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Abstract

Hyperbolic ornaments are pictures which are invariant under a discrete symmetry
group of isometric transformations of the hyperbolic plane. They are the hyperbolic
analogue of Euclidean ornaments, including but not limited to those Euclidean
ornaments which belong to one of the 17 wallpaper groups. The creation of
hyperbolic ornaments has a number of applications. They include artistic goals,
communication of mathematical structures and techniques, and experimental
research in the hyperbolic plane. Manual creation of hyperbolic ornaments is
an arduous task. This work describes two ways in which computers may help
with this process. On the one hand, a computer may provide a real-time drawing
tool, where any stroke entered by the user will be replicated according to the rules
of some previously selected symmetry group. Finding a suitable user interface
for the intuitive selection of the symmetry group is a particular challenge in this
context. On the other hand, existing Euclidean ornaments can be transported to the
hyperbolic plane by changing the orders of their centers of rotation. This requires
a deformation of the fundamental domains of the ornament, and one particularly
well suited approach uses conformal deformations for this step, approximated using
discrete conformality concepts from discrete differential geometry. Both tools need
a way to produce high quality renderings of the hyperbolic ornament, dealing with
the fact that in general an infinite number of fundamental domains will be visible
in the finite model of the hyperbolic plane. To deal with this problem, an approach
similar to ray tracing can be used, variations of which are discussed as well.
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Zusammenfassung

Hyperbolische Ornamente sind Bilder, die invariant bleiben unter den Operationen
einer diskreten Symmetriegruppe, bestehend aus langenerhaltenden Abbildungen
der hyperbolischen Ebene. Sie stellen hyperbolische Analoga dar zu euklidischen
Ornamenten; insbesondere (aber nicht ausschlieflich) solche die einer der 17 kris-
tallographischen Gruppen angehéren. Die Erstellung von Ornamenten kann einer
Vielzahl von Zwecken dienen. Dazu zéhlen kiinstlerische Ziele, die Vermittlung
von mathematischen Strukturen und Techniken, sowie die experimentelle Erfor-
schung der hyperbolischen Ebene. Die manuelle Erstellung von hyperbolischen
Ornamenten ist jedoch sehr anstrengend. Diese Arbeit beschreibt zwei Verfahren,
mit denen der Computer bei diesem Prozess behilflich sein kann. Er kann auf der
einen Seite ein Werkzeug zum Zeichnen in Echtzeit zur Verfiigung stellen, bei dem
jeder vom Benutzer gezeichnete Strich geméfs den Regeln einer zuvor festgelegten
Symmetriegruppe repliziert wird. Eine Herausforderung ist hierbei die Wahl einer
geeigneten Benutzerschnittstelle, mit der diese Symmetriegruppe intuitiv ausge-
wahlt werden kann. Auf der anderen Seite konnen auch bestehende euklidische
Ornamente in hyperbolische Geometrie iibertragen werden, wobei die Zahligkeiten
ihrer Drehzentren angepasst werden miissen. Dies erfordert eine Deformation der
Fundamentalzellen des Ornaments, und ein besonders geeignetes Verfahren ist
hier die konforme Deformation. Diese lésst sich anndhern durch diskret konforme
Abbildungen, wie sie in der diskreten Differentialgeometrie formuliert und berech-
net werden. Beide Verfahren miissen am Ende Darstellungen des hyperbolischen
Ornaments in hoher Qualitat erzeugen. Das wird insbesondere dadurch erschwert,
dass im Allgemeinen eine unendlich grofse Zahl von Fundamentalzellen in einem
endlichen Modell der hyperbolischen Ebene sichtbar ist. Um mit diesem Problem
umzugehen kann ein Verfahren verwendet werden, das dem Raytracing dhnlich ist,
und von dem verschiedene Varianten diskutiert werden.



Preface

This work is the result of several years of research, going back at least to 2006,
while I was still a diploma student. At times, it had been planned that this research
would become my diploma thesis, but this research project grew beyond the scope
of a diploma thesis. So I wrote that about something simpler, namely interactive
drawing and automatic recognition of Euclidean ornaments. This was done in
order to keep the larger project about hyperbolic ornaments available as subject for
further research and my dissertation. For a long time I intended to first research the
best approaches to several problems related to the creation of hyperbolic ornaments,
then implement them all in the perfect ornament application, and then write my
dissertation about these. But research kept turning up new ideas faster than I could
integrate them. As it currently stands, I have a number of distinct proof-of-concept
implementations, but no single integrated application. We eventually decided that
I should write about all of these results before writing the one application to unite
them all. So in this sense, the text you're about to read is a report on the current
state of affairs, for a project which is still very much in progress. This text will
also be my road map for the implementation, which is the next major project on
my agenda.

PDF versions of this work will be published in several places. On the one hand,
the Technische Universitat Miinchen will provide an official electronic publication.
On the other hand, I will also make copies available on my own web page. Most
likely in different qualities, for reading online or for print. I intend to also maintain
a list of errata. All of this will become accessible at the following address:
http://martin.von-gagern.net/publications/2014-phd/

For those reading the digital PDF version, I'd like to point out some features.
As may be expected, there are hyperlinks within the document, so clicking on
a cross reference will take you to the referenced object. A feature which is less
common is my use of links for the references section. For most of the works I cite,
clicking on the reference will take you to a suitable page describing the document
in question. In the presence of sufficient subscriptions, most of these will give you
instant access to the referenced papers. So even if you have a printed copy, and
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prefer reading that, I very much suggest using the digital version when working
with the references.
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wife helped me a lot, taking good care of our two daughters while I worked late
hours. I'd also like to thank my late grandmother who sponsored printing this
work but did not live to see it completed.

Scientifically, I thank first and foremost Jiirgen Richter-Gebert. It was his
lectures, during my first semester as a student of computer sciences, which got me
interested enough in mathematics that these days I am unsure whether I ought to
call myself a computer scientist or a mathematician. He has been a constant source
of support and inspiration since, motivating me to investigate interesting avenues.
Both the idea to work on hyperbolic ornaments at all, as well as the idea to turn
Euclidean ornaments into hyperbolic ones, were very much his ideas, and payed
off since they opened up a whole forest of interesting mathematical questions and
concepts as well as challenging tasks in computer sciences, from algorithm design
up to utilization of modern GPU hardware. So thank you, Jiirgen!

Various other people who had a notable influence on this work. Boris Springborn
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use of it. He was very helpful in explaining some details and in providing the
hyperbolic functional which was essential for my application. He was also the
one who pointed out Troyanov’s theorem, on which I’ll base several proofs about
hyperbolization. Christian Stussak held a talk in 2008 which made me aware of
the possible applications modern 3D graphics equipment had for the generation of
planar images.

Martin von Gagern
May 2014
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Chapter 1

Introduction

Figure 1.1: An ornament, drawn interactively by the author.



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

This work is about hyperbolic ornaments, which are images that arise when the
ideas of symmetric ornaments are applied to hyperbolic geometry. In the context
of this work, an ornament is a picture which is symmetric in the sense that
some symmetry operation will map that picture onto itself. To set the stage
for hyperbolic ornaments, some background information on both ornaments and
hyperbolic geometry shall be provided, regarding their history and applications.

Ornaments as a form of art are both ancient and universal. Different cultures all
over the world have used very different shapes as elements of their ornaments, and
very different techniques to depict those shapes. Entire books have been written
about the ornaments in different cultures|27], but this work will instead concentrate
on the common mathematical structures behind all of these.

Many laypeople will at first associate the science of mathematics with numbers,
with manipulating numbers and performing calculations. Those actually working
in this field usually tend to describe their subject a bit differently. To many
mathematicians, mathematics is primarily about finding and describing structure.
One of the most accessible ways to explain this distinction to the man on the
street is by using ornaments. There certainly is a lot of structure underlying such
repetitive images, and mathematicians can describe it in terms of symmetry groups
and related concepts. So there is a kind of structure which falls into the scope
of mathematics but at first glance has little to do with the typical stereotype of
computations performed on numbers. It turns out that there still is a connection,
that on the one hand the concept of a mathematical group describes both the
symmetry groups of ornaments and the additive or multiplicative groups of various
number systems, while on the other hand the elements of the symmetry groups,
the isometric transformations, can be described as matrices whose elements are
numbers. Nevertheless, ornaments are a very useful tool in explaining that there is
more to mathematics than doing computations on numbers. The visual and artistic
approach helps transporting this message on intuitive levels.

The method of choice for precisely describing any mathematical structure is
by stating a collection of defining axioms. Geometry is a very useful example for
this, since Euclid’s attempt at formalizing geometry is one of the first axiomatic
approaches in the history of mathematics (in his work “Elements”, ¢. 300 BC). Of
special interest is the last of his five axioms, commonly called the axiom of parallels.
In one of several equivalent forms, it states that given a line and a point not on that
line, there exists exactly one other line through that given point which is parallel
to the first line in the sense that the two lines do not intersect. For hundreds of
years mathematicians have been looking for ways to avoid including this fact as an
axiom, by trying to prove it from the other axioms instead.

It came as something of a surprise when scientists finally discovered that the
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fifth axiom can never be proven from the other four axioms. They did so by
demonstrating the existence of a geometry where the first four axioms held but
the fifth did not. This was the birth of the so-called non-Euclidean geometries,
and more precisely of hyperbolic geometry. It happened around 1830, although
there was both prior work in preparation for this, as well as later work which
offered simpler proofs.[35] By 1868, several models existed which demonstrated
that hyperbolic geometry can be built on Euclidean axioms.[6l 47, B3] These models
will be discussed in [Section 2.11

This work is about the connection between the two concepts introduced so
far: between ornaments on the one hand and hyperbolic geometry on the other
hand. This combination is of interest for several reasons. One reason is artistic in
nature: by offering a new concept of what constitutes a symmetric ornament, of
how it might look and what rules govern its appearance, artists gained freedom
to express new ideas, find new looks and new techniques. For the mathematical
educator, presenting hyperbolic ornaments offers an accessible way to explain some
aspects of the underlying structure of the hyperbolic plane. People are used to
ornaments in the Euclidean plane, and will therefore recognize the same structures
in a hyperbolic ornament, thus gaining an intuitive grasp of the relation between
different geometries. Last but not least, the fusion of ornaments and hyperbolic
geometry is of use to mathematical research. It offers new areas of research, new
kinds of objects among which structure might be found and described. On the
other hand, it also offers ways to visualize structures which might have arisen from
different fields of research, like for example finitely represented groups, and by
visualizing them gain a deeper understanding in other fields as well. |36, 47]

However, the first steps towards hyperbolic ornaments entailed a lot of painful
work. A leading figure in this area was the Dutch artist Escher. Inspired by an
illustration of a hyperbolic tiling in a work by Coxeter from 1957[15], he produced a
series of four prints of ornaments in hyperbolic geometry. These have been termed
“Circle Limit I” through “IV”. Coxeter in turn wrote articles about these prints by
Escher, explaining the mathematical details behind them.[TI6] [I7] In a letter to his
son Arthur, Escher wrote about the effort required to create these prints:

I worked terribly hard to finally finish that litho, and then with gritted
teeth, spent another four days making beautiful prints of that extremely
complex circle limit in colors. Each print is a series of twenty printings:
five pieces, and each piece four times. All this with the remarkable
feeling that this work is a milestone in my development, and that
nobody, except myself, will ever realize this. [31) 20, Letter from 20
Mar. 1960|

The combination of skill and effort required for these ornaments severely limited
their application. However, things changed drastically with the advent of computer-
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generated graphics. With the aid of computers, it is possible these days to create
images of hyperbolic ornaments with less artistic skill being required, and more
importantly, far less work required from the person creating said images. This
text will demonstrate not only one but two ways in which computers may aid the
creation of hyperbolic images.

One way is an interactive drawing tool, where any pen stroke entered by
the user will immediately be replicated according to the rules of a previously
chosen symmetry group. The central ideas required to draw such ornaments will be
described in[Chapter 4] after investigated feasible ways of defining suitable
symmetry groups. This tool is very useful to communicate certain mathematical
concepts. For example, a rough sketch like the one in [Figure 1.2/ on |Page 10| will
quickly illustrate a certain situation. It is this kind of interactive experimentation
which makes the implementation not only an exercise in applied mathematics, but
also a useful tool for basic research in mathematics.

The other way starts from a Euclidean ornament and transforms it in such
a way that the result is a related ornament in hyperbolic geometry.
will precisely define this relation between ornaments, and will describe the process
which does the required transformations. Rendering the result will again make use
of ideas from [Chapter 4. The key benefit in this tool is leveraging both the wealth
of existing artwork by talented artists and the collection of tools which help in the
creation of Euclidean ornaments. With this method, all those ornaments can be
hyperbolized very easily.

Each of the next four chapters will be guided by a central question:

What is the hyperbolic plane, how can it be depicted and how can
one represent geometric objects and transformations?

This chapter is mainly intended as a kind of dictionary, to help people who
are used to a different model to understand the model used in this work.

Chapter 3t How can hyperbolic symmetry groups be described in an easily acces-
sible way?

This work introduces a novel idea of using triangle reflection groups as a
basis from which users can enter subgroup generators using a graphical user
interface.

How can the hyperbolic plane be rendered on screen in a way which
conveys the infinity of the depicted objects, in particular the infinite number
of copies of the fundamental domain of an ornament?

The key concept here is a process we call reverse pixel lookup, which is very
similar to the ray tracing approach used in the generation of photorealistic
three-dimensional computer graphics.
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[Chapter 5: How can a Euclidean ornament be turned into a hyperbolic one?

A precise definition of this transformation is followed by various uniqueness
and existence proofs, as well as a practical method to compute them using
techniques from discrete differential geometry.

1.2 Basic concepts

This section will introduce some vocabulary used throughout the remainder of this
work. Readers already familiar with these terms can usually rely on the definitions
they know.

Definition 1.1: Isometry

Let M be some Riemannian 2-manifold. Let d(p,q) denote the distance
between two points p,q € M. Then a transformation function g : M — M
which satisfies

Vp,q € M :d(p,q) = d(9(p),9(q))

is called an isometry of M. The set of all such isometries on M is denoted as
iso(M).

In this work, the manifold M will usually be the Euclidean plane E? or the
hyperbolic plane H. So readers who are not completely comfortable with differen-
tial geometry may safely think “plane” for every occurrence of M in subsequent
definitions.

The parenthesized notation g(p) used above stresses the fact that this is an
application of a function. But since deeply nested sets of parentheses make some
formulas hard to read, this work will also often use the shorter multiplicative
notation gp (or sometimes g - p). This is similar to the way a linear transformation
applied to a vector can be expressed by a matrix-times-vector multiplication, but
here it will be used even for those cases where the transformation can not be
expressed as a matrix multiplication. See for such transformations.
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Lemma 1.1: Inverse isometry

Every isometry g € iso(M) has an inverse g~! € iso(M).

Proof: Suppose g € iso(M) were non-invertible, i.e. not bijective. Then there must
be some points p,q € M with p # ¢ but g(p) = g(q). In this case, d(p,q) # 0 but
d(g(p), g(q)) = 0. This contradicts the assumption g € iso(M).

Also consider g~ € iso(M). This can not be the case because

d(g~ ' (9(p)), 97" (9(a)))d(p, q)d(g(p), g9(q))

so the distance between g(p) and g(q) is maintained, hence g~' must be an element

of iso(M) as well. O

Lemma 1.2: Group of isometries

The set iso(M) of isometries forms a group.

Proof: The existence of inverse elements was shown in The closedness
g1, g2 € iso(M) = ¢y 0 g2 € iso(M) follows from the definition of iso(M) as the set
of all isometries. Likewise does the existence of the identity transformation as the
neutral element of the group. With the associativity of function concatenation, all
group axioms are satisfied. O]

Of particular interest in the context of this work are subgroups of this group.
Definition 1.2: Symmetry group

A group G Ciso(M) is called a symmetry group.

One possible way to look at a symmetry group is interpreting its members as
identification rules: if one point is mapped onto another under any element of
a symmetry group, then they are elements of the same equivalence class. The
equivalence classes formed in this way are called orbits.
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Definition 1.3: Orbit

Let G Ciso(M) be a symmetry group on M. For any point p € M, the set

Gp={g(p)|ge G} C M

is called the orbit of p under (the operations of) G.
In the same spirit, let S C M denote an arbitrary set of points from the
manifold. Then
GS={g(s)|geG,seS}CM

is called the orbit of S under (the operations of) G.

It is quite possible that all points of M belong to a single orbit. Such scenarios
are of little aesthetic interest. The most appropriate tool to preclude these and
similar situations is requiring the group to be discrete.[43]

Definition 1.4: Discrete symmetry group

A symmetry group G C iso(M) is called discrete iff none of its point orbits is
dense:
dreRVpe MVg e G:d(p,g(p)) >r

Colloquially speaking, this signifies that the symmetry group will never map a
point to a point arbitrarily close to the its own preimage. Around every point p of
the plane there is a neighborhood of radius r which is devoid of other points from
the same orbit Gp[f

One important thing to note here is the fact that distances are measured using
the intrinsic distance measure of the manifold, without regard how this manifold
may be visualized. So there will be situations in this work where points from the
same orbit appear infinitely close to one another, but this is due to the way the
manifold is embedded into the Euclidean plane, and not intrinsic to the manifold
itself. Details about such embeddings will be given in [Section 2.1}

Talking about visualizations, we also need some concept of pictures or images.
This work will use both terms where the meaning is clear. In situations where

*Since isometries are proper, a discrete symmetry group will act properly discontinuous on
the manifold, which is a concept studied in several other works|[I2]. Despite slight differences
in definition, being discrete and being properly discontinuous is essentially the same thing for
symmetry groups, so the latter term won’t be used subsequently.
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1mage might refer to the image of some object under some map, the term picture
is preferred. In its purest form, a picture can be defined as follows:

Definition 1.5: Picture

Let M be some Riemannian 2-manifold, and let C' be some arbitrary set. Then
a function P : M — C is called a picture on M with color space C.

The manifold M here will either again denote the hyperbolic or Euclidean plane,
or it will denote a subset thereof. One common color space C' would be the set
of red, green and blue intensities, which can be written as the product of three
intervals, i.e. C' = [0, 1]3.

It is worth noting that for most practical applications, pictures will be repre-
sented using raster images, which basically define a map from some integer grid,
bounded by a rectangle, to the color space C. The grid points for which these are
defined are usually called pizels, and between pixel positions, colors are not defined
by the image, and in some cases will have to be interpolated in some fashion. In the
light of these definitions, it is best to view these raster images as approximations
of pictures in the above sense. This is similar to the way floating point numbers
are often used as approximations for real numbers. in particular will
make use of the discrete nature of a raster image to perform efficient computations,
but the result will still remain an approximation of some theoretical ideal.

Definition 1.6: Ornament

A picture P : M — C together with a discrete symmetry group G C iso(M)
is called an ornament (P,G) iff the symmetry group maps the picture onto
itself, i.e.

Vo e M Vg e G: P(x) =P(g(x)) (1.1)

For an ornament in the above sense, one has to explicitly state the symmetry
group associated with it. This is a bit contrary to everyday use, where one
would consider a picture by itself an ornament, with the symmetry group being
“obvious”. This obvious choice would be the maximal group, consisting of all
possible symmetries of the ornament. The following definition captures this in
more formal terms.
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Definition 1.7: Natural symmetry group

A symmetry group G C iso(M) is called the natural symmetry group of a
picture P : M — C iff (P,G) is an ornament and there is no supergroup
G' 2 G,G € iso(M) for which (P,G’) forms an ornament.

In many cases, the qualification “natural” can be omitted: wherever the author
speaks about the symmetry group of a picture (as opposed to the symmetry group
of an ornament, which can be extracted from its tuple representation), it is in fact
a reference to its natural symmetry group. The formulation already suggests that
this natural symmetry group will be uniquely defined by the picture, which should
be verified now.

Lemma 1.3: Uniqueness of natural symmetry group

For a given picture P there exists exactly one uniquely defined symmetry
group G such that G is the natural symmetry group of P.

Proof: Suppose that G; and G, were two incomparable maximal groups satisfying
I[Equation (1.1)l Then the group generated by their union will satisfy the equation
as well, which is a contradiction to the assumed maximality. O]

Note that every picture will have a natural symmetry group, since the trivial
symmetry group, consisting only of the identity transformation, will always satisfy
I[Equation (1.1)} It makes sense to include these “unsymmetric ornaments” in the
scope of these general definitions, but they represent only a degenerate corner case
of little aesthetic relevance, at least in the context of ornaments. The focus of this
work is on ornaments with non-trivial and discrete symmetry groups. Pictures
of “real” ornaments allow for several associated symmetry groups, including the
trivial and the natural symmetry group. There are applications where it is useful
to consider an ornament formed by a picture and only a subgroup of its natural
symmetry group. This allows a derived work (e.g. a hyperbolization, as will be
introduced in to break some of the symmetries, and in doing so gain
artistic freedom.

In the light of [definition 1.6} an ornament can be seen as a coloring not of the
points of a manifold but instead of the point orbits of some symmetry group of
that manifold. The whole ornament can be described by giving its symmetry group
and the color of at least one point from every orbit. This concept of taking one
point from every orbit is the basis of the following definition.
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Figure 1.2: Two independent translations and still not cocompact

Definition 1.8: Fundamental domain

A simply connected and closed sub-manifold F' C M is called a fundamental
domain of some symmetry group G C iso(M) iff

(i) GF =M

(ii) Vg e G: gFNF COF

In other words, copies of F' will cover the whole plane, and two copies will have
no inner points in common. One important aspect used to describe a fundamental
domain is its compactness.

Definition 1.9: Compact

A manifold F is called compact iff every infinite sequence of points (p; € F)2,
is dense around some point ¢ € F"

Vp:N—= F3ge FVYre RIneN:d(p,,q) <r

There are two subtle aspects to note about this definition. One is the fact that
distances are again measured using the intrinsic distance measure of the manifold.
The other is the choice of g as a point of F'. So if F' is again a sub-manifold of M,
then it is not sufficient for a sequence in F' to have a limit point in M, but that
limit point has to lie in F' itself as well. As a consequence, open sets will never be
compact.

