
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Bioinformatik

Structural Graph Clustering: Scalable Methods and
Applications for Graph Classification and Regression

Dipl. Wirtsch.-Inf. Madeleine Seeland

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Univer-
sität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Univ.-Prof. Dr. Ernst W. MayrVorsitzender:

Prüfer der Dissertation:
1. Univ.-Prof. Dr. Burkhard Rost
2. Univ.-Prof. Dr. Stefan Kramer

Johannes Gutenberg Universität Mainz

Die Dissertation wurde am 19.05.2014 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 04.08.2014 angenom-
men.

In loving memory of my father, Alfred Seeland.

Abstract

In recent years, the collection of complex data from various domains, such as bio- and
cheminformatics, has been rapidly increasing due to advances in technology for generating
and collecting data. The explosive growth in data has generated an urgent need for new
technologies and automated tools capable of efficiently extracting useful hidden informa-
tion from these data. Data mining, therefore, has become a research area with increasing
importance. As much of the data collected is structural in nature, graph-based represen-
tations have been intensively employed for modeling these data, making graph mining an
important topic of research. This thesis focuses on the graph mining task of clustering
objects in a graph database based on graph structure and studies several applications for
classification and regression.
The first part of the thesis introduces scalable methods for clustering large databases

of small graphs by common scaffolds, i.e., the existence of one sufficiently large subgraph
shared by all cluster elements. In contrast to many related approaches, these methods
are not based on computationally expensive maximum common subgraph operations or
variants thereof, but on frequent subgraph mining. First, an incremental online approach
for this task is presented that produces non-disjoint and non-exhaustive clusterings. A
major challenge in this endeavor is the scalability of the approach to large data sets.
Therefore, a parallelized structural graph clustering approach, called PSCG, is presented
that takes advantage of high-performance parallel hardware and further employs several
cluster exclusion criteria to reduce the number of expensive subgraph search computations.
Subsequently, a scalable graph clustering approach, called SCAP (Structural Clustering by
Abstract Pre-clustering), designed for the efficient clustering of very large graph databases
containing millions of graphs is proposed.
The second part of this thesis investigates the applicability of graph clustering or, more

generally speaking, local structural graph (similarity) neighborhoods for building models
for classification and regression. The first approach, called LWL-MCS (Locally Weighted
Linear Regression based on Maximum Common Subgraph), surveys locally weighted learn-
ing on graphs using a distance measure based on the maximum common subgraph to de-
termine the neighborhood of a test instance. The second approach, called SCK (Structural
Cluster Kernel), enables kernel methods to utilize additional information hidden in the
structural neighborhood of the graphs under consideration. To this end, it exploits the
clusters produced by PSCG to improve state-of-the art graph kernels. Last, an approach

iii

is presented that aims at extracting knowledge from support vector machines trained on
the SCK to obtain more compact pattern-based classification models.
In extensive experiments, the effectiveness and efficiency of the proposed approaches

have been proved on various real world data sets of molecular graphs. The results show
that it is for the first time possible to cluster millions of graphs within a reasonable time
using an accurate scaffold-based similarity measure. In the domain of cheminformatics, for
instance, this represents a step towards structuring the vast chemical space. In addition,
structural graph neighborhoods have proven their applicability in various applications for
classification and regression.
The graph clustering approaches presented in this thesis pave the way for new research

challenges in various areas such as bio- and cheminformatics and consequently have the po-
tential to play a major role in domains involving the analysis of large volumes of structured
data.

iv

Zusammenfassung

Die Menge komplexer Daten aus unterschiedlichen Bereichen wie der Bio- oder Chemiein-
formatk ist in den vergangen Jahren infolge des technologischen Fortschritts bei der Daten-
generierung und -sammlung stark angestiegen. Dieser explosionsartige Anstieg erzeugte
einen großer Bedarf nach neuen Methoden zur effizienten Extrahierung von verborgenen In-
formation aus großen Datenbeständen. Data Mining hat sich aus dieser Motivation heraus
zu einem Forschungsgebiet mit zunehmender Bedeutung entwickelt. Da viele der gesam-
melten Daten in struktureller Form vorliegen, werden verstärkt graphbasierte Repräsen-
tationen zur Modellierung der Daten eingesetzt, mit der Folge, dass sich Graph Mining zu
einem wichtigen Forschungsthema entwickelt hat. Aufsetzend auf dieser Thematik doku-
mentiert diese Dissertation neue Ansätze zu einem Teilgebiet des Graph Minings, dem
Graph Clustering. Das Ziel von Graph Clustering ist die Gruppierung von Objekten in
einer Graphdatenbank basierend auf ihrer Graphstruktur. Weiterhin werden Anwendun-
gen für die Klassifikation und Regression beschrieben.
Der erste Teil der Arbeit führt skalierbare Verfahren zum Clustern von großen Graphda-

tenbanken auf Basis eines den Clusterelementen gemeinsamen, ausreichend großen Subgra-
phen ein. Im Unterschied zu vielen verwandten Ansätzen basieren die Methoden nicht auf
rechenintensiven maximalen gemeinsamen Subgraph Operationen oder Varianten davon,
sondern auf dem Finden von häufigen Subgraphen. Zunächst wird ein inkrementelles on-
line Verfahren vorgestellt, das überlappende (nicht-disjunkte) und nicht-vollständige Clus-
terings erzeugt. Eine große Herausforderung ist dabei die Skalierbarkeit auf großen Daten-
sätzen. Zur Lösung dieser Herausforderung wurde ein parallelisierter struktureller Graph-
Clustering-Ansatz namens PSCG entwickelt, der die Vorteile hochleistungsfähiger parallel
arbeitender Rechenkerne nutzt und gleichzeitig Gebrauch von mehreren Ausschlusskriteri-
en macht, um die Anzahl an teuren Berechnungen von häufigen Subgraphen zu reduzieren.
Ergänzend wurde ein skalierbarer Graph Clustering Ansatz namens SCAP (Structural
Clustering by Abstract Pre-clustering) entwickelt, der speziell für das effiziente Cluster-
ing von sehr großen Graphdatenbanken, die mehrere Millionen von Graphen enthalten,
konzipiert wurde.
Der zweite Teil der Dissertation beschäftigt sich mit der Anwendbarkeit von Graph-

Clustering-Verfahren oder, allgemeiner, von lokalen strukturellen Graphnachbarschaften
zum Erlernen von Modellen zur Klassifikation und Regression. Der erste Ansatz namens
LWL-MCS (Locally Weighted Linear Regression based on Maximum Common Subgraph)

v

erzeugt lokale Modelle zur Vorhersagezeit unter Verwendung eines Distanzmaßes basierend
auf dem maximalen gemeinsamen Subgraphen zur Bestimmung und Gewichtung der Nach-
barschaft einer Testinstanz. Der zweite Ansatz, SCK (Structural Cluster Kernel), erweitert
Kern-Methoden, um Informationen nutzen zu können, die in strukturellen Graphnach-
barschaften verborgen sind. Hierfür verwendet die Methode die aus PSCG gewonnenen
Ähnlichkeiten, um die im Stand der Wissenschaft und Technik bekannten Graph Kernels
zu verbessern. Zuletzt wird ein Ansatz präsentiert, der zum Ziel hat, Wissen aus (auf
dem SCK) trainierten Support Vektor Maschinen Stützvektormaschinen zu extrahieren,
um kompaktere musterbasierte Klassifikationsmodelle zu erhalten.
In umfangreichen Experimenten wurde die Effektivität und Effizienz der vorgestellten

Ansätze auf zahlreichen molekularen Graphdatensätzen bewiesen. Die Ergebnisse zeigen,
dass es zum ersten Mal möglich ist, Millionen von Graphen unter Verwendung eines akku-
raten strukturbasierten Ähnlichkeitsmaßes innerhalb eines annehmbaren Zeitrahmens zu
clustern. Auf dem Gebiet der Chemieinformatik stellt dies beispielsweise einen Schritt in
Richtung Strukturierung des riesigen chemischen Strukturraums dar. Weiterhin wurde die
Anwendbarkeit von strukturellen Graphnachbarschaften für verschiedenen Anwendungen
zur Klassifikation und Regression gezeigt.
Die in dieser Dissertation vorgestellten Graph-Clustering-Ansätze ebenen den Weg für

neue wissenschaftliche Herausforderungen in unterschiedlichen Gebieten wie beispielsweise
die Bio- oder die Chemieinformatik und beinhalten somit das Potenzial, zukünftig in der
Analyse von großen, strukturierten Datenmengen eine entscheidende Rolle zu spielen.

vi

Acknowledgements

Several individuals and institutions contributed in various ways to the completion of this
dissertation. I am very thankful for their support and advice, and grateful for the unique
chances this support offered me. Without their support, this work would not have been
possible.
First of all, I want to express my sincere gratitude to my supervisor, Stefan Kramer, for

giving me the opportunity to pursue my doctoral studies in his research group. Throughout
my doctoral studies, he provided me with invaluable suggestions and comments, encour-
aged me to develop independent research skills, pushed me towards publishing results at
highly reputable venues and provided all the assistance I needed to conduct my research.
Thus, he significantly improved this thesis both regarding content and presentation. I
am also grateful that Stefan gave me the possibility to finish my doctoral studies at the
Technische Universität München when he moved to the Johannes Gutenberg-Universität
Mainz. In this context, I would also like to thank Burkhard Rost for hosting me at the
Technische Universität München and for acting as the first reviewer of this thesis.
During the past years, I had the chance to collaborate with many interesting people

who provided valuable input on various parts of my research. In particular, I am very
grateful to Bernhard Pfahringer for his support and valuable discussions. It has been
a unique chance for me to work with him and to learn from his scientific experience.
Special thanks go to Andreas Karwath, with whom I worked together on various research
projects. In all of those he has made substantial contributions. Besides, he always had an
open ear for questions and discussions. Further, I am very grateful to Tobias Girschick
for his great support especially at the beginning of my doctoral studies and for numerous
fruitful discussions. Thanks also to Simon Berger for helping me to implement the parallel
version of the clustering approach and for valuable discussions regarding high performance
computing related issues. I would also like to thank all my colleagues at the Technische
Universität München who provided an excellent working atmosphere and significantly
influenced my work and life. Special thanks go to our great system administrator, Timothy
Karl, not only for his continuous technical support and assistance with the computational
resources, but also for his constant positive attitude. I am also deeply grateful to Marlena
Drabik for all her help regarding administrative issues and for integrating me so warmly
into the lab. Likewise, I would like to thank my former office mates, Jana Schmidt and
Andreas Hapfelmeier, for making my work place such a pleasant to be.

vii

Last but not least, I want to thank the most important people in my life, my family,
for their continuing support and believe in me. Thanks to my parents, Jutta Seeland and
Alfred Seeland, for their love and support throughout my life. I dedicate this dissertation
to the loving memory of my father, Alfred Seeland, who I miss dearly as I finish this part
of my life in his absence. He would have been very proud of me.
The last credits I would like to dedicate to a very special person, my husband Jan

Gumprecht, for his constant source of support and love in my life. He was always there
for me, encouraging me and giving me the necessary strengths in difficult times. I would
never have reached this point without his continuous support and love.
Finally, I acknowledge financial support of the German Bundesministerium für Bildung

und Forschung (BMBF), under the project REACH (FKZ 0315546C).

viii

Contents

Acronyms xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Applications . 8

1.3.1 Definition of Chemical Categories . 8
1.3.2 Predictive Toxicology . 9
1.3.3 Virtual Screening . 9

1.4 Outline of the Thesis . 9

2 Related Work 11
2.1 Introduction to Graph Theory . 11

2.1.1 Graph . 11
2.1.2 Graph Isomorphism and Subgraph Isomorphism 12

2.2 Graph Clustering . 15
2.2.1 Clustering Vectorial Data . 17
2.2.2 Graph-based Clustering . 19

2.3 Kernel Methods . 22
2.3.1 Kernels . 23
2.3.2 Graph Kernels . 26
2.3.3 Cluster Kernels . 30
2.3.4 Support Vector Machines . 31

2.4 Knowledge Extraction from SVMs . 37
2.4.1 Rule Extraction from SVMs . 38
2.4.2 Other Knowledge Extraction Methods from SVMs 46

3 Graph Clustering 49
3.1 Structural Graph Clustering . 50

3.1.1 Problem Definition . 52
3.1.2 Method . 54
3.1.3 Experiments . 56

ix

Contents

3.1.4 Conclusion . 62
3.2 Parallel Structural Graph Clustering . 64

3.2.1 Method . 64
3.2.2 Experimental Results . 75
3.2.3 Conclusion . 80

3.3 Structural Clustering by Abstract Pre-clustering 81
3.3.1 Method . 82
3.3.2 Experimental Results . 90
3.3.3 Conclusion . 97

4 Maximum Common Subgraph Based Locally Weighted Regression 99
4.1 Introduction . 99
4.2 Related Work . 100
4.3 Method . 102

4.3.1 Notation and Definitions . 102
4.3.2 MCS Algorithm . 102
4.3.3 MCS-based Distance Measure . 103
4.3.4 MCS-based Locally Weighted Regression 104

4.4 Experimental Results . 108
4.5 Discussion and Conclusion . 115

5 The Structural Cluster Kernel 117
5.1 Introduction . 117
5.2 Method . 118

5.2.1 Structural Cluster Kernel . 118
5.2.2 Semi-Supervised Setting . 121

5.3 Experimental Results . 122
5.3.1 Supervised Setting . 123
5.3.2 Semi-Supervised Setting . 127
5.3.3 Comparison to Locally Weighted Learning 129

5.4 Conclusion . 132

6 Mining Support Vectors of the Structural Cluster Kernel 133
6.1 Introduction . 133
6.2 Problem Definition . 135
6.3 Method . 136

6.3.1 Backbone Refinement Class Mining 136
6.3.2 Graph Mining On Support Vectors 138

6.4 Experiments . 141
6.4.1 Baseline Methods . 141
6.4.2 Data Sets . 142
6.4.3 Experimental Setup . 142

x

Contents

6.4.4 Results . 143
6.5 Conclusion . 149

7 Conclusion and Outlook 151
7.1 Conclusion . 152
7.2 Outlook . 155

List of Figures 159

List of Tables 165

List of Algorithms 167

Bibliography 169

xi

Acronyms

APreClus Abstract Pre-Clustering

DySC Dynamic Seed-Based Clustering

EM Expectation Maximization

ICA Independent Component Analysis

LoMoGraph Local Models for Graph Classification and Regression
LWL Locally Weighted Learning
LWL-MCS Locally Weighted Linear Regression based on Maxi-

mum Common Subgraph

MCES Maximum Common Edge Subgraph
MCS Maximum Common Subgraph

NSPDK Neighborhood Subgraph Pairwise Distance Kernel

PCA Principal Component Analysis
PSCG Parallel Structural Clustering of Graphs

QSAR Quantitative Structure-Activity Relationship

SCAP Structural Clustering by Abstract Pre-clustering
SCK Structural Cluster Kernel
SOM Self-Organizing Map
SVM Support Vector Machine

WDK Weighted Decomposition Kernel

xiii

CHAPTER 1
Introduction

1.1 Motivation

In recent years, the collection of data from various domains, such as bio- and cheminfor-
matics, has been rapidly increasing due to improvements of existing technologies as well
as the introduction of new technologies allowing to conduct many large scale experiments.
For example, in the domain of cheminformatics there has been an explosion in the type and
amount of data that is available for analysis due to the advent of large public repositories
of chemical and biological data. An example for such big data sources is the PubChem
database [176] that contains nearly 49.5 million chemical compounds. This vast amount of
information generates new opportunities for extracting and understanding the underlying
relationship between chemical structures and biological activity. The extraction of useful
knowledge from these large amounts of data is only possible with the help of complex
computational tools. In the domain of cheminformatics, this new insight may provide the
potential for supporting the drug discovery process and the development of safer chemicals
[29, 108, 150, 235, 242]. Hence, there is a pressing need for the development of techniques
and tools capable of extracting useful hidden information from these data. With the
explosive growth of data, the demand for analysis tools and techniques even increases.
Data mining, an important step in this process of knowledge discovery, provides methods

that discover interesting, non-trivial, and useful patterns hidden in the data [5, 50, 98].
Most classical data mining approaches are dealing with data that is represented by itemsets
or attribute-value encodings, where each instance is described by a set of properties.
However, such fixed types of representation cannot always be used to model the data
to be analyzed in an adequate manner. Many collections of data from various domains
such as bioinformatics, cheminformatics, social network analysis etc., contain information
that is structural in nature. This poses a critical problem to the traditional itemset and
attribute-value oriented modeling approaches as they are unable to preserve the topological
structure of the data in the representation.
This limitation has triggered the data mining research community to encourage min-

ing and learning within alternative and more expressive representations such as sequences,

1

1 Introduction

trees and graphs [90, 132, 137, 209, 251]. Among them, graphs – consisting of a set of nodes
connected by edges – are one of the most general data structures in computer science, as se-
quences and trees are special cases of graphs. The incentive for using graph representations
is that they provide a natural representation of structured data and are more expressive
in comparison to flat representations. It makes them more broadly and extensively appli-
cable. As a result, graphs have become increasingly important in modeling complicated
structures, such as chemical compounds, protein structures, biological networks, social net-
works, the web, workflows, circuits, images, and XML documents, with broad applications
in various areas including bio- and cheminformatics, image classification, web analysis and
computer network analysis [8, 31, 32, 33, 70, 71, 100, 143, 149, 154, 152, 179, 196, 197].
With the increasing demand on the analysis of large amounts of structured data, graph

mining has become an active and important topic in data mining [58, 113, 141, 161, 245,
249]. Graph mining aims at extracting useful knowledge from a large amount of struc-
tured data modeled as graphs. This discipline has become an important topic of research
because of a wide variety of data mining problems in computational biology, chemical data
analysis, drug discovery and communication networking. The problem of graph mining
arises in two different contexts: mining large networks and mining large databases of small
graphs. The first setting, mining large networks, considers data represented in one large,
connected network [91, 140, 178]. In this domain, a network (graph) is composed of a large
number vertices with distinct labels. Examples of such networks include the World Wide
Web [37], social networks [74], citation networks [36], biological networks (e.g., protein
interaction networks [11, 99, 110] and gene regulatory networks [155, 169]), and computer
networks [76]. The second setting, mining of large databases of small graphs, considers
large databases of small, separate, independent graphs, such as databases of molecules or
databases of images. In this domain, the graphs are relatively small, but the labels on
different nodes, which are drawn from a limited set of elements, may be repeated many
times in a single graph. This thesis focuses on the latter graph mining setting, namely
mining large databases of small graphs. In recent years, this topic has become a very
active research area and several techniques have been designed covering the whole range
of methods from data mining and machine learning. Among them are techniques that deal
with problems such as frequent pattern mining, clustering and classification or regression
[3, 30, 59, 109, 127, 139, 173, 245, 246, 244, 251].
Clustering is a fundamental task and one of the most studied topics in data mining

[116, 117, 128, 243]. Given a set of data instances, the general goal of clustering is to
group the instances into a set of well separated groups that share common characteristics
based on similarity. Intuitively, instances within a cluster are more similar to each other
than they are to an instance belonging to different clusters. Clustering algorithms are
particularly suitable for the exploration of interrelationships among individual objects,
i.e., they are mainly used as exploratory data analysis tool.
In recent years, clustering has received a lot of attention in the domain of graphs [4,

79, 181]. The problem of graph clustering has traditionally been studied in the context

2

1.1 Motivation

of node clustering of individual graphs, in which one attempts to cluster the vertices of
a given input graph into groups of densely connected vertices. This kind of clustering is
sometimes also referred to as community detection [81, 195] and has traditionally been
studied in the context of graph-partitioning [1, 126, 131], minimum-cut determination
[125], network structure clustering [181] and dense subgraph determination [91, 252]. In
recent years, the problem of clustering graphs has also been investigated in the context of
clustering large databases of small graphs, where one attempts to cluster many different
individual graphs (as objects) based on their structural similarity [3, 67]. This thesis
focuses on the latter class of clustering problems, i.e., on clustering large databases of
small graphs (also called graph-based clustering). In the following, the terms graph-
based clustering and graph clustering are used interchangeably to refer to the problem
of clustering data sets of individual graphs. Graph clustering techniques are very useful
for detecting groups of structurally similar graphs while at the same time highlighting
differences between dissimilar ones. As a result, clustering large databases of small graphs
has emerged as a challenging research area with a large variety of applications, such as
in the field of virtual screening, where the task is to analyze large databases of chemical
compounds to identify possible drug candidates [233]. By applying clustering techniques it
is possible to prestructure the chemical space, e.g., for local modeling to capture the multi-
mechanistic nature of many endpoints, the rediscovery of analog series or visualization.
Traditional graph clustering approaches ignore the topological structure in the graph data
and transform the graphs into a feature vector-based representation [164, 250]. These
techniques have the advantage of being highly efficient, but at the same time imply a loss
of information with respect to the graph topology. On the other hand, more sophisticated
graph clustering approaches are directly based on the structure of the graphs. These
techniques have the desirable property that the calculated similarity measure is intuitive
and can be visualized easily. However, they suffer from efficiency and scalability problems
with respect to large graph data sets. Most of the proposed structure-based clustering
approaches are quadratic in runtime, as every new instance has to be compared to every
other instance. As graph data grows in scale, it becomes increasingly more challenging to
identify clusters. Thus, there is a pressing need for graph clustering algorithms that are
able to handle large databases of graph.
To address this challenge, this thesis presents contributions in the field of graph clus-

tering with a special focus on scalability. In particular, the thesis introduces scalable
approaches for clustering large data sets of graphs by common scaffolds, i.e., the existence
of one sufficiently large substructure shared by all cluster elements. Graph clustering or,
in more general, the definition of local structural graph (similarity) neighborhoods can be
useful for a variety of purposes, e.g., to build local models for classification or regression
[38]. To illustrate the usefulness of local structural graph neighborhoods, this thesis fur-
ther investigates applications that exploit the structural neighborhood of graphs to build
models for classification and/or regression.

3

1 Introduction

1.2 Contributions

There are six main contributions presented in this thesis:

1. An online algorithm based on frequent subgraph mining for clustering graph
databases in terms of structural similarity,

2. A parallelized structural graph clustering algorithm that can handle large databases
of graphs,

3. A scaffold-based graph clustering algorithm based on abstract pre-clustering capable
of clustering large databases containing millions of graphs,

4. A locally weighted learning approach for regression on graphs that defines local
structural neighborhoods of test instances by the size of common subgraphs,

5. A novel approach enabling kernel methods to utilize additional information hidden
in the structural neighborhood of the graphs, and

6. An approach for extracting information from support vector machines for pattern-
based classification.

First of all, a novel structural graph clustering algorithm is presented that clusters
large graph databases according to scaffolds, i.e., large structural overlaps that are shared
among all cluster members. To do so, the problem formulation takes advantage of a
frequent subgraph mining algorithm without effectively generating thousands of subgraphs
in the process. In clustering the data, the proposed clustering approach requires the
cluster members to share at least one common subgraph that covers a specific fraction
of the graphs in the cluster. The algorithm works in an online fashion, i.e., it processes
one structure after the other and produces overlapping (non-disjoint) and non-exhaustive
clusters.
An important challenge in this endeavor is the scalability to large graph data sets.

Graph databases such as the ones representing chemical compounds routinely encompass
several hundred thousand graphs; thus, clustering methods that are able to explore and
structure the vast graph space are highly desirable. However, the majority of structural,
i.e., scaffold-based, graph-based clustering algorithms, involving, e.g., the computation of
the Maximum Common Subgraph (MCS) which is known to be NP-hard, is hardly suitable
for such data sets. Graph data sets covered in related papers typically contain only several
hundred graphs [3, 107, 182], and hardly any effort has been spent on characterizing the
performance of the clustering algorithms. To address this shortcoming, the aforementioned
structural clustering algorithm has been extended to handle larger graph databases. The
novel structural graph clustering algorithm, called PSCG (Parallel Structural Clustering
of Graph), is based on the idea of task partitioning in conjunction with refined cluster
membership tests. More precisely, a set abstraction of graphs and a size-based clustering

4

1.2 Contributions

criterion are used to reduce the number of expensive subgraph search computations, which
are not affordable exhaustively on large databases. Moreover, to avoid cluster comparisons
with all cluster members, which grow computationally more expensive with increasing
cluster size, a cluster representative is defined for each cluster once a unique cluster scaffold
is found. PSCG is able to handle graph data sets of at least 300,000 graphs. Still,
common graph databases, such as real-world compound libraries employed for virtual
screening, contain millions of molecular graph structures, and clustering algorithms to
structure these libraries are needed. To address this challenge, a scaffold-based algorithm
for clustering such very large molecular graph databases is presented. The approach,
named SCAP (Structural Clustering by Abstract Pre-clustering), employs two clustering
stages. It first partitions the original data set into several smaller data sets using a
greedy clustering approach inspired by Dynamic Seed-Based Clustering (DySC) [257] for
RNA reads and a similarity measure based on an abstraction from the actual structural
similarity measure. The pre-clustering approach is referred to as APreClus (Abstract
Pre-Clustering). The motivation behind the pre-clustering step is that by using this pre-
clustering approach and the abstraction-based similarity measure, dissimilar partitions of
the original data set are generated, without the loss of information. The similarity measure
ensures that only graphs which have the potential of being structurally similar are assigned
to the same partition. Overall, this leads to a reduction in the number of expensive
subgraph search computations performed in the second clustering stage, which are now
not required as the partitions are dissimilar from each other. The resulting partitions are
further clustered into a finer level of granularity using the highly parallelized scaffold-based
clustering approach PSCG that produces overlapping (non-disjoint) and non-exhaustive
clusters. The second-stage clustering avoids cluster comparisons with all cluster members,
which grow computationally more expensive with increasing cluster size, by defining a
cluster representative for each cluster.
Graph clustering or, more generally, the definition of local structural graph (similar-

ity) neighborhoods can be useful for a variety of purposes. Graph clustering or, more
generally, the definition of local structural graph (similarity) neighborhoods can be useful
for a variety of purposes. One family of methods making use of local neighborhoods are
local learning methods. In recent years, local learning methods have experienced renewed
interest in the form of local models, i.e., high-quality models of small regions of the input
space that often have the advantage of being easier to predict and easier to interpret by
domain experts [192]. Several local models together can make up a global model, or global
models are the fallback solution (default) when no local model is applicable. One way of
defining local models is in terms of clusters. Such an approach was followed by Buchwald
et al. [38] who defined local models in terms of structural graph clusters obtained by the
structural graph clustering approach PSCG. More precisely, the approach called LoMo-
Graph (Local Models for Graph Classification and Regression) exploits structural graph
neighborhoods in a static way by pre-computing local graph neighborhoods and using
them as a basis for building models for classification or regression (e.g., one per cluster).

