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Abstract

The availability of powerful servers with terabytes of main-memory has sparked a re-
newed interest in main-memory database systems. Many early proposals focus on a
single workload type, either short transactions or long-running, read-only analytical
queries. In this thesis, we focus on allowing a broad range of workloads to be executed
concurrently on the same state of the data. While concurrency control is generally well-
researched, we determine the merit of traditional solutions in a main-memory context
and suggest solutions which are ideally suited to the changed environment. In the first
part of this thesis, the optimal mechanism for creating snapshot in main-memory data-
base systems is determined which can then be used to execute transactions and analytic
queries by running queries on a fresh, transaction-consistent snapshot. Second, we in-
troduce tentative execution, a mechanism which allows long-running transactions to be
efficiently executed side by side with short transactions and read-only analytical queries.
Third, we describe how low-footprint main-memory database systems allow for low
overhead multi-tenancy while leveraging existing operating system mechanisms to en-
force service level agreements.
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Kurzfassung

Die Verfügbarkeit leistungsstarker Server mit Terabytes an Hauptspeicher erweckt ein
erneutes Interesse an Hauptspeicher-Datenbanksystemen. Viele bekannte Ansätze fo-
kussieren sich auf eine Art von Workload, entweder kurze Transaktionen oder lang-
laufende Anfragen die nur lesend auf die Daten zugreifen. In dieser Arbeit werden
Methoden diskutiert, um Nebenläufigkeit in Hauptspeicher-Datenbanksystemen zu
ermöglichen und verschiedene Arten von Workloads parallel auszuführen. Obwohl
Nebenläufigkeit bereits Gegenstand eingehender wissenschaftlicher Untersuchungen
war, prüfen wir, wie bekannte Lösungen für das veränderte Umfeld der Hauptspeicher-
Datenbanksysteme adaptiert und optimal genutzt werden können. Zunächst wird un-
tersucht, wie ein transaktions-konsistenter Snapshot der Datenbank effizient erstellt
werden kann, um diesen für die entkoppelte und dadurch effiziente Ausführung von
langlaufenden Leseanfragen parallel zur Ausführung von Transaktionen zu nutzen. Da-
nach führen wir das Tentative Execution Verfahren zur effizienten Ausführung langlau-
fender Transaktionen parallel zu kurzen Transaktionen und Leseanfragen ein. Schließ-
lich beschreiben wir, wie Hauptspeicher-Datenbanksysteme genutzt werden können,
um Multi-Tenancy zu realisieren und wie durch das Betriebssystem zur Verfügung ge-
stellte Mechanismen zur Einhaltung von Service Level Agreements verwendet werden
können.
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Chapter 1
Introduction

For decades, a fundamental assumption for database systems was that most of the data
will reside on disk drives. Care was taken to exploit processor parallelism by concur-
rently executing multiple transactions in an interleaved fashion. With proper concur-
rency control, delays caused by accessing disk drives could be hidden without hurting
the isolation guarantees provided for individual transactions.

Early on, before the first version of the SQL standard, the effect of loosening the
assumption of most data residing on disk was investigated, for instance by DeWitt
et al. [18]. Still, main-memory database systems were not widely adopted as primary
data-stores until recently. Availability of large quantities of cheap main-memory as well
as the throughput limitations of traditional database systems have sparked a renewed
interest in main-memory database systems. Now, software which stores all data rela-
tionally – like SAP ERP – can be deployed using only SAP’s main-memory database
system HANA.

First, research focused on speeding up traditional database systems by supplying ac-
celerator software, like the TimesTen main-memory accelerator for Oracle databases.
Now, research has shifted towards completely re-evaluating all assumptions made in
traditional database systems. Many design decisions, which had so far withstood the
test of time, for instance buffer-management or lock-based concurrency control, are no
longer a given in a main-memory setting. Main-memory is not simply a faster storage
backend but instead radically alters a database system’s architecture [70].

This is due to various changes which are required when switching to a backend
which saves data purely in main-memory: First, main-memory is not persistent. When
power is lost, the recovery component needs to be able to quickly restore the consis-
tent database state without replaying weeks of logging information. Second, using
main-memory as the primary storage backend radically changes the bottlenecks inside
the database. Whereas before, transactions could be easily interleaved as they took
many milliseconds to execute, typical transactions finish within microseconds in a main-
memory database system, making context switches prohibitively expensive. Third, a
main-memory database system generally runs on hardware which does no longer scale
by increasing the processor’s frequency but instead by adding more cores to the ma-
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1. Introduction

chine. This changed hardware environment combined with hardware support for op-
erations like page-faults has to be properly exploited to achieve maximum throughput.

In this work, we focus on concurrency in main-memory database systems. First, we
explore how heterogeneous workloads like short transactions and complex read-only
queries – which used to be executed on separate machines running separate databases
– can be combined in a main-memory system. Second, we show how a generalized
system which executes ill-natured workloads side by side with regular transactions
can be designed without sacrificing the performance achieved for good-natured work-
loads. Third, we investigate how the newly build, flexible and high-performance main-
memory database system can be used to exploit the massive throughput capabilities
achieved on modern hardware by sharing a single physical machine among multiple
tenants.

1.1. Problem Statement

With the advent of main-memory database systems, fundamental traditional issues of
database systems research have to be re-investigated. Traditionally, database system
workloads are categorized into OnLine Transactional Processing (OLTP) and OnLine
Analytical Processing (OLAP). OLTP workloads are used to insert and modify data in-
side the database. Additionally, OLTP transactions read only small parts of the data
inside the database making these transactions short in duration. OLAP workloads are
often read-only and access large parts of the database to compute reports used to an-
alyze the data. Traditionally, OLTP and OLAP processing are not done on the same
database. Instead, two specialized stores are used and data is periodically moved from
the transactional OLTP store to the OLAP store as displayed in Figure 1.1.
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Figure 1.1.: The traditional ETL process [41].
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Our main-memory database system prototype, HyPer, reunites OLTP and OLAP pro-
cessing. Instead of running the oftentimes contending OLTP and OLAP workloads on
the same store with concurrency control, a consistent snapshot is used for OLAP query
processing as illustrated in Figure 1.2. For this technique to be successful, an efficient
snapshotting mechanism in terms of processing, memory and implementation over-
head has to be found. Traditional approaches to the creation of database snapshots
have to be adapted and analyzed. A well-understood, efficient snapshotting algorithm
enables high-performance in both OLTP and OLAP processing and therefore allows
reaching the goal of reuniting both workloads on one system and on fresh data.

OLAP Queries

c

OLTP Requests /Tx

Virtual Memory

a’

b

d

c
a

b

Figure 1.2.: The HyPer VM snapshotting architecture [41].

With OLTP and read-only OLAP workloads reunited on the same state of the data,
a natural question concerns the expansion of the runnable workloads to also include
OLAP queries which write data. While not as common as OLTP and read-only OLAP
workloads, writing OLAP workloads are required in most systems, for instance when a
result has to be stored inside the database or when interactivity – even between an appli-
cation server and the database – is required. Supporting OLAP write queries effectively
extends the set of runnable workloads to encompass all kinds of viable workloads and
unifies the database architecture. While the original design resembles the combination
of an OLTP and a read-only OLAP store on the same dataset, a system which does not
need to distinguish between read-only or writing OLAP queries removes the bound
between the two workload categories.

With a versatile main-memory database system, commodity hardware can easily
achieve transactional throughput of hundred-thousands of OLTP transactions per sec-
ond while handling OLAP queries in parallel [41]. Most users of a database do not
require throughput of this magnitude. Indeed, even Amazon only processes thou-
sands of orders per seconds before Christmas, when its sales peak1. Multi-Tenancy has
been shown to allow exploiting the resources of a server by sharing them between mul-

1See http://www.businessinsider.com/amazon-holiday-facts-2012-12.
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1. Introduction

tiple clients. This effect is more dramatic for main-memory database systems as their
throughput is orders of magnitude higher than that of traditional database systems.

In summary, multiple kinds of parallelism are desirable in main-memory systems.
Internally, OLTP and read-only OLAP should smoothly run in parallel. This can be
improved by adding parallel execution of long-running write queries to the workload
mix. Finally, allowing multiple tenants to use the database system in parallel on a single
server allows for exploiting all resources of a server and therefore increases efficiency
further.

1.2. Contributions

This work details three approaches at improving parallelism in main-memory database
systems:

An in-depth evaluation of snapshotting algorithms for main-memory database sys-
tems. When a transaction-consistent snapshot is used to execute read-only OLAP
queries and OLTP transactions at the same time, the snapshotting algorithm employed
has a pivotal impact on the performance of the system. We examine four distinct ap-
proaches for the efficient creation of main-memory database snapshots. Our evaluation
focuses on the overheads incurred by each approach. For instance, a snapshotting mech-
anism can sacrifice memory to allow for less computational overhead on snapshot cre-
ation. Likewise, a more complex scheme for maintaining a consistent snapshot can be
employed to preserve memory, causing query locality to decrease. Besides introducing
four distinct mechanisms for snapshot creation and evaluating them as full backends
for our HyPer main-memory database system prototype, we establish a classification
for snapshotting mechanisms used for OLAP query execution.

Execution of long-running write transactions without overhead for good-natured
transactions. By executing long-running read-only queries on a consistent snapshot,
HyPer unifies the execution of analytical and short transactional workloads. A require-
ment not satisfied by this approach is the need for infrequently occurring, long-running
transactions to be executed. We contribute our approach called ‘tentative execution’
which allows long-running transactions to be run in HyPer. Instead of falling back
to a traditional concurrency control technique like two-phase locking or multiple ver-
sion concurrency control, tentative execution exploits the consistent snapshot already
available in HyPer. By using the snapshot mechanism, tentative transactions do not di-
minish the throughput of good-natured, short transactions or read-only OLAP queries.
Instead, only long-running transactions require a small amount of additional work to be
processed successfully. We introduce the approach, show that traditional concurrency
control mechanisms incur a severe hit on the performance of main-memory database
systems and thoroughly evaluate our tentative execution approach.
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A main-memory database multi-tenancy approach to exploit modern hardware. A
main-memory database system run on commodity hardware can achieve throughput
in the order of hundred-thousands of transactions per second – while executing OLAP
queries in parallel. Most businesses do not require throughput of this magnitude and
therefore are unable to utilize the underlying hardware. To allow cost efficient deploy-
ment of main-memory database systems, we offer a revised approach to multi-tenancy
which exploits the small footprint of main-memory database systems. We show that
our approach allows having many tenants on the same server without diminishing the
total available throughput. We use advances in shared kernel virtualization and the
Linux kernel in general to allow low overhead resource allocation and show SLAs can
be enforced easily and efficiently in the proposed environment.

1.3. Outline
The remainder of this thesis is structured as follows:

• Chapter 2 introduces the fundamental concepts of traditional database systems
and the architecture of modern main-memory database systems. Our prototype
database system HyPer is introduced and architectural decisions made in its de-
sign are substantiated when appropriate for the discussion of new concepts in this
thesis.

• Chapter 3 evaluates four distinct mechanisms for creating a consistent snapshot
of main-memory database systems. All approaches are described and evaluated
in our main-memory database system prototype HyPer. Apart from a full evalu-
ation on the TPC-C benchmark, the snapshotting mechanisms are classified and
optimal use-cases for each mechanism are given.

• Chapter 4 introduces our tentative execution approach, which allows the exe-
cution of long-running write transactions. Unlike traditional concurrency con-
trol mechanisms like two-phase locking, tentative execution does not hurt good-
natured workloads in presence of long-running transactions, but instead causes
only a minor overhead for the few existing long-running transactions. After intro-
ducing our approach, we evaluate traditional concurrency control mechanisms
and show their severe overhead for good-natured transactions. Finally, we evalu-
ate the tentative execution approach in the HyPer database system.

• Chapter 5 shows how multi-tenancy can help exploit the massive throughput
which can be achieved by an MM-DBMS on a commodity server. We illustrate
traditional multi-tenancy concepts and introduce our multi-tenancy approach tai-
lored at low overhead main-memory database systems. Furthermore, we investi-
gate how different types of SLAs can be enforced and evaluate our approach with
regard to effectiveness, overhead and latency.

• Chapter 6 concludes this thesis by illustrating how the improvements achieved
through this work lead to a more versatile main-memory database system. Addi-
tionally, areas of potential future research are highlighted.
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Chapter 2
HyPer - A NewSQL DBMS for Hybrid
Workloads

This chapter is fundamentally based
on work by Kemper and
Neumann [41].

In this chapter, we will give an overview of the traditional architecture of database
management systems (DBMS). Then, we will highlight the hardware changes which
lead to the architectural decisions made in modern main-memory database systems
(MM-DBMS). Finally, we will introduce the architecture of our HyPer database system
prototype as well as a benchmark for hybrid OLTP and OLAP databases as foundations
for the work introduced in the remainder of this thesis.

2.1. A Taxonomy of Database Systems

For the purposes of this thesis, a definition of the various categories of systems used for
managing data is helpful. This need is emphasized by the rise of systems which do not
use disk storage at all or even break with ACID guarantees. In the following, we will
give a working definition for different database types which will be used throughout
this thesis.
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2.1.1. Definition and Classification of Database Systems
For the purposes of this investigation, a clear definition of what constitutes a database
system is essential. A system which we refer to as a database system must satisfy the
following criteria:

1. ACID compliant transaction execution and

2. satisfy at least the read-committed ANSI SQL Isolation Level.

Executing transactions with compliance to ACID means that transactions satisfy
Atomicity, Consistency, Isolation, and Durability [31]. Atomicity means, that a trans-
action is executed in an “all or nothing” fashion. Either all effects of the transaction are
reflected in the visible state of the database or none are. Consistency ensures that a trans-
action leaves the database in a consistent state once it commits. Isolation guarantees that
events within one transaction are hidden from all other transactions which are run in
parallel. Finally, Durability means that “[…] once a transaction committed its results
to the database, the system must guarantee that these results survive any subsequent
malfunctions.” [31, p. 290].

2.1.2. Traditional Database Management Systems – DBMS
A DBMS, in our case, is a traditional database system which is largely based on the
architecture used by industry standard systems like IBM DB2 or Oracle. We assume
that a traditional DBMS employs disk-based storage for the main part of the data as
well as meta-data of the system. Main-memory is used for buffer-management and
caching as well as for frequently accessed meta-data. Indexes, like the actual data, are
mainly stored on disk.

In these systems, transaction execution is tailored to deal with disk I/O as the most
prominent bottleneck. A buffer pool of disk pages which currently reside in main-
memory is maintained by the system to minimize I/O misses. When a transaction
requires a page which does not currently reside in main-memory, the page is fetched
from disk causing a delay in the order of tenth of milliseconds 1. During this stall, tradi-
tional disk-based database systems try to use the available CPU time to make progress
on other transactions which are not waiting for I/O at the moment. This requires inter-
leaved execution of transactions and a concurrency control mechanism which ensures
compliance with a defined isolation level.

The general architecture of a disk-based DBMS is illustrated in Figure 2.1. Besides
data and meta-data-storage, a traditional database system includes a transaction man-
agement component to achieve ACID compliance.

2.1.3. NoSQL
NoSQL refers to data-stores which fundamentally break with the architecture used
in traditional DBMS. The term NoSQL is frequently interpreted to mean “Not Only

1See http://flashdba.com/2013/04/15/understanding-io-random-vs-sequential/.
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Datebase API

Data Access

Storage System

Metadata
Transaction 
Management

Figure 2.1.: General architecture of a DBMS after Härder et al. [30].

SQL” [10]. We define NoSQL systems analogously to Cattell [10] as systems sharing
the following six key properties:

1. the ability to scale simple operations horizontally over many servers,
2. the ability to partition and replicate data over many servers,
3. a simpler, call based interface than a SQL binding,
4. no ACID guarantees,
5. efficient use of distributed indexes and RAM for data-storage, and
6. no fixed schema.

Examples of systems, which fulfill these six properties, are Cassandra2, CouchDB3,
or MongoDB4.

The motivation behind the development of NoSQL systems lies in the perception,
that traditional DBMS have accumulated too much overhead which makes them slow,
are too fixed due to the relational model and that SQL is too mighty a query language
than what is needed in modern-day internet applications [69]. Relaxing consistency
requirements and removing schema information is said to lead to a leaner, more scalable
and in total more efficient system design.

There is great variety between NoSQL stores. Some store only key/value pairs with
no consistency guarantee. Others store key/document pairs where the document spec-
ification varies between systems. Some systems index only the primary key value of
each entry while others offer automated or manual indexing or arbitrary columns or
even full-text indexing (cf. [10] for a thorough survey of different NoSQL systems).

Due to the variety in concrete implementation choices and feature-sets, a general ar-
chitectural description of NoSQL systems is not available. Specific systems, for instance
MongoDB, rely on an easily shardable structure but sacrifice transactional guarantees
as well as the ability to perform joins. Queries that rely on joins or aggregation are
handled by a separate, map-reduce style interface5.

2See http://cassandra.apache.org/.
3See http://couchdb.apache.org/.
4See http://www.mongodb.org/.
5See http://docs.mongodb.org/manual/core/map-reduce/
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Figure 2.2.: Data is held in chunks in MongoDB to allow for flexible horizontal scal-
ing (taken from [15]).

In MongoDB, data is held in chunks and distributed evenly between nodes to allow
for simple horizontal scaling as depicted in Figure 2.2. MongoDB is a so called key/-
value store. All chunks combined fully span the range of possible keys. When a chunk
grows beyond a certain size, it is split and keys are redistributed between the two new
chunks. Each chunk resides on one of the MongoDB instances, allowing the system to
scale by adding new instances and redistributing the chunks among them.

2.1.4. NewSQL

NewSQL systems, like NoSQL stores, were developed to offer increased throughput
which is required by modern applications. Apart from improving scalability, NoSQL
tries to surpass the performance of traditional DBMS by leaving functionality, like mech-
anisms to guarantee ACID, out.

Compared to traditional as well as NoSQL systems, Stonebreaker defines NewSQL
systems as ‘[…] systems [, that] should be equally capable of high throughput as the
NoSQL solutions, without the need for application-level consistency code. Moreover,
they preserve the high-level language query capabilities of SQL.’ [68].

Instead of lowering consistency, NewSQL systems try to achieve massively improved
throughput by removing all major bottlenecks in traditional DBMS. Work by Hari-
zopoulos et al. [32] showed that only 20% of the time consumed by executing a transac-
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tion in a traditional DBMS is actually spent on handling data (cf. Figure 2.3), whereas
the rest is consumed by secondary functions required for the DBMS’s correct operation.

...

Index Lookups

. 8%..

Logging

.

21%

..

Locking

.

19%

..

Latching

.
10%

..

Buffer-Management

.

30%

..

Useful Work

.

12%

Figure 2.3.: Cycle distribution during the execution of the NewOrder transaction of
the TPC-C [32].

With main-memory both constantly increasing in size and decreasing in price, a shift
from storing most data on disk to storing most or all data in main-memory is feasible.
As described in the architecture section following this overview, moving data from disk
to main-memory allows for radical architectural shifts, which allow to remove all four
bottlenecks listed by Harizopoulos.

2.2. Traditional DBMS Architecture

Traditional DBMS architecture was conceived with the underlying assumption of most
data residing on slow disks. This assumption led to a shared common design used by
most traditional database systems available today. In this section, we will introduce and
discuss this underlying design.

2.2.1. Buffer-Management

Whenever data which resides on a page on disk is accessed in a traditional database
system, the buffer-manager has to make that data available inside the buffer pool (and
therefore the main-memory) before the access. A common approach is to have a fixed
number of pages which can reside inside the buffer pool at any given time. When a
page is accessed, the buffer-manager checks whether it currently resides in the buffer.
If not, the page is retrieved from disk causing a stall. Asynchronously, pages which are
no longer used are written back to disk to free up slots inside the buffer pool.

Buffer-management is important both due to performance as well as consistency con-
cerns. Performance-wise, explicit memory management allows for the database system
to prefetch and maintain needed or frequently accessed pages in main-memory. The
database system has in-depth knowledge about how its algorithms, for instance certain
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implementations of joins operate and therefore can ensure better locality than the oper-
ating system could. If an algorithm is known to reuse certain pages during its runtime,
they can be kept inside the buffer-manager until the algorithm terminates. On termina-
tion, those pages can be marked as being no longer required to quickly free space for
other pages. This is not possible in a page management algorithm which is purely based
on access frequency and does not have information on the actual algorithms using the
memory.

In terms of consistency, explicit buffer-management is used to keep track of which
pages have been written to stable storage. Most systems do not write modified pages
back to disk when the transaction which caused the modification is committed. This is
due to the fact that it decreases concurrency in the system as the whole page has to be
locked for use by only one transaction at a time. Instead, a log of all changes is kept and
written to disk when a transaction commits to allow for modifications to be reapplied
to the outdated pages on the stable storage in case of a system failure.

An in-depth discussion of buffer-management in traditional database management
system is given in [24, 30].

2.2.2. Query and Transaction Execution
Traditional database systems mostly use an interpreted approach towards query execu-
tion. Here, SQL is not converted into machine-code but is instead interpreted. This ap-
proach has the advantage that execution can start as soon as the query is received since
no compilation phase is required. Unfortunately, interpretation overhead is introduced
and the benefits gained form re-executing the same query with different parameter val-
ues lie mostly in saving optimization cost while the interpretation overhead is incurred
on each execution.

R S

⨝

π S.id

S.id=R.id

Figure 2.4.: Physical plan

The physical operators which are part of the execution plan mostly rely on a per-
tuple execution model pioneered in the Volcano database system [25]. Figure 2.4 shows
an algebra plan. The topmost (root) operator in the plan issues a nextTuple() call to
its child to retrieve the next available output tuple and process it. For operators with
more than one child – like joins – the underlying algorithm dictates when and on which
child nextTuple() is called. For illustration, imagine a main-memory hash join which
restores a 1:1 relationship. First, all tuples from one of the two children of the join are
retrieved by calling nextTuple(). These tuples are used to build a hash table. Then,
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whenever the join’s nextTuple() method is called, the join operator in turn calls its
other child’s nextTuple() method. The resulting tuple is probed against the hash table
creating one output tuple if found. This output tuple is then returned to the caller.

R S

⨝

π S.id

S.id=R.id

1)

2)

3)

4)

1. next() is called for the top-level operator

2. The call is forwarded to the join operator.

3. All R-tuples are retrieved using next() calls.

4. Each S-tuple is probed against the R-Hash table.

Figure 2.5.: Volcano-style join execution

Figure 2.5 illustrates this processing scheme. Here, the plan consists of two relations
R and S being joined on the id attribute. The join is implemented as a main-memory
hash join.

2.2.3. Concurrency Control

In traditional database systems, two concurrency control mechanism are prevalent.
First, systems which achieve serializable isolation level usually use strict two-phase
locking to do so – for instance IBM DB2 [66]. Second, systems which provide snapshot
isolation often rely on multi-version concurrency control – for instance Oracle [60]. In
this section, we will illustrate the basic concepts of two-phase locking and multi-version
concurrency control and discuss their impact on the remaining architectural choices of
a traditional database system.

We say a set of transactions is serializable if their – possible interleaved – execution
yields the same result as the result any serially ordered execution of these transactions
would yield. A formal definition can be found in [73]. With this brief description of
serializability, a given schedule can be examined and adherence to serializability can
be checked after the fact. For an actual database system, an algorithm which enforces
adherence to serializability is required instead of just a tool for post-mortem analysis.

There are multiple algorithms to ensure that the interleaved schedule executed by
a database system is equivalent to a serial schedule: Using logical locks on data items,
two-phase locking ensures that the resulting schedule is serializable [73]. A graph based
approach can be employed, where for each conflict operation an edge is inserted into
the graph such that no edge which would introduce a cycle is ever added. Without a
cycle, the conflict operations can be ordered and a serial ordering for all transactions
inside the schedule is guaranteed to be possible. For systems which use multi-version
concurrency, Fekete et al. [21] propose extended concurrency control protocols which
yield serializable isolation instead of snapshot isolation.
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Number of 
Locks held

Time

Figure 2.6.: 2PL: Number of locks held by a transaction over time (after [39]).

Strict two-phase locking is one of the most widely used concurrency control schemes
for traditional, disk-based single-version database systems. For instance, it is the pri-
mary concurrency control mechanism used in IBMs DB2 database. Before an operation
o of transaction T can access a data item d, the transaction has to acquire a suitable lock
on the data item. For write operations, a unique write-lock must be acquired, for read
operations, a shared read-lock suffices.

Number of 
Locks held

Time

Figure 2.7.: Strict 2PL: Number of locks held by a transaction over time (after [39]).

Lock acquisition and release are performed in so called phases in two-phase locking.
In the first phase, referred to as the ‘growth phase’, locks are acquired but not released.
During the second phase, referred to as the ‘shrink phase’, locks are released but none
are acquired. Figure 2.6 illustrates this by plotting the number of locks held by a transac-
tion over time. In two-phase locking, the number of locks continually increases, might
become stable for a while and then decreases over time. This lock acquisition and re-
lease pattern guarantees serializable schedules, cf. [73].

Under strict two-phase locking, locks are not released over time but instead all at once,
that is, all locks are held during the execution of the transaction and are released in one
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atomic batch at the end of the transaction. This is illustrated in Figure 2.7. Here, the
number of locks held first increases continually but – since all locks are released in one
batch – there is no continuous decrease but a sharp edge.

2.3. Database Environment Changes

In this section, we will first illustrate the development, sizes and prices of available
main-memory and caches. This serves as a basis for the discussion of the implications
this has on modern database system architecture.

2.3.1. Main-Memory Size

A fundamental change has occurred w.r.t. the amount of main-memory available in
commodity hardware. In the last years, the memory capacity of commodity servers
has doubled every year culminating in servers with terabytes of main-memory.
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Figure 2.8.: Memory of certified SAP servers over time6.

An example of this development is shown in Figure 2.8. Here, the amount of memory
available in every server certified by SAP is shown over time. The memory is averaged
for each year. Until about 2008, the increase was almost linear. Since then, the gradient
of the curve has increased drastically such that, on average, every certified server had
about 900 gigabytes of RAM in 2013.
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2.3.2. Frequency vs. Number of Cores
Gorden E. Moore stated in a 1965 paper [53] that the number of components in a com-
puter has doubled every year since the invention of the microcomputer and ‘will con-
tinue [to] for at least ten years’. This trend has proven accurate and led to a doubling
of core frequency over the course of approximately 18 months up until around 2000 (cf.
Figure 2.9).
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Figure 2.9.: CPU frequency over time.