As stated above, the compactness of fundamental domains is an important
quality. Some symmetry groups will allow for a compact fundamental domain,
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whereas for others every fundamental domain will be non-compact.
Definition 1.10: Cocompact

A symmetry group G € iso(M) is called cocompact iff there exists a funda-
mental domain of G which is compact.

In the familiar setup of Euclidean ornaments, an ornament with a discrete
symmetry group is cocompact iff it provides translational symmetries in at least
two different directions. The 17 wallpaper groups satisfy this criterion, whereas
frieze and rosette groups do not.[I4] In hyperbolic geometry, the existence of two
independent translations is not sufficient for cocompactness. This is illustrated in
[Figure 1.2l Since it is this cocompactness which is important for most practical
distinctions, it might be good to consider groups with compact fundamental domains
as the closest analogue to Euclidean wallpaper groups.

An alternate but equivalent definition generalizes compactness from fundamental
domains to so called orbifolds, as they will be defined below, and then requires that
orbifold to be compact.[12]

Definition 1.11: Orbifold

In the context of this Wor, the orbifold O = M /G associated with a symmetry
group is the quotient space of the underlying manifold M under the actions of
a discrete symmetry group G.

The most intuitive way to imagine an orbifold is by taking a single fundamental
domain and gluing its boundary according to the actions of the symmetry group.
For a Euclidean ornament this can be actually be done with paper, scissors and
glue, at least for some symmetry groups. The orbifold will have a boundary iff
the symmetry group contains axes of reflections. Corners on that boundary with
interior angle ™ correspond to centers of m-fold rotation coinciding with these
reflections. Centers of m-fold rotation which do not lie on an axis of reflection will

correspond to so called cone points, around which the angle sum will only be %’r

*This definition of an orbifold is somewhat less general than some established ones[48]. While
an orbifold in the above sense will also be an orbifold according to the more general definition,
the converse is not necessarily true: there can be orbifolds according to the general definition
which can not be obtained as a quotient space. In general, an orbifold has to only locally look
like such a quotient space. The more general definition is far more complicated, and not required
for the tasks at hand, so it has been omitted.
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Definition 1.12: Singular Point

A point on an orbifold is called singular iff it is either a cone point or a point
on the boundary (including corner points). A point of an ornament is called
singular iff the corresponding point on the orbifold of that ornament is singular.

Apart from these singular points, the metric of the orbifold equals that of the
underlying manifold.

Definition 1.13: Colored orbifold

An orbifold O = M/G together with a function P: M — C is called a colored
orbifold (P, O) with color space C.

This generalizes the definition of a picture to the case of orbifolds instead of
manifolds as the colored objects. There is a canonical correspondence between
ornaments in the plane and colored orbifolds associated with their symmetry groups.
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Chapter 2

Modeling the hyperbolic plane

2.1 Models of the hyperbolic plane

There are several possible ways how a portion of some Euclidean space may be
used as a model of the hyperbolic plane. All of these models fulfill the same set of
axioms, and express the same abstract hyperbolic plane. Therefore the choice of
model makes no difference for purely hyperbolic theorems. It does make a difference
when visualizing hyperbolic geometry, though.

Each model has its distinct advantages and disadvantages. Some of those will be
listed, along with the defining ingredients of each model. These defining ingredients
include the following:

What is a hyperbolic point? As stated above, only a portion of the enclosing
Euclidean space is used to model the hyperbolic plane. Therefore some
Euclidean points will correspond to hyperbolic ones, whereas others will not.

What is a hyperbolic line? A hyperbolic line is a straight line, i.e. a line of
zero curvature with respect to the hyperbolic metric, in the hyperbolic plane.
Although the term “geodesics” is well suited to describe this concept of locally
shortest connecting curves on a curved manifold, this work will instead use the
term “hyperbolic line”, as it stresses the correspondence between Euclidean
geometry with its (Euclidean straight) lines and hyperbolic geometry with
its hyperbolic lines.

How are distances measured? Given two hyperbolic points, which in formulas
can be represented as vectors of Cartesian coordinates in the Euclidean
space, a formula or procedure to measure their distance with respect to the
hyperbolic metric will be stated.
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How are angles measured? Like for distances, a formula or procedure will
describe how hyperbolic angles can be measured in each model.

This work will almost exclusively use the first of the models described below,
the Poincaré disk model. The other models are described to give an overview, and
to help translating between the various models. Many publications present one of
these models as a foundation, while the others are either derived from it or not
mentioned at all. As a consequence, some readers of this work here might have a
strong feeling about how they visualize the hyperbolic plane, which differs from
that of the author. This section here will offer a dictionary to translate mental
images between models, in the hope that doing so will help making subsequent
sections intuitively understandable to a broader audience of readers. Those readers
who feel sufficiently at home in the Poincaré disk model may skip this
if they wish.

2.1.1 Poincaré disk

The Poincaré disk model uses the inside of any circular disk as a model of the
hyperbolic plane. The most obvious choice for a disk is the unit disk, which will
also be the focus of the following description.

Hyperbolic points are points inside the unit disk.

Hyperbolic lines are circle arcs perpendicular to the unit circle. Hyperbolic lines
passing through the origin degenerate to diameters, which can be thought of
as arcs of circles with infinite radius.

Distances between hyperbolic points a and b can be measured based on the
Fuclidean norm as

2 la — b||*
d(a,b) = arcosh 5 5 )
@) (H (1 Jlal®) (1 — 1] )) .

If the model were not dealing with the unit disk, this formula would require
a reference to the radius. In differential geometry, the metric is usually
defined not in terms of finite distances between distinct points, but instead as
infinitesimal line element. Since such a differential approach won’t be needed
in this work, no such definition is given for this or any of the other models.

Angles are measured as the Euclidean angle between the tangents at the point of
intersection.
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Figure 2.1: A pattern in the Poincaré disk model

Advantages: The model is conformal, i.e. it preserves angles. This means that
hyperbolic angles between curves equal Euclidean angles at the point of
intersection, as described above. This is a very valuable property for aesthetic
reasons.

Disadvantages: As a hyperbolic line is modeled by a Euclidean circle arc, straight
lines appear curved. This can

At times, it makes sense to not only consider the interior of the circle, but also
its exterior, as a kind of mirror image of the interior. In that view, every hyperbolic
point would be modeled by a pair of points, which in turn are related to one another
by inversion in the unit circle. The center of the unit circle corresponds to the point
at infinity. The main benefit of this approach is the fact that orientation-reversing
transformations are sometimes easier to describe if they exchange the two copies of
the hyperbolic plane.

2.1.2 Poincaré half-plane

The half-plane model can be obtained from the disk model using a M&bius trans-
formation. Another way to visualize the translation between these models is this:
if one were to zoom in on the rim of the disk model, particularly towards the
bottom-most point of it, then the obtained image would become an increasingly
close approximation of the half-plane model.

Hyperbolic points are points in the upper half-plane {(z,y)” € R? | y > 0}.

Hyperbolic lines are semicircles and half-lines perpendicular to the horizontal
axis.
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Distances between hyperbolic points a and b can be measured using the formula

(1) (1) o 1+ Lo b) oy

Angles are measured as the Euclidean angle between the tangents at the point of
intersection.

Advantages: Isometries can be expressed through the projective general linear
group PGL(2,R) acting on C. There have been extensive studies in that field,
so existing results can be used and interpreted geometrically.

Disadvantages: less symmetric than the disk; doesn’t fit the whole hyperbolic
plane into a bounded Euclidean area.

Like in the case of the Poincaré disk, one can also view the whole plane (with
the exception of the horizontal axis itself) as two copies of the hyperbolic plane. A
simple reflection in the horizontal axis relates Euclidean points which model the
same hyperbolic point. When isometries are modeled using PGL(2,R) as stated
above, then orientation-reversing transformations will exchange the two copies.

2.1.3 Klein-Beltrami

The model used by Beltrami and Klein can be inscribed in any (real and non-
degenerate) conic section, although it most easily is modeled inside the unit disk as
well. In contrast to the Poincaré disk model, this model uses straight line segments
to model hyperbolic lines.

Hyperbolic points are points inside the fundamental conic (e.g. unit disk).

Figure 2.2: A pattern in the Klein-Beltrami model
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Hyperbolic lines are the intersections of lines with the interior of the fundamental
conic.

Distances are measured using the cross-ratio. If the line connecting a and b
intersects the fundamental conic in points p and ¢, then the hyperbolic
distance between a and b is

lla —pll - 16 —q|
la—qll - b —pl|

1 1
d(a,b) = 3 [log(a, b3, q)| = 5 |log
Angles measured in the fashion of a Cayley-Klein geometry involve cross-ratios of
four lines, two of which are imaginary tangents to the fundamental conic.

Advantages: Lines remain straight, and the whole model can be easily embedded
into a framework of real projective geometry.

Disadvantages: The angle measurement becomes quite involved and differs
greatly from the Euclidean angle between the modeling line segments.

2.1.4 Hemisphere

The hemisphere is not often used as a model of the hyperbolic plane in its own
respect. It does however prove very useful in linking various other models using

different projections, as depicted in [Figure 2.3]

Hyperbolic points are points on the southern hemisphere.

Hyperbolic lines are the half-circles resulting from intersecting the southern
hemisphere with planes perpendicular to the equator.

(a) Projection to the Poincaré disk (b) Projection to the Klein-Beltrami model

Figure 2.3: A pattern in the hemisphere model
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Figure 2.4: Converting between Klein-Beltrami and Poincaré disk model

Advantages: useful to link various other models.
Disadvantages: requires three dimensions.

One can obtain the Klein-Beltrami model from the hemisphere model via
orthogonal projection onto a plane parallel to the equator of the sphere. This can
be though of as a projection from a point infinitely high above the north pole of the
sphere. If the projection center is at the north pole itself, then the resulting picture
is that of the Poincaré disk, and if the center of projection is on the equator, one
obtains the Poincaré half-plane. So there is a way to continuously morph between
the Klein-Beltrami model and either of the Poincaré models by moving that point.

One can take the upper hemisphere into account as well. It will be a mirror
image of the lower hemisphere. This upper hemisphere corresponds to the exterior
of the unit circle in the Poincaré disk model, or the lower half-plane in the half-
plane model, if these models make use of the mirror-images discussed above. For
the Klein-Beltrami mode, however, both points on the full sphere correspond to
the same point in the plane. Conversely, points outside the unit circle in the
Klein-Beltrami model will have no correspondence on the (real) sphere. There
is no mirror image outside the Klein-Beltrami model. In the broader setup of
Cayley-Klein geometries, points outside the fundamental conic can be handled as
well, but resulting distance or angle measures may become complex. This subject
is beyond the scope of this work.

Observing the way how the hemisphere model links the Poincaré disk and the
Klein-Beltrami models, one can obtain formulas to convert between these. Consider
p € R? with [|p|| < 1 to be a point in the Poincaré disk, and likewise & € R? with
||k|]| < 1 a point in the Beltrami-Klein model with the unit circle as its fundamental
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conic. Both disks are embedded in the equatorial plane of the hemisphere. Then
there is a point on the lower hemisphere linking these two. It has coordinates
(1, yr, 2)T where z = /1 — ||k||? is the lower projection of that point onto the
sphere. So the z axis shall be oriented downward. The vertical component of the
distance to the north pole is 1 4+ z. To perform stereographic projection from that
north pole onto the equatorial plane, one divides by that distance and obtains

1

1
= k= k
Tz 1+ I— kP

For the converse, the stereographic projection can be characterizes by the
following condition:

(2.3)

p

0 Da
0 |+A[p, ]| €S?={veR’||v|=1}
—1 1

Nl 4+ Npl+ (A1) =17
NP2 +p;+1)—2X=0
2

M=0 M=
1 CLp A

A1 describes the north pole itself, whereas Ay corresponds to the point on the
lower hemisphere. Discarding the third coordinate, one obtains the Cayley-Klein
position

2

k=—" _p 2.4
T [ (24)

2.1.5 Hyperboloid

The hyperboloid model is a three-dimensional model of the hyperbolic plane. If
expressed in a Minkowski space with its special bilinear form, many formulas look
much like they do for a normal unit sphere in Euclidean space. Its radius, however,
is imaginary. compares formulas for sphere and hyperboloid, exhibiting
both the similarities as well as the differences resulting from the different bilinear
form and the imaginary radius.|38]

To measure angles, we once again take tangents at the point of intersection.
This time the tangent vectors v and w don’t lie on the surface used to model the
hyperbolic plane, but are only tangents to that surface at the point of intersection.

Note that the hyperboloid has two symmetric sheets, one with xq > 1 and one
with g < —1. One way to do hyperbolic geometry on the hyperboloid is to identify
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(a) Projection to the Poincaré disk (b) Projection to the Klein-Beltrami model

Figure 2.5: A pattern in the hyperboloid model

Common Sphere Hyperboloid
Bilinear form p(z,y) ToYo + T1Y1 + T2y  —ToYo + T1Y1 + T2Y2
Quadratic form  ¢(z) = p(z, x) x2 + 23 + 23 —ak + 2% + 23
Radius r 1 ?
Surface {zlq(@)=r}  {a|q(z)=1} {z|q(x) = -1}
Curvature %2 1 -1
Distance llz — vl arccos (p(z,y)) arcosh ( — p(z,y))
Angle Zvw arccos \/% arccos %

Table 2.1: Comparing sphere and hyperboloid

antipodal points on these two sheets, just as one identifies antipodal points on the
sphere when using it as a model for elliptic geometry. The more common approach,
however, is restricting the model to a single sheet.

There is a strong connection between common spherical (or radial) trigonometric
functions like cos and their hyperbolic counterparts like cosh. This connection can
be seen most easily when considering areas instead of angles. Consider two points
in a unit circle which are seen from the center of the circle under a given angle.
That angle, expressed in radians, equals the length of the arc between the points.
But it also equals the area of the circle segment they bound. In the same way, the
hyperbolic sine and cosine will give coordinates of the hyperbola corresponding to
an area given as argument to these functions.

Hyperbolic points are points on the 2y > 0 sheet of the hyperboloid —z2 + 2 +
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P
z5 = —1.

Hyperbolic lines are intersections of the hyperboloid sheet with planes through
the origin.

Distances are measured as arcosh ( — p(z,y))

p(v,w)

Angles are measured as arccos
q(v)-q(w)

Advantages: very similar to the sphere.

Disadvantages: difficult to visualize in two dimensions, measurements not intu-
itive.

2.1.6 Pseudosphere

The term pseudosphere is often used in connection with hyperbolic geometry. It
is somewhat ambiguous, though, as different people associate different meanings
with it. Beltrami at first used the term “pseudospherical surface” to abstractly
describe a surface of constant negative curvature, without restriction to any specific
model at all.[7, 47] Some other people use the term pseudosphere to refer to the
hyperboloid model described above, e.g. [20].

The third possible meaning of the term pseudosphere is to describe a surface
also known as a tractricoid. This is a surface of constant negative curvature that
can actually be embedded in three-dimensional Euclidean space. It is obtained by
revolving a tractrix about its asymptote. It was again Beltrami who associated
this surface with his idea of a pseudosphere.[§]

As the surface is singular around its equator and has poles in the direction of
the axis of revolution, it is not a model of the complete hyperbolic plane. Any

v
y

Figure 2.6: A partial pattern on the tractricoid
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A O

a) Elliptic kind ) Parabolic kind

Figure 2.7: Specimens of the two other (non-tractricoid) surfaces of revolution with
constant negative curvature[9]

construction that crosses the equator or circles the axis of revolution is not truly
planar in a hyperbolic sense. As a consequence, hyperbolic ornaments won’t line
up, as can be seen in the lower part of [Figure 2.6

Hyperbolic points are points on the tractricoid.

Hyperbolic lines are geodesics on the tractricoid.

Distances are measured as path lengths of geodesics.

Angles are angles between the tangents to the geodesics at the point of intersection.

Advantages: actually visible surface with intuitive distance and angle measure-
ments.

Disadvantages: models hyperbolic geometry only locally; not a model of the
whole hyperbolic plane due to singularities.

Note that the tractricoid is not the only surface of constant negative curvature
which can be embedded into three dimensions. There are more, and even when
restricting oneself to surfaces of rotation, two more families of constant negative
curvature surfaces exist, which are depicted in [IZQL 37| The tractricoid is
special in that it allows for rays, i.e. segments may be extended infinitely in at least
one direction without encountering any singularity. In this sense, the tractricoid
is the “most infinite” of all the surfaces of rotation, and those surfaces of rotation
are probably the most symmetrical among all the surfaces of constant negative
curvature.
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There can be no isometric embedding of the whole hyperbolic plane into three-
dimensional space.[24] And while surfaces of rotation are among the easiest to
describe, they represent only a tiny fraction out of a zoo of surfaces with constant
negative curvature and singularities. [34]

2.1.7 Reasons to choose the Poincaré disk

As stated at the beginning of this section, the subsequent chapters as well as the
described implementations will almost exclusively use the Poincaré disk model.
When rendering ornaments in hyperbolic geometry, this seems to be the right
choice, considering the following arguments.

e All 3D models are infeasible to represent on a flat medium.

e The Klein-Beltrami model tends to squeeze the image content to the rim
of the disk. Furthermore, the fact that its angle measurement does not
agree with the Euclidean one makes ornaments appear more irregular than
necessary.

e The Poincaré half-plane has less aesthetic value. For example, on the disk a
hyperbolic rotation can be modeled using a Euclidean rotation as long as the
center of the rotation coincides with the center of the disk. This allows for
an additional Euclidean rotational symmetry in addition to the hyperbolic
ones. This coincidence of rotations makes hyperbolic rotations in general a
bit easier to understand in the disk model, as any rotation can be composed
using translations and one around the origin.

2.2 Hyperbolic isometric transformations

2.2.1 Representing isometries

As stated in the previous section, this work uses the Poincaré disk model of the
hyperbolic plane. One therefore wants to describe the interior of the unit circle
in such a way that dealing with circles and lines (both perpendicular to the unit
circle) comes easy. A natural setup for this is C!, the “complex line’. In that
environment, the Mobius transformations form a class of transformations which

*The term “line” and the exponent 1 in C!' both refer to the fact that we are dealing with
a single complex number. Nevertheless, even a single complex number is usually visualized by
embedding into the real plane R?, turning real and imaginary part of the number into separate
real coordinates. This visualization is often called the “complex plane”, but should not be confused
with C2, which would be all pairs of complex numbers.
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map circles and lines to circles and lines, thereby treating lines as special kinds of
circles (with infinite radius).

At first, a line appears to have a topology different from that of a circle. For
example, on a line it makes sense to say that one point lies between two other
points, whereas on the (unoriented) circle this will always be the case, unless some
of these points coincide. In order to obtain a consistent framework in which lines
can be treated as special cases of circles, one additional point has to be added to
the plane. This “point at infinity” is usually denoted as co. It compactifies the
plane into a topological sphere, which is usually called the Riemann sphere. Any
Moébius transformation which turns lines into circles and some circles into lines will
take the original point at infinity to a finite position, and move a different point to
the position at infinity.

We will use a projective approach to provide a unified treatment of both finite
and infinite points. Consider a finite point in C!, denoted by a single complex
number z. In the projective complex line CP', this coordinate will be homogenized
to the two-coordinate vector (z,1)%. Any vector which is a non-zero multiple of
this one can be used to denote the same value. So in order to obtain the original
complex number z, one has to divide the first coordinate by the second. The point
at infinity is denoted using the vector (1,0)7, or in fact any vector with a second
component of zero, as scalar multiples are again identified. The zero vector denotes
no point at all[f

Homogenization: Dehomogenization:
Clsz ~ G)e@ﬂﬂ CIP’la(";) ~ £ C'U{oo}

Definition 2.1: Mobius transformation

A Mobius transformation is an automorphism of the Riemann sphere (CU{oco}
or equivalently CP') of the form

az+b % a b z
ch+d resp. (1)>—><C d) (1) a,b,c,d € C; ad—bc+#0

*The result of some algebraic operation could still be a zero vector, if the corresponding
geometric situation is ill-defined in some way. For example, one can use the adjugate of a
transformation matrix to describe the inverse transformation. But if the original transformation is
not injective, its matrix is singular and therefore not invertible. Then the adjugate matrix would
be the null matrix, and applying it to a point would result in a null vector. This corresponds to
the fact that the preimage of a point under such a transformation is no longer uniquely defined.
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Besides eliminating the need for special treatment of oo, the second notation
using homogeneous coordinates has another advantage: as a Mobius transformation
in that setup is performed using a matrix-vector multiplication, concatenation of
transformations can be easily formulated as a multiplication of matrices.

Multiplying the whole matrix by a complex scalar will multiply the result
of the transformation by that same factor. As scalar multiples of homogeneous
coordinates denote the same point, scalar multiples of matrices denote the same
transformation. One can always choose a factor such that the determinant of
the matrix becomes 1, so that every Mobius transformation can be written as an
element of SL(2,C). Even then there will still be two such represents for every
transformation, as multiplying a matrix with —1 will not change its determinant.

Of all these matrices we are interested in those that also map the unit circle
onto itself.

Lemma 2.1

The Mobius transformations which preserve the unit circle are exactly those
which can be represented as a matrix of the form

M= <? ”) v,w€C; det(M) #£0 (2.5)

v w

The arrangement of variables in this matrix might appear slightly strange. The
reasons for this choice will be explained on

Proof: The first step is to show that transformations of the given form do in fact
preserve the unit circle. For an arbitrary point z anywhere in the plane, the absolute
value of the transformed point is calculated as follows.

, Wzt
2= =
vz +w
9 —  wz+Hw wz 4+ v wz+v wz+v
12| =22 = : = :
vz +w vz 4+ w vz+w vz+w

Wwzz + Wz +vwz + o0 |wf? - |2 + 2Re(vwz) + v

WZz + oWz + wuZ +ww  |uf* - |2 + 2Re(vwz) + |w|?