5

1 Introduction

Local structural neighborhoods may also be used in a dynamic way by determining them
for a given test instance individually on demand, at testing time. Such a lazy learning
technique is chosen by approaches based on locally weighted learning [10], for instance.
Locally weighted learning has been known to be highly effective for regression for a long
time, but has not been studied yet for structured data like graphs, although the approach
makes sense for at least two reasons. First, it is intuitive to structure the input space be-
fore inferring any predictive model, as the structural composition and diversity of typical
data sets for graph classification and regression have a serious impact on the predictive
performance of methods. A closer look reveals that there exist “structural islands” in
many data sets, i.e., subsets of instances that share a large common structural scaffold.
Second, for structured objects, local models or local neighborhoods are an opportunity,
because the wealth of possible descriptors and similarity/dissimilarity measures enable
the use of one view for determining the neighborhood, and a different view for actually
making the prediction. For this reason, this thesis studies locally weighted regression
on graphs, particularly in the context of so-called Quantitative Structure-Activity Rela-
tionships (QSARs), which are models relating chemical structure to biological activity.
The approach referred to as LWL-MCS (Locally Weighted Linear Regression based on
Maximum Common Subgraph) defines local neighborhoods of test instances by the size of
common subgraphs. More specifically, an MCS-based distance measure is employed for lo-
cally weighted learning. The actual predictive models are then built using a feature-vector
representation of graphs. In an empirical evaluation, the presented approach is compared
to other methods using local neighborhoods.
Another family of methods making use of local neighborhoods are kernel methods. Ker-

nels defined on graphs [87] typically compare sets of common graph elements like chains,
trees or subgraphs. This thesis introduces a novel approach enabling kernel methods to
utilize additional information hidden in the structural neighborhood of the graphs under
consideration. More specifically, the novel kernel, called SCK (Structural Cluster Kernel),
incorporates similarities induced by the structural clustering algorithm PSCG to improve
state-of-the-art graph kernels. The approach taken is based on the idea that graph similar-
ity can not only be described by the similarity between the graphs themselves, but also by
the similarity they possess with respect to their structural neighborhood. When this novel
graph kernel is used in a Support Vector Machine (SVM) algorithm, a graph prediction
system emerges. The approach is applied to a challenging problem in cheminformatics,
i.e., the prediction of toxicity and biological activity of chemical compounds.
Besides pattern-based methods, kernel-based methods are the most important classifi-

cation methods for structured data such as graphs, trees, and sequences. In combination
with SVMs, kernel-based methods are often considered as state-of-the-art classification
methods in machine learning. An important advantage of SVMs is that their classification
decision is based on a subset of the training examples, referred to as the support vectors.
However, an important drawback of SVMs is typically their black box character. The
generated non-linear models frequently lack interpretability, i.e., they do not naturally

6

1.2 Contributions

provide an explanation of the classification decisions being made. In the light of this,
the thesis addresses the following question: Can we make use of trained SVM models to
obtain more compact pattern-based classification models? There are at least two possible
ways of doing so: by analyzing a trained SVM model together with the training set, or by
using the models as oracles to label instances [62]. In this thesis, the former of the two
approaches is studied. The proposed approach extracts information from trained support
vector machines, in particular their support vectors and their relevance according to their
coefficients. It uses the support vectors along with their coefficients as input to pattern
mining algorithms able to handle weighted instances. The experiments in the domain of
graph mining and molecular graphs show that the resulting models are not significantly
less accurate than models trained on the full data sets, yet require only a fraction of the
time using much smaller sets of patterns.
Figure 1.1 illustrates the structure of this thesis.
The scientific work of this thesis has been conducted over the course of four years. The

algorithms and results presented here have been published in six peer-reviewed conference
papers [202, 203, 204, 205, 206, 208]. Research on other topics related to not covered
by this thesis was published in one journal article [38] and one peer-reviewed conference
paper [207].

Figure 1.1: Overview of the contributions of the thesis.

7

1 Introduction

1.3 Applications

While data mining and machine learning became popular techniques for a wide range of
problems, graph clustering approaches are still rarely used in potential applications. This
might be caused by the computational complexity of graph-based approaches. Neverthe-
less, there are many potential areas such as bio- and cheminformatics, the web, social
networking and community detection, which could benefit from the use of graph-based
clustering methods. This thesis focuses on applications in the domain of cheminformatics.
In the domain of cheminformatics, graphs are one commonly used representation to

model molecular compounds in chemistry [89]. In a vertex- and edge-labeled undirected
graph, the vertices and edges correspond to atoms and chemical bonds, respectively. The
vertex labels identify symbols of chemical elements, whereas the edge labels characterize
the bond type. For example a carbon atom is labeled by C and an oxygen atom is labeled
by O, whereas a single bond is labeled by 1, a double bond is labeled by 2 and a triple
bond is labeled by 3. Most sophisticated representations for molecular graphs further
employ special node and bond labels for aromatic bindings, for example inside aromatic
rings. An example for a molecular graph representation is depicted in Figure 1.2. In this
representation only heavy atoms are taken into account, i.e., hydrogen atoms (H) are
ignored. Note the special node label (lowercase c) and edge label (4) in the ring structure.
In cheminformatics, graph clustering algorithms may be useful for a variety of purposes,
e.g., to structure the chemical space, for drug design or for predicting characteristics of
molecules from their graph structures, e.g., toxicity, or effectiveness as a drug. In the
following, some interesting applications in this domain are presented.

1.3.1 Definition of Chemical Categories

Graph clustering may be useful for areas such as QSARs and predictive toxicology, where
the task is not only prediction, but also the formation of categories homogeneous in the
structure. Such categories are urgently required, for instance, in the context of REACH
(Registration, Evaluation, Authorisation and Restriction of Chemical substances, the Eu-
ropean Community Regulation on chemicals and their safe use) [186]. The central axiom
of QSARs is that the activity of molecules is reflected in their structure, i.e., structurally
similar compounds should also have similar biological activity. Hence, by exploiting struc-
tural information in the clustering process, one may expect to find a set of structurally
homogeneous clusters reflecting similar biological or toxicological profiles.

H3C

O

C

C c

c c

c

cc

1

1
4 4

4

4 4

4

O
2

Figure 1.2: A 2D graph representation of a molecular compound (1-Phenylethanone).

8

1.4 Outline of the Thesis

1.3.2 Predictive Toxicology

Graph clustering may also be useful for building (local) models for classification or re-
gression, e.g., for predicting toxicology. The learning task in the predictive toxicology
setting is as follows: Given data about the molecular structure of some compounds and
the compounds’ toxic endpoints, learn a model that predicts the toxic endpoints of new
compounds. The endpoints represent toxic effects, for instance, brain tumor or kidney
failure. Learning tasks of this form are usually known as QSAR. QSAR learning is highly
relevant in modern medicinal chemistry and drug design, where automated experiments,
for instance from combinatorial chemistry, have led to vast amounts of data that is almost
impossible to analyze without the help of computers, data mining and machine learning
methods.

1.3.3 Virtual Screening

Moreover, graph clustering approaches offer a benefit in the field of virtual screening which
involves the use of high-performance computing to analyze large databases of chemical
compounds in order to identify possible drug candidates [233]. Virtual Screening has
become an integral part of today’s drug discovery and drug design process. By applying
clustering techniques it is possible to prestructure the chemical space which may provide a
means for local modeling to capture the multi-mechanistic nature of many endpoints, the
rediscovery and explicit representation of analog series or visualization. Thus, clustering
techniques may be useful to get a better understanding of the chemical space and may serve
as a supporting aid in virtual screening campaigns. However, the majority of structural
graph-based clustering algorithms that are, for example, based on the computation of the
MCS, is hardly applicable for such tasks. Hence, there is a pressing need for clustering
approaches that are able to handle large databases of chemical compounds.

1.4 Outline of the Thesis

This thesis basically consists of two parts. The first part (Chapter 3) covers scalable
methods for clustering large databases of graphs that are directly based on the structure
of the graphs. The second part (Chapters 4-6) deals with applicative aspects of graph
clustering and structural graph neighborhoods for graph classification and regression. In
the following, a brief description of the content of each chapter is reported.
Chapter 2 presents the start of the art relevant to this thesis and starts by recalling

the basis concepts of graph theory. The notation used in this thesis is introduced, and
standard graph clustering algorithms are described. The main focus lies on two types of
graph clustering approaches, vector-based and graph-based graph clustering approaches.
The chapter continues with an overview of kernels and kernel methods with a particular
focus on graph kernels. This part of the chapter ends with the description of support
vector machines, the most widespread kernel-based machine learning algorithm nowadays.

9

1 Introduction

The final section in this chapter provides an in-depth review of related work in knowledge
extraction, with a particular focus on knowledge extraction methods for SVMs. This
section provides context for understanding the contributions of the novel work presented
in chapter 6. The chapter contains no original contribution by the author; its sole function
is to introduce the definitions and notation that will be used throughout this thesis.
Subsequently, Chapter 3 covers the topic of structural graph clustering and introduces

three approaches therefore. First, Section 3.1 presents an approach that clusters databases
of graphs according to scaffolds (i.e., large structural overlaps) that are common between
cluster members and that produces overlapping (non-disjoint) and non-exhaustive clus-
ters. This approach provides the basis for the following graph clustering approaches. The
section introduces the problem of structural graph clustering and presents detailed exper-
imental results, both quantitatively and qualitatively. Section 3.2 is dedicated to a highly
parallelized extension of the previously presented structural graph clustering approach for
clustering even larger databases of graphs. Finally, Section 3.3 presents a graph clustering
approach named SCAP (Structural Clustering by Abstract Pre-clustering) that first parti-
tions the original data set into several smaller data sets using a greedy clustering approach
based on dynamic seed clustering. The resulting clusters are further partitioned into a
finer level of granularity using an extension of PSCG. The following two chapters present
two approaches that exploit the structural neighborhood of graphs for model building.
Chapter 4 presents LWL-MCS, an approach that combines locally weighted learning with

graph distances based on the maximum common subgraph. The approach is investigated
in the context of regression on graphs, in particular for applications in cheminformatics
and for QSARs.
Chapter 5 introduces the structural cluster kernel named SCK, a new family of efficient

kernels on graph data structures. It is computed by not only taking into account the
similarity between the graphs themselves, but also the similarity they possess with respect
to their structural graph neighborhood. The approach is applied to a challenging prob-
lem in cheminformatics, i.e., the prediction of toxicity and biological activity of chemical
compounds.
Chapter 6 covers the topic of knowledge extraction from SVMs. The proposed approach

employs the SVMs on the SCK to investigate the question whether one may make use of
these models to obtain more compact pattern-based classification models. To do so, the
approach extracts information from trained support vector machines, in particular their
support vectors and their relevance according to their coefficients and uses this information
as input to pattern mining algorithms able to handle weighted instances.
Finally, Chapter 7 summarizes the contributions of the dissertation and discusses some

promising directions for further research and open problems.

10

CHAPTER 2
Related Work

This chapter provides background material for the remainder of the thesis. Since the
thesis focuses on methods for graph data, the chapter starts by giving an introduction
to the basics of graph theory in Section 2.1. It gives the notation used throughout the
thesis. Subsequently, Section 2.2 provides a review on graph clustering and an overview
of the most important algorithms in this area. Next, Section 2.3 gives a brief introduction
to kernels and kernel methods with a particular focus on graph kernels. The final sec-
tion, Section 2.4, surveys related work that has been conducted in the area of knowledge
extraction from Support Vector Machines (SVMs).

2.1 Introduction to Graph Theory

The purpose of this section is to define terminology and notation for the remainder of this
thesis, and to provide the definitions from graph theory that are necessary to understand
the graph-based algorithms proposed in this work.

2.1.1 Graph

In its most general form, a graph is composed of a set of nodes connected by edges.

Definition 2.1 (Graph):
A graph is a pair g = (V,E) composed of a set of vertices (nodes) V and a set of edges
E ⊆ {(u,v)|u,v ∈ V }.

Depending on whether directions are assigned to edges, the resulting graph is directed

11

2 Related Work

or undirected.

Definition 2.2 (Directed and Undirected Graph):
A graph g = (V,E) is a directed graph if the pairs in E are ordered pairs, i.e., for every
(u, v) ∈ E, (u, v) 6= (v, u), otherwise g is said to be an undirected graph.

Figure 2.1 (left) gives an example of an undirected graph, Figure 2.1 (center) an example
of a directed graph. Assigning labels to nodes and edges in a graph, we obtain a labeled
graph.

Definition 2.3 (Labeled Graph):
A labeled graph is represented as a 4-tuple g = (V,E, α, β), where (V,E) is a graph,
α : V → L is a mapping that assigns labels to the vertices, and β : V × V → L is a
mapping that assigns labels to the edges.

An example of a labeled graph is depicted in Figure 2.1 (right). Throughout this thesis,
we are dealing with labeled, undirected graphs. Further, in this thesis, no particular
restriction are assumed about graph topologies. In particular, we allow the presence of
cycles.
The order (or size) of a graph g is defined as the number of vertices of g and is represented

as |V |. The number of edges of g is denoted by |E|.

2.1.2 Graph Isomorphism and Subgraph Isomorphism

To check if two graphs are equivalent, a concept, namely isomorphism, is required. In gen-
eral terms, an isomorphism is defined as a map between objects that preserves structure.
Two objects are called isomorphic, if an isomorphism exists between them. The problem

A

B

D

C

db

ca

Figure 2.1: Examples for directed, undirected and labeled graphs. Left: Undirected graph.
Center: Directed graph. Right: Labeled undirected graph.

12

2.1 Introduction to Graph Theory

of graph isomorphism is defined as follows:

Definition 2.4 (Graph Isomorphism):
Let g = (V,E, α, β) and g′ = (V ′, E′, α′, β′) be two graphs. A graph isomorphism is a
bijective function f : V → V ′ satisfying

1. α(u) = α′(f(u)) for all nodes u ∈ V

2. for each edge e = (u, v) ∈ E, there exists an edge e′ = (f(u), f(v)) ∈ E′ such that
β(e) = β′(e′)

3. for each edge e′ = (u, v) ∈ E′ , there exists an edge e = (f−1(u), f−1(v)) ∈ E such
that β(e) = β′(e′)

In Figure 2.2 two isomorphic graphs are shown (left and centered graph).

Definition 2.5 (Subgraph):
Given two labeled graphs g = (V,E, α, β) and g′ = (V ′, E′, α′, β′), g′ is a subgraph of g,
denoted by (g′ ⊆ g) if:

1. V ′ ⊆ V

2. E′ ⊆ E

3. ∀ u ∈ V ′ : α′(u) = α(u)

4. ∀ (u,v) ∈ V ′ × V ′ : β′(u,v) = β(u,v)

Closely related to graph isomorphism is subgraph isomorphism, which can be seen as
a concept describing subgraph equality. A subgraph isomorphism is a weaker form of
matching in terms of only requiring that an isomorphism holds between a graph g and
a subgraph of g. Intuitively, subgraph isomorphism is the problem of detecting whether
a smaller graph is identically present in a larger graph. In Figure 2.2, an example of

A

B

D

C B

C

D

A

A

A

B C

A

Figure 2.2: Examples for graph isomorphism and subgraph isomorphism. The centered
graph is isomorphic to the left graph, and the right graph is isomorphic to a subgraph of the
left graph. The node labels are indicated by different letters. All edge are assumed to have
identical edge labels.

13

2 Related Work

subgraph isomorphism is given. The right graph is a subgraph of the left graph.

Definition 2.6 (Subgraph Isomorphism):
Let g = (V,E, α, β) and g′ = (V ′, E′, α′, β′) be graphs. An injective function f : V → V ′

from g to g′ is a subgraph isomorphism if there exists a subgraph g′′ ⊆ g′ such that f is a
graph isomorphism between g and g′′.

In this context, we are often interested in common subgraphs or maximum common
subgraphs.

Definition 2.7 (Common Subgraph):
Given two arbitrary labeled graphs g = (V,E, α, β) and g′ = (V ′, E′, α′, β′), a common
subgraph of g and g′, cs(g,g′), is a graph g′′ = (V ′′, E′′, α, β) such that there exists a
subgraph isomorphism from g′′ to g and from g′′ to g′. This can be generalized to sets of
graphs. The set of common subgraphs of a set of graphs {g1, ..., gn} is then denoted by
cs({g1,...,gn}).

Definition 2.8 (Maximum Common Subgraph):
Given two graphs g and g′, a graph g′′ is called a Maximum Common Subgraph (MCS)
of g and g′ if g′′ is a common subgraph of g and g′ and there exists no other common
subgraph of g and g that has more vertices than g′′.

The maximum common subgraph of two graphs g and g′ can be seen as the intersection
of g and g′. In other words, the maximum common subgraph refers to the largest part
of two graphs that is identical in terms of structure and labels. Note that in general the
maximum common subgraphs needs not to be unique, i.e., there might be more than one
maximum common subgraph of identical size for two given graphs g and g′. In Figure 2.3
the maximum common subgraph (right graph) is shown for two graphs (the left and the
centered graph).

A

B

D

C

A

A

B

D A

B

D A

Figure 2.3: Maximum common subgraph example. The right graph is a maximum com-
mon subgraph of the left graph and centered graph.

14

2.2 Graph Clustering

2.2 Graph Clustering

Any nonuniform data contains an underlying structure due to the heterogeneity of the
data. The process of identifying this structure in terms of grouping the data elements
is called clustering [2]. The resulting groups are called clusters. The grouping is usually
based on some similarity measure defined for the data elements. Clustering is closely
related to unsupervised learning. A basic task in unsupervised learning is to classify a
data set into two or more classes based on a similarity measure over the data, without
resorting to any a priori information on how the classification should be done. Clustering
is a well studied topic in the literature, and various approaches have been proposed up
to now [116, 128, 253]. In recent years, the clustering problem has also been increasingly
investigated in the context of graph data [4, 79, 181]. Graphs are structures formed by a
set of vertices (also called nodes) and a set of edges that are connections between pairs
of vertices. Graph clustering is an important graph mining task that aims at grouping
the graphs in a data set into clusters taking into consideration the structure of the graph.
The identification of clusters in graph data is useful in many applications involving bio-
and cheminformatics and the web. The problem of clustering in the graph domain has
traditionally been studied in the context of node clustering of individual graphs, in which
one attempts to decompose a single graph in the sense of grouping the vertices of a
given input graph into clusters. This kind of clustering, sometimes also referred to as
community detection [81, 195], has traditionally been studied in the context of graph-
partitioning [1, 126, 131], minimum-cut determination [125], network structure clustering
[181] and dense subgraph determination [91, 252]. In recent years, the problem of clustering
graphs has also been investigated in the context of clustering graph-based data, where one
attempts to cluster many different individual graphs (as objects), which are defined over
a particular domain of vertices, based on their structural similarity [3, 67]. This thesis
focuses on the latter class of clustering problems, i.e., on clustering of graph-based data.
Graph-based clustering algorithms can be further divided into two complementary graph

clustering approaches [185]. Traditional graph clustering approaches ignore the topologi-
cal structure in the graph data, establish a set of features or invariants from a structural
description of a graph, and use these features in a vector representation to which various
similarity or distance measures can be applied [68, 164, 194, 241, 250]. The feature vector
can be composed of properties of the graph and/or of subgraph occurrences. Figure 2.4
shows an example of a graph represented as a binary feature vector of subgraph pattern
indicators. Feature vectors are one of the most common and widely used data represen-
tations offering a number of useful properties, in particular, the mathematical wealth of
operations available in a vector space. For instance, the sum, the product or the mean
between two objects is well defined in vector spaces, and moreover, can be efficiently com-
puted. Computing the similarity/distance between two objects represented by vectors is
straightforward, too. The convenience and low computational complexity of algorithms
that employ feature vectors as their input have resulted in a rich repository of algorith-

15

2 Related Work

mic tools for clustering and classification, such as k-means clustering, Bayesian classifiers,
Neural Networks, SVMs, and many more [24, 72, 210]. However, despite the fact that
these representations have the advantage of being highly efficient, they are at the same
time associated with representational limitations. More specifically, feature vector-based
representations imply a loss of information with respect to the graph topology. Further,
they are constrained to a predefined length, which has to be preserved for all objects
encountered in a particular application.
The second class of graph clustering approaches use the structure of the graphs directly.

Compared to feature vectors, graphs a much more powerful and flexible tool to represent
structured objects and have a higher representational power than feature vectors. Whereas
feature vectors provide no direct possibility to describe structural relations in the objects
under consideration, graphs are not only able to describe properties of an object, but can
also explicitly model the structural relationship between objects. Moreover, in contrast
to feature vectors, graphs are not constrained to a fixed size, i.e., the number of nodes
and edges is not limited a priori and can be adapted to the size or the complexity of each
individual object under consideration. Thus, the more complex an object is, the larger the
number of nodes and edges can be. In recent years, an increasing interest in graph-based
object representations has been observed, due to the ability of graphs to represent prop-
erties of entities and binary relations at the same time [57]. For instance, graph-based
representations have been intensively employed in the areas of bio- and cheminformatics
[31, 32, 33, 152, 179]. Web content mining represents another area of research that investi-
gated graphs with an emerging interest [196, 197]. While the majority of work in the area
of graph clustering is based on feature vector representations, relatively little attention has
been paid to the clustering of symbolic structures, such as graphs. This section gives an
overview of standard techniques for clustering databases of graphs. Section 2.2.1 reviews
work on graph clustering methods based on feature vector representations, while Section
2.2.2 focuses on methods that exploit the structure of the graphs directly.

C A

A B

A (0,...,1,1,...,0,1,0,...)

Patterns

C A

C B

B

C A

B

A A

Figure 2.4: Example of a graph represented by a binary feature vector indicating the pres-
ence or absence of subgraph occurrences.

16

2.2 Graph Clustering

2.2.1 Clustering Vectorial Data

This section gives a brief survey on graph clustering approaches characterized by the use
of feature vectors.
Yoshida et al. [250] introduced a graph clustering method based on structural similarity

of fragments in graph-structured data considering connected subgraphs only. The proposed
approach characterizes a fragment based on the connectivity (degree) of a node in the
fragment. The representation of a graph is transformed into a fragment spectrum which
represents the frequency distribution of fragments in terms of the connectivity of a node
within the fragment. Figure 2.5 shows an example of the construction of a fragment
spectrum using their approach. To extract connected subgraphs from graph-structured
data, the authors employ the graph mining method called Graph-Based Induction (GBI)
[161]. The graphs are then clustered with respect to the transformed fragment spectra by
applying the standard clustering method k-means. To determine an appropriate number
of clusters, the authors estimate the quality of clustering based on a pseudo-entropy for
a cluster. The approach is experimentally evaluated on synthetic data only and does not
consider edge and node labels.

In work by De Mauro et al. [68], a mapping from the domain of graphs to feature vectors
is realized by means of a neural network. Further, the authors proposed a subsequent
clustering procedure in the feature space, which is based on topological constraints defining
the similarity or the dissimilarity between two input graphs.
Another indirect approach to graph clustering was introduced by Luo et al. [148] em-

ploying vectors of graph-spectral features. For each graph, the authors compute the ad-
jacency matrix and use the leading eigenvectors of this matrix to define clusters of nodes.
More precisely, each of the leading eigenvectors represents a cluster of nodes and is mapped
to a component of a feature vector using the eigenvalue order to index the components.
The length of the vectors are determined by the number of leading eigenvalues. Different
graph spectral features are used as components of the feature vectors, i.e., the cluster vol-
ume, the cluster perimeter, the cluster Cheeger constant, the inter-cluster edge distance,
and the shared perimeter length. Aiming to explore whether these vectors can be used
for the purposes of graph-clustering, the authors investigate the use of both central and
pairwise clustering methods.
In subsequent work, Luo et al. [147] investigated whether the independent or principal

components of the spectral feature vectors can be used to embed graphs in a pattern space
suitable for clustering. More specifically, similar to previous work [148] the authors use the
leading eigenvalues and eigenvectors of the unweighted graph adjacency matrix to calculate
graph spectral feature vectors. Next, these vectors are embedded in a lower dimensional
pattern space using both Principal Component Analysis (PCA) and Independent Com-
ponent Analysis (ICA). The authors further studied which of the spectral features results
in the best clusters. The experimental results demonstrate that the ICA embedding is
better than the PCA embedding for clustering graphs. Of the spectral features used in

17

2 Related Work

fr
eq

ue
nc

y

score of fragment

1
2

3

2

3 3

1 fragement
with score 4

1

3

4 fragements
with score 5

2

3

3

2
3

3
3

2

3 fragements
with score 6

3 3

3

3 3

2

1 ...

