibrium which is to
be stabilized is not an admissible equilibrium of all subsystems further impedes the design
of a stabilizing controller. Since in this case, it is obviously not possible to determine a
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feedback law such that the closed loop subsystems have a common Lyapunov function. In
fact, it will be necessary to exploit the fact that the 3rd and the 4th subsystem can only be
active in certain situations, namely when the signs of ϕ(x, u) and ϕ(xd, ud) are different.
Another aspect that needs to be taken into account in the controller design is the

existence of solutions. While the existence of the trajectories xd(t) and ud(t) is ensured
by the assumption that the EOT problem is solvable, this is not necessarily true for the
trajectories x(t), u(t) of the system (7.1) with u(t) = ud(t) + rσe(t)(e, t). Suppose, for
instance, that ϕ(u) = u, and consider the situation where ud > 0 and u = ud + r1(e, t)
crosses the switching surface from u > 0 to u < 0 because r1(e, t) becomes smaller than
−ud. This causes the signal σ to change its value from 1 to 2 and thus σe switches from
1 to 3. If it happens that u = ud + r3(e, t) is positive, the closed loop trajectory fails to
exist. Similar situations can also occur in the case of state-dependent switching.
In summary, we can conclude that the design of a suitable feedback controller for the

error system (7.109) is a difficult task. Therefore, we consider in the next two subsections
two special classes of switched systems for which the stabilization of the tracking error
simplifies considerably as compared to the general case discussed above.

7.3.3 A Special Class of Switched Nonlinear Systems

In this subsection, we study a class of switched nonlinear systems for which it suffices
to consider only the 1st and the 2nd subsystem of (7.109) for the controller design. The
developments below are inspired by the interesting paper [94], where the AOT problem has
been addressed for the particular case of an axial piston pump. For this system switching
occurs, when the control input changes its sign, and the model derived in [57], [94] is
included a as special case in the class of systems treated below.
We consider switched nonlinear systems (7.1) with switching law (2.69) and

f2(x) = f1(x) + b%x(x) , g2(x) = g1(x) + b%u(x) , (7.113)

where b ∈ Rn and %x(x) and %u(x) are such that (7.80) holds. With (7.113) the 2nd
subsystem can be rewritten as

ẋ = f2(x) + g2(x)u

= f1(x) + g1(x)u+ b {%x(x) + %u(x)u} .
(7.114)

Obviously, the overall switched system is continuous (but, in general, not continuously
differentiable) at the switching surface ∂χ, and hence belongs to the class of continuous
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switching systems (c.f. [19], [20]). Since solvability of the EOT problem is necessary for
solvability of the AOT problem, we assume that the system fulfills the necessary conditions
in the Theorems 7.2.1 or 7.2.4, respectively. Note that the class of systems for which
Theorem 7.2.5 gives a sufficient condition for the solvability of the EOT problem satisfies
(7.113) (in z1 coordinates), if bn in (7.84) is a constant. We also remark that the class
of systems considered in this subsection includes as special cases the class of continuous
piecewise linear systems and the class of continuous bimodal piecewise affine systems
treated in [41], [43], respectively.
If (7.113) is satisfied, only with b = b(x) a C1 function of the state, then around points

x◦ where b(x◦) 6= 0 there is a local change of coordinates ϑ = Ψ(x) such that in the new
coordinates the 2nd subsystem has the form (7.114), i.e., such that ∂Ψ(x)

x b(x) is constant.
This follows from the Flow-Box Theorem (see e.g. [128], Theorem 2.26). Moreover, all
developments in this subsection can be readily transferred to the case where b(x) = b̄c(x),
where b̄ ∈ Rn is constant and c : Rn → R satisfies either c(x) ≥ 0, ∀x or c(x) ≤ 0, ∀x.

Remark 7.3.1. If ϕu(x) = 0, in some cases we can use a switched input transformation
u = ςσ(x, v) to achieve the form (7.114). Such a transformation exists, if and only if
g1(x) ∈ R(g2(x)) and there exists a vector b and a function %x(x) such that

[f2(x)− f1(x)− b%x(x)] ∈ R (g2(x)) (7.115)

holds. Not surprisingly this implies that g⊥2 (x)[f2(x)− f1(x)] is continuous at ∂χ, where
g⊥2 (x) is a full rank left annihilator of g2(x). Suppose for example that r1 = n = 2 and
that the 2nd subsystem is

ẋ1 = f1,1(x) + ϕx(x)

ẋ2 = f2,2(x) + g2,2(x)u .
(7.116)

Then, the input transformation u = ςσ(x, v) with ς2 = g−1
2,2(x)[f1,2(x) + g1,2(x)v − f2,2(x)]

and ς1 = v achieves the form (7.114) with b = [1 0]T , %x = ϕx, and the new input v.

We have the following result for the class of switched nonlinear systems (7.1) that satisfy
(7.113).

Theorem 7.3.1. Assume that the 2nd subsystem of (7.1) is of the form (7.114). Moreover,
suppose that there is an open neighborhood O ⊂ Rn of e = 0 and functions r : O× [0,∞)→
R and V : O × [0,∞)→ R such that

W1(e) ≤ V (e, t) ≤ W2(e) (7.117)
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∂V (e, t)
∂t

+ ∂V (e, t)
∂e

[
f eγ(e, t) + geγ(e, t)r(e, t)

]
≤ −W3(e) (7.118)

holds for γ ∈ {1, 2}, all t ≥ 0 and all e ∈ O, where W1(e), W2(e), and W3(e) are
continuous positive definite functions on O. Then the controller v = r(e, t) renders the
equilibrium e = 0 of (7.109) uniformly asymptotically stable.

Proof. Let the error system (7.109) in closed loop with the controller v = r(e, t) be denoted
as

ė = f ecl,σe(e, t) = f eσe(e, t) + geσe(e, t)r(e, t) . (7.119)

Since the 2nd subsystem of (7.1) is of the form (7.114), the 3rd subsystem of the error
system (7.109) can be rewritten as

ė = f e3 (e, t) + ge3(e, t)v

= f1(x) + g1(x)(ud + v)− [f2(xd) + g2(xd)ud]

= f1(x) + g1(x)(ud + v)− [f1(xd) + g1(xd)ud + b {%x(xd) + %u(xd)ud}]
= f e1 (e, t) + ge1(e, t)v − b {%x(xd) + %u(xd)ud} .

(7.120)

But it also holds true for this subsystem that

ė = f e3 (e, t) + ge3(e, t)v

= f2(x) + g2(x)(ud + v)− b {%x(x) + %u(x)u} − [f2(xd) + g2(xd)ud]

= f e2 (e, t) + ge2(e, t)v − b {%x(x) + %u(x)u} .
(7.121)

Hence, we get for the closed loop subsystem

ė = f ecl,3(e, t) = f ecl,1(e, t)− b {%x(xd) + %u(xd)ud}
= f ecl,2(e, t)− b {%x(x) + %u(x)u} .

(7.122)

In the same manner, we deduce that

ė = f ecl,4(e, t) = f ecl,1(e, t) + b {%x(x) + %u(x)u}
= f ecl,2(e, t) + b {%x(xd) + %u(xd)ud} .

(7.123)

By virtue of (7.118),

∂V (e, t)
∂t

+ ∂V (e, t)
∂e

f ecl,γ(e, t) ≤ −W3(e) (7.124)

holds for γ ∈ {1, 2}. For the derivative of V (e, t) along the trajectories of the 3rd subsystem,
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we obtain

∂V

∂t
+ ∂V

∂e
f ecl,3(e, t) (7.125a)

= ∂V

∂t
+ ∂V

∂e
f ecl,1(e, t)

︸ ︷︷ ︸
≤−W3(e)

−∂V
∂e

b {%x(xd) + %u(xd)ud} (7.125b)

= ∂V

∂t
+ ∂V

∂e
f ecl,2(e, t)

︸ ︷︷ ︸
≤−W3(e)

−∂V
∂e

b {%x(x) + %u(x)u} (7.125c)

where we have used (7.122). We know that, if σe = 3, then %(xd, ud) = %x(xd)+%u(xd)ud ≤ 0
and %(x, u) = %x(x) + %u(x)u ≥ 0. From (7.124), it can be seen that the first two
terms in both (7.125b) and (7.125c) are smaller or equal to −W3(e). Now assume that
∂V
∂e b ≥ 0. Then, we can use %(x, u) = %x(x) + %u(x)u ≥ 0 in (7.125c) to conclude that
∂V
∂t

+ ∂V
∂e f ecl,3(e, t) ≤ −W3(e). In case that ∂V

∂e b ≤ 0, the same can be deduced from (7.125b)
with %x(xd) + %u(xd)ud ≤ 0. This shows that, whenever σe = 3, the derivative of V (e, t)
along the trajectories of the 3rd subsystem (7.125a) is bounded from above by −W3(e).
Utilizing (7.123), it can be derived in the same manner that

∂V (e, t)
∂t

+ ∂V (e, t)
∂e

f ecl,4(e, t) < −W3(e) (7.126)

holds every time that σe = 4. Hence, we have shown that the derivative of the function
V (e, t) along all trajectories of the closed loop error system (7.119) is bounded above by
−W3(e). Thus, uniform asymptotic stability of e = 0 follows from Theorem 2.4.1.

The theorem essentially states that for the considered class of systems it suffices to
consider only the first two subsystems of (7.109) for the design of an error controller,
provided that we are able to find a common feedback law and a corresponding common
Lyapunov function for the two closed loop subsystems. This substantially simplifies the
design task as compared to the general situation, where we need to stabilize a time-varying
switched system with four subsystems. Recall also that e∗ = 0 is an admissible equilibrium
of the first two subsystems, whereas this is not true for the 3rd and the 4th one.

7.3.4 Switched Linear Systems with r1 = r2

In this subsection, we consider the class of switched linear systems (7.49) which satisfy
r1 = r2 = r. We assume that the switching law is of the form ϕ(x) = nTx as otherwise the
unactuated portions of the input-output dynamics of both subsystems have to be identical
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in order that the EOT problem can be solvable (see Subsection 7.2.2). Without loss of
generality, all results are given in the z1 coordinate frame. The state tracking error in
these coordinates is defined as e1(t) = z1(t)− z1,d(t), and, accordingly, in z2 coordinates
we let e2(t) = z2(t)− z2,d(t).

First note that, unlike with non-switched systems, also in the case where both subsystems
of (7.1) are linear, a time-varying error system (7.109) is obtained. In particular, the 3rd
and the 4th subsystem are time-varying (see also the example in Section 8.1). If the plant
model belongs to the class of systems treated in the previous subsection, we, nevertheless,
have to design a controller only for a time-invariant switched linear system consisting of
the 1st and the 2nd subsystem of (7.109). In the general case, however, the time-variance
renders the controller design task more complicated and also hampers the application of
LMI-based methodologies, which are often used for the stabilization of switched linear
systems.