(2.6)
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If 2 lies on the unit circle, then we have
|2 =2z =1

|z'|2 B |w|2 + 2Re(vwz) + |v]2 B
v|* + 2 Re(vwz) + |w|?

Therefore the image of a point on the unit circle will lie on the unit circle as well.

For the proof of the converse, that all Mobius transformations which preserve
the unit circle can be written in the above form, a simple counting argument
shall suffice. A generic Md&bius transformation has 4 complex matrix entries, but
multiplying the matrix by any complex number doesn’t change the transformation
it describes. For this reason, there are effectively three complex degrees of freedom,
and a mapping from any three distinct points in CP' to their images uniquely
defines a M6bius transformation. If the unit circle is to be preserved, then the
pre-image points can be chosen on the unit circle, which forces the image points to
lie on that circle as well. So instead of three points in the plane, one can now choose
only three points on the circle, which corresponds to three real degrees of freedom.
The above matrix is defined by two complex numbers v and w, but multiplication
by a real number yields the same transformation. So there are effectively three
real degrees of freedom in the above matrix notation. Therefore, the notation
can express any Mdbius transformation which preserves the unit circle. Note that
multiplying the matrix with a non-real complex number will change its form to
disagree with the above notation, so there are representatives which express the
same transformation but don’t have the stated form. m

Mobius transformations are invertible and act on CP' in a continuous way.
Those of the given form preserve the unit circle. Because the same is true for
their inverse, they cannot map any points onto the unit circle except those which
already are on the unit circle. Because of the continuity, they cannot map part
of the interior onto the the interior and part onto the exterior without mapping
some part onto the circle itself. But they could still map all of the interior to the
exterior, which would not correspond to a hyperbolic transformation. We therefore
want to not only preserve the unit circle, but also its interior. This can be enforced
by a stronger condition on the determinant.
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Lemma 2.2

The Mobius transformations which preserve the unit disk (i.e. the interior of
the unit circle) are exactly those which can be represented as a matrix of the
form

M:<w v) v,we C; det(M) =1 (2.7)
T w

Proof: Assuming |z| < 1, we want |2| < 1 in [Equation (2.6)|

w[* - |2]” + 2Re(vwz) + [v]”
0> - |2)* + 2 Re(vwz) + |w|?
jw|? - |2)* + 2Re(mwz) + |v|* < |[vf* - |2|* + 2Re(Tw2) + |w|*
2 2 2 2
[oI" (1= [2]7) < |w] (1~ [2[%)
[of* < [wl*

det(M) = ww — v = |w|> — [v]> > 0

<1

So the determinant of a matrix with the given form will always be real. If it is
positive, then it will map the interior of the unit disk onto itself. Scaling the whole
matrix M with a real coefficient \ will preserve both its form and the transformation
. . . . . 2 _ 1

it describes, but will scale its determinant by A\°. Therefore, for A = —\/W’ the

resulting matrix AM has determinant 1 and will serve as a representative of the
transformation satisfying [Equation (2.7)| O

Always scaling transformation matrices in such a way that their determinant
equals 1 ensures that their product will again have determinant 1. In situations
where many such matrices are multiplied, this avoids floating point number overflow
in some cases where additional normalization steps would be required otherwise.

Note that the stated requirements on the form of the matrix and its determinant
still don’t give a unique representative for every transformation: multiplying the
matrix by —1 will preserve both the mapping and the determinant. So there are
two possible representatives for every transformation.
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Lemma 2.3

The inverse of a transformation of the form given in [Equation (2.7)[ will again
be of that same form.

M~ = (? Z) - detéM) (iﬂ% _@U) N (—w@ _@U) 29

If the original matrix M did not satisfy det(M) = 1, then the rightmost matrix
in the above equation would be a real multiple of the actual inverse matrix and
therefore still be a representative of the inverse transformation. So the formula
above can be used even without strict adherence to the determinant normalization.

If one were to represent the parameters of a transformation using four real
numbers, then the above formula would mean changing three signs. However, by
switching the representative, one can make do with a single sign switch only, namely
that of the real part of w:

__ —1
-1 [w v L [Tw v
M= = (@ w) (6 —w)

Proof:

Lemma 2.4

A Mébius transformation which preserves the unit disk (i.e. one of the form
given in [Equation (2.7))) is an isometry of the hyperbolic plane.

Proof: If the unit disk is preserved under the transformation, then points of the
hyperbolic plane are again mapped onto points of the hyperbolic plane. To show
that the transformation is an isometry, one can first reformulate the distance
function from [Equation (2.1)|in terms of C:

2la — bf°
d(a,b) = arcosh | 1 5 5
o <+(1—ra\)(l—\br>)

B (a —b)(a —b)
= arcosh <1 + 2(1 e (1 — bl_)))
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Using this formulation, a straight-forward calculation will show that the fraction in
the formula is preserved.

(' = ¥)(a’ = b)

(1—a'd)(1—bb)
wa+v  wb+wv
<Ea+w T+ w

(wa+v B wb+6)
va+w  vb+w
< Ub—l-wvb—l—w)

wb + v)(va + w)) ((wa + v)(vb + W) — (wb + v)(va + W)
+ v)(wa + D)) ((6b_+ w)(vb + W) — (Wb + v)(wb + D)

va+wva+w

o)
_wa+vwa+v>
— (

~—

~—

As this fraction is preserved under the transformation, so is the whole value of the
inverse hyperbolic cosine, and therefore the distance. m

Note that there is an alternate and equivalent way to define distances in the
hyperbolic plane: not via [Equation (2.1)[ but instead by computing a cross ratio.
The four points entering that cross ratio are the two points whose distance shall be
computed and the two ideal points on the hyperbolic line connecting them. The
resulting cross ratio has to be post-processed (taking the logarithm and multiplying
that by a constant) to obtain a length, but these details are unimportant for the
point at hand. Using such a definition of distance measurements, one can see that
the transformations described by |Equation (2.7)| will be isometries, even without
the calculation above. The reason is that Mobius transformations are projective
transformations, and projective transformations preserve the cross ratio. So as long
as ideal points get mapped to ideal points by a transformation which preserves
cross ratios, hyperbolic lengths will be preserved as well.[39]

As a Mo6bius transformation which preserves the unit circle is defined by the
images of three distinct points on the circle, there are two cases to distinguish:
either the transformation preserves the order of points along the unit circle, or it
reverses that order. Reversing the order will cause the exterior and the interior
of the unit disk to be interchanged, which would not represent a mapping of
the hyperbolic plane and is thus forbidden in [Equation (2.7)] Therefore, M&bius
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transformations can only be used to express orientation-preserving isometries.
In order to represent transformations which reverse orientation, one has to use

anti-Mdbius transformations.
Definition 2.2: Anti-Mdbius transformation

An anti-Mébius transformation is a combination of a Mobius transformation
and a conjugation.

The symbol “conj” will be used to denote the conjugation operation of such a

transformation.
[z T
conj = [ _
()~ ()

Note that both components of a vector are conjugated, which ensures that equiva-
lence classes in CP! are preserved. Also note that one cannot express this conjuga-
tion as a matrix multiplication. A notation like multiplication will nevertheless be
used for the concatenation of operators.

Lemma 2.5

An anti-Mobius transformation of the form

(Z_U U>-conj v,w € C; ‘I_U Yl=1 (2.10)
w v

()

is an isometry of the hyperbolic plane.

Proof: This is obviously true for the case of the conjugation alone, when the matrix
represents the identity. In all other cases, one can think of it as two operations, a
conjugation followed by a Mobius transformation, each of which is an isometry of
the hyperbolic plane. O

Definition 2.3: Generalized Mobius transformation

Moébius transformations and anti-Mobius transformations together form a
group, which is called the group of generalized Mébius transformations.
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Theorem 2.6: Hyperbolic isometries

The isometries of the hyperbolic plane are exactly those generalized M6bius
transformations which can be written as

v

=1 (2.11)

(Ti) Z)) - conj* v,weC; ce{0,1}

v

ST

The exponent ¢ simply denotes whether or not a conjugation should be
performed. conj'! is a conjugation whereas conj’ denotes the identical transfor-
mation.

Proof: As we have already shown that both Moébius and anti-Mobius transformations
are isometries of the hyperbolic plane, we only have to prove that there are no
other isometries besides these. Again we examine the degrees of freedom to show
that all possible transformations are already covered. We rely on the fact that an
isometry not only preserves lengths, but also the absolute value of angles, as angles
can be calculated from length measurements.

A polar coordinate system can be established in the hyperbolic plane by fixing
a point as its origin and a half-line originating at this point. Once these two are
chosen, every point in the plane can be uniquely identified by its (hyperbolic)
distance from the origin and its angle (mod27) measured from the fixed half-line.
A transformation which preserves lengths and angles is already fully specified by its
effect on this reference system, as all other points have to remain in fixed relation
to it. As hyperbolic isometries only preserve the absolute value of the angle, there
remains a choice between two possible directions in which angles are measured, in
addition to the action on the reference system.

Choosing a point on the unit disk as the image of the origin accounts for two
real degrees of freedom. Choosing the direction of zero angle adds a third real
degree of freedom. This exactly equals the number of degrees of freedom in the
Mobius transformations, as used in our proof of lemma 2.1} The remaining choice

of direction reflects whether to use a Mobius or an anti-Mdbius transformation.

To obtain a more thorough proof that goes beyond simple counting of degrees
of freedom, one can use rotations in the form of [Equation (2.14)|in combination
with translations in the form of [Equation (2.13)|to transform the reference system.
This combination can map the reference system to any location and orientation
desired. O
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2.2.2 The group of isometries

In it has been shown that the isometries of any manyfold form a group.
In this section here, we will show the same in an algebraic way, and for the specific
representation of hyperbolic isometries.

Theorem 2.7: Group of hyperbolic isometries

The set of all hyperbolic isometries, represented in the fashion of

tion (2.11)| forms a group with the concatenation of transformations as the
group operation.

Proof: The identity transformation is obviously the identity Mobius transformation,

. (10 .0
1d—(O 1>CODJ

Writing concatenation of transformations like multiplication, the following rules
apply when dealing with conjugations:

conj - conj = id conj-M = M - conj (2.12)

Using these rules, it is always possible to move all conjugations to the very right of
the notation, and to cancel an even number of conjugations, resulting in zero or
one conjugations remaining.

The product of two orientation-preserving transformations is computed using
matrix multiplication. Its result is again of the required form.

b a d ¢ ac+bd be+ ad
(a b) (E d) - \be+ad ac+bd

For orientation-preserving transformations, the existence of an inverse element
of the required form has already been proven in [femma 2.3] Conjugation is its
own inverse. When combined, we can invert the matrix and the conjugation
independently, exchanging their order, and then re-order the terms as described
above.

The associativity of the concatenation of transformations is well-known for
orientation-preserving matrix transformations, and obviously still true when conju-
gations are involved due to the rules on conjugation handling from [Equation (2.12)|

So we have an associative operation which combines two group elements to form
another group element. We also have an identity element and for each element of
the group there exists an inverse element inside the group. Therefore all group
axioms are satisfied. O
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Lemma 2.8

The group of all hyperbolic isometries is isomorphic to PGL(2, R)

Proof: The orientation-preserving transformations can be described by their action
on the unit circle. The unit circle is isomorphic to the projective real line, and
the action of Mobius transformations which preserve the interior of the unit disk
acts as a projective special linear group PSL(2,R) on this projective real line, and
therefore preserves orientation.

The anti-M&bius transformations of the plane operate on the circle in an
orientation-reversing way. So both Mobius and anti-Mobius transformations to-
gether correspond to an arbitrary projective transformation of the real line, ex-
pressed by the projective general linear group PGL(2,R).[5] O

This idea has already been foreshadowed in In the half-plane
model, the orientation-preserving isometries are exactly the transformations of
PSL(2,R) acting on the whole complex plane. The orientation-reversing members
from PGL(2,R) will exchange upper and lower half-plane, but if one identifies
them by reflection in the real axis, then the isometries are exactly the real Mébius
transformations.

2.2.3 A catalog of hyperbolic isometries

The following list gives explicit transformation matrices for a number of basic
transformations. They can be used as building blocks for arbitrary transformations.
In general the given matrices are not normalized to det(M) = 1, so a subsequent
normalization step is usually required to achieve the form from [Equation (2.11)|

Shifting the origin (0,0)” to the point (v,w)” can be accomplished by the

transformation
w v
(1) -

Depending on the actual representation of the point (v,w)?, this can be an
arbitrary orientation-preserving transformation which takes the origin to the
specified destination. In order to achieve a particular orientation as well, a
subsequent rotation might be needed.

A Rotation by an angle ¢ around the origin is given by

R, = <eXp (5¢) 0 ) (2.14)

0 exp (—%cp)
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If the center of rotation is to be any other point, it can be shifted to the
origin first, and back after the transformation has been executed.

A Translation by a given distance x along the real axis is given by

(" +1 e"—1
nee (24127 215

In order to achieve a translation by a fixed distance along any other axis,
that axis can be transformed to the real axis using shifts and rotations, and
back again after the operation.

Note that a translation in the hyperbolic plane differs in one central aspect
from a translation in the Euclidean plane. A Euclidean translation will move
all points in the plane along parallel lines, so it is often represented by a
vector of translation. In the hyperbolic case, there is only a single line which,
when taken as a whole, will remain fixed under that operation. We call this
the awis of translation. Any other point in the plane will be moved along a
curve. Those curves are lines of fixed distance to the axis of translation, but
are not hyperbolic lines. For these reasons, a hyperbolic translation is best
described by denoting its axis (with orientation) and stating the distance by
which points on that axis will be moved.

2.2.4 Classification of isometries

When given a description of an isometry, it is possible to classify it into one
of several categories which closely resemble the well-known types of Euclidean
isometries. Note that it is conventional to classify Mobius transformations in
a similar fashion, but using different terms. To highlight similarities with and
distinctions to Euclidean geometry, I'll primarily use names like those used for
Euclidean geometry, but mention the names from the Mobius group classifications
as well. The key to either classification is an analysis of the fixed points of the
transformation.

The first distinction is that between Mobius transformations and anti-M&bius
transformations. Let us first concentrate on the former, i.e. the transformations
which can be expressed as a simple matrix multiplication without any additional
complex conjugation. Those are the transformations which preserve orientation.
Let z = x + yi be the position of a point. In order for this point to be a fixed point,
its homogeneous coordinates must be an eigenvector of the transformation matrix.
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a—0bi c+di z\ z
<c—m a+m>'(0"A(J a,bc,d €R
A= (c—di)z+ (a+ bi)

(
=Xz = ((c—di)z+ (a+bi))z
=0

(a —bi)z + (c+ di)
(c — di)2* 4 (2bi)z — (c + di)
If ¢ = d = 0, then the matrix will represent a multiplication by a fixed complex
root of unity erzz, which corresponds to a rotation around the origin, as described
above. In this case, the second fixed point would be the point at infinity, which
isn’t described by the equation as its coordinates (1,0)7 don’t match the prescribed
form. In the classification of Mobius transformations, such a transformation would
sometimes be called circular, which is a special case of the elliptic transformations.
If we even have b = ¢ = d = 0, then the equation will hold for any z, thus
representing the identity transformation. The identity transformation can be seen
as a special case of most of the other classes, so in a complete classification it makes
sense to consider it as a distinct class by itself.
If ¢ + di # 0, then there will in general be two fixed points.

| =2bi £ /(200)2 — A(c — di)(c+di)  —bit VP +d® — b2
1.2 = 2(c — di) - c—di

In case the discriminant ¢ 4+ d? — b? is positive, both results will be located on
the unit circle, as the following computation verifies.

> VE+&P -0 —bi A+ -0+b A+ d -0+
|21]" =21 71 = . : . = =1
c—di c+di e + d?

A similar equation holds for z;. Those two points on the unit disk can be
considered the ideal “endpoints” of a hyperbolic line, which is uniquely defined by
those two points. The corresponding transformation is a hyperbolic translation,
moving all points away from one of the fixed points and towards the other, keeping
their connecting line as a whole invariant.

In terms of the usual classification of M6bius transformations, such a group
would be called hyperbolic, although the use of this term here has only a very
remote connection to its use in hyperbolic geometry. These two uses should not be
confused.

If the discriminant is negative, the square root will result in a purely imaginary
number. Conjugating that number will change its sign. For this reason, the
computation above now expresses a slightly different product, namely
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) Translation ) Rotations
) Reflections ) Glide reflections

Figure 2.8: Hyperbolic isometries
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VEFTE - —bi VE+E - +bi

c—di c+di a c? + d?

&+ﬁ—¥+%_1

Z1 Ry =

This means that z; and z, are related to one another via an inversion in the unit
circle. Taking the double cover of the Poincaré disk (as introduced in
into account, those two points in the model are in fact different representatives of
the same point in the hyperbolic plane. That single fixed point is the center of a
hyperbolic rotation. In the common classification of Mobius transformations, this
would be called an elliptic transformation.

As a limiting case between these two, a discriminant of zero indicates that
the two fixed points coincide in a single point on the unit circle. This denotes
a so-called limit rotation. Like a rotation, it has no finite fixed lines, but like a
translation, it has no finite fixed points either. Instead, all points will be moved
along horocycles which pass through the single ideal fixed point. There is no
obvious counterpart to this in Euclidean geometry, although depending on the
way one translates concepts, one can think of this as a special case of either a
translation or a rotation. In the nomenclature of Mdbius transformations, this
would be called a parabolic transformation.

So what is usually called an elliptic or perhaps even circular transformation
shall be called a hyperbolic rotation in this work. What is usually called a parabolic
transformation shall be called a limit rotation, and hyperbolic transformations
shall be called translations in hyperbolic geometry. There is one more class of
Mobius transformations called loxodromic transformations. They can be described
by matrices M satisfying

Tr(M)?
det(M) 10,4

If that fraction is greater than 4, this corresponds to the elliptic transformations
described above. The loxodromic transformations are a superset of the elliptic ones.
In the situation at hand, with the unit disk mapped onto itself, the fraction in
the above expression can never become negative. This is because the trace of the
matrix (a — bi) + (a + bi) € R is always real, so its square is always positive. And
showed that the determinant of the transformation matrix will always
be positive and can therefore be chosen equal to one. So there are no non-elliptic
but loxodromic transformations which model isometries of the hyperbolic plane.

Now for the anti-Mobius transformations. Although the classification of Mobius
transformations doesn’t usually cover these, the comparisons to Euclidean trans-
formations still yields intuitive names. Due to the conjugation involved here,
combining the x and y coordinates to a single complex number is less helpful for
these computations. Therefore the fixed point condition is more easily written as
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()

A =(c—di)(x —yi)+ (a+ bi)
(a — bi)(z — yi) + (c + di) =((c — di)(z — yi) + (a + b)) (z + yi)
(az — by + ¢) + (=bz — ay + d)i =((cx — dy + a) + (—dz — cy + b)i) (z + yi)
(ax —by+c)+ (=bz —ay + d)i = ((cx — dy + a)z + (dz + cy — b)y)
+ ((cx — dy + a)y — (dz + cy — b)z)i

a—bi c+di\ :c—yz
c—di a—+bi

Component-wise comparison of this equation yields two real equations:

ar —by+c=(cx —dy+a)x+ (dr+cy—by = c = cx® + cy?
d—br—ay=(cx —dy+a)y— (dov+cy—bx = 2br+ay)=da*+y*+1)
If ¢ = 0, the first of these equations will always be satisfied. In that case, the
second equation describes a circle which corresponds to a hyperbolic line in the
Poincaré model. If in addition d = 0, then instead of a regular circle the second
equation will describe a line through the origin, which also is a hyperbolic line.

Both of these cases represent hyperbolic mirror reflections, which keep all points
on the axis of reflection fixed.

If ¢ # 0, then the first equation expresses the requirement that any fixed point
must be a point on the unit circle. This corresponds to a glide reflection, with the
second equation defining its axis.

To sum up the different classes and the conditions which identify them:
Without conjugation: preserves orientation

b= c=d = 0: identity
c? 4+ d? > b?: translation
c? 4+ d? < b?: rotation

c? + d? = b?: limit rotation
With conjugation: reverses orientation

c = 0: reflection

c # 0: glide reflection
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2.2.5 Modeling objects

One can use isometries in combination with distinguished objects in order to
describe various geometric objects in the hyperbolic plane. One benefit is that it
suffices to implement concatenation of isometries, since all other transformations
then follow from this elementary operation. This way of describing objects tends
to carry more information than many other possible representations, which usually
doesn’t hurt and can be useful at times.

Points: Any point in the hyperbolic plane can be expressed as the image of the
origin under some isometry. Additional information are a direction (e.g. the
image of the real axis) and a sign (from the conjugation). By the way, this
is the reason for the “strange” form of the matrix so far: the origin has
homogeneous coordinates (0, 1), which means that the right column of the
matrix, (v,w)?, is its image. To keep this simple, the added complexity of
the conjugation has been moved to the left column.

Lines: Any line in the hyperbolic plane can be expressed as the image of the real
axis under some isometry. Additional information includes an orientation, a
distinguished point (image of the origin) and a sign (from the conjugation).

Half-planes bounded by a given line can be described as the upper half disk (i.e.
the set {z | Im(2) > 0, |z| < 1}) under the same transformation that describes
the bounding. Changing the conjugation gives the other half space.

Convex polygons can be described as the intersection of a finite number of
half-planes.

There exist alternatives to these. One of the most interesting would model
hyperbolic lines as elements of some Lie geometry. Disregarding their orientation
(and thus switching to M&bius geometry), one could represent them as Hermitian
matrices, upon which a Mobius transformation acts by conjugation.|2] The main
benefit would be direct access to the center of the Fuclidean circle. This approach
hasn’t been implemented so far, though, and it is not clear whether the gains would
outweigh the cost of more multiplications and perhaps also more difficult handling
of line orientations.
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Chapter 3

Group navigation

3.1 'Triangle reflection groups

There are ways to describe symmetry groups in terms of some algebraic expression
like their orbifold symbol.[25] These kinds of descriptions tend to be very symbolic
and rather unintuitive. One main goal of this work is to demonstrate a method
where one can define specific hyperbolic symmetry groups using visual tools which
are easy to understand and use.