Figure 2.5: Fragment spectrum of a graph adapted from Yoshida et al. [250].

the experiments, the eigenvalues of the adjacency matrix and the shared perimeters result
in the pattern spaces with the best cluster structure.
Similar to Luo et al., Hancock et al. [75, 149, 189, 221] use spectral theory to convert

graphs into vectors by means of spectral decomposition into eigenvalues and eigenvectors
of the adjacency (or Laplacian) matrix of a graph.
To keep the representational power of graphs while being able to operate in a vector

space, Ferrer et al. [78] use an approach called graph embedding as a way to map graphs
into a vector space [188] using the graph edit distance [39] to map each graph into a
vector space. The median of the set of vectors obtained with this mapping can be easily
computed in the vector space. Then, using the two closest points in the vector space and
the weighted mean of a pair of graphs [41] they obtain an approximation of the median
graph as the final result. In the experiment reported in their paper, the authors focus on
employing the k-means algorithm [151, 214] using both the set median and the generalized
median as the cluster representatives and comparing the two approaches to each other.

18

2.2 Graph Clustering

The results – evaluated through two standard clustering performance measures (the Rand
index and the Dunn index) – demonstrate that the generalized median graph yields better
performance than the set median graph.

2.2.2 Graph-based Clustering

This section gives a short survey of graph clustering approaches that operate directly on
graphs. Clustering and classification of graphs have wide-spread applications in diverse
fields such as pattern recognition, image analysis, drug discovery, or biometrics. The
general objective of graph-based clustering approaches is to group graphs in a given data
set based on structural similarity.
A graph clustering algorithm, which is an extension of Kohonen’s well-known Self-

Organizing Map (SOM) algorithm [134], was introduced by Günter [94] and Günter and
Bunke [95]. SOM has become an established tool in pattern recognition and related areas.
Whereas the classical SOM approach is based on vectorial pattern representations, the
clustering algorithm by the authors works in the domain of graphs. To cluster graph-based
data under the extension of SOMs, the graph edit distance [168] is used as distance measure
between graphs. The SOMs procedure for neuron updating in the graph domain is based
on the concept of the weighted mean of a pair of graphs. The approach is experimentally
evaluated on the graph representations of capital letters. However, in the paper only
those characters from the alphabet were considered that consist of straight lines only. In
subsequent work, Günter and Bunke [96] extended the algorithm by proposing a number of
cluster validation indices from feature vector representations to the graph domain allowing
the application of the graph clustering algorithm without any prior knowledge of the
number of clusters. As in the previous paper, graph representations of capital letters
composed of straight line segments only were used to show the feasibility of the proposed
method.
Schenker et al. [196] introduced an extension of the k-means clustering algorithm to

graph-based representations. To represent the center of a cluster, the set median graph
[119] is used. The median of a set of graphs is defined as the graph that has the lowest
average distance to all graphs in the set. In their work, the authors compare the repre-
sentational power of feature vectors and graphs under the context of web content mining.
The experimental results show better accuracies of the graph-based approaches over the
comparable vector-based methods.

Jiang et al. [119] introduced the concept of the generalized median graph which gen-
erally provides a better cluster representation than the set median graph. Given a set
of graphs, the generalized median graph is defined as the graph that has the minimum
sum of distances to all graphs in the set. It can be seen as the representative of the set.
While the generalized median graph has a large number of potential applications in many
classical algorithms for learning, clustering and classification, its main disadvantage is that
its computation is exponential both in the number of input graphs and their size [42]. A

19

2 Related Work

number of algorithms for the generalized median graph computation have been reported
in the past [77, 103, 119]. For instance, Hlaoui and Wang [103] proposed an approximate
algorithm for computing the generalized median graph from a set of graphs which is used
to extend the k-means-based algorithm to graph clustering. The experimental evaluation
on random graphs and on a synthetic image database demonstrates the efficiency of the
proposed algorithm in correctly classifying graphs into sets of clusters. However, in general
these algorithms suffer from either a large complexity or are restricted to special types of
graphs.
To make cluster algorithms based on centers such as k-means applicable to graphs,

Bunke et al. [40] constructed a supergraph as cluster representation. More precisely, the
authors introduced the notion of the weighted minimum common supergraph (WMCS) of
a cluster, which is a graph summarizing all the properties of all the graphs belonging to
the cluster. Further, they introduced a nearest neighbor clustering in which graphs are
added to clusters such that the change in entropy within the cluster is minimized.

In work by Raymond et al. [182], the suitability of graph-based similarity measures
for chemical clustering was evaluated and their effectiveness was compared with that of
fingerprint-based measures. The authors employed several clustering methods (e.g., the
Ward’s method and the Jarvis-Patrick method) to process graph-based similarities, with
the results from conventional fingerprint-based similarities providing a benchmark of com-
parison. More specifically, they applied their method for the identification of the Maximum
Common Edge Subgraph (MCES) [183, 184] to the calculation of inter-graph similarities
based on the graph similarity coefficient of Wallis. In their comparison, Raymond et al.
[182] reported that no obvious advantage results from the use of the more sophisticated,
graph-based similarity measures. They draw the conclusion, that although the results
obtained from the use of graph-based similarities are different from fingerprint-based sim-
ilarities, there is no evidence to suggest that one approach is consistently better than the
other.
Dalamagas et al. [67] presented a methodology for clustering structurally similar Exten-

sible Markup Language (XML) documents. Modeling XML documents as rooted ordered
labeled trees, the authors face the problem of clustering XML documents by structure as
a tree clustering problem. To estimate the structural similarity between XML documents,
the authors defined a structural distance metric. Motivated by their claim that real XML
documents tend to have many repeated nodes which affect the performance of the tree
edit algorithms, they introduced a summary tree structure in which the repeated nesting
nodes are reduced (or removed) from the rooted labeled trees. According to the authors,
these tree structural summaries have minimal processing requirements while maintaining
the structural relationships of the elements in an XML document. Further, the authors
presented a new algorithm to calculate tree edit distances using a dynamic programming
algorithm. Given two trees T1 and T2 representing two XML documents, a tree edit se-
quence is a sequence of tree edit operations (insert node, delete node, etc) to transform T1

to T2. Assuming a cost model to assign costs for every tree edit operation, the tree edit

20

2.2 Graph Clustering

distance between T1 and T2 is defined as the minimum cost among the costs of all possible
tree edit sequences that transform T1 to T2. The experimental results demonstrate that
the usage of structural summaries improves the performance of the clustering procedure
without compromising cluster quality. However, due to complexity issues, edit distance
based approaches are infeasible for large data collections.
A different approach for clustering XML data based on their structure was proposed by

Aggarwal et al. [3]. Similar to Dalamagas et al. [67], the authors exploit a tree representa-
tion of XML documents in which a XML document is viewed as a rooted ordered labeled
tree. However, instead of calculating the tree edit distance between any pair of XML
documents, they compute XML similarity in terms of coverage of frequent substructures
at a specified support level. The XProj algorithm uses a set of frequent substructures as
a representative for a given cluster of XML documents. The clustering algorithm is a par-
tition based algorithm, which constructs groups that maximize the structural similarities
among the documents within a group. In order to make the structural similarity more
comparable among different sets of representatives and the similarity calculation more
efficient, the authors only consider frequent substructures of a specified size as representa-
tives. Further, to speed up the frequent substructure representative mining, XProj adopts
a set of high quality approximate structures, that is, sequences of tree edges. For mining
frequent sequences, the sequential pattern mining algorithm BIDE [234] was revised in or-
der to terminate search once a sequence reaches a specified size. The experimental results
show that XProj produces clusters of higher quality and higher precision compared to the
approach by Dalamagas et al. [67].
Hossain and Angryk [107] introduced a new technique for document clustering based on

co-occurrence of frequent subgraphs in the documents. To discover frequent subgraphs,
GDClust utilizes graph-based mining technology. More specifically, GDClust represents
text documents as hierarchical document-graphs and utilizes an Apriori paradigm [6] for
finding frequent subgraphs. Discovered frequent subgraphs are then utilized by a Hier-
archical Agglomerative Clustering (HAC) [253] to cluster documents depending on the
similarity of the subgraphs in the document-graphs. However, rather than focusing only
on the co-occurrence of frequent terms in text documents, GDClust enables clustering of
documents providing humanlike sense-based searching capabilities. In other words, GD-
Clust is able to group documents in the same cluster even if they do not contain common
keywords, but still possess the same sense. The approach is motivated by the way human
beings process text data.
Tsuda and Kudo [223] proposed an Expectation Maximization (EM)-based method for

clustering graphs based on weighted frequent pattern mining. In their approach, a set of
informative patterns are efficiently collected based on latent cluster labels. The proposed
method is probabilistic and adopts a binomial mixture model defined on a very high
dimensional vector indicating the presence or absence of all possible subgraph patterns.
The approach has several drawbacks. First, even though the method retrieves discriminant
patterns that are useful for understanding the obtained clusters, the number of selected

21

2 Related Work

patterns may be too many for interpretation. Second, the number of clusters has to be
specified a priori. Third, the method cannot take into account the similarity of vertex and
edge labels.
Tsuda and Kurihara [225] presented a graph clustering approach based on frequent

pattern mining that addresses the problem of learning a Dirichlet process (DP) mixture
model in the high dimensional feature space of graph data. Due to efficiency reasons
variational inference [26, 142] is adopted. To limit the dimensionality of the feature space,
the authors formulated a feature saliency criterion and developed a search algorithm to
find best patterns. More specifically, an approach has been proposed that selects features
by minimizing the variational free energy. To find the best patterns quickly, a depth-first
search (DFS) code tree [245] has been adopted, where the generation of useless subgraphs
is suppressed by a tree pruning. Despite the proposed feature selection method to obtain
a reduced feature set, DP clustering, however, still outputs a large number of frequent
subgraphs which make the graph clusters difficult to interpret.
In 2009, Jouili and Tabbone [123] introduced a hypergraph model to cluster a set of

graphs that allows for overlapping clusters. A hypergraph consists of a set of vertices and
a set of hyperedges where each hyperedge is a subset of vertices. In their model, each
graph is represented by a vertex and each cluster by a hyperedge. The degree of a vertex
is the number of hyperedges it belongs to, and the degree of a hyperedge is the number
of vertices it contains. Establishing a hypergraph-based model for a graph database, the
authors introduced a clustering technique based on the prototype selection to cluster the
graph set into k independent clusters. Using the concept of the graph median and a given
threshold, the proposed algorithm automatically detects the number of clusters. Further,
the proposed method allows for overlapping clusters, i.e., a graph can be assigned to more
than one cluster.

In subsequent work, Jouili et al. [124] proposed a graph clustering algorithm that is an
adaptation of the mean-shift algorithm [56] into the domain of graphs. The notion of a set
median and a generalized median graph is used to implement the shifting operation instead
of the mean in the classical mean-shift clustering. The median graph shift clustering is a
deterministic and non-parametric algorithm. It computes the number of clusters during
execution. The authors performed a set of clustering experiments on three data sets using
two validation indices. In addition, a comparison with k-means clustering [151, 214] is
provided. For the k-means algorithm, the graph edit distance approximation and the set
median graph are used to compute the centers and to perform the clustering.

2.3 Kernel Methods

Kernel methods are a powerful class of methods for pattern analysis and classification
which are widely applicable and known for their state-of-the-art performance. In recent
years, they have attracted considerable interest in the machine learning community and are
increasingly used for solving various real-world problems, such as molecule classification

22

2.3 Kernel Methods

[152, 179], protein prediction [33, 144], image classification [100], text classification [120]
and handwriting recognition [12]. Several reasons contribute to the increasing interest
in and success of kernel methods. First of all, they attract a lot of attention due to
their solid foundation built on mathematics and statistical learning. By means of kernel
functions standard algorithms which were originally designed for feature vectors can be
applied to more complex data structures such as strings, trees, or graphs. Thus, kernel
methods are able to bridge the gap between statistical and structural pattern recognition.
Further, kernel methods allow the extension of basic linear algorithms to complex non-
linear methods in a simple and elegant way.
This section gives a brief introduction to kernel methods. For a complete and in-depth

treatment of kernel methods, the reader is referred to the textbooks by Schölkopf and
Smola [199] and Shawe-Taylor and Cristianini [210]. The section starts by introducing
kernel functions and some basic properties for patterns given in terms of vectors. Next,
the extension of kernel functions to structural data and in particular to graph-based repre-
sentations is described. Later in this section, the concept of cluster kernels is introduced.
Finally, the formulation of support vector machines is described in detail.

2.3.1 Kernels

In statistical pattern recognition the input patterns are traditionally given by vectors
of real-valued numbers, while in structural pattern recognition, graphs can be employed
for representing the available data. Algorithms for analysis and recognition are commonly
designed such that they directly work with the actual data structures in the specific pattern
space. In kernel methods, the underlying data is represented in an essentially different way
[201]. Here, an explicit representation of the data is of secondary interest. In other words,
kernel methods do not depend upon individual pattern representations, but instead rely on
the notion of pairwise similarity between the data at hand. More formally, given a pattern
space X with n patterns or objects {x1, . . . , xn} ⊆ X. A kernel is defined by a real-valued
similarity function k : X × X → R, referred to as kernel function, which represents the
pattern space X in an implicit way by means of pairwise kernel values kij = k(xi, xj). This
implicit representation is used for the design of algorithms. That is, instead of working
with individual data entities, the designed algorithms work with pairwise kernel values.
Hence, in order for kernel based algorithms to be applicable to patterns from some pattern
space X, a kernel function k : X ×X → R needs to be defined.

In contrast to kernel methods, kernel functions need an individual pattern representation
meaning that the kernel function employed in the pattern space X is defined with respect
to the patterns in X. For example, kernels exist that are exclusively designed for vectors or
for graphs. In this section, the pattern space X will be some possibly infinite dimensional
vector space H, whereas in Section 2.3.2 the pattern space X will be given by the domain
of graphs G.

Kernel functions can be used to derive information from patterns that is useful for tasks

23

2 Related Work

such as clustering, classification and regression. Generally, a function is a valid kernel
function if it satisfies symmetry, i.e., k(xi,xj) = k(xj ,xi), and positive definiteness in the
following sense:

Definition 2.9 (Positive Definite Kernel):
A symmetric function k : X × X → R is a positive definite1 kernel if, for any n ∈ N,
x1, . . . , xn ∈ X, and c1, . . . , cn ∈ R

n∑
i,j=1

cicjk(xi,xj) ≥ 0. (2.1)

Definition 2.10 (Kernel Matrix):
Given a positive definite kernel function k and patterns x1, . . . , xn ∈ X, a n×n matrix K

K =


k11 k12 . . . k1n

k21 k22 . . . k2n
...

...
kn1 kn2 . . . knn

 (2.2)

can be formed such that Kij = k(xi,xj) for i,j = 1, . . . , n. This matrix is called the
kernel matrix (or Gram matrix) of k with respect to x1, . . . , xn

To verify whether a kernel function is positive definite, one can check if the condition in
Definition 2.9 is satisfied. This is equivalent for the kernel matrix K = kij to be positive
definite.
Given these definitions, it follows that if k is a positive definite kernel function, a feature

space can be constructed in which k is the dot product. More precisely, a Hilbert space H
can be constructed with

k(x,x′) = 〈ϕ(x),ϕ(x′)〉. (2.3)

According to Meschkowski [167], a dot product space H is called a Hilbert space if it is
complete with respect to the metric d(x,y) = ‖x−y‖. The Hilbert space associated with a
kernel is referred to as a reproducing kernel Hilbert space. By means of functional analysis
it can be shown that every kernel function is associated with a reproducing kernel Hilbert
space and that every reproducing kernel Hilbert space is associated with a kernel function
[43].

1 Note that in mathematics, functions according to this definition are called positive semidefinite, since
the sum

∑n

i,j=1 cicjk(xi,xj) is not strictly positive, but can be zero. On the other hand, functions for
which this sum is strictly positive are called positive definite functions. For brevity, the term “semi” is
often omitted in machine learning.

24

2.3 Kernel Methods

2.3.1.1 Properties of Kernels and Examples

Positive definite kernel functions satisfy a number of closure properties that enable the
construction of new kernel functions by combining known ones.

Proposition 1 (Closure Properties):
Let X be an input space, k1 and k2 arbitrary positive definite kernels defined over X×X,
α ∈ R+, f : X → R, k3 a valid kernel over H × H and ϕ : X → H. Then the following
kernel functions are also positive definite kernels:

1. k(x,x′) = αk1(x,x′)

2. k(x,x′) = k1(x,x′) + k2(x,x′),

3. k(x,x′) = k1(x,x′)k2(x,x′),

4. k(x,x′) = f(x)f(x′),

5. k(x,x′) = k3(ϕ(x),ϕ(x′)).

These rules can be used to create new kernel functions by combining known ones. Among
the most well-known positive definite kernel functions are the linear, the polynomial and
the Gaussian radial basis function (RBF) kernel as shown in Table 2.1.

To summarize, two major benefits can be ascribed to the use of kernels. First, by
means of kernel similarities between arbitrary objects can be defined. That is, kernels
can be designed for any kind of data provided that they are valid kernels. As a matter
of fact, several kernels for complex structures, such as sequences, trees, or graphs, have
been proposed in the literature so far. Second, valid kernels can be adopted for several
learning tasks, such as clustering, classification, regression, or feature extraction, as long
as the respective algorithms are based on dot product calculations.

2.3.1.2 Kernel Trick

A key advantage of kernels is that they allow the extension of basic linear algorithms to
complex non-linear methods. Consider a non-linear function ϕ : X → H mapping patterns
from the original space X to some feature space H of high or even infinite dimensionality.
As shown in this section, a kernel function k(x, x′) returns the dot product 〈ϕ(x), ϕ(x′)〉

Table 2.1: List of well-known positive definite kernels for vectorial data.

Kernel Definition Parameters
Linear Kernel klin(x,x′) = 〈x,x′〉 -
Polynomial Kernel kpoly(x,x′) = (〈x,x′〉+ c)p p ∈ N, c ≥ 0
Gaussian Kernel kRBF (x,x′) = exp(−‖x−x

′‖2

2σ2) σ > 0

25

2 Related Work

Figure 2.6: Comparing the explicit mapping of patterns x and x′ in a feature space H via
ϕ and subsequent dot product computation with the shortcut kernel-trick. Note that the
pattern space X can be any domain (e.g. the domain of graphs G, or a vector space H).

between two maps ϕ(x) and ϕ(x′) in this (implicitly existing) feature spaceH. Thus, kernel
functions enable the evaluation of the dot product between two patterns in the feature
space H without explicitly computing their coordinates in H via the mapping ϕ(·). This
procedure is commonly termed kernel trick. Figure 2.6 illustrates the kernel trick. The
kernel trick has a huge impact on the design of machine learning algorithms. That is,
any algorithm that can be reformulated in terms of dot products only, can be extended
implicitly in the feature space H by replacing each dot product 〈·,·〉 by a kernel evaluation
k(·, ·). Such algorithms together with some kernel function are commonly referred to as
kernel machines. Prominent examples for kernel machines are support vector machines,
principal component analysis, and k-means clustering.

Another key advantage of kernel methods is their application to non-vectorial data.
Contrary to the initial assumption that X ∈ Rn , X can also represent any structured
domain, such as the space of strings or graphs. In this case, all kernel methods remain
applicable, as long as a mapping ϕ : X → H can be found. A direct consequence of the
kernel trick is that the mapping ϕ does not need to be determined explicitly. Instead, it
is sufficient to find a kernel function k(x, x′) = 〈ϕ(x), ϕ(x′)〉 on pairs of objects from X.
Hence, structured data can be compared via kernels without even explicitly building the
feature space ϕ. Due to this finding, the definition of kernel functions for structured data
such as graphs has become a hot topic in machine learning and in application domains
such as bioinformatics and cheminformatics over recent years [88, 152, 201]. The following
section focuses on kernel functions for graphs.

2.3.2 Graph Kernels

In recent years, graph kernels have evolved into a fast developing branch of learning on
structured data. Kernel functions for graphs connect structural data with kernel methods.
Intuitively, a graph kernel is a measure of similarity between pairs of graphs satisfying the
conditions of symmetry and positive definiteness as previously discussed. The design of
graph kernels is based on a rich set of fundamentals from graph theory. For a brief review
on graph theory, the reader is referred to Section 2.1. The challenge is to define similarity
measures capable of capturing the structural commonalities between pairs of graphs. The
formal definition of a graph kernel is given in the following;

26

2.3 Kernel Methods

Definition 2.11 (Graph Kernel):
Let G be the domain of graphs. The function k : G × G → R is called a graph kernel if
there exists a Hilbert space H and a mapping ϕ : G → H such that:

k(G,G′) = 〈ϕ(G),ϕ(G′)〉 ∀ G,G′ ∈ G (2.4)

Note that in machine learning the term graph kernel occasionally refers to a kernel
between nodes of one large graph, which we call a node kernel. Throughout this thesis,
graph kernel will denote a kernel that compares graphs to each other.
Most of the existing graph kernels belong to the class of R-convolution kernels as defined

by Haussler [101]. Section 2.3.2.1 will give a short review on this family of kernels. In
recent years, various graph kernels have been proposed which can be categorized into
three classes: graph kernels based on walks [88, 127] and paths [32], graph kernels based
on limited-size subgraphs [106, 138, 211, 212], and graph kernels based on subtree patterns
[153, 180]. For an extensive review of graph kernels, the reader is referred to the work
by Gärtner [87]. This thesis focuses on two types of subgraph kernels, the Weighted
Decomposition Kernel (WDK) [166] and the Neighborhood Subgraph Pairwise Distance
Kernel (NSPDK) [61], which are described in Sections 2.3.2.2 and 2.3.2.3. These kernels
provide the basis for the newly designed graph kernel approach presented in Chapter 5.

2.3.2.1 R-Convolution Kernels

Graph kernels are instances of the so-called R-convolution kernels introduced by Haussler
[101]. R-convolution kernels provide a general framework to construct kernels on struc-
tured objects by comparing all pairs of decompositions thereof [101]. More specifically, the
idea behind convolution kernels is to decompose complex objects into smaller parts, for
which a simpler similarity measure can be defined and computed more efficiently. Given
the similarities between the smaller parts, a convolution operation can be used to define
a kernel function between a pair of complex objects. Let x ∈ X be such an object (also
referred to as composite structure), and let ~x = (x1, . . . ,xD) denote a decomposition of x,
with each xd ∈ Xd (d = 1, . . . D), e.g., the decomposition of graphs into subgraphs. Let R
be the relation with R : ~X×X → {true,false} and ~X = X1× . . .×XD, such that R(~x,x) is
true if and only if ~x is a tuple of parts for x, i.e., ~x is a valid decomposition of x and false
otherwise. Consider the set of all valid decompositions of an object, which is defined by
the inverse R−1(x) = {~x|R(~x,x) = true}. The R-convolution ? of the kernels k1,k2, . . . ,kD

with kd : Xd ×Xd → R is defined as:

k(x,x′) = k1 ? k2 ? . . . ? kD(x,x′)

=
∑

~x∈R−1(x)
~x′∈R−1(x′)

D∏
d=1

kd(xd,x′d), (2.5)

27

2 Related Work

where k(x,x′) is a valid kernel, provided that all the individual ki are valid kernels and R
is a finite relation [101]. The deliberately vague formulation with regards to the nature of
the underlying decomposition leads to a framework in which many different kernels can be
defined by simply changing the decomposition. The application of R-convolution kernels
to graphs involves the decomposition of graphs into smaller substructures computable in
polynomial time. Several instances of graph kernels have been proposed based on this
framework, of which some of the most frequently used substructures are random walks,
subtrees, cycles, and shortest paths [230].
Decomposition kernels form a rather vast class. As a result, one needs to carefully tune

the relation R to different applications in order to specify a suitable kernel. A widely
used family of kernels are all-substructures kernels, which count the number of common
substructures in two decomposable objects. In this case, D = 1 and R = 〈X,R, δ〉 where
R(x1,x) iff x1 is a substructure of x and δ is the exact matching kernel:

δ(x1,x
′
1) =

1 if x1 = x′1

0 otherwise.
(2.6)

The all-substructure kernel becomes:

k(x,x′) =
∑

x1∈R−1(x)
x′1∈R

−1(x′)

δ(x1,x
′
1), (2.7)

2.3.2.2 Weighted Decomposition Kernel

The basic idea of the Weighted Decomposition Kernel (WDK) [166] is to focus on relatively
small parts of a structure, called selectors, that are matched according to an equality
predicate. The importance of the match is then weighted by a factor that depends on the
similarity of the context in which the matched selectors occur.

More formally, a weighted decomposition kernel is characterized by the decomposition
structure R = 〈 ~X,R,(δ,k1, . . . , kD)〉, where ~X = (S,Z1, . . . ,ZD), R = (s,z1, . . . ,zD,x) is
true iff s ∈ S is a subgraph of x called the selector and ~z = (z1, . . . ,zD) ∈ Z1 × . . . × ZD
is a tuple of subgraphs of x called the context of occurrence of s in x. This setting results
in the following general form of the kernel:

K(x,x′) =
∑

(s,~z)∈R−1(x)

∑
(s′,~z′)∈R−1(x′)

δ(s,s′)
D∑
d=1

kd(zd,z′d), (2.8)

where kd is a kernel on contexts and δ is the exact matching kernel applied to selec-
tors. Compared to kernels that simply count the number of substructures, the above
function weights different matches between selectors according to contextual information
as illustrated in Figure 2.7.