For the class of systems treated in this subsection, a time-invariant representation of the
error system can be obtained, enabling the use of LMI-based controller design techniques.
To this end, we switch the feedforward part ΣFF together with the plant, i.e., we use
ud(t) = ũσ,d(t) instead of ud(t) = ũσd,d(t) as feedforward control, which entails that the
evolution of the desired state trajectory z1,d(t) is governed by the same differential equation
as the motion of the plant. In this way, we enforce that σd(t) = σ(t), and thereby obtain
an error system whose continuous dynamics is described by

ė1 = ż1 − ż1,d = Ãσz1 + g̃σ(ud + v)− Ãσz1,d − g̃σud
= Ãσe1 + g̃σv

(7.127)

which is a switched linear system with two time-invariant subsystems. This strategy,
however, leads to jumps in the desired state trajectory z1,d(t) at the switching times ti
since zT1,d(ti) /∈ ∂χ. This, in turn, entails instantaneous jumps of the error e1(t), such that
the dynamics of the tracking error are described by a switched system with impulse effects.
In the case where r1 = r2, the jumps in e1(t) can be characterized in the form

e1(ti) = R̃
(
σ(ti), σ(t−i )

)
e1(t−i ) . (7.128)

In the sequel, explicit expressions are derived for the matrices R̃ (2, 1) and R̃ (1, 2). To
this end, let us define the quantities eη,p = ηp − ηp,d and eξ,p = ξp − ξp,d, p ∈ {1, 2}. We
first consider switching times ti with σ(t−i ) = 2, σ(ti) = 1. Using continuity of z1(t), the
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jump in the error ∆e1(ti) = e1(ti)− e1(t−i ) is

∆e1(ti) = z1,d(t−i )− z1,d(ti) . (7.129)

With ξ1,d(ti) = Yr
d(ti) = ξ2,d(t−i ) = T̃2,ξz1,d(t−i ) we get

∆e1(ti) =

ξ1,d(t−i )
η1,d(t−i )


−


T̃2,ξz1,d(t−i )
η1,d(ti)


 . (7.130)

Similar to (7.28a), we choose η1,d(ti) = η1,d(t−i ) = T̃−1
2,ηz2,d(t−i ), such that the last n − r

components of ∆e1(ti) vanish. By substituting z1,d(t−i ) = z1(t−i )− e1(t−i ) into (7.130) we
then obtain

∆e1(ti) =

ξ1(t−i )− eξ,1(t−i )− T̃2,ξ

(
z1(t−i )− e1(t−i )

)

0


 . (7.131)

Since we assume that the necessary conditions for EOT derived in Subsection 7.2.2 are
satisfied, in particular (7.42), and z1(ti) ∈ ∂χ, it holds that ξ1(ti)− T̃2,ξz1(ti) = 0. Hence,
we have

e1(ti) = e1(t−i ) + ∆e(ti) =

 T̃2,ξ[

0 In−r
]



︸ ︷︷ ︸
R̃(1,2)

e1(t−i ) . (7.132)

Similarly, it can be derived for switching times ti with σ(t−i ) = 1, σ(ti) = 2 that

e2(ti) =

 T̃−1

2,ξ[
0 In−r

]

 e2(t−i ) . (7.133)

Therefore,

e1(ti) = T̃−1
2


 T̃−1

2,ξ[
0 In−r

]

 T̃2

︸ ︷︷ ︸
R̃(2,1)

e1(t−i ) . (7.134)

In order to find a stabilizing control law v = k̃Tσ e1 for the error system defined by (7.127),
(7.132), and (7.134), we can use the following result from [79].

Lemma 7.3.1. Consider the switched linear system with impulse effects

ẋ = Aσx (7.135)

x(ti) = R
(
σ(ti), σ(t−i )

)
x(t−i ) . (7.136)
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If there are positive definite matrices Qp, p ∈ P satisfying

QpAp + AT
p Qp < 0, p ∈ P (7.137)

RT (p, q)QpR(p, q) ≤ Qq , p, q ∈ P (7.138)

then the system (7.135), (7.136) is exponentially stable.

The proof uses the multiple Lyapunov function approach (see Section 2.4.2) with the
Lyapunov-like functions Vp(x) = xTQpx, p ∈ P. In particular, the condition (7.138)
guarantees that for any switching instant

Vσ(ti) (x(ti)) ≤ Vσ(t−i )(x(t−i )) . (7.139)

In view of Lemma 7.3.1, we seek to determine vectors k̃Tp ∈ R1×n and matrices Q̃p > 0,
p ∈ P such that the conditions (7.137) and (7.138) are satisfied with the dynamic matrices
of the closed loop subsytems Ãcl,p = Ãp − g̃pk̃p and the matrices R̃(p, q) derived above.
From (7.137) we obtain

(
Ãp − g̃pk̃p

)
Q̃−1
p + Q̃−1

p

(
Ãp − g̃pk̃p

)T
< 0 . (7.140)

With the standard change of variables P̃p = Q̃−1
p , l̃p = k̃pP̃p [16], these conditions can be

rewritten as LMI in the unknowns P̃p and l̃p

ÃpP̃p + P̃pÃT
p − g̃pl̃p − l̃Tp g̃Tp < 0 . (7.141)

Hence, we have to determine matrices Q̃p, P̃p and l̃p which satisfy (7.141) and

R̃T (p, q)Q̃pR̃(p, q) ≤ Q̃q , p, q ∈ P (7.142)

P̃pQ̃p = I , p ∈ P . (7.143)

Unfortunately, the unknowns P̃p, Q̃p appear nonlinearly in the equality condition (7.143),
which hampers the application of an LMI solver. In the case where the matrices R̃(p, q) are
nonsingular, this problem can be circumvented as explained below. If one of the matrices
R̃(p, q) is singular, for instance, the approach proposed in [49] could be used to deal with
the bilinear constraint (7.143).
In the case where R̃(1, 2) is nonsingular, we clearly can choose T̃2,η = [0, In−r]. This

yields R̃(1, 2) = T̃2 and R̃(2, 1) = T̃−1
2 . The latter is easily verified using the formulas for

the inverse of a block matrix, see e.g. Appendix A.5.5 in [17]. If y is a flat output for both
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subsystems, i.e. r1 = r2 = n, of course the relations R̃(1, 2) = T̃2 and R̃(2, 1) = T̃−1
2 are

trivially fulfilled. Then the controller design can be done based on the following proposition
employing an LMI solver as provided e.g. by Matlab.

Proposition 7.3.1. If T̃2,η = [0, In−r], then there are matrices Q̃p, k̃p satisfying the
conditions (7.140), (7.142) if and only if there exist P̃1 > 0 and l̃p, p ∈ P such that

Ã1P̃1 + P̃1ÃT
1 − g̃1l̃1 − l̃T1 g̃T1 < 0 (7.144)

Â2P̃1 + P̃1ÂT
2 − ĝ2l̃2 − l̃T2 ĝT2 < 0 (7.145)

where Â2 = T̃2Ã2T̃−1
2 and ĝ2 = T̃2g̃2. Then it holds that

Q̃1 = P̃−1
1 , Q̃2 = T̃T

2 P̃−1
1 T̃2 k̃1 = l̃1P̃−1

1 , k̃2 = l̃2P̃−1
1 T̃2 . (7.146)

Proof. The condition (7.144) is identical to (7.141) for p = 1, which has been obtained with
the change of variables P̃p = Q̃−1

p , l̃p = k̃pP̃p. Moreover, as argued above, if T̃2,η = [0, In−r],
then R̃(1, 2) = T̃2 and R̃(2, 1) = T̃−1

2 . Thus, the inequalities (7.142) take the form

T̃T
2 Q̃1T̃2 − Q̃2 ≤ 0 (7.147)

T̃−T2 Q̃2T̃−1
2 − Q̃1 ≤ 0 . (7.148)

These two conditions are satisfied if and only if Q̃2 = T̃T
2 Q̃1T̃2 and hence Q̃−1

2 =
T̃−1

2 Q̃−1
1 T̃−T2 . By substituting this into (7.140), and by multiplication with T̃2 on the left

and T̃T
2 on the right, we obtain

T̃2Ã2T̃−1
2︸ ︷︷ ︸

Â2

Q̃−1
1 + Q̃−1

1 T̃−T2 ÃT
2 T̃T

2︸ ︷︷ ︸
ÂT

2

− T̃2g̃2︸ ︷︷ ︸
ĝ2

k̃2T̃−1
2 Q̃−1

1 − Q̃−1
1 T̃−T2 k̃T2 g̃T2 T̃T

2︸ ︷︷ ︸
ĝT2

< 0 . (7.149)

With the change of variables P̃1 = Q̃−1
1 and l̃2 = k̃2T̃−1

2 Q̃−1
1 we finally get (7.145) and

(7.146).

Note that Q̃2 = T̃T
2 Q̃1T̃2 implies that both conditions (7.147), (7.148) are fulfilled with

equality. As a consequence, (7.139) also holds with equality, i.e., we have Ṽσ(ti)(z1(ti)) =
Ṽσ(t−i )(z1(t−i )) for all switching times ti.

7.4 Concluding Remarks
In this chapter, we have studied the output trajectory tracking problem for bimodal switched
nonlinear SISO systems. First, we have provided necessary and sufficient conditions to
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answer the question when there exists a piecewise continuous input for a system with
trajectory-independent switching such that its output exactly tracks a desired trajectory.
It has been shown that this is only possible for special pairs of switching signal and desired
output trajectory. In case that the output of interest is a flat output for both subsystems,
suitable pairs can be identified quite easily based on the derived conditions without solving
any differential equations. Although in this chapter we have constrained ourselves to
the case of two subsystems, this result can be extended to general switched systems in a
straightforward manner.
Moreover, we have examined the EOT problem for systems with state- and/or input-

dependent switching. We have established necessary conditions under which this problem
is solvable for all bounded output trajectories with bounded derivatives. Under some
additional hypotheses, involving that the output is a flat output for one of the subsystems,
also sufficient conditions have been obtained. The derived conditions are not only of
theoretical interest, but are also important from a practical point of view. The sufficient
conditions guarantee the safe operation of the system for arbitrary reference trajectories.
The necessary conditions specify precise situations where, to achieve exact output tracking,
it is inevitable to either restrict the desired trajectories to a special class or to appropriately
modify the model of the technical system, e.g. in cases where the switching arises from an
approximation made during the modeling process. Instrumental for our developments have
been, as in the case of smooth systems, the concept of relative degree and the input-output
normal form, as generalized to nonlinear control affine SISO systems by Isidori.
A further topic which has been addressed in this chapter is the solution of the AOT

problem by means of a two-degree-of-freedom control scheme. While this is straightforward
in the case of trajectory-independent switching, it turns out to be more delicate for systems
with state- and/or input-dependent switching law, since in this case the error system is, in
general, a time-varying switched nonlinear system with four subsystems instead of two.
The stabilization problem is further complicated by the fact that the desired equilibrium
point e∗ = 0 is not an admissible equilibrium for two of these subsystems. Motivated
by that, we have shown that for two special classes of switched systems the design of a
stabilizing error controller can be simplified considerably.
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Chapter 8

Technical Applications

In this chapter, two technical systems are considered in order to further illustrate the
results developed in the Chapters 6 and 7, and to underscore their practical relevance
and applicability. First we are concerned with the problem of tracking a desired speed
trajectory with a DC motor having an asymmetric friction characteristic. It is well known
that the friction behavior of DC motors may change with the direction of rotation [6], [23],
[55]. In [23], “it was found to be essential to have a [friction] model which is asymmetric in
the angular velocity”. This asymmetry leads to different models for positive and negative
values of the angular velocity and thus to a switched system with state-dependent switching
law. The second application we are dealing with in this chapter is the pressure control
of a self-supplied variable displacement axial piston pump as it is used, for instance, in
injection molding machines [94]. The mathematical model of this system exhibits switching
depending on the sign of the control input, which is due to the fact that the pump is
self-supplied.
Both systems are examined with regard to the solvability of the EOT problem, and

suitable feedforward controllers are designed. In order to solve the AOT problem, the error
systems are stabilized by means of the IDA technique for switched systems presented in
Chapter 6. While in the case of the axial piston pump the systematic procedure proposed
in Section 6.4 can be employed, the error controller for the DC motor is designed using
the general approach from Section 6.3. In addition, using the results from Section 7.3.4,
an LMI-based controller is determined to solve the AOT problem for the DC motor.