The primary idea is to restrict the available groups to those which are subgroups
of a given triangle reflection group. This concept will be used a lot in subsequent
sections, so an acronym will help to keep the texts shorter and by this hopefully
easier to read as well.

Figure 3.1: The (2,4, 6) tiling, with edges of orbit a in red, b green and ¢ blue.
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Definition 3.1: TRSG

Let A denote a triangle, and let G be the group generated by reflections in
the edges of the triangle. If that group is discrete and has the triangle A as
a fundamental domain, then that group shall be called a triangle reflection
group. Any symmetry group which is a subgroup of such a triangle reflection
group will be abbreviated as a TRSG, short for triangle reflection subgroup.

The corners of the underlying triangle might be ideal points, i.e. lie on the circle
itself, an infinite distance away from any point inside the hyperbolic plane. In
one extreme, the whole triangle reflection group itself may be considered a TRSG,
whereas in the other extreme the trivial group consisting only of the identity
transformation is a TRSG as well. Between those two extrema, many interesting
hyperbolic symmetry groups can be found. will investigate the question
of which symmetry groups can be expressed as TRSGs and which cannot.

One obvious thing that can be done is defining any symmetry group which
arises from the identification of edges of a regular polygon: the axes of symmetry
will cut that polygon into congruent right triangles, and an edge identification can
be expressed as an identification of corresponding triangles, one on the inside of
one edge and its image on the outside of the other edge. The particular choice of
triangle defines the orientation of the identification as well.

3.1.1 Mapping words to transformations

The fundamental building block for most of our hyperbolic groups will be the
reflections in the edges of a single hyperbolic triangle.

Figure 3.2: From words to triangles.
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Let A be a triangle (preferably near the center of the model) with edges a, b
and c. Let the angle between a and b be 7, that between b and ¢ be %, and ¥
between ¢ and a, for a given set of integers r, s and ¢ fulfilling the hyperbolic angle

sum inequality

O ¢
" + . + ; <7 (3.1)

We use the same labels a, b and ¢ to denote reflections in these edges. The
group G generated by these reflections tiles the plane with copies of the original
triangle A. The edge between any two adjacent triangles belongs to exactly one
of the orbits Ga, Gb or Gec. In these edge orbits are represented using
different colors.

A word w € {a,b,c}* (i.e. a finite sequence of arbitrary length consisting of these
three letters) denotes a specific element w € G which can be calculated as a nested
function application. For example, the word acbc describes the transformation one
obtains by first performing a reflection in the edge ¢ of A, then in b, then in ¢ again
and finally in a. Some readers might be more familiar with one of the following
equivalent notations: (acbc)(x) = (aocoboc)(x) = a(c(b(c(z)))) So while w is a
sequence of letters, W is a transformation in CP'. The map w — w is not injective:
a given transformation can be generated by different words. It is however surjective,
since the group is generated by these reflections.

Another way to look at this is by drawing a path from A to some image gA,
avoiding all triangle corners. Such a path will intersect triangle edges in a certain
order. Each such edge is part of one of the edge orbits, i.e. Ga, Gb or Gec. If one
were to write down the corresponding letters a, b or ¢ from left to right in the order
in which they are intersected by the path from A to gA, then the resulting word w
will be a representation of g.

illustrates this use of words to denote transformations or triangles.
The yellow triangle is the starting point A. From there, a path to the labeled
triangle exists which crosses red, blue, red and green, in this order. So one possible
label for that triangle is acab. The associated transformation is the transformation
which takes the yellow triangle to the labeled one.

At first glance, this may seem as if the order was reversed: the path crosses the
edges in the order from left to right in the word, whereas the convention established
above is that the righternmost transformation is to be applied first. But that
reversal is in fact correct, because the reflections are not in the edges of the original
triangle, but in some other edge from the same orbit which is incident with the
path.

The truth of this method of reading off labels from paths can be visualized as
follows: if one were to take the original path, and apply the transformations from
left to right, then each of the transformations will fold the path along the edge
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where it leaves A, until at the end of the word the whole path has been folded into
A. So if the operations are performed from left to right, they will take gA to A.
As performing reflections in reverse order results in the inverse of the combined
operation, the original execution order from right to left will take A to gA, as
claimed.

Another thing worth considering is local reference frames established by conju-
gation. Every word w describes a certain operation, originally based on reflections
in A. Instead of using that triangle, one might want to use the edges of a different
triangle vA as the basic operations expressed by the word. To reformulate the
resulting operation with respect to the original A, one can first map vA to A by
reverse execution of v, i.e. by execution of v~!. Then one performs the operation
denoted by w, and finally one performs v again to take A back to 7A. Thus, the
word w with respect to DA corresponds to the word vwv~! with respect to A.

To cross-check that concept, let v be the word obtained by reading off the edge
labels from A to A, and w the word obtained by reading off the edge labels from
vA to some other triangle which we’ll show to be 7wA. Then the transformation
taking A to TwA can be split into a part v taking it to A and a part vwv ! taking
it from there to TwA, to be executed in this order. Hence the total operation is
(vwv™ v = vw. This is exactly the word which can be read off the edge labels
along the whole path, without stopping in between.

3.2 Combinatoric group calculations

3.2.1 Triangle rewriting systems

One powerful tool when working with TRSGs are term rewriting systems.[4]
Definition 3.2: Term rewriting system

A term rewriting system over some finite alphabet A is a finite set of rules
R C (A* x AY).

Each rule consists of two words over A, a left hand side and a right hand side.
The idea behind this is two-fold. In an abstract semantic way, both sides of each
rule are considered equivalent, and the whole system expresses the equivalence
relation generated by these equivalences. In a more technical way, the rules form
instructions how a given word should be manipulated: if the word contains the left
hand side of any rule, that part of it can be substituted with the right hand side of
the same rule.
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(b) Triangles drawn in, using a hyper-
bolic brush.

(c) There are two triangle orbits, one (d) Each fundamental domain consists
white and one red. of two triangles.

Figure 3.3: The picture from revisited. It is based on triangle reflection
group (2,4, 6) and has subgroup generators a, bcbe, bac.
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The first thing that can be expressed in this way is the triangle group itself. In
this context, the operations a, b and ¢ which we interpreted as isometric transforma-
tions so far will now be treated as generators of a group, without any dependency
on the geometric interpretation. Subsequent paragraphs will use the labels a, b and
c for these generators. Based on these generators, the triangle reflection group can
be expressed as a Coxeter group

T = (a,b,c | l=a*>=b"=c’=(ab)” = (bc)® = (ca)’) (3.2)

We can formulate a term rewriting system expressing these relations, using the
empty word ¢ to denote identity.

a’ > e
b’ — ¢
2
cT—¢c
3.3
(ab)" — ¢ (3:3)
(bc)® — ¢
(ca)l — ¢

This rewriting system expresses the fact that different paths to the same triangle
represent the same triangle of the triangular tiling. In other words, every equivalence
class of the relation corresponds to exactly one triangle of the triangle reflection
group.

Here is an example to illustrate how a rewriting system can be used to compute
a normal form for a given triangle. The triangle rewriting system for the (2,4, 6)
triangle reflection group will eventually (after the completion procedure that will

be described in [Section 3.2.3)) look as follows:
(i

(ii bb — ¢

aa — ¢

ba — ab (3.4)

caca — acac

(iv
(v
(vi cbcbeb — bebebe

(vii) cbcbcab — bebebea

)
)
(iii) cc—e¢
)
)
)

Now this rewriting system can be applied to an arbitrary generator word w as
follows:

. (iv) (i) (v) ] (iii)
w = acacbabc —» acacabbc — acacac —> aacacc —» cacc —» ca



3.2. COMBINATORIC GROUP CALCULATIONS 47

So a transformation or triangle originally described using eight reflections
can also be described using only two reflections. The reduction sequence is not
necessarily unique; for example the last two steps might have been exchanged. The
mentioned completion will ensure that the result does not depend on that order.

3.2.2 Orbifold rewriting systems

When interpreted as a symmetry group, the full triangle reflection group has a
rather simple structure: every triangle is a fundamental domain of the ornament,
and the orbit of a single triangle already covers the whole plane. When dealing
with a subgroup of this triangle reflection group, things become more difficult. The
most prominent question in this respect is the following: given two triangles in the
plane, do they belong to the same orbit, i.e. do they contain the same portion of
the artistic content of the ornament? A suitable tool here would be an equivalence
relation which has the different orbits as equivalence classes. An alternate view of
the same concept is the following: taking exactly one triangle from every orbit, one
can glue their edges according not just to adjacency between individual triangles,
but according to adjacency between orbits.

If formulated in terms of points of the plane instead of triangles, the resulting
object will be the orbifold as defined in [definition 1.11] In a certain sense, the
orbifold is a very minimal description of the combinatorics of the ornament: from
it, one can deduce properties like centers of rotation or axes of reflection, while at
the same time (and in contrast to the fundamental domain) eliminating arbitrary
choices like cuts around a center of rotational symmetry which does not lie on an
axis of reflection.

In the world of TRSGs and their group representation using words, an orbit
is the set of words describing triangles related to one another by elements of the
TRSG. An orbifold is therefore the set of all such orbits, together with information
about how these orbits relate to one another, i.e. a mapping from one orbit to
another for each of the triangle group generators. Note that in the case of the full
triangle reflection group, the orbifold would be only a single triangle orbit which
would always map to itself under all triangle reflections.

The rules identifying different paths to the same triangle could be applied to any
part of the input word. This is because every triangle in the triangulation basically
plays the same role, so they can be interchanged without changing anything. The
rules identifying different triangles from the same orbit are different, though. They
must only be applied at the beginning of the input word. This can be achieved by
adding a fourth letter d which denotes the beginning of the word. So the complete
alphabet will now be A = {a,b,c,d}. The new letter d will be prepended to every
word before processing starts, and every rule must preserve that role of the letter
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d, i.e. have both sides starting with it or not contain it at all.
Definition 3.3: Invalid, anchored and non-anchored words or rules

A word which contains d in any position but the first will be called an invalid
word. The remaining words will be called valid words. They fall into two
categories: those staring with d will be called anchored words, whereas those
not containing any d will be called non-anchored words. Similarly, rules where
both sides are anchored words will be called anchored rules, and rules where
both sides are non-anchored words will be called non-anchored rules. All other
rules are invalid.

Non-anchored rules will identify different paths to the same triangle, while
anchored rules identify different triangles of the same orbit. If one of the generators
of a given group is an identification of the triangle denoted by word v with the
triangle denoted by w, then a suitable anchored rewriting rule expressing this
relation would be the following:

dv — dw (3.5)

This rule is based on the fact that the triangles v and w belong to the same
orbit. The resulting rewriting systems, if all subgroup generators have been added
in this fashion, will no longer describe equivalence classes for different paths to all
the individual triangles, but equivalence classes for all paths ending in any of the
triangles belonging to one of the orbits. If the symmetry group is cocompact, then
the number of triangle orbits will be finite, and therefore the number of equiavlence
classes with the subgroup generators added will be finite as well. This is in contrast
to the system for the triangle tiling, which has an infinite number of equivalence
classes corresponding to the infinite number of triangles in the tiling.

3.2.3 Completion of rewriting systems

The rewriting system formulated in [Equation (3.3)| serves its purpose when read
as an equivalence relation, i.e. without regard for the direction of the arrows. If
one always applies rules from left to right, there are two important properties the
rewriting system should have:[4]

Termination (or Noether property) describes the fact that any computation using
the rewriting system will always terminate. This is best achieved by defining
some kind of well-founded order over the words, and ensuring that every rule
will produce a word that is less than the original word according to this order.
Every calculation will stop with a minimal element where none of the left
hand sides matches.
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Confluence describes the fact that it doesn’t matter in which order rules are
applied. Whenever there are multiple locations in the input word where rules
could apply, then the resulting words might be different, but there is some
common word to which both can be rewritten. The so called Church-Rosser
property is equivalent to confluence.[4] It guarantees not only confluence when
starting from the same word, but also when starting from different words
that are equivalent under the symmetric transitive closure of the rewriting
system, i.e. under the system when interpreted as an equivalence relation.

A rewriting system having both of these properties is called complete. It is
a very powerful tool indeed, because it can decide the word problem: given two
words as input, it can calculate whether they are equivalent under the equivalence
relation expressed by the rewriting system. It does so by repeatedly applying
rewriting rules until none of the rules apply. Because the system is Noetherian,
this computation will terminate in finite time. Because of confluence, the result
will be independent of the order in which rules were applied, and because of the
Church-Rosser property, this final representative will be the same if both words
were equivalent to begin with. Obviously, as the rewriting system expresses the
equivalence relation, words that can be rewritten to the same final result must have
been equivalent all along, so we get this result:

Corollary 3.1: Deciding word problem

Two words are equivalent with respect to some equivalence relation iff a
complete rewriting system expressing that relation computes the same final
result for both.

Out of the box, the rewriting system stated above usually isn’t complete. One
can try to reformulate it in such a way that it still represents the same equivalence
relation, but also has the required properties for completeness.

In order to ensure termination, we define an order for the words used. We use
the ShortLex ordering. It orders words by length first: shorter words are considered
less than longer words. Words of equal length are compared lexicographically: the
letters at the first position where both words differ decides their order, based on
an order on their constituent letters, which we take to be a <b < ¢ < d.

Making the original rewriting system Noetherian is quite easy: for every rule,
see if its right hand side is less than its left hand side. If not, exchange the sides of
the rule. Notice that the ShortLex order is local: if the right hand side of every
rule is less than its left hand side, then the rule applied to a word will ensure that
the resulting word is less than the original as well.
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Ensuring confluence is harder. There is a well-established way to do so: the
Knuth-Bendix procedure[28] can be applied to any rewriting system, and if the
procedure terminates, then the resulting rewriting system will be confluent. The
Knuth-Bendix procedure makes use of a term order, and if we choose that term
order to again be the ShortLex order, then the Noetherianness of the system will be
preserved. The procedure works by identifying potential overlap between left hand
sides, and generating new rules from these so called critical pairs. The process has
some similarity to Buchberger’s algorithm for the construction of Grébner bases.

For triangle rewriting systems, the Knuth-Bendix procedure will terminate,
with one exception: if in the representation of [Equation (3.2), r = 2 and of s and
t, one is equal to 3 and the other is an even number, then the algorithm will not
terminate. This problem can be easily avoided by changing the term order, or
equivalently by relabeling the edges in such a way that r = 3.

Theorem 3.2

For every triangle reflection group (r, s, t) there exists a term order on A =
{a, b, c} such that the Knuth-Bendix procedure, applied to the rewriting system
from [Equation (3.2), will terminate.
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Recall the relations from the presentation given in [Equation (3.2)f

l=a’=b?=c? = (ab)” = (bc)® = (ca)’

Every combination of two different reflections has an integral count associated
with it. A function mapping a pair of generators to that count can help keeping
the notation short.

rif {z,y} = {a, b}
v(z,y) =< s if {z,y} ={b,c}
t if {z,y} ={c,a}

One recurring pattern in many of the final replacement rules are strings con-
sisting of two alternating letters. The relevant number here is not the number of
times each character occurs, but instead the total length of the string, which might
be odd. The following helper function o denotes a string of alternating letters x
and y, starting with x and with a total length of n.

( ) (xy)k  if2 | n=2k
o(z,y,n) =
Y (xy)kz if2fn=2k+1

Now the previous two definitions will be combined into a shorthand notation
used throughout the following set of rules. The notation again consists of two
letters, which will be alternated to form the denoted string. But instead of giving
the total length explicitly, the length will be deduced from the count associated
with these generators. An integer k (which may be zero) is subtracted from that
count to obtain the length of the resulting string.

vy =k =o(z,y,v(z,y) — k) (3.6)

gives an overview over all the rules for different values of r, s, t. Single
letters in the rewriting rules stand for themselves, while combinations including
use the shorthand notation defined in [Equation (3.6)] The commas were added
for increased readability. Many of the rules are only applicable for some values of
r,s,t. The corresponding conditions are given in the other columns of that table.
In cases where no conditions are stated, the rule applies to all possible values.
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rewriting rule v(a,b) v(b, c) v(c,a) v(b, c) v(c,a)
a,a —
b,b —
c,c —
ba—-0 — ab—-0
ca=~0 — ac—-0
cb—~0 — bc—-0
ca—1,bc=0 — ac—0,bc=-1 >3 odd
cb=—1,ab-0 — bc=0,ab-1 >3 >3 >3 even
cb=—1,ac~0 — bc-0,ac=-1 >3 >3 odd
ca—1,bc-1,ac~0 — ac—0,bc=—1,ac-1 >3 >3 even odd
cb—-1,ac—-1,bc~0 — bc-0,ac—1,bc-1 >3 >3 odd even
cb—1,ac—1,bc~1,ab-0 — bc=-0,ac~1,bc—1,ab-1 >3 >3 odd even
ca=-1,bc=-1,ab-~0 — ac-0,bc—1,ab-1 >3 odd odd
c,ab=~0 — bc-0,ab-1 =2
ca—1,bc-0 — ac—-0,b =2 odd
cb=—1,ac~0 — bc—-0,a =2 odd
cb—-1,ab-~0 — bc—=0,a =2 even
ca=—2,bc-0,ab~1 — ac—1,bc-0,ab=-2 >3 =2 even
cb=—2,ac-0,ba~1 — bc=-1,ac-0,ba>-2 >3 =2 even
ca—-1,b,ac-0 — ac-0,b,ac~1 >3 =2 odd
cb=—1,a,bc=-0 — bc-0,a,bc—1 >3 =2 odd
cb-2,ab-0,ca—1 — bc~1,ab-0,ca=-2 =2 >3 >3 odd
ca-1,b,ac-2,bc-0,ab~1 — ac—0,b,ac~2,bc-0,ab-2 >3 =2 >3 odd
cb—1,a,bc-2,ac~0,ba~1 — bc-0,a,bc~2,ac~0,ba~2 >3 >3 =2 odd
ca=-1,bc~1,ab-0 — ac-0,bc=1,a =2 odd odd
ca=1,bc=-2,ab-0,ca~1 — ac—-0,bc~2,ab-0,ca=2 =2 even odd
cb—2,ab-0,ca-2,bc-0 — bc—1,ab-0,ca~2,bc-1 =2 odd even
cb-2,ab-0,ca=2,bc~1,ab-0 — bc=~1,ab=0,ca=~2,bc-1,a =2 odd even
ca—1,b,a,bc=~0,ab~1 — ac-0,b,a,bc~0,ab-2 =2 <3
cb—-1,a,b,ac-0,ba~1 — bc-0,a,b,ac-0,ba-2 <3 =2
c,ab-0,ca~1 — bc-1,ab-0,ca*2 =2 <3
ca—2,bc-0,ab-1 — ac—1,bc-0,a <3 =2 even
cb-2,ab-0,ca=~1 — bc=1,ab=0,c =2 <3
cb—-2,ac-0,ba~1 — bc-1,ac=-0,b <3 =2 even
ca=-3,bc=-0,ab-1,ca~1 — ac—-2,bc-0,ab-1,ca=2 <3 =2 odd
cb—3,ac—0,ba~1,cb~1 — bc=-2,ac-0,ba=~1,cb=2 <3 =2 odd
ca=-1,bc-3,ab-0,ca~1,bc-1 — ac-0,bc-3,ab-0,ca=~1,bc=2 =2 <3
c,ab-0,ca=-3,bc~1,ab-0,ca~2 — bc~1,ab-0,ca~3,bc~1,ab-0,ca=3 =2 <3
ca—3,bc~0,ab-1,ca~3,bc=0,ab~1 — ac-2,bc-0,ab-1,ca=~3,bc-0,a <3 =2 odd
cb—3,ac~0,ba~1,cb-3,ac-0,ba~1 — bc-2,ac-0,ba~1,cb—-3,ac-0,b <3 =2 odd
c,ab-0,ca=~3,bc~1,ab-0,ca=~3,bc-0 — bc~1,ab-0,ca~3,bc~1,ab-0,ca~3,bc-1 =2 <3
ca-1,bc-3,ab-0,ca~1,bc-3,ab-0,ca~1 — ac-0,bc=-3,ab-0,ca~1,bc-3,ab-0,c =2 <3
c,ab-0,ca=-3,bc~1,ab-0,ca=~3,bc~1,ab-~0 — bc—-1,ab-0,ca=~3,bc—~1,ab-0,ca=~3,bc—-1,a =2 <3

Table 3.1: Results of the Knuth-Bendix procedure for triangle reflection groups.
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So it is feasible to decide whether or not two words denote the same triangle.
However, for the orbifold rewriting systems, there are TRSGs which do not even
allow for a complete rewriting system based on the ShortLex order of terms. If
no such system can exist, the Knuth-Bendix procedure will never terminate. The
following subsection will give a proof for this based on geometric
arguments.

If the Knuth-Bendix procedure based on the ShortLex order will not result in a
finite rewriting system, there remain other avenues to explore in order to decide the
word problem in these groups. One possibility is the use of a different term order.
A more likely candidate, however, would be the use of automatic groups, which are
a more powerful concept which allows computations equivalent to certain infinite
rewriting systems|[I9]. The details of this approach for these particular groups
haven’t been worked out by the author yet, though, and though cited references
sounds promising, we are not certain whether this approach has been taken for the
application at hand. At the time of this writing, the word problem on orbifolds is
to be considered somewhat problematic at best.

3.2.4 Geometric interpretation

In order to show that there can be no finite rewriting system which will always
give a ShortLex-minimal representative for each orbit, it is useful to achieve a
geometric understanding of the actions of the involved rewriting systems. So for
the remainder of this section, we will assume that there were a complete rewriting
system for the orbifolds of a given group, and we will study its properties.