28

2.3 Kernel Methods

Figure 2.7: Example of selector (light blue vertex) and context (dark blue vertices and
light blue vertex) for a graph. Adapted from Menchetti [165].

2.3.2.2.1 A Weighted Decomposition Kernel for Molecules A molecule is naturally repre-
sented by an undirected graph x where vertices represent atoms and edges represent bonds
between atoms. Vertices are annotated with attributes such as atom type, atom charge
or membership to specific functional groups (i.e., whether the atom is part of a carbonyl,
metil, alcohol or other group in the molecule), whereas edges are annotated with attributes
such as bond type. Contexts are formed as follows: Given a vertex v ∈ V and an integer
l ≥ 0, called the context radius. Further, let x(v,l) denote the subgraph of x composed
of the vertices within distance l from vertex v, and the set of all edges that have at least
one end in the vertex set of x(v,l). The decomposition relation depending on l is defined
as Rl = {(s,z,x) : x ∈ X, s = x(v), z = x(v,l), v ∈ V (x)}, where s is the selector, which is
a single atom, and z is the context for vertex v. The matching kernel δ(v,v′) returns 1 if
the two vertices v and v′ have the same label. Choosing D = 1 the kernel is defined as

K(x,x′) =
∑

v∈V (x)

∑
v′∈V (x′)

δ(x(v),x′(v′)) · k(x(v,l),x′(v′,l)). (2.9)

2.3.2.3 Neighborhood Subgraph Pairwise Distance Kernel

The Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) [61] is an instance of a
decomposition kernel, i.e., a composite kernel that operates over all possible parts defined
by a given relation. Here, the parts are pairs of special subgraphs, called neighborhood
subgraphs.
More formally, letD(u, v) denote the distance between two vertices u and v, representing

the length of the shortest path between them. Further, let Nr(v) denote the neighborhood
of radius r of a vertex v, i.e., the set of vertices at a distance less than or equal to r from
v. Moreover, let Nv

r denote the neighborhood subgraph of radius r of vertex v, i.e., the
subgraph induced by the neighborhood of radius r of v. The neighborhood-pair relation
Rr,d(Av,Bu,G), representing the relation between two rooted graphs Av,Bu and a graph
G, is defined to be true iff both Av and Bu are in {Nv

r : v ∈ V (G)}, where Av (Bu) is
required to be isomorphic to some Nr and D(u, v) = d. More precisely, the relation Rr,d

29

2 Related Work

selects all pairs of neighborhood graphs of radius r whose roots are at distance d in a given
graph G. The authors define kr,d as the decomposition kernel over G×G on the relation
Rr,d, i.e.,

kr,d(G,G′) =
∑

Av ,Bu∈R−1
r,d

(G)

A′v
′
,B′u

′∈R−1
r,d

(G′)

δ(Av,A′v′)δ(Bu,B′u
′) (2.10)

where δ is the exact matching kernel, i.e., δ(x,y) is 1 if x ' y (i.e., if the graph x is
isomorphic to y) and 0 otherwise. In words: kr,d counts the number of identical pairs of
neighboring graphs of radius r at distance d between two graphs.
The NSPDK is finally defined as the sum of all the kernels for all radii and all distances:

K(G,G′) =
∑
r

∑
d

kr,d(G,G′). (2.11)

For efficiency reason, the authors consider the zero extension of K obtained by imposing
an upper bound on the radius and the distance: Kr∗,d∗(G,G′) = ∑r∗

r=0
∑d∗
d=0 kr,d(G,G′),

i.e., NSPDK is limited to the sum of the kr,d kernels for all increasing values of the radius
(distance) parameter up to a maximum given value r∗ (d∗).

2.3.3 Cluster Kernels

In recent years, the idea of changing the representation given to a classifier by taking
into account similarity information induced by a clustering algorithm has attracted some
attention. Such techniques are commonly referred to as cluster kernels. Several types of
cluster kernels, relying on different clustering algorithms, have been proposed by Chapelle
et al. [47]. The authors present a general framework for constructing cluster kernels
which implements the cluster assumption, i.e., the induced distance depends on whether
the points are in the same cluster or not. Weston et al. [240] investigated the use of
cluster kernels for protein classification by developing two simple and scalable methods
for modifying a base kernel. The neighborhood kernel uses averaging over a neighborhood
of sequences defined by a local sequence similarity measure, and the bagged kernel uses
bagged clustering of the full sequence data set to modify the base kernel. In both the semi-
supervised and transductive settings, these techniques greatly improve the classification
performance when used with mismatch string kernels. In work by Bodo [27], a kernel
construction algorithm for supervised and semi-supervised learning was proposed, which
constitutes a general framework for semi-supervised kernel construction. The technique
clusters the labeled and unlabeled data by an agglomerative clustering technique, and uses
the linkage distances induced by the clustering hierarchy to construct the kernel. Bodo
and Csato [28] proposed two cluster kernel methods for semi-supervised learning which
can be used for different types of data sets: one using hierarchical clustering, and another
kernel for reweighting an arbitrary base kernel taking into account the cluster structure

30

2.3 Kernel Methods

of the data.

2.3.4 Support Vector Machines

The Support Vector Machine (SVM) is a state-of-the-art kernel-based technique for clas-
sification and regression introduced in 1992 by Boser et al. [34]. Based on statistical
learning theory and the principle of structural risk minimization [60, 226, 228], SVMs
provide better generalization ability than conventional methods such as artificial neural
networks which are based on empirical risk minimization [226]. That is, SVMs attempt to
minimize the upper bound on the generalization error based on the principle of structural
risk minimization rather than minimizing the training error. Due to its good general-
ization ability, SVMs have been successfully applied in various research areas ranging
from image retrieval [219], handwriting recognition [12], text classification [120], molecule
classification [152] to gene expression analysis [85].
Consider a training set of l objects {(xi, yi)}li=1 ⊆ X×Y , where X is a pattern space and

Y is a space of class labels. SVMs are kernel machines able to derive a function f : X → Y

from the training set which can be used to predict the label of unseen data objects. The
basic idea of an SVM is to use a nonlinear mapping to transform the original training data
into a higher dimension. Within this new dimension, it tries to separate different classes
from the training set by means of hyperplanes. Hyperplanes derived from SVM training
are characterized by the property that they are placed in such way that their distance to
the closest element of either class is maximal. Such hyperplanes are commonly referred to
as maximum-margin hyperplanes. Figure 2.8 shows a labeled training set with two classes.
The dark blue hyperplane is the maximum-margin hyperplane, i.e., the hyperplane that
maximizes the distance to the closest points from both classes (i.e., x1 and x2).
In the following, let us consider a binary classification setting with a training set
{(xi,yi), . . . ,(xl,yl)} ⊆ X × Y , where the pattern space is the real vector space (X = Rn)
and Y = {−1,1}. The task is to learn a classifier f : X → Y that predicts the labels of
unclassified data objects. Large margin methods try to solve this question by introducing
a hyperplane between class y = 1 and class y = −1. Depending on the location of xi with
respect to the hyperplane, yi is predicted to be 1 or −1, respectively. Let us assume that
there exists such a hyperplane that correctly separates both classes. Then infinitely many
of these hyperplanes exist, parameterized by the weight vector w ∈ Rn and the threshold
b ∈ R, which can be written as 〈w, x〉 + b = 0. Geometrically interpreted, w is a vector
perpendicular to the hyperplane, and b is a scalar which corresponds to the distance of
the hyperplane to the origin of the coordinate system. This distance amounts to |b|

||w|| .
These hyperplanes satisfy

yi(〈w, xi〉+ b) > 0 ∀ i ∈ {1, . . . ,l}, (2.12)

corresponding to decision functions

31

2 Related Work

f(x) = sign(〈w, x〉+ b), (2.13)

where f(x) is the (predicted) class label of data point x. Among these hyperplanes a
unique optimal hyperplane can be chosen which maximizes the margin (see Figure 2.8),
i.e., the minimum distance between the hyperplane and the nearest data points from both
classes [227].
Referring to Figure 2.8, implementing a SVM boils down to selecting the variables w

and b such that the training data can be described by:

〈w, xi〉+ b ≥ +1 for yi = +1 (2.14)

〈w, xi〉+ b ≤ −1 for yi = −1. (2.15)

These equations can be combined into:

yi(〈w, xi〉+ b)− 1 ≥ 0 ∀ i ∈ {1, . . . ,l}. (2.16)

If we now just consider the points that lie closest to the separating hyperplane, i.e., the
support vectors, then the two planes H1 and H2 that these points lie on can be described
by:

〈w, xi〉+ b = +1 for H1 (2.17)

〈w, xi〉+ b = −1 for H2. (2.18)

Referring to Figure 2.8, the distance from the separating hyperplane to H1 is 1
||w|| . By

definition, this is equal to the distance from any point on H2 to the separating hyperplane.

Figure 2.8: Example of a linear classifier separating two classes (filled dots and unfilled
dots). The decision surface (in dark blue) is a hyperplane defined by 〈w, xi〉 + b = 0.
The margin (dashed line) is defined by the distance of the closest points (x1 and x2). Data
points located on the margin are support vectors.

32

2.3 Kernel Methods

In order to orientate the hyperplane to be as far from the support vectors as possible, we
need to maximize this margin.

2.3.4.1 Hard Margin Linear SVMs

For the linearly separable case, finding a maximum separating margin d(d = 2
||w||) between

both classes is a constrained optimization problem (also known as the primal formulation)
represented by

min
w,b

1
2 ||w||

2

subject to yi(〈w, xi〉+ b) ≥ 1, i = 1 . . . l.
(2.19)

In words, by minimizing 1
2 ||w||

2, the margin between both classes is maximized (see
Figure 2.8).
To find an easier solution to this problem it is transformed to its dual [65], by introducing

α, the Lagrange multipliers (dual variables), which are the fundamental unknowns in the
dual optimization problem [65]. Hence, the problem in Equation 2.19 becomes:

max
α

w(α) =
l∑

i=1
αi −

1
2

l∑
i,j=1

αiyiαjyj〈xi,xj〉

subject to αi ≥ 0 i = 1 . . . l, and
l∑

i=1
αiyi = 0.

(2.20)

2.3.4.2 Soft Margin Linear SVMs

The formulation described in the previous section is applicable when the data are linearly
separable, corresponding to an empirical error of zero. In real world applications, however,
data appear under more complex circumstances and might not be separable by a linear

Figure 2.9: Illustration of the slack variables ξi, for i = 1 . . . n. Note that only the values
ξi 6= 0 are shown, corresponding to points on the wrong side of the margin. All the other
points lying either on the margin or on the correct side have ξi = 0.

33

2 Related Work

hyperplane. For this reason, soft-margin SVMs have been developed as an alternative to
hard-margin SVMs. While hard-margin SVMs force the condition yi(〈w, xi〉 + b) ≥ 1 to
hold, the soft-margin SVMs allow for misclassification of some training points. The goal
is to improve the generalization performance of the SVM, i.e., its performance on test
samples different from the training set. The soft margin hyperplane can be obtained by
relaxing the optimization problem in Equation 2.19, through the introduction of a positive
slack variable ξi which is needed in order to allow misclassifications in the set of inequalities
[22, 60]. These variables are defined by ξi = 0 for points either on the margin or on the
correct side of the margin, and ξi = |yi − f(xi)| for all other cases. Points with ξi > 1 are
misclassified because they lie on the wrong side of the decision surface, and those points
for which 0 < ξi ≤ 1 lie inside the margin but on the correct side of the decision surface,
as illustrated in Figure 2.9.
Including ξi, Equations 2.14 and 2.15 are modified as follows:

〈w, xi〉+ b ≥ +1− ξi for yi = +1 (2.21)

〈w, xi〉+ b ≤ −1 + ξi for yi = −1, ξi ≥ 0 ∀ i. (2.22)

Introducing the regularization parameter C which controls the trade-off between max-
imizing the margin and minimizing the training error [65], the optimization problem in
Equation 2.19 becomes:

min
w,b,ξ

1
2 ||w||

2 + C
l∑

i=1
ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, ξi ≥ 0,
(2.23)

where∑l
i=1 ξi denotes the upper bound on the training error. The optimization problem

in Equation 2.23 is called the primary problem. The first part of the objective function
tries to maximize the margin between both classes, whereas the second part minimizes the
misclassification error.
The dual to Equation 2.23 is:

max
α

w(α) =
l∑

i=1
αi −

1
2

l∑
i,j=1

αiyiαjyj〈xi,xj〉

subject to C ≥ αi ≥ 0 i = 1 . . . l, and
l∑

i=1
αiyi = 0.

(2.24)

Solving for α, training examples with non-zero α are called support vectors and the
hyperplane is being completely defined by the support vectors only. As shown in Equation
2.24, the C parameter constitutes the upper bound on αi. As a result, three types of
support vectors are characterized based on the values of αi and ξi as follows (see also
Figure 2.9):

34

2.3 Kernel Methods

• Support vectors with αi < C, which lie outside the margin d and will be correctly
classified.

• Support vectors with αi = C and ξi > 1, which lie at the wrong side of the hyper-
plane, and represent errors (will be misclassified points by the hyperplane).

• Support vectors with αi = C and 0 < ξi ≤ 1, which lie inside the margin d (i.e.,
closer than 1

||w|| from the hyperplane).

A disadvantage of the soft margin SVM is that the parameter C is a rather unintuitive
parameter and there is no a priori way to select it. For this reason, an alternative soft
margin SVM, the so-called ν-SVM, was proposed [200].

2.3.4.3 ν-SVM

The ν-SVM was developed to automatically adjust the penalty parameter C in the original
SVM formulation by an alternative parameter, ν ∈ [0,1], which applies a slightly different
penalty and has a more meaningful interpretation. This is because ν represents an upper
bound on the fraction of training samples which are errors and a lower bound on the
fraction of samples which are support vectors [200]. Introducing the parameter ν, the soft
margin optimization problem is rewritten as:

min
w,b,ξ

1
2 ||w||

2 − νρ+ 1
l

l∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0.
(2.25)

This can be transfered into the corresponding dual:

max
α

w(α) = −1
2

l∑
i,j=1

αiyiαjyj〈xi,xj〉

subject to 0 ≤ αi ≤
1
l
,

l∑
i=1

αi ≥ ν, and
l∑

i=1
αiyi = 0.

(2.26)

2.3.4.4 Non-linear SVMs

Still, even soft-margin classifiers cannot solve every classification problem. Consider the
following 2-d example in Figure 2.10, where all positive data points lie within a circle
and all negative data points lie outside a circle. How to introduce a hyperplane that
shows good generalization performance in this case? The trick to overcome these sorts of
problems is to map the input space xi ∈ Rn into a (usually higher dimensional) feature
space H. The hope is that the non-linearly separable data in the input space become
linear in the enlarged space, thus, allowing for linear separation with hyperplanes. The
idea is to find a non-linear mapping ϕ : Rn → H, such that in H, the previous SVM
formulation can still be used, simply by replacing 〈xi, xj〉 with 〈ϕ(xi), ϕ(xj)〉. A valid

35

2 Related Work

Figure 2.10: Toy example illustrating the kernel trick. Mapping a circle into feature space:
data distribution in input space (left) and feature space (right). By transformation from
input space X to feature space H by function ϕ, the light blue and dark blue dots become
linearly separable.

kernel function k : X × X → R can be defined that enables direct computation of the
inner product 〈ϕ(xi),ϕ(xj)〉 in feature space with the property k(x, x′) = 〈ϕ(xi), ϕ(xj)〉.
The optimization problem now becomes

max
α

w(α) =
l∑

i=1
αi −

1
2

l∑
i,j=1

αiyiαjyjk(xi,xj)

subject to C ≥ αi ≥ 0 i = 1 . . . l, and
l∑

i=1
αiyi = 0.

(2.27)

meaning that the classification problem is moved into a higher-dimensional space H and
solved even without explicitly computing the mapping ϕ to H. This is commonly known
as the famous kernel trick (see Section 2.3.1.2).
The decision function of the SVM is given by

f(x) = sign

(sv∑
s=1

αsysk(xs,x) + b

)
, (2.28)

where sv are the model support vectors.

2.3.4.5 SVMs for Regression

SVMs for regression, also called Support Vector Regression (SVR), were mainly developed
to introduce the benefit of sparsity into kernel-based regression estimation. For this pur-
pose Vapnik [228] devised the so-called ε-insensitive loss function. It quantifies the loss
incurred by predicting f(x) instead of y as

L(y,f(x)) = |y − f(x)|ε := max {0,|y − f(x)| − ε} (2.29)

The idea is that only training points lying outside a small ε-tube around the estimated

36

2.4 Knowledge Extraction from SVMs

function contribute to the training error and are penalized in a linear fashion. The goal
is to find a regression function f(x) = ∑l

i=1 αik(x, xi) + b with small norm ||f ||H, i.e.,
a function that is as smooth as possible on the one hand and on the other hand leads
to a low empirical risk. This corresponds to constructing a linear regression function
f(x) = 〈w,ϕ(x)〉 + b in feature space H with small norm ||w||2 = ||f ||2H. Introducing
slack variables ξi, ξ∗i to penalize points that are above or below the ε-tube, the primal
formulation for the regression problem can be formulated as

min
w,b,ξ,ξ∗

1
2 ||w||

2 + C
l∑

i=1
(ξi + ξ∗i)

subject to (〈w, xi〉+ b)− yi ≤ ε+ ξi

yi − (〈w, xi〉+ b) ≤ ε+ ξ∗i

ξi,ξ
∗
i ≥ 0, i = 1, . . . ,l

(2.30)

where the constraint in Equation 2.30 provide that the prediction will be close to the
regression valued

− ε− ξ∗i ≤ (〈w, xi〉+ b)− yi ≤ ε+ ξi. (2.31)

Applying Kuhn-Tucker theory leads to its dual formulation

min
α,α∗∈R

l∑
i=1

yi(α∗i − αi)− ε
l∑

i=1
(α∗i + αi)−

1
2

l∑
i,j=1

(α∗i − αi)′(α∗j − αj)k(xi,xj)

subject to 0 ≤ αi,α∗i ≤ C, i = 1 . . . l,
l∑

i=1
(α∗ − α) = 0

(2.32)

The resulting weight vector w can be written as

l∑
i=1

(α∗i − αi)ϕ(x). (2.33)

Hence the decision function for regression is

f(x) =
l∑

i=1
(α∗i − αi)k(xi,x) + b. (2.34)

2.4 Knowledge Extraction from SVMs

SVMs are often considered as state-of-the-art classification techniques in machine learning.
Due to their good generalization ability and classification accuracy, they have been widely
used in many applications such as bio- and cheminformatics [122, 201]. An important
advantage of SVMs is that their classification decision is based on a reduced subset of

37

2 Related Work

training examples, referred to as support vectors. However, the main weakness of SVMs
is that the generated non-linear models are typically regarded as incomprehensible black
box models, i.e., they do not offer an explanation of the classification decisions being
made. The opaqueness of SVM models can be remedied through the use of knowledge
extraction techniques, which provide some insight into the logics of SVM models. The
primary objective of knowledge extraction techniques is to extract the knowledge learned
by a black box classifier and represent it in a comprehensible form. Early work on the
topic of knowledge extraction mainly focused on the extraction of knowledge from neural
networks, particularly in the form of rules [62, 86, 218].
In recent years, the topic of knowledge extraction from SVMs has received considerable

attention aiming at opening the black box or making SVMs interpretable. Previous re-
search done in the field of explaining SVM classifications follow different directions. One
approach to understand a hypothesis represented by a trained SVM is to try to translate
it into a more comprehensible language. Various approaches based on this strategy have
been investigated under the header of rule extraction. Rule Extraction methods aim at
providing an explanation of the (black box) SVM model by obtaining a set of ’if . . . then
. . . else’ rules that approximate the SVM decision boundary. Other methods exist that
try to transform the SVM classifier in terms of different basis functions. These methods
significantly reduce the number of components needed to describe the classifier. Another
direction in the topic of knowledge extraction addresses the task of explaining an SVM by
means of visualization. Techniques for visualization of SVMs are based on a dimension re-
duction of the hypothesis space that is maximally informative about the decision function.
Out of the mentioned methods, rule extraction has received the most attention lately. This
section provides an overview of various knowledge extraction methods for SVMs with a
special focus on rule extraction methods. More specifically, Section 2.4.1 presents related
work on the topic of rule extraction from SVMs, while Section 2.4.2 provides an overview
of other knowledge extraction methods for SVMs.

2.4.1 Rule Extraction from SVMs

The task of rule extraction from SVMs is to express the knowledge acquired by the SVM
during the training process in a comprehensible form which can be easily understood by
the end-user. Various methods for rule extraction from SVMs have been proposed in the
past which can be classified based on different criteria. One potential way of classifying
SVM rule extraction algorithms is in terms of the translucency [9, 158]. Translucency refers
to the extent to which the internal components of the SVM model are transparent to the
rule extraction method. Based on the translucency criteria the rule extraction techniques
can be classified into three main categories – decompositional, pedagogical (or learning-
based), and eclectic – as suggested by Andrews et al. [9] for artificial neural networks. The
most translucent approaches are decompositional approaches, while the most opaque ones
are pedagogical approaches. Methods that utilize aspects of both approaches are termed

38

2.4 Knowledge Extraction from SVMs

eclectic. Typically, decompositional approaches open the trained SVM model, look into
its individual components, i.e., its support vectors, and try to extract rules at the level of
these components. In particular, decompositional approaches are closely intertwined with
the internal workings of an SVM and its constructed hyperplane and thus typically make
use of the support vectors or the decision boundary. Pedagogical approaches, on the other
hand, treat the trained model as a black box. Instead of looking at the internal structure,
these methods do not make use of the support vectors or the SVM decision boundary,
but directly extract rules which relate the inputs and outputs of the SVM. Pedagogical
methods typically use the trained SVM model as an oracle to label or classify artificially
generated training examples that are later used by a symbolic learning algorithm, such
as decision trees, to create a comprehensible classification model. These techniques are
motivated by the assumption that the trained model is better able to represent the data
than the original data set. Since the model is viewed as a black box, most pedagogical
approaches lend themselves very easily to rule extraction from other machine learning
algorithms. Hence, it is possible to derive rule extraction techniques from the neural net-
works domain to the support vector machines domain. The third category are eclectic
(i.e., hybrid) approaches, which incorporate elements of both decompositional and peda-
gogical approaches and have its origin in artificial neural networks. The difference between
decompositional, pedagogical and eclectic rule extraction techniques is schematically illus-
trated in Figure 2.11. Different methods have been proposed to extract rules from SVMs
as summarized in the following sections. These methods are classified in terms of the
translucency criterion. First, a short description of the proposed decompositional SVM
rule extraction techniques is provided, followed by a description of the most commonly
used pedagogical and eclectic SVM rule extraction techniques.

2.4.1.1 Decompositional SVM Rule Extraction Techniques

Núñez et al. [175] proposed one of the few decompositional approaches for rule extraction
from SVMs that was designed specifically for SVMs. The SVM + prototype approach uses
the output decision function from an SVM and K-means clustering to determine prototype
vectors for each class. The approach then uses the prototypes together with the support
vectors to determine the boundaries of regions, i.e., ellipsoids and hyperrectangles, defined
in the input space by means of geometric methods. These regions are then mapped to two
kind of rules: if-then interval rules corresponding to hyperrectangles and equation rules
corresponding to ellipsoids. The SVM + prototype approach is schematically shown in
Figure 2.12. A benefit of the approach is that it produces a small number of rules which are
of high accuracy. However, the method has two main limitations. First, the number and
the quality of the extracted rules depend upon the initial values of the prototype vectors
defining the centers of the clusters, and in turn are affected by the initial parameters
of the clustering algorithm. Second, the technique suffers from bad scalability: A large
number of training examples and/or input features may result in a large number of clusters

39

2 Related Work

eclectic

decreasing translucency

Decompositional
rule extraction
approaches

Pedagogical
rule extraction
approaches

SVM

+
+ +
+

+

+
++

+
+
+
++ ---

-

-

-
-

--
--

Rules

SVM

Rules

data class

Figure 2.11: The translucency criterion for categorizing techniques for extracting knowl-
edge from trained SVMs.

and consequently in a large number of rules, since all the features are present as rule
antecedents. As a consequence, the explanation capability may suffer.
In a related study, Zhang et al. [256] introduced a hyperrectangle rule extraction al-

gorithm to extract rules from trained SVMs. The approach utilizes the support vector
clustering algorithm [20] to find prototype vectors for each class and then uses those vec-
tors together with the support vectors to generate hyperrectangles. A nested generalized
exemplar algorithm is utilized to first construct small hyperrectangles around the proto-
types, which are then grown incrementally until one of the stopping criteria, which are
based on a user-defined minimum confidence threshold or a minimum support threshold,
is met. The purpose of the stopping criteria is to control the size of the hyperrectangles
and hence the quality of the rules generated. If-then rules are then generated by project-
ing these hyperrectangles onto coordinate axes. The experimental results demonstrate the
high accuracy of the hyperrectangle rule extraction algorithm. However, similar to the
approach of Núñez et al. [175], one limitation of this approach is the low comprehensibility
of the rules as all the input features appear as rule antecedents. Another limitation is the
difficulty of selecting the parameters of the support vector clustering algorithm which are
critical in defining the number of clusters and hence the number of rules [256].

