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Abstract— In this paper we investigate the controllability of a
controlled agreement problem where the interaction dynamics
is given by a nearest-neighbor averaging. A single agent or
a group of agents is selected to be the leader(s) and act(s)
as control input to all other nodes. This opens the question,
where the leader(s) should be placed such that arbitrary
configurations of the nodes can be achieved. Based on the
observation that a zero-entry in the Laplacian eigenvector at the
position of a leader affects an uncontrollable subspace we study
the characterization of the uncontrollable subspace by means
of a generalized version of Faria vectors. Faria vectors are
eigenvectors of a Laplacian which have two entries unequal to
zero, +1,−1. This leads to a novel topological characterization
of the uncontrollable subspace. The results are valid not only
for the single leader but also the multi-leader case. Numerical
investigations show the advantages of the proposed approach
using Faria vectors to characterize the uncontrollable subspace
under certain conditions.

I. INTRODUCTION

Large-scale networked systems have moved into the focus

of current research activities in the control community due to

their many societally relevant applications such as environ-

mental monitoring by mobile sensor nodes and vehicle/robot

coordination in production, logistics and transport systems.

Due to their scalability distributed control approaches are

often preferable in such settings. The consensus problem is

a widely studied canonical problem of distributed decision

making, see e.g. [1]. The controlled consensus problem is a

modification of the original setting in the sense that agents

are selected to be controlled by an exogenous control input.

The selected agents can be interpreted as leader nodes,

while all others are follower nodes. Besides investigating the

system properties like convergence of the system under the

regime of such controlled agreement protocols, one specific

research direction focuses on the controllability of such

controlled agreement protocols. Controllability indicates if

it is possible to drive the system states to any configura-

tion [2]–[4]. The identification of the uncontrollable subspace

depending on the placement of the input nodes in the graph

is an important problem which is studied within this work.

The controllability properties can be investigated based

on algebraic graph properties [2]. If the eigenvector of the

Laplacian has a zero-entry at the position of the leader the

leader consensus network becomes uncontrollable [3], [5].

The topological characterization in terms of graph clustering

is used to describe to controllable subspace in terms of
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leader-invariant external equitable partitions (LEP) [6], [7].

LEPs provide an upper bound on the dimension of the con-

trollable subspace for single leader networks. In general the

complete controllable subspace is not characterized by LEPs.

Describing the complete controllable subspace of controlled

consensus networks based on topological properties is an

open issue [8], [9].

The main goal of this paper is to narrow the gap between

the algebraic and the topological characterization of the

controllable subspace. We make use of the fact that a 0−entry

in an eigenvector of the Laplacian L leads to an uncon-

trollable subspace. Under specific neighboring circumstances

two vertex sets with equal cardinality lead to Laplacian

eigenvectors with entries +1,−1, 0, called Faria vector [10],

[11]. In this paper we augment the class of Faria vectors

in order to apply it to the controlled consensus problem.

By doing so we can characterize an uncontrollable subspace

of the controlled consensus problem and its corresponding

eigenvalue. Based on these findings, we discuss under which

conditions the selection of multiple leaders in a network

leads to an uncontrollable subspace. Due to the duality of

controllability and observability, the obtained results translate

to the corresponding observability problem. The numeri-

cal examples show that the proposed Faria vector based

condition can topologically characterize a different part of

uncontrollable subspace than LEP condition under certain

conditions. The combination of both conditions provides a

more complete picture of the uncontrollable subspace. Still,

a gap remains to the full characterization as indicated by a

counter example.

The remainder of this paper is organized as follows. Sec-

tion II describes formally the controlled agreement problem

considered in this work. The influence of Faria vectors to

the controllability of the system is presented in Section III.

Notation: The identity matrix is In ∈ R
n. The zero

matrix with appropriate dimension is denoted by 0. span(A)
denotes the span of a matrix A. The range of A is denoted

by range(A). Γ(v) denotes the set of neighbors of vertex v.

ΓV1
(v) denotes the set of neighbors of vertex v within the

vertex set V1. Here, | · | denotes the cardinality of a set.

II. THE CONTROLLED CONSENSUS PROBLEM

For the following analysis we consider a multi-agent

system where each agent is labeled as 1, . . . , N + 1 and

the set of all agents is denoted by V . The state of agent

i is identified by xi ∈ R
d where d denotes its dimension.