Rewriting system identifies different paths to the same triangle. One can
interpret this as giving each triangle a unique and well-defined canonical name,
which is to be the ShortLex-minimal word that denotes this triangle. These are
all the words that don’t contain any of the left hand sides of the corresponding
complete rewriting system.

Definition 3.4: Canonical triangle label

The canonical label for a triangle is the ShortLex-minimal word denoting this
triangle.

Stripping the last letter from each of these words results in a word denoting an
adjacent triangle. The shortened word obviously still doesn’t contain the left hand
side of any of the rules, therefore it is the ShortLex label of that adjacent triangle.
In this fashion, every triangle has a unique parent triangle with a shorter word, up
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Figure 3.4: ShortLex tree, rooted at the yellow center A

to the central triangle A. These links connect all the triangles in an infinite tree,
with A at its root. We call this the ShortLex tree of the triangle tiling.

The addition of rules like [Equation (3.5)| to the rewriting system adds relations
that identify different triangles of the same orbit. The rewriting result will be a
canonical label for the whole orbit. Again the rewriting system will return the
minimal word among all the words for a given orbit.

Definition 3.5: Canonical orbit label

The canonical label for an orbit is the ShortLex-minimal word denoting any
of its triangles.

The words used as canonical orbit labels denote triangles, one for every orbit.
Taking one triangle from every orbit gives a fundamental domain. So in this way
we have a canonical fundamental domain for the symmetry group.

Definition 3.6: Canonical fundamental domain

The canonical fundamental domain of a symmetry group consists of all those
triangles denoted by the ShortLex-minimal representatives for each orbit [

What the added rules do in the complete rewriting system is this: Whenever
the path described by a word leaves the canonical fundamental domain, its initial

*Note that this canonical fundamental domain is mostly relevant for this chapter. It might
not always be a convex polygon, which will be required for rendering as described in
Another fundamental domain will be used there. In other words, the canonical fundamental
domain is a useful concept for theoretical proofs, but not always the best choice in practice.
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portion will be rewritten to the corresponding triangle from the same orbit within
the canonical fundamental domain.

Lemma 3.3: Required orbit identification rules

Let w € A* be the canonical label of a triangle in the canonical fundamental
domain, and let ¢ € A denote a single reflection such that wg is the canonical
label of an adjacent triangle outside the fundamental domain. Furthermore
let v be the canonical label of the orbit of wg. Then every complete rewriting
system that computes canonical labels for the orbits of the symmetry group
will contain the rule

dwg — dv

or a similar rule with the same left hand side and any right hand side that
will eventually (through other rules) be rewritten to dv.

Proof: The rule is permissible for the rewriting system, because it identifies triangles
of the same orbit. The rule is required, because dwg is illegal as the final result of
the rewriting system, and because no other rule may apply to dwg. If any other
rule were to apply to dwg, its left hand side would match a substring of dwg. So
there are two cases to distinguish:

Case 1: a rule matching dw. This cannot be, because w is the canonical label of
a triangle in the fundamental domain, and hence the canonical label of
an orbit. The canonical labels of the orbits correspond to the irreducible
words of the rewriting system. Therefore dw must be irreducible, and no
rule can apply.

Case 2: a rule matching wg. As this part does not contain the letter d, none of the
orbit-identifying rules can apply. The only rules in effect are those which
map words to canonical triangle names. As wg is the canonical label of its
triangle, those rules can not apply either. Therefore no rule can apply to

wg.

The right hand side of the rule has to eventually rewrite to dv, because v is the
canonical label of the orbit that triangle wg belongs to. O]
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Lemma 3.4: Sufficient orbit identification rules

If a complete rewriting system contains an anchored rule for every edge of the
ShortLex tree that leaves the canonical fundamental domain, mapping it to
the triangle of the corresponding orbit within the fundamental domain, and if
the rewriting system furthermore has all the unanchored rules required to map
unanchored words to canonical triangle names, then the rewriting system will
rewrite every anchored word to the canonical name of the corresponding orbit.

Proof: Assume that dw € A* is an anchored word denoting a triangle outside the
canonical fundamental domain, and assume that none of the rules of the rewriting
system applies. As the rewriting system is guaranteed to rewrite w to the canonical
name of the triangle, this means that w has to be canonical already. Therefore
it corresponds to a graph in the ShortLex tree. As the triangle lies outside the
canonical fundamental cell, and the root of the tree lies within, this path has to
cross the boundary at some point. As such a crossing would correspond to an
applicable rule, this is a contradiction to the assumption that no rule applies. As
a consequence, as long as dw denotes a triangle outside the fundamental domain,
some rule must apply. Within the fundamental domain, the unanchored part of
the rewriting system ensures minimal labels. m

This latter result can be directly used to show that at least for a certain class
of symmetry groups, a suitable complete rewriting system does exist.

Theorem 3.5: Rewriting systems for finite fundamental domains

Whenever a TRSG is cocompact, i.e. its fundamental domain consists of only
a finite number of triangles, then there exists a complete rewriting system
which maps each anchored word to the canonical label of its orbit.

Proof: 1f the canonical fundamental domain is finite, so is its boundary. Therefore
there can be only a finite number of edges of the ShortLex tree which do cross that
boundary. Per [emma 3.4] one anchored rule for every such edge, in addition to
the complete triangle rewriting system, is sufficient to map each anchored word to
its canonical orbit label. O

Note that this proves only the existence of such a rewriting system. The fact
that the Knuth-Bendix procedure will always terminate after a finite number of
steps with such a rewriting system as its result appears likely, but still remains to
be proven. Note that in the Euclidean case, those crystallographic groups which
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Figure 3.5: ShortLex tree crossing the boundary of the central fundamental domain
(yellow)

have a finite fundamental domain are exactly the 17 well-known wallpaper groups
(which are also summarized in {Table 5.1 on [Page 85)). So for one possible definition
of the term, the “hyperbolic wallpaper groups” can all be described using a complete
orbifold rewriting system.

On the other hand, as claimed before, not every TRSG allows for a complete
rewriting system for its orbifold. To find a suitable counter-example, one can have
a closer look at the image of the ShortLex tree depicted in [Figure 3.5 A single
reflection in one of the edges of the central triangle A will result in two fundamental
domains, one on either side of the line along the edge. For reflections a (red) and b
(green), the ShortLex tree crosses that boundary line only once. But for edge c
(blue), every edge incident with that line will be crossed by the ShortLex tree. For
edges sufficiently close to the center, this fact is readily apparent from the image,
but for all the infinitely many triangles, a proof is in order.
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X
Theorem 3.6: Non-existence of complete orbifold rewriting system

Not every TRSG allows for a complete rewriting system to calculate the
ShortLex-minimal representative for each of its orbits.

Proof: This counter-example is based on the triangle reflection group
T =(ab,c|l=2a’=b*=c’=(ab)’ = (ac)' = (bc)®)

The corresponding complete triangle rewriting system can be computed using the
Knuth-Bendix procedure and can be written like this:

aa — ¢
bb — ¢
cc— ¢
ba — ab
caca — acac
cbcbecb — bebebe
cbcbcab — bcbcebea

Adding c as the only non-trivial element of the symmetry group, one obtains a
TRSG with an infinite fundamental domain. This corresponds to the added rule
dc — d.

Now take the path to a different triangle incident with the boundary of the
fundamental domain. To keep the formulas easier, it makes sense to choose one
which has the same orientation as the original fundamental domain, i.e. take not
the next edge on the boundary but the one after that. Taking the one depicted
above the center, one can read its canonical label from the ShortLex tree as

w = bcbcabca

w is a canonical triangle label, as no left-hand side rule of the triangle rewriting
system applies to it. Applying the rewriting system to its mirror image cw, one
obtains

cw = cbcbcabca — bcbcbcaca — becbebacac — becbecabcac = wce

So wc is the canonical triangle label for this mirror image, which means that here
the ShortLex tree crosses the boundary of the fundamental domain, which can
be seen in the figure as well. As proven in [lemma 3.3| this requires a rule with a
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specific left-hand side to be included in the rewriting system. More specifically, one
could use the anchored subgroup generator rule to obtain dcw — dw. To make the
system confluent again, a rule like dwc — dw is required.

As w denotes a triangle in pretty much the same position as A, powers of w
will yield further triangles incident with the axis of reflection. The considerations
above can easily be extended to those powers, as ¢ has been shown to commute
with w. So for all of these triangle pairs, there is an edge of the ShortLex tree
which crosses the boundary of the fundamental domain. Per [lemma 3.3| this would
require an infinite number of rewriting rules, based on the pattern

dw"c — dw" Vn € Ny

As rewriting systems are considered to consist of only a finite number of rules, there
can be no complete rewriting system containing all of these required rules. O

3.3 Expressiveness

The approach of defining hyperbolic symmetry groups as TRSGs is a very intuitive
one, and flexible enough to describe quite a large number of interesting symmetry
groups. It is, however, not expressive enough to describe all possible discrete
hyperbolic symmetry groups. This section will investigate what additional freedoms
a general hyperbolic symmetry group might provide, which of these can be covered
by the TRSG approach, and what kinds of additional user interface tools might
help to increase the set of obtainable symmetry groups.

In order to talk about possible symmetry groups, it is important to make
exceptionally clear when two symmetry groups should be considered the same.
Probably the most useful concept here is one which will be called a geometric
symmetry group in this work.

Definition 3.7: Geometric symmetry group

Let M be any two-dimensional Riemannian manifold (in this work usually the
hyperbolic plane), and let G C iso(M) be a discrete symmetry group over M.
Then the geometric symmetry group [G] shall be defined as the equivalence
class

[G] = {G' Ciso(M) | 3T € Diff(M) : G' = TGT '}

So two symmetry groups will be considered the same up to conjugacy. Intu-
itively speaking, the group will be considered the same even if its defining geometric
operations are all subject to the same diffeomorphism 7. The most important
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diffeomorphisms to consider here are isometries, and it the Euclidean case also
scalings. In a certain sense, this concept of a geometric symmetry group is some-
where between a purely combinatoric view, where all isomorphic groups would
be considered the same, and the original definition of a symmetry group which
would consider two groups different even if their ornaments are only shifted or
rotated (or perhaps scaled) versions of one another. Since the hyperbolic plane
does not have any intrinsic concept of a distinguished point of origin, or an intrinsic
reference frame for directions, the choice of coordinate system is pretty much
arbitrary. A reasonable user interface should allow its users to perform isometries
on the hyperbolic plane as a whole, thus providing access to all the equivalent
representatives of a geometric symmetry group. The word “geometric” in the term
just defined should express the fact that it captures all the aspects which can
be observed intrinsically from within the geometry, like lengths and angles, but
without artificial dependencies on an external reference frame.

Corollary 3.7: Convex polygonal fundamental domain

For every discrete cocompact symmetry group in the hyperbolic plane there
exists a fundamental domain which is a convex polygon.

The Voronoi cells of the orbit of any non-singular point of the plane will provide
a tiling of the plane using convex polygons which are fundamental domains. The
converse is not true: not every convex fundamental domain is a Voronoi cell for
some non-singular point. Many interesting fundamental domains can be obtained
as the limit case where the defining point approaches some singularity. The shape
of these will usually depend on the direction from which the point moves towards
the singularity. But for now it is enough to know that at least one convex polygonal
fundamental domain does exist, we don’t need to describe every possible one.

Lemma 3.8: Parametric description of a fundamental domain

Any geometric symmetry group of the hyperbolic plane with a compact
fundamental domain can be uniquely defined using the following parameters
describing a convex polygonal fundamental domain of that group:

(i) The number n of corners of the fundamental polygon, with n > 3. From
this count one can define V := {v € N| 1 <wv < n} as an index set iden-
tifying the corners, and E = {(v, (v mod n) + 1) eV xV ’ 1<ov< n}
as the index set identifying the edges.

(ii) The interior angles for these corners, denoted as a map a : V — (0, 7.
These angles have to satisfy the hyperbolic angle inequality Y, _, a(k) <
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(n—2)m.

(iii) The lengths of the edges, denoted as a map [ : E — R*. The inter-
dependencies between these lengths and the angles are discussed below.

(iv) A set of identification rules, expressing which edges are identified with
one another. This is a map ¢g : £ — E which needs to be an involution,
ie. Ve e E: g(g(e)) = e, in order to make the identifications relation
symmetric.

(v) A direction flag indicating the orientation of these identifications, denoted
as a map d : E — {same, opposite}. Here, “same” direction means that
the arrows usually used to denote edge identifications will both be
clockwise, or both be counter-clockwise, necessarily resulting in a non-
orientable orbifold. “opposite” direction means that one arrow will be
clockwise and the other counter-clockwise, so that crossing that boundary
will maintain orientation. For reasons of symmetry, d(e) = d(g(e)) must

hold for all e € E.

Proof: As stated in [corollary 3.7 every discrete symmetry group with compact
fundamental domain will have a convex polygonal fundamental domain. So the
description of the group via its fundamental polygon will always be possible. The
shape of a fundamental polygon is uniquely defined via its interior angles and edge
lengths. This definition is up to isometries, which matches the fact that we are
dealing with geometric symmetry groups here.

The parametrization above assumed that every edge is identified with exactly
one edge. In arbitrarily chosen fundamental domains there might be cases where
part of one edge gets identified with (part of) another edge, while the other part of
it is identified with (part of) a third edge. In this case there will be a point along the
edge where the identification scheme changes. That point can be considered a corner
of the polygon, with 7 as the interior angle. Using this kind of reinterpretation, all
edges can be split until they all are identified with just a single edge.

When all edge associations are fixed, the direction information d can be used
to specify which point along the edge gets mapped onto which one. This scheme
assumes that the endpoints of e will be associated with the endpoints of g(e). There
are symmetry groups where it would be possible to identify the endpoints of one
edge with interior points of another edge. Sliding identified edges along one another
in this fashion is usually called a fractional Dehn twist. But again these situations
can be broken up by introducing corners with an interior angle of 7 on all affected
edges at the locations where their matched edges have an endpoint. After this step,
the edge identifications fit in the framework outlined above. ]

So how much of this can be accomplished using TRSGs? The information
outlined in (i), (iv) and (v) which describes the topology of the orbifold is rather
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easy to achieve:

Theorem 3.9: Realizable topologies

For any possible discrete cocompact hyperbolic symmetry group, there exists
a subgroup of a triangle reflection group with the same topology.

Proof: Choosing a polygon with a given number of corners is easy: For every n > 3,
a regular n-gon made up from 2n congruent triangles can be obtained by setting
the order of one triangle corner to 2, that of a second corner to n and that of the
third corner in such a way that the hyperbolic angle inequality is satisfied. One
possible way would be always setting that third parameter to 7, since this count is
large enough to allow all possible edge counts including n = 3.

Edge identifications can be expressed for this polygon by identifying triangles
which are incident to the pair of edges in question. One triangle must be outside
and the other inside the polygon. The choice of which triangle is chosen, i.e. to
which half of the edge it is incident, governs the orientation of the identification,
namely “same” or “opposite”. O

There are three aspects for which a TRSG doesn’t offer sufficient control. One is
the order of the centers of rotation. The edge identifications indicate which corners
belong to the same orbit, and the sum of all angles incident with that orbit must
be an integral fraction of 27 and will define the order of that center of rotation. So
one useful tool would be something where a user can select one orbit of corners
and change the order of rotation for it.

The other two aspects are metric in nature: The ratios between edge lengths as
well as the distribution of the angle sum over the angles incident with a given corner
orbit are both subject to modifications. They exhibit strong inter-dependencies.
Nevertheless, a usable tool to control these parameters should allow modifying a
single angle or edge, and adjust all the others in a suitable fashion. What exactly
“suitable” means in this context still remains to be investigated.

The tools described above, namely changing orders of rotation and redistributing
lengths and angles, should suffice to represent any possible cocompact hyperbolic
symmetry group. Nevertheless, it might make sense to introduce additional tools,
e.g. to slide identified edges against one another or to perform other high-level
operations.
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Chapter 4

Drawing hyperbolic ornaments

This section will focus on various tricks used when drawing an ornament to a screen
or some other pixel-based output medium.

4.1 Reverse pixel lookup

4.1.1 Problematic number of copies

The most obvious problem arises from the fact that the whole hyperbolic plane
in all its infinity can and usually will be displayed embedded into a circle which
is completely visible on the screen. A naive algorithm would start with one
fundamental domain and then create copies of it one after the other. As there
usually is an infinite number of such copies required to tile the visible portion of
the plane, it will never actually terminate with a mathematically correct result. Of
course, with displays being composed of pixels, one might terminate calculation
when the copies become smaller than one pixel in size, or when they are less than
one pixel from the boundary of the circle, or both. But for reasonable display
sizes this still leaves far more copies than can be computed in a real time scenario.
Most of the time will be spent computing transformations for copies which are too
small for their detailed appearance to matter in any case, thus wasting a lot of
computation time.

4.1.2 General solution

The solution to this problem is reversing the direction of the control flow: instead of
starting with a central domain and calculating which pixels it affects, one can start
with each individual pixel and apply group elements until the location is within the
central domain. The color at that location in the central domain can then be used
to color the pixel chosen at the start. As this approach makes the pixels first class
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Algorithm 4.1: Reverse Pixel Lookup

C = the central fundamental domain, a colored convex polygon

1: for every pixel p inside the unit circle do

2 2 < the position of p

3 while z ¢ C' do

4 e < an edge of C for which z lies on the outside
B t. + the transformation associated with e

6 24 t.- 2

7 end while

8 ¢ < the color of C' at position z

apply color ¢ to pixel p

| 10: end for

citizens, instead of the fundamental domains, it will give a mathematically correct
result (as much as the pixel grid approximation allows) in finite time: there is only
a finite number of pixels visible on the screen, and for each pixel inside the unit
circle, a finite number of group generators will relate it to the central fundamental
domain.

The general idea of this approach has been outlined in It requires
the central fundamental domain to be a convex polygon, so that each edge divides
the hyperbolic plane into an inside and an outside half-plane, and the fundamental
domain itself is the intersection of all the inside half-planes. For each edge, there
is an associated transformation describing the edge identification of the symmetry
group. To be more precise, for an edge e of the central fundamental domain the
associated transformation ¢, will map the adjacent fundamental domain on the other
side of e onto the central fundamental domain. The associated transformations of
all edges together form a set of semigroup generators for the underlying symmetry
group.

Each application of one such generator should bring z one fundamental domain
step closer to the central fundamental domain, although no guarantees are made
that the shortest possible path will be taken. Line [4] does not specify how the
next step is chosen, but it appears best to choose an edge from which the given
point has maximum distance, emphasizing the outsideness of the position with
respect to that edge. Instead of exact hyperbolic distance, some value which can be
calculated more easily might be chosen instead. For example, if the edge is modeled
as the image of the real axis under some transformation, the way
describes, then insideness is decided by looking at the sign of the imaginary part
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Figure 4.1: Steps of the reverse pixel lookup: (1) original position, (2) using
adjacency information, (3) applying transform from adjacent pixel, (4) applying
group generator associated with the blue edge.

after applying the inverse transformation to the point in question. The value of that
imaginary part will give a reasonably good approximation of the actual distance,
and can be obtained very cheaply. In that setup, testing insideness and determining
the edge with maximum outside distance can both be performed in a single loop
over all edges.

4.1.3 Adjacent pixels

In the form of [algorithm 4.1} there is a lot of duplicate work: if two adjacent pixels
are processed one after the other, then in most cases they will belong to the same
fundamental domain. For this reason, the edges chosen in line [4] will usually be the
same. And even if the two pixels come from different domains, those domains will
usually be close to one another, and the loop will choose different edges only at
the end.

[Algorithm 4.2] is an improved computation which exploits information from
adjacent pixels. To speed things up, one can assume that for every pixel, the
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transformation taking its predecessor to the central fundamental domain will be a
good approximation of the one required for the current pixel. So one would apply
that transformation to the current pixel position in line [3} right before entering the
loop. To obtain a suitable transformation for the next pixel, the loop would not
only have to track the current position z, but also the current transformation ¢, as
is done in line 8l

Making use of the previously processed pixel assumes that pixels are traversed
in such a way that subsequent iterations usually process adjacent pixels. But simply
processing the output picture one row of pixels after the other will likely yield bad
results: the closer a pixel lies to the rim of the unit disk, the more the numeric
precision of the transformation will be lost due to rounding errors. As a result, it
is a bad idea to start with pixels close to the rim and use them as a basis to speed
up computation of pixels closer to the center. Instead, one should start reasonably
close to the center and work outwards.

One way to do this is to render each quadrant of the image separately. Both
rows and columns should be iterated away from the center. Taking rows as the
outer loop, these should be processed upwards in the upper half, but downwards in
the lower half. In the inner loop, pixels should be processed from right to left in the
left half but from left to right in the right half of the resulting image. After each
iteration of the inner loop, the transformation ¢ should be reset, as the first pixel
of the next row will be closer to the center than the last pixel of the previous one.

For most pixels, there will be two adjacent pixels which have already been
processed, one from the previous row and one from the previous column. One might
consider leveraging this information as well, by applying both these transformations
in turn and using the result which lies closer to the central fundamental domain.
This would require storing r transformations for the pixels of the previous row. In
practice, however, the cost of always applying two transformations, together with
the added code complexity, outweigh any expected performance gain, so using a
single adjacent pixel is enough.

Note that will draw the central row and column of the image
twice. Shifting the coordinate system by half a pixel could easily avoid this, as
could a case distinction in the quadrant rendering code. Both of these modifications
would make the code much harder to read, though, so they have been omitted in
this exposition here.