Pursuing the same basic idea of generating hyperrectangle rules, Fu et al. [83] sug-
gested another method for rule extraction from non-linear SVMs trained with a radial
basis function (RBF) kernel function. Similar to the previous approaches, the method,
called RulExSVM, utilizes the SVM decision boundary in addition to the support vec-

40

2.4 Knowledge Extraction from SVMs

SVM + Protoype

Equation rule Interval rule

Figure 2.12: Example illustrating the approach by Núñez et al. [175].

tors. RulExSVM proceeds in three phases: initial, tuning, and pruning. In the initial
phase, hyperrectangles are found whose upper and lower corners are defined by finding
the intersections of lines extended from each of the support vectors with the SVM decision
boundary. In the tuning phase, outliers from the other class are excluded by chopping each
hyperrectangle. Finally, in the pruning phase, overlapping hyperrectangles (representing
redundant rules) are removed. The method suffers from several limitations. First, it is only
valid for rule extraction from SVMs with nonlinear RBF kernel functions. Even though
the authors argue that this method could be easily extended to other types of kernels, they
do not provide a framework for this. Second, rather than providing a method to control
the overlap between hyperrectangles at the rule generation phase, the approach removes
them later at the pruning phase. Third, the algorithm constructs the hyperrectangles
based on the number of support vectors.
In another study, Fung et al. [84] proposed an algorithm for converting linear SVMs

and any other arbitrary hyperplane-based linear classifiers into a set of rules. The rule ex-
traction technique is similar to the SVM + prototype approach [175], but does not include
computationally expensive clustering. Instead, the algorithm transforms the problem to
a simpler, equivalent variant and constructs hypercubes by solving multiple constrained
optimization problems. Each hypercube, which is a subset of one of the bounded regions,

41

2 Related Work

is then transformed to a rule. In order to obtain disjoint rules, each hypercube is required
to have one vertex that lies on the separating hyperplane (as illustrated by Figure 2.13).
Employing a depth-first search, the rule extraction algorithm iterates over the training
data in each half-space to find rules for the examples which have not been covered by any
previous rule. The authors presented two variants of their algorithm based on different
criteria for selecting “optimal rules”. The method is considered to be decompositional, as
it is only applicable when the underlying model provides a linear decision boundary. One
drawback of the approach is that it produces a relatively large number of rules, thus the
comprehensibility of the rules is low. The generalization performance and the quality of
rules are not tested by the authors. However, since the rules extracted from the generated
hypercubes cover the training data, they may not provide an explanation for new unseen
data.
Chen et al. [51] proposed a rule extraction algorithm for gene expression data to im-

prove the comprehensibility of SVMs. The approach, named MK-SVMII, constitutes one
component of a multiple kernel SVM (MK-SVM) scheme, comprising feature selection,
prediction modeling and rule extraction. In the feature selection module, a new single
feature kernel is defined by transforming the computationally expensive feature selection
problem into the problem of finding sparse feature coefficients representing the weight of a
single feature kernel. Features with zero coefficients have no impact on the output of SVM
and can be discarded. Using the MK-SVMI Kernel, and making some substitutions into
the ordinary SVM quadratic programming formulation, a new mixture coefficient is intro-
duced. If an input vector has at least one non-zero mixture coefficient, the corresponding
input data vector becomes a support vector. In this case, the Lagrange multiplier in the
ordinary SVM formulation is replaced by the mixture coefficient in MK-SVMII. The rule
extraction method proposed for MK-SVMII is similar to the one addressed by Fung et
al. [84] which solves multiple optimization problems to find rules that describe non-empty
hypercubes in each class half-space. However, in MK-SVMII, support vectors are used as

Figure 2.13: Example illustrating the approach by Fung et al. [84]. The non-overlapping
rules covering the half-space are represented as rectangles.

42

2.4 Knowledge Extraction from SVMs

vertices of hypercubes, where a series of hypercubes approximates the subspace of each
class. The rules extracted by this method show good generalization capacity and good
comprehensibility. At the same time, the approach yields compact gene subsets which
were found to be useful in defining possible pathways of genetic networks [51].
Zhang et al. [255] suggested a different approach for rule extraction from SVMs trained

with a special Disjunctive Normal Form (DNF) Boolean kernel. The approach, called
DRC-BK, is based on the idea that an SVM trained with a Boolean kernel finds the optimal
separating hyperplane by learning Boolean functions in a higher dimensional feature space.
The authors have made an initial proposition that if each dimension of the input space can
be regarded a Boolean literal, then each dimension in the feature space can be regarded
as a conjunction of several of these Boolean literals. In the rule generation process, only
conjunctions with a significant contribution are considered. The authors reported that
DRC-BK generates rules of high accuracy. However, a drawback of the approach is that
it generates a large number of rules, resulting in lower comprehension. Another limitation
of the method is that the preprocessing step leads to an increase of the number of the
features that may appear as a rule antecedent, which makes the comprehensibility even
worse.

Barakat and Bradley [18] proposed an algorithm for rule extraction from SVMs, termed
SQRex-SVM. The approach extracts rules directly from a subset of the support vectors
of a trained SVM using a modified sequential covering algorithm [170]. Rules are gen-
erated based on an ordered search of the most discriminative features, as measured by
inter-class separation. The procedure is limited to binary classification problems. The
experimental results demonstrate that the rules produced by SQRex-SVM exhibit both
good generalization performance and comprehensibility.
Another method belonging to the class of decomposition SVM rule extraction methods

is the method proposed by Chaves et al. [66] for extracting fuzzy rules from trained SVMs.
The main idea of the approach is to project each feature in each of the support vectors
along its coordinate axes, forming a number of fuzzy sets with equal domain size for each
coordinate [130]. Next, the fuzzy membership degree of each fuzzy set is computed and
each of the support vectors is assigned to the fuzzy set with the highest membership
degree. Finally, from each support vector a fuzzy rule is generated. The method has
several limitations. First, it may not be suited for binary and categorical attributes,
since in these cases the evaluation of membership degree value is non-trivial. Second,
the rules extracted by this approach are reported to be of poor quality (the best results
had 53,2% in accuracy). However, the authors argue that the objective of the proposed
method is to extract interpretable knowledge from a trained SVM, not to improve the
SVM performance. Third, the comprehensibility of the extracted rule set is low due to the
large number of the extracted rules and due to all the attributes appearing as antecedents.
The method proposed by Martens et al. [157] is similar to the pedagogical methods

which will be described in Section 2.4.1.2, but has an additional step which generates ad-
ditional training examples close to the support vectors. The generated examples are then

43

2 Related Work

used with the training data, all provided with a class label by the trained SVM model,
to train different decision tree algorithms that learns what the SVMs have learned. Since
it incorporates elements of both the pedagogical (such as using the black box also as an
oracle) and decompositional approaches, it could be categorized as an eclectic approach.
However, the authors argue that a decompositional approach with elements of a pedagog-
ical approach still remains decompositional. According to them, their approach uses the
SVM as an oracle, but at the same time explicitly uses concepts linked to SVMs, i.e., the
support vectors, and is therefore considered a decompositional approach.

2.4.1.2 Pedagogical SVM Rule Extraction Techniques

The pedagogical method suggested by Barakat and Diederich [16] primarily uses a decision
tree learner to effectively learn what the SVM has learned. As all pedagogical approaches,
the method treats the SVM as a black box. The basic idea of the approach is to create
artificially labeled examples, whose target classes are replaced with the SVM predicted
classes, which, in turn, represent the knowledge learned by the SVM. The approach then
uses this data set to train a machine learning technique with explanation capability (deci-
sion tree learners) [177]. As a result, rules are extracted that represent both the concepts
learned by the SVM and its generalization behavior. The steps involved in the pedagogical
SVM rule extraction approach by Barakat and Diederich [16] are shown in Figure 2.14.
Huysmans et al. [111] proposed an algorithm called Iter that uses a sequential covering

approach, entailing the learning of one rule for one class at the time. The method works by
an iterative expansion of hypercubes, whereby each hypercube represents a propositional
rule. More precisely, the algorithm starts with the creation of a user-defined number of
random starting cubes which are infinitesimal and correspond to points in the input space.
These initial cubes are gradually expanded, with randomly distributed extra generated

Train SVM

Decision Tree Learner

Rule sets

SVM Model

SVM Model

Labeled examples

Unlabeled examples Artificial labeled examples

Artificial labeled examples
Rule sets

Unlabeled examples
Rule quality results

Data set A

Data set B

Data set B

Data set C

Learning

Classification

Classification

Figure 2.14: Pedagogical rule extraction approach by Barakat and Diederich [16].
Adapted from [18].

44

2.4 Knowledge Extraction from SVMs

data instances provided with a class label by the trained SVM model, until they cover the
entire input space or until they can no longer be expanded. The algorithm was designed
to build predictive regression rules from a trained SVM regression model. With minor
adaptations it is suitable for classification problems as well.
Martens et al. [158] introduced two rule extraction techniques for SVM, Trepan [63, 64]

and G-REX (Genetic Rule EXtraction) [121]. The approaches are taken from the artificial
neural networks domain, but can be easily applied for rule extraction from SVM. Trepan
was first introduced by Craven and Shavlik [63]. Using a best-first expansion strategy,
the approach grows a tree by recursive partitioning. Given a trained SVM, Trepan first
relabels the training examples according to the classifications made by the model in order
to mimic the behavior of the SVM black box model. The relabeled training data are then
used to initiate the decision tree growing process. Trepan can also enrich the training
data by generating artificial data automatically, using the trained SVM to label the new
instances. The SVM model is thus used as an oracle to answer class membership queries
about artificially generated data points. In case the number of training data points in a
node is less than a user defined parameter, Trepan additionally generates data point which
are labeled by the SVM model. This process is often referred to as active learning. Hence,
in this way Trepan can overcome the limitation of decision-tree-induction algorithms which
typically suffer from having fewer and fewer training observations available for deciding
upon the splits or leaf node class labels at lower levels of the tree.
The G-REX algorithm [121] for knowledge extraction from artificial neural networks

was also modified to handle SVMs. The method uses genetic programming [136] to evolve
an optimal set of rules. The information extracted using this method can be represented
using different types of rules such as Boolean rules, decision trees, M-of-N type rules, or
fuzzy rules. The experimental results by Martens et al. [158] show that the SVM rule
extraction techniques lose only a small percentage in performance compared to SVMs and
therefore rank at the top of comprehensible classification techniques.
Ren and Garcez [187] proposed a rule extraction algorithm which uses the points on

the SVM classification boundary and synthetic training examples to construct a set of
optimized hypercube rules without considering the inner structure and the support vectors.
The approach maximizes the area covered by the extracted rules and, thus, approximates
the SVM. In more detail, given input vectors xi, the approach queries an SVM to obtain the
classification for those input vectors. After querying, clustering is employed on those input
vectors xi with the same yi, in order to group them into a set of clusters. Subsequently, the
approach looks for the points P that lie on the SVM classification boundaries by means of
a binary search algorithm. For both the points in P and the synthetic training instances,
an initial optimal rule set can be extracted by solving an optimization problem attempting
to find the largest consistent hypercubes in the input space. Finally, the approach applies
several post-processing measures to the initial rule set to construct a smaller number of
non-overlapping rules with high coverage and generalization rate. An advantage of the
algorithm is that it is neither restricted to a specific SVM classifier, nor does it depend on

45

2 Related Work

the availability of specific training sets for rule extraction.

2.4.1.3 Eclectic SVM Rule Extraction Techniques

Following the translucency dimension, Barakat and Diederich [17] introduced an eclectic
rule extraction approach that utilizes the knowledge acquired by an SVM and represented
in its support vectors and uses a decision tree learner to learn what the SVM has learned.
The algorithm steps are similar to the authors’ previously proposed pedagogical rule ex-
traction approach [16], but instead of using all the training data the model support vectors
are used to generate the artificial labeled examples, which are then used to train a deci-
sion tree for extracting the rules. The experimental results demonstrate that the approach
extracts comprehensible rules with a high degree of accuracy and fidelity. However, a lim-
itation of the approach is its sensitivity to the noise in the training data, as the rules
are extracted from all types of the SVM model support vectors. The approach [17] fits
well into the eclectic rule-extraction algorithm category, as it elects the patterns that have
influence in defining the separating hyperplane and it has also a pedagogical component.
Another eclectic rule extraction approach was proposed by Barakat and Bradley [15].

The approach employs the eclectic rule extraction approach described in the work by
Barakat and Diederich [17] and uses the area under the receiver operating characteristics
(AUROC) to assess the quality of rules extracted from an SVM.

2.4.2 Other Knowledge Extraction Methods from SVMs

Besides rule extraction techniques, other techniques for extracting knowledge from SVMs
exist. In work by Bakir et al. [13], a general learning-based framework for finding pre-
images was proposed. The pre-image problem consists of finding a reverse mapping from
feature space back to input space. More formally, given a positive definite kernel function
k, which computes the dot product of pairs of members x, x′ of an input space X. The
kernel induces some reproducing kernel Hilbert space Hk, called the feature space, and
a mapping ϕ : X → Hk, such that k(x, x′) = 〈ϕ(x), ϕ(x′)〉. Given the feature space
representation ψ = ϕ(x∗) (ψ ∈ Hk) of a desired output x∗, the pre-image problem consists
of finding x∗ ∈ X. In their work, the authors seek to learn a function Γ : Hk → X, to
compute the pre-image, such that, approximately, Γ (ϕ(x)) = x. However, this is often
not possible, since Hk is usually a far larger space than X. The trick employed by Bakir
et al. is to use a finite-dimensional basis in the feature space Hk and to work on the basis
coordinates instead of the possibly infinite original space. It is based on the observation
that a finite set of points xi always spans only a finite dimensional subspace of Hk. The
problem of estimating a pre-image function Γ ′ : Rn → X can then be reduced to a
standard regression problem. The basis itself can be found be means of kernel Principal
Component Analysis with the kernel induced by ϕ. The pre-image problem, illustrated
in Figure 2.15, has a wide range of applications in kernel methods, such as for reduced
set methods [44] and for Kernel Dependency Estimation [239], which aims at finding a

46

2.4 Knowledge Extraction from SVMs

mapping between paired sets of objects.
In subsequent work, Bakir et al. considered the pre-image problem in the domain of

graphs [14]. More precisely, the authors take the input space G to be the set of node-
labeled graphs, and assume the kernel k to be the marginalized graph kernel introduced
by Kashima et al. [127]. For this setting, an algorithm to approximate the pre-image of a
graph g∗ ∈ G of a point ψ in feature space Hk is proposed.
Weston et al. [239] considered the task of learning dependencies between a general class

of objects. Their approach, referred to as Kernel Dependency Estimation, uses kernel
Principal Component Analysis to implicitly model correlations among both inputs and
outputs. More specifically, Kernel Dependency Estimation decouples output correlations
by first applying kernel Principal Component Analysis over the outputs and then learning
the mappings from the input space to the dimension reduced space by ridge regression.
In order to recover the output in the original representation a pre-image calculation is
required.
Three other families of methods for understanding classifiers such as SVMs are sen-

sitivity analysis, inverse classification and borderline classification. Sensitivity analysis
determines how much a change in the input of a model will affect the output of the model.
This analysis may, for instance, be useful to determine which input features are most
important to obtain accurate output values [247]. Inverse classification methods take a
completely different approach. Instead of trying to explain a model, inverse classification
describes how one point can be moved into another classification. More precisely, the
inverse classification problem consists of determining the required changes to attribute
values to reclassify a member of one class as a member of a different desired class [156].
Barbella et al. [19] introduced two techniques for providing insight into local classifi-

cations obtained by an SVM on continuous data. Both techniques have in common that
they explain the model on the local level, that is, for an individual test point. The first
technique involves finding the support vectors that contribute the strongest to the clas-
sification of a particular test point. The second technique is a variation of the inverse
classification technique, called Borderline Classification. The goal of inverse classification

Figure 2.15: Illustration of the pre-image problem in kernel-based machines. Adapted
from Honeine and Richard [105].

47

2 Related Work

is to determine which features of the test point would need to be modified to cause a
switch in classification. Borderline Classification differs from inverse classification in the
sense that instead of switching the point to another class, it determines the locally minimal
change required to place the test point on the separating surface between the two classes.
Both techniques add explainability to the results of an SVM classifier.
Subianto and Siebes [215] proposed two concepts that explain arbitrary classifiers defined

on discrete data both at the local level, i.e., for an individual data point and at the global
level, i.e., for the entire model. The first approach provides insight into why a classifier
classifies a data point as it does and, thus, ensures local understandability. More precisely,
local explanations are defined as “a minimal set of attributes, such that there exists a
change of values for the attributes in that set that would change the assigned class”
[215]. This approach is similar to the idea of inverse classification as well as to borderline
classification. The key difference is that the approach by Subianto and Siebes only works
on discrete-valued data sets and involves finding a nearest point in the opposite class. On
the other hand, borderline classification is defined for continuous-valued features and finds
a point on the separating surface, not on the opposite side. Further, the authors describe
a technique for explaining arbitrary classifiers at a global level by introducing attribute
weights as a global measure of the importance of an attribute for a given classifier. The
higher the weight of an attribute, the more often it is decisive in the classification of a
data point. The approach is not restricted to SVMs, but can be used for any classifier.
However, it is limited by its restriction to discrete data.

48

CHAPTER 3
Graph Clustering

Graph clustering has become an important and active topic in data mining, to detect
groups of similar instances while at the same time highlighting differences between dis-
similar ones. The goal of graph clustering is to partition instances in a graph database
into different clusters based on various criteria such as vertex connectivity, neighborhood
similarity or the size of the maximum common subgraph. This can serve to structure the
graph space and to improve the understanding of the data. Traditional graph clustering
approaches ignore the structure in the graph data and transform the graphs into a fea-
ture vector-based representation [164, 250]. These techniques have the advantage of being
highly efficient, but at the same time imply a loss of information with respect to the graph
topology. On the other hand, more sophisticated graph clustering approaches are directly
based on the structure of the graphs. These techniques have the desirable property that
the calculated similarity measure is intuitive and can be visualized easily. However, they
suffer from efficiency and scalability problems with respect to large graph data sets.
This chapter addresses the problem of clustering large graph databases according to

scaffolds (i.e., large structural overlaps) that are shared between cluster members and
presents three novel methods for performing that task with a special focus on scalabil-
ity. In contrast to many related approaches, the methods do not rely on computationally
expensive maximum common subgraph (MCS) operations or variants thereof, but on fre-
quent subgraph mining, i.e., graph clustering without generating features or decomposing
graphs into parts.
The chapter starts by introducing an online algorithm for the task of graph clustering

that produces overlapping (non-disjoint) and non-exhaustive clusterings. In the proposed
clustering approach, clusters encompass all graphs that share a sufficiently large common
subgraph. The size of the common subgraph of a graph in a cluster has to take at least a
user-specified fraction of its overall size. Section 3.2 presents an extension of this approach,
a highly parallelized graph clustering method, called PSCG, that takes advantage of high-
performance parallel hardware and further improves the algorithm in several ways. Finally,
in Section 3.3, a scalable graph clustering approach is proposed that can cluster even larger
graph databases. The approach, named SCAP (Structural Clustering by Abstract Pre-

49

3 Graph Clustering

clustering), employs two clustering stages, an initial partitioning step to partition the
original data set into several smaller data sets and a further step of refinement to split
these coarse-grained results into more accurate clusters.

3.1 Structural Graph Clustering

Mining graph data has attracted a lot of attention in the past years [112, 224, 245].
One family of methods is concerned with mining subgraph patterns in graph databases
[112, 245]. The criteria for interestingness are often based on the support of a pattern
in the graph database, e.g., requiring a minimum and / or maximum frequency, closed-
ness, freeness or class-correlation. However, in all of these cases, the structural diversity
of graph databases, i.e., the existence of groups of similar or dissimilar graphs, is not
explicitly taken into account or revealed by the algorithm. Vice versa, the structural com-
position and existence of groups of similar graphs have a serious impact on the output and
runtime performance of pattern mining algorithms. To gain insights into the structural
characteristics of graph data sets, a graph clustering algorithm was developed that discov-
ers groups of structurally similar and dissimilar graphs. The algorithm can be practically
useful for a variety of purposes, such as for benchmarking other graph mining algorithms,
for descriptor calculation (e.g., for QSAR studies), for computing local models for classifi-
cation or regression (e.g., one per cluster) and for calculation of the so-called applicability
domain of models.
To illustrate the impact of structural diversity on graph mining results, two data sets

of molecular graphs of the same size and with approximately the same number of atoms
per molecule are considered. The first data set, COX2 [216], contains 414 compounds,
which possess a relatively high structural homogeneity. The second data set is a subset
of the Carcinogenic Potency Database (CPDB) [92] that matches the COX2 data both
in the number of structures and the number of atoms per structure. The results of a
typical graph mining representative, gSpan [245], and the results of the graph clustering
algorithm presented in this section are shown in Figure 3.1. In the upper part of the
figure, the huge difference in the runtime and the number of discovered patterns can be
seen. For structurally homogeneous data (COX2), the number of patterns and runtime
explodes, whereas for structurally heterogeneous data (CPDB) the algorithm behaves as
expected. The reason for this difference in performance becomes evident in the graph
clustering results in the lower part of Figure 3.1. As can be seen, there is a small number
of large clusters in COX2 and a large number of small clusters in CPDB (for each value
of a parameter that is varied on the x-axis). This indicates a high degree of structural
homogeneity in COX2 and a low degree in CPDB, and also hints at the usefulness of graph
clustering to make the characteristics of a graph database explicit.
The graph clustering algorithm presented in this section operates directly on the graphs,

i.e., it does not require the computation of features or the decomposition into subgraphs.
It works online (processing one graph after the other) and creates a non-disjoint and non-

50

3.1 Structural Graph Clustering

0

5

10

15

20

25

50 100 150 200 250 300 350 400 414

tim
e
(in

ks
)

minSup

COX2
CPDB

0
5
10
15
20
25
30
35
40
45

50 100 150 200 250 300 350 400 414

#
su
bg

ra
ph

s
(in

M
)

minSup

COX2
CPDB

0

100

200

300

400

500

0.2 0.3 0.4 0.5 0.6 0.7 0.8
θ

clusters
mean size
max size
singletons
time (min)

0

100

200

300

400

500

0.2 0.3 0.4 0.5 0.6 0.7 0.8
θ

clusters
mean size
max size
singletons
time (min)

Figure 3.1: (Above) Results of gSpan: Runtime behavior (left) and number of subgraphs
(right) on COX2 and CPDB. (Below) Results of structural clustering on COX2 (left) and
CPDB (right).

exhaustive clustering: graphs are allowed to belong to several clusters or no cluster at all.
One important component of the algorithm is a variant of gSpan [245] to determine cluster
membership. Thus, the proposed graph clustering approach is based on a practically fast
graph mining algorithm and not on typically time-consuming maximum common subgraph
(MCS) operations [213]. In contrast to another graph clustering approach based on graph
pattern mining [225], the (often quite numerous) frequent subgraphs are just by-products,
and not part of the output of the algorithm: the actual output consists just of the clustered
graphs sharing a common scaffold. Figure 3.2 provides a sample output of the proposed
structural clustering approach on a small subset of molecular graphs.

The remainder of the section is organized as follows. In Section 3.1.1 and 3.1.2 the
methodology of the structure-based clustering algorithm is introduced. Section 3.1.3
presents a description of the data sets and experiments as well as an interpretation of
the results. Section 3.1.4 gives a conclusion and an outlook to future work.

51

3 Graph Clustering

Figure 3.2: Sample output from structural clustering. Atoms correspond to labeled ver-
tices, bonds to edges. Vertices without atom labels represent carbon (C) atoms. Only heavy
atoms are considered, i.e., hydrogen atoms (H) are ignored. The figure distinguishes two
bond types: Single bonds and double bonds.

3.1.1 Problem Definition

Structural clustering is the problem of finding groups of graphs sharing some structural
similarity. Instances with similar graph structures are expected to be in the same cluster
provided that the common subgraphs match to a satisfactory extent. Only connected
subgraphs are considered as common subgraphs. The similarity between graphs is defined
with respect to some user-defined size threshold. The threshold is set such that the
common subgraphs shared among a query graph and all cluster instances make up a
specific proportion of the size of each graph. A graph is assigned to a cluster provided
that there exists at least one such common subgraph whose size is equal or bigger than the
threshold. In this way, a graph instance can simultaneously belong to multiple clusters
(overlapping clustering) if the size of at least one common subgraph with these clusters is
equal or bigger than the threshold. If a graph instance does not share a common subgraph
with any cluster that meets the threshold, this instance is not included in any cluster
(non-exhaustive clustering). A graphical overview is shown in Figure 3.3. For one graph
after the other, it is decided whether it belongs to an existing cluster or whether a new
cluster is created.
Formally, the problem of structural clustering is framed as follows. Given a set of

graph instances X = {x1,...,xn}, the task is to assign the instances to a set of clusters
which may overlap with each other. In clustering these graph instances, one objective is
considered: to maximize the average number of instances contained in a cluster, such that
at any time for each cluster C there exists at least one common subgraph that makes up
a specific proportion, θ, of the size of each cluster member. Considering the state of a

52

3.1 Structural Graph Clustering

...
...