While Moore’s law has held up for the number of transistors in a microcomputer,
CPUs do no longer improve in single core speed. Instead, as shown in Figure 2.9, the
number of cores per socket is growing.

In terms of database architecture, this fact has severe implications on database and
algorithm design. Whereas increases in clock frequency naturally allowed algorithms
to improve in speed when a CPU was exchanged for an improved version with higher
clock frequency, this is not the case for an increase in the number of cores. As will
be shown in this work, increasing the number of cores and therefore the amount of
parallelism can negatively impact the performance of the system for various reasons,
for instance lock contention.

2.4. CH-benCHmark
While there is no inherently different mechanism for specifying different workloads
in database systems today, there are usually two distinct sets of workloads in many

6Data retrieved form http://www.sap.com/solutions/benchmark/sd2tier.epx.
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systems. We define these two workloads, OnLine Transaction Processing (OLTP) and
OnLine Analytical Processing as follows:

OLTP workloads change the database. They are read/write in nature and tend to
touch only those data items involved in a concrete real-world transaction. OLTP work-
loads usually require low execution latencies since their execution is an unavoidable
delay in any application backed by a database.

OLAP workloads analyze the data in a database or data warehouse. They have an
emphasis on reading and aggregating data for reporting. The runtime and number of
consumed data items of a single OLAP query usually exceeds that of a single OLTP
transaction by orders of magnitude.

A classic example of OLTP transactions are the book-keeping transactions in a sales
application. Items are sold, payed and delivered to a customer. Each such interaction
causes a few tuples to be read and updated but typically requires no aggregation of
large chunks of the database.

In the same scenario, a sales application, OLAP queries can be used to determine
the best selling product kept in the warehouse or the most valuable customers. These
queries require complex operations on all tuples of at least some tables of the database.
Therefore, they are clearly OLAP queries. As is the case in this scenario, one of the use-
cases of OLAP queries is the generation of reports for the controlling department in a
company.

The aforementioned examples are captured in two separate, highly renown bench-
marks defined by the Transaction Processing Performance Counsel (TPC). OLTP work-
loads in the context of a sales setting are captured in the so called TPC-C benchmark. It
consists of a workload made up by a total of five OLTP-style transactions as depicted in
Figure 2.10.
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Figure 2.10.: Structure and distribution of the TPC-C Workload.
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In the context of OLAP reporting, the TPC-H consists of 22 long-running read-only
queries. It captures the reporting done for a large sales operation7.

2.4.1. Mixed Workloads

Traditionally, many database system have been tailored for the needs of specific work-
loads. For instance, VoltDB [47] specifically targets short, deterministic OLTP work-
loads. In comparison, MonetDB [7] and Vectorwise [76] are best at executing complex
OLAP queries or do not support write transactions at all.

The data between the OLTP and the OLAP databases is traditionally not shared but
instead copied from one store to the other. This is achieved using the so called Extract
Transform and Load (ETL) process where data is first extracted from the OLTP trans-
actional database. Then, transformations can be applied to the data. These range from
changing the schema of the data to a format which is more suitable for reporting to
enriching the data with additional information not required inside the transactional
database. Additionally, data can be extracted from multiple sources allowing for the
OLAP data warehouse to present a more comprehensive view of the data to the user.
Finally, the extracted and transformed data is loaded into the OLAP database to allow
query execution.

In recent years, a number of authors (e.g. [40, 65]) found that data staleness issues
and the requirements of today’s business world render the traditional ETL approach
unsuitable in many cases. In this context, data staleness is characterized by business
data – especially recent entries into the database – not reflecting the current state of
the transaction according to the transactional database. This, in turn, causes reports on
recent business events to deteriorate in terms of significance.

Hasso Plattner [65] calls for a more radical shift towards real-time business intelli-
gence. Here, being able to generate reports on events as they happen is seen as a major
feature which directly contradicts the inherent issues of the discontinuous ETL process.

2.4.2. CH-benCHmark

To benchmark the performance of a data-store which allows for both high transactional
as well as high analytical throughput, Cole et al. [12] suggest the introduction of a com-
bined TPC-C and TPC-H benchmark. The schema of the TPC-C is extended with three
relations from the TPC-H such that all foreign key relationships remain intact while
preserving the exact TPC-C schema (cf. Figure 2.11).

The benefit of leaving the TPC-C schema unmodified is that the CH-BenCHmark can
be ‘bolted’ onto an existing deployment of the TPC-C benchmark without modification
to the transaction definition. Only the modified ANSI SQL queries of the TPC-H are
added to the system and executed in parallel to the transactional throughput. Apart
from the benchmark setting, the authors of the CH-benCHmark suggest a standard-
ized reporting mechanism which reveals the impact query execution has on OLTP-style
transaction throughput [12].

7See http://www.tpc.org/.
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Figure 2.11.: CH-benCHmark schema

2.5. HyPer-Architecture

Kemper and Neumann [40] describe a main-memory database system architecture
which allows for the efficient execution of both analytical as well as transactional work-
loads on the same dataset. This is achieved by efficiently creating a snapshot of the
entire database on which analytical workloads can be executed without having to be
synchronized with OLTP transactions on the regular database.

In the remainder of this Section, we will describe various aspects of the HyPer data-
base system architecture and describe how it allows for the execution of both OLTP and
OLAP workloads on the same system and the same data.

2.5.1. Overview

Analogously to H-Store [38], HyPer does not simply extend the traditional database
system architecture but was instead re-engineered from the ground up. In this Section,
we will discuss the corner stones of HyPer’s architecture and give a brief summary of
the impact this architecture has in terms of performance.

2.5.2. Serial Execution

While traditional database systems usually rely on either two-phase locking or multi-
version concurrency control, HyPer executes short OLTP transactions in a serial fashion.
In essence, OLTP transactions are assumed to be

19



2. HyPer - A NewSQL DBMS for Hybrid Workloads

1. short, that is, each transaction only touches at most a few hundred tuples before
terminating,

2. wait-free without external interaction, network or disk accesses, and

3. deterministic.

Under these assumptions, an execution model dubbed serial execution is viable. Here,
all transactions are enqueued in a first-come-first-serve fashion and executed serially.
Since there is no parallelism in the system, neither locking for consistency nor latching
for physical integrity are required.

While reducing the Multi-Programming-Level (MPL) to 1, serial execution offers mas-
sive benefits. Code complexity is decreased while cache locality in both instruction as
well as data caches is increased. The NewOrder transaction of TPC-C would – on aver-
age – require about 50 lock requests on different hierarchy levels of the lock hierarchy
when executed with strict two-phase commit (cf. Section 4). Under serial execution, this
overhead is removed and instead most instructions execute a part of the transactions
code or modify a data item used inside the transaction instead of managing meta-data.

2.5.3. Partitioned Serial Execution

While serial execution does not allow for interleaved execution of multiple transactions,
parallelism can be achieved by running multiple independent serial execution threads
on separate partitions of the data. This is worthwhile, as many datasets can be naturally
partitioned [14] or are inherently independent – for instance in case of a multi-tenant
database system (cf. Chapter 5).

The goal is not to disallow partition-crossing OLTP transactions altogether but to par-
tition in a way which reduces partition-crossing transactions to a minimum which can
then be executed separately. Figure 2.12 displays this mode of execution. Multiple
parallel threads serially execute transactions on disjoint partitions of the data. When
a thread tries executing a transaction which requires a second partition to terminate,
a global barrier is activated causing all threads to merge. After all active transactions
have finished, exclusive access is granted to the cross-partition transaction. After suc-
cessful execution of the partition-crossing transaction at MPL 1, the global barrier is
deactivated and all threads resume parallel transaction execution in a serial manner on
each partition of the data.

While reducing the MPL to 1 is drastic, it is hard to beat as long as the share of transac-
tions crossing partition boundaries is small. A global barrier is cheap in terms of cost for
good-natured, partitioned workloads and switching between serial and ‘concurrency-
controlled’ execution is prohibitively costly [40, 75].

Relying on partitioned serial execution has multiple positive impacts on the system
architecture: First, index structures and partition-local meta-data require no physical
consistency protocols like coarse granularity latching. Second, consistency as in serial-
izability is implicit in the execution model. This allows for the removal of the logical
lock-management components. By demanding transactions to be deterministic, logging
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Figure 2.12.: Parallel execution on separate partitions of the data.

can oftentimes be done logically by recording all call inputs instead of resorting to phys-
ical logging, on average increasing log throughput.

2.5.4. Query Compilation

Most database systems, for instance MySQL and PostgreSQL, parse, optimize and in-
terpret their internal representation of SQL statements. For prepared statements, the
parsing and optimization steps are only executed once, but the abstract representation
(usually a physical algebra tree) of the query that results has to be interpreted during
every execution [58].

Recently, some systems have started compiling prepared SQL statements to machine-
code. Here, the statement is effectively transformed into a program which is only
parametrized at runtime. This eliminates interpretation overhead. Unfortunately, most
compilation approaches suffer from long delays during the machine-code-generation
and compilation rendering them unsuitable for ad-hoc query use [58, 72].

In HyPer, both OLTP transactions as well as OLAP queries are compiled to machine-
code. Instead of generating source code, HyPer uses the LLVM compiler infrastructure
to allow for the efficient generation of optimized machine-code. Employing LLVM al-
lows for the generated LLVM pseudo-assembler code to be globally optimized before
actual machine-code is generated. This simplifies writing efficient assembly and takes
care of register allocation among other issues that arise when writing assembly by hand.
The code resulting from using LLVM for query compilation can be shown to be compa-
rable in quality to highly optimized code hand-written by an expert [58].

OLTP transactions in HyPer are written in a custom, iterator-free stored procedure
language. Transactions can capture the essential semantics of the data access avoiding
round-trips between the client and the database. As an example, Figure 2.13 shows the
StockLevel transaction of TPC-C. SQL is directly embedded into the stored procedure
language. A distinct result can be stored as a local variable, multiple results can be
used inside a loop. HyPer’s stored procedure language allows the efficient and easy
implementation of the TPC-C in less than 300 lines of code.
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create procedure slev(w_id integer not null, d_id integer not null,
threshold integer not null) {
select d_next_o_id as o_id from district

where d_w_id=w_id and district.d_id=d_id;

table items(id integer not null);

select index as ol_o_id from sequence(o_id-20,o_id-1) {
select index as ol_number from sequence(1,20) {

select ol_i_id from orderline
where ol_w_id=w_id and ol_d_id=d_id and

orderline.ol_o_id=ol_o_id and
orderline.ol_number=ol_number

else { break; }

insert into items
select ol_i_id from stock
where s_w_id=w_id and s_i_id=ol_i_id

and s_quantity<threshold;
}

}
};

Figure 2.13.: StockLevel transaction from TPC-C in HyPerScript.

OLAP queries are also translated into a callable machine-code routine. The under-
lying execution model is different from traditional, pull-based iterator models. In the
traditional model, each operator retrieves one tuple from a child-operator by calling
the child-operator’s next method; a model sometimes referred to tuple-at-a-time exe-
cution (cf. Section 2.2.2). Recently, vector-based execution models which manipulate
one vector of data instead of a tuple-at-a-time have emerged [76].

HyPer, in contrast to these models, uses a push-based execution model. Here, the
data flow happens from one pipeline-breaker to another. All operations which are ap-
plied to a tuple between two pipeline-breakers are applied at once. Then, the tuple is
materialized into the next pipeline-breaker inside the algebra tree. A major advantage
of this mechanism is that data stays inside a register of the CPU the longest and does
only need to be loaded once even when multiple operations are applied before the next
mandatory materialization inside the next pipeline-breaker occurs.

Besides its performance benefits, the push-based execution model, also referred to
as the consume/produce model, is well suited for code-generation. Every operator
implements two code-generation primitives named consume and produce. During the
code-generation phase, the produce method of the root operator is called. The root
operator generates all initialization code and continues to ask its children to generate
code which produces a new tuple in the child-operator. Code which hands a reference
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to a newly generated tuple from the produce code up the operator tree is injected by
calling one’s parent’s consume method.

It is important to note that produce and consume only act as code-generation vehi-
cles which are called once for each operator. Their result is one single imperative pro-
gram per operator tree which does no longer contain any reference to either produce
or consume. A more detailed description of the OLAP query translation process can be
found in [58].

OLTP transactions are translated by parsing and checking the HyperScript stored
procedure language. The language is imperative in nature and uses SQL types for its
underlying type system. This allows for easy extraction of results from embedded SQL
queries into the control flow of the language. The imperative HyPerScript program is
compiled into machine-code using LLVM code-generation. SQL queries can be embed-
ded and are likewise compiled into machine-code which is called from the HyPerScript
program. Apart from queries, HyPerScript embeds statements like insert, update and
delete from SQL which are also compiled and uses a storage-layer agnostic interface
to manipulate the data-store.

2.5.5. Physical Data Layout
HyPer allows for different data layouts per relation in the system. Traditionally, both
row as well columnar storage is supported. Research has been conducted on whether a
hybrid storage backend, which allows multiple columns to be grouped, leads to notice-
able performance gains [64]. In HyPer, storage is not divided into pages or segments.
Instead, the system uses conventional arrays in main-memory. Figure 2.14 illustrates
how a table T with three attributes a, b and c is laid out in main-memory by giving
pseudo-C++ code for both columnar as well as row-oriented stores:

// Row-store
struct Tuple { int32_t a; int32_t b; int32_t c; };
std::vector<Tuple> store;

// Column store
struct Store {

std::vector<int32_t> a;
std::vector<int32_t> b;
std::vector<int32_t> c;

};

Figure 2.14.: Pseudo C++ code displaying columnar and row-oriented memory lay-
outs.

In a columnar store, each column is saved in a separate vector (a dynamically resiz-
ing, consecutive memory stretch). In a row-oriented store, a tuple type containing all
attributes of the tuple is stored in one single vector of tuples.
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Column stores are beneficial when only a few of the attributes of a tuple are accessed.
In an extreme case – when only one attribute of each tuple is required – all values of
that attribute are stored sequentially in main-memory allowing for fast access due to
fewer Translation Look-Aside Buffer (TLB) misses, less total memory accesses and better
prefetching as opposed to a row-oriented store. Cases where only a few attributes of
each tuple are required are frequent in OLAP-style queries. Here, the database is often
scanned and tuples are selected based on a predicate. If the query is highly selective,
only the attributes inside the predicate need to be loaded for most tuples.

Row-oriented stores are generally thought to better support OLTP transactions. With
OLTP, operations like insert and delete naturally touch the entire tuple. Therefore,
access locality is increased by keeping all information related to one tuple in one con-
secutive stretch of memory. When only a single attribute of a tuple is accessed though,
unrelated data from other attributes of the same tuple is sometimes loaded and not
used since memory accesses are usually performed in cache-line granularity.

Relying on main-memory vectors precludes using traditional techniques like buffer-
management. Instead of adding a buffer-management layer on top of main-memory,
HyPer relies on the operating system’s page table. For a database system which stores
data purely in main-memory, page management effectively replaces buffer-manage-
ment. Page management separates physical memory into units of pages and automati-
cally backs virtual memory addresses with physical memory pages. It hides fragmen-
tation of the underlying physical memory and allows for the allocation of large continu-
ous chunks of virtual memory even when no such continuous chunk of physical pages
is available – thereby making segment management superfluous.

2.5.6. OLAP Execution on Snapshots

To enable the execution of both OLTP transactions with high throughput and long-
running OLAP queries on the same data, HyPer relies on taking low overhead snap-
shots of the database. Here, a snapshot for the execution of OLAP queries is generated
in short, user-defined intervals allowing for query execution on arbitrarily recent, con-
sistent snapshots of the data as displayed in Figure 2.15. Unlike systems which rely
on multi-version concurrency control like Oracle or Microsoft Hekaton [19], not all ver-
sions of each data item are stored but instead a consistent copy of the entire database is
maintained for each snapshot.

The main advantage of relying on a consistent whole database snapshot for OLAP
execution is that long-running OLAP queries are decoupled from OLTP transaction ex-
ecution. This avoids synchronization overhead between OLAP and OLTP since each
workload type executes on its own copy. Furthermore, one snapshot can be used by
multiple OLAP queries and multiple threads concurrently, therefore increasing the util-
ity each snapshot creation provides.

Beyond the uses for OLAP execution, efficient snapshot creation in HyPer facilitates
the creation of consistent backups and checkpoints.
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Figure 2.15.: OLAP execution on consistent snapshots.

2.6. Conclusion
In summary, the switch from disk to main-memory has severe impact on database sys-
tem architecture. Potentials beyond the raw increase in main-memory access speed
can be exploited. While page shadowing used to be prohibitively expensive due to
its impact on data clustering, it is a viable snapshotting approach in main-memory.
Furthermore, existing abstractions like virtual memory can be exploited to reduce the
amount of code required to enable this kind of snapshotting and to further improve per-
formance. Using these techniques, a system which allows efficient execution of OLTP
transactions as well as read-only OLAP queries can be build.

The extension of this system to a broader set of workloads as well as its suitability for
efficient exploitation of the abundant resources of modern hardware will be the topic
of the remainder of this thesis. As a consequence of the impact of modern hardware,
traditional solutions to database systems problems have to be reexamined and adapted
to the new environment.
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Chapter 3
Evaluation of Efficient Snapshotting
Mechanisms

Parts of this chapter have previously
been published in [55].

In this chapter, we will evaluate multiple snapshotting mechanisms. All mecha-
nisms are designed to be usable in conjunction with HyPer’s strategy of decoupling
OLTP transactions and read-only OLAP queries. The remainder of this chapter is struc-
tured as follows. First, we will introduce four mechanisms that allow the creation of
transaction-consistent snapshots. Each mechanism is described both in theory as well
as in terms of the implementation choices made. Then, in Section 3.3, all mechanisms
are benchmarked both using micro-benchmarks as well as in a full system setting. Sec-
tion 3.4 discusses relevant related work while Section 3.5 concludes this chapter.

3.1. Hardware Page Shadowing
In this section, we will focus on hardware-supported virtual memory snapshotting as
originally proposed by Kemper and Neumann [40]. Hardware Page Shadowing is a
new snapshotting technique that was developed for the HyPer main-memory database
system. It creates virtual memory snapshots by cloning (forking) the process which
owns the database. In essence, the virtual memory snapshot mechanism constitutes an
OS/hardware-supported shadow paging mechanism as proposed by Lorie [49] decades
ago for disk-based database systems.
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However, the original page shadowing approach had multiple drawbacks. First, it
is a mechanism which is purely implemented in software. Therefore, shadowed and
regular pages have to be managed and garbage collected by the DBMS, increasing its
machine-code footprint. Second, software page shadowing adds an additional indirec-
tion layer to the DBMS which now has to decide whether a request will be directed to
a regular or a shadowed page. Whenever data is accessed, the indirection layer is con-
sulted, decreasing access speed. Third, the mechanism was proposed for disk-based
database systems using a traditional DBMS architecture. Here, page shadowing effec-
tively destroys the inherent clustering of the data as modifications are applied to a copy
of the original page which resides at a different location on disk.

In contrast, hardware page shadowing in main-memory exploits virtual memory man-
agement, as supported by most existing hardware 1. Virtual memory provides a layer
of indirection on top of physical memory pages. Instead of accessing memory by us-
ing an address to the physical part of the memory data resides at, applications are only
given virtual memory addresses. A mapping between virtual addresses and physical
addresses, the so called page table, is maintained in memory on a per-process basis. Fre-
quently needed translations between virtual and physical addresses are often cached in
specialized hardware, the so called Translation Look-aside Buffer (TLB), which is avail-
able on most architectures.

Adding virtual memory management as an indirection between virtual addresses
used by user-space programs and physical memory has multiple advantages. First, pro-
cesses can not access each other’s memory segments as each processes’ virtual memory
addresses point to separate physical pages. If pages are shared between two processes,
it is by design and controlled by the operating system, not by the process itself. Second,
parts of the memory can be protected such that access is not possible and traps to the
operating system. Third, memory can be over-committed. A process can ask for vastly
more virtual memory than the physical memory available in the system. Usually, op-
erating systems only back virtual memory with an actual physical page when the page
is first written to. This allows the creation of large sparse data-structures – for instance
index structures – as exploited in [42].

With hardware page shadowing, virtual memory management is exploited to allow for
a page shadowing system without the inherent drawbacks incurred in traditional disk-
based DBMS. Here, a consistent snapshot of the entire database is created by copying
the page table of a process and marking each page table entry as read-only for both
processes. In contrast to copying the entire data, the page table size is usually less than
one pointer per-page due to a hierarchical layout of the page table. Furthermore, the
page table size can be reduced by employing larger page sizes.

Physical fragmentation, a problem faced in disk-based traditional DBMS, is not an
issue in main-memory. Here, the order of the physical pages backing a consecutive
stretch of virtual memory does not change how long memory accesses and especially
scans take.

1The Linux kernel, for example, does deliberately not support hardware which does not offer a MMU
and virtual memory management facilities.
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Pages which are shared between one or more snapshots and potentially the main data-
base are automatically managed by the operating system and the MMU infrastructure.
All pages are reference counted and automatically reused once they are no longer used
in any active snapshot.

In Unix, creating copy-on-write snapshots of memory is a well established method.
The fork system-call, used to create new processes by creating an exact copy of the calling
process, requires all memory of the parent process to be copied for use in the child
process. Since the amount of memory and the number of child processes can become
large, most Unix implementations rely on MMU assisted copy-on-write snapshotting of
the parent’s memory for timely process duplication – the result of the fork system-call.

Since all pages are marked as read-only while the page table is copied, writes do not
modify the original data. Instead, writing to a read-only page causes a trap into the
operating system which in turn copies the affected page and – instead of modifying the
original – modifies the copy, keeping any reference to the original page’s content intact.

Applied to main-memory database systems, we use the fork-mechanism to generate a
lazy copy of the database system’s memory with little delay. In order for this snapshot
to be consistent, we execute the fork system-call during a period where the system is
completely quiesced. This does not necessarily require all transactions to finish but
can instead be done while all transactions are simply paused. After the snapshot, all
transactions which were not already committed before the snapshot was taken have to
be rolled back on the snapshot to achieve a consistent view.
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Figure 3.1.: Hardware page shadowing with multiple snapshots taken at different
transaction-consistent states of the database.

The forked child process obtains an exact copy of the parent processes’ address space,
as exemplified in Figure 3.1 by the overlaid page frame panel. This virtual memory
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struct Tuple {
uint32_t SSN;
uint8_t[100] LastName

};

struct Relation {
uint64_t size;
uint64_t capacity;
Tuple[] tuples;

};

Listing 3.1: A database relation specified as a C++ data-structures.

snapshot can be used for executing a session of OLAP queries – as indicated on the
right hand side of Figure 3.1.

The snapshot stays in precisely the state that existed at the time the fork took place.
Initially, parent process (OLTP) and child process (OLAP) share the same physical mem-
ory segments by translating either virtual addresses (e.g., for object a) to the same phys-
ical main-memory location (cf. Figure 3.2). In the Figure, shared memory segments
are highlighted by dotted frames. Thus, a dotted frame essentially represents a virtual
memory page which has not yet been replicated. Only when an object, like data item a′,
is updated, the OS- and hardware-supported copy-on-update mechanism initiates the
replication of the virtual memory page on which a′ resides as is illustrated in Figure 3.3.
Thereafter, there is a new state, denoted a′′, accessible by the OLTP process that exe-
cutes the transactions and the old state, denoted a′, that is accessible by an OLAP query
session. As shown in Figure 3.1, multiple snapshots representing different consistent
states of the database can be maintained with low overhead. Here, an older snapshot
is shown which was taken before data item a was modified to a′. The page on which
data item a lies is a copy denoted by the solid border of the page, most other pages are
shared between all snapshots.

Unlike the figure suggests, the additional page is really created for the OLTP process
that initiated the page update and the OLAP snapshot refers to the old page – this detail
is important for estimating the space consumption if several such snapshots are created.
It can be expected that most pages and objects on those pages are of the nature of the
page inhabited by e and f . That is, they contain older, no longer mutated objects.

The process of actually copying a page which was previously shared between the
main database and at least one snapshot is cheap. Micro-benchmarks show that copy-
ing a page inside the kernel’s trap-handler for read-only pages is as fast or faster than
copying an equally sized stretch of main-memory using memcpy.

To benefit from hardware page shadowing for consistent snapshots of database relations,
we will first discuss how a a database relation can be mapped to memory pages. List-
ing 3.1 shows the definition of the database table in pseudo-C++ code. Notice, that the
Relation struct contains meta-data as well as the actual tuples. This representation is
selected for simplicity of illustration in this context, in an actual system, meta-data and
tuples would usually reside in separate memory locations as is the case in HyPer. A pos-
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Figure 3.2.: The page table after invoking the fork system-call.
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sible mapping of the relation and its tuple data to memory is displayed in Figure 3.4.
Tuples are assumed to consume 108 bytes, all data is aligned to multiples of 8 bytes.

Tuple 1Cap.Size

108b8b8b

Tuple 2

108b

Tuple 3

108b

Tuple 4

108b

Pagetable:

Relation data:

Sizes:

Physical pages:

Figure 3.4.: Mapping of relational data to physical pages through the page table.

Tuples reside on pages but are not necessarily confined to the boundaries of a single
page. While tuples appear consecutive in virtual memory, their physical locations are
spread out over the entire physical memory and are not necessarily consecutive. This,
however, is not a performance disadvantage as it does not affect scan performance.

The row-store, which uses hardware page shadowing for snapshot creation, does not
need any implementation changes from a regular main-memory resident store. Deletes
are performed in-place by moving the last valid tuple of the relation into the slot of the
deleted tuple, effectively filling the gap caused by the deletion. This reduces inherent
data locality, but only when a large number of deletes are present. The upside of fill-
ing gaps caused by deletes is that no deletion markers are needed and therefore scan
performance is not impacted by having to check a deletion indicator before consuming
the next tuple inside the relation. Updates to the relation simply modify the value of a
tuple in-place by overwriting the old values. When a tuple is inserted into the relation,
the record is either added to an already mapped page, a new physical page is mapped
to back virtual memory or the relation has to be resized. Figure 3.5 shows the three
modes of insertion as a), b) and c) respectively without a snapshot present.

To illustrate how the row-store is mapped to memory pages, consider Figure 3.5. Here,
the store is created by allocating 3 pages of virtual memory. The first tuple inside the
relation partly occupies two pages which were in turn mapped to physical memory
pages. The third virtual memory page is not backed by a physical page yet.