8.1 DC Motor with Asymmetric Friction Characteristic
This section is devoted to the trajectory tracking control of a DC motor with asymmetric
friction characteristic. The friction torque is modeled solely by viscous damping in the
following. Other friction effects can be taken into account by adding a LuGre-model-based
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Table 8.1: Parameters of the DC motor.

Model parameter Symbol Value Unit

Damping coefficient for ω ≥ 0 d1 3 × 10−3 Nms/rad
Damping coefficient for ω ≤ 0 d2 4 × 10−3 Nms/rad
Inductance L 3.6 × 10−3 H
Resistance R 1.71 Ω
Rotor inertia J 6 × 10−5 Nms2/rad
Torque constant k 0.1 Nm/A

friction compensation scheme similar to that in [55] and [153]. Since, in contrast to these
contributions, for the system at hand the friction does not occur in the actuated coordinate,
some modifications are necessary, which are, however, beyond the scope of this thesis. If
we define the state vector by x = [I, ω]T with I the current through the motor and ω the
angular speed of the rotor, the model of the DC motor is given by

ẋ = Aσx + gu , A1 =

−

R
L
− k
L

k
J
−d1

J


 , A2 =


−

R
L
− k
L

k
J
−d2

J


 , g =




1
L

0


 (8.1)

where R denotes the resistance, L the inductance, k the torque constant and J the inertia of
the rotor. The control input u is the input voltage. In order to incorporate the asymmetric
behavior, the coefficient of viscous friction dp, p ∈ {1, 2} is switched according to the
sign of x2 = ω, i.e., the switching law is given by (2.69) and (2.70) with ϕ(x) = x2. The
parameter values are given in Table 8.1.

8.1.1 Feedforward Design

It is intended to design a controller such that the output

y = x2 = ω (8.2)

asymptotically tracks a desired trajectory yd(t). Since solvability of the AOT problem
requires solvability of the EOT problem, the latter is examined first. It is easy to check
that (8.2) is a flat output for both subsystems of (8.1), and, consequently, it holds that
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r1 = r2 = n = 2. We determine the coordinate transformation

z1 =

ξ1,1

ξ1,2


 = Φ1(x) = h2

1(x) =

0 1
k
J
−d1

J




︸ ︷︷ ︸
T1

x . (8.3)

In these coordinates, the 1st subsystem of (8.1) is given by

ξ̇1,1 = ξ1,2

ξ̇1,2 = −Rd1 + k2

JL
ξ1,1 −

RJ + d1L

JL
ξ1,2 + k

JL
u

y = ξ1,1

(8.4)

and we get ϕ̃(z1) = ϕ̃x(z1) = ξ1,1, i.e., ϕ̃u(z1) = 0 and ñT = [1 0] with ‖ñ‖ = 1 (c.f.
Theorem 7.2.3). The 2nd subsystem possesses the form

ξ̇1,1 = ξ1,2 + (d1 − d2)ξ1,1

ξ̇1,2 = −Rd1 + k2

JL
ξ1,1 −

RJ + d1L

JL
ξ1,2 + k

JL
u+ d1d2 − d2

1
J2 ξ1,1

y = ξ1,1 .

(8.5)

Hence, the coordinate transformation Φ̃2(z1) is given by

z2 =

 1 0
d1 − d2 1




︸ ︷︷ ︸
T̃2

z1 . (8.6)

It is not difficult to see that T̃2 = I2 + kñT with kT = [0 d1 − d2]. Since kT ñ = 0 > −1
the conditions of Theorem 7.2.3 for the solvability of the EOT problem are satisfied. The
trajectories ud(t) and xd(t) corresponding to a desired speed trajectory yd(t) are given by

xd,1(t) = J

k
ẏd(t) + dσd

k
yd(t) (8.7)

xd,2(t) = yd(t) (8.8)

ud(t) = 1
k

[
JLÿd(t) + (RJ + dσdL) ẏd +

(
k2 +Rdσd

)
yd
]
. (8.9)

Note that σd is used in (8.9), which is equal to 1, if the desired angular velocity is positive,
and equal to 2, if the desired angular velocity is negative.
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8.1.2 IDA Controller Design

In order to solve the AOT problem, the feedforward controller from the previous subsection
needs to be augmented by a suitable feedback controller that stabilizes the tracking error
(see Section 7.3). In this subsection, the passivity-based control scheme proposed in Chapter
6 is applied to determine a suitable feedback law. As an alternative, in the subsequent
subsection, an LMI-based controller is designed using the results from Subsection 7.3.4.

The 1st and the 2nd subsystem of the error system (7.109) are given by

ė = Ape + gv , p ∈ {1, 2} . (8.10)

For the 3rd subsystem, we get

ė = A1e + gv +
[
0 1

]T d2 − d1

J
xd,2(t) (8.11)

and the 4th subsystem is

ė = A2e + gv +
[
0 1

]T d1 − d2

J
xd,2(t) . (8.12)

It has been mentioned in Subsection 7.3.4 that, in contrast to non-switched systems, in
the case of trajectory-dependent switching, we obtain a time-varying error system even if
all subsystems of the plant model are linear and time-invariant. This can be seen in (8.11)
and (8.12). Note also that e∗ = 0 is indeed not an admissible equilibrium for these two
subsystems except for the trivial case that xd,2(t) ≡ 0.

In order to simplify the controller design, we observe that in x-coordinates the plant
model can be rewritten as in (7.114) with

b =

 0
d1−d2
J


 (8.13)

and thus belongs to the special class of systems treated in Subsection 7.3.3. Therefore,
according to Theorem 7.3.1, it suffices to find a common control law together with a
common Lyapunov function such that the switched system consisting only of the first
two subsystems of the error system (8.10) is asymptotically stabilized. This is a switched
linear system with time-invariant subsystems. It does, however, not belong to the special
class treated in Section 6.4, and thus the proposed systematic procedure cannot be
applied.
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Solving the projected matching equations

With the simple left annihilators G⊥p = [0, 1], p = 1, 2 the projected matching equations
(6.9) are obtained as 

f1,21 f1,22

f2,21 f2,22


∇H(e) =



k
J
e1 − d1

J
e2

k
J
e1 − d2

J
e2


 (8.14)

where fp,ij denotes the (i, j)-element of the design matrix Fp, p ∈ {1, 2}. From the
solvability condition (2.39), we get

kf2,21 − d1f2,22 − kf1,21 + d2f1,22 = 0 (8.15)

which can be fulfilled by choosing

f1,22 = 1
d2

(kf1,21 − kf2,12 + d1f2,22) . (8.16)

The solution of (8.14) is given by

H(e) = ceTQe (8.17)

with
c =

[
2J
(
−f1,21f2,22d2 + f2,21f1,21k − f 2

2,21k + f2,21f2,22d1
)]−1

(8.18)

and

Q =

k

2(f1,21 − f2,21)− kf2,22(d2 − d1) −kd2(f1,21 − f2,21)
−kd2(f1,21 − f2,21) f1,21d

2
2 − f2,21d1d2


 . (8.19)

Note that the homogeneous PDE corresponding to (8.14) has only the trivial solution, and
hence H(e) is the unique solution of (8.14).

Conditions for a strict local minimum of H(e)

As desired, the gradient of H(e) vanishes at the desired equilibrium e∗ = 0. In order
to guarantee a strict local minimum at this point, we render the Hessian of the energy
function ∇2H(e) = 2cQ positive definite. By Sylvester’s criterion, it must hold that

det
(
∇2H(e∗)

)
= det (2cQ) = 2

J
(d2 − d1) kd2c > 0 (8.20)

which is satisfied if c > 0 because d2 > d1 (see Table 8.1). If we choose f2,21 and f2,22 such
that

kf2,21 − d2f2,22 > 0 ⇔ f2,21 >
d2

k
f2,22 (8.21)
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then c > 0 holds if and only if

f1,21 > f2,21
kf2,21 − d1f2,22

kf2,21 − d2f2,22
. (8.22)

In addition, we require the second diagonal entry of Q to be positive

f1,21d
2
2 − f2,21d1d2 > 0 ⇔ f1,21 >

d1d2

d2
2
f2,21 . (8.23)

Together with (8.20) this implies that also the first diagonal entry of ∇2H(e) is positive
and thus ∇2H(e) > 0 is guaranteed by Sylvester’s criterion.

Conditions for positive definiteness of the dissipation matrices

In order to satisfy the conditions of Theorem 7.3.1, we need to design a common control
law for both subsystems. As the actuated component of both subsystems is identical, this
is achieved by choosing f2,11 = f1,11 and f2,12 = f1,12. Moreover, we simplify R1 by setting
f1,12 = −f1,21. Then, we obtain the dissipation matrices

R1 =

−f1,11 0

0 − 1
d2

(kf1,21 − kf2,21 + d1f2,22)


 (8.24)

R2 =

 −f1,11

1
2 (f1,21 − f2,21)

1
2 (f1,21 − f2,21) −f2,22


 . (8.25)

To guarantee that they are both positive definite, we again invoke Sylvester’s criterion to
derive the conditions

f1,11 < 0 (8.26)

f1,21 < −
d1

k
f2,22 + f2,21 (8.27)

f1,11f2,22 −
1
4 (f1,21 − f2,21)2 > 0 . (8.28)

Obviously, (8.26) and (8.28) imply that f2,22 < 0.

Controller Tuning

In order to determine admissible values for the controller parameters, we can proceed
as follows: First we choose f2,22 < 0 and f2,21 such that (8.21) holds. Subsequently, we
determine a value for f1,21 which satisfies the inequalities (8.27), (8.22) and (8.23), whose

196



8.1 DC Motor with Asymmetric Friction Characteristic

right hand sides only depend on f2,22 and f2,21. The right hand side of (8.27) is greater
than f2,21 because f2,22 < 0. The fractions in (8.22) and (8.23) are each smaller than 1
due to d2 > d1, and thus the right hand sides of both conditions are smaller than f2,21

Therefore, there is always an admissible value for f1,21. Finally, f1,11 < 0 is used to satisfy
(8.28). It is worthwhile noting that all conditions are satisfied, if f1,11 and f2,22 are negative
and we choose f2,21 = f1,21 such that (8.21) holds true. This choice makes R2 a diagonal
matrix.
Aside from compliance with the conditions derived above, another important aspect that

needs to be taken into account for the choice of the controller parameters is the dynamic
behavior of the closed loop system. Since the application of LLDA requires the existence
of m characteristic coordinates, this technique cannot be employed in the case at hand.
Therefore, we use numerical optimization to determine controller parameters that achieve
good dynamic behavior. The vector of design variables is γ = [f1,11, f1,21, f2,21, f2,22]. In
Section 6.8, we have suggested to solve the optimization problem (4.20a)-(4.20c), i.e., to
maximize the volume of the DA, while the eigenvalues of the (linearized) closed loop
subsystems are constrained to some admissible region in the left half plane (Figure 4.3).
However, the considered closed loop system is globally uniformly asymptotically stable
for any admissible controller parametrization, and thus the volume of the DA is not a
meaningful objective function. Therefore, we set up the minimization problem

min
γ

max
i,p

{
Re
[
λi
(
Ae
cl,p(γ)