Figure 3.3: Schematic overview of the cluster membership assignment for instance xi.
Graph instances are represented by x1,...,xn, clusters by C1,...,Ck.

cluster C = {x1,...,xm}2 at any point in time, the criterion can formally be defined as:

∃ s ∈ cs({x1,...,xm})∀ xi ∈ C : |s| ≥ θ|xi| (3.1)

where s is a subgraph and θ ∈ [0,1] is a user-defined similarity coefficient. According to
this goal, a minimum threshold for the size of the common subgraphs shared by the query
graph xm+1 and the instances in cluster C can be defined as

minSize = θ max(|xmax|,|xm+1|), (3.2)

where θ ∈ [0,1] and xmax is the largest graph instance in the cluster. Figure 3.4 shows an
example of the cluster assignment step of the structural clustering approach. To obtain
meaningful and interpretable results, the minimum size of a graph considered for cluster
membership is further constrained by a minGraphSize threshold. Only graphs whose size
is greater than minGraphSize are considered for clustering. Thus, the identification of
the general cluster scaffold will not be impeded by the presence of a few graph structures
whose scaffold is much smaller than the one the majority of the cluster members share.
This will be especially useful in real-world applications that often contain small fragments
(see the minimum size column in Table 3.1).

53

3 Graph Clustering

H3C

H3C

H3C

H3C

H3C

H3C

H3C

H3C

H3C

H3C

O

H3C

O

H3C

O

Figure 3.4: Example illustrating the cluster assignment step of the proposed structural
clustering approach for θ = 0.6. The figure shows the clustering state at different time
steps. To be assigned to the cluster, query instance x3 needs to share at least one common
subgraph with the cluster members x1 and x2 that meets the minSize threshold defined in
Equation 3.2. As x3 shares such a subgraph with x1 and x2 that meets the minSize thresh-
old of 5.4, x3 is assigned to the cluster.

3.1.2 Method

The proposed structural graph clustering algorithm works as follows. Let minGraphSize
be the minimum threshold for the graph size and minSize be the minimum threshold for
the size of the common subgraphs specified by the user and defined in Equation 3.2. In
the first step, an initial cluster is created containing the first graph instance that is larger
than minGraphSize. In the following steps, each graph is compared against all existing
clusters. In case the query instance meets the minGraphSize threshold and shares at
least one common subgraph with one or more clusters that meets the cluster criterion
in Equation 3.2, the instance is added to the respective cluster. Unlike many traditional
clustering algorithms, a graph is allowed to belong to no cluster, since it is possible that
a graph is not similar to any cluster. Thus, in this case, a new singleton cluster is created
containing the query instance. The proposed clustering algorithm has two main advantages
over many clustering algorithms. First, the algorithm works in an online mode, since it
does not keep all the examples in memory at the same time, but processes them one by
one in a single pass. Second, in contrast to many clustering algorithms which assume
that the number of clusters is known beforehand, the proposed algorithm does not require
the specification of the number of clusters a priori. The pseudocode for the structural
clustering algorithm is shown in Algorithm 1.
For computing common subgraphs, a modified version of the graph mining algorithm

2 In slight abuse of notation, the same indices are used as above.

54

3.1 Structural Graph Clustering

Algorithm 1 Structural Clustering
Input: graphs - queue of n graphs to be clustered

θ - similarity threshold (θ ∈ [0,1])
minGraphSize - minimum graph size

Output: clusters - resulting clusters
1: procedure SC(graphs, θ, minGraphSize)
2: clusters← ∅
3: C = newCluster(dequeue(graphs))
4: clusters.add(C)
5: for all g ∈ graphs do . loop over all graphs
6: assigned← false
7: if (|g| ≥ minGraphSize) then
8: for all C ∈ clusters do . compare graph against all existing clusters
9: minSize← θ ·max(|g|,|max(C)|)

10: if (3) || (4) then . check for cluster exclusion criteria in Eq. 3.3 and 3.4
11: continue
12: else
13: minSup← |C|+ 1
14: ret← gSpan′′(g ∪ C,minSup,thr) . checks for common subgraphs

between g and graphs in C that meet the size threshold thr; returns 1 if at least one
such subgraph exists, else 0

15: if ret = 1 then
16: C.add(g) . add g to C if there exists at least one such subgraph
17: assigned← true
18: end if
19: end if
20: end for
21: if assigned = false then . create new cluster if g was not clustered
22: C ← newCluster(g)
23: clusters.add(C)
24: end if
25: end if
26: end for
27: return clusters
28: end procedure

gSpan [245] that mines frequent subgraphs in a database of graphs satisfying a given
minimum frequency constraint is used. In this thesis, a minimum support threshold of
minSup = 100% is required in a set of graphs, i.e., all common subgraphs have to be
embedded in all cluster members. For the experiments with molecular graph data, gSpan’,
an optimization of the gSpan algorithm for mining molecular databases is used [115].
Since it is not necessary to determine all common subgraphs of a set of graphs, but it is
rather important to know if there exists at least one common subgraph that meets the
minimum size threshold defined in Equation 3.2, it is possible to terminate search once
a solution is found. Due to the structural asymmetry of the search tree (all descendants
of a subgraph are generated before its right siblings are extended), it is thus possible to

55

3 Graph Clustering

modify gSpan’ such that the procedure exits immediately when a common subgraph is
found that satisfies the minimum size threshold defined in Equation 3.2. In this way, a
substantial improvement in runtime performance can be achieved. In the pseudocode,
this modification of gSpan’ is called gSpan”. To ensure that cylic graph structures are not
subdivided any further, a special label for edges in cyclic graphs is introduced. Moreover,
the following two cluster exclusion criteria are employed to avoid unnecessary calls to the
gSpan” algorithm:

|xm+1| > |xmax| ∧ minSize > |xmin|, (3.3)

|xm+1| < |xmin| ∧ minSize > |xm+1|, (3.4)

where xmin is the smallest graph in a cluster and xm+1 and xmax are defined as above.
Due to these exclusion criteria, graph instances which cannot fulfill the minimum subgraph
size threshold are eliminated from further consideration. The first criterion (Equation
3.3) excludes too large query instances that would break up an existing cluster while the
second one (Equation 3.4) excludes too small query instances. In case at least one of the
two exclusion criteria is met, the computation of the common subgraphs is omitted and
the algorithm continues with the next cluster comparison.
In summary, three factors contribute to the practically favorable performance of the

approach: First, the use of a gSpan variant to compute a sufficiently large common sub-
graph, which is known to be effective on graphs of low density. Second, the possibility to
terminate search as soon as such a subgraph is found. Third, the cluster exclusion criteria
to avoid unnecessary runs of gSpan”.

3.1.3 Experiments

To evaluate the the effectiveness and efficiency of the new structure-based clustering ap-
proach introduced in Section 3.1.2, several experiments were conducted on eight publicly
available data sets of molecular graphs (Table 3.1). In this section, the experimental set-up
and the results are described.

Table 3.1: Overview of the data sets used for assessing the structural clustering method.

Data set n min size mean size max size Reference(s)
CPD MOUSE 444 2 13 64 [93]
CPD RAT 580 2 14 90 [93]
CYP 700 1 24 86 [248]
SACA 107 5 27 79 [35]
EPAFHM 580 2 10 55 [193]
FDAMDD 1216 3 23 90 [162]
RepDose 590 2 10 88 [25]
NCI anti-HIV 36255 3 25 139 [238]

56

3.1 Structural Graph Clustering

3.1.3.1 Baseline Comparison with Fingerprint Clustering

The structure-based clustering algorithm was compared with a clustering algorithm based
on fingerprint similarity. The goal of this experiment is to determine if the structural
clustering method is able to increase cluster homogeneity as compared to fingerprint clus-
tering. Fingerprint-based similarities can be calculated extremely fast and have been found
to perform reasonably well in practice. For the fingerprint calculation of the molecular
graph data, the chemical fingerprints in Chemaxon’s JChem Java package are used [118].
The Tanimoto similarity coefficient is used as similarity measure between fingerprints,
since these fingerprints are equivalent to Daylight fingerprints3 which were shown to work
well in combination with the Tanimoto coefficient [160, 213].
The fingerprint-based clustering (FP clustering) works as follows. Iteratively, each

molecular graph is compared against all yet existing clusters. In case the query graph
meets a predefined minimum graph size threshold, minGraphSize, and the Tanimoto
similarity between the query graph and each graph in the cluster, respectively, exceeds a
predefined threshold, the query graph is added to the respective cluster; otherwise a new
singleton cluster is created containing the query graph. For each cluster of the FP clus-
tering, the MCS is determined in order to assess intra-cluster homogeneity. Note that the
computation of the MCS can be omitted by the structural clustering procedure, since the
user-defined similarity threshold provides a measure for the relative size of the common
subgraph with respect to the size of the cluster members. In the FP clustering approach,
the MCS is obtained as follows. In case a graph xi is added to a cluster Cj , the MCS
between xi and the current MCS of cluster Cj is calculated. This MCS is iteratively re-
duced in size as it is compared to the new cluster members that may not share the entire
subgraph. For the MCS calculation, the maximum common edge subgraph algorithm was
used which is implemented in Chemaxon’s JChem java package [118].
The structural clustering approach was compared with the baseline FP clustering ap-

proach on the data sets in Table 3.1. In the following, the results on three representative
data sets, i.e., on CPD MOUSE, CPD RAT and EPAFHM, are presented. In all exper-
iments, structural clustering was performed for θ ∈ [0.2,0.8] using a step size of 0.1. For
FP clustering, the Tanimoto similarity threshold was varied from 0.4 to 0.8 with a step
size of 0.1. Due to the different input parameters of both clustering approaches, it is not
obvious how to compare the clustering results. However, the clustering statistics in Figure
3.5 suggest a correlation between the results from structural clustering for a similarity
threshold of θ ∈ [0,1] and the results from FP clustering for a Tanimoto similarity thresh-
old of t = θ − 0.1 (t ∈ [0,1]), due to similar clustering results in terms of the number of
clusters, the number of singletons and the mean and maximum size of the clusters. Thus,
the clustering results from both algorithms are compared with respect to this heuristic.
Figure 3.6 shows the histogram of the relative size of the MCS with respect to the size of

3 http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

57

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

3 Graph Clustering

0
50
100
150
200
250
300
350

0.2 0.3 0.4 0.5 0.6 0.7 0.8
θ

clusters
mean size
max size
singletons
time (min)

a) CPD MOUSE

0
50
100
150
200
250
300
350

0.5 0.6 0.7 0.8
Tanimoto

clusters
mean size
max size
singletons
time (min)

b) CPD MOUSE

0
50
100
150
200
250
300
350
400

0.2 0.3 0.4 0.5 0.6 0.7 0.8
θ

clusters
mean size
max size
singletons
time (min)

c) CPD RAT

0
50
100
150
200
250
300
350
400
450
500

0.5 0.6 0.7 0.8
Tanimoto

clusters
mean size
max size
singletons
time (min)

d) CPD RAT

0
50
100
150
200
250
300
350

0.2 0.3 0.4 0.5 0.6 0.7 0.8
θ

clusters
mean size
max size
singletons
time (min)

e) EPAFHM

0
50
100
150
200
250
300
350
400

0.5 0.6 0.7 0.8
Tanimoto

clusters
mean size
max size
singletons
time (min)

f) EPAFHM

Figure 3.5: Results of structural clustering (a), (c), (e) vs. fingerprint clustering (b), (d),
(f) on CPD MOUSE, CPD RAT and EPAFHM.

the largest cluster instance for all non-singleton FP clusters for a Tanimoto threshold of
0.6. The results indicate that the relative sizes of the MCS with respect to the sizes of the
largest cluster instances are, in many cases, below the corresponding structural similarity
coefficient θ, which serves as a lower bound on the relative size of the MCS. In contrast,
each cluster obtained by structural clustering contains at least one common subgraph

58

3.1 Structural Graph Clustering

0

10

20

30

0 0.2 0.4 0.6 0.8 1

fre
qu

en
cy

MCS size ratio

a) CPD MOUSE

0
10
20
30
40

0 0.2 0.4 0.6 0.8 1

fre
qu

en
cy

MCS size ratio

b) CPD RAT

0

10

20

30

0 0.2 0.4 0.6 0.8 1

fre
qu

en
cy

MCS size ratio

c) EPAFHM

Figure 3.6: Histogram of the share of the MCS of the largest cluster instance for finger-
print clustering on (a) CPD MOUSE, (b) CPD RAT and (c) EPAFHM using a Tanimoto
coefficient value of 0.6.

whose share of each cluster member is equal or larger than θ. The results suggest that,
in comparison to FP clustering, the proposed structural clustering approach provides a
superior clustering with reduced intra-cluster heterogeneity in the overall clustering.

3.1.3.2 Qualitative Analysis of Structure-Based Clustering

Cluster analysis was performed on the standard anti-cancer agents (SACA) data set con-
sisting of 107 chemical compounds whose class labels corresponding to their mechanisms
of action have been clearly classified [237, 135]. The purpose of the experiment is to test
if the clusters obtained by structural clustering are in good agreement with the known
SACA class labels. As an external measure for clustering validation the Rand index was
used to quantify the agreement of the clustering results with the SACA classes. Larger
values of the Rand index indicate a better agreement between the clustering results and
the SACA classes, with 1.0 indicating perfect concordance. Table 3.2 shows the Rand
index values for different similarity coefficient values. Structural clustering clearly shows
the peak point of the Rand index at θ = 0.6. In the following, the clustering results for
θ = 0.6 are presented partitioning the 107 agents into 52 clusters. 23 of these clusters
have at least two members, while the final 29 clusters consist of a single graph. Figure
3.7a gives a representation of the structural clusters with at least two instances in a hypo-
thetical (non-Euclidean) two-dimensional (descriptor) space, where large circles represent
clusters and dots, rectangles and stars denote cluster members according to the SACA
classes. The results indicate that the clusters tend to be associated with certain SACA
classes. Across different values of θ it was observed that with a higher similarity coefficient
a finer but cleaner grouping of the structures at the cost of generating a larger number of
smaller clusters is achieved. The graphs in each class are more cleanly discriminated from
other graphs in the data set. Moreover, the clustering produces less overlapping clusters
with internally higher structural similarity. In summary, structural clustering is capable
of effectively grouping the 107 agents. Graphs instances from the same cluster not only
share common subgraphs but are also strongly associated with specific SACA classes of
mechanisms of action.

59

3 Graph Clustering

Table 3.2: Number of clusters and Rand index values for structural clustering on SACA.
θ 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Clusters 6 7 11 22 32 39 48 52 60 66 82
Rand Index 0.408 0.436 0.515 0.765 0.827 0.854 0.863 0.869 0.866 0.848 0.833

1

2

3

5

7

6

4

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

18

(a)

5

4

3

12

6

(b)

Figure 3.7: Results of (a) structural clustering for θ = 0.6 and (b) DP Clustering for α =
0.1 and m = 1000 on the SACA data set. The different symbols for the cluster instances
represent the six SACA classes.

3.1.3.3 Comparison with DP Clustering

The structural clustering method was compared with a graph-based clustering approach
based on variational Dirichlet process (DP) mixture models and frequent subgraph mining
by Tsuda and Kurihara [225]. The DP clustering approach addresses the problem of
learning a DP mixture model in the high dimensional feature space of graph data. The
goal of this experiment is to investigate if the approach is also able to rediscover the known
structure classes in the SACA database.

In the experiment, the number of featuresm was varied from 50 to 5000 and the parame-
ter α was chosen from the set {0.01,0.1,1,10}. Table 3.3 shows the experimental results for
α = 0.1. The results for α = {0.01,1,10} are similar. For m ≤ 500 the number of clusters
are observed to increase along with the number of features; for m > 500 the number of
clusters decreases significantly. Compared to structural clustering, DP clustering produces
less clusters. In order to make the results of the DP clustering comparable with the results
of the proposed structural clustering approach, the user-specified parameters were varied.
Nonetheless, it was impossible to parameterize the DP clustering method to obtain more
than seven clusters. Figure 3.7b presents the clustering results for m = 1000, since Tsuda
reported a good behavior of the algorithm for this value. Moreover, additional features
can reveal detailed structure of the data. However, this advantage presents a disadvantage
at the same time, since graph clusters with thousands of features are difficult to interpret.
The DP clustering results indicate that the method is not able to discriminate the known

60

3.1 Structural Graph Clustering

structure classes in the SACA data set very well. In contrast to the results of structural
clustering presented in Section 3.1.3.2, the DP clusters are, in many cases, associated with
different structure classes, indicated by lower values of the Rand index (Table 3.3).

Table 3.3: Number of clusters and size of the DFS code tree for DP clustering on the
SACA data set with α = 0.1.

Features 50 100 500 1000 5000
Clusters 6 7 7 6 2
Rand Index 0.639 0.572 0.761 0.747 0.364

3.1.3.4 Cluster Stability Analysis

The proposed structure-based clustering approach is order-dependent. That is, different
clusters are obtained for different orders in which the data is processed. To study the
impact of the order of instances in a data set, the stability of the clusters generated by
structural clustering was assessed under different permutations of the data. To this end,
multiple clustering runs were applied on different permutations of the SACA data set
[237, 135] and the agreement of the obtained clusterings was measured.
To assess the stability of a cluster of the initial clustering with respect to a new cluster-

ing, a similarity measure between clusters is needed. In this work, the Jaccard coefficient
[114] is used as a cluster-wise measure of cluster stability, which is defined as the size of
the intersection divided by the size of the union of the sample sets used. Formally,

γ(C1,C2) = |C1 ∩ C2|
|C1 ∪ C2|

, (3.5)

where C1 and C2 are two clusters and |C| denotes the number of instances in cluster C.
This index ranges from 0 (no common instances in cluster C1 and C2) to 1 (the instances
in cluster C1 and C2 are exactly the same).
In more detail, given a clustering on the data set generated by the structural clustering

method, cluster stability is assessed as follows. Different permutations of the data set are
generated and the Jaccard similarities between the original clusters and the most similar
clusters in the permuted data are computed. The mean over these similarities is used as
an index of the stability of a cluster.
The experimental results suggest that the proposed structural clustering approach gen-

erates clusters that are stable with respect to input data permutations. That is, approx-
imately 85% of the clusters of size ≥ 2 of a given clustering yield a Jaccard similarity
value of 1 with respect to the most similar cluster in a reference clustering. Taking also
singletons into account, the similarity of the clusters rises to 94%.

61

3 Graph Clustering

3.1.3.5 Performance with/without Cluster Exclusion Criteria

In another experiment, the impact of the cluster exclusion criteria defined in Equation
3.3 and Equation 3.4 on the performance of the structure-based clustering algorithm was
investigated. To this end, structural clustering was performed on the data sets in Table 3.1
both with and without the exclusion criteria. Figure 3.8 shows the results of the experiment
on three representative data sets, i.e., on CPD MOUSE, CPD RAT and EPAFHM. The
results indicate that a significant performance improvement can be achieved with the
application of the cluster exclusion criteria.

0
50

100
150
200
250
300

0.20.30.40.50.60.70.8

tim
e
(m

in
)

θ

0
50
100
150
200
250
300

0.20.30.40.50.60.70.8

tim
e
(m

in
)

θ

0
50
100
150
200
250
300

0.20.30.40.50.60.70.8

tim
e
(m

in
)

θ
with exclusion criteria
without exclusion criteria
with exclusion criteria
without exclusion criteria
with exclusion criteria
without exclusion criteria

Figure 3.8: Runtime performance of the structure-based clustering approach with and
without clustering exclusion criteria on CPD MOUSE (left), CPD RAT (middle) and
EPAFHM (right).

3.1.3.6 Scalability Experiments

To study the scalability of the proposed clustering approach, experiments were per-
formed on ten data sets from the NCI anti-HIV database that consist of x graphs
(x ∈ [1000,10000]) using a similarity coefficient θ ∈ [0.2,0.8]. As shown in Figure 3.9,
the structure-based clustering algorithm scales favorably as the size of the data set in-
creases. However, for 0.6 ≤ θ ≤ 0.8, the algorithm did not respond within a certain
timeout period for data sets larger than 4000 and 5000 graphs, respectively. The overall
results suggest that, depending on reasonable parameter settings, the proposed clustering
approach can handle data sets of at least 10,000 graphs.

3.1.4 Conclusion

In this section, a new online algorithm for clustering graphs in a data set in terms of
structural similarity was proposed. Structural graph clustering can offer interesting new
insights into the composition of graph data sets. Moreover, it can be practically useful
to benchmark other graph mining algorithms, to derive new substructural descriptors, to
compute local models for classifying graphs, and to calculate the applicability domain of
models. Several experiments were designed to evaluate the effectiveness and efficiency
of the proposed approach on various real world data sets of molecular graphs. First of

62

3.1 Structural Graph Clustering

0

5000

10000

15000

20000

25000

30000

35000

1000 2000 3000 4000 5000 6000 10000

ru
nt
im

e
(m

in
)

graphs

θ
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 3.9: Runtime performance of the structure-based clustering approach on ten data
sets from the NCI anti-HIV database consisting of x graphs (x ∈ [1000,10000]).

all, a qualitative analysis was conducted to show that the approach is able to rediscover
known structure classes in data sets. Moreover, a baseline comparison with a fingerprint-
based clustering was presented. The results demonstrate that the structural clustering
approach yields larger and more representative cluster scaffolds compared to FP-based
clustering, thus reducing the heterogeneity in the clusters obtained by fingerprint clus-
tering. Further, to show the importance of the defined cluster exclusion criteria, the
performance of the structural clustering approach was evaluated with and without these
criteria. Finally, to show how well the algorithm scales with respect to the data set size,
extensive experiments were performed on a data set comprising 10,000 compounds from
the NCI aids anti-viral screen data. In summary, the results suggest that the presented
overlapping, non-exhaustive structural clustering approach generates interpretable clus-
terings in acceptable time. Further work, from an application point of view, includes the
following: First, it would be interesting to investigate the effects of preprocessing steps,
e.g., downweighting longer chains (acyclic substructures) or reduced graph representations
(transforming cycles, in chemical terms: rings, into special nodes). Second, the algorithm
could be extended easily to take into account the physico-chemical properties of whole
molecules. Technically, this would mean that only graphs within a certain distance with
respect to such global graph properties are added to a cluster.

63

3 Graph Clustering

3.2 Parallel Structural Graph Clustering

This section addresses the problem of clustering large graph databases according to scaf-
folds, i.e., large structural overlaps that are shared among all cluster members. More
precisely, the cluster members are required to share at least one common subgraph that
covers a specific fraction of all graphs in the cluster. An important challenge in this en-
deavor is the scalability to large graph data sets (of the order of 105 to 106 graphs). Graph
databases such as the ones representing chemical compounds routinely encompass several
hundred thousand graphs; thus, clustering methods that are able to explore and structure
the vast graph space are highly desirable. Clustering large databases has emerged as a
challenging research area with a large variety of applications, such as in the field of virtual
screening, where the task is to analyze large databases of chemical compounds to iden-
tify possible drug candidates [233]. By applying clustering techniques it is, for example,
possible to prestructure the chemical space, e.g., for local modeling to capture the multi-
mechanistic nature of many endpoints, the rediscovery of analog series or visualization.
The majority of structural (i.e., scaffold-based) graph-based clustering algorithms, involv-
ing e.g., the computation of the MCS, is hardly suitable for such data sets. Graph data
sets used in related papers typically contain only several hundred graphs [3, 107, 182],
and hardly any effort has been spent on characterizing the performance of the clustering
algorithms.
In the previous section, a scaffold-based structural graph clustering algorithm was pre-

sented that has been shown to handle graph data sets of at least 10,000 graphs. As this
algorithm is still limited in performance, this section presents a parallel, scalable version
of the algorithm. The proposed approach, called PSCG (Parallel Structural Clustering
of Graph), is based on the idea of task partitioning in conjunction with refined cluster
membership tests. More precisely, a set abstraction of graphs and a size-based cluster-
ing criterion was used to reduce the number of expensive subgraph search computations,
which are not affordable exhaustively on large databases. Moreover, to avoid cluster
comparisons with all cluster members, which grow computationally more expensive with
increasing cluster size, a cluster representative is defined for each cluster once a unique
cluster scaffold is found.
The remainder of the section is organized as follows: In Section 3.2.1, the new approach

PSCG is described in detail. Section 3.2.2 presents a description of the data sets and
experiments as well as an interpretation of the results. Finally, a conclusion is given in
Section 3.2.3.

3.2.1 Method

This section presents enhancements and optimizations of the structural clustering algo-
rithm proposed in the previous section that enable PSCG to handle large data sets. The
main idea of PSCG is to partition the clustering task into independent tasks which are

64

3.2 Parallel Structural Graph Clustering

distributed among a set of processes, i.e., each process is responsible for one cluster. The
motivation behind partitioning the set of clusters instead of the graph data set is that each
process can compare all relevant graph instances, i.e., all graph instances with an index
greater than the index of the graph that initiated the singleton cluster, against the as-
signed cluster without the need to wait for the intermediate results of the other processes.
To achieve this, a master process is needed which is responsible for managing the cluster
results of all processes. The implementation of PSCG adopts the master-worker paradigm
for parallelization. The master-worker programming model consists of two kinds of enti-
ties: a single master and multiple workers. The master is responsible for decomposing a
clustering problem into a subset of clustering tasks and distributing these tasks among a
farm of workers (by putting the tasks in a shared queue), as well as for gathering the par-
tial results in order to produce the final computation result. A queue, shared between the
master and the workers, is used to represent the shared space where the pending clusters
reside. Each worker is responsible for only one cluster at any point in time, independently
computing one iteration: It pulls a clustering task (input) from the queue, processes the
task by comparing all relevant graphs in the graph database against the cluster, and sends
the result, i.e., the processed cluster, back to the master (output).
One of the advantages of using this pattern is that the algorithm is based on a dynamic

load balancing of the cluster queue, i.e., the algorithm automatically balances the load.
This is possible due to the adoption of a receiver-initiated dynamic load balancing approach
based on polling: the work set is shared, and the workers continue to pull work from the
set until there is no more work to be done. A static load balancing policy is not adequate
for the algorithm as the work load is not known in advance and cannot be estimated easily.
The following sections describe the parallel structural clustering algorithm PSCG in

more detail.