An agent j is called a neighbor Ni of agent i if agent i has

knowledge about the state xj(t). The dynamics of each agent



evolve according to the consensus equation

ẋi =
∑

j∈Ni

(xj − xi). (1)

This system can also be characterized as a graph where each

agent is represented by a vertex in V = {v1, . . . , vN+1}.

The neighboring relation between two agents i and j is rep-

resented by an edge in Eij and the set of all edges E ⊆ V×V .

The graph G = (V, E) is assumed to be undirected and static.

By concatenating the agent states in x̄ = [x1, . . . , xN+1] and

assuming d = 1 for simplicity of notation in this paper, (1)

can be compactly rewritten as

˙̄x = −Lx̄,

where L denotes the graph Laplacian. We introduce a set

Vl of the leader node and distinguish it from the set Vf of

follower nodes with V = Vf

⋃

Vl. We assume that the last

node vN+1 corresponds to the leader and the first N nodes

are the follower nodes (the labels can always be re-indexed

such that this assumption is satisfied). Under this convention

the graph Laplacian L is decomposed as

L = −

[

A B

BT γ

]

, (2)

where A = AT ∈ R
N×N , B ∈ R

N , and γ ∈ R. By

collecting all follower states into x = [x1, . . . , xN ] and using

the leader node as input u = [xN+1], we formulate a standard

LTI-system for the controlled system

ẋ = Ax+Bu. (3)

Note that the edges belonging to the leader are directed ones

here and hence the follower have no influence on the leader.

Remark 1: For simplicity of exposition and since LEPs

are only valid for the single leader problem [2], [3], [6]–[9]

we restrict ourselves us to a single leader node in the problem

formulation and the description of LEPs. Note, however, that

the developed Faria vector condition for uncontrollability

also extends to the multi-leader case as will be discussed

later on.

A. Controllability Problem and Kalman Decomposition

The controllability matrix C of the controlled consensus

system (3) is given by

C =
[

B AB A2B . . . AN−1B
]

. (4)

The question to be answered is whether the leader can drive

the follower states to any arbitrary final configuration xf ,

which is true if and only if rankC = N . For rankC < N
the uncontrollable subspace needs to be determined.

An exact characterization of the controllable and uncon-

trollable subspace can be given based on algebraic prop-

erties. If C is rank deficient the LTI-system (3) can be

decomposed into its controllable and uncontrollable part by

the Kalman decomposition [6]. The similarity transformation

is given by T =
[

C‖ | C⊥
]

, where C‖ = span(C) ∈
R

N×rankC indicates the range of the controllable subspace

and C⊥ = null(C) the range of the uncontrollable subspace.

This similarity transformation results in

TTAT =

[

Ac 0
0 Ac̄

]

, TTB =

[

Bc

0

]

, and

[

xc

xc̄

]

= TTx,

where c and c̄ corresponds to the controllable and uncontrol-

lable part and results in two decoupled subsystems

ẋc = Acxc +Bcuc and (5)

ẋc̄ = Ac̄xc̄. (6)

By definition the lower left block of TTAT must result

in 0 ∈ R
rankC×(N−rankC) as xc has no influence on xc̄.

Since A = A⊤, the upper right block also results as

0 ∈ R
(N−rankC)×rankC and hence xc is unaffected by xc̄.

The uncontrollable state vector is concatenated as follows:

xc̄ =
[

xc̄,1, . . . , xc̄,(N−rank(C))

]

.

Remark 2: The uncontrollable part (6) is asymptotically

stable in case of the controlled consensus problem. Since T
represents a similarity transformation, the eigenvalues of A

and

[

Ac 0
0 Ac̄

]

remain the same. The eigenvalues of A

are negative, which is a consequence of the spectra of the

Laplacian L and that A is a principal submatrix of −L. Note

that the spectra of L and −L are σ(−L) = −σ(L). See [12]

for a detailed proof of this fact.

B. External Equitable Partitions

In large networks it is desirable to characterize the control-

lable and uncontrollable subspace by topological properties

such as LEPs [6], [8]. LEPs exploit the fact that certain fol-

lower agents tend to cluster and in general only the average

of these agents can be controlled. Here, the clustering of

nodes of a graph G = (V, E) is defined by a partition map

π : V → {C1, . . . , Ck}, where π(i) is the assigned cell for

node i and k denotes the number of cells under the partition

π. Consequently, an inverse operation π−1(Ci) = {j ∈
V|π(j) = Ci} indicates the set of nodes belonging to cell Ci.