)]}
(8.29)

subject to

rmin ≤ min
i,p

{
Re
[
λi
(
Acl,p(γ)

)]}
≤ rmax , ∀ i, p (8.30)

∣∣∣Re
[
λi
(
Acl,p(γ)

)]∣∣∣ ≥ tan(ψ)
∣∣∣Im

[
λi
(
Acl,p(γ)

)]∣∣∣ ≥ 0 , ∀ i, p (8.31)

and the constraints (8.26), (8.27), (8.28), where Acl,p, p = 1, 2 denotes the closed-loop
dynamic matrices. That means, we try to move the eigenvalues of the closed loop subsystems
as far to the left as possible within the region illustrated in Figure 8.1, where we have
chosen rmax = 0, rmin = −550, and ψ = π

4 . Recall that the Hessian of the energy function
is guaranteed to be positive definite at e∗ if the closed loop eigenvalues are located in
the left half plane and the dissipation matrices are positive definite. For this reason, the
constraints (8.21)-(8.23) don’t have to be included in the minimization problem.
We use fmincon, which is provided by Matlab, to solve the problem. The initial value

is chosen as γ0 = [−5, 1, 1,−5], which satisfies all conditions derived above. We obtain
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Figure 8.1: Admissible region for the eigenvalues of the closed-loop subsystems.

f1,11 = −1.5 · 103, f1,21 = f2,21 = 2.9 · 103, f2,22 = −1.7 · 103 (rounded to multiples of 102).
The resulting eigenvalues of Acl,1 are −456± 157i, the eigenvalues of Acl,2 are −464± 177i.
The corresponding control law is given by

v =
[
−1.39 −0.31

]
e . (8.32)

Simulation results are shown in Figure 8.2. The desired trajectory is a sine wave with
frequency 10 Hz and an amplitude of 30 [ rad

s ]. The initial value of x has been set to
x(0) = [10, −30]T which results in e(0) = [8.87, −30]T . At 0.11 s a disturbance torque of
0.5 Nm is acting on the motor for 7.5 ms. As expected, the rotor speed tracks the desired
trajectory, and, moreover, the controller is able to compensate tracking errors in a fast
manner.

8.1.3 LMI-Based Controller Design

Since the motor model (8.1) is linear and it holds that r1 = r2, we can also apply the
method proposed in Subsection 7.3.4 to solve the AOT problem. To this end, we switch
the feedforward control together with the plant, i.e., we use σ instead of σd in (8.9), and
design a stabilizing error controller using Proposition 7.3.1. The matrices Ã1 and Ã2 as
well as g̃1 and g̃2 immediately come out of (8.4) and (8.5), the matrix T̃2 is given in (8.6).
We use the command feasp provided by Matlab to solve the LMIs

Ã1P̃1 + P̃1ÃT
1 − g̃1l̃1 − l̃T1 g̃T1 < −αP̃1 (8.33)

Â2P̃1 + P̃1ÂT
2 − ĝ2l̃2 − l̃T2 ĝT2 < −αP̃1 (8.34)

for the unknowns P̃1 = P̃T
1 > 0 and l̃p, p ∈ P, where α > 0 is some positive scalar.

The LMIs are identical to (7.144) and (7.145) in Proposition 7.3.1 except that we have
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Figure 8.2: Simulation results for the DC motor with IDA-based error controller, initial value
x(0) = [10, −30]T , and a disturbance torque acting on the motor at time t = 0.11 s.
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replaced the zeros on the right hand sides by the term −αP̃1. Of course any set of matrices
P̃1 = P̃T

1 > 0, l̃p, p ∈ P that solves (8.33) and (8.34) also satisfies (7.144) and (7.145).
However, the expression −αP̃1 on the right hand side guarantees that in any time interval
(ti, ti+1) within which the pth subsystem is active, it holds that ˙̃V p(t) < −αṼp(t) and
therefore Ṽp(t) ≤ e−αtṼp(ti). Consequently, we can specify by α an exponential decay rate
for the Lyapunov functions and thereby influence the dynamic behavior of the closed loop
system.
With α = 50, we obtain the solution

P̃1 =

 4.20 · 10−3 −1.58 · 10−1

−1.58 · 10−1 7.91


 , l̃T1 =


4.51 · 10−4

1.54 · 10−2


 , l̃T2 =


5.17 · 10−4

1.78 · 10−2


 .

(8.35)
In x coordinates, the control law is then given by v = −kTσx with

k1 = l̃1P̃−1
1 T1 =

[
−1.51 −9.74 · 10−2

]
, k2 = l̃2P̃−1

1 T̃2T1 =
[
−1.57 −9.70 · 10−2

]

where T1 and T̃2 are given in (8.3) and (8.6), respectively.
Simulation results are shown in Figure 8.3. The desired trajectory ωd(t) is the same

sine wave as in the previous subsection, the initial state is x(0) = [−1 − 5]T resulting in
e(0) = [−2.13 − 5]. As above, at time t = 0.11s a disturbance torque of 0.5 Nm is acting
on the motor for 7.5 ms. Both the error e1 in the motor current and the error e2 in the
motor speed tend to zero asymptotically. Moreover, it can be clearly seen that switching
the feedforward control together with the plant leads to jumps in the trajectory of the
desired current Id causing jumps in the error state e1. In Figure 8.4 the time curves of the
Lyapunov functions V1 = eTQ1e and V2 = eTQ2e are depicted. The jumps in the error e1

lead to instantaneous changes of the value of both Lyapunov functions. As intended it
holds, for any switching time, that Vσ(ti)(e(ti)) = Vσ(t−i )(e(t−i )).

8.2 Self Supplied Variable Displacement Axial Piston
Pump

In this section, we study the tracking controller design for a self supplied variable displace-
ment axial piston pump as considered in [57], [94]. This type of pumps allows to adjust
the volume flow at constant input speed by varying the displacement of the pump. This is
done by tilting a swash plate by means of a hydraulic actuator. The volume flow into this
actuator qa thus represents the control input. A schematic diagram of the hydraulic circuit
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Figure 8.3: Simulation results for the DC motor with LMI-based error controller, initial value
x(0) = [−1, −5]T , and a disturbance torque acting on the motor at t = 0.11 s.
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Figure 8.4: Lyapunov functions V1 and V2 together with the switching signal σ for the LMI-based
error controller with x(0) = [−1, −5]T and a disturbance torque acting on the motor
at t = 0.11 s.

is depicted in Figure 8.5. The pump under consideration is self-supplied, which means that
the volume flow that is necessary to adjust the swash plate angle is taken from the output
volume flow qp of the pump. The hydraulic actuator is single acting, and the restoring
force is provided by a spring. Positive volume flows qa, which cause a decrease of the swash
plate angle, are taken from the output of the pump, while negative volume flows, which
occur when the swash plate angle is increased by the spring force, are carried to the tank.
This yields a switching mathematical model because in the former case the volume flow
through the load ql is given by ql = qp − qa, while in the latter case we have ql = qp. For
a more detailed description of the system, the interested reader is referred to [57], [94].
The simplified model of the pump used in the following has been derived in [57] from a

more detailed higher dimensional one based on a singular perturbation analysis. We define
the state vector x = [ψp pl]T , where ψp is the swash plate angle and pl is the load pressure.
Then the model is given by

ẋ = f(x) + gσu , f(x) =

 0
β
Vl

(
kpx1 − kl

√
x2
)

 , g1 =


−

1
Aara

0


 , g2 =


−

1
Aara

− β
Vl




(8.36)
where Aa is the effective area of the hydraulic actuator, ra is its effective radius, Vl is the
load volume, β is the bulk modulus of the oil, kp the pump coefficient, and kl denotes
the coefficient of the load orifice. The control input is the actuator volume flow u = qa

and the switching law is given by (2.69), (2.70), where ϕ(u) = −u, i.e., for u ≤ 0 the 1st
subsystem is active, for u ≥ 0 the 2nd one. The values of the model parameters have been
taken from [94] and are given in Table 8.2.
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8.2 Self Supplied Variable Displacement Axial Piston Pump

Figure 8.5: Schematic diagram of the axial piston pump [94].

Table 8.2: Parameters of the pump.

Model parameter Symbol Value Unit

Bulk modulus β 1.6 × 109 Pa
Effective area of the actuator Aa 300 mm2

Effective radius of the actuator ra 50 mm
Load coefficient kl 50 × 10−9 m3/s

√
Pa

Load volume Vl 1.5 l
Pump coefficient kp 2.23 × 10−3 m3/s

8.2.1 Feedforward Design

We intend to design a controller which makes the load pressure

y = h(x) = x2 = pl (8.37)

asymptotically track a desired trajectory yd(t). Note that, in view of the model equations
(8.36), yd(t) obviously has to satisfy yd(t) ≥ 0. Again, we first analyze the system with
regard to the solvability of the EOT problem, which is necessary for the solvability of the
AOT problem. Since Lg1h(x) = 0, Lg1Lf1h(x) = − βkp

AaraVl
the 1st subsystem has a well

defined relative degree r1 = 2 = n, and from Lg2h(x) = − β
Vl

we conclude that r2 = 1.
Consequently, it holds that r1 > r2.
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The z1 coordinate system is given by

z1 =

ξ1,1

ξ1,2


 = Φ1(x) = h2

1(x) =

 x2
β
Vl

(
kpx1 − kl

√
x2
)

 . (8.38)

The change of coordinates z1 = Φ1(x) puts the 1st subsystem into the form

ξ̇1,1 = ξ1,2 (8.39)

ξ̇1,2 = −βkl2Vl
ξ1,2√
ξ1,1
− βkp
VlAara

u . (8.40)

In the same coordinates, the 2nd subsystem is given by

ξ̇1,1 = ξ1,2 −
β

Vl
u (8.41)

ξ̇1,2 = −βkl2Vl
ξ1,2√
ξ1,1
− βkp
VlAara

u+ β2kl

2V 2
l

√
ξ1,1

u . (8.42)

Thus, it takes the form (7.84) and we identify

α̃1(z1) = −βkl2Vl
ξ1,2√
ξ1,1

, β̃1 = − βkp
VlAara

, bn(z1) = − βkl

2Vl
√
ξ1,1

, %̃x = 0 , %̃u = − β
Vl
.

Moreover, (7.80) is satisfied.
In Theorem 7.2.5, the requirement that the differential equation (7.91) is input-to-state

stable has been imposed to guarantee that the internal state of the 2nd subsystem remains
bounded for all reference trajectories. For the considered system this is verified more
easily in x coordinates (see below) and has already been noted in [94]. Since all physical
parameters are positive it holds further that β̃1(z1)

%̃u(z1) > 0 and hence the EOT problem is
solvable according to Theorem 7.2.5.
As long as ud(t) ≤ 0 (i.e., ϕ(ud) ≥ 0 and hence σd = 1), the trajectory xd(t) corresponding

to a desired trajectory yd(t) is

xd,1(t)
xd,2(t)


 =


ψp,d(t)
pl,d(t)


 =



Vl
βkp
ẏd(t) + kl

kp

√
yd(t)

yd(t)


 (8.43)

and the feedforward control is given by

ud(t) = −Aara
kp


Vl
β
ÿd(t) + kl

2
ẏd(t)√
yd(t)


 . (8.44)
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In intervals [ti, ti+1) with ud(t) ≥ 0 (i.e., ϕ(ud) ≤ 0 and thus σd = 2), we have

xd,2(t) = pl,d(t) = yd(t) (8.45)

and xd,1(t) = ψp,d(t) is the solution of the initial value problem

ẋd,1 = − kp
Aara

xd,1 + 1
Aara

(
kl
√
yd(t) + Vl

β
ẏd(t)

)
, xd,1(ti) = Vl

βkp
ẏd(ti) + kl

kp

√
yd(ti) .