When Tuple 2 is inserted as displayed in step a), no new physical page has to be
allocated as all virtual memory required to store Tuple 2 is already backed by physical
pages. In step b), a third Tuple is inserted which will partly be stored on virtual memory
page 3. As page 3 has not been used before and is not backed by a physical page yet, a
page-fault event is caused and a physical page is allocated so that data can be stored in
virtual memory page 3.
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c) Insertion of Tuple 4 causing resizing and copy of the relation

Physical pages:

Tuple 3
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Tuple 1Cap.Size
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Tuple 2
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Virtual memory:

Relation data:
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b) Insertion of 3 into virtual memory not yet backed by a page

Physical pages:

Tuple 3
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Tuple 4
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Tuple 1Cap.Size
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Tuple 2
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Virtual memory:
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a) Insertion of 2 into mapped page

Physical pages:

Tuple 1Cap.Size

108b8b8b

Virtual memory:

Relation data:

Sizes:

Base

Physical pages:

Figure 3.5.: Virtual memory mapping for a row-store.
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The insertion of a fourth tuple requires the relation to be resized. The database system
determines that the original allocation does not provide enough memory for a fourth
tuple to be stored. A reallocation is performed which – in this case – causes the virtual
memory to grow while keeping the original mapping of virtual memory pages 1-3 and
all virtual memory addresses intact. The newly allocated virtual page is now backed
with a physical page by the kernel’s page-fault handling mechanism and then written
to by the database system storing Tuple 4.

In Figure 3.6, the same procedure is displayed with a snapshot forked in the base
state. This causes the page table of the database to be copied. At first, all physical pages
are shared between the snapshot and the main database. When the insertion of Tuple 2
occurs, vm page 1 is modified because the size field needs to be incremented causing a
page-fault operation which copies vm page 1, changes the copy and augments the page
directory of the main database to point to the newly created, modified page. Addition-
ally, vm page 2 is replicated as Tuple 2 is written to that page causing a similar operation.
After this operation, main and snapshot do not share any pages anymore and insertions
proceed similarly to Figure 3.5. Notably, all copy-on-write allocations of fresh physical
pages are done by the main database process and its page table is augmented, not the
page table of the snapshot. In presence of multiple snapshots, this architecture is ben-
eficial since only one new page is required when a vm page is modified, all snapshots
still share the same, original physical page.

3.1.1. Tuple Shadowing
Instead of shadowing on a per-page level, shadow copies can be created on tupel level,
thus possibly lowering the memory overhead of keeping a consistent snapshot. To man-
age per-tuple shadow copies, we have to resort to software-control. Thus, a more com-
plex indirection has to be established. For each access, the current version being used
has to be determined on a per-tuple level. No hardware mechanism can be specifically
exploited to speed up tuple shadowing, thus all indirection has to be dealt with in soft-
ware.

While page shadowing creates a copy of an entire page on modification, tuple shad-
owing only replicates a single modified tuple. This behavior potentially reduces the
memory footprint of the database and the amount of data that has to be copied during
every copy-on-update operation. Our description of tuple shadowing is based on a row-
oriented physical layout of the data. Unless otherwise noted, all algorithms also apply
to columnar storage.

All tuples reside in a consecutive part of memory with the following C++ signature:

struct Tuple { int SSN; char[200] lastname; int shadowPtr; }
std::vector<Tuple> relation;

Note that shadowPtr is an index instead of a pointer for implementation reasons: since
the relation can grow dynamically and a new, bigger allocation does not necessarily
reside at the same address in memory, all pointers can be invalidated by growing a
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Figure 3.6.: Virtual memory mapping for a row-store in presence of a virtual mem-
ory snapshot.
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relation. Instead of a pointer, we represent the information a pointer would contain
using an index into the relation array.

The shadowPtr attribute is internally used for snapshot creation. A tuple with an
empty value in the shadowPtr field (denoted as ∅) is a regular tuple which exists in both
the current database state as well as the snapshot. Figure 3.7 shows the tuple shadow-
ing database relation containing three tuples. All tuples are valid in both the current
database state as well as the snapshot of the database.

SSN LastName shadowPtr

1 A ∅

2 B ∅

3 C ∅

... ... ...

Basic Case

End of tuples
in snapshot

Figure 3.7.: Tuple shadowing with no shadowed tuples.

A tuple with a deleted value inside the shadowPtr attribute is marked deleted in the
database but still exists inside the snapshot. This is illustrated in Figure 3.8. Here, the
tuple with SSN 2 is marked as deleted in the database but was deleted after the database
snapshot was created, therefore it has not been physically removed from the relation.
Instead, the deleted value allows transactions running on the main database to ignore
the tuple but does not hide it from OLAP queries executing on the snapshot.

SSN LastName shadowPtr

1 A ∅

2 B

3 C ∅

... ... ...

Delete

End of tuples
in snapshot

deleted

Figure 3.8.: Tuple shadowing with a deleted tuple.

For updates, the index of the updated tuple is stored inside the shadowPtr attribute.
When a tuple – which has not been shadow copied so far – has to be updated, it is first
copied into a new, vacant slot inside the relation. The copy is modified and its position
inside the relation is saved in the original tuple’s shadowPtr attribute, as illustrated in
Figure 3.9. OLTP transactions working on the most recent state of the database access
the updated version through the index inside the shadowPtr attribute. OLAP queries
executing on the consistent snapshot disregard the shadowPtr attribute and do not scan
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the relation past the highest occupied slot as of the time the snapshot was taken. This
allows for efficiently excluding new shadow tuples from scans on the consistent snap-
shot.

SSN LastName shadowPtr

1 A ∅

2 B

3 C ∅

... ... ...

Update

2 B' ∅

End of tuples
in snapshot

Figure 3.9.: Tuple shadowing with an updated tuple.

For the same reason – terminating scans on the snapshot at the largest index which
existed when the snapshot was taken – inserts are simple. A new tuple is appended
to the relation and added to all indexes (cf. Figure 3.10). On the snapshot, accesses to
the newly added tuple through an index are prevented by checking tuples which are
retrieved for their position inside the relation. If their position indicates that the tuple
was added after the snapshot was taken, the tuple is ignored.

SSN LastName shadowPtr

1 A ∅

2 B ∅

3 C ∅

... ... ...

Insert

4 D ∅

End of tuples
in snapshot

Figure 3.10.: Tuple shadowing with a newly inserted tuple.

While accesses to the relation are decoupled between the read-only snapshot created
through tuple shadowing, index structures have to be synchronized. This issue can be
mitigated in various ways: First, concurrency can be enabled inside indexes by simply
using coarse granularity latches or more advanced means of synchronized index access
(cf. Section 3.1.4). Second, indexes can be shadow copied using hardware page shadow-
ing. Third, indexes can simply be ignored for OLAP queries on the snapshot or even
eagerly copied during snapshot creation. This condition applies for all snapshotting
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mechanisms except for hardware page shadowing where indexes are also shadow copied
by default.

In tuple shadowing, all OLTP accesses have to be directed to the most recent version of
the tuple. Therefore, these accesses have to consult the pointer saved in the shadowPtr
field to check whether or not a more recent version of the data exists. OLAP queries
work on the consistent snapshot and thus do not need to check the shadowPtr for a
more recent version. Additionally, checking whether or not a tuple has been flagged
as deleted is not necessary for snapshot accesses, since deletion flags only apply to the
most recent version of all tuples used by OLTP transactions. Refreshing the snapshot
incurs substantial copy and merge costs.

3.1.2. Twin Tuples Approach

To mitigate the overhead caused by periodically merging the database as is necessary
in tuple shadowing, a technique referred to as the Twin Block approach or – when done
on a per-tuple level – twin tuples approach can be employed [9].

In the twin tuples approach, two copies of every data item exist. Two bitmaps indicate
which version of a tuple is valid for reads and writes by OLTP transactions. Reads are
performed on the tuple denoted by the MR bit. The tuple that writes are performed on
is denoted by the MW bit. A consistent snapshot of the data can be accessed by always
reading the tuples that are not modified as indicated by the negation of the MW bit.
Since a tuple can not be deleted in-place, a third bit is used to indicate deletion (D) of a
record therefore marking it as only available in the snapshot, not the main database.

SSN LastName

1 A

2 B

3 C

... ...

Basic Case

SSN LastName

1 A

2 B

3 C

... ...

MR MW D

0

0

0

...

1

1

1

...

0

0

0

...

End of tuples
in snapshot

Figure 3.11.: Twin tuples without changes since snapshot creation.

Figure 3.11 illustrates the layout of a relation which is stored using the twin tuples
approach. Note that the uniformity of the MR and MW bits is an artifact of the initial-
ization procedure. Since each tuple pair contains the same values, any assignment of
MR and MW bits would yield a valid state of the database

When a tuple is removed, it can not simply be deleted in-place but instead is marked
as deleted until the consistent snapshot of the relation is refreshed. For this purpose, a
deletion bit is set (denoted D). In Figure 3.12, the relation is shown after the tuple with
SSN = 2 was deleted by executing the pseudo-SQL statement DELETE FROM table WHERE
ssn=2. The tuple is still valid and visible on the snapshot. When a tuple is deleted, the
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SSN LastName

1 A

2 B

3 C

... ...

Delete

SSN LastName

1 A

2 B

3 C

... ...

MR MW D

0

0

0

...

1

1

1

...

0

1

0

...

End of tuples
in snapshot

Figure 3.12.: Twin tuples with one deleted tuple.

data inside the tuple denoted by MW becomes stale and could in theory be removed or
used otherwise. This is because all remaining accesses to this tuple originate from the
snapshot and therefore access the ¬MW tuple.

SSN LastName

1 A

2 B

3 C

... ...

Update

SSN LastName

1 A

2 B'

3 C

... ...

MR MW D

0

1

0

...

1

1

1

...

0

0

0

...

End of tuples
in snapshot

Figure 3.13.: Twin tuples with one updated tuple.

On update, the original tuple is read from the tuple indicated by the MR bit, modified
and then written to the tuple indicated by the MW bit. Atomically with writing the new
tuple, the MR bit has to be set to the MW bit value as the tuple which was just written
has to be marked as current. This operation does not change the tuple denoted by ¬MW
and does not change MW’s value. The modifications caused by applying the pseudo-
SQL statement UPDATE table SET LastName=B’ WHERE SSN=2 to the table are displayed in
Figure 3.13 to illustrate the mechanics of update operations.

Figure 3.14 shows the insertion of a new tuple into the twin tuples store. The tuple’s
data is inserted into both tuple slots and MW and MR are initialized. As explained
above, the initial values of the two flags are not important as both tuples contain the
same data. The new tuple is excluded from the consistent snapshot using a variable in-
dicating the last valid tuple inside the relation which is visible to the snapshot, similarly
to the mechanism used in tuple shadowing.
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SSN LastName

1 A

2 B

3 C

... ...

Insert

SSN LastName

1 A

2 B

3 C

... ...

MR MW D

0

0

0

...

1

1

1

...

0

0

0

...

4 D 4 D 0 1 0

End of tuples
in snapshot

Figure 3.14.: Twin tuples with a newly inserted tuple.

3.1.3. HotCold Approach

With hardware page shadowing, an update to a single value on a page causes the entire
page to be copied. The hotcold approach extends the hardware page shadowing mecha-
nism by adding a mechanism which clusters update-intensive tuples to the so called
hot section in memory. Updates which would modify a tuple which is not in the hot
section are copied to that section and marked as deleted in the cold section. That way,
modifications only takes place in the hot part. The technique is a combination of tu-
ple shadowing and hardware page shadowing as update clustering is software-controlled
whereas shadow copying is done using the VM-Fork mechanism.

For the description of the hotcold approach, a database which already uses the tech-
niques introduced for hardware page shadowing is assumed. A consistent snapshot is
created by using the fork system-call to clone the database. The hotcold operations are
performed on the transactional main part of the database whereas OLAP queries are
executed on the consistent snapshot. Due to the higher locality in hotcold operations,
less pages have to actually be copied leading to lower memory consumption.

SSN LastName D

1 A

2 B

3 C

... ... ...

Basic Case

Cold data
(update by invalidation)

Hot data
(update in place)

0

0

0

Figure 3.15.: Hot/cold without changes since snapshot creation.

To illustrate the hybrid approach, we first look at the basic layout of a hotcold row-
store. Figure 3.15 shows a relation with the attributes SSN and LastName. In addition
to the data items, a separate data column D of type boolean is added which contains so
called deletion markers.
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The relation is logically split into two parts, a hot and a cold part. Tuples inside the
hot area of the relation are updated and changed in-place whereas tuples in the cold
part have to be treated differently. There, deletions and updates are performed in a
copy-on-write manner by marking the original tuple as deleted and removing it from
all indexes.

SSN LastName D

1 A

2 B

3 C

... ... ...

Delete

Cold data
(update by invalidation)

Hot data
(update in place)

1

0

0

Figure 3.16.: Hot/cold with one deleted tuple.

A deletion is complete at this point, whereas an update operation requires re-inserting
the original tuple into the hot part of the relation and in-place updating the copy there.
The new version of the tuple is re-added to all indexes which now point to the hot part
of the relation. A delete operation resembling the SQL statement DELETE FROM table
WHERE ssn=2 is shown in Figure 3.16. Modifying a tuple as done by the SQL statement
UPDATE table SET LastName=B* WHERE SSN=2 is illustrated in Figure 3.17.

SSN LastName D

1 A

2 B

3 C

... ... ...

Update

2 B'

Cold data
(update by invalidation)

Hot data
(update in place)

1

0

0

0

Figure 3.17.: Hot/cold with one updated tuple.

Insertions are done by appending a tuple to the hot part of the relation as displayed
in Figure 3.18.

While clustering changes is achieved by splitting the contiguous memory of the re-
lation into hot and cold parts, there is an additional benefit of using separate stretches
of memory for hot and cold part respectively. Since updates cause copy-on-write oper-
ations in the hot part, small pages are beneficial as the amount of data that has to be
copied during a page-fault is small. For the cold part of the data, huge pages are ben-
eficial as no page-faults occur and the total size of the system page table is kept small
by having most of the data – the cold part – reside on huge pages. As an added benefit,
some architectures provide separate TLB slots for small and huge pages allowing the
database to exploit both lookup caches.
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SSN LastName D

1 A

2 B

3 C

... ... ...

Insert

4 D

Cold data
(update by invalidation)

Hot data
(update in place)

0

0

0

0

Figure 3.18.: Hot/cold with a newly inserted tuple.

3.1.4. Index Structure Synchronization

For approaches where index structures are used both for OLTP transactions as well as
for OLAP queries, we have to take index synchronization into account. When index
structures are shared, updates to the index can conflict with lookups. We examined
four approaches to alleviate this problem:

1. Abandoning indexes for OLAP queries or creating OLAP indexes on demand.

2. Eagerly copying indexes when a snapshot is created.

3. Employing hardware page shadowing to lazily maintain index snapshots after data-
base snapshot creation.

4. Latching indexes to synchronize conflicting index operations.

Approach 1) is interesting when all OLAP queries rely entirely on table scans with
no particular order. Since none of our implementations guarantees any specific order
on the data, we assume that having indexes available on the snapshots is oftentimes re-
quired and thus do not further investigate this option. Additionally, 1) does not require
any specific implementation or synchronization considerations.

Approach 2) generates a separate copy of the indexes for each snapshot by eagerly
duplicating the index when a snapshot is created. Therefore, no synchronization is
necessary as no indexes are shared but reorganization speed decreases. Hardware page
shadowing for indexes as done in approach 3) achieves the same result but does not
create a complete copy of the indexes. Rather, it copies only the page table of the pages
used to store index data and applies the copy-on-update mechanism as introduced in
Section 3.1. In the last approach, 4), index data between OLTP transactions and OLAP
queries is shared making synchronization necessary.

For our hardware page shadowing approach as well as for the hotcold approach, shar-
ing an index structure between OLTP transactions and OLAP queries is implicit with
cloning/forking the process. Thus, index latching and shared usage of the index is not
applicable with these approaches. Approaches 1), 2) and 3) are applicable.
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3.2. Classification
The following section contains a classification of the different snapshotting techniques
examined in this work.

3.2.1. Snapshotting Method
The techniques discussed in this work can be subdivided by the method they use to
achieve a consistent snapshot while still allowing high throughput OLAP queries on
the data. The hotcold approach as well as the plain hardware page shadowing approach
use a hardware-supported copy-on-write mechanism to create a snapshot. In contrast,
tuple shadowing as well as the twin tuples approach use software mechanisms to keep a
consistent snapshot of the data intact while modifications are stored separately. This is
also displayed in Figure 3.19 where all techniques are classified by whether snapshot
maintenance is done in software, in hardware or both:

Replication
Granularityallpagetuple

Hardware/OS

Software

HW Page Shadowing (fork)
- No added indirection
- Multiple snapshots

Hot/Cold
- Indirection through bitvector
- Multiple snapshots

Tuple Shadowing
- Indirection through pointer
- Single snapshot, multiple
  snapshots hard to achieve

Twin Objects
- Indirection through bitvector
- With each additional snapshot,
  space consumption increases since
  all tuples have to be duplicated.

Control 
exercised by...

Figure 3.19.: Techniques classified by granularity and control mechanism.

The snapshotting mechanism has a direct impact on the amount of reorganization re-
quired when the snapshot needs to be refreshed. The hardware-supported page shad-
owing approach requires no reorganization whatsoever, only the OLTP process needs
to be quiesced and the fork system-call needs to be executed. Since the hotcold approach
relies on the same mechanism to generate a consistent snapshot, no reorganization is
required either, but an optional reorganization can be performed. This saves memory
by actually removing tuples that have been flagged as deleted and also increases scan
performance as deletion flag checks become unnecessary during scans.

With software based snapshotting approaches, reorganization is mandatory on snap-
shot refresh. First, tuples flagged as deleted need to be actually removed or at least
marked as unused so that they can be overwritten with new tuples at a later point.
In case of tuple shadowing, updates saved in shadow copies have to be written back to
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the original version to prevent a long chain of versions from forming which would lin-
early increase the level of indirection when accessing tuples. Whereas the approaches
based on hardware page shadowing only required quiescing the OLTP process, software
based snapshotting techniques usually require the entire database to quiesced incurring
a more severe drop in both throughput and latency.

To conclude, approaches maintaining a snapshot using software mechanisms require
a reorganization phase to refresh that snapshot whereas approaches relying on hardware
page shadowing need no reorganization or at most an optional reorganization phase.

3.2.2. Indirection

With hardware page shadowing, all indirection required is handled by the operating sys-
tem’s virtual memory mechanisms. Since virtual memory is used by all approaches
since direct allocation of physical memory is neither useful nor technically simple, no
additional level of indirection is added by hardware-supported page shadowing.

Software based approaches introduce a level of indirection: tuple shadowing keeps
a pointer to updated shadow copies of each tuple forcing OLTP transactions to check
whether a newer version exists or not. The twin tuples approach requires a bitmap to be
checked on each read access and thereby introduces indirection on tuple access.

Unlike the indirection inherent to using virtual memory, added software level indirec-
tion causes a relatively severe slowdown. This is due to the fact that lookups inside the
page table are cached inside the fast translation look-aside buffer whereas software in-
direction at best benefits from cache locality. Additionally, the finer granularity of tuple
shadowing also causes more entries to be saved inside the data-structure managing the
indirection: Hardware page shadowing adds one entry per-page whereas tuple shadowing
requires one entry per-tuple leading to a lower number of entries to fit into caches.

3.2.3. Memory Overhead and Granularity

As the name suggests, hardware-supported page shadowing uses a page as its small-
est granularity level causing an entire page to be copied on modification. This is also
displayed in Figure 3.19 where all techniques are classified by the granularity in which
memory consumption grows due to modification.

Since in hardware page shadowing all pages end up being replicated in a worst-case sce-
nario, the memory used for OLTP transaction processing is at most doubled to maintain
one consistent snapshot for OLAP processing. Because of the page level granularity, not
all tuples need to be modified to cause worst-case memory consumption: If at least one
bit is modified on each page, all pages will end up being copied.

Compared to pure hardware page shadowing, the hotcold approach lowers the rate at
which memory consumption increases. This is done by clustering updates in a desig-
nated part of the memory called the hot area. In a worst-case scenario, memory con-
sumption still doubles to maintain a consistent snapshot, but every tuple has to be mod-
ified to cause worst-case behavior. Thus, the hotcold approach effectively decreases the
speed at which memory is consumed by OLTP transactions.
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tuple shadowing as well as twin tuples work with a per-tuple granularity. tuple shadow-
ing copies a tuple on modification thus increasing memory consumption linearly with
the number of modified tuples. twin tuples saves two versions of each tuple by default,
thus exhibiting worst-case memory consumption right from the start – the approach is
mainly used to illustrate the varying degrees of overhead introduced by reorganization.

3.2.4. Concurrency in Indexes
A low cost snapshot of the database does not necessarily allow for high-performance
query execution. One of the reasons is that meta-data like indexes are missing. In sec-
tion 3.1.4, we introduced four ways of dealing with indexes which we will now revisit
for a classification.

Abandoning Indexes

The trivial solution of abandoning all index structures consumes no additional memory
and at the same time offers no help when accessing data form OLAP queries. Required
indexes can be regenerated online leading to a runtime performance overhead during
query execution.

Eager Index Copy

Indexes can be duplicated eagerly when the snapshot is created. This results in an in-
crease in memory consumption but retains indexes for use in OLAP queries. Since
OLTP as well as OLAP queries need to be quiesced for index copies to be generated in
a consistent fashion, the additional time spend while refreshing a snapshot decreases
OLTP as well as OLAP throughput. At transaction and query runtime, no overhead is
incurred.

Index Fork

Equivalently to data, indexes can be copied using the hardware snapshotting technique
discussed in section 3.1. In a worst-case scenario, memory consumed by indexes dupli-
cates over time as index entries are updated. When the snapshot is created, the only
delay incurred is the duration of the fork system-call which is short compared to ea-
gerly copying the entire index (see Figure 3.3.1). At runtime, pages which are modified
for the first time have to be copied. This is done by the OS/MMU and takes only about
2 microseconds for a 4 kilobyte page [40].

Index Synchronization

For techniques where index sharing is possible, namely tuple shadowing and twin tuples,
inconsistencies due to concurrent access have to be prevented. This can be done by latch-
ing index structures so that writers get exclusive access to an index whereas multiple
readers can access it concurrently. In this case, indexes do not have to be duplicated but
the latches incur a comparably small memory overhead. Minimally, every index access
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has to pass at least one latch. Thus the runtime overhead for this approach consists of
the time it takes to acquire a latch as well as possible wait time in case the latch is held
by another process.

3.2.5. Classification Summary

Apart from our graphical classification, the results of each classification criterion are
shown in Table 3.20.

Backend Mechanism Indirection Granularity Index Sharing
Fork hw VM only page n/a
Tuple sw VM + ptr tuple yes
Twin sw VM + bit all yes
Hotcold hw/sw VM + bit tuple n/a

Figure 3.20.: Classification overview between all presented techniques and index
synchronization mechanisms.

3.3. Evaluation

In this section, all proposed techniques for the hybrid execution of OLTP transactions
and read-only OLAP queries will be thoroughly evaluated. All tests were conducted
on a Dell PowerEdge T710 server (see Appendix A.2 for details).

3.3.1. Snapshotting Performance

For all techniques, OLTP processing has to be quiesced when the snapshot is refreshed.
Since this directly impacts OLTP transaction throughput, we measured the total time it
takes before OLTP processing can be restarted. For techniques employing hardware page
shadowing, the time required to finish the fork system-call is measured. For software
based approaches, the time required for memory reorganization is measured. When
reorganization is optional, the time required for the optional part of the reorganization
is given in brackets.

Backend 4kb pages 2mb pages
VM-Fork 47ms 13ms
Tuple 500ms 483ms
Twin 94ms 85ms
Hotcold 50ms 13ms

(2829ms) (2097ms)

Table 3.1.: Reorganization time by backend, optional reorganization runtime given
in brackets.
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Table 3.1 shows the time required to refresh a snapshot for the different techniques.
Reorganization took place after loading the data of the TPC-C benchmark scaled to 5
warehouses and then running the TPC-C transaction mix until a total of 100,000 trans-
actions (roughly 44,000 NewOrder transactions) were finished. A snapshot of the data-
base containing the data that was initially loaded was maintained while executing the
transactions.

3.3.2. Raw Scan Performance

In addition to the tests conducted during the execution of the CH-benCHmark, we mea-
sured scan performance in a micro-benchmark setting. First, we evaluated the time it
takes to determine which tuples inside the store are valid, that is, time to find all valid
TIDs. Second, we evaluated the predicates min(4b) and min(50b) which determines the
lowest value for a 4 byte integer and for a 50 byte string, respectively.

Backend Valid 4kb pages 2mb pages
Tuples Min(4b) Min(50b) Min(4b) Min(50b)

VM-Fork 72ms 188ms 702ms 186ms 701ms
Tuple 72ms 216ms 715ms 212ms 708ms
Twin 74ms 242ms 813ms 250ms 796ms
Hotcold 146ms 199ms 769ms 197ms 767ms

Table 3.2.: Scan performance on snapshot after removing 1% and updating 2% of
the tuples.

The two queries were run on a snapshot taken after 30 million tuples were loaded
into the table being tested. Before running the queries, OLTP transactions changing a
total of 2% of the tuples inside the table and deleting another 1% were run. The results
of our benchmark are displayed in Table 3.2.

The time it takes to determine all valid TIDs is given as the ‘Valid Tuples’ value. It
is a baseline for table scan execution speed. ‘Valid Tuples’ performance is inferior on
the hotcold store. This stems from the fact that reorganization of that store is optional
and a snapshot can therefore contain tuples which have been marked as deleted. If reor-
ganization was changed to be mandatory in the hotcold approach, checking for deleted
tuples would no longer be necessary and the runtime would be in the same ballpark as
it is on the other stores.

When comparing the relative difference in speed of execution between the min(4b)
query – which loads a 4 byte int value per-tuple – and the min(50b) query – which loads
50 bytes of data per-tuple – we can observe that the dominating factor in query execu-
tion is loading data. Differences between the VM-Fork and other backends are caused
by added indirection in case of the hotcold approach or bigger tuple size because of
added meta-data (e.g. the shadowPtr) resulting in higher memory pressure in the other
approaches.

Both min-queries were run on memory backed by 4kb as well as 2mb pages. Large
pages reduce the number of TLB misses since lookup information of larger chunks of
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memory can be resolved using the entries inside the TLB. With table scans, no signifi-
cant improvement can be observed. We sampled the number of TLB misses that occur
during scan operations both with 4kb as well as with 2mb pages2. In both scenarios,
the number of TLB misses is zero or close to zero suggesting that TLB misses have no
impact on scan operations since misses are rare to begin with.