3.2.1.1 Cluster Comparisons

Let minGraphSize be the minimum threshold for the graph size and minSize be the
minimum threshold for the size of the common subgraphs specified by the user and defined
in Equation 3.2. The algorithm starts with an empty set of clusters. In the first step,
the master initiates the computation by creating an initial cluster containing the first
graph that is larger than minGraphSize (Algorithm 2, line 7-11). The master process
is responsible for putting the initial cluster in the cluster queue (line 12) which stores
cluster instances that are exchanged with the workers. Subsequently, the master increases
the number of necessary cluster comparisons for all subsequent graphs (explained in more
detail later in this section) (line 14-15). In the following steps, idle workers continue to
pull one cluster at a time from the queue (Algorithm 3, line 4) and perform clustering
(line 6) by comparing all graph instances in the graph database that lie within a specified
index range (which will be explained in more detail in Section 3.2.1.2) against the assigned
cluster (Algorithm 4, line 6). In case a query instance meets the minGraphSize threshold

65

3 Graph Clustering

Algorithm 2 PSCG: Master
Input: graphs - array of n graphs

p: number of processors
Output: results - final clusters
1: results← ∅ . resulting cluster queue shared by all threads
2: stable_sort(graphs) . see Section 3.2.1.2
3: for i ∈ 1, . . . , p do
4: w ← newWorker()
5: w.start()
6: end for
7: g ← dequeue(graphs)
8: while |g| < minGraphSize do
9: g ← dequeue(graphs)
10: end while
11: C ← newCluster(g)
12: queue.add(C)
13: activeWorkers = true . set to true, if active workers exists
14: for g ∈ graphs do
15: g.nrClusterComparisons← 1
16: end for
17: while (activeWorkers = true | queue.isEmpty = false) do
18: do nothing
19: end while
20: for i ∈ 1, . . . , p do
21: w.terminate()
22: end for
23: return results

Algorithm 3 PSCG: Worker
1: procedure start
2: terminationSignalByMaster = false
3: while terminationSignalByMaster = false do
4: C ← dequeue(queue)
5: if C 6= null then
6: PSCG(C,startIdx,θ,minGraphSize)
7: end if
8: end while
9: terminate()
10: end procedure

11: procedure terminate
12: terminationSignalByMaster = true
13: end procedure

and shares at least one common subgraph with the cluster that meets the cluster criterion
in Equation 3.2 (line 21), the instance is added to the respective cluster (line 22). In
case a graph does not belong to any cluster, a new cluster is created. In contrast to the
sequential clustering setting, however, in the parallel setting the information whether a

66

3.2 Parallel Structural Graph Clustering

Algorithm 4 PSCG: Structural Clustering
Input: C - cluster

startIdx - index of graph that initiated the singleton cluster
θ - similarity threshold (θ ∈ [0,1])
minGraphSize - minimum graph size

1: procedure PSCG(C,startIdx,θ, minGraphSize)
2: ret - gSpan” return value; returns 0 if no common subgraph exists that meets the
3: size threshold thr, 1 if there exists only one such subgraph, 2 if there exists
4: more than one such subgraph
5: endIdx← idx(graph ∈ graphs : |graph| ≤ θ ·min(C))] . see Section 3.2.1.2
6: for j ∈ startIdx, . . . , endIdx do
7: if graphs[j] ≥ minGraphSize then
8: assigned← false
9: if s(fgraphs[j], fC) < θmax(|graphs[j]|,|min(C)|) then . see Section 3.2.1.3

10: Mismatch(j,j + 1)
11: continue
12: else
13: minSize← θ ·max(|graphs[j]|,|max(C)|)
14: if uniqueScaffold = false then . see Section 3.2.1.4
15: minSup← |C|+ 1
16: ret← gSpan′′′(graphs[j] ∪ C.graphs,minSup,thr)
17: else
18: minSup← 2
19: ret← gSpan′′(graphs[j] ∪ C.scaffold,minSup,thr)
20: end if
21: if ret ≥ 1 then
22: C.add(graphs[j])
23: assigned← true
24: if ret = 1 then
25: uniqueScaffold← true
26: end if
27: end if
28: end if
29: if assigned = false then
30: Mismatch(j,j + 1)
31: end if
32: end if
33: end for
34: if (endIdx+ 1 < |graphs|)) then
35: Mismatch(endIdx+ 1,|graphs|)
36: end if
37: results.add(C) . results: resulting cluster queue shared by all threads
38: end procedure

graph belongs to a cluster is distributed over the set of workers. Since a new cluster
can only be created if it is not assigned to any existing cluster, the master needs to
maintain the cluster membership information for all graph instances. In particular, for
each graph two cluster membership parameters need to be maintained: the number of

67

3 Graph Clustering

Algorithm 5 PSCG: Maintainance of cluster membership information
Input: startIdx - start index

endId - end index
1: procedure Mismatch(startIdx,endIdx)
2: for idx ∈ startIdx, . . . , endIdx− 1 do
3: graphs[idx].nrMismatches++
4: if graphs[idx].nrCluComp = graphs[idx].nrMismatches then
5: C ← new Cluster(graphs[idx])
6: queue.add(C)
7: for i ∈ idx+ 1, . . . , |graphs| − 1 do
8: graphs[i].nrClusterComparisons++
9: end for
10: end if
11: end for
12: end procedure

necessary cluster comparisons as well as the numbers of clusters the graph does not fit
into (denoted as the number of cluster mismatches). If a graph does not belong to a
cluster the worker forwards the non-membership information to the master (Algorithm 4,
line 30). Note, that due to the overlapping nature of the clustering algorithm, a graph can
be directly assigned to a cluster in case it meets the cluster criterion without informing
the master. Each time a worker reports a cluster mismatch for a graph, the master first
increases the mismatch parameter for the graph (Algorithm 5, line 2-3) and then checks
the two cluster membership parameters. If the number of necessary cluster comparisons
is equal to the number of cluster mismatches (line 4), suggesting that the corresponding
graph does not belong to any cluster, a new cluster is created (line 5). The master puts
the cluster in the task queue (line 6) and increases the cluster comparison parameter
for all subsequent graphs in the graph data set (line 7-8). Once a worker is done with
an iteration, the resulting cluster is added to the result queue managed by the master
(Algorithm 4, line 37). The flowcharts in Figures 3.10 and 3.11 illustrate the master-
worker paradigm of PSCG. A graphical illustration of the clustering process on a sample
data set of molecular graphs is shown in Figure 3.12, where large circles represent clusters
and the single structures outside denote singleton clusters. The table contains the cluster
membership parameters maintained by the master.
As in the sequential clustering algorithm, gSpan′′ is used for computing common sub-

graphs. Given that pairwise subgraph similarity computation is very expensive, it would
be highly desirable to reduce the number of subgraph computations. Therefore, the fol-
lowing cluster exclusion criteria are introduced to avoid unnecessary calls to the gSpan′′

algorithm in the first place: a refined cluster membership test based on node feature vec-
tors of graphs, and a clustering exclusion criterion based on the size of graph instances
which requires the graph data set to be sorted according to size. These criteria are em-
ployed to perform a search space pruning on the actual clustering. The aim of search
space pruning is to reduce the number of graph candidates in the database that need to

68

3.2 Parallel Structural Graph Clustering

Figure 3.10: Flowchart of the master-worker paradigm employed by PSCG.

Figure 3.11: Flowchart of the worker computation.

69

3 Graph Clustering

undergo an expensive, full fledged graph matching process. Further, to reduce gSpan run-
ning times for larger clusters, a cluster representative is defined for each cluster composed
of the common cluster scaffold once this scaffold is unique and thus also minimal. In
the following three subsections, the employed cluster exclusion criteria and the intuition
behind the definition of a cluster representative are described in more detail. The impact
of these algorithmic improvements will be investigated in Section 3.2.2.

3.2.1.2 Size-based Exclusion Criterion

The cluster criterion defined in Equation 3.2 constrains the set of graphs being considered
for clustering. More precisely, only graphs in a certain size range are considered for com-
parison with a specific cluster, i.e., graphs whose sizes lie in the range [dθxmaxe,b1

θxminc],
where xmin is the smallest and xmax is the largest graph instance in the cluster. The lower
bound of the size range ensures that only graph instances that are equal to or larger than
the minimum required size for at least one common subgraph, minSize, are considered
for cluster membership. This is necessary since at any point in time at least one common
subgraph should make up a proportion θ of the size of each cluster member. The upper
bound excludes query instances that are larger than minSize and thus would break up
an existing cluster. Incorporating this information in the clustering process would give us
the possibility to avoid comparing a cluster to the complete database.
To effectively employ the size-based criterion, the data set is sorted in increasing order

of graph size. Thus, the subsequent graphs do not need to be compared against a cluster,
once a query graph exceeds the upper bound of the size range. To preserve the incremental
character (i.e., each graph in the graph database is only processed once by comparing it
against all existing clusters) of the structural clustering algorithm [204], the graph index
corresponding to the lower bound needs to be greater than the index following the index
of the graph instance that initiated the assigned singleton cluster. However, due to the
ordering of the data set by size, the graph index corresponding to the lower bound is
always equal to or smaller than the index of the graph that initiated the singleton cluster.
Thus, the graph indices that are considered for comparison against a cluster lie in the
range [idx(xmin) + 1,idx(x : |x| ≤ b1

θxminc)], where xmin is the smallest graph in the
cluster. Due to the ordering of the data set, this graph corresponds to the graph that
initiated the clustering. Figure 3.13 illustrates the use of the size-based exclusion criterion
during the clustering process on a data set of eight molecular graphs for θ = 0.5. The left
figure shows the clustering at time t1. Only graphs of size ≤ 1

θ · xmin = 4
0.5 = 8 need to be

considered for comparison against cluster 1, since for graphs of size > 8 it is impossible to
find a common subgraph with x1 that covers at leat 50% of both graphs. Hence, graph x2

is the only graph that needs to be compared against cluster 1. The right figure shows the
clustering at time t2. Here, only graphs of size ≤ 1

θ ·xmin = 7
0.5 = 14 need to be considered

for clustering against cluster 2. The only graphs that meet this criterion are graphs x3 to
x7.

70

3.2 Parallel Structural Graph Clustering

CH3

OH

HO

Cl

Cl

CH3H3C

Cl

Cl

Cl

Cl

Cl

Cl

H3C

cluster
comparisons

mis-
matches

(a)

CH3H3C

CH3

OH

HO

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

H3C

cluster
comparisons

mis-
matches

(b)

Cl

H3C

CH3H3C

CH3

OH

HO

Cl

Cl

Cl

Cl

Cl

Cl

Cl

cluster
comparisons

mis-
matches

(c)

Figure 3.12: Example sequence of steps of PSCG. 71

3 Graph Clustering

Cl

Cl

Cl

H3C

CH3H3C

CH3

OH

HO

Cl

Cl

Cl

Cl

Cl

cluster
comparisons

mis-
matches

(d)

Cl

Cl

Cl

Cl

Cl

H3C

CH3H3C

CH3

OH

HO

Cl

Cl

Cl

cluster
comparisons

mis-
matches

(e)

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

H3C

CH3H3C

CH3

OH

HO

cluster
comparisons

mis-
matches

(f)

Figure 3.12: Example sequence of steps of PSCG (continued).72

3.2 Parallel Structural Graph Clustering

HN

NH

O

H3C

OH

OH

HN

H3C

O

NNH

NH2

HN

NH

O

H3C

HN

HN

O

H3C

N

O

O

H2N

CH3

CH3

N

O N

CH3

O

Cl O

HO

+N
-O

OF

F

F

O

H2N

CH3

CH3

N

O N

CH3

O

H2N

CH3

Figure 3.13: Example illustrating the use of the size-based cluster exclusion criterion on
a data set of chemical compounds containing eight graphs (θ = 0.5). Left: Clustering at
time t1.Only graphs of size ≤ 1

θ · xmin = 4
0.5 = 8, i.e., graph x2, need to be considered for

comparison against cluster 1. Right: Clustering at time t2. Only graphs of size ≤ 1
θ · xmin =

7
0.5 = 14, i.e., graphs x3 to x7, need to be considered for clustering against cluster 2.

3.2.1.3 Exclusion Criterion based on Node Feature Vectors

The second clustering exclusion criterion is based on a set abstraction of graphs, i.e., a
numerical feature vector representing the number of node types in a graph. The underlying
idea is that for two graphs the overlapping node set represents an upper bound for the
size of the maximum common subgraph. Thus, given a query instance, the computation
of common subgraphs shared with the members of a cluster can be omitted if the size
of the overlapping node set of the query graph and the cluster representantive is smaller
than minSize.

Formally, during the preprocessing phase of structural clustering, each graph xi is rep-

73

3 Graph Clustering

resented by a numerical feature vector fxi = (f1
xi
,..,fnxi

) corresponding to a set of vertex
types l1,..., ln. Each entry in the feature vector records the number of a specific vertex type
occuring in the respective graph. Let fkxi

denote the numerical feature associated with the
vertex type vk. Each cluster Cj is represented by a vector fCj = (f1

Cj
,...,fnCj

) defined in
terms of the overlap of the feature vectors of the instances in that cluster, i.e., the common
vertex type set shared by all cluster instances. The similarity s between fxi and fCj is
computed by summing up the minimum of each pair of feature vector components

s(fxi ,fCj) =
∑
k

(min({fkxi
∈ fxi} ∪ {fkCj

∈ fCj})) (3.6)

representing an upper bound on the size of the maximum common subgraph (Algorithm
4, line 9). If the similarity s(fxi ,fCj) is lower than the minimum threshold for the size of the
common subgraphs, minSize (Equation 3.2), i.e., s(fxi ,fCj) < minSize, the computation
of the common subgraphs is omitted and the cluster mismatch is reported to the master
(line 10). PSCG then continues with the next cluster comparison (line 11). In this way,
graphs with a limited degree of resemblance to the target cluster are eliminated, and the
overall speed of the algorithm is increased. Figure 3.14 shows a sample application of
the feature vector criterion for θ = 0.6. In this example, the query graph x3 is compared
against cluster 1 containing two graphs, x1 and x2. As the similarity between the node
feature vector of the query graph and the the node feature vector of the cluster is smaller
than the minimum required size of the common subgraph minSize, the query graph is
not considered for the cluster membership test. Hence, the computation of the common
subgraphs can be omitted.

3.2.1.4 Definition of a Cluster Representative

As mentioned in Section 3.1.2, the structural clustering method limits subgraph mining to
the search of one common subgraph that satisfies the minimum size threshold, minSize
to avoid the computation of all frequent common subgraphs. This limitation forces us
to compare each query graph against all cluster members which may have a remarkable
impact on the runtime of gSpan, in particular for larger clusters. To reduce running
times, a cluster representative is defined for each cluster once all cluster members share a
unique cluster scaffold, i.e., the minimum required common subgraph is the only common
subgraph all cluster members have in common. Since in the structural clustering algorithm
introduced in Section 3.1 subgraph mining is terminated once a common subgraph is
found that satisfies minSize, the existence of further common subgraphs is unknown.
Therefore, it is necessary to go one level deeper in the subgraph mining process and
check if there exists at least another common subgraph with size equal to or greater than
minSize. In the pseudocode, this modification of gSpan is called gSpan′′′ (Algorithm 4,
line 16). As soon as all graphs in a cluster share no more than one common subgraph,
this unique subgraph is used as the cluster representative (see example in Figure 3.15). In
the following, all subsequent query graphs are compared against the cluster representative

74

3.2 Parallel Structural Graph Clustering

HN

NH

O

H3C

OH

OH

HN

H3C

O

N
NH

NH2

Figure 3.14: Example use of the feature vector-based cluster exclusion criterion (θ = 0.6).
Since the similarity between the feature vectors of query graph x3 and cluster 1 is smaller
than the minimum required size of the common subgraph, the common subgraph computa-
tion step can be omitted.

instead of comparing it against all graphs in the cluster (line 18-19). Further, subgraph
mining is terminated as soon as a common subgraph of size minSize is found that is
covered by the query graph and the cluster representative, i.e., gSpan′′ is used. Note,
that the reason for not defining a cluster representative before the existence of a unique
cluster scaffold is due to the following two reasons. First, there may exist at least another
common subgraph of size minSize. By using the first common subgraph found as cluster
representative, it may be the case that the query graph and the cluster representative
share a common subgraph of size minSize that is not the first common subgraph. In this
case, by mistake the query graph would not be assigned to the cluster. Second, there may
exist larger subgraphs. By ignoring the existence of these subgraphs and using the first
common subgraph found as cluster representative, it may be the case that the minSize
threshold is smaller than the size of the common subgraph shared by the query graph and
the cluster representative. Thus, the query graph would not be assigned to the cluster
even if there exist larger common subgraphs that fulfill the size threshold.

3.2.2 Experimental Results

To evaluate the efficiency of the parallel structural clustering algorithm PSCG, introduced
in Section 3.2.1, several experiments were conducted on several publicly available data sets

75

3 Graph Clustering

OO

O

H3C

O

H3C

H3C O

O

H3C

O

Figure 3.15: Example illustrating the definition of a cluster representative. At time t1, the
cluster members x1 and x2 share two common subgraphs that meet the minSize thresh-
old. Hence, there does not exist a unique cluster scaffold. At time t2, there exists a unique
cluster scaffold which is used as cluster representative for further cluster assignments.

of molecular graphs. In this section, the data sets, the experimental set-up and the results
are described.

3.2.2.1 Test Environment and Data Sets

The clusterings on the data sets containing up to 200,000 graphs were carried out on a SUN
x4600 system with 32 AMD Opteron CPU cores (8 CPU sockets with 4 CPU cores) using
the multi-threaded version of the algorithm. The processor in each node runs at 2.5 GHz
with 2 GB of main memory. The clusterings on the data set containing 300,000 structures
were carried out using the MPI parallelized version of the algorithm. Here, the compute
cluster consists of 2016 AMD Opteron (Magny-Cours) CPU cores (42 Dell R815 nodes with
48 CPU cores and 128-256 GB main memory) and Qlogic infiniband interconnects. The
algorithm was implemented in C++ using the boost libraries (www.boost.org) for multi-
threading support. For the experiments, the chemical domain was employed as application
area by using real data sets of molecular graphs. The first data set contains the first 10,000
structures of the NCI anti-HIV database (http://dtp.nci.nih.gov/docs/aids/aids_

data.html) which contains 36,255 compounds. The second data set, ChemDB, contains
nearly 5M commercially available small molecules [48, 49]. From this data set, data sets

76

www.boost.org
http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://dtp.nci.nih.gov/docs/aids/aids_data.html

3.2 Parallel Structural Graph Clustering

sized from 100,000 to 300,000 graphs were created using random sampling.

3.2.2.2 Performance Evaluation

The runtime performance of PSCG was investigated for different numbers of processors
(1, 2, 4, 8, 16 and 32) and different values of θ using the first 10,000 graph structures from
the NCI anti-HIV database. An index called the speedup factor was used to determine
the advantage afforded by the parallel implementation. Speedup (S) is defined as a ratio
of the time taken in running the sequential algorithm (Ts) to the time taken in running
the parallel algorithm (Tp) with P processors, i.e., S = Ts

Tp
.

Figure 3.16 shows the execution time and the speedup for different values of θ. The
results indicate that PSCG scales well with the number of processors and has a good
speedup which is close to linear for certain parameter settings, i.e., for smaller values of
θ. For larger similarity coefficients, there is a higher number of computationally more
demanding cluster comparisons, especially at the end of the clustering when the graphs
become larger and the runtime degenerates.

3.2.2.3 Effects of Algorithm Improvements

Further, the impact of the algorithm improvements presented in Section 3.2.1.2, 3.2.1.3 and
3.2.1.4 on the performance of PSCG was investigated. For this, clustering was performed
on the NCI anti-HIV data set with 32 processors using (i) no optimizations, (ii) only the
size-based exclusion criterion, (iii) only the feature vector-based exclusion criterion, (iv)
both the size- and feature vector-based criteria and (v) all optimizations including the
definition of a cluster scaffold once it is unique. Figure 3.17 shows the runtime reduction
and Figure 3.18 an overview of the relative frequency of both exclusion criteria as well as
the frequency of gSpan calls. The results indicate that significant performance improve-
ments, especially for θ ≤ 0.5, can be achieved with the application of the cluster exclusion
criteria and the definition of a cluster scaffold.

0
2
4
6
8
10
12
14
16
18

5 10 15 20 25 30

ru
nt
im

e
(in

ks
)

number of processors

θ
0.2
0.3
0.4
0.5
0.6
0.7

5

10

15

20

5 10 15 20 25 30

sp
ee
du

p

number of processors

θ
0.2
0.3
0.4
0.5
0.6
0.7

Figure 3.16: Execution time (left) and speedup (right) of PSCG on the first 10,000 graphs
of the NCI anti-HIV data set.

77

3 Graph Clustering

0%

20%

40%

60%

80%

100%

120%

0.2 0.3 0.4 0.5 0.6 0.7
θ

no optimization
size criterion
fv criterion
size and fv criteria
all optimizations

Figure 3.17: Runtime reduction due to algorithm improvements.

3.2.2.4 Comparison to Sequential Structural Clustering

The runtime performance of PSCG was compared with the sequential structural clustering
algorithm presented in Section 3.1 on the first 10,000 structures of the NCI anti-HIV data
set. For accurate comparison, the same experimental setup was used for both methods.
This section only shows the experimental results for θ ∈ [0.2,0.5], since for θ ≥ 0.5, the
sequential algorithm did not terminate within a certain timeout period. Table 3.4 shows
the runtime performance of both clustering versions. The runtime advantage of PSCG
over the sequential clustering version is clear, showing improved computation efficiency
by factors of 300 fold to 1900 fold for PSCG. The reasons for this can be explained
by the following improvements in PSCG. First, the clustering task is partitioned into
independent tasks which are distributed among a set of workers. Each worker compares
the graph structures in the data set against the assigned cluster without the need to
wait for the intermediate results of the other processes. Second, two clustering exclusion
criteria were introduced which reduce the number of cluster membership tests. Third, a
cluster representative is defined once the scaffold of a cluster is unique, to avoid cluster
comparisons with all cluster members. Fourth, the invocation overhead of the individual
gSpan runs was reduced. This optimization is especially efficient for gSpan runs with low
overall runtimes.

78

3.2 Parallel Structural Graph Clustering

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7

re
l.
fre

qu
en

cy

θ

size criterion
fv criterion
gSpan

Figure 3.18: Relative frequency of size-based and feature vector-based exclusion criterion
and number of gSpan calls.

Table 3.4: Runtime (in sec) of the sequential clustering version vs. PSCG on the first
10,000 graphs of the NCI anti-HIV data set for different values of θ.

θ 0.2 0.3 0.4 0.5
tseq 747,000 1,068,420 1,434,780 2,087,280
tpar 396 1,244 3,394 6,235

3.2.2.5 Experiments on Large Graph Data Sets

PSCG was tested on three data sets sampled from the ChemDB data set containing
100,000, 200,000 and 300,000 graphs respectively. For the experiments, 32 CPUs were

Table 3.5: Runtime (in sec) for the sampled data sets.

|D| θ = 0.4 θ = 0.6
100,000 31,103 • 67,563 •
200,000 122,204 • 349,568 •
300,000 610,577 ◦ 1,163,761 ?

•: 32 processors ◦: 96 processors ?: first half: 96 processors, second half: 48 processors

79

3 Graph Clustering

Table 3.6: Number of clusters for the sampled data sets.

|D| θ = 0.4 θ = 0.6
100,000 4,112 16,295
200,000 6,096 25,685
300,000 9,811 38,775

used for the data sets with 100,000 and 200,000 graphs. For the data set containing
300,000 graphs 96 CPUs were used for θ = 0.4. For θ = 0.6, 96 (48) CPUs were used to
cluster the first (second) half of the data set. The rationale for the change in the CPU
number is that the parallel efficiency of the algorithm can change over the runtime of the
algorithm (i.e., towards the end a large number of workers may be idle constantly). The
MPI version contains a checkpoint/restart facility which allowed us to adjust the number
of used CPU cores to account for this by manually balancing the workload on the cluster.
Tables 3.5 and 3.6 show the runtime performance as well as the number of created clusters
on the sampled data sets for θ = 0.4 and θ = 0.6 using all three previously described
algorithmic improvements.

3.2.3 Conclusion

This section presented PSCG, a parallel and improved version of the structural graph clus-
tering algorithm introduced in Section 3.1. PSCG uses a task partitioning approach and
makes use of two clustering exclusion criteria to reduce cluster membership tests. Further,
to reduce gSpan running times for larger clusters, a cluster representative is defined for
each cluster composed of the common cluster scaffold once this scaffold is unique. To study
the effectiveness of the proposed algorithm for clustering large data sets, extensive exper-
iments were conducted. The experimental results suggest that the algorithm scales well
with the increasing size of the data and, for certain parameter settings, speeds up nearly
linearly with the increasing number of processors. For real world data sets, this algo-
rithm is able to handle a much greater number of graph instances compared to previously
proposed structure-based clustering algorithms. Given these performance improvements,
the algorithm should already be applicable to the large structure databases from virtual
screening.