(8.46)
The corresponding feedforward control is given by

ud(t) = −Vl
β
ẏd(t) + kpxd,1(t)− kl

√
yd(t) . (8.47)

Now, note that the 2nd subsystem is in input-output normal form already in x coordinates.
The internal dynamics are described by the differential equation (8.46), and it is clear that
xd,1 remains bounded for all bounded Y2

d(t).

8.2.2 IDA Controller Design

In this subsection, we use the controller design methodology presented in Chapter 6 to
determine an error controller that asymptotically stabilizes the tracking error. We observe
that in x coordinates the 2nd subsystem can be rewritten as

ẋ = f(x) +
[
g1 + [0, 1]T%u

]

︸ ︷︷ ︸
g2

u (8.48)

and hence the model of the pump (8.36) belongs to the special class of systems considered
in Subsection 7.3.3. Therefore, we can again invoke Theorem 7.3.1 to conclude that it
suffices to consider only the 1st and the 2nd subsystem of the error system (7.109) given
by 

ė1

ė2


 =


 0
β
Vl

(
kpe1 − kl

√
e2 + xd,2(t) + kl

√
xd,2(t)

)

+

︸ ︷︷ ︸
fe1 (e,t)


−

1
Aar1

0


 v

︸ ︷︷ ︸
ge1

(8.49)

and 
ė1

ė2


 =


 0
β
Vl

(
kpe1 − kl

√
e2 + xd,2(t) + kl

√
xd,2(t)

)

+

︸ ︷︷ ︸
fe2 (e,t)


−

1
Aar1

− β
Vl


 v

︸ ︷︷ ︸
ge2

(8.50)
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for the controller design, provided that we are able to find a common feedback law together
with a corresponding common Lyapunov function.
It is our intention to apply the systematic procedure described in Section 6.4 for the

controller design. Since the switched system made up of (8.49) and (8.50) does not have
the desired form (6.23), we introduce with

e3 = v , ė3 = v̄ (8.51)

the new state variable e3 and the new input v̄. In order that the first component of e is the
actuated one as in (6.23), we renumber the error states such that e1 = v, e2 = ψp − ψp,d,
and e3 = pl − pl,d. By this means, we obtain a switched system with the 1st subsystem
given by 



ė1

ė2

ė3


 =




0
− 1
Aar1

e1
β
Vl

(
kpe2 − kl

√
e3 + pl,d(t) + kl

√
pl,d(t)

)


+




1
0
0


 v̄ (8.52)

and the 2nd subsystem by



ė1

ė2

ė3


 =




0
− 1
Aar1

e1
β
Vl

(
kpe2 − kl

√
e3 + pl,d(t) + kl

√
pl,d(t)− e1

)


+




1
0
0


 v̄ . (8.53)

Obviously, this system has the desired form (6.23), and it is not difficult to see that it
satisfies Assumption 6.4.1 with

C =

1 0
κ 1


 , where κ = raAaβ

Vl
. (8.54)

The eigenvalues of this matrix are λ1 = λ2 = 1. Thus, it follows from Theorem 6.4.3 that
there are design matrices F1, F2 with Fν

1 = CFν
2 such that both dissipation matrices are

positive definite.

Construction of the design matrices

In order to construct a set of suitable design matrices, as in the example in Section 6.9.1,
we follow the procedure described in Section 6.4.4. We determine the set of solutions of

CX + XTCT = Q (8.55)
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for all Q ≥ 0 according to (6.46), where C is given by (8.54). Setting Fν
1 = [FC

1 , −X]
with FC

1 = [ν1,11, ν1,21]T we obtain

Fν
1 =


ν1,11 −1

2k
2
11

1
4k

2
11κ− 1

2k12k11 + ρ

ν1,21
1
4k

2
11κ− 1

2k12k11 + ρ −1
2

(
1
2k

2
11κ

2 + k2
22 + k2

12 − k12k11κ
)
− κρ


 (8.56)

and

Fν
2 = CFν

1 =

 ν1,11 −1

2k
2
11

1
4k

2
11κ− 1

2k12k11 + ρ

κν1,11 + ν1,21 −1
4k

2
11κ− 1

2k12k11 − ρ −1
2k

2
22 − 1

2k
2
12


 . (8.57)

Invoking Sylvester’s criterion, we deduce the conditions

k11 6= 0 , 1
4k

4
11κ

2 + k2
11k

2
22 + 2k2

11κρ > 0 (8.58)

for sym{X} > 0.

Solvability of the projected matching equation

We consider the projected matching equation (6.26) for p = 1. Since we have chosen the
design matrices independent of x, we can utilize the condition (2.39) to assess its solvability.
We obtain

− ν1,21

Aara
+ βkpk

2
11

2Vl
+
βkl

(
1
4k

2
11κ− 1

2k12k11 + ρ
)

2Vl
√
e3 + pl,d(t)

= 0 (8.59)

which can be satisfied by setting

ρ = 1
2k12k11 −

1
4k

2
11κ , ν1,21 = Aaraβkpk

2
11

2Vl
. (8.60)

Positive Definiteness of the dissipation matrices

To achieve positive definiteness of R1 = −sym{F1}, we choose FB
1 = −(FC

1 )T , i.e.,

α1,12 = −ν1,11 , α1,13 = −ν1,21 = −Aaraβkpk
2
11

2V l . (8.61)

Then, R1 is of the form (6.33) and thus positive definite, if FA
1 = α11,1 < 0 and sym{X} > 0.

The latter holds true, if c11 6= 0 and

k2
11k

2
22 −

1
4k

4
11κ

2 + k3
11k12κ > 0 (8.62)
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which is obtained by substituting the expression assigned to ρ in (8.60) into (8.58). Positive
definiteness of R2 will be ensured after the feedback function r1(e, t) has been designed.

Solving the projected matching equation

A solution of the the projected matching equation can be obtained as outlined in Section
2.2.4. The matrix T−1 in (2.37) is T−1 = [t1 (Fν

1)T ] with t1 = [1 0 0]T . In these coordinates,
a particular solution is given by

Ψζ(ζ, t) = − 1
Aara

ζ1ζ2 −
ν1,11

2Aara
ζ2

2 −
βkpk

2
11

2Vl
ζ2ζ3 + βkpk11

2Vl

(
k11κ

2 − k12

)
ζ2

3

+ βkl [4pl,d(t)− 2(k2
22 + k2

12)ζ3]3/2

6Vl(k2
22 + k2

12) +
βkl

√
pl,d(t)
Vl

ζ3 .

(8.63)

Moreover, ζ1 is a characteristic coordinate. The homogeneous solution is chosen as
φζ(ζ1) = µ2ζ

2
1 , whereby, as desired, ∇H(e, t)|e=0 = 0 is achieved for

H(e, t) =
[
Ψζ(ζ, t) + Φζ(ζ1)

]
ζ=Te

. (8.64)

Controller tuning

In order to obtain suitable values for the design parameters, as suggested in Section 6.8,
we apply LLDA to the 1st subsystem. Since the closed loop error system is time-varying,
we proceed as described in Section 2.3.2. Assuming that the operating region of the pump
is between pl,d,min = 40 bar and pl,d,max = 100 bar, we evaluate the unactuated part of the
linearization of the first subsystem (8.52)

Aν
1 =


−

1
Aara

0 0
0 βkp

Vl
− βkl

2Vl
√
pl,d


 (8.65)

at an average pressure of p̄l,d = 70 bar to obtain sAν
1. The submatrix sAα

1 is chosen such
that sA1,d has three eigenvalues in −100. As we have suggested at the end of Section
2.3.2, we solve the equations (2.57)-(2.59) only for pl,d(t) = p̄l,d in order to obtain constant
design matrices. This yields expressions of the form α1,11 = α1,11(k11, k12, k22), ν1,11 =
ν1,11(k11, k12, k22), µ2 = µ2(k11, k12, k22). The remaining free parameters k11, k12, k22 are
chosen such that α11 > 0 and (8.62) hold. Suitable values are k11 = 2, k12 = −2 and k22 = 3

2 .
The entries of Fα

2 remain as free parameters. They have to be chosen such that a
common controller is obtained, i.e., r1(e, t) = r2(e, t), where the feedback functions rp,
p ∈ {1, 2} are given by (6.11). Since the actuated components of both subsystems (8.52),
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(8.53) are identical, this is fulfilled, if we choose Fα
2 = Fα

1 . It is easily checked that this
choice also leads to a positive definite dissipation matrix R2. The eigenvalues of the closed
loop linearization of the 2nd subsystem are located in −129.3± 86.4i and −41.3.

Now we need to verify that the conditions of Theorem 7.3.1 are satisfied. To this end,
we derive time invariant bounds Wi(e), i = 1, 2, 3 satisfying (6.86), (6.87) and show that
they are positive definite. The bounds W1(e) and W2(e) for the Hamiltonian H(e, t) are
obtained as follows. The function H(e, t) can be written as

H(e, t)= eTQe−17.07
√
pl,d(t)e3 + 11.38

(
−p

3
2
l,d(t) +

√
e3 + pl,d(t)pl,d(t) +

√
e3 + pl,d(t)e3

)

︸ ︷︷ ︸
ϑ(e3,pl,d(t))

(8.66)
with a constant matrix Q > 0. Note that the energy function is only well-defined, if the
argument of the square root is nonnegative. Since we have assumed that the operating
range of the pump is pl,d ∈ [40 bar, 100 bar] this means that the error in the pressure must
not be smaller than −40 bar. From (8.66), we observe that only the part of the energy
function which is denoted by ϑ(e3, t) is time dependent. This function satisfies for all
pl,d > 0 that

ϑ(0, pl,d) = 0 , ∂

∂e3
ϑ(e3, pl,d)

∣∣∣∣∣
e3=0

= 0 (8.67)

and
∂2

∂e2
3
ϑ(e3, pl,d) > 0 , ∀ e3 > −40 bar . (8.68)

Hence, ϑ(e3, pl,d) is strictly convex in e3 for all pl,d and attains its minimum in e3 = 0.
Consequently, the energy function is strictly convex in e for all pl,d. Moreover, it holds that

∂

∂pl,d
ϑ(e3, pl,d)|e3=0 = 0 , ∀ pl,d (8.69)

and
∂2

∂pl,d∂e3
ϑ(e3, pl,d) = −

8.53
(√

e3 + pl,d −√pl,d
)

√
pl,d
√
e3 + pl,d

. (8.70)

The latter is, for all admissible pl,d, equal to zero if e3 = 0, positive if e3 < 0 and negative
if e3 > 0. Hence, we conclude that ∂

∂pl,d
ϑ(e3, pl,d) ≤ 0 for all admissible pl,d and e3. As

a consequence, a time-invariant lower bound for H(e, t) is W1(e) = H(e, 100 bar), and a
time-invariant upper bound is given by W2(e) = H(e, 40 bar). According to the above
considerations, both functions attain their minimum at e = 0 and are strictly convex over
R2 × [40,∞). Thus, they are positive definite.
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In order to determine a function W3(e) satisfying (6.87), we consider the term

∂

∂t
H(e, pl,d(t)) = ∂

∂pl,d
H(e, pl,d)ṗl,d

= − 8.53
√
pl,d
√
e3 + pl,d

[
e3
√
e3 + pl,d − 2e3

√
pl,d − 2p

3
2
l,d + 2pl,d

√
e3 + pl,d

]
ṗl,d .