3.3.3. OLTP&OLAP CH-benCHmark
To be able to measure the performance of a hybrid system running OLTP transactions
as well as OLAP queries in parallel, the CH-benCHmark was developed [22, 13]. The
benchmark extends the TPC-C schema so that TPC-C transactions as well as queries
semantically equivalent to TPC-H queries can be executed on the same database state.

For the purpose of measuring the memory overhead incurred by different granular-
ities in the tested snapshotting techniques, we extended the transactional part of the
benchmark to include a transaction implementing warranty and return cases. This
changes the access pattern of the TPC-C on the orderline relation so that a small number
of older tuples (2% on average) is updated even after delivery.

OLTP

OLAP 1

OLAP 2

OLAP 3

Time

Delay

Snapshot refresh in 
SW approaches

Snapshot refresh 
requested

Delay

Snapshot refresh in 
HW approaches

Figure 3.21.: Delay before refresh for software- and hardware-controlled mecha-
nisms.

The benchmark was run with one thread executing OLTP transactions and 3 threads
concurrently running OLAP queries (specifically, queries 1 and 5 of the TPC-H) on
a snapshot. A snapshot refresh was triggered every 200,000 OLTP transactions. A
schematic representation of the benchmark is shown in Figure 3.21. There, the differ-
ence between snapshot refresh delays between hardware page shadowing and software-

2Samples were taken with oprofile [46] which periodically accesses CPU performance counters during
execution.
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controlled snapshotting mechanisms is displayed. When a hardware-supported tech-
nique is used, only OLTP execution has to be quiesced. With software-controlled mech-
anisms – like tuple shadowing – all threads executing OLAP queries have to be stopped
as well which reduces throughput because queries have to be either aborted or delayed.

When the snapshot renewal is requested and the delaying strategy is employed, no
new OLAP queries are admitted in software-controlled snapshotting techniques. As
soon as all existing OLAP queries have finished, OLTP processing is quiesced and the
snapshot is refreshed. All OLAP threads finished with their query inhibit a delay un-
til the new snapshot is ready, thus reducing OLAP throughput. When a hardware-
controlled snapshotting mechanism is used, the snapshot can be renewed as soon as
all OLTP transactions have been quiesced. Here, the co-existence of multiple snapshots
possible in the hardware-controlled mechanisms VM-Fork and hotcold is beneficial, as
the creation of a new snapshot is independent of parallel query execution on old snap-
shots.

OLTP/OLAP Throughput

Table 3.3 shows the throughput for OLTP transactions as well as OLAP queries. The
OLTP transactions correspond to the transactions of the TPC-C. The OLAP queries con-
sist of queries semantically equivalent to queries 1 and 5 of the TPC-H. The two repre-
sentative OLAP queries are repeatedly executed in an alternating pattern.

Backend raw index fork index copy index share
OLTP OLTP OLAP OLTP OLAP OLTP OLAP

VM-Fork 85k 60k 10.3 59k 9.7 n/a n/a
Tuple 25k 22k 6.8 19k 5.9 24k 5.9
Twin 33k 29k 7.0 26k 5.9 27k 7.0
Hotcold 84k 59k 9.6 59k 9.9 n/a n/a

Table 3.3.: OLTP and OLAP throughput per second in the CH-benCHmark.

Looking at OLTP throughput, it can be observed that techniques based on hardware
page shadowing yield higher throughput. This has two major reasons: First, hardware page
shadowing allows for faster reorganization than software-controlled mechanisms as we
observed in Section 3.3.1. Second, there is no indirection as opposed to tuple shadowing
where a shadow tuple has to be checked, or twin tuples where the tuple to be read or
written has to be found using a bit flag (cf. Section 3.2.2).

OLAP query performance is influenced less by the choice of snapshotting mechanism.
Compared to a 50% slowdown as seen in OLTP throughput, OLAP queries run about
25% slower when a software-controlled snapshotting mechanism is employed. Here,
the slowdown is caused by two main factors: Reorganization time and the delay caused
by quiescing OLAP queries. All backends have been architected so that OLAP query
performance is as high as possible. This is achieved by maintaining tuples included in
the snapshot in their original form and position and adding redirection only for new,
updated or deleted tuples which can only be seen by OLTP transactions, not OLAP
queries.

49



3. Evaluation of Efficient Snapshotting Mechanisms

Throughput for both OLTP transactions as well as OLAP queries varies with differ-
ent index synchronization mechanisms. For index copy, performance degradation is
caused by an increase in reorganization delay of about 1 second per 1000 megabytes
index size. When indexes are shared between transactions and queries, reorganization
time is unaffected but instead a runtime overhead for acquiring latches is incurred. For
index fork – where indexes are shadow copied with vm page granularity – the decrease
in OLTP throughput compared to the raw throughput given in Table 3.3 is the result of
both increased fork time as well as runtime overhead. Here, the part of the page table
used for index pages needs to be copied as part of the fork causing a small delay in
the order of milliseconds per gigabyte index size. Additionally, more significant delays
occur whenever a physical page has to be copied causing a significant performance de-
crease compared to the raw OLTP throughput given. It should be noted that the raw
values shown in Table 3.3 were measured without any index synchronization causing
all indexes to be inaccessible for OLAP query processing.

The benchmark was executed on both 4kb and 2mb pages. Techniques involving the
fork system-call experience better fork performance with larger pages. This is due to the
fact that the page table – which is copied eagerly on snapshot refresh – is approximately
512 times smaller when using 2mb pages instead of 4kb pages (see Section 3.3.1). Apart
from performance gains related to smaller delays caused by higher fork performance, a
measurable performance gain from bigger pages is experienced by OLTP transactions.
There, the memory access pattern is non sequential – as opposed to OLAP table scans.
On most architectures (see, for instance, [35]), the size of virtual memory for which
address resolution can be performed in hardware using the TLB is significantly larger
when using large pages than when small pages are used. Therefore, TLB misses occur
less frequently thus increasing transaction throughput. In measurements we conducted
for a TPC-C workload, the number of TLB misses was reduced to about 50% when using
large pages as opposed to small pages.

Absolute gains in OLTP performance are higher for approaches with a higher inclina-
tion to TLB misses. This is the case for both the hotcold and the tuple shadowing approach.
Since shadow copies can not be easily located close to the original tuple without high
memory consumption overhead or diminished OLTP performance, opportunities for
TLB misses during OLTP transactions effectively double. Therefore, reducing the num-
ber of TLB misses by roughly 50% results in higher absolute savings compared to, for
example, twin tuples.

OLAP processing does not significantly profit from using large pages. As noted be-
fore, any gains from using large pages are either due to shorter reorganization time or
less TLB misses. The effects of shorter reorganization time when the fork system-call is
used are insignificant since the entire delay caused by this operation does only account
for about 1% of the total runtime of the benchmark. A throughput increase due to a
lower TLB miss rate as observed for OLTP transactions can not be observed for queries
because the access pattern of OLAP queries is sequential, making prefetching possible.
Therefore, the TLB miss rate in OLAP queries can be assumed to be low and thus no
significant performance increase can be expected from reducing TLB misses.
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Figure 3.22.: Memory consumed by the different snapshotting techniques over the
course of a 6 million OLTP transaction run of the CH-benCHmark.

Memory Consumption

For the same CH-benCHmark configuration as used in Section 3.3.3, we measured the
total memory usage. Figure 3.22 shows the absolute memory used by our prototypes
after executing a given number of OLTP transactions. Memory measurements were
taken by monitoring total memory consumption on the test hardware.

It can be observed that the memory curve of all approaches is approximately lin-
ear. As the insertion-/update-rate of the CH-benCHmark is constant, this was to be
expected. The fluctuations in memory consumption result from the parallel execution
of OLAP queries which require a certain amount of memory for computations and in-
termediate results. With no OLAP processing in parallel, the deviation from a linear
shape of the curve is no longer visible given the scale used in Figure 3.22.

The figure includes the four approaches discussed before as well as curves labeled
‘Baseline’ and ‘Row w/o OLAP’. ‘Baseline’ is the minimum amount of memory required
to save the tuples without applying compression, its value is calculated. ‘Row w/o
OLAP’ is the memory required by a row-store implementation without any snapshot
mechanism and was measured the same way memory consumption was measured for
our snapshot approaches.

The VM-Fork, tuple shadowing and hotcold approach each consume roughly equivalent
amounts of memory during the benchmark. Compared to baseline memory consump-
tion, the three approaches require roughly 20% to 30% more memory than what is nec-
essary to save the raw data contained in all tuples. The twin tuples approach requires
about twice as much memory compared to the baseline, which is caused by constantly
saving every tuple twice.
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The difference in memory consumption between ‘Row w/o OLAP’ and the other ap-
proaches can be explained by multiple factors: First, shadow copies consume memory
that would not be needed when updating in-place. Second, parallel OLAP processing
requires memory for intermediate results. Third, more meta-data like bitmaps or page
table copies need to be kept in memory.

In Figure 3.22, no clear savings from approaches with finer shadowing granularity
can be observed. We believe this is caused by high locality of the TPC-C benchmark as
well as small tuple size of those tables which are actually updated.

3.4. Related Work
The original hardware page shadowing approach was pioneered by Kemper and Neu-
mann [41] for their HyPer prototype database system. They also introduced the ap-
proach of relying on a consistent snapshot for the execution of long-running read-only
workloads such as OLAP. Their work illustrates a complete hybrid workload database
system using hardware page shadowing but does not evaluate the mechanism against
other snapshotting approaches as done in this work.

The creation of snapshots has been thoroughly researched in the database systems
community. Early interest in creating snapshots stems from the need of writing a con-
sistent copy of the database to backup media to limit the amount of log processing
required in case of system failures. In the context of such recovery mechanisms, Gray
et al. [27] evaluated action consistent checkpoints as a method of creating a snapshot
usable for recovery without quiescing the database system. Their recovery strategy is
well established in traditional database systems but is geared towards fault tolerance.
In contrast, the approaches investigated in this work a tailored to efficient query execu-
tion.

Recently, Cao et al. [8] investigated snapshots in main-memory for a latency sensitive
environment: massive multiplayer online games. Their work does not discuss applica-
tions in database systems. While their approach allows fast snapshot creation, it also
incurs memory overheads of factor two to three.

3.5. Conclusion
Satisfying the emerging requirement for real-time business intelligence demands to
execute a mixed OLTP&OLAP workload on the same database system state. We an-
alyzed 4 different snapshotting techniques for in-memory DBMS that allow to shield
mission-critical OLTP from the longer-running OLAP queries without any additional
concurrency control overhead: VM-fork which creates the snapshot by cloning the vir-
tual memory of the database process, twin tuples which keeps two copies of each tu-
ple, software-controlled tuple shadowing and the hotcold adaptation of the VM-fork. The
clear winner in terms of OLTP performance, OLAP query response times and memory
consumption is the VM-fork technique which exploits modern multi-core architectures
effectively as it allows to create an arbitrary number of time-wise overlapping snapshots
with parallel query sessions. The snapshot maintenance is completely delegated to
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the MM/OS as they detect and perform the necessary page replications (copy-on-write)
ultra-efficiently. Thus, the re-emergence of in-memory databases and the progress in
hardware-supported virtual memory management have led to a promising reincarna-
tion of the shadow paging of the early database days. Unlike the original shadow page
snapshots, the hardware-controlled VM snapshots are very well suited for processing
OLAP queries in a mixed OLTP&OLAP workload.
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Chapter 4
Tentative Execution for
Long-Running Workloads

Parts of this chapter have previously
been published in [54].

For hiding I/O latencies, traditional disk-based database systems rely on parallelism
which often requires explicit concurrency control mechanisms like two-phase locking.
Recent main-memory database systems like VoltDB [47] or HyPer [41] use serial exe-
cution on disjoint partitions to achieve high throughput without explicit concurrency
control. This allows removing the lock-manager entirely, which – even in disk-based
database systems – has been shown to be a major bottleneck [32, 62]. In main-memory,
data accesses are orders of magnitude faster than disk accesses. The lock-manager, how-
ever, does not inhibit a significant speedup since it has always resided in main-memory.
Therefore, returning to explicit concurrency control through locking not unlikely to be
the optimal choice for handling long-running transactions in main-memory DBMSs.

While yielding unprecedented performance for good-natured workloads, serial exe-
cution is restricted to a constrained set of transaction types, usually requiring suitable
transactions to be extremely short and pre-canned. This makes main-memory database
systems using serial execution unsuitable for ill-natured transactions like long-running
OLAP-style queries or transactions querying external data – even if they occur rarely in
the workload.

In our approach, which we refer to as tentative execution, the coexistence of short
and long-running transactions in main-memory database systems does not require
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A) Incoming requests are divided into good- and ill-natured.
B) Good-natured requests are executed using a sequential execution paradigm.
C) Ill-natured requests are tentatively executed on a consistent snapshot.
D) Changes made to the main database are incorporated into the snapshot by a snap-

shot refresh.
E) Writes on the snapshot are applied to the main database after validation.

Figure 4.1.: Schematic idea of tentative execution.

recommissioning traditional concurrency control techniques like two-phase locking.
Instead, the key idea is to tentatively execute long-running transactions on a transaction-
consistent snapshot of the database illustrated in Figure 4.1, thus converting them into
short ‘apply transactions’. While the snapshot is already available in our main-memory
DBMS HyPer, which will be used and discussed in the evaluation, other systems can
implement hardware page shadowing as used in HyPer or employ other snapshotting-
or delta-mechanisms as illustrated in Section 4.2.

Since the transaction-consistent snapshot is completely disconnected from the main
database, delays like network latencies or complex OLAP-style data processing do not
slow down throughput of good-natured transactions (green transactions in Figure 4.1)
running on the main database. If a transaction completes on the snapshot, a validation
phase ensures that its updates can be applied to the main database under the predefined
isolation level of the DBMS.

The remainder of this chapter is structured as follows: In the following section, we
discuss the breadth at which the workload for main-memory DBMS is extended by
this work as well as the concrete scenarios discussed here. In Section 4.2, our tenta-
tive execution approach is introduced in detail and implementation choices are offered.
Afterwards, in Section 4.3, we discuss the system performance when using two-phase
locking. We contrast our tentative execution approach with a system relying on multi-
version concurrency control in Section 4.4. We evaluate the performance of tentative
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execution in Section 4.5. There, we also discuss our prototypical implementation of
tentative execution which we added to our main-memory database system, HyPer. Sec-
tion 4.6 discusses relevant related work while Section 4.7 concludes this chapter.

4.1. Workload Extension

In this section, we discuss the range of workloads that will benefit from a more general
transaction processing paradigm and give pointers to real-world applications regularly
employing transactions of this nature.

Duration The focus on short transactions is essential for serial execution as no other
transaction running on the same partition can be admitted while another long-running
transaction is active. This – of course – causes throughput to plummet making long-
running transactions nearly impossible to execute in a vanilla serial execution scheme.
Recent research in the area of hybrid database systems, which can execute OLTP trans-
actions as well as OLAP queries on the same state of the database, has lead to the de-
velopment of the HyPer database prototype [41]. In HyPer, long-running read-only
queries can be executed on a consistent snapshot without interfering with transactional
throughput, therefore alleviating the problem in the read-only case.

Transactions with a runtime higher than few milliseconds that are not read-only can-
not be executed in most recent main-memory database prototypes. This kind of trans-
action, though, is far from being hard to find. For example, the widespread TPC-E
benchmark entails transactions with complex joins which require substantial time to
execute.

Apart from complex transactions with high computational demands and therefore
long runtime, we additionally identify interactive transactions as a workload that is
currently incompatible with the idea of partitioned serial execution. Recently, work
involving user-interactive transactions, so called Entangled Queries [29], received broad
attention in the community highlighting the importance of supporting this workload
type. Additionally, we have identified Available to Promise [71] as both, a complex as
well as a user-interactive transaction type. Here, users are presented with an availabil-
ity promise for their orders which requires transactional isolation until the user has
made a decision. Computing the stock level and therefore availability of the selected
products is computationally expensive while interactivity occurs when waiting for the
user’s decision.

Another source of long-running transactions is application server interactivity. Fre-
quently, application servers retrieve substantial amounts of data from a DBMS, make
a complex decision involving other data sources and write the result of this operation
back to the DBMS in one single transaction. In this scenario, latencies are typically
smaller than waiting times for a user but are still significantly higher than what can be
tolerated in a serial execution scheme.
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Partitioning Among the benchmarks used in the area of main-memory database sys-
tems – for example the TPC-C1, the CH-benCHmark [12] or the voter benchmark2 –
many can be partitioned easily and inhibit only few or no partition-crossing transac-
tions. Most prominently, the TPC-C can be easily partitioned by warehouse id limiting
the number of transactions that access more than one partition to about 12% as noted
in [14]. Oftentimes, the partition-crossing characteristics of a benchmark are even re-
moved for the evaluation of main-memory database systems.

Unfortunately, not all workloads can be partitioned as easily as in the case of the
benchmarks mentioned above. Curino et al. [14] show that the TPC-E3 is hard to parti-
tion manually though they succeed in finding a promising partitioning scheme using
machine learning. Commercial database applications – for instance SAP R/3 – have
orders of magnitude more tables than the TPC-E and therefore make finding a simple
partitioning which requires only few partition-crossing transactions doubtful.

Scenario used in this work In the remainder of this chapter, we will focus on applica-
tion server interactivity as it is frequently found in business applications. Additionally,
it introduces an increase in execution time which is severe enough to render serial exe-
cution useless for this kind of transaction. Furthermore, application server interactivity
is usually employed in cases where transactional isolation is an absolute requirement
making solutions which decrease the isolation level to allow for efficient execution im-
possible.

4.2. Tentative Execution

The execution of ill-natured transactions takes place on a consistent snapshot. Alter-
native methods like execution on delta structures or using undo log information are in
principle possible, as all general results presented here also apply to other mechanisms.

When an ill-natured transaction is detected, it is transferred to the tentative execu-
tion engine. The transaction is queued for the next snapshot being created after its
arrival. Monitoring is employed during execution on the snapshot to allow for a valida-
tion phase on the main database. If the transaction aborts on the snapshot, the abort is
reported directly to the user. If the transaction commits, a so called apply transaction is
enqueued into the regular sequential execution queue as pictured in step 4), Figure 4.2.
As implied by the name, the apply transaction validates the execution of the original
transaction and then applies its writes to the main database state. If validation fails, an
abort is reported to the client. Otherwise, successful execution of the original transac-
tion is acknowledged after the apply transaction has committed on the main database.

The remainder of this section details the specific concepts used for identifying trans-
actions that should be run tentatively, monitoring, validation and the general execution
strategy of tentative transactions.

1See www.tpc.org/tpcc/default.asp
2See voltdb.com/sgi-achieves-record-voltdb-benchmarks
3See www.tpc.org/tpce/
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4.2. Tentative Execution

4.2.1. Identification of Ill-Natured Transactions
Different mechanisms can be used to separate the workload into good- and ill-natured
transactions. A simple approach is limiting the runtime or number of tuples each trans-
action is allowed to use before it has to finish. When a transaction exceeds this allotment
– which can vary depending on the transactions complexity or the number of partitions
it accesses – it is rolled back using the undo log and re-executed using tentative execu-
tion.

If no interactivity is allowed inside transactions, the rollback after a timeout is trans-
parent to the user. This is because no decision about the success of the transaction,
commit or an abort, has been made and no intermediate results of the transactions could
have been observed by the user. This strategy is displayed as step 2) in Figure 4.2. If it
is decided that a transaction should rather be executed tentatively, it is rolled back and
reinserted (see step 3)) into the transaction queue with a label marking it as a ‘snapshot
transaction’. Although simple, a limit-based the approach yields satisfactory results for
workloads consisting of many deterministic and short transactions and only some very
long-running analytical queries.

Figure 4.2.: Schematic representation of the tentative execution approach presented
in this work.

Apart from limit-based mechanisms, static analysis can be used for the execution of
stored procedures. Here, potentially slow accesses to external data which take more
than, e.g., a few microseconds to complete, can be identified à priori. Transactions that
have already been identified to be long-running by the analysis can be tentatively exe-
cuted from the start. Instead of relying on automated analysis, the user can also explic-
itly label transactions as tentative and therefore force execution on the snapshot if that
behavior is deemed favorable.

Another possible option for identifying transactions which should be run using tenta-
tive execution is collecting statistics on previous executions of each transaction. When
limit-based detection has frequently failed executing a certain transaction serially, the
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scheduler can use this knowledge to schedule the transaction for tentative execution
instead of again trying to execute it serially.

4.2.2. View-Serializable

To achieve view-serializability, a tentative transaction’s read set on the snapshot must
be equal to the read set that would have resulted from executing the transaction on
the main database. To achieve this, we monitor all reads on the snapshot and validate
them against the main database. This ensures that none of the writes performed on the
main database by short good-natured transactions invalidate the visible state a tentative
transaction was executed on.

Formally, we define view-serializable [73]: Let s be a schedule and RS(s) be its reads-
from relation. Intuitively, the reads-from relation contains all triples (ti, x, tj) for which
a transaction tj reads the value of the data element x previously written by transaction
ti (A formal definition, which we omit for brevity, can be found in Definition 3.7, [73]).
Two schedules s and s′ are said to be view-equivalent denoted s ∼v s′ if their reads-from
relations are equal:

s ∼v s′ ⇔ RF (s) = RF (s′)

A schedule s is called view-serializable iff. a serial schedule s′ exists for which s ∼v s′.
Intuitively, a schedule s is view-serializable when the state of the database read by the
transactions in s is the same as the state of the database read by some serial execution of
those transactions. We ensure this property by monitoring the reads a tentative transac-
tion performs and validating them against the writes performed in parallel on the main
database as detailed below.

4.2.3. Snapshot Isolation

In addition to view-serializable, we offer snapshot isolation [3]. Here, the writes of a tenta-
tive transaction must be disjoint from those performed in parallel on the main database.
This requires monitoring all writes performed on the snapshot such that conflicts with
writes performed on the main database can be detected.

Formally, snapshot isolation can be defined as the set of schedules which can be gener-
ated when enforcing the following two rules [21, 60]:

1. When a transaction t reads a data item x, t reads the last version of x written by a
transaction that committed before t started.

2. The write sets of two concurrent transactions must be disjoint.
We enforce 1. by running a transaction t on a snapshot that contains all transactions

that have committed before t was admitted and by enforcing a concurrency control
protocol like strict 2PL on the snapshot. The latter allows for writes to be done in-place
on the snapshot without the danger of a concurrent transaction reading uncommited
data from another tentative transaction. The disjoint write sets rule 2. is enforced using
the monitoring approach described in the following section.
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4.2.4. Intertransactional Read-Your-Own-Writes

While read-your-own-writes within one transaction as defined in the SQL standard [34] is
fulfilled under both snapshot isolation and view-serializable, another related anomaly can
be observed when using snapshot isolation, which we refer to as the intertransactional
read-your-own-writes violation.

As an example in the context of tentative execution, consider a user u successfully
executing a short transaction t1 on the database which adds an order with a total value
of $100. Since the transaction is not long-running, it is executed using the sequential
execution queue on the main database and commits. Then, u executes a new transac-
tion, t2, which counts all orders valued at $100. If – under snapshot isolation – t2 was
dispatched to a snapshot created before t1, uwould not see the effects caused by her pre-
viously committed transaction t1, an anomaly which we refer to as an intertransactional
read-your-own-writes violation.

To avoid intertransactional read-your-own-writes violations, we require order preser-
vation analogously to [73, page 102]. For every two transactions t and t′ the following
must hold: If t is executed entirely before t′, all operations of t must come before all
operations of t′ in the totally ordered history. Intuitively, this ensures that for every
transaction t′, all effects of all transactions which finished and committed before t′ are
visible. This behavior is favorable, since users would expect that their transaction – for
which a commit was already received – is part of the observed database state.

In our prototypical implementation of the tentative execution approach, adherence
to intertransactional read-your-own-writes is given under view-serializable. Here, the read
set is validated such that tentative transactions read the latest committed value for each
data item, therefore implicitly fulfilling intertransactional read-your-own-writes.

Under snapshot isolation, transactions need to be executed on a snapshot which was
created after the transaction was admitted. Since we refresh the snapshot periodically
as indicated in Section 4.5.1, we queue all arriving tentative transactions until the next
time the snapshot is refreshed, at which point we start their execution. As we can have
multiple active snapshots in parallel (cf. Figure 4.19) and since snapshot creation is
cheap, this causes only a minor delay which is noncritical since tentative transactions
are long-running in nature.

4.2.5. Conflict Monitoring

Our approach is optimistic in that it queues and then executes transactions on a con-
sistent snapshot of the database. This is advantageous as no concurrency control is
required for the short- and apply transaction execution. Similarly to other optimistic
execution concepts, for instance [45, 36, 6], a validation phase is required which makes
some form of monitoring necessary.

We formalize our monitoring approach as follows. An action that requires monitoring
so that it can be verified during the apply phase is called an access. Under snapshot iso-
lation, every write is an access and has to be monitored, whereas under view-serializable,
every read is an access.
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For each access performed by the tentative transaction under a given isolation level,
we record a 2-tuple

(tid, snapshotVersion(tid))

and add it to L, the set of monitored accesses. Here, snapshotVersion(tid) is defined as
the version of a tuple identified by tid at the point the snapshot was taken. Therefore,
it holds that

snapshotVersion(tid) = currentVersion(tid)

right after a snapshot of the database has been taken.
A tentative transaction is successful if a) it commits on the snapshot and b)

∀(tid, ver) ∈ L : currentVersion(tid) = ver

holds.
Note that a version does not necessarily require a concrete version number or counter

per-tuple, its value can also be used as a version identifier. We exploit this fact for
monitoring accesses which touch only very few tuples and attributes.

In detail, we employ an adaptive monitoring strategy that depends on the nature
of the SQL statement being executed. For requests using the primary index or other
unique indexes, we do not use explicit per-tuple version numbers but log the values of
all attributes which are accessed. If compression is employed, it is sufficient to log the
compressed value as long as decompression is possible at a later point in time, during
the validation phase.

By logging an attribute value, the version of the accessed data is given implicitly
through its value. Therefore, snapshotVersion(tid) is equal to currentVersion(tid) iff. all
values of all accessed attributes of the tuple are equal on both the snapshot and the main
database.