The set of all cluster is defined as range(π) = {C1, . . . , Ck}.

The node-to-cell degree degπ(i, Cj) indicates how many

neighbors agent i has in cell Cj regarding the partition π.

A clustering π of the nodes is called external equitable

partition (EEP) if, for all Ci, Cj , where i 6= j

degπ(k,Cj) = degπ(l, Cj), for all k, l ∈ π−1(Ci). (7)

The leader-invariant EEP is defined as a

clustering where the leader node is in a trivial

cell, i.e. π−1(π(N + 1)) = {N + 1}. Such maximal,

leader-invariant EEPs (LEP) are denoted as π⋆, where

maximal refers to the smallest possible number of cells.

For Vπ∗ = range(π∗) we obtain a weighted and directed

graph that reflects the controllable subspace of the system

(3), see [8] for a detailed description. A key result from

[7] states a necessary condition for the controllability of

single-leader networks based on the topological property:
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Fig. 1. The leader is denoted as • and the partition π∗ is
denoted by the gray enclosures around the nodes. Here, π⋆ =
{{1}, {2}, {3}, {4}, {5}, {6}} is trivial, but xc̄ = −x5 − x3 + x1 + x2

is uncontrollable. The signs of xc̄ is denoted by •/•

Proposition 1 ( [7]): A single leader network (3) is com-

pletely controllable only if G is connected and π∗ is trivial,

i.e. π⋆−1(π⋆(i)) = {i}, ∀i ∈ V .

Consequently, the upper bound for the dimension of the

controllable subspace of (3) is characterized in terms of an

inequality as rank(C) ≤ |π⋆| − 1. Since this proposition

lacks sufficiency, the complete controllable subspace is not

completely described by LEPs. As stated in [8] and [9],

there exist trivial LEP for which the complete controllable

subspace is still unknown. For illustration we consider the

following well-known example from the literature [9].

Example 1: We consider the graph of the controlled con-

sensus problem as illustrated in Fig. 1. Node 6 is the leader

node, all other nodes are followers. The partition π⋆ is given

by π⋆ = {{1}, {2}, {3}, {4}, {5}, {6}}, which is trivial.

According to Proposition 1 we know that the controllable

subspace is rank(C) ≤ 5. However, from the algebraic

condition (4) we know that rank(C) = 4 and from (6) we

know that xc̄ = −x5 − x3 + x1 + x2.

A novel method is required to characterize the uncontrollable

subsystem as in Fig. 1.

III. UNCONTROLLABLE SUBSPACE BY FARIA VECTORS

A. Uncontrollability by 0 entries in Laplacian eigenvectors

For an undirected Graph G, a necessary and sufficient

condition for the controllability of (3) is derived based on the

eigenvalues of −L and A [3], [13]. It is shown that system

(3) is uncontrollable if a Laplacian eigenvector has a 0-entry

at the N + 1th element, where N + 1 denotes the position

of the leader. Due to the 0-entry at the leader position, the

leader has no impact on this eigenmode.

Proposition 2 ( [5]): Assume the system (3) to be uncon-

trollable. Then there exists an eigenvector of L that has a zero

component on the index that corresponds to the input.

Here, the Hautus criterion requires that AνA = λνA and

BT νA = 0 are satisfied for each uncontrollable eigenmode.

It is shown in [5] that νA is a left eigenvector of A and
[

νTA , 0
]

is the left eigenvector of −L associated with the

common eigenvalue λ. Due to the symmetry of −L and A,

the left eigenvectors are equal to the right eigenvectors here.

A conclusion of Proposition 2 is to investigate the appearance

of 0 elements in the eigenvectors of Laplacian and relate this

to the uncontrollability of controlled agreement systems.

B. General Faria Vectors in Laplacians

A particular structure of Laplacian eigenvectors is called

Faria vectors. A Faria vector has only zero entries except

for two which are +1 and −1, see e.g. [10]. Hence, they

can lead to an uncontrollable subspace. A general version of

these vectors is first introduced in [11], where eigenvectors

are investigated corresponding to an integer eigenvalue. Faria

vectors are examined in the context of the multiplicity of

integer roots of the characteristic polynomial of the Laplacian

L. A Faria vector occurs in a graph if there exists a subset

of vertices with the same degree p which have particular

neighbors within the subset and particular edges to the

remaining nodes. This is formally stated in the following.