(8.71)

It holds, for all pl,d, that ∂
∂pl,d

H(e, pl,d)|e3=0 = 0 and

∂2

∂pl,d∂e3
H(e, pl,d) = −

8.53
(√

e3 + pl,d −√pl,d
)

√
pl,d
√
e3 + pl,d

(8.72)

which is zero for e3 = 0, negative for e3 > 0 and positive for e3 < 0. Hence, we conclude
that ∂

∂pl,d
H(e, pl,d) < 0 for all e3 6= 0. Now we assume that in the operating region of the

system it holds that |ṗl,d| ≤ ṗl,d,max = 1000bar
s . Then the functionW3(e) = min{W3,1,W3,2}

satisfies (6.87) for all pl,d(t) ∈ [40, 100] and |ṗl,d(t)| ≤ 1000, where

W3,p = min
pl,d∈[40,100]

(
∂H(e, pl,d)

∂e

)T
Rp

∂H(e, pl,d)
∂e

+ ∂

∂pl,d
H(e, pl,d)ṗl,d,max , p ∈ {1, 2} .

(8.73)
Based on these results, we determine in the following the DA of the equilibrium e∗ = 0

of the closed loop error system. To this end, we have to determine the largest bounded
sublevel set of W1(e) within which W3(e) is positive definite and e3 ≥ −pl,d,min = −40 bar.
The latter requirement ensures that pl = e3(t) + pd,min ≥ holds along all trajectories
starting within the estimated DA, and thus that the argument of the square root in (8.36)
is nonnegative. In principle, we could use the algorithm presented in Section 3.3.2 to obtain
a suitable level value. However, the largest bounded sublevel set of W1(e) within which
e3 ≥ −pl,d,min holds, say SW1

d̃
(0), can be calculated analytically. Therefore, we proceed

similar to the example in Section 5.3. That means, we determine, in a first step, a discrete
representation of ∂SW1

d̃
(0), and, in a second step, the largest sublevel set SW1

ĉ (0) within
SW1
d̃

(0) that satisfies W3(e) > 0, ∀ e ∈ SW1
ĉ (0) \ {0}.

Since W1(e) is a strictly convex function, we can determine the level value d̃ by solv-
ing the minimization problem mineW1(e) under the constraint e3 = −pl,d,min. To do
so, we substitute e3 = −pl,d,min into W1(e) and solve the linear system of equations
∂
∂ei
W1(e1, e2,−pl,d,min) = 0, i = 1, 2. This yields the point ẽd̃ = [0, 1.15pl,d,min, −pl,d,min]T .

With pl,d,min = 40 bar, the corresponding level value is d̃ = 93.32.
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Figure 8.6: Estimated stability boundary for the closed loop axial piston pump.

In order to determine the level value ĉ, we proceed similar to Algorithm 3.2 in Section
3.3.2, only that we do not consider gv(λ) and that we restrict the search to SW1

d̃
(0) instead

to the ball BR. Like the minimum over all times t in Section 3.3.2, the minimum (8.73) over
all pl,d in the operating region is determined by discretizing the interval [pl,d,min, pl,d,max]
into a sequence of points pl,d,1, . . . , pl,d,N with N = 30. It turns out that ĉ = d̃, i.e., the
estimate of the DA is determined by the requirement that e3(t) ≥ −pl,d,min, ∀ t must hold
true for all trajectories starting therein. The estimated stability boundary is depicted in
Figure 8.6. It is worth pointing out that the utilized functions Wi(e), i = 1, 2, 3 meet the
requirements of Theorem 6.7.1 not only for a particular trajectory pl,d(t), but for all desired
trajectories of the load pressure in the operating region, i.e., pl,d(t) ∈ [p,ld,max, pl,d,min] and
|ṗl,d(t)| ≤ ṗl,d,max. As a consequence, the stability result and the estimated DA are valid for
all these trajectories (see also Remark 3.3.3). Simulation results are shown in Figure 8.7.
The desired trajectory of the load pressure is specified (in bar) by the following piecewise
defined polynomial

pl,d(t) =





1.5 · 104t3 − 4.5 · 103t2 + 100 for 0 ≤ t ≤ 0.2

40 for 0.2 < t ≤ 0.4

−1.5 · 104t3 + 2.25 · 104t2 − 1.08 · 104t+ 1720 for 0.4 < t ≤ 0.6

. (8.74)

The initial values have been set to ψ(0) = 4.1◦, pl(0) = 90 bar, and v(0) = 0 resulting
in the initial error state e(0) = [0 0 − 10 bar] (recall the dynamic extension (8.51)). At
t = 0.25 s a disturbance d = [0, 3000 bar

s ]T is acting on the right hand side of the model
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Figure 8.7: Simulation results for the self-supplied variable displacement axial piston pump with
an IDA-based error controller, initial values ψ(0) = 4.1◦, pl(0) = 90 bar, and a
disturbance acting on the system at t = 0.25 s.
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Figure 8.8: Feedforward control ud = qa,d at the switching times t1,d (left) and t2,d (right).

(8.36) for 4 ms causing a deviation from the reference trajectory. As desired, the tracking
error tends to zero and the load pressure asymptotically tracks the desired trajectory.
In Figure 8.8, the feedforward control ud(t) = qa,d(t) is shown at the switching times t1,d

and t2,d. It can bee seen that qa,d exhibits a jump when switching from the 2nd to the 1st
subsystem occurs at t1,d [see Figure 8.8 (right)], while it is continuous, when the system
switches from the 1st to the 2nd subsystem at t2,d. Moreover, it can be seen that, after
t2,d, the control qa,d has slope zero, i.e., q̇a,d(t2,d) = 0. Considering that %̃ = − β

Vl
qa, these

observations are consistent with the results in the proof of Theorem 7.2.5. The jumps in
the control input at 0.2 s and 0.4 s (see Figure 8.7) are due to the fact that the second
derivative of the piecewise defined reference trajectory (8.74) is not continuous at these
time instants.

8.3 Concluding Remarks

In this chapter, two technical systems have been used to demonstrate the applicability
of the results presented in the Chapters 6 and 7: a DC motor with asymmetric friction
characteristic and a self supplied variable displacement axial piston pump. In the motor
model state-dependent switching occurs due to the different friction behavior for positive
and negative values of the angular velocity, while the mathematical model of the axial
piston pump exhibits input-dependent switching because of the fact that the pump is self
supplied.
Using the conditions derived in Section 7.2, we have been able to show that for both

systems the EOT problem is solvable. In order to solve the AOT problem, we have used
a two-degree-of-freedom structure comprising a feedforward part and an error controller.
It has been found that the design of the latter can be considerably simplified by means
of the result proven in Subsection 7.3.3. In order to effectively construct a feedback law
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that asymptotically stabilizes e∗ = 0, we have applied the IDA-based controller design
methodology for switched systems proposed in Chapter 6. This approach has enabled us to
determine controllers for the switched time-varying error systems in a systematic manner,
which is a crucial aspect regarding practical applicability. Moreover, it has been found
that the controllers achieve good dynamic performance in terms of speed and shape of
the transient response. In the case of the axial piston pump, a further advantage of the
method has been exploited, namely that the common energy function, that constructively
comes out of the controller design process, can be utilized to estimate the DA. Besides the
IDA based control schemes, also the LMI-based design methodology proposed in Section
7.3.4 has been successfully verified using the example of the DC motor.
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Conclusion

The design of high performance control systems generally relies on model-based control
methods, and, in most cases, nonlinear models are necessary to achieve the required
accuracy. Moreover, in the last two decades, switched systems have proven to provide
a powerful framework for the modeling of a wide range of technical systems. Therefore,
the development of constructive techniques for the control of both smooth and switched
nonlinear systems is an important issue. Furthermore, from a practical point of view,
methods that allow the systematic and transparent tuning of the controllers are of great
interest.
This thesis is primarily devoted to the development of new methods for the constructive

design and the systematic tuning of passivity-based controllers for smooth and switched
nonlinear systems. The main problems that have been addressed are: (1) the estimation
and enlargement of the DA of IDA controllers; (2) passivity-based stabilization of switched
nonlinear systems; and (3) the output trajectory tracking problem for bimodal switched
nonlinear SISO systems. In the following, we highlight the main results that have been
presented on each of these topics.
The first main contribution is the development of methods for estimating and enlarging

the DA of IDA controllers. We have proposed an approach to determine the largest
bounded sublevel set of the assigned energy function which qualifies as an estimate of the
DA and, additionally, is star-shaped w.r.t. the considered equilibrium point. It is viable
for any IDA controlled system and can also be applied in the time-varying case. Based
on this result, two numerical algorithms have been presented for the computation of the
corresponding level value. The first one is based on a multidimensional grid obtained from
discretizing the (n − 1)-dimensional unit sphere. The second one exploits numerically
calculable bounds on real valued functions. The tuning of the IDA controller to attain a
maximum estimated DA and good dynamic performance has been posed as an optimization
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problem, where the size of the estimated DA is quantified by its volume. To enable the
computation of this quantity, an explicit representation of the boundary of the estimated
DA is determined by numerical approximation. The desired transient behavior is taken into
account utilizing the LLDA approach. In order to guarantee the positive semidefiniteness
of the dissipation matrix without adding constraints to the optimization problem, a specific
parametrization of the design matrix has been proposed, which is also of interest on its
own.
The proposed methods allow us to estimate the DA of an IDA controller based on the

assigned energy function and thus to fully exploit the closed loop pH structure, that is a
fundamental feature of IDA. Moreover, the presented optimization approach enables the
systematic and transparent tuning of IDA controllers so as to achieve both a large DA and
high dynamic performance. This has been shown by several examples, where the obtained
IDA feedback laws also have outperformed two benchmark controllers in terms of both
size of the DA and dynamic performance. Moreover, the procedure is relatively easy to
implement, which is desirable in the interest of broad practical applicability. The proposed
parametrization of the design matrix allows us to guarantee the positive semidefiniteness
of the dissipation matrix without considering complex inequalities, which constitutes a
clear practical advantage.
Furthermore, we have presented in Chapter 6 a constructive passivity-based controller

design methodology for switched nonlinear systems, which assigns an spH structure to the
closed loop system and in this sense represents a natural extension of the conventional
IDA method. The key observation which motivated our development has been that spH
systems are uniformly (asymptotically) stable. The methodology is constructive in nature
and its application is not restricted to switched systems of a special class. In fact, the
method has been shown to generate all static feedback laws that render the closed loop
system uniformly asymptotically stable. Moreover, it is applicable also for the stabilization
of time-varying switched systems. For a special class of bimodal switched systems, we
have put forth a systematic procedure that enables the straightforward construction of
suitable design matrices and simplifies the ensuing controller design considerably. The
tuning of the controller parameters is accomplished with the help of LLDA. An estimate
of the DA can be determined by employing the methods presented in Chapter 3. It has
been demonstrated by examples that the proposed strategy is a viable tool for the control
of technical systems. Simulation results have shown that the resulting control laws achieve
good dynamic performance.
The third main contribution of this thesis is to investigate the output trajectory tracking