4.1.4 Supersampling

For presentation on a computer display, pixel resolution is not enough. Just
choosing one color from the central fundamental domain leads to aliasing effects
which make curved lines appear rugged and generally directs attention away from
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Algorithm 4.2: Reverse Pixel Lookup using adjacent pixels

10:
11:
12:
13:

1
2
3
4:
5:
6
7
8
9

r = radius of the unit disk in pixels

: function LOOKUPPIXEL(z,y, t)
Z 4= 2k g
2412
while 2z ¢ C' do
e < an edge of C' for which z lies on the outside
t. < the transformation associated with e
24 t.- 2
tet, -t
end while
¢ < the color of C' at position z
apply color ¢ to pixel (z,y)
return ¢
end function

14:

15

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

: function RENDERQUADRANT(s,, Sy)
t, < identity
for y< 0tor—1do
ty < LOOKUPPIXEL(O0, s, - y, t1)
<+ 1
while 2% + y? < 7? do
ty < LOOKUPPIXEL(S, - x, Sy - Y, t2)
r—r+1
end while
end for
end function

26:

27:
28:
29:
30:

RENDERQUADRANT
RENDERQUADRANT
RENDERQUADRANT
RENDERQUADRANT

1,41
—1,+1
1,1
1, -1
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(a) Without supersampling (b) Supersampling with 5 x 5 samples
per pixel

Figure 4.2: Two renderings at a low resolution of 200 x 200 pixels

the displayed image and towards the medium used to display it. Users today rightly
expect their graphics to be anti-aliased and appear smooth.

There are basically two techniques for anti-aliasing. One computes the area of
a pixel which is covered by a given geometric primitive. This works well for cases
with few simple geometric primitives, but as hyperbolic transformations will turn
even simple primitives into rather complex objects, this approach is not feasible for
the application at hand.

The other approach, which works much better for our purpose, is called super-
sampling. The idea is to compute color values for multiple positions inside a given
pixel, and take their average to color the pixel in the final result.

This will make the image appear smoother and less noisy, particularly towards
the rim. It will suggest a level of detail even past what is actually visible, thus
conveying the idea of an infinite hyperbolic plane far better than an aliased image
ever could.

The concept of supersampling is well established in areas like ray tracing. There,
elaborate analyses have been performed in order to determine suitable positions
of the individual samples within the pixel. The main reason why simple regular
patterns are not desirable in that context is because they are likely to cause moiré
pattern artifacts when aligned with regular elements of the rendered scene. Such
regular elements are highly unlikely in a hyperbolic ornament, as the hyperbolic
lines and the pixel grid lines don’t run parallel over long distances. Therefore, a
regular pattern works well enough for most hyperbolic ornaments.
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4.1.5 Preprocessing

The map from result pixel locations to locations in the fundamental domain is
independent from the image contained in the fundamental domain. So in scenarios
where this image is expected to change over time, some performance can be gained
by computing this map only once, and using it repeatedly to copy pixel colors.
Updating the target image then only requires a fixed and rather small amount of
time. Prominent use cases for this kind of preprocessing include real-time drawing
of ornaments with live updates to the resulting image, but also hyperbolizations
(in the sense of of live video data, e.g. from a webcam or similar.

Of course, this gain in performance comes at a cost: for every pixel of the result-
ing image, an index into the data structure representing the source fundamental
domain has to be stored. If supersampling is used, as described in [Section 4.1.4]
then the number of indices to be stored increases accordingly. For large destination
images and high degrees of supersampling, the memory demands can become
prohibitive.

When updates to the image are localized (e.g. drawing of individual lines
as opposed to a webcam image which will change over its whole area), some
performance can be gained by storing the inverse of the mapping as well: for
every pixel in the central fundamental domain, store a list of corresponding sample
positions in the whole ornament. When a pixel in the central fundamental domain
changes its color, iterating over the attached list will identify all the visible pixels
which are affected by this and need to be updated.

Applications might want to perform operations on the ornament which change
the map between pixels instead of the content of the fundamental domain. The
most likely example is an application that allows the user to drag the hyperbolic
plane, thus conjugating the symmetry group with an arbitrary translation. In those
cases, the preprocessing approach cannot be used to yield exactly the same results
as a full Reverse Pixel Lookup on every pixel would compute. So one possible
solution is to discard the old preprocessing data, and either compute the new map
or fall back to the iterative pixel lookup without preprocessing.

In cases where the time consumed by either of these solutions is unacceptably
long, the outdated preprocessing data might instead be used as a temporary
approximation, until the updated map has been computed. So in the scenario of
the user dragging the view of the hyperbolic plane, the global translation would be
applied to every sample location, and the resulting location would then be used
to look up an index in the preprocessed map. As the input position to the map
has to be rounded to the nearest sample position, that step would introduce some
positional error, reducing the quality of the resulting image. But as long as the
number of supersamples is sufficiently high, and the global transformation is a
translation by a sufficiently small distance, the overall effect of this error will not
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become too pronounced.

In order to keep the translation distance low, it is important to leverage the
symmetries of the ornament. Applying elements of the symmetry group, it is
always possible to choose the global transformation in such a way that the central
fundamental domain and its image under that transformation overlap, thus limiting
the maximum distance to approximately the diameter of the central fundamental
domain.

4.2 OpenGL GPU implementation

Modern graphics processing units (GPUs) provide an interesting alternative to
implementing the Reverse Pixel Lookup algorithm on the CPU. There are some
important differences between computations performed on the CPU and the GPU.

Parallelism. While a typical CPU today contains between one and eight cores, a
GPU may have over a thousand fragment shaders working in parallel.

Speed. While the number of operations per second performed by a CPU core is
much higher than the same figure for a GPU shader unit, the sheer number of
shader units makes GPU computations potentially a lot faster, for applications
that can work well in parallel.

Data Dependencies. As the GPU computes colors for multiple pixels in parallel,
it is impossible for one such computation to use the result of a preceding one.
The algorithm must take this into account to be efficient.

4.2.1 Anatomy of a 2D shader transformation

OpenGLJ42| can be used to access the GPU using an open standard. As OpenGL
is usually associated with rendering scenes in three dimensions, it might not be
readily apparent how that can be used for two-dimensional computations. Getting
rid of the third dimension is pretty easy, though: simply use a scene description
consisting of a single flat surface (usually a quad) to fill the visible area, and have
the camera look directly at it using an orthogonal projection. Now the surface of
this primitive will directly correspond to the content of the viewport.

In a primitive scene, this surface would simply show some interpolation of the
colors associated with its vertices, using the default functionality provided by 3D
graphics cards for a long time now. In order to generate the detailed appearance of
the primitive on the fly, more recent graphics hardware is required, which provides
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a programmable fragment shader[] The fragment shader is one of the final stages
of processing. For every sample (usually pixel) position a geometric primitive (like
this quad) touches, the fragment shader computes the associated color as it appears
to the user. So in effect, a shader program will be called once for every pixel of the
window, and can compute the color of that pixel.

When working with OpenGL, the shader program is written in the OpenGL
Shader Language (GLSL), a C-like language designed for this purpose. The source
code is sent to the graphics driver which then compiles it for execution on the
available hardware. The facilities available to a shader program differ very much
from those of most programs written in general purpose programming languages.
There usually is no way to e.g. access files on disk or print custom error messages.
All input variables to the fragment shader must explicitly be set by the application.

In the case of a hyperbolic ornament, input usually consists of a few simple data
structures describing the group generators, and an image providing the content
of the central fundamental domain. That image is made available to the shader
program as a texture. The program may retrieve the color for any location within
this texture, so once the correct position has been determined, copying the color is
straightforward.

In addition to the change of language, there are some other modifications to
be made in order to adjust the Reverse Pixel Lookup algorithm, as described in
previous sections, to execution on the GPU. The following sections will investigate

how the techniques introduced in can be applied to GPU computations.

4.2.2 Adjacency revisited

First of all, the fragment shader runs the same program independently for every
pixel. So there must be no top level loop iterating over all the pixels; that part is
taken care of by OpenGL.

While argued that a lot of work could be saved by reusing data
from adjacent pixels, this benefit cannot be exploited on the GPU. As it processes
pixels in parallel, the computations for them are executed independently, so there
is no way to pass information from the computation of one pixel to that of another
one.

On the other hand, when using supersampling as described in [Section 4.1.4]
the information from adjacent samples may be re-used. For this reason, it is
better to compute all the samples of a pixel in a single run of the custom shader
program, exploiting that adjacency information. OpenGL has a mode to perform

*The use of custom shader programs is specified in version 2.0 of the OpenGL specification,
dating from 2004. Before that version, extensions had to be used for this purpose.
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supersampling itself, but that would cause independent runs of the whole shader
program, with no adjacency information carried over.

4.2.3 Preprocessing revisited

It is possible to access preprocessed data from a shader program as well. For every
sample position, the corresponding location in the central fundamental domain can
be stored in a second texture. The texture should have a suitable internal format,
e.g. two 16-bit integer components, so that it is possible to store an arbitrary input
pixel address for each output sample position.

It is important that this lookup texture is accessed using nearest-neighbor-
interpolation. At the boundary between two fundamental domains, adjacent
sample positions for the output image might correspond to completely different (e.g.
opposite) positions in the input image of the fundamental domain. Interpolating
between these positions would lead to some pixel in between being chosen, where
either boundary choice would have been a much better match as it lies closer to
the intended orbit.

The generation of the lookup table itself can be done on the GPU as well. To do
so, the fragment shader will be used to render not directly to the screen but instead
to the image of the lookup texture, which for this purpose would be attached to
an off-screen framebuffer. The changes to the shader code required to output a
position instead of the texture color at said position would be minimal.

4.3 Reified and virtual triangles

There are several occasions when the user interface needs to deal with the triangles
of the underlying triangle reflection group. The most obvious case is during group
definition, when the user has to enter triangles which are to be identified. But even
if the group definition is complete, filling the triangles in different colors to denote
domains or orbits will show details about the structure of the symmetry group.
The following text will sketch several approaches to this problem. Even though
new implementations should probably rely on the last approach, using virtual
triangles only, the intermediate approaches were historically used by the author in
various implementations. Learning from their drawbacks might be instructive.

4.3.1 Reified triangles

The most straight-forward idea is having all those triangles reified, i.e. represented
as actual objects in memory. Of course, “all” is too strong a term in this context,
as an infinite number of hyperbolic triangles is embedded in the finite unit disk
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which represents the hyperbolic plane. So one has to somehow limit the depth of
the enumeration, in the hope that the missing triangles will be sufficiently small so
they won’t be noticed. The number of triangles required for this might well require
significant amounts of memory.

But even enumerating a finite subset of all the triangles can be a difficult
task. Starting from one central triangle, each triangle of the reflection group
has an associated transformation which maps the central triangle to that given
triangle. But due to rounding errors, different paths which should lead to the
same triangle will lead to slightly different transformation matrices. Therefore,
using these transformations as keys in some kind of equality-based dictionary like
a hash table will result in triangles being enumerated repeatedly. So instead of the
equality-based comparison, a similarity-based one is required. One might use some
kind of multi-dimensional binary tree to accomplish this, e.g. a so-called QuadTree.

Nevertheless, the deeper the enumeration proceeds, the harder it becomes to
distinguish numerical rounding errors from actual differences between triangles.
This can lead to strange artifacts. One way to avoid most of these is to keep track
of the adjacency between triangles, and use that information to decide equivalence
on a combinatoric level. In such an approach, each triangle has pointers to the
three neighboring triangles. For every new triangle found by the enumeration,
those pointers should be set if the corresponding neighbors already exist. For the
link to the direct parent triangle in the enumeration tree, this is easy. But if the
corner angles and the orders of rotation they imply are known during enumeration,
then it becomes possible to detect situations where the newly found triangle is the
last one incident with a given corner. In that case, adjacency links to triangles
other than the enumeration parent can be filled in as well. Only directions for
which no adjacent triangle could be found in this way should be considered for
further enumeration.

4.3.2 Automatic enumeration

There is a faster way to enumerate all the triangles of a triangle reflection group.
Based on the ideas of one can formulate a triangle rewriting system for
the reflection group, and complete it using the Knuth-Bendix procedure described
in[Section 3.2.3] This system will compute a canonical label for every triangle, so in
order to obtain an enumeration process which traverses each triangle exactly once,
one could enumerate those canonical labels. A name is canonical if and only if it
doesn’t contain any left-hand side word of the complete triangle rewriting system
as a substring. Using parallel matching methods described by Aho and Corasick
in [I], one can construct a deterministic finite automaton which will detect those
left-hand sides. So this automaton will enter an accept state if and only if its input
is non-canonical. Inverting the acceptance pattern, one obtains an automaton
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(c) Accepting states removed

Figure 4.3: Construction of an enumeration automaton
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which accepts only canonical words. One can even replace the non-accepting states
with a single fail state, or remove them altogether. Run in generating mode,
this automaton will emit all canonical triangle labels. A breadth-first search will
enumerate them ordered by word length, so that triangles closer to the central
triangle will be found before those closer to the rim, and an interrupted search of
this otherwise infinite traversal will yield a reasonable subset of the infinite set of
all triangles.

Here is an example to illustrate this. It is for the triangle group (2,4, 6), which
can also be described as a Coxeter group like this:

T = (a,b,c ‘ l1=2a’=b>=c’=(ab)’ = (ac)' = (bc)®)

The complete rewriting system has already been given in [Equation (3.4)[ and is
repeated below:

(i
(ii

aa —¢
bb — ¢

(iii cc—e¢

)
)
)
(iv) ba — ab
(v)
)
)

(vi

caca — acac
cbcbcb — bcbebe

(vii) cbcbcab — bebebea

To only enumerate ShortLex labels of triangles, none of the left sides must
occur in the labels of these triangles. So all the left side words are combined into a
single automaton, like @ depicts. In the next step, backward-pointing
edges are introduced, searching for a word which started later. After all accept
states are removed, the resulting automaton as depicted in will only enumerate
ShortLex-minimal labels, and therefore touch each triangle exactly once.

4.3.3 Virtual triangles

If one wants to avoid both the memory consumption caused by reified triangles as
well as the numeric problems, one can instead use an approach similar to the reverse
pixel lookup used for the artistic content of the ornament. For each pixel on the
screen, the reverse pixel lookup will compute a sequence of transformations which
will map it to a position inside the central domain. If one considers the full triangle
reflection group, then that central domain will be the central triangle. The sequence
of transformations applied will identify the triangle in that triangle reflection group.
It can be considered a word in the corresponding finitely represented group.
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The word derived in this fashion will not be uniquely defined. Different pixels of
the same triangle might be transformed in different order, and might therefore be
identified by different but equivalent words in the group. In cases where a unique
identifier is required, a term rewriting system can be used to compute it.

The triangles in this approach are “virtual” as they are identified only during
the computation of a single pixel. There is no persistent object to represent a
triangle after that computation is complete. Because of this, it might be necessary
to repeat computations for each pixel in a triangle, but unless those computations
are really expensive, this will still be faster than handling the large amounts of
memory required for reified triangles.

4.4 Grid lines in hyperbolic views

As outlined above, the user should be able to choose a triangle from a hyperbolic
triangle tiling. The most suitable way to present this triangle tiling is using a grid,
outlining the boundaries between triangles. The question what line width to use
for these edges is quite a subtle one.

A hyperbolic brush would become thinner towards the rim, in correspondence
with the hyperbolic distance metric. Practical observations show that such
lines are unsuitable over the whole area of the image. Choosing a thick brush,
the lines will be too thick near the center of the disk, where they appear bulky
and are perceived more as filled areas than as lines. Choosing a thinner brush
will result in the pattern becoming indistinguishable too soon, at positions
still quite far away from the rim of the disk.

An Euclidean brush would usually be chosen such that its lines are as thin as
possible while remaining clearly distinguishable. This gives good results in
the inner area of the image, but at the very rim, the lines are thicker than
the tiles they delineate, giving a cluttered appearance.

The two methods can be combined to profit from their individual strengths
and mitigate their weaknesses. Towards the rim, a (rather thick) hyperbolic brush
would be the way to go, giving a proper thinning of the lines and suggesting the
infinity of tiles at the boundary. Towards the center, an Euclidean pen would
be preferable, in order to limit the maximum line thickness and maintain the
perception of the lines as lines, not filled areas.

Sudden switches from one pure mode to the other at a fixed distance from the
center of the image might cause inconsistencies in appearance near the switch-over.
So instead of using one or the other, a weighted sum can be used. To formulate this
concept, let us consider the general setup of any simple line width, at first without



7

P &z\ 4 R

AN,

e
SN/

g WAV" /

LRV SN
AN

0.01

0.1

4.4. GRID LINES IN HYPERBOLIC VIEWS

(b) An Euclidean brush; wg
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Figure 4.4: Grids drawn with different brushes
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reference to any specific geometry. One way to think about brushes with a given
line width is in terms of coloring all the points which are no more than a certain
distance away from a given mathematical line. The distance between point and
line is usually derived from the distance between a pair of points. One common
choice uses the orthogonal projection, but expressing that in terms of hyperbolic
geometry is rather complicated®] What we already have is a concept of reflections
along a line, leading to the following alternate definition:

Definition 4.1: Distance between point and line

The distance between a point and a line is half the distance between the point
and its reflection in the line.

This definition can be applied directly to hyperbolic geometry. To compute
an Fuclidean distance to a hyperbolic line, one needs to mix concepts, doing a
hyperbolic reflection but an Euclidean distance measurement. As long as the radius
of the circle used to model the hyperbolic line is much larger than the distance to
be measured, this is a fair approximation of the distance between a point and a
circle. The factor two in the definition is in fact a good thing, as the width of a
drawn line is measured from one outline boundary to the other, not to the central
line. So if d is the distance between a point and its reflection, than the point lies
inside the brushed line, and will be colored accordingly, if that distance is less than
the line width.

1
d<w = —d<1
w

In the case of a single mode brush, the distance d would be either the Euclidean or
the hyperbolic distance between the two points. In a combined brush, we can use
the weighted sum of both:

id E+ idh <1

WE Wp,
Towards the rim, where d;, > dg, the hyperbolic width w;, imposes an upper limit
on the line width and causes the lines to appear infinitesimally thin in the limit case,
as one would expect in a hyperbolic image. Near the center (and if the Euclidean
coordinate system is scaled in such a way that the circle is actually the unit circle),
hyperbolic distance metric using [Equation (2.1)| almost matches the Euclidean one
up to a constant factor, and we have d;, =~ 2dg. In that case, the combined line

*Probably the easiest way would be switching to the Klein-Beltrami model using|Equation (2.4)]
where an orthogonal projection onto one axis can be done by simply setting one coordinate to

Zero.
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width is limited above by wg. This prevents lines from becoming excessively thick
in the central area of the image.
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Chapter 5

Hyperbolization of ornaments

This section makes heavy use of several terms which have been introduced in
Section 1.2, Knowledge of these terms is assumed, so if the precise meaning of

some term seems unclear, the reader should revisit that section for reference.

5.1 The big picture

One very interesting method to obtain a hyperbolic ornament is the conversion of
an Euclidean ornament, which has one of the 17 wallpaper groups as its symmetry
group, into a hyperbolic ornament. This process has been published in some detail
in [22], so only selected aspects will be outlined below.

Definition 5.1: Hyperbolization

Let (P, G) be an Euclidean ornament with picture P : E*? — C' and a discrete
symmetry group G C iso(E?). Likewise let (P’,G’) be a hyperbolic ornament
with picture P : H — C and a discrete symmetry group G’ C iso(H). Let
(P,0) be the colored orbifold corresponding to (P, G) and likewise (P, 0’)
for (P',G"). (P',G") is called a hyperbolization of (P,G) iff there exists a
homeomorphism f between O and O’ such that Vz € O : P (:1:) — P ( f (m))
The function f will be called the homeomorphism of the hyperbolization.

The above definition is pretty broad, since the requirements for f are rather
weak. Due to this, the definition covers various possible approaches, but leaves a
lot of room for arbitrary decisions. It turns out that a conformal deformation of the
orbifold results in a hyperbolic ornament which most subjects will perceive as being
closely related to its Euclidean original. At the same time, requiring conformality
provides a nice mathematical framework, getting rid of a number of arbitrary
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(a) Pattern recognition

(b) Conformal deformation

(¢) Output rendering

Figure 5.1: Steps of the hyperbolization process
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decisions and ensuring uniqueness of the solutions to several sub-problems which
will be described later on. In a certain sense, conformal maps provide a natural
glue between the Euclidean plane and the Poincaré models of hyperbolic geometry:
angles are measured the same way in both, so they form a kind of common ground
while lengths have to change. Therefore, this work will be dealing with conformal
hyperbolizations.

Definition 5.2: Conformal hyperbolization

A hyperbolization is called a conformal hyperbolization iff its homeomorphism
f is conformal everywhere, with the possible exceptions of those points which
are centers of rotation in either ornament.

The process of creating a conformal hyperbolization with the aid of a computer
program as implemented by the author can be summarized as follows. Some of the

crucial steps have been illustrated in

Input image: Starting point is a raster image of the original Euclidean ornament,
possibly with imperfect symmetry.

Pattern recognition: The symmetry group of the ornament is determined using
autocorrelation. Using that symmetry group, a fully symmetric fundamental
domain can be computed.

Choice of group: The user has some choice about the way in which the hyper-
bolization should be performed. In the most common cases, this is done by
selecting new orders for the centers of rotation present in the ornament. In
more complicated cases, some point has to be designated as a new center of
rotation.

Conformal deformation: The shape and coloring of a single fundamental domain
of the resulting ornament is computed, using a discrete conformal map.

Output image: The raster image for the output is generated using the reverse

pixel lookup described in [Section 4.1}
5.2 Pattern recognition
The pattern recognition is based on autocorrelation. This is first used to identify

possible displacement vectors and thus identify the translational subgroup of the
symmetry group. Once that is done, a single translational cell, averaged from
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the whole ornament, can be glued to torus (which agrees nicely with the periodic
nature of FFT) and then analyzed for further features like centers of rotation and
the likes. The method is based on [32]. Details about this process were described
in the diploma thesis of the author and shall not be reproduced here in full.

The main goal of this pattern recognition is obtaining a really symmetric
ornament, even if the input is not fully symmetric like the one shown in

[Ca)}

5.3 Choice of group

The most obvious method of finding a hyperbolic symmetry group suitable for a
hyperbolization of a given Euclidean ornament is adjusting the orders of its centers
of rotation. Since this is not the only possible form of a conformal hyperbolization,
it is useful to introduce a term for this kind of hyperbolization.