Proposition 3 ( [11]): Let G be a graph on N vertices

and Vp the set of vertices of G of degree p. If there are

vertices v1, v2, . . . , v2r ∈ Vp, such that Γ(vj) ∩ Γ(vk) =
∅, 1 ≤ j < k ≤ r,Γ(vj) ∩ Γ(vk) = ∅, r + 1 ≤ j < k ≤ 2r,

and Γ({v1, . . . , vr}) = Γ({vr+1, . . . , v2r}), then p is an

eigenvalue of L with the corresponding Faria eigenvector

ν = [νi], where νi = 1, i = 1 . . . r, νi = −1, i = r +
1 . . . 2r, νi = 0, i = 2r + 1 . . . N .

In consequence there are Laplacian eigenvectors with 0
entries depending on topological conditions, which can lead

to an uncontrollable subspace. However, this theorem is very

strict since all vertices within the set Vp are required to have

the same degree p. To obtain a more general version of the

previous theorem, we relax the condition that each vertex

of Vp requires the same degree p. Therefore we divide the

considered vertex set into two equal subsets. Here, we require

that each vertex inside one subset is associated with a specific

value with respect to its own degree, its neighbors in its own

subset and the neighbors in the other subset. This condition

is less restrictive in finding Faria eigenvectors.

Theorem 1: Let G be a graph of N vertices. If there

exists a partition π consisting of the three vertex sets V1 =
{v1, . . . , vr}, V2 = {vr+1, . . . , v2r} for some r and Vσ =
V\{V1, V2} = {v2r+1, . . . , vN} and if now

ΓVσ
(vj) ∩ ΓVσ

(vk) = ∅ 1 ≤ j < k ≤ r,

ΓVσ
(vj) ∩ ΓVσ

(vk) = ∅ r + 1 ≤ j < k ≤ 2r
(8)

and

ΓVσ
(V1) = ΓVσ

(V2) (9)

and

∃p ∈ N,

p = deg(vj)− degπ(vj , V1) + degπ(vj , V2)

1 ≤ j ≤ r,

p = deg(vj)− degπ(vj , V2) + degπ(vj , V1)

r + 1 ≤ j ≤ 2r,
(10)

then p is an integer eigenvalue of L with the associated

eigenvector ν = [νi], where νi = 1 for i ∈ {1, . . . , r}, νi =
−1 for i ∈ {r+1, . . . , 2r}, νi = 0 for i ∈ {2r+1, . . . , N}.

Proof: For a given r the vertices of G can be relabeled

in the following way. Let V1 = {v1, . . . , vr} be the first r



vertices and V2 = {vr+1, . . . , v2r} be the next r vertices. The

adjacent vertices of both V1 and V2 are ordered afterward.

The remaining nodes are arbitrarily and thus the Laplacian

L is given by:

L =



























deg(v1) Ψ1

. . . Ω Ξ 0
ΨT

1 deg(vr)
deg(vr+1) Ψ2

ΩT
. . . Π 0

ΨT
2 deg(v2r)

ΞT ΠT ⋆ ⋆
0 0 ⋆ ⋆



























,

where due to (8) the rows of Π are linearly independent. The

same fact is applicable for Ξ. However, since both sets V1

and V2 have the same set of neighbors due to (9), the row

space of Π is equivalent to Ξ. The sum of each row in the

strictly upper triangular matrices Ψ1 and Ψ2 is degπ(vj , V1)
and degπ(vj , V2), respectively. The sum of each row in Ω and

ΩT is degπ(vj , V2) and degπ(vj , V1), respectively. Since p is

equal for vertices in V1, V2, p is an eigenvalue of L with the

corresponding eigenvector ν = [νi], νi = 1, i = 1 . . . r, νi =
−1, i = r + 1 . . . 2r, νi = 0, i = 2r + 1 . . . n.