For statements that access multiple tuples, we vary the granularity at which accesses
are logged depending on the access patterns observed on a table. A natural way of
noticing changes to the underlying data is to introduce version numbers representing
the state of a cluster of tuples. For instance, an entire relation can be versioned as a
whole – that is a version counter is increased on every update performed on the rela-
tion. When the versions used on the snapshot during tentative execution as well as
the version found when applying the transaction on the main database are equal, the
datasets used by each transaction are disjoint and therefore conflict free, causing valida-
tion to succeed. To achieve other, finer granularities, version counters can be introduced
on each column of a relation, on parts of the index, for example B+-tree leaf nodes or on
each memory page. Variations of possible log granularities are displaying in Figure 4.3.

Our prototype implements the log as attribute values written to a chunk of shared
memory. For each read/write of a request that has to be logged, we write all used
attribute values as well as the cardinality of the request’s result to the log. Since we use
shared memory, the tentative transaction and the apply transaction can both access the
same log structure which simplifies data sharing and makes explicitly copying the log
unnecessary.
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Figure 4.3.: Monitoring using version numbers. The orange diamonds mark possi-
ble places where version counters can be employed to achieve different
monitoring granularities.

For view-serializable, we log selects and validate their result against the result of an
equivalent select to the main database during the apply phase. For snapshot isolation, we
log the set of overwritten tuples and validate that we overwrite the same data on the
main database and therefore the data being overwritten has not changed since snapshot
creation, fulfilling the disjoint write set requirement of snapshot isolation.

In our setting, monitoring is preferential over methods like predicate locking which
could be used to track overlaps in read/write sets as well: Monitoring is only required
for the few long transactions running on the snapshot, not for the many short transac-
tions operating on the main database. Tracking selection and update predicates would
be required on both the main database and the snapshot causing a substantial slow-
down for otherwise good-natured transactions.

4.2.6. Apply Phase

During the apply phase, the effects of the transaction as performed on the snapshot are
validated on the main database and then applied. This is done by injecting an apply
transaction into the serial execution queue of the main database. As opposed to the long
transaction that ran on the snapshot, the apply transaction only needs to validate the
work done on the snapshot and apply its effects, not re-execute the original transaction
in its entirety or wait for external resources.

Specifically, we distinguish between two cases: When serializable is requested, all
reads have to be validated. To achieve this, it is checked whether or not the read per-
formed on the snapshot is identical to what would have been read using the main data-
base. Depending on the monitoring granularity, the validation can require re-reading
every tuple a second time or simply comparing version counters between snapshot and
main.
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When snapshot isolation is used, the apply transaction ensures that none of the tuples
written to on the snapshot have changed on the main database. Therefore, it is guaran-
teed that the write sets of both the tentative transaction as well as all concurrently active
transactions on the main database are disjoint. This is achieved by either comparing the
current tuple values to those saved inside the log or by checking that all version coun-
ters for written tuples are equal both during the execution on the snapshot and during
apply on the main database.

4.2.7. Concurrency

Since tentative execution is used for transactions which are unsuitable for sequential ex-
ecution, it is essential to support concurrency on the tentative execution snapshot. As
transactions are compiled differently if they are scheduled to be executed tentatively,
we can support all concurrency control techniques used in traditional database sys-
tems – for instance two-phase locking. In contrast to using 2PL for the entire database,
adding the overhead of a centralized lock-manager inside the tentative execution engine
is not critical: Relative to a long transaction’s runtime and other costs, locking overhead
is minimal for transactions executed on the tentative execution snapshot, whereas the
overhead of locking would be massive for short transactions which we execute serially.

When the view-serializable isolation level is used with tentative execution, a simpler
concurrency control mechanism is possible. Since the read set of a tentative transac-
tion is verified during the execution of the apply transaction, we can have multiple
transactions run in parallel on the snapshot using latches to maintain physical but not
necessarily logical integrity. If two tentative transactions interfere with each other, the
conflict will be detected during validation in the apply transaction, causing one of the
conflicting transactions to abort. Therefore, when using view-serializable, we can employ
this type of optimistic concurrency control on the snapshot. Note that this method of
guaranteeing logical integrity does not apply to snapshot isolation, since writes could be
based on an inconsistent view of the database which no logner corresponds to a previ-
ous consistent version.

4.2.8. Queries

OLAP queries constitute a special case of long-running transactions which do not con-
tain a write component. The tentative execution approach introduced in this work re-
quires no modification for such workloads. OLAP queries are simply forwarded to the
snapshot where they are executed analogously to the OLAP execution pattern origi-
nally introduced for HyPer [41]. Since no writes are performed, logging is not nec-
essary. The only additional cost comapred to the original HyPer approach is due to
concurrency control on the snapshot as discussed in the previous Section. For these
read-only queries, the result of the execution on the snapshot is directly reported to the
user without the need for an apply transaction.

Under snapshot isolation, no verification needs to be performed since the write set of
the OLAP query is empty and therefore cannot conflict with writes on the main data-
base. Under view-serializable, the reads-from relation of a read-only transaction t is equal
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to the reads-from relation of the serial schedule in which t is executed serially right after
the consistent snapshot of the database was taken. Therefore, the execution of OLAP
queries using tentative execution fulfills the view-serializable requirements as defined
in Section 4.2.2. It is based on multi-version concurrency control like for instance [48]
with its mode of execution most closely resembling the multi-version mixed synchro-
nization method, as described by Bernstein, Hadzilacos and Goodman [4, Section 5.5].
There, updaters generate a new version for every update they perform on the database
whereas queries work on a transaction-consistent state of the entire database that existed
before the query was started.

4.2.9. Summary

Tentative execution converts an ill-natured transaction into a good-natured one by col-
lecting unknown external values during the execution on the snapshot. From that, an
apply transaction which does not require interactivity is generated, which can be ex-
ecuted using high-performance serial execution. In case of successful validation, the
apply transaction commits and its effects are equal to the original transaction being run
directly on the main database with the specified isolation level. If the validation is not
successful, the transaction aborts just as if a lock could not be acquired due to a dead-
lock situation in a system using locking or as if an illegal operation had to be performed
when using timestamp-based concurrency control (cf. [73]).

When used for the execution of read-heavy OLAP-style transactions, coarse granular-
ity monitoring can be used to allow for quick validation of otherwise large amounts of
read data. Additionally, snapshot isolation can be used to reduce overhead when appro-
priate – for instance for the concurrent calculation of approximate aggregate values.

4.3. Two-Phase Locking in Main-Memory

Two-phase locking is a well known and well-researched mechanism for concurrency
control in database systems which is widely used, for instance in IBM’s DB2 database
system. To validate whether extending the capabilities of serial execution is worthwhile,
we have conducted investigations into the overhead that 2PL causes in a main-memory
setting. In order to get exact measurements of the overhead, we modified HyPer which
currently uses only partitioned serial execution.

We have implemented multiple granularity locking with a total of 5 locking modes
in a Gray and Reuter [28] style lock-manager. We allow the acquisition of shared and
exclusive locks, intentional shared and exclusive locks and finally a combined shared
and intention-exclusive lock. These modes are applied in a hierarchical fashion from
coarse to fine granularity. In the process of acquiring a write-lock for a single tuple, first,
the database is locked in intention-exclusive mode. This lock granularity is required
to allow database maintenance tasks to exclusively lock the entire database. During
regular transaction processing, only intention locks are applied at this granularity.

Further down the granularity-hierarchy, an intentional-exclusive lock is applied to
the table to prevent other transactions from acquiring an exclusive table lock which is
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– for instance – necessary for deleting tuples from the table. Finally, an exclusive lock
is acquired for the tuple which will then be updated. The described lock acquisition
strategy is illustrated in Figure 4.4.

Database

Table1 Table 2

...Tuple1 Tuple2 ...

...

...

IX

IX

X

Figure 4.4.: Top-down lock acquisition required to write a tuple.

The acquisition of a shared lock on a tuple is handled in a similar top-down man-
ner. If a shared lock for a resource is already held by the requester, a lock promotion
is requested. Lock requests are queued and worker threads spin until their request is
granted. This behavior is beneficial, as short transactional workloads are being investi-
gated and no I/O-latency has to be hidden. Usually, wait times are short as transactions
blocking a lock request finish within a few microseconds. This assumption is valid as
our investigation of two-phase locking will focus on a discussion of the general over-
head incurred by relying on locking for transaction processing. When long-running
workloads are processed concurrently with short transactions, the problem is of course
amplified and event based waiting instead of spinning must be employed.

A fifth lock mode, the shared, intentional write-lock (SIX lock) is implemented to
aid the implementation of update-scans where a table has to be locked in shared mode
to guarantee reproducible scans. At the same time, some tuples inside the table will
be written and therefore exclusively locked, warranting the additional lock mode. An
overview of all supported lock modes and their compatibility is displayed in Table 4.1.

S X IS IX SIX
S y n y n n
X n n n n n
IS y n y y y
IX n n y y n
SIX n n y n n

Table 4.1.: Lock modes and compatibility overview.

As physical undo logging is employed in HyPer, we require all resulting schedules
to be recoverable. This is enforced by atomically releasing locks only when the transac-
tion commits or aborts resulting in strict two-phase locking which guarantees that all
resulting schedules are strict and therefore also recoverable (cf. Section [73]).

For deadlock detection, we rely on an online cycle detection approach as introduced
by Pearce et al. [63] for pointer analysis. Instead of repeatedly building and updating a
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wait-for graph and applying a cycle detection algorithm to it, online cycle detection is
an incremental approach.

A transaction which blocks on trying to acquire a lock adds an edge from itself to
each transaction that currently owns the lock or is ahead in the waiting queue to the
cycle detector. If the addition of the edge leads to a cycle, the requesting transaction is
rolled back as waiting would lead to a deadlock.

The advantage of relying on incremental continuous cycle detection for deadlock
avoidance is lower latency as compared to a mechanism relying on materializing the
entire explicit wait-for graph after a timeout. This is especially important as transac-
tions are expected to be fairly short and pre-canned leading to high throughput. The
lower latency gained by continuous cycle detection comes at the price of having to add
an edge to the online cycle detector for every lock request.

Briefly, online cycle detection works as follows: Given a graph G(V,E), each vertex
v ∈ V is assigned a numberndenotedn2i(v) such that each vertex has a distinct number
n between 1 and |V |. A topological constraint is enforced on the numbering such that
for two vertexes a ∈ V and b ∈ V which are connected by an edge e = a → b, e ∈ E it
must hold that n2i(b) > n2i(a). A numbering of this kind exists iff. the graph contains
no cycles.

Figure 4.5.: Broken vertex ordering after x → y insertion.

When an edge between two vertexes is added, we observe two cases: Trivially, for the
insertion of an edge x → y, the numbering can already satisfy the topological ordering
constraint and it holds that n2i(y) > n2i(x). If the constraint is not met, a situation as
displayed in Figure 4.5 arises where the n2i(y) must be adjusted such that it is greater
than n2i(x) causing some of the dependent nodes in between x and y to also be moved.
The range of nodes between x and y is called the affected region since any node outside
of this region does not need to be touched.

To fix the numbering such that the topological numbering constraint holds, a depth-
first-search (DFS) is performed from node y and only nodes within the affected region
are considered. The nodes are shifted according to their order during the DFS search
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causing the topological numbering constraint to be met again if there is no cycle present
(cf. Figure 4.6). If the DFS set of y contains y itself, a cycle was introduced and the
transaction introducing the cycle is aborted.

Figure 4.6.: Corrected vertex ordering after x → y insertion.

Our locking scheme uses coarse granularity locks for accesses which touch more than
5 tuples and fine granularity per-tuple locks otherwise. Since we operate entirely in
main-memory, locks are usually held for only a few microseconds rendering a tall lock-
ing hierarchy inefficient.

To illustrate the overhead incurred by using 2PL, we ran the well known TPC-C bench-
mark scaled to 8 warehouses and measured the transactional throughput. In the case of
partitioned execution, we partitioned the database by warehouse_id allowing for many
accesses to be restricted to a single partition with an average of 12.5% of the transactions
touching multiple partitions. In our current implementation, when partitioned execu-
tion encounters a so called partition-crossing transaction, it locks the entire database
effectively disabling parallelism for the duration of said transaction.

In Figure 4.7 and Figure 4.8, we show how throughput in the TPC-C benchmark varies
between 2PL and partitioned execution. We measured the throughput in transactions
per second over a 100 seconds long run of the benchmark while varying the number of
threads. Clearly, partitioning performs better than locking both in terms of throughput
increase per added thread as well as in terms of peak throughput as long as there are
at least as many partitions as threads.

The poor performance of 2PL can be explained by looking at profiler information on
where time was spent during the execution of the benchmark. In our implementation,
roughly 70% of the execution time is spent for locking related tasks as depicted in Fig-
ure 4.9

The comparably high overhead of locking is due to the fact that each transaction in-
side the TPC-C requires acquiring multiple locks on different hierarchy levels. During
the benchmark run shown in Figures 4.7 and 4.8, 6.5 million transactions were started
which required the acquisition of roughly 400 million locks. 1 million of these locks
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Figure 4.7.: The TPC-C benchmark with 8 warehouses executed using 2PL.

Figure 4.8.: The TPC-C benchmark with 8 warehouses executed using partitioned
serial execution.
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could not be fulfilled without waiting for another transaction to release the lock. 40,000
transactions had to be aborted, either because of a cycle in the waits-for graph or be-
cause of an unfulfillable lock upgrade request.

...

Everything else

.

33%

..

Lock Waiting

.

14%

..

Lock Requesting

.
16%

..

Mutex Waiting

.

17%

..

Memory Management

.
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Figure 4.9.: Cycle distribution during transaction execution.

Compared to 2PL, partitioned execution scales noticeably better peaking at roughly
350,000 transactions per second (note that redo logs were not persisted in this scenario
causing a performance increase of roughly 10%). Here, the overhead of locking shared
data which is necessary for the execution of roughly 12,5% of all transactions accounts
for about 20% of the execution time. The remaining 80% is exclusively spent on trans-
action execution explaining the large difference in throughput in which partitioned ex-
ecution is a factor 7 faster than two-phase locking.

We investigated different implementation choices which impact the performance of
2PL when executing a benchmark consisting of short, pre-canned transactions. The
most significant improvement we discovered is replacing lock waiting using condition
variables with busy waiting. This is due to the fact that transactions are extremely short
and context switches to other threads do not usually pay off as waiting periods are in
the order of a few microseconds. Unfortunately, this improvement – which allows per-
formance gains of about 20% – is no help when it comes to the execution of transactions
different from those in the TPC-C and other benchmarks containing exclusively small
transations: when an ill-natured transaction is executed with busy waiting enabled, all
threads waiting for a lock held by said transaction would actively spin and thus con-
sume memory bandwidth as well as completely block an execution unit.

4.4. Multi-Version Concurrency Control
Instead of locking, an optimistic concurrency control mechanism called multi-version
concurrency control (MVCC) can be employed. Here, concurrency is increased by re-
taining more than one version of each tuple and individually deciding which version
is visible to each transaction when a tuple is accessed.
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In this Section, we will introduce the theoretical underpinning of MVCC and how
different isolation levels can be achieved with it. Furthermore, we will introduce an
implementation of MVCC – Hekaton – which was originally introduced as a research
prototype by Microsoft and is now part of Microsoft SQLServer. Using this implementa-
tion, we will highlight the performance terms of how it compares to our approach when
executing OLTP workloads, in an analytical setting and how tentative transactions are
handled.

4.4.1. Hekaton Approach

Microsoft proposes a main-memory database system which uses multi-version concur-
rency control [45, 19]. In this Section, we will describe and analyze Hekaton’s design.
Then, we evaluate Hekaton’s performance and suitability for long-running transactions
in comparison to a HyPer-architecture main-memory database system.

Architecture

Hekaton uses main-memory as its primary data-store and does not write data to disk.
To achieve durability, a redo log is written before a transaction commits. Group commit
is used to high throughput even though a redo log entry has to be written for each
transaction.

Tuples are stored in a row-store layout in main-memory and extended with a from and
a to timestamp. Intuitively, a tuple is visible to every transaction whose read timestamp
lies between the tuple’s from and to timestamps. Additionally, timestamps double as
locks used to prevent a tuple from being updated by multiple transactions at the same
time (as this would inevitably lead to a write-write conflict). Timestamps and markers
are discussed in more detail in the remainder of this chapter.

In addition to from and to timestamps, each tuple contains at least one pointer to an-
other tuple. These pointers are used to construct a linked list to a) allow storing more
than one version of a single tuple by chaining multiple versions together and b) to han-
dle collisions in the index structures used by Hekaton. To allow adding indexes without
causing a major restructuring operation – which would require the database system to
be shut down – more next pointers than required by the original database schema need
to be preallocated so that they can be used for collision handling in indexes added in
the future.

Unlike in HyPer, tuples are not stored in a consecutive chunk of memory which grows
over time but instead are individually allocated. Therefore, scans are not performed
by sequentially iterating through the contiguous chunk of memory storing all tuples.
Instead, a full index scan on the primary index of a table is performed. If no primary
index is defined in the schema, one is added internally by the database system.

Using separate allocations instead of consecutive memory is beneficial as it allows
guaranteeing that the physical location of a version of a tuple never changes. This in
turn is helpful when designing lock free algorithms which are used pervasively in Heka-
ton. For efficient point-access, Hekaton uses a lock free implementation of a hash table
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void insert(data) {
auto& tuple=allocateTuple();
tuple.data=data;
tuple.from = Transaction.id();
tuple.to = Infinity;
addToIndexes(tuple);
Transaction.rememberInsert(tuple.from)

}

Listing 4.1: Pseudocode of Hekaton’s insert mechanism.

which relies on chaining for collision handling. The lock free index is discussed in depth
in Section 4.4.1.

From To

Figure 4.10.: Exemplary account table in Hekaton with timestamps and next point-
ers included inside the tuples (After [45]).

Figure 4.10 shows a relation in Hekaton. From and to mark the interval for which a
tuple is valid. In case of the most recent version, to is assigned a timestamp representing
infinity (abbreviated inf in the Figure). At any point in time, there is at most one version
of a tuple which is visible as of that point in time.

To mark a tuple as dirty, a transaction writes its transaction id into one of the tuples
timestamp fields. For insertions of a new tuple, a transaction allocates the tuple and
sets the from timestamp of the tuple to its transaction id. This causes other transactions
to ignore this version as long as the inserting transaction has not committed. Then,
after validating that the required isolation level was not breached, all transaction ids
are replaced with the transactions timestamp marking each newly added tuple as valid.
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void update(key,newData) {
for (tuple : hashChain(key)) {
if (tuple.key != key) continue;
if (isTransactionId(tuple.to)) rollback(”concurrent␣update,␣aborting”);
if (isTimestamp(from) && to == Infinity) {
if (!cas(tuple.to,infinity,Transaction.id()))
rollback(”concurrent␣update,␣aborting”);

auto& newTuple=allocateTuple();
newTuple.data=tuple.data;
newTuple.from=Transaction.id();
newTuple.to=Infinity;
addToIndexes(newTuple);
Transaction.rememberInsert(tuple.to,newTuple.from);
break;

}
}

}

Listing 4.2: Pseudocode of Hekaton’s update mechanism.

This mechanism is illustrated in Listing 4.1. First, a new tuple is allocated and updated
with both the actual data as well as the aforementioned values for its timestamps and is
then inserted into the indexes of the relation. The transaction records adding the tuple
to reset the from timestamp later on, when it knows that it can actually commit.

The same mechanism guards updated tuples from being visible before the updating
transaction is certain that it can commit. Here, the most recent version containing the
previous information stored inside the tuple is read and its to timestamp – which is in-
finity as it is the most recent version of the tuple – is atomically exchanged with the id of
the transaction trying to update the tuple. This marks the tuple as being changed pre-
venting two transactions from performing an update to the same tuple (cf. Figure 4.2).
Additionally, it provides a hint to concurrent transactions that the version marked with
a transaction id in its to timestamp might change soon. This can be used to optimize
throughput as discussed in Section 4.4.1.

After successfully augmenting the to timestamp of the most recent existing version
of a tuple, a new tuple is allocated, the original data is copied into the newly allocated
tuple and all modifications are applied. The from timestamp of the tuple is set to the
updating transaction’s id marking it as dirty. Then, the new tuple is added to all in-
dexes. After validation, an updated tuple’s to timestamp is changed from the updating
transaction’s id to its write timestamp value. This marks the tuple as no longer valid
as a new version has successfully been added to the database. This is illustrated in Fig-
ure 4.10: Transaction 75 updates John’s Account by increasing the amount from 110 to
130. To achieve this, the latest version is marked dirty by writing the transaction id –
tx75 – to the to timestamp of the tuple. A new tuple is generated, updated, marked dirty
by adding the transaction id to the from timestamp before the new tuple is added to all
indexes. On commit, the transaction’s id, Tx75, is replaced with its write timestamp,
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100. This hides the old version from all newer transactions and makes the new version
visible.

void update(key,newData) {
for (tuple : hashChain(key)) {
if (tuple.key != key) continue;
if (isTransactionId(tuple.to)) rollback(”concurrent␣update,␣aborting”);
if (isTimestamp(from) && to == Infinity) {
if (!cas(tuple.to,infinity,Transaction.id()))
rollback(”concurrent␣update,␣aborting”);

auto& newTuple=allocateTuple();
newTuple.data=tuple.data;
newTuple.from=Transaction.id();
newTuple.to=Infinity;
addToIndexes(newTuple);
Transaction.rememberInsert(tuple.to,newTuple.from);
break;

}
}

}

Listing 4.3: Pseudocode of Hekaton’s delete mechanism.

Deletions are performed by atomically setting the to timestamp of the most recent
version of the tuple to be deleted to the deleting transaction’s id (see Figure 4.3). This
causes the tuple to be marked dirty and thus protected from other transactions trying to
update it. On commit, the to timestamp is changed to the transaction’s write timestamp
marking the end of its validity period without a new version.

So far, manipulating the content of a Hekaton relation has been discussed. We will
now focus on how a transaction determines whether a tuple is visible to it or not. During
normal processing of a transaction, different versions of any one tuple are read which
are all stored in the collision chain of the hash bucket being accessed. Apart from actual
collisions, the transaction has to skip all versions which are not visible to it and only use
the single-version visible according to the transaction’s readTimestamp.

Any transaction in a Hekaton-like system can be in one of the following 5 states:

• Active: Processing a transaction.

• Preparing: Finished processing but not committed yet, might still fail validation.

• Committed: Finished processing and successfully validated. Still adjusting times-
tamps of modified tuples but can already be read from.

• Aborted: Failed but might not have reset all timestamps.

• Terminated: Either committed or aborted. All timestamps have been written and
the database consistently reflects the potential changes made by this transaction.
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Whether or not a tuple is visible to a reading transaction partly depends on the state of
the transaction which last accessed it. Since the algorithm for determining visibility is
hard to express textually, we first show its pseudocode and then discuss relevant parts.

1 bool isVisible(from,to) {
2 retry:
3
4 if (isTimestamp(from) && isTimestamp(to))
5 return (from <= Transaction.readTs && Transaction.readTs <= to);
6
7 bool visible=false;
8 if (from.isTimestamp) visible=from <= Transaction.readTs;
9 else

10 switch (getTransaction(from).state) {
11 case Active: visible = (getTransaction(from) == Transaction); break;
12 case Preparing: usleep(1); goto retry;
13 case Committed: visible = (getTransaction(from).writeTs <= readTs); break;
14 case Aborted: visible = false;
15 case Terminated:goto retry;
16 }
17
18 if (!visible) return false;
19
20 if (to.isTimestamp) visible &= to >= Transaction.readTs;
21 else
22 switch (getTransaction(to).state) {
23 case Active: visible &= (getTransaction(to) == Transaction); break;
24 case Preparing: usleep(1); goto retry;
25 case Committed: visible &= (getTransaction(to).writeTs <= readTs); break;
26 case Aborted: visible &= true;
27 case Terminated:goto retry;
28 }
29
30 return visible;
31 }

Listing 4.4: Pseudocode of isVisible for our implementation of Hekaton.

The trivial case is that both the from and the to timestamps of a tuple contain times-
tamps and not transaction identifiers. This is likely, as most transactions only change
a small part of the database leaving most records untouched. In this case, the tuple is
visible if the reading transaction’s readTimestamp is between the from and to timestamps
of the tuple (see lines 4 and 5 in Figure 4.4).

Otherwise, the from timestamp inside the tuple is examined. If it contains an actual
timestamp value, we check if that value is older than the current transaction’s readTimes-
tamp and continue to checking the to timestamp (line 8). If the tuple’s from timestamp
contains a transaction id, we check the state of that transaction:
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If the transaction referenced in the from timestamp is active, the tuple is visible if and
only if the current transaction is the same transaction as the one referenced in the from
timestamp. If the transaction is preparing to commit, we wait for a short time and check
if a final decision to commit or abort has been reached. This retry mechanism is aug-
mented by the optimistic execution add-on introduced in Section 4.4.1. If the transaction
has already decided to commit or abort, the tuple is visible if the transactions commits.
In case the transaction state indicates that all timestamps have already been updated,
we immediately retry as we must have missed the result by only a few microseconds
(see lines 10 to 15).

When we determine that the tuple is not visible as per its from timestamp, we can
shortcut the visibility test and return a negative result (line 18). Otherwise, we proceed
by checking the to timestamp. If it contains an actual timestamp, the tuple is visible if
that timestamp is larger than the transaction’s readTimestamp. If the to timestamp of the
tuple contains a transaction id, we again examine the state of the referenced transaction.
In case it is active, the tuple is visible if the transaction inside the tuples to timestamp
and the current transactions are not equal. This is due to the fact that the transaction
which is currently updating or deleting the tuple in question will either finish after us –
in which case the tuple was still visible to us – or before us – in which case we will have
to abort. In case the transaction referenced in the tuple’s to timestamp is preparing, we
wait a moment and retry to see the final decision. In case of an abort, the tuple is visible
as the new version created by the updating transaction was never valid. In case of a
commit, the tuple is valid if the write timestamp of the committed transaction is larger
than the readTimestamp of the current transaction. Similarly to from timestamp handling,
we retry if the transaction referenced by the to timestamp is terminated.

For point-lookups, the complex visibility check has to be performed for each tuple
inside a hash bucket’s collision chain matching the key until either a) the chain ends or
b) a visible tuple with the desired key is found. For scans, the visibility check has to be
performed for all tuples matching the scan predicate.

Indexing

Hekaton uses lock free hash indexes to improve point-lookup performance. Further-
more, a relation in terms of a materialized vector of tuples does not exist. Instead, at
least one hash index must be defined per relation to allow for full table scans by iterat-
ing through all chains inside all hash table buckets. Here, we will discuss the design
of the lock free hash table used in our implementation of Hekaton as it is vital to the
overall performance of the system.