problem for bimodal switched nonlinear SISO systems. We have derived necessary and
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sufficient conditions for the solvability of the EOT problem under trajectory-independent
switching. It has been found that these conditions can be satisfied only for special pairs
of switching signal and reference trajectory. Moreover, we have investigated the EOT
problem for systems with state- and/or input-dependent switching law, which constitutes
one of the main results of Chapter 7. We have proven necessary conditions under which
this problem is solvable for all bounded reference trajectories with bounded derivatives.
Under some additional hypothesis, including that the tracking output is a flat output for at
least one of the two subsystems, we have also established sufficient conditions. Besides the
EOT problem, we have also explored the solution of the AOT problem using a two-degree-
of-freedom structure. Since it has been found that in the case of trajectory-dependent
switching the stabilization of the tracking error dynamics is, in general, quite involved, we
have identified two classes of switched systems for which the design of an error controller
can be facilitated considerably.
The conditions for the solvability of the EOT problem are not only theoretically inter-

esting, but also of significant practical importance. The necessary conditions enable to
identify situations where, in order to realize exact output tracking, it is inevitable to either
restrict the reference trajectories to a special class, or to appropriately modify the model,
especially when the switching behavior is due to approximations made to reduce the model
complexity. The sufficient conditions can be used to guarantee the reliable operation of a
technical system for arbitrary reference trajectories. The practical relevance of the results
that we have presented on the AOT problem is quite apparent. As illustrated by two
technical examples, they considerably simplify the design of an output tracking controller
for two classes of switched systems.
Interesting areas of future research are:

i) In Section 6.4 we have presented a systematic method for the passivity-based stabiliza-
tion of a class of switched nonlinear systems. It would be very useful to extend this
procedure to other classes of switched systems, possibly supported by numerical tools.

ii) When studying the output trajectory tracking problem in Chapter 7, we have restricted
our attention to bimodal switched SISO systems. It is interesting to investigate this
issue for more general classes of switched systems, which have multiple inputs and
outputs and/or more than two subsystems. A closely related problem that occurs if
the considered switched system is not able to track arbitrary output trajectories is to
identify admissible reference trajectories that satisfy the requirements dictated by the
technical problem at hand.
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iii) The methods in this thesis enable the constructive design and the systematic tuning
of IDA controllers for smooth and switched systems. Hence, they could be used to
implement a toolbox that allows the largely automated design and tuning of IDA
controllers in interaction with the user. This can be accomplished by combining
computer algebra systems with numerical tools.

iv) It would be very interesting to further extend the IDA method in order to handle
switched and non-switched systems with impulse effects like, for instance, mechanical
systems with unilateral constraints [22]. A concrete example, that recently has received
a great deal of attention, is a bipedal walking robot (see e.g. [2]). Methods are to be
developed that allow the constructive design and transparent tuning of IDA controllers
also for these types of systems. In [74], the IDA method has been adapted for
the stabilization of (non-switched) pH systems with impulses. However, the given
conditions are very complicated, and the authors do not address the question of how
to obtain a solution.

v) Another passivity-based controller design method that uses the pH framework is
Control by Interconnection (see e.g. [138] for an excellent survey), which, in some cases,
leads to dynamic output feedback controllers. The basic idea is to interconnect the
plant, which has to be given in pH form, with another pH system, that represents the
controller. In order to shape the overall energy of the closed loop system, a relation
between the states of the controller and the plant is established using so-called Casimir
functions. It would be interesting to generalize the Control by Interconnection method
to the class of spH systems. This implies the computation of Casimir functions which
are common to all subsystems of the closed loop spH system.

vi) In many applications it is not possible to measure the whole state vector making the
application of an observer inevitable for the implementation of state feedback laws.
Thus, from a practical point of view, the design of observers for switched nonlinear
systems is a highly relevant problem. In [13], [147], [173], the design of observer-based
controllers is addressed for linear switched systems, but we are not aware of any
publication that is dealing with this problem in a nonlinear context. For non-switched
nonlinear systems, an observer design framework, that is inspired by the Immersion
and Invariance approach [5], has been proposed in [92] and applied in combination
with an IDA controller in [175]. It would be interesting to investigate the use of this
observer design technique also for switched nonlinear systems.
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Appendix A

Mathematical Background

A.1 Multi-Index Notation

A multi-index α = (α1, . . . , αn) is an n-tuple of nonnegative integers. Given x ∈ Rn and a
multi-index α, we use the notation

xα = xα1
1 · xα2

2 · · ·xαnn (A.1)

for a monomial in the n variables x1, . . . , xn. For example, if α = (2, 3), then xα = x2
1x

3
2.

Further, we denote by |α| = α1 + . . . + αn the total degree of the monomial xα and we
define the factorial as

α! = α1! · · ·αn! . (A.2)

A polynomial with total degree N is then written as

P =
∑

|α|=N
aαxα . (A.3)

Moreover, given a function f : Rn → R and a multi-index α, the notation

Dαf(x) = ∂|α|f(x)
∂xα1

1 . . . ∂xαnn
(A.4)

is used for the partial derivatives. For example, if f : R2 → R and α = (1, 2), then

Dαf(x) = ∂3

∂x1∂x2
2
f(x) . (A.5)
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Appendix A Mathematical Background

A.2 Schur Complements and Positive Semidefinite
Matrices

Consider a symmetric matrix M ∈ Rn partitioned as

M =

 A B
BT C


 . (A.6)

The Schur complement of A is defined as

SAM = C−BTA†B (A.7)

with A† the pseudo-inverse of A. The Schur complement of C is

SCM = A−BC†BT . (A.8)

In the following, we summarize some results on the relation between the Schur complements
and the positive (semi-) definiteness of a matrix M, which can be found e.g. in [63] (see
also Appendix A.5.5 in [17]).

Proposition A.2.1 (Propositions 16.1 in [63]). For any symmetric matrix (A.6), if C is
invertible, the following properties hold:

(1) M > 0 if and only if C > 0 and A−BC−1BT > 0.

(2) If C > 0, then M ≥ 0 if and only if A−BC−1BT ≥ 0.

Proposition A.2.2 (Propositions 16.2 in [63]). For any symmetric matrix (A.6), if A is
invertible, the following properties hold:

(1) M > 0 if and only if A > 0 and C−BTA−1B > 0.

(2) If A > 0, then M ≥ 0 if and only if C−BTA−1B ≥ 0.

Theorem A.2.1 (Theorem 16.1. in [63]). Given a symmetric matrix (A.6), the following
conditions are equivalent:

(1) M ≥ 0.

(2) A ≥ 0 , (I−AA†)B = 0 , C−BTA†B ≥ 0.

(3) C ≥ 0 , (I−CC†)BT = 0 , A−BC†BT ≥ 0.
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Technical Proofs

B.1 Proof of Lemma 6.4.2
From Theorem 2.3 in [168] it is known that

i±(R)= i±(RA)+ i±


 0 EA

RRB

(
RB

)T
EA

R SAR


 (B.1)

where SAR = RD−(RB)T (RA)†RB is the Schur complement of RA and EA
R = I−RA(RA)† is

the orthogonal projector onto R{RA}. With Theorem A.2.1 above we conclude from R ≥ 0
that RA ≥ 0, EA

RRB = 0, and SAR ≥ 0. Hence, it holds that i+(R) = i+(RA) + i+(SAR) ≤
i+(RA) + i+(RD). That the latter relation can be satisfied with equality sign follows from
(B.1) with RB = 0.

B.2 Proof of Theorem 6.4.2
In order to prove necessity, suppose that there is a matrix X0 with sym{X0} ≥ 0, i.e.,
X0 + XT

0 ≥ 0, satisfying
AX0 + XT

0 AT = Q ≥ 0 . (B.2)

Let vi denote the left eigenvectors of A, i.e. v∗A = λiv∗i , 1 ≤ i ≤ n. Multiplication of
(B.2) by v∗i on the left and vi on the right yields

λiv∗iX0vi + λ∗iv∗iXT
0 vi = v∗iQvi ≥ 0 , 0 ≤ i ≤ n (B.3)

and for real eigenvalues, i.e., λi = λ∗i ,

λiv∗i
(
X0 + XT

0

)
vi = v∗iQvi ≥ 0 . (B.4)
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Since v∗i
(
X0 + XT

0

)
vi ≥ 0 and v∗iQvi ≥ 0, for left eigenvectors vi corresponding to real

negative eigenvalues λi < 0, it has to be fulfilled that vi ∈ N{X0 + XT
0 }, and for left

eigenvectors corresponding to real non-positive eigenvalues λi ≤ 0, it must hold that
vi ∈ N{Q}. Hence, i0(sym{X0}) ≥ ir−(A) and it follows immediately that sym{X0}
cannot have more than n− ir−(A) positive eigenvalues.
To prove sufficiency, we show in the following that, for every Q which satisfies vi ∈ N{Q}

for all left eigenvectors vi of A corresponding to non-positive eigenvalues, there exists in
fact a solution X which satisfies (6.40). Note that, under the formulated condition for Q, it
holds thatR(Q) ⊆ R(A), and hence equation (6.38) is solvable according to Theorem 6.4.1.
It is well known that there is a nonsingular matrix V such that AT = VDV−1, where

D is a Jordan matrix and V contains the eigenvectors and generalized eigenvectors of AT ,
which are the left eigenvectors and generalized left eigenvectors of A [122]. Using this,
(6.38) can be transformed into

D∗X̂ + X̂∗D = Q̂ (B.5)

with X̂ = V∗XV and Q̂ = V∗QV. The matrix D is partitioned into blocks according
to D = diag {D11,D22,D33,D44}, where D11 ∈ Cn1×n1 contains all eigenvalues in the
right half plane, D22 ∈ Cn2×n2 the complex eigenvalues with non-positive real part,
D33 ∈ Rn3×n3 the zero eigenvalues, and D44 ∈ Rn4×n4 the negative real eigenvalues. The
matrix D22 is such that every eigenvalue λj is followed by its conjugate complex λ̄j, i.e.,
D22 = diag{. . . , λj, λ̄j, . . .}. This form can always be achieved by ordering the eigenvectors
and generalized eigenvectors in V appropriately. After partitioning X̂ and Q̂ into blocks
accordingly

X̂ =
[
X̂ik

]
, i, k ∈ {1, . . . , 4} , X̂ik ∈ Cni×nk (B.6)

Q̂ =
[
Q̂ik

]
, i, k ∈ {1, . . . , 4} , Q̂ik ∈ Cni×nk (B.7)

and taking into account that both sides of (B.5) are Hermitian, the equation breaks up
into 10 matrix equations

D∗iiX̂ik + X̂∗kiDkk = Q̂ik , i ∈ {1, . . . , 4}, k ∈ {i, . . . , 4}. (B.8)

In the following, we let X̂[1,l] = [X̂ik], i, k ∈ {1, . . . , l}, and analogously we define Q̂[1,l].
For i = k = 1, if we choose X̂11 to be Hermitian, i.e., X̂11 = X̂∗11, the matrix equation

(B.8) turns into a Lyapunov equation, which by virtue of i+(D11) = n1 and Q̂11 > 0 has a
unique positive definite solution X̂11 = X̂∗11 > 0 [141].
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Next, we consider (B.8) for i = k = 2, i.e.,