Theorem 1 provides a characterization of Laplacian eigen-

vectors with 0,−1,+1 entries based on the topological

conditions (8)-(10). It should be noted that Faria eigenvectors

can only occur if the Laplacian has at least one integer

eigenvalue constraining the class of graphs for which the

method is suitable. For the controlled consensus problem we

arrive at the following observations. If the leader node is

selected among the nodes of Vσ = {v2r+1, . . . , vN}, the

Faria eigenvector of the Laplacian has a zero entry at the

leader position. It follows from Proposition 2, that under

this leader the eigenmode associated with this Faria vector

is uncontrollable. Note that analogously to Proposition 2 the

Faria eigenvector is given as ν =
[

ν⊤A , 0
]⊤

where νA is also

an eigenvector of A. Hence, the Faria vector ν describes one

uncontrollable direction xc̄ = ν⊤Ax which is asymptotically

stable, lim
t→∞

xc̄(t) = 0. Since the Faria vector is constructed

as ν = [νi], νi = 1, i ∈ V1, νi = −1, i ∈ V2 an equality

constraint appears for t → ∞ as

lim
t→∞

∑

i∈V1

xi(t)−
∑

i∈V2

xi(t) = 0.

If Faria vectors exist in a controlled agreement problem,

they lead to equality conditions for the final states xf

of the leader-follower network. Besides characterizing the

uncontrollable subspace, condition (10) provides us with

the corresponding eigenvalue p. Note that through the de-

composition of (A,B) from −L in (2), the eigenvalue of

A and −L is −p. Hence, the equation of motion of the

uncontrollable state characterized by a Faria vector ν is

given by e−ptνTAx0 where p and νA arise from topological

properties. If we know all eigenvalues of the uncontrollable

system, we can further conclude about the convergence rate

within the uncontrollable subspace.

Corollary 1: If the uncontrollable subspace is completely

characterized by Faria vectors, the rate of convergence within

the uncontrollable subspace is bounded by the smallest

integer eigenvalue pmin associated with the characterizing

Faria eigenvector since |xc̄(t)| ≤ e−pmint|xc̄(t0)|.
Proof: The dynamics of the uncontrollable subsystems

are given as ẋc̄ = Ac̄xc̄ and we use the positive definite

V = 1
2x

⊤
c̄ xc̄ as Lyapunov function candidate for the un-

controllable dynamics. Hence, V̇ = 1
2 (ẋ

⊤
c̄ xc̄ + x⊤

c̄ ẋc̄) =
1
2x

⊤
c̄ (A

⊤
c̄ + Ac̄)xc̄ ≤ λmax(Ac̄)x

⊤
c̄ xc̄ < 0 ∀xc̄ 6= 0,

where λmax(Ac̄) < 0 is the largest eigenvalue of Ac̄. The

spectra of Ac̄ and A⊤
c̄ are equal, σ(Ac̄) = σ(A⊤

c̄ ), and the

inequality 1
2x

⊤
c̄ (A

⊤
c̄ +Ac̄)xc̄ ≤ λmax(Ac̄)x

⊤
c̄ xc̄ follows from

the Rayleigh quotient. This proves that V is a valid Lya-

punonv function. By assumption the uncontrollable subspace

is completely characterized by Faria vectors which have

associated eigenvalues pi, of which the minimal eigenvalue

is denoted as pmin. These eigenvalues pi are also the spectra

of −Ac̄ and λmax(Ac̄) = −pmin. Hence, the uncontrollable

states vanish exponentially as |xc̄(t)| ≤ e−pmint|xc̄(t0)|.
Remark 3: The conditions (8)- (10) from Theorem 1 need

to be tested as follows. For testing the conditions all possible

vertex sets V1, V2 for all set cardinalities r = 1 . . . floor
(

N
2

)

have to be created with floor
(

N
2

)

being the maximal car-

dinality to create two vertex sets with equal cardinality.

The remaining nodes are collected in Vσ. For the simplest

cardinality, r = 1, condition (8) is always true. In order

to find a Faria eigenvector, condition (8)- (10) have to be

evaluated for each vertex set V1, V2.

Remark 4: Due to the duality of controllability and ob-

servability, the obtained results can be applied to the output

node. Consider the consensus equation (2) and select an

output node y resulting in the decomposition

ẋ = Ax,

y = BTx,
(11)

where y represent the output nodes. Then the question is,

whether the full system state can be reconstructed based on

the observations at the output node. As a consequence on

our results on the controllability we arrive at the following

consideration here. The system (11) is unobservable if L has

a Faria eigenvector and an output node belongs to the set Vσ

of this Faria eigenvector.

Faria Vectors and Multiple Leaders

LEPs are only valid for single-leader consensus net-

works. An uncontrollable subspace characterized by Faria

vectors can also occur for multiple leaders. The argumen-

tation straightforwardly extends the single leader problem.