The lock free hash table uses an invasive design meaning that each entry inside the
hash table is not allocated as a pointer to a tuple. Instead, the nodes of the hash table are
embedded inside the tuples themselves. This is advantageous as it reduces allocation
and indirection overhead at the cost of having larger tuples. When indexes need to be
added on the fly, next pointers for each potential index have to be added to every tuple
inside the relation.

In Hekaton, hash tables are initialized with a predetermined size and do not grow
during operation. This simplifies the construction of a lock free hash table algorithm
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and avoids having to resort to, for instance, split ordered lists. Since the hash table used
in Hekaton is based on chaining for handling collisions, there is no hard limit on the
number of entries inside the hash table. Instead, overloading the hash table causes a
gradual decrease in lookup and update performance.

In the remainder of this Section, we will discuss the implementation of basic index
operations: insert, update and delete. Then we will show how the lock free hash table
is integrated into our Hekaton prototype.

The insertion algorithm is shown in Listing 4.5. The slot appropriate for the tuple’s
search key is determined and the pointer inside this slot is atomically exchanged with
the pointer of the new tuple.

void insert(tuple) {
auto key = extractKey(tuple);
auto slot = hash(key) % Size;

while (true) {
tuple.next = table[slot];
if (cas(&table[slot], tuple.next, &tuple)) break;

}
}

Listing 4.5: Pseudocode of the lock free hash table insert.

Insertion is the simplest operation of our lock free hash table as it simply prepends
new elements. To show the problems of implementing correct find and delete opera-
tions when memory needs to be reclaimed at runtime, we will first show a naive imple-
mentation of both algorithms, then explain the anomalies associated with each opera-
tion and finally present the solutions used for out Hekaton prototype.

value* naive_find(key) {
auto slot = hash(key) % Size;
for (tuple = table[slot]; tuple != nullptr; tuple=tuple.next)
if (extractKey(tuple) == key)
return tuple.value;

return nullptr;
}

Listing 4.6: Pseudocode of the naive lock free hash table find.

Naive find is shown in Listing 4.6. The method receives the search key as its parameter
and determines the matching bucket by hashing the key. Then, the collision chain is
walked until an element inside the chain matches the key being searched. If the collision
chain ends and no key has been found, a nullptr is returned.

Analogously to finding an element, removing a key requires finding the correct
bucket inside the hash table first as shown in lines 3-4 in Listing 4.7. Then, the colli-
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sion chain is iterated using a pointer to the pointer to the tuple allowing for simpler
updates of the chain.

1 void naive_remove(key) {
2 auto slot = hash(key) % Size;
3 for (tuple = &table[slot]; *tuple != nullptr; tuple=&(*tuple).next) {
4 if (extractKey(*tuple) == key) {
5 cas(tuple, &tuple, (*tuple)->next);
6 return;
7 }
8 }
9 }

Listing 4.7: Pseudocode of the naive lock free hash table remove.

When the tuple to be removed is found in line 4, the collision chain is atomically
modified to remove the tuple from it (line 5).

With the naive algorithms shown above, we exhibit three anomalies:

1. Failure to remove,

2. Removed remove, and

3. the ABA problem.

Failure to remove is caused by the unguarded CAS operation in line 5 of Listing 4.7.
Here, we compare the value of the pointer to the tuple to be removed with the address
of the tuple to be removed. If equal, we replace the value with the address of the next
tuple in the collision chain.

...

A B

1. Insert C

C

CAS✓

...

A B

1. Insert C

C

CAS✓

2. Remove A

CAS✗

Transaction 1 Transaction  2

Figure 4.11.: If transaction 1 inserts a tuple right before transaction 2 tries to update
the hash chain, the compare-and-swap operation will fail.

This operation can fail, for instance in the scenario illustrated in Figure 4.11. Here,
transaction 1 inserts a tuple into the collision chain while another concurrent transaction
removes another tuple, A, form the same chain. Consider a scenario, where transaction
2 has already progressed to after line 4 in Listing 4.7. Then transaction 1 inserts Tuple C
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and continues work on other parts of the database. When transaction 2 processes line
5, the compare-and-swap operation of the remove code, the pointer which previously
pointed to A now points to C and the CAS operation will fail causing A to not be deleted.

This problem can be mitigated by retrying when a CAS operation fails, for instance
by recursively calling the naive remove function if the CAS fails. We will see, however,
that fixing the ‘removed remove’ issue fixes the ‘failure to remove’ anomaly as a side
effect.

Removed remove occurs when two removes are performed concurrently on the same
hash chain. This issue is harder to spot, as none of the operations involved fail. Both
compare-and-swap operation succeed but the resulting hash chain does still contain
one of the removed elements.

Figure 4.12 shows a scenario where the ‘removed remove’ anomaly occurs. Two trans-
action, 1 (red) and 2 (green) remove tuple A and B respectively (part a) of the Figure).
Both execute the remove function up to the point where the compare-and-swap op-
eration occurs. First, transaction one successfully executes its compare-and-swap op-
eration removing Tuple A (see part 2) of the Figure). Then, transaction 2 execute the
compare-and-swap operation successfully (see part 3) of the Figure). Transaction 2,
however, does not remove Tuple B from the collision chain as it updates the next pointer
of Tuple A which has already been removed.

...

A B

CAS✓

C

CAS✓

...

A

B C

...

A

B C

1)

2) 3)

Figure 4.12.: Removed remove anomaly causing a successful CAS operation to not
remove a tuple from the collision chain.

This anomaly is rooted in the fact that Tuple B is referenced by two pointers, the one
from Tuple A and the one from the beginning of the hash chain. The compare-and-
swap operation only updates the pointer which was used to reach B, but this path has
changed in the meantime and changing the target of A’s pointer does no longer remove
Tuple B from the actual collision chain.

In literature, two ways of dealing with the ‘removed remove’ anomaly are prevalent.
Both ideas rely on marking a tuple as deleted before removing it from the hash chain.
The first idea introduces special deletion marker tuples which are allocated and added
after an element which will be deleted. If the insertion of the deletion marker succeeds,
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no tuple directly following the deletion marker tuple will be removed thus solving the
removed remove anomaly. The drawback of this approach is that an additional tuple
type has to be allocated as well as added and removed from the chain.

A more elegant solution which works semantically equivalently to deletion marker tu-
ples was proposed by Harris [33] and is sometimes referred to as Harris’s trick4. Here, a
tuple is marked as deleted by changing its next pointer – nextPtr – to the valuenextP tr|1.
Since in most systems, all data is aligned to word sized boundaries for performance rea-
sons and common word sizes are multiples of at least 4 bytes, the least significant bit
of every pointer is always 0. When marking a tuple as deleted, the tuple’s next pointer
is changed such that the least significant bit is 1. For iteration purposes, the 1 bit is
ignored by masking it. When updating the hash chain though, the CAS operation is
always performed as follow:

cas(&pointer, oldValue&(~1), newValue)

Therefore, when the next pointer is updated on an element which has already been
marked as deleted, the CAS operation fails and has to be retried analogously to the
‘failed remove’ anomaly.

The ABA Problem is a well-understood issue that occurs when reclaiming memory
in a lock free data-structure [52, 16, 51]. In our case, we will discuss removing and
reusing a tuple inside a hash chain. This issue is similar to removing and reusing an
element inside a linked list with the added complexity of finding the correct linked list
using hashing.

...

A B C

Transaction 1
(remove B)

Transaction 2
(find C)

...

A

B

C

Transaction 2
(scan)

...

Freelist

1) Transaction Iterators 2) ABA Problem

Figure 4.13.: Illustration of the ABA problem

Figure 4.13 shows parallel removal and traversal of an element inside a hash table.
Transaction 1 intends to remove tuple B from the hash chain. At the same time, trans-
action 2 performs a scan operation. Both transactions’ iterators are signified by bold
vertical arrows, therefore, both transactions work on Tuple B in part 1) of the Figure.
Imagine, that Transaction 1 finishes removing B from the chain and enqueuing it in a
free list as depicted in part 2). The next pointer of B is not changed to allow transactions
(like Transaction 2) – which is still performing work which uses Tuple 2 – to continue
iterating through the remainder of the collision chain.

4See, for instance, http://burtleburtle.net/bob/hash/lockfree.html.
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The issue that occurs concerns reusing memory inside the free list. In 2) in Figure 4.13,
Transaction 2 is still using tuple B, therefore, tuple B’s memory can not be reused yet.
Knowing when reuse is possible is not trivial. As a straightforward solution, a reference
count can be included inside every tuple which is incremented before the tuple is read
and decremented when work on the tuple has finished but this architecture is very
costly [52]. Therefore it is not feasible as a building block of a high-performance main-
memory system.

In Hekaton, from and to timestamps can be re-purposed to allow for garbage collec-
tion: When a tuple is added to the free list, a new timestamp which is more recent than
any timestamp given to any transaction so far is requested and included in the free list
record. Then, the tuple can be safely garbage collected when the oldest timestamp of
any active transaction is higher than the timestamp associated with the tuple in the free
list.

While this approach nicely reuses the timestamp mechanism available in the Hekaton
architecture, it also break encapsulation of the hash table index structure. This is due
to the fact that the hash table now needs to know the that a transaction and a tuple
timestamp exist. Furthermore, requesting a new timestamp is costly as a central counter
has to be incremented atomically which should be done as rarely as possible.

For the hash table used with Hekaton, we decided to use Hazard Pointers [52], a solu-
tion which yields better encapsulation and does not require any timestamp logic. The
idea of hazard pointers is that each transaction is restricted to using a specific part of
memory for iterators inside the collision chain. This part of memory is centrally allo-
cated and each transaction receives a couple of slots which can then be used as pointers
to elements inside a collision chain. In Figure 4.13, these pointers are the bold vertical
arrows which are now allocated inside a global data-structure and merely borrowed by
each transaction.

When a tuple is removed from a collision chain, no transaction will arrive at that tuple
as no next pointer references it anymore. Therefore, when none of the hazard pointers
point to a certain tuple inside the free list, the tuple can be garbage collected and reused
as no thread still uses this particular tuple and no transaction can arrive at that tuple
from the collision chain. Thus, it suffices to delay garbage collection until a number of
garbage elements have been added to the free list, 1000 elements in our implementation.
Then, a hash table is build from all hazard pointers – 16 pointers in our implementation.
When trying to recycle an element inside the free list, its address is probed against the
hazard pointer hash table and the element can safely be reused if the address is not
found among the hazard pointers.

Since a lot more elements are added to the free list before the hazard pointer hash
table is build and since almost all elements in the free list will be reused (as at most
as many elements as the number of hazard pointers available can still be in use), the
memory reuse algorithm is cheap when cost is averaged.

From the description of the solutions to the aforementioned anomalies exhibited by
the naive algorithms, we can now derive the correct implementation. For naive_find,
we simply use a hazard pointer instead of a pointer allocated on the transactions stack.
Thus, garbage collection can track which elements are in use by find operations. For an
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implementation of scanning through all elements contained in the hash table, a hazard
pointer is used as well.

1 void remove(key) {
2 auto slot = hash(key) % Size;
3 auto& tuple = Transaction.getHazardPointer();
4 for (tuple = &table[slot], value=*tuple;
5 value != nullptr;
6 tuple=&value.next, value=*tuple) {
7 if (value&1 == 1) {
8 if (cas(tuple,value&(~1),value->next))
9 Transaction.addToFreelist(value);

10 }
11 } else
12 if (extractKey(*tuple) == key) {
13 while (1) {
14 auto oldValue = tuple->next;
15 cas(&tuple->next,oldValue,oldValue|1);
16 }
17
18 if (cas(tuple,value&(~1),value->next)) {
19 Transaction.addToFreelist(value);
20 }
21 return;
22 }
23 }
24 }

Listing 4.8: Pseudocode of the lock free hash table remove.

The correct deletion mechanism is given in Listing 4.8. Compared to naive deletion,
a hazard pointer is used while iterating to find the correct tuple (lines 4-6). In lines 13-
16, the tuple is first marked as deleted by atomically exchanging the nextPtr value with
nextPtr|1 marking the tuple as deleted as per Harris’s trick. Then, the tuple is removed
from the hash chain (lines 18-20). If the remove succeeds, the tuple can be added to the
free list. If not, the tuple will be removed when another transaction iterates through the
hash chain and notices a marked (and therefore deleted) tuple inside the chain (lines
7-11).

Optimistic Execution and Isolation Level Support

Hekaton uses versioning to provide each transaction with a consistent and stable view
of the database. Different isolation levels are available to guarantee transactional consis-
tency. Here, we list the provided isolation levels and explain what mechanism Hekaton
uses to enforce these. This is not only important for understanding Hekaton’s imple-
mentation but also to understand the runtime effects which will be discussed in the
evaluation in Section 4.4.3.
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Serializable requires that the effects of processing concurrent transactions are equal
to a serial execution of the transactions (cf. Section 2.2.3). In Hekaton, this is achieved
using a pre-commit validation mechanism. For this, Hekaton records

1. all tuples read during execution,

2. all tuples inserted and updated during execution, and

3. all performed scans.

As each version of a tuple is guaranteed never to change its location in virtual memory,
Hekaton can record its read and write set by simply storing pointers to the used version
in a transaction-local and therefore single-threaded log data-structure.

When a transaction has finished processing and tries to commit, it first enters the pre-
commit (validation) phase. A write timestamp is assigned and it is checked that the
read set of the transaction using the write timestamp is equivalent to what was actually
read during processing using its read timestamp. If this is not the case, the transaction
is not serializable and must abort.

If read set validation succeeds, we know that all tuples seen during execution are still
the same during pre-commit. However, it is possible that a transaction missed a tuple
which was inserted after its read timestamp but before its write timestamp. Such an
insert in between a transactions’ timestamps which was missed during the execution
of the transaction is called a phantom. Serializable requires that phantoms are avoided,
therefore, the transaction has to see exactly the tuples visible as of its write timestamp
in order to be serializable in write timestamp order.

To ensure that the same tuples were accessed, Hekaton records each scan. During
pre-commit, each scan is repeated. If a version, which was created between the pre-
committing transaction’s start and end-timestamps, which is still visible as of the trans-
action’s end-timestamp is found, this version constitutes a phantom and the transaction
has to abort.

If both tests succeed, the transaction sets its state to committed and enters a post-
processing phase in which it updates all updated and inserted versions with its end-
timestamp. This is done by iterating through the transaction’s write log and adjusting
all tuple version pointers contained in it.

Snapshot Isolation For snapshot isolation, the transaction needs to see a consistent
state of the database but not necessarily the most recent one. Therefore, all reads are
performed as of the start of the transaction and no scan or read set validation is required.
Unlike in other implementations, write set validation is not necessary, as a tuple can only
be updated if a transaction succeeds in updating its most recent version’s to timestamp
to the transactions id. From that point on, the transaction id effectively acts as a write-
lock for the tuple, making concurrent updating of the same tuple impossible. Therefore,
write set conflicts do not have to be validated.
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Optimistic vs. Pessimistic Approach The processing and validation approach above
is an optimistic concurrency control approach. Reads are performed in the hope that
a tuple will not change between the start and the end of a transaction. Likewise, scans
assume that no tuple matching the scan predicate will be added or removed between
the start and the end of a transaction.

The original Hekaton paper [45] proposes an alternative, pessimistic approach resort-
ing to locking which guarantees that the reads et will not change between reading a ver-
sion and committing. They introduce a lightweight locking scheme which improves the
overhead associated with their mechanism. Even though their locking approach is not
as heavyweight as resorting to a centralized lock-manager, the authors conclude that
“optimistic MVCC […] consistently achieves higher throughput than […] pessimistic
[MVCC]” [45, page 12], therefore, we did not investigate the proposed pessimistic ap-
proach.

4.4.2. Memory Allocation

When processing large amounts of data, multi-threaded memory allocation can quickly
become a bottleneck [57]. A specialized thread caching allocator like tcmalloc can help
mitigating this issue. For best performance though, an allocation strategy which takes
domain information into account is required. For our implementations of both HyPer
and Hekaton, we rely on a custom build block allocator with per-thread caching. When
the database system starts, the memory available to it is split among all threads which
use the large block of memory for their allocations. When a chunk of memory is no
longer used for – for instance – storing a tuple, it is returned to the threads allocator
which maintains a cache of previous allocations. In a database system, this is beneficial
as for many allocations, there is only a small number of different allocation sizes. For
instance, in Hekaton, each relation has a fixed size tuple type and therefore allocations
initially performed for a tuple can be easily reused after that tuple has been removed.

4.4.3. Evaluation

To assess Hekaton’s merit in an environment which combines high throughput OLTP
processing with long-running OLAP and other workloads, we first evaluate how it com-
pares to HyPer w.r.t. transactional throughput. For this, we used our Hekaton proto-
type as described before as well as the same prototype modified to a HyPer-style archi-
tecture. To improve fairness, both systems use the same kind of hash index for indexed
accesses. All tests were conducted on a workstation equipped with a recent Intel i7
processor (see Appendix A.3 for details).

We implemented the TCP-C schema and load mechanism and wrote an implemen-
tation of the TPC-C NewOrder transaction which relies on index-based accesses only.
TPC-C can be easily partitioned by warehouse but the NewOrder transaction was specif-
ically chosen because it crosses partition boundaries and can access up to 15 different
partitions of the database. We fixed the number of partition-crossing transactions to
about 3% of the workload. In our HyPer-style prototype, partition-crossing transac-
tions are queued and executed in a single thread after acquiring a database lock. This
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is sufficient for our prototype scenario with a total of 5 warehouses. In a real system,
a fine grained mechanism for locking foreign partitions can be used. Hekaton does
not require special adjustments to allow partition-crossing access as no partitioning is
required for Hekaton’s MVCC approach.

The results of running both our HyPer-style prototype as well as our Hekaton proto-
type over the course of 10,000,000 transactions is shown in Figure 4.14.
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Figure 4.14.: Transactional throughput on a TPC-C NewOrder benchmark.

The average throughput of HyPer is about 2x higher than that of the Hekaton ar-
chitecture prototype. We attribute the difference in throughput to the more complex
access path per-tuple due to visibility checking and read-write set validation in Heka-
ton. The gray area shown around each plotline denotes the variance. The variance
is about a factor 5 higher in HyPer than it is in Hekaton. First, this is due to the fact
that HyPer relations grow during the execution causing the system to stop processing
transaction whenever a new, larger relation vector needs to be allocated. Second, the
en-block execution of partition-crossing transactions causes a dip in throughput which
is also reflected in the variance displayed in the plot.

While HyPer achieves higher average throughput in this scenario, varying the num-
ber of partition-crossing transactions has a severe impact on the relative performance
of HyPer compared to Hekaton. Figure 4.15 contrasts the ratio of partition-crossing
transactions with the average throughput of a short run of the TPC-C workload de-
scribed above. At roughly 10% partition-crossing transactions, our Hekaton prototype
achieves higher average throughput than our HyPer-style prototype. Of course, the
point at which one mode of execution is superior to the other is heavily dependent on
the concrete implementation of the execution mechanism for partition-crossing transac-
tions. First benchmarks indicate that executing partition-crossing transactions without
queuing is only slightly less efficient than queuing them and executing them en-block.
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Figure 4.15.: Average throughput while varying partition-crossing transactions in
the NewOrder benchmark.

Fine grained mechanisms of locking foreign partitions pay off when the number of par-
titions is much higher than the multi-programming level, a scenario not investigated in
this work.

The fact that Hekaton will overtake an approach which relies on serial execution when
the number of partition-crossing transactions is high is not surprising. The system de-
sign does not inhibit a performance penalty from disadvantageous partitioning as it
does not rely on partitioning to begin with. The choice of relying on multiple versions
for concurrency control does however cause problems in other areas of workload exe-
cution in database systems.

To establish the impact of MVCC on transaction processing, we will first discuss the
impact on memory consumption. For Hekaton, we consider two cases: a scenario with
just one index per relation and another one with up to eight indexes per relation. The
maximum number of indexes available in Hekaton causes a fixed increase in the size
of a tuple as each index’s next pointer has to be included into the tuple data-structure.
This is due to the fact that otherwise, the system would have to be shut down, persisted
to disk and completely rebuild to add a single index. Currently, Hekaton uses a fixed
number of available indexes of eight per relation [44].

In Table 4.2, the size of a single tuple is displayed for each storage backend and for
all relations of the TPC-C benchmark. Even for a single index scenario (which is not
sufficient for the execution of the TPC-C as two of the relations usually require two in-
dexes per relations), Hekaton – on average – consumes about 50% more memory than
required for a HyPer-style tuple. The effect worsens significantly for tuples which sup-
port more than a maximum of one index.
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TPC-C Relation HyPer Hekaton1 Hekaton8 Hekaton1/Hyper
Customer 720 b 752 b 800 b 104.4%
District 120 b 144 b 200 b 120.0%
History 64 b 88 b 144 b 137.5%
NewOrder 12 b 40 b 96 b 333.3%
Item 104 b 128 b 184 b 123.1%
Order 40 b 72 b 120 b 180.0%
OrderLine 80 b 104 b 160 b 130.0%
Stock 352 b 376 b 432 b 106.8%
Warehouse 128 b 152 b 208 b 118.8%

Table 4.2.: Tuple size comparison between HyPer, Hekaton with 1 index max and
Hekaton with 8 indexes max.
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Figure 4.16.: Memory consumption during a run of the TPC-C NewOrder bench-
mark.
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Figure 4.17.: Scan performance for various relation sizes.

Memory consumption is also increased by having to keep multiple versions of each
tuple. An old version can only be garbage collected when all transactions active in the
system are no longer able to see this version. With aggressive garbage collection, the
additional memory overhead of MVCC can be minimized. In total, Figure 4.16 displays
the memory consumed while running out NewOrder-TPC-C benchmark configuration
supporting at most 1 index on both the HyPer and the Hekaton-style backends showing
a constant memory overhead of Hekaton over HyPer of around 25%.

While Hekaton shows strong performance results in short index-based transaction
processing, scans are costly. To evaluate the cost of scanning a relation, we included
only a single relation with tuples comprised of a 4 byte key and 40 bytes of payload
data and varied the number of tuples contained in the relation. For each size, we mea-
sured the time it takes to scan the relation 100 times while accessing only the key of
each tuple for predicate evaluation. This is similar to scanning a relation with high se-
lectivity. The results of this benchmark are displayed in Figure 4.17. While the time to
scan a relation scales linearly with the size of the relation for both systems, scanning is
much slower in a Hekaton-style system than in the HyPer approach. For a relation of
about 5 gigabytes, Hekaton is approximately 30 times slower than HyPer. We believe
the massive slowdown in a system using the architecture originally proposed in [45]
is due to each access being a full cache miss. This in turn is caused by the scanning
mechanism iterating over all buckets of one of the indexes of the relation being scanned
causing a random access pattern.
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4.4.4. Conclusion w.r.t. Long-Running Transactions
The architecture used in Hekaton is capable of running long-running transactions. Its
implementation is similar to our tentative execution approach. While tentative execu-
tion runs a long-running transaction on a consistent snapshot of the entire database,
Hekaton uses a readAsOf timestamp and MVCC to ensure a consistent view of the data
as of a specific time. Both mechanisms might have read data which is no longer valid
and then must abort during validation. For Hekaton, this happens when a transac-
tion reads a tuple which is successfully modified before the long-running transaction
commits. For HyPer, this scenario occurs when the data read on the snapshot is no
longer valid on the main database. In essence, lowering the snapshotting interval in
HyPer yields an abort rate comparable to Hekaton’s abort rate under serializable isola-
tion level.

For snapshot isolation, both mechanisms benefit from a more compact validation
mechanism and a lower number of possible conflict scenarios. Therefore, snapshot iso-
lation improves both mechanisms’ commit rates as well as performance. For HyPer,
write conflict validation is required whereas Hekaton avoids write conflicts outright.

Both mechanisms use the same data layout for both short and long workloads. While
both architectures have strong support for executing short transactions, Hekaton’s de-
sign leads to slow performance when dealing with many tuples per transaction. Im-
provements in scanning the entire database with high selectivity are possible using ad-
ditional indexes or an adapted data layout. However, the inherent problem is caused by
Hekaton’s lock free architecture in combination with virtual address stability for each
version of a tuple and appears hard to mitigate.

Due to the inherent need for processing large amounts of the data in read-only OLAP
and other long-running workloads, Hekaton’s architecture is no substitute for tentative
execution as tentative execution allows long-running workloads to co-exist with shorter
transactions without incurring high cost on short transactions as well as offering high
OLAP processing speed.

4.5. Evaluation of Tentative Execution
In the following Section, we will evaluate the performance of tentative execution with
regard to abort rate, throughput and overhead when varying snapshot freshness and
executing different workloads. All tests were conducted on a Dell PowerEdge T710
server (see Appendix A.2 for details).

4.5.1. HyPer: Snapshot-based OLTP&OLAP
We evaluated our approach on our HyPer prototype database system. HyPer is a hybrid
OLTP&OLAP main-memory database system relying on partitioned serial execution
for transactions and allowing the execution of long-running read-only workloads by
executing them on a consistent snapshot. Since a versatile snapshotting mechanism [55]
that has a small memory footprint [23] already exists in HyPer, its usefulness is extended
by tentative execution.
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HyPer uses hardware page shadowing by cloning the OLTP process (fork) which al-
lows for the cheap creation of an arbitrary number of snapshots which can coexist and
share data (cf. Figure 4.18). Until a modification occurs on a page, memory pages are
shared between all snapshots. On modification, a single copy of the memory page is
created and the modification is performed on the copy, leading to the original page still
being shared by all snapshots on which no modification took place.

This allows for the seamless refresh of a snapshot by cheaply recreating a new snap-
shot which still shares most pages with both the current snapshot as well the the original
database. All transactions queued for execution on the old snapshot can still finish and
be applied to the main database whereas the new snapshot can already be used for
tentative execution while the old one finishes its work queue.

Using virtual memory for snapshots also allows for optimizing how read/write set
logging is done: On most architectures, we could use the dirty-bit available for virtual
pages to identify whether or not a page has changed. This is due to the fact that we
can unset the dirty-bit when a snapshot is created and it is automatically set for each
page when the page is modified. Therefore, no overhead is incurred for regular, good-
natured transactions. On apply, we can find conflicts on virtual page granularity by
checking the dirty-bits on pages touched by a tentative transaction.