Definition 5.3: Faithful hyperbolization

Let f denote the homeomorphism of a conformal hyperbolization. If f maps
corners of the Euclidean orbifold O to corners of the hyperbolic orbifold O,
and likewise cone points of O to cone points of O, then this hyperbolization
will in the context of this work be called a faithful hyperbolization.

Expressed in terms of the ornament, this has the consequence that centers of
rotation are mapped to centers of rotation, albeit the order of the rotation may
change. Ome obvious precondition necessary for such a hyperbolization is the
existence of centers of rotation in the Euclidean ornament. This means that only
13 of the 17 Euclidean wallpaper groups can be hyperbolized in this fashion.

A conformal hyperbolization which is not faithful will introduce new centers of
rotation (i.e. transforming a “one-fold rotation” into a proper rotation), remove such
centers (by changing their order to one), or both. Such modifications can cause a
quite drastic departure from the structure of the original ornament, and as such
should be used sparingly. The subsequent paragraphs will restrict discussion of
non-faithful hyperbolizations to those cases where adding a single center of rotation
will enable the hyperbolization of an ornament which did not contain any centers
of rotation to start with.

In the faithful cases, the choices made by the user are purely combinatoric: for
every orbit of rotation centers in the existing ornament, the new order has to be
selected. This is either an integer n, corresponding to a n-fold rotation, or the
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their wallpaper groups and orbifold symbols

)

Table 5.1: Euclidean ornaments
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character geometric topological cost
* reflection boundary comp. 1
X glide reflection crosscap 1
) translation handle 2
n (after ) rotation on axis corner ol
oo (after x) of reflection 3
n (before or without %)  rotation not incident cone point "T’l
oo (before or without ) with a reflection 1

Table 5.2: Characters of an orbifold symbols

special value oo, corresponding to a limit rotation where the center of rotation lies
on the boundary of the unit disk and the angle of rotation is zero.

The chosen orders have to satisfy some inequality in order to ensure compatibility
with hyperbolic geometry. One way to formulate this condition is using the orbifold
symbol.[14] This is a sequence of characters which encode the structure of the
orbifold, and hence of the symmetry group. Here is a short guide to how such a
symbol is formed. A positive natural number or the symbol oo is used to denote a
center of rotation. A x represents a boundary component of the orbifold, which
corresponds to a reflection in the ornament. If a center of rotation (i.e. a number
or 00) is listed after a *, then it lies on that boundary and hence corresponds to a
corner of the orbifold. Otherwise it is in the interior and therefore a cone point.
The symbol x is used to denote a cross cap, corresponding to glide reflections in
the ornament, whereas the symbol o expresses a handle of the orbifold, roughly
corresponding to purely translational symmetry. Each of these parts of the orbifold
symbol comes with a certain “cost”, as summarized in [Table 5.2]
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Theorem 5.1: Orbifold curvature

If each part of an orbifold symbol is associated with a cost according to
[Table 5.2] then the sum of these costs will be equal to 2 for Euclidean ornaments,
but will be greater than 2 for hyperbolic ones and smaller for spherical ones.

Conway, Burgiel and Goodman-Strauss give a very accessible proof for this
statement.[T14] The essence of it is that this sum of costs corresponds to the Euler
characteristic of the orbifold, which in turn indicates the sign of its curvature.

So the new orders for the centers of rotation have to be chosen in such a way
that the total cost of the resulting orbifold symbol is greater than 2. This will
automatically result in a fundamental domain which satisfies the hyperbolic angle
sum inequality. In general, the orders will increase with respect to their original
Euclidean values, corresponding to a decrease in angles of rotation. As long as the
order of some rotation centers increases sufficiently, the order of others may remain
the same, or even decrease.

In order to allow a hyperbolization of a Euclidean ornament which does not
exhibit any rotational symmetry, it is necessary to use a non-faithful hyperbolization,
and introduce at least one center of rotation. The user is allowed to choose a
point of the ornament for this, subject to certain constraints which depend on the
Euclidean symmetry group.

5.4 Conformal deformation

The choices made by the user are sufficient to uniquely determine the group of the
hyperbolic ornament, up to a global isometry of the whole ornament. However,
they do not directly give that group, in terms of e.g. locations for the singular
points within a single fundamental domain. For some groups, determining such
coordinates is pretty easy, but for others, the final shape of the fundamental domain
will only be found during the conformal deformation process.

After discussing uniqueness of possible hyperbolizations, their existence will be
investigated in this section. This is mostly done assuming perfect mathematical
operations, with little regard to actual numerical implementations.
will then give details on how these hyperbolizations can actually be computed
numerically.
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5.4.1 Uniqueness

Theorem 5.2: Unique hyperbolization

Let (P, @) denote a Euclidean ornament with a cocompact symmetry group,
and G’ C iso(H) be a hyperbolic symmetry group. The corresponding orbifolds
shall be denoted as O resp. O'. Let r C O x O’ describe those points which
are centers of rotation in either orbifold, and how these should correspond to
one another.

Then there can be at most one conformal hyperbolization (P’, G') with an
associated homeomorphism f : O — O’ such that V(z,2’) € r: f(z) = 2.

In other words, once you have fixed the hyperbolic symmetry group, and stated
which centers of rotation will get mapped to which (with one of them possibly a
center of one-fold rotation), then a resulting conformal hyperbolization is unique if
it exists at all. Since in many cases the hyperbolic symmetry group is fixed by the
user’s choices, at least up to isometry, this means that in those cases the user’s
choices uniquely determine the hyperbolization, again up to isometry.

Proof: Suppose there were two different hyperbolizations matching the stated
requirements. This would mean two different conformal maps from the Euclidean
orbifold O to the same hyperbolic orbifold O’. The hyperbolic orbifold is the same
since it is completely determined by G’, which is part of the preconditions of this
theorem. Denote these two conformal maps as f; and f;. Then the homeomorphism

:0=0 p="Ffy'oh

maps the Euclidean orbifold onto itself. The remainder of this proof will have to
demonstrate that ¢ is necessarily the identity map.

Since both f; and fy are conformal except at the centers of rotation in either
ornament, ¢ will be conformal as well, with the possible exception of the denoted
centers of rotation. This set of possibly non-conformal points is simply the first
half of the rotation correspondence r. It will be written as

sCO s={al|3b: (a,b) €r}

One can cut open the orbifold to obtain a polygonal fundamental domain F
in the Euclidean plane, which will be treated as the complex number plane here:
FcCcC
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w:(F\JF)— O w(z) = Gz

shall denote the map from the interior of the fundamental domain to the orbit, and
hence to the orbifold. It is conformal and has an inverse w™'. It can be extended
to cover the whole complex planef]

w:C—-0 w(z) =Gz

This function @ can also be obtained from w via analytic continuation along any
path which avoids centers of rotation on the Euclidean orbifold. For normal points
in the inside of the orbifold, this follows from the fact that a neighborhood around
them is conformally equivalent to a region of the complex plane. For points on the
boundary, the Schwartz reflection principle ensures that the analytic continuation
in the plane matches the reflection denoted by the group. So with the exception of
the denoted centers of rotation, @ is conformal.

There exists an open subset U C O of the orbifold which does not contain any
center of rotation, which itself does not intersect any of the cuts that turned O
into F'; and whose image U does not intersect any cut either. This gives rise to a
conformal function

¢:w U= F d=wlopow

So @ takes a point from the fundamental domain, maps it to the orbifold,
applies ¢ to it and maps it back into the plane. Those points in the Euclidean
plane which correspond to centers of rotation in either ornament shall be denoted
as S:

ScC S={2eC|w(z) € s}
Using analytic continuation along paths in C\ S, ® can be extended to a
function ® on C\ S. As a result, @ o ® is the analytic continuation of wo ® = pow.
But the analytic continuation of ¢ along such paths is ¢ itself, since the path never

leaves its domain. And the analytic continuation of w is w. This yields

Jjo&):gpoa

*A note about notation: tildes will be used to denote analytic continuations, while lower case
and upper case letters are often orbifold and plane representations of the same idea.
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This guarantees that the following diagram commutes:

C\S—=0\s

O
C\S—2-0\s

To phrase this verbally: it makes no difference whether we switch from the
plane to the orbifold and then execute transformation ¢ on the orbifold, or whether
we execute its counterpart @ in the plane and then switch to the orbifold.

In terms of the orbit of the result, it makes no matter which element of a given
orbit is used as the input to P:

V2eC\SVgeG: &)(&)(g(z))) = gp((b(g(;;))) = gp(@(z)) = @(@(z))

But we will need an even stronger condition: we want to show that ® commutes
with elements of GG, or in other words, that different elements of the same orbit get
mapped in a parallel fashion.

To obtain that, consider a closed analytic path p: [0,1] — O\ JO \ s which lies
fully within the non-singular points of the orbifold O. That path will correspond
to multiple analytic paths in the plane, two of which shall be denoted as P, P’ :
[0,1] — C. These two paths satisfy the equation

vt € [0,1]: 0 (P(t) = w(P'(t) = p(t) (5.1)

so for every parameter t, the corresponding points P(t) and P'(t) will belong to
the same orbit.

For small steps At < 1, there is a disk of sufficiently small radius € > 0 around
P(t) such that exactly one point inside that disk belongs to the orbit p(t + At).
That point will be defined as the position of P(t + At). An exception to this rule
would be a point P(t) located on a line of reflection, but since p does not encounter
the boundary of O, P will not cross any lines of reflection. So knowing p and
knowing P(t) for a single value of ¢, one already has full knowledge of P.

The two paths P and P’ start in points from the same orbit, so P'(0) = g(P(0))
for some g € G. If P’ were equal to g o P, then [Equation (5.1)| would be satisfied.
And since we just argued that the path p on the orbifold and the starting point
P’(0) already fully defines that path P’, that path has to be equal to go P. So
any two analytic paths in the plane which do not encounter any singular points
and which map to the same path on the orbifold will necessarily differ by the same
symmetry group element g.

Now take a concrete path P with P(1) = @(P(O)). This path is a continuous

description of the effect of ®. Since ® was defined to avoid the boundary of the
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orbifold, so in the domain of ® such a path P could be chosen in such a way that it
avoids lines of reflection. By continuation, the same is true for ® except it P(0) and
P(1) themselves lie on lines of reflection. Using @, this path P can be mapped to
the orbifold, resulting in a path p. That path p can be used to apply ® to any other
preimage P'(0) = g(P(0)) from the same orbit. Since p encodes the operation of
¢ and therefore P’ encodes the operation of ®, we have P'(1) = i)(P’(O)). But
since the two paths will stay related via ¢ for their whole length, we also have
P'(1) = g(P(1)). Taken together we obtain

&)(g(P(O))) - é(P’(o)) = P'(1) = 9<P(1)) = g@’(P(O)))

If P(0) were to lie on a line of reflection, then p(0) would lie on the boundary
of O. In that case, the image point p(1) = ¢(p(0)) would lie on the boundary as
well, since both f; and f; will map the boundary of O to the boundary of O’. So
P(1) would again lie on a line of reflection, and the above considerations could be
carried out the same way, since no ambiguities arise about which side of the line
has to be chosen. Therefore ® is compatible with the symmetry group G of the
Euclidean ornament in the following sense:

Vze C\SVgeG: i)(g(z)) = g(il:D(z))

Now one can consider a function which describes the change in position effected
by the above.

v:C\S—C U(2) = d(2) — 2

This function is compatible with respect to the symmetry group in a slightly
different sense:

V2eC\SVgeG:
[W(g(2))] = [8(9(2) = 9(2)| = |9(8(2)) = 9(2)| = [@(2) = 2| = |[9(2)] (5.2)

Recall that F' is a fundamental domain of the Euclidean ornament. Its image
®(F) is a fundamental domain as well, since ¢ is a homeomorphism. Every
fundamental domain of a wallpaper group is bounded. For this reason, there exists
a bound on the distance between any point in F' and any point in its image.

b= sup |z —P(2)] €R

21,220€F
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Due to the symmetry expressed in [Equation (5.2)| this bound extends to the
whole plane, with the exception of the centers of rotation.

Vze C\S:|¥(2) = ‘i(z)—z‘ <b

Since V¥ is bounded on its whole domain, it is in particular bounded in a region
around every center of rotation. According to Riemann’s theorem on removable
singularities [21, 4.2], this means that the function ¥ can be extended analytically
to a function ¥ : C — C which includes the centers of rotation, so it will be defined
on the whole complex plane.

A bounded conformal map on the complex plane has to be constant, due to
Liouville’s theorem.[I3], IV. 3.4] Therefore, ¥ is constant:

JeeCVzeC:¥(z)=c
As a consequence of this, ® has to be a translation:

O(z)=z+c

Since both f; and f5 associated centers of rotation according to r, ¢ fixes these.
Therefore ® must leave the orbits of centers of rotation fixed. So the translation ®
must be an element of G. And if ® € G then ¢ must be the identity transformation
on the orbifold. So we can conclude

p=f'oh=id = fi=f

There can be at most one conformal map satisfying the stated requirements. [

5.4.2 High symmetry

The simplest case for which the existence of a conformal hyperbolization can be
shown is the case of a faithful hyperbolization applied to a Euclidean ornament
which contains at least one center of at least three-fold rotation. This case can also
be described via the topology expressed by the orbifold symbol.
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\/

(a) Reflected Triangle xkmn (b) Rotated Kite kmn (c) Reflected Kite mxn

Figure 5.2: Families of triangle-based orbifolds

Definition 5.4: High symmetry

A symmetry group is called highly symmetric (or said to be of high symmetry)
iff its orbifold symbol has one of the following three forms:
(i) *kmn
(ii) kmn
(iii) mxn
with &k, m,n € Ny; U {oco}. Otherwise the group will be said to be of low
symmetry.

If the Euclidean orbifold is highly symmetric, then so is its faithful hyperboliza-
tion, according to the above definition. In that case, the orbifold — described as
a fundamental domain with edge identification rules — will have one of the three

topologies depicted in |[Figure 5.2
Reflected Triangle, orbifold symbol xkmn, Euclidean groups %632, %442, x333:

The fundamental cell of the ornament is a triangle which is bounded by
reflections on all three sides.

Rotated Kite, orbifold symbol kmn, Euclidean groups 632,442, 333:

The fundamental cell of the ornament can be chosen as a kite, with the axis
of reflection along a line between an m-fold and an n-fold rotation, while the
two symmetric corners belong to the same orbit, namely that of the k-fold
rotation. One of the angles on the axis of rotation might even be 7w. The
choice is usually non-unique, as a different assignment of actual centers of
rotation to the letters k, m,n in the above description yields a different (but
equivalent) fundamental domain.
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Reflected Kite, orbifold symbol m*n, Euclidean groups 4x%2, 3x3:

The fundamental cell of the ornament can be chosen as a kite, with the axis
of reflection joining suitable representatives for the two centers of rotation.
The two symmetric angles off that axis will be right angles.

In each of these three cases, the fundamental domain is either a single triangle,
or a kite composed from two symmetric triangles. All three interior angles of these
triangles are already specified by the new orders for the centers of rotation. In
hyperbolic geometry, the three interior angles already fully specify a triangle up
to isometry. Phrased in different words, all similar triangles are congruent. So in
the highly symmetric case, the shape of the hyperbolic orbifold is already fully
determined by the combinatorics of the group.

Lemma 5.3: Unique triangle map

Let A and B be triangles on two surfaces of constant (and perhaps different)
curvature (i.e. sphere, Euclidean or hyperbolic plane). If the curvature for
either triangle is negative, then ideal points as corners are permissible. Let
their corners be labeled A;, Ay, A3 resp. By, By, Bz in counterclockwise order.

Then there exists a unique homeomorphism f which

e conformally maps the interior of A to the interior of B,

e maps the boundary of A to the boundary of B and

e maps the corner A; to the corner B; for i € {1,2,3}.

Proof: The core of the proof behind this is the Riemann mapping theorem.|[IT] It
states that any non-empty simply connected open subset of the complex plane
can be mapped to the open unit disk using a conformal map. For every surface
of constant curvature, a sufficient subset of that surface can be mapped onto
the complex plane in a conformal way. For the Euclidean plane this is trivial,
and treating the hyperbolic plane as the unit disk via the Poincaré model is not
much harder. The sphere can be mapped to the complex plane via stereographic
projection, where the center of projection has to be chosen outside the triangle
since it will be the only point that does not map to the complex plane. In each of
these cases, the interior of each triangle will be such an open set, so it will map to
the unit disk. These maps can be extended to include the boundary. Let f4 be
such a map from A to the unit disk, and fg be the corresponding map from B to
the unit disk.

According to Poincaré, the mapping is unique up to a Mdbius transformation
of the unit disk.[II] A Mobius transformation which preserves the unit circle is
uniquely determined by the images of three points on that circle. To preserve the
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interior, the orientation of these three points must be maintained. One can choose
three arbitrary points on the unit circle, call them C, Cs, C3 in counterclockwise
order. Then f4 can be chosen such that it maps A; to C;, and likewise fp such
that it takes B; to C;. Then fz' o f4 will map from A via the unit disk to B.
Since it maps from A; via C; to B; it will preserve the identity of the corners. The
boundary of A gets mapped to that of B via the boundary of the unit disk.

The choice of C,Cy, C3 does not affect the result. A different choice would
result in a different map fa, but that difference would be exactly canceled by the
difference in fg. Therefore, the map is already uniquely determined by the two
triangles and the way their corners are labeled. O]

It is possible to write down an exact formula for the map f4 or fg. It is a
Schwarz-Christoffel mapping that can be expressed in closed form with the use
of the hypergeometric function o F}.[I8, 23] But that formulation is numerically
unstable, particularly in the vicinity of the points C;, where large parts of both
triangles get squashed to a tiny area near the rim of the unit disk. Computing
an inverse of that function is even harder, so numerical interpolation methods are
the most useful tool to approximate such an inverse function. On the whole, the
transformation via the unit disk is a useful theoretical tool, but should be avoided
in practical applications like this.

Instead, a concept called discrete conformal maps will be used. Details on their
computation will be given in [Section 5.5 but at this point it makes sense to treat
that implementation as a black box, and only consider the input and output of that
black box. Input can consist of a triangulated polygon (in Euclidean or hyperbolic
geometry), together with a desired interior angle for every corner of the polygon.
The algorithm will (barring numerical problems) find a new triangulated polygon
with the desired angles. It has been conjectured that for a sufficiently fine mesh, the
maps obtained from this will converge towards smooth conformal maps. Whenever
a smooth conformal map could satisfy the angle requirements stated above, it is
assumed that the discrete algorithm will be able to find a reasonable approximation.
This might depend on various aspects, the combinatorics of the triangulation among
them. Therefore, a possible failure to achieve such a map should be considered
a bug with the implementation, but not a fundamental problem with the theory
behind all this.
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Lemma 5.4: Existence of highly symmetric hyperbolization

Given a highly symmetric Euclidean ornament, and a map assigning new
orders to the orbits of the centers of rotation in such a way that the resulting
orbifold will be hyperbolic, then there exists a faithful hyperbolization of the
ornament with the requested orders.

Proof: For the xkmn case, this is trivial, since the fundamental domain is a single
triangle. For the other two cases, the fundamental domain, if chosen as described
above, will decompose into two symmetric triangles. According to a
conformal map can be used to transform one half of the Euclidean fundamental
domain to the corresponding half of the hyperbolic one. This map is an analytic
function, so it has an analytic continuation into the other half. According to the
Schwarz reflection principle [41], this continuation will simply be the mirror image
of the first half, so it will map the second half of the Euclidean fundamental domain
to the second half of the hyperbolic one, while remaining conformal even along
the “seam”. So the whole fundamental domain can be mapped conformally. The
identifications of the boundary of the fundamental domain fit in well with analytic
continuation, too. The reason is again the Schwarz reflection principle, this time
applied twice to describe a rotation. It ensures that the depicted fundamental
domain and its rotated copy glued to one of the identification edges will both be
subject to a single analytic map. O]

5.4.3 Low symmetry with rotations

A faithful transformation of a symmetry group with low symmetry is more difficult
than the high symmetry case discussed in [Section 5.4.2] The problem here is the
fact that the orbifold symbol does not uniquely define the orbifold in metric terms.
There are real parameters which control its shape. But not every Euclidean shape
will match every hyperbolic one with the same orbifold symbol. Instead, certain
compatibility conditions have to be met.

Any triangle can be conformally mapped onto any other triangle, with corners
being mapped to corners, as shown in lemma 5.3l However, for quadrilaterals this
is no longer the case. While every quadrilateral can still be mapped to every other,
and three corners can be mapped to corners again, the fourth corner may end
up somewhere on the edge of the destination quadrilateral, unless the shapes of
the two quadrilaterals are compatible. One tool to measure this compatibility is
the conformal modulus.[30] A conformal map between two quadrilaterals which
maps all four corners to corners does exist iff the conformal modulus of the two
quadrilaterals is the same. But one can already see this from Riemann’s mapping
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theorem: That map is unique up to Md&bius transformation, which can in this
situation be defined by three points on the unit circle which are the images of
triangle corners. The fourth corner cannot be chosen arbitrarily, and for two
quadrilaterals cannot be made to match if they don’t do so automatically (as they
do for compatible quadrilaterals).

Consider a possible hyperbolization of the symmetry group %2222 as an example.
The fundamental domain in the Euclidean case has to be a rectangle. Choosing new
orders for the centers of rotation at its corners defines the hyperbolization. In order
to construct the hyperbolic fundamental domain, one could start at an arbitrary
point and use that as the starting point of two line segments which enclose the first
hyperbolic angle. The length of these line segments isn’t known at this point, so
one may for the moment assume these lengths as free parameters. At the other
ends of line segments with these chosen lengths, two more hyperbolic angles could
be drawn, leading to two rays which would intersect in the fourth corner.