In case of M leaders, the LTI system (2) is resized as

A ∈ R
(N+1−M)×(N+1−M) and B ∈ R

(N+1−M)×M . The

description of uncontrollable subspaces described by Faria

vectors builds on Proposition 2 and this theorem is also

valid for multiple leaders and enhances as follows: If the

N−M th entries are 0s in any eigenvector of L the associated

eigenmode is uncontrollable. Consequently, the satisfaction

of the conditions within the follower nodes in Theorem 1



leads to an uncontrollable subspace characterized by Faria

vectors. Based on the previous characterization we can

provide a design guideline for selecting the leaders.

Design Guideline for Multiple Leaders

As 0 entries in the Laplacian eigenvector at the leader in-

dex lead to an uncontrollable subspace and Faria eigenvector

do only have 0,−1,+1 entries, we are also able to interpret

this in the context of leader-selection.

Corollary 2: If a Faria vector is present as an eigenvector

of the Laplacian L at least one input of (3) has to be chosen

among the set V1 and V2 to avoid an uncontrollable subspace.

Proof: We know from Proposition 2 that the corre-

sponding system motion is uncontrollable if the Laplacian

eigenvector has a 0 entry at the leader position From The-

orem 1 we know that the vertices of V1, V2 have +1/ − 1
entries in the eigenvector. So when picking one leader among

the two sets V1, V2 we avoid the 0 entry in the Laplacian

eigenvector at the position of the leader.

Example 2: Consider the graph in Fig. 1. If we choose

the leader nodes as Vl = {4, 6} then the uncontrollable

subspace xc̄ = x5 + x3 − x1 − x2 remains uncontrollable

despite more inputs. In contrast by choosing the leader set

as Vl = {1, 6} we have direct access to xc̄ by agent 1 and

the system is then completely controllable.

Faria Vectors and the Edge Principle

Since the entries of Faria vectors can only take the

values −1,+1, 0 the edge principle is of interest here

Theorem 2 ( [10]): Let λ be an eigenvalue of L associ-

ated with the eigenvector ν. If ν[i] = ν[j], then λ is an

eigenvalue of L(G⋆) associated with ν, where G⋆ is the graph

obtained from G by deleting or adding e = {i, j}, depending

on whether or not it is an edge of G.

Here it follows that we can add or remove edges connecting

nodes within the sets V1 and V2, respectively, from the graph

without effecting the uncontrollable subspace xc̄. Note that

adding or removing edges can alter the LEP π⋆ and is hence

not straightforwardly applicable.

Example 3: Note the graph in Fig. 1 here as example.

Adding the edge e = {1, 2} or removing e = {3, 5}
preserves the eigenvector ν = [−1,−1, 1, 0, 1, 0] and its

corresponding uncontrollable space.

C. Counterexample for Uncontrollable Subspaces

The topological characterization of uncontrollable sub-

spaces can now be described by vertex clustering (LEPs) and

equality conditions (Faria vectors). However, the topological

condition for controllability remains necessary until now. We

now give a counterexample to demonstrate this. Consider the

graph in Fig. 2 which has a trivial LEP and there are no two

sets with equal cardinality who satisfy the conditions for

Faria vectors. However, the uncontrollable subspace can be

computed as xc̄ = 2x5 + x2 − x3 − x4 − x1 where the 5th

vertex is double weighted here. Doubling a weight in the

uncontrollable part has no similar correspondence in both

1
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Fig. 2. The leader is denoted as • and the partition π∗ is
denoted by the gray enclosures around the nodes. Here, π⋆ =
{{1}, {2}, {3}, {4}, {5}, {6}} is trivial, but xc̄ = 2x5+x2−x3−x4−x1

is uncontrollable. The signs of the elements in xc̄ are denoted by •/•
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Fig. 4. The leader is denoted as • and the partition π∗ is
denoted by the gray enclosures around the nodes. We obtain that
π⋆ = {{1, 5}, {2}, {3}, {4}, {6}, {7}} is not trivial, but |π⋆| − 1 6=
rank(C). Here, xc̄,1 = x6+x4−x2−x3 is uncontrollable, which cannot
be described by Faria vectors due to unequal partitions V1, V2. The signs
of the elements in xc̄ are denoted by •/•

LEPs and Faria vectors and is thus a novel phenomena of

controlled single leader networks. The full essence of the re-

lationship between algebraic and topological characterization

is still an open problem.