4.5.2. Database Compaction for Faster Forks
In order to execute transactions with tentative execution, a recent snapshot and there-
fore the ability to create a snapshot of the database at any time are important. Fresh
snapshots minimize unnecessary conflicts with the main database caused by outdated
data inside the snapshot. This work uses the compaction mechanism introduced by
Funke et al. [23] to further minimize the cost of hardware-supported page shadowing
as used in the HyPer database system which was originally evaluated in [55].

Compaction is based on the working set theory of Denning [17]. It uses lightweight
clustering to separate the database into a hot and a cold part.

While the hot part of the database can be updated in-place and resides on small pages
in memory; the cold part of the database – which is assumed to rarely change – is stored
in an immutable fashion on huge memory pages. When a tuple inside the cold part
needs to be updated, it is marked as deleted using a special purpose data-structure
containing deletion indicators, copied into the hot part of the database and updated
there.

Effectively, this causes cold tuples to be “warmed up” when a modification is required.
Hot pages, which do not change anymore, are asynchronously moved to huge pages in-
side the cold storage part. Funke et al. show, that their mechanism has a negligible run-
time overhead for both, OLTP transactions as well as read-only OLAP queries running
on a snapshot.

Separating the data into hot and cold parts and storing those parts on differently sized
pages increases fork performance since huge pages hold substantially more data per-
page table entry than small pages. Since ‘forking’ the database copies the page table
eagerly and all data in a lazy fashion, the eager copying of the page table becomes faster
due to reduced page table size.
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Figure 4.18.: HyPer allows maintaining an arbitrary number of consistent snap-
shots at low cost using a hardware-supported page shadowing mech-
anism.

Figure 4.19.: Architecture of the tentative execution approach with two snapshots
for tentative execution. The Snapshot is a recent snapshot of the data-
base used for executing tentative transactions whereas the Old Snap-
shot finishes the execution of its transaction queue without delaying
the creation of a new snapshot or the need for transactions to abort.
Here, a lock-manager (LM) is used for concurrency on the snapshot
and accesses are logged using the monitoring component (MON).
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4.5.3. Overhead Incurred by Tentative Execution
First, we want to illustrate the overhead which is incurred by dispatching a transaction
to a snapshot, executing it with additional monitoring and applying it to the main data-
base. To show that our approach does not accumulate high runtime costs, we ran the
TPC-C benchmark and flagged all of its five transactions as being long-running. This
causes each of the transactions to be run by the tentative execution engine, which we
switched to execution without concurrency on the snapshot for a more accurate com-
parison to regular HyPer.

We ran 10 million transactions distributed as required by the TPC-C and compared
the throughput using tentative execution with regular execution of the TPC-C on our
HyPer database system. We evaluated both, execution with snapshot isolation as well as
serializable isolation level.

As a baseline comparison, we executed the TPC-C with multi-programming level
1 to measure the baseline overhead of lock acquisition without taking contention or
rejected lock requests into account. Figure 4.20 shows that going lock-management –
even without contention – slows processing down by a factor of approximately 3.

Figure 4.20.: Comparison of 2PL and serial execution with a multi-programming
level of 1.

Figure 4.21 shows the throughput of vanilla HyPer versus HyPer with the two tenta-
tive execution variants on 100 batches of 100,000 transactions. Separate measurements
show that when all transactions are executed tentatively (the worst-case scenario), the
throughput is approximately cut in half compared to HyPer without tentative execu-
tion. This is caused by a multitude of factors: First, each transaction has to be executed
just like in vanilla HyPer, so cost cannot possibly be lower. Second, every transaction
needs to log the entire read set to memory which effectively converts each read into
a read with an additional write operation to the log. Third, the data written to the log
will later – in the validation phase – be accessed by a different process, reducing locality.
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Fourth, we identify records logically in our prototype and therefore need to perform ev-
ery index lookup both on the snapshot as well as on the main database, thus doubling
lookup costs.

Figure 4.21.: Throughput comparison between vanilla HyPer without any long-
running transactions and HyPer with long-running transactions using
tentative execution.

With snapshot isolation, throughput is lower than with serializable isolation. This
seems counter-intuitive at first since the TPC-C reads more tuples than it updates and
therefore the amount of data that needs to be logged and verified should be smaller for
snapshot isolation compared to serializable. It is caused by the fact that view-serializable
transactions can concurrently execute on the snapshot using latching whereas transac-
tions under snapshot isolation require a more complex concurrency control system on
the snapshot, in our case two-phase locking although others are possible. Note that
although traditional concurrency control is a major source of overhead for short, good-
natured transactions, no slow overhead for good-natured transactions is added when
concurrency control is only used on the snapshot.

When comparing both tentative execution variants with vanilla HyPer, a different
slope of the curves can be observed for the first million transactions. The decrease in
throughput for vanilla HyPer comes from tree indexes rapidly growing in depth at the
start of the execution. For the two tentative execution variants, the increase in through-
put is due to copy-on-write operations used for snapshot maintenance being less fre-
quent once old tuples are no longer updated and only new tuples are inserted and later
updated.

For the frequent case of only a small fraction of the workload being identified as ten-
tative, Figure 4.21 displays a throughput comparison. Here, a small fraction varying
between 0.1% and 1% of the workload was executed using tentative execution. After
a short ramp-up phase – which is caused by copy-on-writes after snapshot creation –
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throughput increases up to a level of roughly 80% of the transaction rate achievable
with an unmodified version of HyPer.

In the unlikely worst-case where every transaction has to be executed tentatively, ten-
tative execution takes about twice as long compared to regular execution in HyPer. This
is caused mainly by added monitoring and validation overhead as well as operations
like index lookups which have to be performed twice, once on the snapshot and the
second time on the main database. In total, we consider the added overhead to be neg-
ligible for the expected ratio of ill-natured transactions.

4.5.4. Snapshot Freshness Versus Commit Rate

To measure the effect of snapshot freshness on commit rates, we added a third kind of
payment transaction to the TPC-C which requires a credit check during the transaction
before adding funds to a customers account and committing. The delay caused by the
credit check varies between 1ms and 10ms with uniform distribution. Since a customer
is technically able to commence another order and pay for it using a different method,
the customers account balance can change during execution forcing the transaction to
commit. The code for our ‘paymentByCredit’ transaction is given in Listing 4.9.

Figure 4.22 shows the commit rate of the tentative ‘paymentByCredit’ transaction as
well as the total system throughput depending on the snapshot refresh interval. At 32s
on the x-Axis, the snapshot is being refreshed every 32s seconds causing more tentative
transactions to abort due to reading invalid data than when the snapshot is refreshed
more frequently, for instance every 4 seconds. Therefore, as can be seen in the figure,
the commit rate of the ‘paymentByCredit’ transaction decreases with less frequent re-
freshes and converges towards zero. This is an expected result as data becomes severely
outdated when the snapshot is not refreshed. It should be noted that the transaction
rate of 40,000 transactions per second combined with a total number of only 150,000
customers, each customer on average issues an order at the unrealistic rate of every 9
seconds, making the snapshot and the main database diverge quickly.

Total throughput, as opposed to the commit rate, increases with longer refresh inter-
vals as can also be witnessed in Figure 4.22. This is due to the fact that ‘re-forking’, i.e.
recreating the snapshot and therefore refreshing it, requires the system to be quiesced
when using hardware page shadowing as is the case in HyPer. With longer usage inter-
vals before a snapshot is refreshed, transaction processing is quiesced less frequently
causing an increase in throughput.

Even with very short re-fork intervals, tentative execution still performs favorably
compared to execution using 2PL, as illustrated in Figure 4.23. The throughput for
tentative execution is substantially higher than for locking, even when the snapshot is
refreshed every second. The oscillations visible in the three instances of tentative exe-
cution displayed in Figure 4.23 stem from quiescing the database to fork which lowers
throughput for some of the data points. The effect is less pronounced for long re-fork
intervals, for example every 32s as pictured in blue, as only one refresh happens during
the course of the benchmark. The red line, displaying tentative execution with a refresh
interval of 1 seconds, exhibits a higher oscillation frequency with the lowered overall
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Figure 4.22.: Commit rate and throughput of a tentative ‘paymentByCredit’
transaction depending on the refresh frequency of the snapshot.

Figure 4.23.: Throughput of tentative execution with varying refresh intervals
compared to execution of the same workload using 2PL.
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transaction paymentByCredit(int w_id,int d_id,
int c_w_id, int c_d_id,timestamp h_date,
numeric(6,2) h_amount,timestamp datetime,int c_id)

{ select c_data,c_credit,c_balance
from customer c where c.c_w_id=c_w_id and
c.c_d_id=c_d_id and c.c_id=c_id;
var numeric(6,2) c_new_balance+=h_amount;

-- Approval processing
approval_check(c_id,h_amount);

if (c_credit=’BC’) {
var varchar(500) c_new_data;
sprintf (c_new_data,’%s␣|%4d␣%2d␣%4d␣%2d␣’+
’%4d␣$%7.2f␣%12c’,c_data,c_id,c_d_id,
c_w_id,d_id,w_id,h_amount,h_date);

update customer set
c_balance=c_new_balance,c_data=c_new_data
where customer.c_w_id=c_w_id and
customer.c_d_id=c_d_id and
customer.c_id=c_id;

} else {
update customer set c_balance=c_new_balance
where customer.c_w_id=c_w_id
and customer.c_d_id=c_d_id
and customer.c_id=c_id;

}
insert into history values(c_id,c_d_id,c_w_id,
d_id,w_id,datetime,h_amount,’credit’);

}

Listing 4.9: Pseudocode for the paymentByCredit transaction.
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performance being due to the cost of quiescing the system and initial copy-on-write
costs after creating a new snapshot.

4.5.5. Snapshot Isolation Versus Serializable

While serializable offers classical consistency guarantees, snapshot isolation is widely
used in commercial database systems and its implications are well-understood [60]. In
the following section we offer a brief summary of the effects of the different isolation
levels on tentative execution and try to give guidelines in which scenario each isolation
level is useful in this context.

Monitoring Memory Consumption

By definition, the amount of information that needs to be verified after a transaction has
finished on the snapshot varies between snapshot isolation and view-serializable. Snapshot
isolation only requires the write set of tentative and regular transactions to be conflict
free, whereas view-serializable requires that the read set on the snapshot as well as main
database is equivalent. Therefore, in terms of memory consumption, snapshot isolation
is favorable for read-heavy workloads. This is emphasized as inserts do not need to be
validated in terms of write set collisions but only constraint violations, which in our
prototypical implementation is free as we recompute all inserts during the apply phase
instead of explicitly logging the inserted values (cf. Section 4.2.5).

One way of monitoring the readset of a transaction to achieve view-serializable is log-
ging all data read as well as the cardinality of all index accesses. If the actual data as
well as the index cardinality are equivalent between snapshot and main database, the
user transaction would have made the same decisions on either copy of the database and
therefore the transaction can commit. Figure 4.3 shows the number of tuples deleted, in-
serted, updated and read during each read/write transaction of the TPC-C benchmark
as well as the size of the tentative execution log for read logging. In addition to readset
logging, the log size required for write set logging as used under snapshot Isolation is
shown.

Write log size is computed by adding the number of bytes deleted and updated to
the log. The rationale behind this is that write conflict checking requires to check if the
values overwritten or deleted are similar on the snapshot as well as on the main data-
base. Apart from the actual content, the number of deleted and updated tuples has to be
saved in the general case. In Table 4.3, an optimization is possible: Since all updated or
deleted tuples are accessed using unique indexes, the update and delete operations are
guaranteed to either fail (causing a rollback on the snapshot and therefore causing the
log to be discarded) or succeed for exactly one tuple. For inserts, it suffices to recheck
for key violations during the apply phase.

The read log size is determined by the space required for logging all attributes which
have been read during the execution on the snapshot. Additionally, the cardinality of
all select statements has to be written to the log to ensure that no tuples were “missing”
on the snapshot which are now visible on the main database. For both, read and write
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Tx Unit Avg Min Max

N
ew

O
rd

er

tuples delete 0.09 0 14
bytes deleted 7.31 0 1120
tuples inserted 11.98 4 17
bytes inserted 851.70 320 1252
attrs updated 1.01 1 2
bytes updated 4.04 4 8
attrs read 55.01 25 80
bytes read 602.16 260 887
index accesses 24.02 13 34

AVG read log 602.16B + 24.02*8B
= 794.32B

AVG write log 7.31B + 4.04B
= 11.35B

de
liv

er
y AVG read log 1636.34B + 249.39*8B

= 3631.46B

AVG write log 120B + 518.78B
= 638.78B

pa
ym

en
t

AVG read log 640.27B + 6.2*8B
= 689.87B

AVG write log 74.18B + 64.00B
= 138.18B

Table 4.3.: Log sizes in the read/write transactions of the TPC-C.

logs, all externally supplied values, for instance by the user or an external application
server, are also added to the log to be incorporated in the apply transaction.

As illustrated in Table 4.3, the three read/write transactions of the TPC-C differ in
terms of the size of their read vs. write log. This is expected since, for instance, NewOrder
only inserts tuples which are implicitly checked during the apply phase by making sure
no index properties are violated. Updates are only performed on one integer which is
incremented with the next NewOrder id, causing only a minimal amount of data to be
written to the write log. The NewOrder transaction accesses multiple tables to read data
used in the newly created order entry, resulting in the higher memory consumption of
the read log. For the three TPC-C transactions shown here, read log size is consistently
larger than write log size.

Abort Rate

The selected isolation level has a direct impact on the number of transactions that have
to be aborted due to conflicts. For serializable, no changes to the read set of a tenta-
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transaction aggregateWarehouseTurnover(int w_id) {
select sum(ol_amount) as turnover
from orderline ol where ol.w_id=w_id;

update turnover_aggregates ta
set ta.turnover=turnover where ta.w_id=w_id;

}

Listing 4.10: Pseudocode of aggregateWarehouseTurnover.

tive transaction are allowed during its runtime to allow the transaction to eventually
commit on the main database. This includes changes to tuple values as well as changes
in the cardinality of each selection’s result. This can lead to long-running transactions
suffering from high abort rates due to reading frequently-changing (hotspot) tuples.

Consider a transaction which computes and saves the total turnover for a warehouse
as illustrated in Listing 4.10 Here, the read set for the transaction will likely vary be-
tween snapshot and main database since an order might have arrived for the warehouse
between snapshotting and the application of the tentative transaction, leading to a high
number of aborts under view-serializable. It is however likely, that the computed sum
needs to represent a valid state but not the most recent one, which can be achieved using
snapshot isolation. Here the transaction would apply iff. the aggregate being written has
not been modified between snapshot creation and the tentative transaction’s commit.

Besides the isolation level, the degree of detail in monitoring directly influences the
number of transactions which commit. If, for example, a set of tuples is monitored us-
ing version counters on the B+-Tree leafs of the primary index, a modification of one of
the indexed tuples leads to all tentative modifications of any of the tuples indexed by
the same leaf node to be rejected and therefore causes an abort. Thus, finer log granu-
larities reduce the number of unnecessary aborts while at the same time increasing the
overhead in both time and space caused by monitoring read/write sets.

4.6. Related Work

Snapshot isolation, as Berenson et al. [3] pointed out, is an important relaxed isolation
level for database systems. It has well-researched properties and anomalies which were,
for instance, examined in [60, 37]. Jorwekar et al. [37] investigated the automatic detec-
tion of anomalies under snapshot isolation. Extending snapshot isolation to gain serializ-
able schedules has been investigated by Fekete et al. [21]. Snapshot isolation is being used
in practice, for instance as the default isolation level in Oracle database systems [61].

Harizopoulos et al. [32] found that concurrency control, primarily using a lock-man-
ager, is a major bottleneck in disk-based database systems. Focussing more specifically
on the contention which occurs in a 2PL lock-manager, Pandis et al. [62] found that the
central nature of the lock-manager is a major source for lock contention causing a sig-
nificant slowdown – especially as the number of cores increases. They devised data
centric execution for disk-based systems implemented in their prototype database sys-
tem, DORA. There, a chunk of data is assigned to each thread instead of assigning a
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specific transaction to each thread. Their approach increases data locality and reduces
contention inside the lock-manager.

Jones et al. [36] describe an approach to increase throughput in a distributed cluster
setting by hiding delays caused by using two-phase commit. They allow the tentative
execution of new transactions as soon as a partition-crossing transaction has finished
work on one but not all partitions. Through optimistically executing followup transac-
tions, they show that the throughput of pre-canned deterministic transactions can be
significantly increased.

Bernstein et al. [5] introduced Hyder, an optimistic approach for high-performance
transaction processing in a scaled out environment without any manual partitioning.
Their key algorithm, called MELD [6], merges the log-file structured transaction states
and handles conflicts during optimistic execution. Without any partitioning, MELD en-
sures that finished distributed transactions are merged into the last committed database
state if they do not conflict. Dittrich et al. [20] use a log-file structure to allow executing
both OLTP as well as OLAP on the same database.

Larson et al. [45] discuss efficient concurrency control mechanisms for main-memory
database systems. Apart from single-version locking, they introduce and evaluate
multi-version locking and multi-version optimistic concurrency control based on times-
tamps ranges. They find that optimistic multi-version storage performs favorable com-
pared to locking, especially when long-running transactions are part of the workload.

Nightingale et al. [59] employ speculative execution in the context of distributed file
systems. They show that optimistic execution can be used to hide network delays when
the outcome of a resource modification is highly predictable. Modifications to resources
r are done in-place and an undo log structure is created for each updated resource.
If another transactions tries to access a modified resource, it blocks or is marked as
speculative and therefore dependent on the outcome of the transaction which originally
modified r.

Gray et al. [26] explored using condensed apply transactions in disconnected appli-
cation scenarios. Actually, their mechanism predates us in calling transactions which
are run independently from the main database and later validated tentative transactions.
Gray et al. validate their apply transactions (which they refer to as base transactions) with
hard coded acceptance criteria instead of read or write set logging. They reduce syn-
chronization cost on both main as well as disconnected databases.

The issue of managing long-running workloads in traditional, lock-based database
systems has been investigated by Krompass et al. [43]. They use policy based scheduling
taking multiple target dimensions into account to reduce the negative impact caused by
long-running transactions in the workload.

4.7. Conclusion

Two emerging hardware trends will dominate database system technology in the near
future: Increasing main-memory capacities of several TB per server and an ever in-
creasing number of cores to provide abundance of compute power. Therefore, it is not
astonishing that main-memory database systems have recently attracted tremendous
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attention. To effectively exploit this massive compute power it is essential to entirely
re-engineer database systems as the control and execution strategies for disk-based
databases are inappropriate. In main-memory, databases using serial execution scale
extremely well as there is no I/O latency slowing down the execution of transactions.
This observation also led to the design of VoltDB/H-Store.

Unfortunately, so far, the serial execution paradigm excluded complex queries and
long-running transactions from the workload. With tentative execution, we allow uni-
versal long-running transactions to coexist with short, pre-canned transactions – with-
out slowing down their serial execution. This coexistence is achieved by exploiting
the snapshot concept that was originally devised in HyPer to accommodate complex
queries on the transactional data. Here, we developed the tentative execution method
to pre-process long-running transactions in such a workload and then re-inject them as
condensed apply transactions into the regular short transaction workload queue. Our
performance evaluation proves that the high throughput for short transactions can in-
deed be preserved while, at the same time, accommodating ill-natured long-running
transactions.

In conclusion, combining a state of the art main-memory database system, snapshot-
ting using hardware page shadowing and tentative execution allows executing a wide
range of workloads. With tentative execution, we can now support short, pre-canned
transactions at high throughput while at the same time executing OLAP queries as well
as long-running read/write transactions on a consistent snapshot.
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Chapter 5
Main-Memory Systems in
Multi-Tenant Environments

Parts of this chapter have previously
been published in [56, 67].

Main-Memory Database Systems (MM-DBMS) yield unprecedented transaction rates
for OLTP transactions. At the same time, analytic queries can be processed orders
of magnitude faster using MM-DBMS than using traditional, disk-based database sys-
tems [40]. While large customers might require the most powerful hardware to satisfy
their data processing requirements, many mid-sized or smaller customers will not be
able to utilize the capacity provided by an MM-DBMS on a commodity server.

A common way of improving resource utilization of a database server is multi-
tenancy. Here, a server with a special database deployment is shared by more than
one customer. Sharing has to be done in a transparent fashion to guarantee isolation
between each tenant. There are many issues that arise in multi-tenant environments.
For instance, data used by multiple tenants might have to be replicated for isolation
purposes causing space overheads. If – instead – data is shared, schema changes for
only a subset of all tenants are challenging. Enforcing Service Level Agreements (SLAs)
without dedicated hardware is another frequent issue.

This chapter is structured as follows: In the next Section, we will give an overview
of the state of the art in the area of multi-tenancy. Then, in Section 5.2, we will explain
our motivation behind exploring multi-tenancy and discuss our approach at isolating
tenants and the issues that arise from this setup. Section 5.3 introduces our approach at
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enforcing SLAs which is subsequently thoroughly evaluated in Section 5.4. Section 5.5
discusses related work while Section 5.6 concludes this chapter.

5.1. Approaches to Multi-Tenancy
In this Section, we will describe traditional approaches to multi-tenancy and give an
indication as to their performance and suitability in a MM-DBMS context.

5.1.1. Single DBMS, Shared Nothing
A single database instance can be deployed on a sufficiently powerful server. Then,
every tenant receives a dedicated namespace or schema inside the database which is
used solely for the tenant’s data. In principle, this approach is feasible for traditional
database systems as well as main-memory database systems. For traditional systems,
the deployment of only a single database system instance is advantageous as compo-
nents like the buffer-manager do not need to be replicated for each instance and do not
compete for system resources like disk I/O.

Data is not shared between different tenants. This has the advantage of allowing
each tenant to operate on a custom database schema or even deploy distinct applica-
tions. If the same application is deployed, this approach has the drawback of poten-
tially using more memory than necessary. Read-only data, which could in principle be
shared among all tenants, is saved multiple times causing unnecessary memory to be
consumed.

5.1.2. Single DBMS, Some Data Shared
The principal architecture of this multi-tenancy approach is equivalent to the previous
Section. In this setting, though, a subset of the data is shared among the tenants. An
example of data that can be shared is a list of all countries which is read-only and equiv-
alent for all tenants.

When dynamic data is shared between tenants, a multitude of issues arises. In many
cases, sharing a static part of a table between all tenants – for instance basic products
sold by every such tenant – yields a significant reduction in memory consumption. Shar-
ing parts of a table becomes delicate in light of schema adjustments, for instance when
only a single tenants wants to extend the schema of the shared table by an attribute.

5.1.3. Multiple DBMS
Instead of sharing a single DBMS instance between multiple tenants, a separate DBMS
can be deployed for each tenant on a single physical server. For traditional database
management systems, this is generally discouraged as it leads to the DBMSs competing
for system resources and therefore lowers the achievable throughput of the machine.
We will investigate this setup more deeply for MM-DBMS in the following Sections.
Here, a more lightweight system architecture as well as the absence of conflicting disk
I/O requests from different DBMS leads to a new, so far not investigated, scenario.
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5.1.4. Multiple Virtualized Database Servers
Virtualization is a general approach which allows running multiple virtual computer
systems on a single physical machine. Solutions allowing for the so called virtual ma-
chines to be created vary in their specific implementation and capabilities. A common
feature of all virtualization solutions – regardless of their exact implementation – is that
they offer isolation between each individual virtual machine as well as between each
virtual machine and the host operating system.

In order to share a single physical machine and provide databases for multiple ten-
ants, virtualization can be used to create a virtual machine for each tenant and run an
individual DBMS inside each such container.

This multi-tenancy strategy has several advantages compared to naively deploying
multiple DBMS on one physical server without a virtualization layer:

1. Strict isolation between tenants: Each tenant has a virtual machine at his dis-
posal. The virtualization software enforces strict isolation. In case of a software
malfunction of the database software, only a single virtual machine is exposed
while other tenants and their virtual machines continue operation.

2. Resource allocation: Each virtual machine can be assigned a set of resources
which it can exclusively use. This is advantageous as it allows SLAs to be en-
forced by statically assigning a certain amount of available resources to a virtual
machine which can be used independently of the general system load caused by
other tenants.

3. Hardware independence: While virtual machines use device drivers for network-
ing and other services, that hardware is specific to the virtual machine software
and does not change when physical hardware is changed. Additionally, this layer
of abstraction allows virtual machines to be moved from one host server to the
other, for instance for load balancing reasons.

Data sharing, as described in the previous Section, is not possible in a virtualized
deployment. For a more in depth overview of the benefits generally provided by virtu-
alization, see for instance [50].

Shared Kernel Virtualization, unlike traditional virtualization, does not provide a
virtual machine that imitates a physical computer. Instead, a separate machine is sim-
ulated by modifying meta information provided to applications inside the virtual ma-
chine. Effectively, processes running inside a guest of a shared kernel virtualization
solution are just regular processes of the host which are shielded from other processes
in the system as if run on a separate machine.

A major advantage of shared kernel virtualization is a severe reduction in overhead
caused by the virtualization layer. This is due to the fact that only one kernel has to be
run and the interface between virtualized guests and the actual machine does not pass
through emulated devices. While isolation between virtual machines is maintained,
sharing the OS kernel means that if a guest is able to produce a panic inside the kernel,
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the host as well as all guest systems are affected. Additionally, since no separate opera-
tion system kernel is started, the same kernel version and therefore the same principal
type of operation system (i.e., Linux) has to be run in all virtual machines.

For database systems, shared kernel virtualization can be exploited similarly to tra-
ditional virtualization. Since isolation between guest VMs is enforced, the same lim-
itations to data sharing between tenants apply in shared kernel as well as traditional
virtualization.

5.2. Multi-Tenancy with HyPer
In this Section, we will discuss and substantiate our selection of viable multi-tenancy ap-
proaches for MM-DBMS. Furthermore, we will give an indication as to the throughput
and overhead achievable on a commodity server.

5.2.1. Throughput Overhead
A common issue with virtualization is the overhead incurred by adding a layer of indi-
rection between the actual hardware and the applications, in our case the main-memory
database system. To obtain an initial overview we measured the throughput during the
execution of 100 chunks of 100,000 transactions of the TPC-C benchmark. We ran this
benchmark on the same operating system and with the same HyPer configuration on
the following platforms:

1. Bare metal

2. Traditional VM: Oracle VirtualBox 1

3. Traditional VM: VMware Player 2

4. Shared kernel VM: Docker (based on Linux LXC) 3

In all configurations, Ubuntu 13.04 was used as the operating system and we pinned
two cores to the virtual machine. Additionally, 8GB of RAM were assigned to the virtual
machines of which at most 5GB were used during the benchmark. The docker container
was not restricted in terms of resources as the workload is single-threaded and does
not benefit from additional available cores. All tests were conducted on a workstation
equipped with a recent Intel i7 processor (see Section A.3 for details).