Now the two lengths of the initial line segments control that fourth corner. If
both lengths are very short, the resulting quadrilateral is small in terms of its
hyperbolic area, and since area corresponds to angle deficit, it is almost Euclidean
in terms of its angle sum. On the other hand, if both lengths were made sufficiently
large, they would intersect at infinity, causing an ideal fourth corner with an angle
of zero. The actual angle as defined by the chosen hyperbolic orders has to lie
somewhere between those two extremes, with zero included as a possibility. So by
scaling both lengths with the same factor, the angle can be adjusted.

But this still leaves a one parameter family of quadrilaterals, described e.g. by
the ratio between the two initial lengths. From this whole family, only a single
element will be compatible with the original rectangular fundamental domain of
the Euclidean ornament. Within this family of hyperbolic fundamental domains
with the desired interior angles, there exists one element for which the conformal
modulus equals the conformal modulus of the Euclidean ornament.

The most general wallpaper group with two-fold symmetries is the group 2222.
The shape of its orbifold is governed by multiple degrees of freedom. If one
considers two vectors which together generate the translational subgroup, then
scaling both corresponds to a scaling of the ornament, which does not affect possible
hyperbolizations. But the ratio between the lengths of these two translation can
be seen as one parameter which does affect the shape of the hyperbolic orbifold,
and the angle between these vectors would represent a second parameter. So
there is a two parameter family of Euclidean ornaments, which lead to different
hyperbolizations even for the same choices of hyperbolic orbifold symbol.

Finding a suitable hyperbolic fundamental domain which is compatible with the
Euclidean one is particularly difficult due to the fact that in general a straight-lined
boundary of the Euclidean fundamental domain will not be mapped to a straight-
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Figure 5.3: Fundamental domains connecting centers of rotation using hyperbolic
straight edges (red) or the images of Euclidean straight edges (blue).

lined hyperbolic fundamental domain. In other words, a hyperbolization will map
geodesics on the Euclidean orbifold to some curves on the hyperbolic orbifold which
are not geodesics. This is true for most geodesics of hyperbolizations in general,
but so far the boundary of the fundamental domain has been an exception to the
rule, now it is affected as well. illustrates this effect.

The practical solution to this problem makes use of one property of the definition
of discrete conformal deformations: they operate on triangle edge lengths, without
any need for coordinates assigned to the vertices. As such, it is possible to
triangulate the Euclidean orbifold, not a fundamental domain. As a consequence,
the arbitrary choice of seams made when cutting up the orbifold is not represented in
the triangulation. Adjusting the angles for the cone points leads to a hyperbolized
orbifold, which can be used to obtain the positions of the centers of rotation,
possible shapes of fundamental domains, and an approximation of the conformal
map between Euclidean and hyperbolic fundamental domain.

On the theoretical side, Riemann’s mapping theorem cannot be directly used,
since it assumes open subsets of the complex plane, whereas the orbifold of 2222
has spherical topology (and indeed the metric of a tetrahedron) and as such cannot
be embedded into the complex plane. But there is another result which can be
used. It is due to Troyanov[49], and I will quote it here verbatim.
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Theorem 5.5: Troyanov’s Theorem A

Let S be a compact Riemann surface. Let p1,po,...,p, be points of S and
01,05, ...,0, be positive numbers. Assume

2mx(S) + i (6; —2m) <0

Then any smooth negative function on S is the curvature of a unique conformal
metric having at p; a conical singularity of angle ;.

The orbifold of the Euclidean ornament has symbol 2222, and can be embed-
ded into R? as a tetrahedron. Any polyhedral surface is what Troyanov calls a
Generalized Riemann surface with divisor. As such, it can either be directly taken
as the surface S for the above theorem (which the statement of as
quoted above does not cover, but which in fact works quite nicely with the proof of
the theorem), or one could use Troyanov’s Theorem B — which basically is a flat
version of the one above — to transform the tetrahedron conformally (except at the
corners) onto the sphere and use that as S.

The next step is verifying the above condition. The Euler characteristic y of
the sphere is x(5) = 2, so the above equation can be translated to

4
47T+Z(9i—271')<0

i=1

and using r; as the orders, which implies 6; = <&, one obtains

4
1
2.5 <?

So the sum of angles must be less than 47 which implies that the sum of the
inverse orders must be less than 2. Which exactly matches the requirement resulting
from for hyperbolic ornaments. So the theorem can be used to prove
existence of faithful hyperbolizations:
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Corollary 5.6: Existence of 2222 hyperbolizations

Let O be the orbifold of an Euclidean ornament with symmetry group
2222. A, B,C,D € O shall denote the four cone points. Furthermore, let
ra,r,7c,p € N>y U {oo} be a choice of hyperbolic orders of rotation which
satisfies the requirement for hyperbolic angles, i.e. the cost for the resulting
hyperbolic orbifold will be greater than 2. Then there will always exist a
unique faithful hyperbolization of that Euclidean ornament which assigns the
given orders to the centers of rotation.

The case of ideal points is not explicitely covered by since that only
covers positive angles. However, it still provides a strong intuition that this case
can be handled in a similar way, since zero angles at ideal points can be obtained
from a limit process. The larger one of the given orders, e.g. r4, becomes, the
greater the angle deficit of the resulting fundamental domain will be, and therefore
its area. This rules out the most likely reasons against the existence of a faithful
hyperbolization in these cases, namely the possibility that some corner points might
coincide in the limit. A more rigorous proof would require revisiting the arguments
used by Troyanov, adapting them to that case. This has not been done here.

We called 2222 the most general wallpaper group with two-fold symmetries
because every other group with two-fold symmetries is a supergroup of that. One
can use this relation to hyperbolize the groups 22%, 22x and 2x22, by treating
them as special cases of 2222. Simply removing any orientation-reversing elements
from the symmetry group will lead to a subgroup which has a 2222 orbifold symbol.
In this subgroup, some distinct orbits of rotational centers correspond a single orbit
of the original symmetry group. If these related centers of rotation are assigned the
same order during hyperbolization of the 2222 subgroup, then the mirror lines of
the original ornament will necessarily map to mirror lines in the hyperbolization.

The argument behind this claim employs the symmetry of the situation. Centers
of rotation in the 2222 subgroup which are symmetric with respect to such a line of
reflection originate in the same orbit of the original symmetry group. So they will
be assigned the same order, and as a consequence, the hyperbolic orbifold, which
is unique, will be symmetric as well. And since the map itself is unique as well,
as shown in [Section 5.4.1], the image of the mirror line has to follow the axis of
symmetry of the orbifold. If it were to deviate from that axis in one direction, then
one could simply reflect the orbifold as a whole to obtain another hyperbolization,
which contradicts the uniqueness so there can be no such deviation.

The axes of glide reflection will not necessarily map to hyperbolic lines. This can
be most easily seen in the case of 22x, where glide reflections are a defining feature
which does not emerge from a combination of other symmetry group generators. But
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there still are axes of glide reflection in the resulting image, namely the hyperbolic
lines which connect those points where the original axes of glide reflection intersect.

5.4.4 Absence of rotations

If there are no rotations in the original Euclidean ornament, then no faithful
hyperbolization can exist. Therefore it becomes necessary to designate an arbitrarily
chosen point as a center of one-fold rotation. In the most general case of the
symmetry group o, that choice has artistic significance as depicted in
but from a mathematical point of view, any point may be chosen. A hyperbolization
will then increase the order of that point, thus turning it into a real center of
rotation.

The problems which arise are similar to those already observed for symmetry
group 2222. The orbifold of o is a topological torus and can therefore not be

(b) New center in the background (c) New center in the flower

Figure 5.4: Hyperbolizations of o
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embedded into the complex plane, so again Riemann’s mapping theorem does
not directly apply. On the other hand, that torus is a Riemann surface therefore
theorem 5.5 will again apply. Since the Euler characteristic of the torus is y = 0,
the angle condition becomes 6; < 27 or r; > 1 respectively. Any increase in the
order of the newly designated center of one-fold rotation will result in a possible
and uniquely defined hyperbolization.

Corollary 5.7: Existence of o hyperbolizations

Let O be the orbifold of an Euclidean ornament with symmetry group o, and let
A € O be an arbitrary point on that orbifold. Furthermore, let » € No; U{co}.
Then there will always exist a unique conformal hyperbolization of that
Euclidean ornament in which the point A is turned into a cone point of order
r, and no additional cone points are introduced.

One can again reduce most of the remaining groups to the group o by removing
the orientation-reversing elements of the group while keeping the translations.
Special care might be required in choosing the point of one-fold rotation in such a
way that it is compatible with the symmetry of the ornament. For groups ** and
x X, it seems best to place the designated point onto the axis of reflection. This
way, the two fundamental domains of the original symmetry group which make up
a single fundamental domain of the translation subgroup will share that point, so
the symmetry of the ornament is maintained by the hyperbolization and the axis
of reflection stays a line.

For the symmetry group x X, the Klein bottle, no such symmetric placement is
possible. No matter where in the original orbifold the designated center of rotation
is chosen, there will always be two copies of it in the orbifold of the o subgroup. So
it is not possible to hyperbolize this group by introducing a single center of rotation
into its o subgroup. It is however possible to introduce two centers of rotation,
both with the same angle, and both related to one another via the elements of the
group obtained by factoring the o subgroup out of the full x x symmetry group.
The angle requirement of is again satisfied whenever the common order
of this pair is greater than one.

Putting all of this together, one can state the following:
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Theorem 5.8: Existence of hyperbolizations

For every Euclidean wallpaper group, a conformal hyperbolization is possible.
If the wallpaper group contains any rotations, then the hyperbolization can
be faithful. Otherwise it can be faithful with the exception of a single point
which is turned into a new center of rotation.

Possible choices for the introduction of that point were given above, but that
does not prove that a hyperbolization will have to choose these points. So a
symmetric choice according to the rules above is sufficient for the existence of a
hyperbolization, but not necessarily required.

5.5 Discrete conformal maps

The central tool to actually compute the conformal maps for the hyperbolizations
described above is the concept of discrete conformal maps. Or more precisely, one
concept for these. There are several distinct discretizations of conformality. The

one used for hyperbolizations is based on the conformal equivalence of triangle
meshes. [45]

5.5.1 Equivalence of triangle meshes

The basic concept is pretty simple. It captures the idea that a continuous map
locally acts like an isotropic scaling. So the scale factor will depend on the location
(and in the continuous case will vary smoothly over the manifold) but it does
not depend on the direction. The discretization of a manifold in this model is a
combinatoric triangulation M = (V, E,T) together with edge lengths ¢ : E — R-,.

Figure 5.5: A discrete conformal deformation
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A lap B A falap'fB B

Figure 5.6: Example of conformal equivalence

A discrete conformal transformation of this graph will preserve the combinatorics
but change the metric. Instead of the original lengths ¢, new lengths ¢ will be used
for the edges. The change in length should depend on location but not direction,
which is modeled by discrete scale factors which are associated with the vertices,
not the edges. This is captured by the following definition:

Definition 5.5: Discrete conformal equivalence

Two metrics £ and £ on a given triangulation M = (V, E,T) are said to be
conformally equivalent iff there exists some assignment u : V' — R such that

This definition apparently was used in [33] in 2004, but [45] also provided
a variational method approach to computing the scale factors wu; required to
obtain some prescribed angle sums around the vertices. The application presented
originally was conformal flattening of surface textures: by prescribing angle sums
of 2m for every interior vertex, a contoured surface could be mapped to the flat
plane. But the input doesn’t have to be 3d coordinates; having the edge lengths is
enough.

There even exists a version of the variational principle which operates in the
hyperbolic plane, so it will compute hyperbolic triangles instead of Euclidean ones.
One thing worth noting in this respect is the fact that the functional used for the
variational principle was obtained using hyperbolic geometry.[I0] So even for the
Euclidean case, ideal hyperbolic polyhedra in three dimensions were essential to
obtain the required formulas. Therefore the authors of that approach were well
acquainted with hyperbolic geometry, and had already worked out the hyperbolic
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version by the time we asked them for it.[44]

There are basically two ways to go about this business of hyperbolizing or-
naments using discrete conformal triangle meshes. The mathematically exact
approach starts by triangulating the Euclidean fundamental domain. Then the
angles at the singularities are conformally adjusted to match the desired hyperbolic
orbifold symbol. As already mentioned in one can actually encode
the topological structure of the orbifold into the triangulation graph. This avoids
the need to make arbitrary cuts and the difficulty of ensuring that these cuts will
line up correctly after the transformation.

Once the transformed lengths have been computed using unconstrained convex
non-linear optimization, these lengths can be used to compute triangle positions. If
the topology of the orbifold is encoded into the triangulation, then a single triangle
of that orbifold might get represented by more than one triangle in the plane. This
happens because instead of cutting open the orbifold along the images of straight
Euclidean lines, it is preferable to have a fundamental domain delimited by straight
hyperbolic lines, as the rendering algorithm described in is based on a
convex polygonal fundamental domain. Therefore, some triangles might get cut
apart by the boundary of the fundamental domain. And in any case, that boundary
is not known until sufficiently many triangles incident to singularities have been
placed to define the corners of that fundamental domain. also illustrates
the situation, since it not only shows straight edges and their images, but also the
triangle mesh in relation to these.

One drawback is that the whole computation has to be executed in hyperbolic
geometry, which is slower than a comparable computation in Euclidean geometry.
This observation gives rise to a second approach. Instead of triangulating the
fundamental domain in the Euclidean preimage, the hyperbolic image is triangulated.
The resulting triangles are however embedded into the Euclidean plane using the
Poincaré disk model, and are subsequently treated as Euclidean triangles. This is
a valid approximation in many cases because the smaller a triangle gets, the less
angle deficit it has, and the less pronounced is the difference between Euclidean
and hyperbolic geometry. Sufficiently small triangles are almost Euclidean. One
drawback of this approach is the fact that it requires prior knowledge about the
shape of the hyperbolic fundamental domain. This is only the case if the symmetry
group is highly symmetric, as defined and used in [Section 5.4.2] Otherwise, the
shape has to be determined from the result of the transformation, which means that
the transformation has to start with the Euclidean ornament. So that is what we
implemented: highly symmetrical ornaments get hyperbolized by triangulating their
hyperbolic cell and transforming that to Euclidean angles and metric. Ornaments
with lower symmetry will have their Euclidean orbifold triangulated and transformed
to the hyperbolic scenario using hyperbolic computations during the optimization.
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One other relevant property of these conformal equivalences is the fact that it is
very well suited to interpolation. For every pair of source and destination triangle
there exists a uniquely defined projective transformation which maps not only the
corners of one onto the other, but also the circumcircle. Iff the triangles are related
to one another by a discrete conformal map, then the projective interpolation will
line up along the edges of the triangles. The factors used to scale the homogeneous
coordinates of the corners in order to obtain this projective transformation can be
directly read off the scale factors used for the lengths in the discrete conformal
map of the mesh itself. Namely a vertex v; = (z,y, 1) of the original triangle will
map to a vertex v; = e "i(x,7, 1) of the transformed mesh.[45] This interpolation
allows for fairly smooth images of the hyperbolized ornament even at moderate
resolution of the triangulation.

One thing this approach does not handle yet is changing the order of a singularity
to infinity. The problem in that respect is the fact that the non-linear optimization
uses edge lengths of triangles to compute angles from them. If one of the angles is
to be zero, the two adjacent edges will be infinite. The remaining third edge length
is insufficient to determine the other two angles. It might be possible to formulate
the relation between these two angles and the edge length, and incorporate that
into the variational principle. But that remains a task for a later time. In the
meantime, simply increasing the order of a center to large but finite order gives
a reasonably good approximation of infinite order, and works well enough if the
computation is done from Euclidean to hyperbolic. The reverse direction, used for
greater speed, suffers more severely from numeric problems if orders become large.

5.5.2 Circle packings

Of the various definitions for discrete conformality, we had considered and aban-
doned one other before we successfully adapted the equivalence of triangle meshes
described in the previous subsection. That other approach was discrete conformal
transformations expressed using circle packings. In the most simple scenario (and
that was basically all we considered before switching approach), a circle packing
whose touch graph is a triangulation of the sphere or equivalently the disk can be
transformed to a combinatorially equivalent circle packing of the unit disk.[46]
This is very much a discrete version of Riemann’s mapping theorem, which
entails some benefits but also some drawbacks. Perhaps the major benefit is that
this approach has been proven to converge to continuous conformal maps in the
limit. Although the same has been conjectured for the equivalence of triangle
meshes, the proof for that is, to the best of our knowledge, still outstanding. On
the other hand, the approach as described suffers from some of the same problems
that made the use of continuous maps infeasible in the first place. Most notably,
since the target of the deformation is the unit circle, circles close to singularities in
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the original fundamental domain will get mapped very close to the rim of the unit
disk, which entails severe problems with regard to numeric stability. Furthermore,
since the transformation most easily starts by intersecting a regular hex grid with
the shape that should be mapped onto the unit disk, this would mean that the
shape of the hyperbolic fundamental domain would have to be known in advance,
which it is not. A different kind of problem comes from the fact that there is no
obvious way to interpolate between (the centers of) these circles. Even worse, if
indeed centers of circles are used as the basis for interpolation, or perhaps touching
points in addition to or instead of these, then at the corners of the triangles, where
the deformation is most pronounced, one would be forced to use extrapolation
instead of interpolation, at the cost of less control over numeric errors.

While we were still trying to control these different problems, we learned of
the freshly published work on equivalent meshes. Even in this first publication it
already avoided using the unit disk as an intermediate step, and it already exhibited
the high quality projective interpolation scheme associated with it. So at that time,
we abandoned our work on circle packings and concentrated on equivalent meshes.
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Chapter 6

Outlook

6.1 Future development

The various approaches described in this work have almost all been realized in
some proof of concept implementation. However, these implementations are often
distinct projects. In particular, there is one application for real time drawing of
hyperbolic ornaments as described in[Chapter 4] a second one to do hyperbolization
of Euclidean ones as described in and a third one which was mainly
used to create most of the illustrations used throughout this work. While the real
time drawing is still based on reified triangles as described in [Section 4.3.1] the one
used for the illustrations demonstrated the superiority of the approach outlined by
Section 4.3.31 But the image generation was designed for high resolutions, flexible
code and mathematical precision, with little regard for speed. In terms of speed,
the best result is a viewer for the results of hyperbolizations, since that makes use

of OpenGL in the way describes it.

One major goal for this project is the creation of an integrated application
which combines all of these aspects. It should have facilities to draw ornaments in
Euclidean and hyperbolic geometry, with a similar user interface for both. While
the display should most likely be based on OpenGL, it should also be possible to
create images at greater resolution than those used for display on screen. Both
pattern recognition and the hyperbolization of Euclidean ornaments should be
integrated into this application. The user interface should be easily accessible to lay
people, but on the other hand offer powerful tools for users with expert knowledge.
For example, while novice users might be presented with a fixed set of predefined
hyperbolic groups, the expert will have access to the concepts for group definition
described in [Chapter 3

The project is currently planned under the name “Morenaments 2”. It is intended
as common successor to two prior projects by the author: “Morenaments euc” for
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drawing and recognizing Euclidean ornaments and “Morenaments hyp” for drawing
hyperbolic ornaments based on triangle reflection groups.

One challenge is current technology for applications on the web. While on
the one hand, running Java applications is becoming increasingly hard, with ever
more configurations to be made and security warnings scaring away potential users,
JavaScript with WebGL and HTML 5 on the other hand have made big steps
towards graphics-intensive applications using that platform. Therefore, it seems
likely that a new implementation intended to be used mainly from within the web
browser should build on these technologies, even if that means rewriting large
portions of the current Java code base.

6.2 Open questions

Most of the work for this unified project will likely be an exercise in software design,
but based on mathematical concepts already understood and demonstrated by the
existing proof of concept implementations. However, there are some features which
require still more mathematical understanding before they can be implemented.

One open problem is the adaptation of the variational principle for discrete

conformal triangle meshes to the case of zero degree angles and ideal points, as
discussed at the end of [Section 5.5.11

A second open problem is the search for a suitable method to compute (discrete)
conformal transformations on the sphere. The theory of discrete conformal maps
can be applied to spherical geometry as well, but it loses one important property:
the functional which governs the optimization process is no longer convex, so
optimization techniques like gradient descent will diverge. There are currently
several people exploring avenues to make this work.

Towards the end of [Section 3.2.3] automatic groups have been suggested as a
possible alternative to term rewriting systems. There should be some experiments

on the feasibility of that approach, and if those look good, a generic proof that
they will always work would be nice to have.

In we stated some sufficient conditions for the placement of new
centers of rotation, which would ensure the preservation of all symmetries even if
the hyperbolization was performed using the underlying subgroup of translations
only. It would be good to have a list of required conditions here as well, so that
users can have a maximum of flexibility in making that choice.
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6.3 Things to try

described how one could continuously morph between three different
models of hyperbolic geometry. It would be nice to see this realized visually. One
option would be a film project to illustrate this connection. Another would be an
interactive component within Morenaments 2.

suggested alternative ways to represent hyperbolic lines, using
ideas from Lie geometry. Some more thought and perhaps a bit of experimentation
might show whether they pose a useful representation for the applications at hand.

As mentioned earlier, not every cocompact hyperbolic symmetry group is a
triangle reflection subgroup. suggested approaches to obtain other sym-
metry groups from such a triangle reflection subgroup by a sequence of subsequent
modifications. This has to be tested yet, in particular to investigate how intuitive
such a tool would be.

There is an alternative to the GPU-based preprocessing approach described in
Instead of only allowing a nearest-neighbor search for the correspond-
ing position in the central fundamental domain, one could also do interpolation.
To make this possible, one would have to ensure that points which are close to one
another in the orbifold are also close together in the texture image which is the
result of the preprocessing step. this can be achieved by replicating the topological
structure of the underlying orbifold in color space of the texture.[40] Since that
space is four-dimensional (three colors and alpha), even orbifolds which cannot
be embedded into three-space without self-intersection might still get embedded
into that space. There are however still lots of things to investigate, in particular
whether the low resolution of color space can be compensated by making two
textures, one with main value and one with round-off errors. Another thing to
check is how susceptible this approach is to bias close to the rim of the hyperbolic
plane, where interpolation positions will be far apart.
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