D∗22X̂22 + X̂∗22D22 = Q̂22 (B.9)

where D22 = diag{λ1, . . . , λn2} with λ2i = λ̄2i−1, i ∈ {1, . . . , n2
2 }. For simplicity of notation,

we have numbered the eigenvalues in D22 starting from 1. The matrix X̂22 ∈ Cn2×n2

possesses the following structure. If we partition it into 2× 2 blocks Θjl = ‖θrs‖, j, l ∈
{1, . . . , n2

2 }, r, s ∈ {1, 2}, then θ22 = θ̄11 and θ21 = θ̄12. This follows from the fact that X
is a real matrix, and thus complex eigenvalues as well as the corresponding eigenvectors
occur as conjugate pairs. Hence, we see that

Θjl =

θ11 θ12

θ21 θ22


 =


v∗j
v̄∗j


X

[
vl v̄l

]
=

v∗jXvl v∗jXv̄l
v̄∗jXvl v̄∗jXv̄l


 =


v
∗
jXvl v∗jXv̄l

v∗jXv̄l v∗jXvl


 (B.10)

where vj, v̄j and vl, v̄l are the complex conjugate pairs of eigenvectors corresponding to
the conjugate pairs of eigenvalues λj, λ̄j and λl, λ̄l. The same considerations apply to the
structure of Q̂22 = V∗2QV2. The matrix equation (B.9) can be replaced by a system of
scalar equations, which, due to this special structure of X̂22 and Q̂22, appear in complex
conjugate pairs. Considering this together with the Hermitian structure of (B.9), we obtain
1
4(n2

2 + 2n2) scalar equations

λ̄αxαβ + x̄βαλβ = qαβ , α = 1, 3, . . . , n2

2 − 1 , β = α, . . . , n2 (B.11)

with xαβ the entries1 of X̂22. After substituting λα = λrα + iλiα, λβ = λrβ + iλiβ, qαβ =
qrαβ + iqiαβ and xαβ = xrαβ + ixiαβ into (B.11) and separating the equations into real and
imaginary terms we get

λrαx
r
αβ + λiαx

i
αβ + λrβx

r
βα + λiβx

i
βα = qrαβ (B.12)

λrαx
i
αβ − λiαxrαβ − λrβxiβα + λiβx

r
βα = qiαβ . (B.13)

For β = α, the relation (B.13) is trivially satisfied as qiαα = 0 holds for all α, and (B.12)
turns into 2λrαxrαα + 2λiαxiαα = qαα. We observe that the real part xrαα can be chosen
arbitrarily positive since the latter equation can be satisfied with xiαα. Since the αth entry
of the main diagonal of X̂22 + X̂∗22 is precisely 2xrαα, we conclude that this matrix can be
rendered positive definite by choosing the xrαα sufficiently large. Since all other blocks of

1For the sake of notational simplicity, the index ’22’ is not written in xαβ .
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X̂[1,2] + X̂∗[1,2] are independent of the xrαα and X̂11 + X̂∗11 is positive definite, we can use
Theorem A.2.1 to conclude that X̂[1,2] + X̂∗[1,2] can always be made positive definite by
making the xrαα sufficiently large.

For i = k = 3, we obtain from (B.8) the matrix equation

D∗33X̂33 + X̂∗33D33 = Q̂33 (B.14)

where Q̂33 = V∗3QV3 and the columns of V3 are the left eigenvectors that correspond to
the zero eigenvalues of A. In view of the conditions of the theorem, these are contained in
the nullspace of Q and consequently Q̂33 = 0. Moreover, since the algebraic and geometric
multiplicity of eigenvalues with non-positive real part is equal, it holds that D33 = 0.
Hence, (B.14) is trivially satisfied independently of X̂33. As a consequence, this matrix
can be chosen such that X̂33 + X̂∗33 > 0.

Next, we consider (B.8) for k = 3, i ∈ {1, 2}, i.e.,

D∗iiX̂i3 + X̂∗3iD33 = Q̂i3, i ∈ {1, 2} . (B.15)

Since Q̂i3 = V∗iQV3 and the columns of V3 are elements of N{Q} it holds that Q̂i3 = 0
for all i. Using this together with D33 = 0 we conclude that (B.15) turns into D∗iiX̂i3 =
0, i ∈ {1, 2}. Since Dii is a regular matrix for i ∈ {1, 2}, it is necessary that X̂i3 = 0,
while X̂3i can be chosen arbitrary (e.g. X̂3i = 0). This shows that X̂[1,3] + X̂∗[1,3] > 0 is
always possible, if X̂[1,2] + X̂∗[1,2] > 0.

Now we choose X̂i4 = X̂∗4i = 0, i = 1, . . . , 4. Since, by assumption, all left eigenvectors
of A corresponding to real negative eigenvalues are contained in the nullspace of Q, it
holds that Q̂i4 = Q̂∗4i = 0 for all i ∈ {1, . . . , 4}. As a consequence, the remaining equations
D∗iiX̂i4 + X̂∗4iD44 = Q̂i4, i ∈ {1, . . . , 4} are trivially fulfilled.

With that said, X̂+X̂∗ is a positive semi-definite matrix with n4 = ir−(A) zero eigenvalues
and n − n4 = n − ir−(A) positive eigenvalues. Consequently, X = V−∗X̂V−1 is a real
solution of (6.38) and X+XT ≥ 0 possesses ir−(A) zero eigenvalues and n− ir−(A) positive
eigenvalues. We remark that, in order that X = V−∗X̂V−1 is a real matrix, we also have
to take into account the special structure of X̂12 and X̂21 which arises from the fact that
the left eigenvectors corresponding to complex eigenvalues occur in conjugate pairs (see
the discussion on the structure of X̂22 above).
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B.3 Proof of Lemma 7.2.1

By assumption, S 6= ∅ and hence we can choose some z̄1,1 ∈ S ⊆ ∂χ. Since z̄1,1 ∈ ∂χ, it
holds that ϕ̃(z̄1,1) = 0 and, by assumption, we have that ∇ϕ̃(z̄1,1) 6= 0 and that ϕ̃(z1) is
analytic. Therefore, from the analytic inverse function theorem [56], we conclude that
there exists an open neighborhood U1 = U′1 ×U′′1 of z̄1,1 with U′1 ⊂ Rn−1, U′′1 ⊂ R1 and an
analytic function w1 : U′1 → U′′1 such that for some j1

{z1 ∈ U′1 × U′′1 |ϕ̃x(z1) = 0} =
{

(zj11 , z1,j1) ∈ U′1 × U′′1
∣∣∣z1,j1 = w1(zj11 )

}
(B.16)

where zj11 denotes the vector z1 with the j1-th component omitted. Since z̄1,1 ∈ S, by
continuity of ϕ̃(i)

p (z1), i = 0, 1, 2, . . ., p ∈ P , there is a neighborhood O ⊂ U′ of z̄j11 such that
{z1|z1,j1 = w1(zj11 ), zj11 ∈ O} ∈ S. Now let ζ1,i(zj11 ) be the restriction of h̃(i−1)

2 (z1)− z1,i to
the set {z1 ∈ U′1 × U′′1|z1,j1 = w1(zj11 )} ⊂ ∂χ, i.e.,

ζ1,i(zj11 ) = h̃
(i−1)
2 (z1)− z1,i

∣∣∣
z1,j1=w1(zj11 )

, i ∈ {2, . . . , r} . (B.17)

According to (7.42), it must be satisfied that ζ1,i(zj11 ) = 0 for all i ∈ {2, . . . , r} and all zj11 ∈
O. As ζ1,i(zj11 ) is the composition of two analytic functions, it is itself an analytic function.
Since an analytic function which is zero on an open set is zero everywhere (see e.g. [161]), we
conclude that ζ1,i(zj1) = 0 for all zj11 ∈ U′1 and all i ∈ {2, . . . , r}. In case that U′1×U′′1 = Rn,
this finishes the proof. Otherwise, we take another point z̄1,2 /∈ U1 with ϕ̃x(z̄1,2) = 0 such
that the open neighborhood U2 = U′2 × U′′2 of z̄1,2, on which a function w2(zj21 ) like in
(B.16) exists, satisfies U2 ∩ U1 6= ∅. Since ζi,2(zj1) = h

(i−1)
2 (z1) − z1,i|z1,j2=w2(zj1) = 0 holds

on the intersection {z1|zj1 ∈ U′2, z1,j2 = w2(zj21 )} ∩ {z1|zj1 ∈ U′1, z1,j1 = w1(zj11 )}, as above
we deduce that ζ2,i(z

j2
1 ) = 0 holds for all zj21 ∈ U′2 and all i ∈ {2, . . . , r}. Repeating

this argument, we conclude that h(i−1)
2 (z1) − z1,i = 0 must hold for all z1 ∈ ∂χ and all

i ∈ {2, . . . , r}, which completes the proof.

B.4 Proof of Lemma 7.2.3

Since both Φ̃1(z1) = I(·) and Φ̃2(z1) are diffeomorphisms and (7.55) holds by assumption,
we only have to prove that χ1 ∩ Φ̃2(intχ2) = ∅. Note that (7.56) implies that Φ̃1(∂χ) =
Φ̃2(∂χ) = ∂χ. By virtue of (7.55), it holds that χ2 ⊆ Φ̃2(χ2). Moreover, since Φ̃1(z1) is
the identity map, the image of χ1 under Φ̃1(z1) is χ1. Now assume that χ1∩Φ̃2(intχ2) = ∅
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is not satisfied. Then we can find two points z̄1,1 ∈ intχ2 and z̄1,2 ∈ intχ2 such that
Φ̃2(z̄1,1) ∈ χ1 and Φ̃2(z̄1,2) ∈ χ2. Connect these two points by a path which completely
lies in the interior of χ2. The image of this path under Φ̃2(·) necessarily has to traverse
∂χ (in the image space). This is, however, a contradiction to the fact that Φ̃2(·) is a
diffeomorphism. Since Φ̃2(∂χ) = ∂χ, there cannot be a point in the interior of χ2 which is
mapped to a point of ∂χ.

B.5 Proof of Lemma 7.2.4
The derivative of κ along the trajectories of ż1 = f̃d,1(z1, y

(n)
d ) can be written as

κ̇1 = ∂κ

∂z1,1
z1,2 + . . .+ ∂κ

∂z1,n−1
z1,n + ∂κ

∂z1,n
y

(n)
d + ∂κ

∂γ
γ̇ . (B.18)

The derivative of the function along the trajectories of ż1 = f̃d,2(z1, y
(n−1)
d ) is

κ̇2 = ∂κ

∂z1,1
z1,2+. . .+ ∂κ

∂z1,n−1
y

(n−1)
d + ∂κ

∂z1,n

[
α̃1 −

β̃1

%̃u
%̃x +

(
β̃1

%̃u
+ bn

)
(y(n−1)
d − z1,n)

]
+ ∂κ

∂γ
γ̇ .

(B.19)
Now we rewrite y(n−1)

d as

y
(n−1)
d = z1,n + (y(n−1)

d − z1,n) = z1,n + %̃2(z1, y
(n−1)
d ) (B.20)

and the term α̃1 − β̃1
%̃u
%̃x as

α̃1 −
β̃1

%̃u
%̃x = y

(n)
d −

β̃1

%̃u
%̃x − y(n)

d + α̃1 = y
(n)
d −

β̃1

%̃u

(
%̃x + %̃u

β̃1
(y(n)
d − α̃1)

)

︸ ︷︷ ︸
%̃1(z1,y

(n)
d

)

. (B.21)

By substituting these two expressions into (B.19) and comparing it to (B.18), the desired
result is obtained.
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