Figure 5.1 illustrates the throughput achieved during the benchmark. On bare metal
(denoted bare in the Figure), HyPer achieves a throughput of roughly 160,000 transac-
tions per second. When executed in a Docker container, HyPer performs similarly to
execution on bare metal.

For the two traditional virtualization approaches, throughput is diminished by ap-
proximately 20%. VMware consistently outperforms VirtualBox, albeit by less than 10%.

1See https://www.virtualbox.org/.
2See http://www.vmware.com/.
3See http://docker.io.
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Figure 5.1.: Throughput during the execution of 100 * 100,000 TPC-C transactions.

Apart from constant deviations in throughput over the run of the benchmark, none of
the approaches suffers from severe fluctuations from its respective average.

5.2.2. Memory Overhead

The memory overhead incurred by different virtualization approaches varies signifi-
cantly. This lies both in the general approach as well as the specific implementation of
each approach. Table 5.1 displays the difference in available memory before and after
launching a VM with each virtualization solution.

VM Type Memory Consumption
VirtualBox 846MB
VMware 1503MB
Docker 5MB

Table 5.1.: Memory consumed by an idle VM

VMware virtualization requires roughly 300 times as much memory as a Docker con-
tainer. This is caused by VMware as well as VirtualBox booting a full operating system
with its own kernel and reserving some memory which is not actually used. In con-
trast, the Docker container only launches a single additional process inside the existing
kernel’s process space. The new process is properly isolated from all other existing
processes and accesses its own file system. Since no separate kernel is required for a
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Docker container, no memory is reserved upfront as memory is directly allocated by
the isolated processes inside the Docker container when required.

5.2.3. Provisioning Latency
When a new database instance is spawned in a multi-tenant environment relying on
virtualization, a new virtual machine has to be created and started before the database
can be deployed. We call the time required until the database instance can be launched
the provisioning latency.

To illustrate the latency difference for the examined virtualization solutions, we mea-
sured the time required to create a fresh copy of a virtual machine and boot to its com-
mand prompt. The results of our investigation are shown in Table 5.2.

VM Type Provisioning Latency (Copy Time + Boot Time)
VirtualBox 61s + 15s
VMware 81s + 10s
Docker 0.17s total

Table 5.2.: Provisioning latency for the tested virtualization solutions.

For Docker containers, measuring the copy time of the container is not possible as
Docker relies on a delta file system causing the original operating system to be shared
among all instances. Instead of an eager copy of the image, only changes to the underly-
ing file system are recorded. In contrast to shared kernel virtualization, copying as well
as booting a VM causes considerable delay in both traditional virtualization solutions.

Except for the overhead incurred by copying the disk image of a VM to create a fresh
instance, disk space and access speeds are additional concerns. For traditional virtual-
ization, each virtual machine consumes additional disk space in the order of the size of
the underlying operating system image. Additionally, all files of the operating system
are replicated for each VM causing caching inefficiencies. Even if all VMs access the
exact same file, each copy of this file has to be loaded from disk as it can potentially
be different for each copy of the virtual machine. Note that this drawback can theo-
retically be fixed by implementing a delta storage mechanism similar to the delta file
system used by Docker. So far, none of the tested solutions include this kind of storage
backend.

5.2.4. MM-DBMS Concurrency Approach
We advocate the use of shared kernel virtualization for building a multi-tenancy envi-
ronment for main-memory database systems. First, low overhead as compared to full
virtualization solutions allows sharing a server between many small tenants. This is il-
lustrated by Table 5.3. There, a server with 64 hardware threads (see Appendix A.1 for
details) is used to execute an increasing number of HyPer instances. The total through-
put peaks at 64 instances but remains fairly stable even when the number of databases
exceeds the number of available physical cores. This is not possible with more heavy-
weight solutions as the space and throughput overhead would become prohibitively
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#Tenants Average TPS Overall TPS
1 80,729 81k
2 80,767 162k
4 81,060 324k
8 67,018 536k
16 58,605 938k
32 54,087 1731k
64 34,319 2197k
128 16,812 2152k
256 7,927 2029k
512 3,746 1919k

Table 5.3.: A varying number of homogeneous tenants on a commodity server.

large with a high number of tenants. Second, running all tenants in separate processes
in a shared kernel environment allows using operating system mechanisms for SLA
enforcement. Unlike modifying the core database system for multi-tenant use, such
mechanisms do not bloat the code-base of the database and all tenants remain com-
pletely isolated from each other.

5.3. SLA Enforcement
Sharing a single server with multiple tenants means that every tenant can use all avail-
able resources. This has multiple drawbacks. First, a malicious or defective application
run by one tenant can cause other tenants on the same machine to not get access to any
of the machines resources. Second, no guarantee can be made regarding the minimum
or maximum share of resources available to a tenant or how quickly a tenants workload
will be scheduled by the operating system.

To mitigate this issue, multi-tenant systems usually enforce a contract between provi-
der and tenant usually referred to as a Service Level Agreements (SLA). Here, the con-
tract signed by a tenant contains an agreement concerning the service quality provided
to him. This can encompass uptime guarantees, the number of CPU cores exclusively
assigned to the tenant or an average share of resources guaranteed to be available to the
tenant.

5.3.1. Approach

Our SLA enforcement approach exploits a subsystem of the Linux kernel known as
CGroups. CGroups allow enforcing constraints on processes within the system. In
Linux, each process is assigned a process id (PID) identifying it. Each process is con-
tained in exactly one CGroup by associating its PID with the group. If no explicit as-
signment is done, the process resides in the global default CGroup.

CGroups can be configured to enforce constraints on a set of processes. Possible con-
straints are:
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• CPU Sets: The cores available to the processes assigned to the CGroup.

• CPU Shares: The share of compute time devoted to this CGroup.

• Memory: Accounting and limits on the memory used by a CGroup.

• IO: Limits on the amount of IO operations available to a CGroup.

CGroups can be structured in a hierarchy. Therefore, it is possible to create resource
limits for a group of tenants and subdivide these limits among the tenants by nesting
two levels of CGroups.

In our approach, every tenant resides in his own CGroup. Each such tenant-CGroup
is a subgroup of the default group, effectively implementing a single level hierarchy.
This allows adjusting each tenant’s resource share individually instead of managing
bigger groups of tenants together.

We restrict the SLA enforcement done using CGroups to

1. assignment of dedicated CPU cores to a tenant (using CPU Sets) and

2. allocating a minimum share of the CPU time to a tenant.

Our approach does not use the memory-limiting facilities of CGroups. This is be-
cause CGroups enforce a hard memory limit on each process causing the next memory
allocation of that process to fail. This, in turn, has to be handled inside the database
and causes it to either fail completely or at least switch to a read-only mode of opera-
tion. While this behavior might be valid when memory actually runs out, a less abrupt
mechanism for using an SLA-breaching amount of memory is preferable.

Multi-tenant service providers usually charge an overage fee when the agreed-upon
amount of memory is exceeded while at the same time asking their tenant to change his
contract4. If memory limits are required, we advice for either implementing limiting
inside the database server or periodically polling memory consumption externally and
notifying the tenant instead of strictly stopping any further allocation.

Assigning a fixed number of CPU cores to a tenant can be achieved using CGroups
CPU Sets mechanism. For every CGroup, a bit-vector of usable CPU cores can be set.
By adding each tenant to a separate CGroup and only setting the i-th bit for at most one
tenant, cores can be dedicated to one specific tenant. While pinning a process to a CPU
is also possible without the CGroups mechanism, using the kernel subsystem allows
pinning cores to tenants without any modification of the database system itself.

To allocate a minimum share of the available CPU time to a tenant, the CGroups CPU
shares mechanism is exploited. CPU shares assign a positive integer value sharei to
each CGroup i which denotes the share of CPU time available. The CPU time available
to a tenant i is calculated as the ratio of

sharei∑n
k sharek

4See for instance http://www.heroku.com.
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where n denotes the total number of tenants. In other words, each tenant is allotted
the percentage of CPU time given by dividing the tenant’s CPU share by the sum of
all CPU shares. This mechanism allows freely adjusting each tenant’s CPU time and
prohibits a single tenant causing other tenants to starve or significantly fail their SLA
requirements.

5.4. Evaluation
In this Section, we will thoroughly evaluate the CPU shares approach introduced in the
previous Section. We will focus our evaluation on both accuracy as well as latency and
overhead caused by the approach. As the database system executed by each tenant, we
use the HyPer prototype database introduced in Section 2.

When appropriate, we also conducted each evaluation with a CPU-bound dummy
program instead of the main-memory database system. This allows judging the ac-
curacy of the CGroups resource limiting mechanism without the noise introduced by
running a complex main-memory database system.

All tests were conducted on a Dell PowerEdge R910 server (see Section A.1 for details).

5.4.1. Accuracy of Resource Distribution
To judge the viability of using the CGroups mechanism for SLA enforcement, we have
to evaluate the accuracy of limiting CPU resources. In the following scenarios, we simu-
late tenants in four different service classes. We assign the CPU shares for each class of
tenants according to a given distribution and observe how well the actual transactional
throughput aligns with the desired distribution.

Exponential Classes

First, we examine distributing the CPU shares in an exponential fashion between the
tenant classes. Likewise, we expect the throughput of each class to converge to an ex-
ponential distribution. Figure 5.2 displays the throughput of four tenant classes, each
running the HyPer database prototype.

The first few seconds of each tenant’s runtime are used to create the database and
load the initial data. We focus on transactional throughput while the database is run-
ning, therefore the loading phase is grayed out in the graph. After loading, all tenants
wait for all others to finish. Once all tenants are ready, transaction processing is started
simultaneously.

Within seconds from the start of the transaction processing phase, the four tenant
classes converge to an exponential distribution with the average transactions per sec-
onds rates at about 2000, 4000, 8000 and 16000 respectively. The throughput decreases
slightly for all tenants until the first class of tenants finishes executing the benchmark
transaction set. This slight decrease is due to the fact that index structures in HyPer
grow over time and scale logarithmically w.r.t. size, therefore a very limited decrease
in throughput over time is expected in the TPC-C benchmark setting, as the TPC-C
monotonically increases the total database size.
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Figure 5.2.: SLA enforcement running HyPer with four tenant classes with expo-
nential CPU share distribution (after [67]).

When service class 4 – the class with the highest CPU share and therefore largest
chunk of available CPU time – finishes, its CPU resources are distributed among the
three remaining tenant classes. This causes the throughput to increase for service
classes 1 to 3. The adjustment is gradual as the tenants in class 4 do not finish all at
once but over the course of about 15 seconds.

The throughput of class 3 – which is now the tenant class with the highest priority
– peaks at a higher average throughput compared to the average throughput peak of
class 4. This is due to the fact that less tenants share the compute power of the system
under test causing the average throughput to increase for all remaining tenants. The
aforementioned effects, described for the case of service class 4 finishing, repeat with
every other finishing service class.

To determine the amount of noise caused by using a main-memory database system
as the tenant application, we executed a demo application which continually decre-
ments a large counter to zero. This application is dominated by CPU cost and should
exhibit minimal noise as can be caused by sources of indeterministic behavior – for
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Figure 5.3.: SLA enforcement running a dummy program with four tenant classes
with exponential CPU share distribution (after [67]).

instance cache misses. The results of running the dummy program are displayed in
Figure 5.3.

Since the dummy program does not need to load any data, no load phase is displayed
in the graph. The throughput is measured in increments per second. Similarly to the ex-
ecution of HyPer, the throughput graph converges to an exponential distribution. Since
the complexity of decrementing an integer is constant, throughput does not decrease
over time. When the highest priority service class finishes, CPU resources are redis-
tributed between the remaining service classes after a delay of approximately 5 seconds.
This delay is investigated in-depth with further experiments later in this chapter (cf.
Section 5.4.2). The three remaining groups of tenants again converge to an exponential
distribution. The process repeats when the next service class finishes execution.

Compared to the execution of HyPer – without taking algorithmically implied, grad-
ual throughput decreases into account – we note that the execution is essentially similar.
The time all members of a particular service class require to finish execution is higher
when running HyPer. This is due to the more complex workload compared to manip-
ulating a single integer. HyPer needs to access data throughout the memory, causing
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Figure 5.4.: SLA enforcement running HyPer with four tenant classes with linear
CPU share distribution (after [67]).

cache misses. Furthermore, it needs to reallocate memory when relations grow and
constantly balance indexes. All the aforementioned characteristics can cause a less pre-
dictable transaction execution time and therefore a deviation in the runtime of members
of a tenant group.

Linear Classes

We repeat the previous benchmarks with four service classes and distribute the CPU
shares in a linear fashion. Figure 5.4 displays the results for HyPer. After the load
phase, the tenant classes converge to a linear distribution at roughly 3000, 7000, 10000
and 13000 average transactions per second. As with exponentially distributed CPU
shares, termination of a high priority service class causes resources to be redistributed
among the remaining classes which then converge to a linear average TPS distribution.

For brevity, we omit displaying the TPS graph of running the dummy program for the
same test. In the linearly distributed setting, the dummy program further supports the
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Figure 5.5.: Standard deviation from the average throughput of each service
class (after [67]).

conclusions made from running it under exponential distribution without displaying
any new effects.

Deviation within Classes

In the tests discussed so far, we examined four service classes with 64 tenant instances
per service class. We measured average transactions per second inside the service class
to investigate the relationship between assigned CPU share and actual throughput.
Here, we focus on the throughput deviation of each tenant from the average throughput
of the tenants service class.

Figure 5.5 displays the exponential distribution benchmark from Section 5.4.1. In
addition to the average TPS per service class, we display the standard deviation inside
each service class.

While all four service classes are executing transactions, the deviation from the av-
erage throughput depends on the service class. Higher priority service classes suffer
from more absolute deviation than low priority service classes. The relative deviation
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is approximately constant for each service class and does not exceed 20% during stable
transaction execution phases.

The deviation increases when a service class terminates and other classes are allowed
to use a larger chunk of CPU time. Here, the terminating service class suffers from
massive throughput differences of up to 100% caused by some tenants already being
finished with their workload, effectively achieving zero TPS, while others still execute
transactions at their original pace.

Possible causes for the internal deviation of each service class are equivalent to those
mentioned in Section 5.4.1. Measurements taken with the aforementioned dummy
program suggest that the deviation is inherent to running many instances of a main-
memory system in parallel and not caused by the CGroups CPUSets mechanism. Ad-
ditionally, the benchmark used here exhibits extreme growth compared to other work-
loads, further amplifying the deviation of each tenant from the average of its service
class.

5.4.2. Response Time to Change

In this Section, we analyze how long our SLA enforcement mechanism takes to adapt to
changes in the CPU share distribution. Our benchmark works as follows: We execute
HyPer in four service classes with 64 tenants inside each service class. At first, all service
classes are given the same CPU share and therefore should converge to the same average
throughput per service class. 75 seconds after the execution was started, we adjust the
CPU share distribution to the exponential distribution introduced in the benchmarks
in Section 5.4.1.

The results of running the aforementioned benchmark are displayed in Figure 5.6.
The time required to adjust to the new CPU share distribution is overlaid in green.
Before the distribution is changed, each service class exhibits the same throughput
of roughly 9000 transactions per second. When the distribution is changed, it takes
roughly three seconds for the service classes to adjust to an exponential throughput
distribution.

Since a radical change in CPU share distribution likely only occurs when new tenants
are added or when one tenant changes his contract – which is likely very infrequently
– we consider the delay until a redistribution happens as negligible. Note that the re-
sponse time measured here resembles adjusting the CPU shares while the workload
remains unchanged. Therefore, the longer delays discussed in Section 5.4.1 are mainly
caused by each service classes tenants finishing at different times causing many smaller
changes in CPU usage.

5.4.3. Overhead

Lastly, we evaluate the overhead caused by using the CGroups CPU share mechanism
for SLA enforcement. To determine the overhead, we run four different configurations
with 256 HyPer instances each. As a baseline measurement, we first execute the HyPer
instances running TPC-C without any specific CGroup configuration. This causes all
processes to be put into the default CGroup and therefore does not impose any restric-
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tion on CPU time except for the default fair scheduling of the kernel. Second, we create
a single new CGroup and run the HyPer instances such that all of them are in this single
CGroup. We expect the result of this benchmark to resemble the baseline measurement.
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Figure 5.7.: Four different CGroups setups with 256 HyPer instances each executing
the same TPC-C benchmark run (after [67]).

Third, we create one CGroup for each HyPer instance and assign each of these 256
CGroups the same CPU share. This should cause all instances to be given an equal
amount of CPU time and therefore measures the overhead incurred by creating a large
number of service classes. Fourth, we again create one CGroup per HyPer instance but
distribute the CPU shares according to the exponential distribution introduced in Sec-
tion 5.4.1. This allows to evaluate the overhead incurred by restricting the throughput
of a large subset of HyPer instances.

The results of the described benchmarks are shown in Figure 5.7. After loading the
database, we simultaneously start transaction processing for all four benchmark setups.
At first, the average throughput for each setup converges to the same value of about
8500 transactions per second on average. For setups 1 through 3, the average slightly
declines during the benchmark but remains at a similar average throughput level for
each configuration. Setup 4 exhibits three severe drops in throughput. These are caused
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by the 64 HyPer instances with the largest CPU shares which are still active finishing
and the available processing power being redistributed among the remaining tenants.
After each such event, the average throughput recovers to about 85% of the average
transactions per second exhibited by the instances in the other setups.

The gradual decrease in throughput is caused by the growing size of internal data-
structures in HyPer, for instances indexes with complexity O(logn). The diminished
performance whenever a service class finishes execution in setup 4 can be explained
analogously to Section 5.4.1. The maximum overhead during regular execution in setup
4 with 256 separate CGroups active is 15%. This is likely to be less in normal execution
due to the fact that the number of tenants decreases over time for setup 4 but not for the
other setups. As a result, the operating system has less degrees of freedom when dis-
tributing HyPer instances on CPU cores making an even distribution harder to achieve.

5.5. Related Work
Multi-tenancy is a thoroughly researched field, especially in the context of database sys-
tems. Aulbach et al. [1, 2] research how multiple tenants can share a single traditional
database system. They focus on how data can be shared among tenants while still al-
lowing the database schema to be adapted and extended for each tenant individually.
While their work allows to share a database and parts of the data between many homo-
geneous tenants, we focus on allowing every tenant to run a completely independent
database without any restriction on the application using the database.

Weissman et al. [74] describe another even more invasive schema-mapping multi-
tenancy approach. Their idea uses a relational database system to store data. However,
they do not employ database relations to model a customers relation but instead suggest
storing meta-data and data items in generalized tables. While allowing different cus-
tomers to use the same database system for different applications, they do not discuss
SLA enforcement in their setup.

Chi et al. [11] discuss enforcing a subclass of SLAs by cost-based scheduling. Their
work improves previously existing scheduling algorithms in terms of their time com-
plexity. However, their algorithm simply determines a query-schedule which fits a
cost function derived from a provider contract. Workloads different from long-running
analytical queries as well as other overheads in the system are not captured by their
approach.

5.6. Conclusion
In this chapter, we introduced a multi-tenancy approach which is well suited for use
with lightweight main-memory database systems. Running separate instances of a
main-memory DBMS in operating system containers yields the same isolation benefits
as virtualization while reducing both overhead and latency. At the same time, launch-
ing multiple instances of a MM-DBMS does not incur high overhead due to the light-
weight nature of the system which requires no complex buffer-management or other
heavyweight components found in traditional systems.
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Furthermore, we showed that aspects of Service Level Agreements concerning the
distribution of the available CPU resources can easily be enforced by exploiting the
CGroups subsystem of the Linux kernel. We found that CGroups allow enforcing var-
ious resource distributions and exhibit low latencies. Notably, the performance over-
head of CGroups was shown to be negligible.

In conclusion, combining low overhead main-memory database systems with low
overhead virtualization yields a multi-tenancy platform which can easily support thou-
sands of small tenants with little overhead. Furthermore, the architecture allows ex-
ploiting operating system features for efficient SLA enforcement.
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Chapter 6
Conclusion

Traditional topics of database systems research like concurrency control have recently
regained popularity. This is due to the tremendous change in the hardware environ-
ment used to run databases. Traditional systems had a well-understood architecture
which mitigated the effects of storing data on disk. Recent systems use main-memory
as their primary data-store. Before, improvements in throughput resulted from increas-
ing processor frequencies according to Moore’s law. For the last few years, Moore’s law
has persisted but frequencies no longer increase. Now, the number of cores in a proces-
sor increases over time. This no longer yields improved performance without taking
the changed underlying hardware into consideration.

We introduced HyPer, our main-memory database system prototype. HyPer was re-
engineered from the ground up to use main-memory as its primary data-store. It does
not use explicit buffer-management but instead exploits virtual memory for efficiently
mapping between logical and physical pages. By default, HyPer uses serial execution
on disjoint partitions as its concurrency control paradigm. To allow the execution of
long-running OLAP-style workloads, a transaction-consistent snapshot of the entire
database is used. Creating this type of snapshot is achieved by leveraging hardware
optimizations originally used for process creation inside the operation system. Mod-
ern hardware implements efficient page granularity copy-on-write mechanisms using
virtual memory. HyPer exploits this mechanism to efficiently create a consistent snap-
shot which is then used to execute OLAP queries in parallel to OLTP transactions on
the main database.

In this work, we explored three ways of maximizing concurrency in main-memory
databases. First, we focused on the efficient creation of consistent snapshots of a data-
base. Consistent snapshots allow decoupling the execution of read-only OLAP queries
and OLTP transactions. Therefore, low overhead concurrency control can be employed
for OLTP while OLAP queries can still be executed on recent data. We found that
hardware-controlled mechanisms like the original hardware page shadowing approach
introduced for HyPer offer the highest throughput. This is due to the fact that indi-
rections are kept at a minimum and multiple snapshots at different points in time can
coexist with low memory overhead. Software-controlled approaches suffer from added
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indirection which has to be managed by the database system. While costly, software-
controlled approaches like tuple shadowing can offer a significantly lower memory foot-
print when the transactional access pattern is not clustered. These findings differ sig-
nificantly from those of the original investigation of the snapshotting algorithms. Page
shadowing, as introduced by Lorie, suffered from prohibitively high cost due to remov-
ing the inherent clustering in database relations. In contrast, hardware page shadowing on
modern hardware is not penalized by this as virtual memory hides fragmentation of the
underlying physical memory pages. This highlights the importance of re-investigating
well known approaches in today’s hardware environment.

Second, we introduced tentative execution to allow executing long-running transac-
tions in high-performance main-memory database systems. Short, good-natured trans-
actions can be executed with unprecedented performance in main-memory database
systems by relying on serial execution as done in VoltDB or HyPer. OLAP queries can
be executed by efficiently creating a consistent snapshot of the database using hardware
page shadowing. Tentative execution allows extending the mix of executable workloads
to encompass long-running transactions. While rare, long-running transactions are re-
quired in many systems, for instance due to application server interactivity. Executing
even very few long-running transactions in a system using serial execution quickly ren-
ders the system unusable. Tentative execution allows reusing the consistent snapshot re-
quired for OLAP execution but allows applying the effects of the tentative transaction
to the main database. This is accomplished by monitoring the side effects of a tentative
transaction executed on the snapshot and applying them to the main database if the
tentative transaction commits on the snapshot. Before executing the apply transaction,
all side effects are validated against the main database to achieve snapshot isolation or
serializable isolation level.

We compared our tentative execution approach against traditional two-phase locking
as well as multi-version concurrency control. We found that two-phase locking mas-
sively reduces single thread performance for good-natured, short transactions. At the
same time, two-phase locking does not scale with many threads as the lock-manager
becomes a bottleneck. Multi-version concurrency control exhibits a lower impact on
single thread performance and scales well. However, it does not allow for the efficient
execution of analytical workloads as performance deteriorates when many tuples are
accessed in a single transaction. In comparison, tentative execution can be added to a
main-memory database system like HyPer without impacting transactional or analyti-
cal performance. Therefore, tentative execution extends the range of workloads suitable
for main-memory database systems to include long-running transactions. At the same
time, it does not reduce throughput for good-natured transactions or analytical queries
run in parallel.

Third, we introduced our multi-tenancy approach for main-memory database sys-
tems. As the single thread performance of a main-memory DBMS can quickly outgrow
the business needs of smaller customers, multi-tenancy is required to efficiently use
the vast hardware resources found in commodity hardware today. We found that main-
memory database systems allow new approaches towards multi-tenancy as they have a
small footprint. Additionally, it is possible to run multiple instances of a main-memory
database system on the same machine without compromising throughput. After show-
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ing that many customers each using a separate database system instance do indeed scale
on commodity hardware, we looked into enforcing SLAs. There, we introduced using
the Linux kernel’s CGroups mechanism for basic SLA enforcement. We found that us-
ing CGroups allows enforcing limits on resources like CPU usage with low overhead
and high accuracy.

In summary, the methods described in this work allow for the efficient execution of
a diverse set of workloads using main-memory database systems. The methods we
describe do not sacrifice performance for versatility but instead extend the set of pos-
sible workloads and applications. This in turn allows maintaining tremendous OLTP
throughput while also executing OLAP queries, long-running transactions and combin-
ing many tenants on a single server.
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Appendix A
Hardware

In the following sections, we will list a description of the systems used for benchmark
and evaluation purposes. Where applicable, this appendix is referenced to provide
information on the hardware we used for each test.

A.1. Hyper1 Server

Dell PowerEdge R910

4 × Intel Xeon X7560 processors clocked at 2.26GHz
16 hw threads each, 24 MB cache

64 × 16GB RDIMMs clocked at 1066MHz
16 × 300GB SAS 6 GBit/s 10k drives

- 4 fully interconnected NUMA nodes
- Recent Ubuntu used for benchmarks (12.04 - 13.10)

A.2. Dbkemper5 Server

Dell PowerEdge T710

2 × Intel Xeon X5570 processors clocked at 2.9GHz
8 hw threads each, 8 MB cache

16 × 4GB DDR3 DIMM clocked at 1333MHz

- 2 fully interconnected NUMA nodes
- Recent CentOS (5) and Ubuntu used for benchmarks (12.04 - 13.10)
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A.3. I7 Workstation
1 × Intel i7-3930K processor clocked at 3.2GHz,

12 hw threads, 12 MB cache
8 × 8GB DDR3 DIMM clocked at 1600MHz

- UMA system
- Recent Ubuntu used for benchmarks (12.04 - 13.10)
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