IV. NUMERICAL INVESTIGATIONS

To validate the statements about Faria vectors and LEP nu-

merically we consider the graph depicted in Fig. 4. However,

the structure of this graph also reveals two sets with equal

cardinality which satisfy the Faria condition in Theorem 1.

Here, V1 = {2, 3}, V2 = {4, 6}, p = 2 results in an equality

constraint for the states and gives xc̄,1 = x6 +x4 −x2 −x3.

Furthermore V1 = {1}, V2 = {5}, p = 3 satisfies the Faria

conditions. Here, the uncontrollable subspace xc̄,2 = x1−x5

can also be characterized by the LEP. Based on numerical

investigations we observe the following.

Remark 5: Uncontrollable subspaces characterized by

Faria vectors and uncontrollable subspaces by the clustering

of an LEP can be equal and are no distinct sets. This coinci-

dence of Faria vectors and LEPs needs further investigation.

We excite the system (3) with a sinusoidal signal u(t) =
5 sin(0.2·πt). We observe that both uncontrollable subspaces

converge as illustrated in in Fig 5: lim
t→∞

(x1(t)− x2(t)) = 0

and lim
t→∞

(x6(t) + x4(t)− x2(t)− x3(t)) = 0.

Often it is necessary to drive the controllable system states

from an initial to a final configuration with an open-loop

control input. To drive the controllable states from an initial

x0
c to a final configuration xf

c within a finite time horizon

tf , we can directly apply the open-loop input

u[0,tf ](t) = −BT
c e

AT
c (tf−t)W−1

s

(

eActfx0
c − xf

c

)

, (12)
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Fig. 3. Both uncontrollable subspaces |x6 + x4 − x2 − x3| and |x1 − x5| are asymptotically stable. Both x1 and x5 become a single controlled system
on the left. The states x2, x3, x4, x5 remain different in the transition phase for the second uncontrollable subspace
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Fig. 5. Though the system is excited, the uncontrollable subspace
characterized by LEP & Faria vanishes.

with the Grammian matrix Ws =
tf
∫

0

eAcτBcB
T
c e

AT
c τdτ .

As the uncontrollable subspace is asymptotically stable, the

uncontrollable states xc̄ are located inside an ǫ-ball after tf

|xc̄(t)| = |eAc̄tf ||xc̄(t0)| ≤ eλmax(Ac̄)|xc̄(t0)| ≤ ǫ.

Hence, the minimal time horizon results in

tf ≤
1

λmax(Ac̄)
log(

ǫ

|xc̄(t0)|
). (13)

We want to drive the controllable states of

graph in Fig. 4 from an initial configura-

tion x(0) = [10,−50,−70, 40, 50, 60] into a final

configuration x(tf ) = [−20, 10,−10, 10,−20,−10].
The final configuration satisfies both uncontrollable

subspaces since lim
t→∞

(x1(t)− x5(t)) = 0 and

lim
t→∞

(x6(t) + x4(t)− x2(t)− x3(t)) = 0. Here,

|xc̄(t0)| = 223.6. Although {1, 5} can be specified by LEPs,

it can also be characterized by Faria vectors. A side effect

of Faria vectors is that we can derive the eigenvalues, here

λ(Ac̄) = (−2,−3) and so λmax(Ac̄) = −2. Due to (13) the

minimal time tf to drive the system to a final configuration

results as tf ≤ 1
λmax(Ac̄)

log( ∆ǫ
|xc̄(t0)|

) = − 1
2 log(

∆ǫ
220 ). We

assume ∆ǫ = 1e−2 and thus tf ≤ 4.66. Fig. 3 shows the

states that are driven from x(0) to x(tf )

V. CONCLUSIONS

In this paper we provide a novel approach to character-

ize the uncontrollable subspace of a controlled consensus

problem based on topological properties. It is based on the

knowledge that zero entries in the eigenvectors of the Lapla-

cian of the standard consensus results in an uncontrollable

subspace. These eigenvectors with 0s are characterized by

Faria vectors which arise from particular adjacency relations

of two equal vertex sets and lead to equality constraints.

The proposed approach complements the existing one based

on leader-invariant external equitable partitions (LEPs). We

verify these uncontrollable subspaces for counterexamples of

graphs that are previously defined in the literature.
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