80

3.3 Structural Clustering by Abstract Pre-clustering

3.3 Structural Clustering by Abstract Pre-clustering

The previous section introduced an approach for clustering large databases of graphs. The
parallelized scaffold-based structural graph clustering approach, PSCG, has been shown
to handle graph data sets of at least 300,000 graphs was presented. Still, common real-
world compound libraries contain millions of graph structures, and clustering algorithms
to structure these libraries are needed. In this section, a new scaffold-based algorithm for
clustering such very large molecular graph databases is proposed.
The approach, named SCAP (Structural Clustering by Abstract Pre-clustering), em-

ploys two stages. It first partitions the original data set into several smaller data sets using
a greedy clustering approach inspired by dynamic seed-based clustering (DySC) [257] for
RNA reads and a similarity measure based on an abstraction from the actual structural
similarity measure. The pre-clustering approach is referred to as APreClus (Abstract Pre-
Clustering). APreClus is an online and instance incremental clustering algorithm delaying
the final cluster assignment of an instance until one of the so-called pending clusters the
instance belongs to has reached significant size and is converted to a fixed cluster. Once a
cluster is fixed, APreClus recalculates the cluster centers which are used as representative
for further cluster assignments. This has the advantage that instances initially wrongly as-
signed to a cluster can be either still assigned to other pending clusters, or are recycled as
new input instances. In other words, errors of assigning instances too early to a cluster can
be corrected, even if an initial assignment to a cluster has been made. The pre-clustering
methodology employs a cluster membership test based on a set-abstraction of graphs. The
motivation behind the pre-clustering step is that by using this pre-clustering approach and
the abstraction-based similarity measure, dissimilar partitions of the original data set are
generated, without the loss of information. The similarity measure ensures that only
graphs which have the potential of being structurally similar are assigned to the same
partition. Overall, this leads to a reduction in the number of expensive subgraph search
computations performed in the second clustering stage, which are now not required as the
partitions are dissimilar to each other. The resulting partitions are further clustered into a
finer level of granularity using a variant of the highly parallelized scaffold-based clustering
approach, PSCG, that produces overlapping (non-disjoint) and non-exhaustive clusters.
The second-stage clustering avoids cluster comparisons with all cluster members, which
grow computationally more expensive with increasing cluster size, by defining a cluster
representative for each cluster.
The remainder of the section is organized as follows: Section 3.3.1 introduces the

scaffold-based structural graph clustering approach SCAP. In Section 3.3.2, the exper-
imental results are presented and discussed, before Section 3.3.3 concludes.

81

3 Graph Clustering

3.3.1 Method

SCAP clusters graphs according to scaffolds that are common between cluster members.
The pseudocode of SCAP is shown in Algorithm 6. The approach employs two clustering
stages. In the first clustering stage, the data set is pre-partitioned into a set of smaller
data sets employing an approach based on a dynamic seeding strategy [257] (see Algo-
rithm 6, line 3). Section 3.3.1.1 describes the pre-clustering methodology in more detail.
As mentioned earlier, the motivation behind the pre-clustering step is to generate dissim-
ilar partitions of the original data set, without loss of information. Choosing a similarity
measure based on a set-abstraction of graphs, it is guaranteed that only graphs which
have the potential of being structurally similar are assigned to the same partition. Hence,
the number of computationally expensive subgraph computations performed in the second
clustering stage, which are not required any more as the partitions are dissimilar to each
other, can be drastically reduced. In the second clustering stage the resulting data parti-
tions are clustered into a finer level of granularity using a scaffold-based graph clustering
approach (Algorithm 6, line 5) inspired by PSCG that can handle even larger data sets
of graphs. The modification is referred to as PSCG’ which will be described in Section
3.3.1.2.
Algorithm 6 SCAP
Input: graphs - queue of n graphs to be clustered

θ - similarity threshold (θ ∈ [0,1])
max_pending - cluster size threshold

Output: clusters - clusters
1: procedure SCAP(graphs,θ,max_pending)
2: clusters← ∅
3: partitions← APreClus(graphs,θ,max_pending)
4: for C ∈ partitions do
5: clusters.add(PSCG′(C,θ))
6: end for
7: return clusters
8: end procedure

3.3.1.1 APreClus

The pre-clustering approach APreClus is a variation of a recently proposed online and
instance incremental clustering algorithm, called Dynamic Seed-based Clustering (DySC)
[257]. The approach uses a dynamic seeding strategy to achieve higher accuracy while
preserving scalability and efficiency. In the following, the most important concepts of the
algorithm are presented. The main purpose is to reduce the amount of inaccurately formed
clusters in the early stages of a greedy clustering. Additionally, Figure 3.21 illustrates the
clustering workflow of APreClus.

82

3.3 Structural Clustering by Abstract Pre-clustering

Algorithm 7 APreClus
Input: graphs - queue of n graphs to be clustered

θ - similarity threshold (θ ∈ [0,1])
max_pending - cluster size threshold

Output: CFix - resulting set of clusters
1: procedure APreClus(graphs, θ,max_pending)
2: CFix, CPending ← ∅
3: CPending.add(newCluster(dequeue(graphs)))
4: while graphs 6= ∅ do
5: g ← dequeue(graphs)
6: assigned← false
7: m← {(C, sim(g,seedC)|C ∈ CFix ∧ sim(g,seedC) ≥ θ} . check if g belongs to

a fixed cluster
8: if m 6= ∅ then
9: assigned = true . assign g to C with highest similarity sim(g,seedC)

10: end if
11: if assigned 6= true then . g not assigned to fixed cluster? Find pending ones
12: for all C ∈ CPending do
13: if sim(g,seedC) ≥ θ then
14: C.add(g)
15: assigned← true
16: end if
17: end for
18: end if
19: if assigned 6= true then
20: CPending.add(newCluster(g)) . create new pending Cluster
21: assigned← true
22: end if
23: for all C ∈ CPending do . check if one pending cluster is over size threshold
24: if |C| > max_pending then
25: CPending.remove(C)
26: CFix.add(C)
27: seedCf

← determineF ixedSeed(C)
28: reuseGs = reassign(C, CPending, graphs, θ) . reassign cluster members
29: removeFromPendingClusters(C, CPending)
30: for all r ∈ reuseGs do
31: graphs.enqueue(r)
32: end for
33: end if
34: end for
35: end while
36: for all C ∈ CPending do
37: CPending.remove(C)
38: CFix.add(C)
39: removeFromPendingClusters(C,CPending)
40: end for
41: return CFix
42: end procedure

83

3 Graph Clustering

Algorithm 8 APreClus: Reassign step
Input: C - cluster whose members needs to be reassigned

CPending - pending clusters
theta - similarity threshold (θ ∈ [0,1])

Output: reuseGs - recycled graphs
1: procedure Reassign(C,CPending,θ)
2: recycleInstance← true
3: for all g ∈ C do
4: if sim(g,seedC) < θ ·max(|g|,|seedC |) then
5: C.remove(g)
6: for all C ′ ∈ CPending do
7: if (g ∈ C ′) then
8: recycleInstance← false
9: break
10: end if
11: end for
12: if recycleInstance then
13: reuseGs.add(g)
14: end if
15: end if
16: end for
17: return reuseGs
18: end procedure

3.3.1.1.1 Initialization At the beginning of the clustering process, no clusters exist, and
therefore the first input instance is determined to be the pending seed of the first pending
cluster (Algorithm 7, line 3).

3.3.1.1.2 Pending cluster A pending cluster consists of a set of assigned instances and is
represented by a cluster representative, called “pending seed”. Pending clusters are used at
the early stages of cluster construction. Instance membership to a pending cluster is nei-
ther exclusive nor final. Once a pending cluster reaches a threshold size (max_pending),
it is converted into a fixed cluster.

3.3.1.1.3 Fixed cluster A fixed cluster consists of a set of assigned instances and is rep-
resented by a cluster representative, called “fixed seed”. Instance membership to a fixed
cluster is exclusive and final. A fixed cluster can still grow in size.

3.3.1.1.4 Pending cluster to fixed cluster conversion First, a fixed seed is determined as the
assigned instance that maximizes a feature vector-based inner cluster link score, which is
defined as the sum of common vertex labels shared between the selected instance and
all other instance assigned to the respective cluster. Second, all instances in the pending
cluster are reassigned to the new fixed seed in order to decide whether they are members of
the new fixed cluster (Algorithm 7, line 28 and Algorithm 8). More precisely, the feature

84

3.3 Structural Clustering by Abstract Pre-clustering

Figure 3.19: Example of the pending cluster conversion process using two neighboring
clusters reaching the threshold size max_pending = 5 (left). For both clusters, the fixed
seeds and the fixed cluster members are determined (center and right). After the conver-
sion process, the former pending seed of the cluster can be shifted to another member of the
original pending cluster (see arrows).

vector-based similarity between the new fixed seed and each cluster member is calculated.
In case the similarity is below a given threshold, the instance is removed from the cluster.
If an instance is assigned to the new fixed cluster, its membership to any pending clusters
is removed. Otherwise the instance is recycled as input instance if it is not assigned to any
pending cluster (Algorithm 7, lines 30-31). Delaying the creation of fixed clusters through
the usage of pending clusters has the advantage that instances initially inappropriately
assigned to a cluster may find their representative seed. In case they were not assigned to
other pending clusters they are recycled as new input instances. In other words, errors of
assigning instances too early to a cluster can be corrected, even if an initial assignment to
a cluster has been made. Figures 3.19 and 3.20 illustrate the cluster conversion process.

Cl

Cl

Cl
CH3

Cl

Cl

Cl

Cl
CH3

Cl

Cl

Cl

Cl
CH3

Cl

Figure 3.20: Example of the pending cluster conversion process using two neighboring
clusters. The pending cluster Cp1 reaches the threshold size max_pending = 3 (left).
Hence, for this cluster, the fixed seed and the fixed cluster members are determined (cen-
ter). If a graph that is assigned to the new fixed cluster is also member of a pending cluster,
it has to be removev from the pending cluster (right).

85

3 Graph Clustering

3.3.1.1.5 Instance assignment Consider a set of fixed clusters (each represented by a fixed
seed) and a set of pending clusters (each represented by a pending seed). APreClus tries to
assign the instances to the fixed clusters first (Algorithm 7, lines 7-10). For a given input
instance the similarity to all fixed seeds is calculated in order to find the best representative
seed. A set of tuples, with each tuple consisting of a cluster and the similarity to the
respective cluster is returned for which the similarity is above a given threshold (line 7).
APreClus then assigns the instance to the cluster with the highest similarity (line 9).
Subsequently, each input instance that has not been assigned to any fixed cluster (line
8) is compared with all pending seeds (line 11) using the similarity measure based on
the vertex feature vectors (line 13). An instance is assigned to all pending clusters for
which the dissimilarity is below a given threshold (line 14). Each remaining instance that
has not been assigned to any pending cluster is considered as a new pending seed (lines
19-20). If a pending cluster reaches the size of max_pending cluster members (line 24),
the conversion procedure described in Section 3.3.1.1.4 is triggered (lines 25-29).

3.3.1.1.6 Termination At the end of the clustering procedure, there might still be some
instances assigned to pending clusters or as pending seeds. These clusters are sequentially
converted to be fixed clusters and the member instances will be assigned to exactly one
cluster (lines 36-39). When a pending seed is converted, the corresponding member in-
stances are forced to be assigned to this instance and their memberships to other pending
seeds are removed (line 39). The pending seeds are transferred to fixed seeds sequentially
until all the instances are assigned.

3.3.1.1.7 Abstraction-Based Similarity Calculation The pre-clustering approach APreClus
uses a similarity measure based on an abstraction from the actual structural similarity
measure used by PSCG’. More precisely, the assignment procedure of APreClus calculates
pairwise similarities based on a set-abstraction of graphs, i.e., an integer feature vector
representing the number of vertex types in a graph. The underlying idea is that if two
graphs are not similar with respect to their vertex label sets, they cannot be regarded
similar with respect to their graph structure. In other words, given two graphs x1 and x2

and a similarity threshold θ. If x1 and x2 do not share a common vertex set that covers a
specific fraction θ of both x1 and x2, it is impossible that they share a common subgraph
x that covers at least a fraction θ of both x1 and x2, i.e., @x : |x| ≥ θ|x1| ∧ |x| ≥ θ|x2|. For
two graphs the common vertex set represents an upper bound for the size of the maximum
common subgraph.
Formally, each graph instance xi is represented by a numerical feature vector fxi =

(f1
xi
,..,fnxi

) corresponding to a set of vertex types l1,..., ln. Each entry in fxi records the
number of a specific vertex type occurring in graph xi. Let fkxi

denote the numerical
feature associated with the vertex type vk. Further, each cluster Cj is represented by the
vector of its pending or fixed seed depending on whether the cluster is pending or fixed.
Let fseedCj

= (f1
seedCj

,...,fnseedCj
) denote the feature vector of the cluster representative.

86

3.3 Structural Clustering by Abstract Pre-clustering

Input instance

Assigned to
fixed cluster?

Assigned to
pending cluster?

Cluster
size threshold

reached?

Record
assignment

Check pending
cluster size

Create new
pending cluster

Pending cluster
conversion

yesno

Instance
similar to new
fixed seed?

Record assignment;
remove from

pending cluster

Member
of other pending

cluster(s)?

Re-index as
input instance

Remove from
fixed cluster

no yes

yes

yesno

no

Figure 3.21: APreClus workflow

The similarity s between fxi and fseedCj
is computed by summing up the minimum of each

pair of feature vector components:

s(fxi ,fCj) =
∑
k

(min({fkxi
∈ fxi} ∪ {fkseedCj

∈ fseedCj
})). (3.7)

As mentioned earlier, the similarity between the feature vectors of two instances rep-

87

3 Graph Clustering

HN

NH

O

H3C

OH

OH

HN

H3C

O

N
NH

NH2

Figure 3.22: Example illustrating the use of the abstraction-based similarity measure em-
ployed by APreClu (θ = 0.6). Since the similarity between the feature vectors of query
graph x3 and the cluster representative seedCp

is smaller than the minimum required size of
the common subgraph, x3 won’t be assigned to cluster Cp.

resents an upper bound on the size of the maximum common subgraph. Thus, if the
normalized similarity

s(fxi ,fseedCj
)

max(|xi|,|seedCj
|) between an input instance and the cluster represen-

tative is lower than the similarity threshold, θ, i.e.,
s(fxi ,fseedCj

)
max(|xi|,|seedCj

|) < θ, both instances
do not share a common subgraph that covers a specific fraction θ of both instances. Fig-
ure 3.22 illustrates the use of the abstraction-based similarity measure for θ = 0.6. In
the pseudocode, the notation sim(x,Cseed) is used to represent the feature vector based
similarity s(fxi ,fseedCj

) between a graph xi and a cluster representative seedCj .

3.3.1.2 PSCG’

This section presents the scaffold-based structural graph clustering algorithm PSCG’. The
approach is a variant of the preciously proposed scaffold-based parallel structural graph
clustering algorithm PSCG. The pseudocode for PSCG’ is shown in Algorithm 9. The main
motivation behind the approach is to avoid cluster comparisons with all cluster members,
which grow computationally more expensive with increasing cluster size, by defining a
cluster representative for each cluster. The algorithm works as follows. Let θ be the
user-defined similarity coefficient and let minThresh be the minimum threshold for the
size of the common subgraphs defined in Equation 3.2. In the first step, an initial cluster

88

3.3 Structural Clustering by Abstract Pre-clustering

is created containing the first graph instance (see Algorithm 9, line 4). In the following
steps, each graph instance is compared against all existing clusters. In case the query
instance shares at least one common subgraph with one or more clusters that meets the
cluster criterion in Equation 3.2 (line 12), the instance is added to the respective clusters
(line 23). The first computed common subgraph is then taken as cluster representative
(line 26) (see example in Figure 3.23). In the following, all subsequent graph instances
are compared only against the cluster representative (line 17-21) instead of comparing
them against all graphs in the cluster. Unlike many traditional clustering algorithms, an
instance is allowed to belong to no cluster, since it is possible that an instance is not
similar to any cluster. Thus, in this case, a new singleton cluster is created containing the
query instance (line 32). The advantage of defining a cluster scaffold at an early stage is
that the graph structures can be compared in parallel against a cluster, since the cluster
scaffold is fixed and the assignment of an instance to an cluster has no influence on the
subsequent cluster comparisons. Thus, substantial performance improvements may be
achieved. By additionally sorting the data set in decreasing order of graph size (defined
as the number of vertices) (line 2), the number of potential candidates is decreased for the
cluster representative.
To reduce the number of expensive subgraph computations, the following two cluster

exclusion criteria were employed to avoid unnecessary calls to the gSpan algorithm in the
first place: a cluster membership test based on node feature vectors of graphs as used by
APreClus (lines 14 and 18), and an exclusion criterion based on the size of graph instances
resulting from the cluster criterion defined in Equation 3.2 (line 14). The criterion con-
strains the set of graphs being considered for clustering. More precisely, only graphs in a
certain size range are considered for comparison with a specific cluster, i.e., graphs whose
sizes lie in the range [dθxmaxe,b1

θxminc], where xmin is the smallest and xmax is the largest
graph instance in the cluster. Hence, by sorting the data set in decreasing order of graph
size, graphs larger than θxmax do not need to be considered for cluster membership.
For computing common subgraphs, a modified version of the graph mining algorithm

gSpan [245] that mines frequent subgraphs in a database of graphs satisfying a given
minimum frequency constraint was used. A minimum support threshold of minSup =
100% in a set of graphs is required, i.e., all common subgraphs have to be embedded in all
cluster members. For the experiments with molecular graph data, gSpan’, an optimization
of the gSpan algorithm for mining molecular databases [115], is used. Since it is not
necessary to compute all common subgraphs in a set of graphs, but it is only important to
know if there exists at least one common subgraph that meets the minimum size threshold
defined in Equation 3.2, it is possible to terminate the subgraph mining process once a
solution is found. In this way, a substantial improvement in runtime performance can be
achieved. This modification of gSpan’ is called gSpan” as used in the pseudocode.
PSCG’ is parallelized to take advantage of high-performance parallel hardware. The

approach adopts a master-worker paradigm consisting of two kinds of entities: a single
master and multiple workers. The master is responsible for decomposing a clustering

89

3 Graph Clustering

OO

H3C

O

H3C

H3C O

H3C

O

H3C

H3C O

Figure 3.23: Example illustrating the definition of a cluster representative (for θ = 0.7).
Left: Cluster at time t1. To be assigned to the cluster, the query graph x2 needs to share
at least one common subgraph with the cluster member x1 that meets the minSize thresh-
old defined in Equation 3.2. As x2 shares such a subgraph with x1 that meets the minSize
threshold of 8, x2 is assigned to the cluster. Right: Cluster at time t2. The minimum com-
mon subgraph is taken as cluster representative. In the following, all subsequent graphs are
compared only against the cluster representative.

problem into a subset of clustering tasks and distributing them among a farm of workers
(by putting the tasks in a shared queue), as well as for gathering the partial results in order
to produce the final computation result. A queue, shared between the master and workers,
is used to represent the shared space where the pending clusters reside. Each worker
is responsible for only one cluster at any point in time, independently computing one
iteration: It pulls a clustering task (input) from the queue, processes the task by comparing
all relevant graphs in the graph database against the cluster, and sends the result, i.e., the
processed cluster, back to the master (output). Once a cluster representative is defined,
the cluster computations against the respective cluster can be done in parallel. All idle
workers, i.e., all workers that are waiting for the creation of a new cluster will be responsible
for this task, hence providing better utilization and efficiency than PSCG.

3.3.2 Experimental Results

To evaluate the effectiveness and efficiency of SCAP, several experiments were conducted
on a number of publicly available data sets of molecular graphs. This section describes
the experimental setup, the baseline methods, the data sets and the results.

90

3.3 Structural Clustering by Abstract Pre-clustering

Algorithm 9 PSCG’
Input: graphs - queue of n graphs to be clustered

θ - similarity threshold (θ ∈ [0,1])
Output: Clusters clusters
1: procedure PSCG’(graphs, θ)
2: sort(graphs)
3: clusters← ∅
4: C = newCluster(dequeue(graphs))
5: C.useScaffold = false
6: clusters.add(C)
7: for all g ∈ graphs do
8: assigned = false
9: for all C ∈ clusters do

10: scaffold = null
11: minThresh = 0
12: minSize← θ ·max(|g|,|max(C)|) . calculate the mininum threshold thr
13: if !C.useScaffold then
14: if |g| ≥ θ ·max(C) & sim(g,C) ≥ thr then
15: scaffold← gSpan′′(g ∪ C,thr) . returns common scaffold if existent,

else null
16: end if
17: else
18: if sim(g, C.scaffold) ≥ thr then
19: scaffold← gSpan′′(g ∪ C.scaffold,thr)
20: end if
21: end if
22: if scaffold 6= null then
23: C.add(g)
24: assigned← true
25: if !C.useScaffold then
26: C.scaffold← scaffold
27: C.useScaffold← true
28: end if
29: end if
30: end for
31: if assigned = false then
32: C ← newCluster(g)
33: clusters.add(C)
34: C.useScaffold = false
35: end if
36: end for
37: return clusters . return clusters
38: end procedure

3.3.2.1 Baseline Methods

The scaffold-based clustering approach SCAP was compared against the following meth-
ods.

91

3 Graph Clustering

3.3.2.1.1 PSCG Similar to SCAP, PSCG [202] is a scaffold-based structural graph clus-
tering algorithm that produces overlapping (non-disjoint) and non-exhaustive clusters.
Contrary to SCAP, PSCG does not employ a pre-processing clustering step. Further, each
graph in PSCG is compared against all cluster members unless the common cluster scaf-
fold is unique. On the other hand, SCAP defines a cluster scaffold at an early stage in
the clustering. Hence, PSCG requires a much larger number of expensive subgraph search
computations compared to SCAP.

3.3.2.1.2 DP Clustering SCAP was compared with a graph-based clustering based on
variational Dirichlet process (DP) mixture models and frequent subgraph mining by Tsuda
and Kurihara [225]. The clustering approach addresses the problem of learning a DP
mixture model in the high dimensional feature space of graph data.

3.3.2.1.3 Fingerprint-Based Clustering SCAP was compared against two fingerprint (FP)-
based clusterings. These approaches cluster data sets of graphs using an FP-based simi-
larity measure. For the first approach, the chemical fingerprints provided by Chemaxon’s
JChem Java package were used [118]. These fingerprints are equivalent to the Daylight
fingerprints4. The Tanimoto coefficient is used as similarity measure between fingerprints
which was shown to work well in combination with fingerprints [213]. The first FP clus-
tering method is based on an incremental clustering approach. Iteratively, each graph
is compared against all existing clusters. In case the Tanimoto similarity τ between the
query graph and each graph in a cluster exceeds a user-defined threshold, the query graph
is added to the respective cluster; otherwise a new singleton cluster is created containing
the query graph. The second approach is the well-known iterative k-means clustering ap-
proach BIRCH5 [254] using molecular fingerprints generated with Openbabel6 to cluster
the graph data. As distance measure the Tanimoto distance was used. BIRCH requires
two input parameter: the distance threshold t and the tree branching factor b.

3.3.2.2 Qualitative Analysis

A cluster analysis was performed on two data sets whose target values are categorical.
The first data set consists of 107 standard anti-cancer agents (SACA) whose class la-
bels corresponding to their mechanisms of action have been clearly classified [135, 237].
The second data set is a QSAR data set containing 2637 graph structures from five se-
ries of compounds: cyclooxygenase-2 (COX-2) inhibitors, benzodiazepine receptor (BZR)
ligands, estrogen receptor (ER) ligands, dihydrofolate reductase (DHFR) inhibitors, and
monoamine oxidase (MAO) inhibitors [216]. The purpose of the experiment is to test if
the clusters obtained by SCAP agree well with the corresponding known class labels. The

4 http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
5 The implementation available at http://roberto.perdisci.com/projects/jbirch was used.
6 http://openbabel.sourceforge.net

92

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://roberto.perdisci.com/projects/jbirch
http://openbabel.sourceforge.net

3.3 Structural Clustering by Abstract Pre-clustering

Table 3.7: Clustering results for SCAP and PSCG.

Data set Method θ = 0.4 θ = 0.5 θ = 0.6

SACA

SCAP

clusters 32 27 24
singletons 18 29 39
cluster purity 0.803 0.884 0.912
Omega Index 0.164 0.310 0.362

PSCG

clusters 28 26 23
singletons 12 22 29
cluster purity 0.720 0.865 0.911
Omega Index 0.156 0.277 0.372

SCAPCluFit

clusters 32 28 22
singletons 14 23 29
cluster purity 0.766 0.849 0.920
Omega Index 0.151 0.360 0.366

QSAR

SCAP

clusters 141 254 367
singletons 8 16 48
cluster purity 0.800 0.882 0.892
Omega Index 0.196 0.117 0.093

PSCG

clusters 123 178 245
singletons 8 19 38
cluster purity 0.777 0.813 0.851
Omega Index 0.178 0.110 0.089

SCAPCluFit

clusters 107 156 242
singletons 7 6 25
cluster purity 0.762 0.833 0.865
Omega Index 0.198 0.124 0.123

approach was further compared to PSCG [202]. As an external measure for clustering val-
idation two metrics were used: cluster purity and the Omega Index [55]. For each cluster,
purity is defined as the ratio between the number of graphs by the dominating class in
that cluster and the total number of graphs in that cluster. Formally,

purity(C,L) = 1
N

∑
k

max
j
|Ck ∩ lj | (3.8)

where C = {C1, C2, . . . , CK} is the set of clusters and L = {l1,l2, . . . ,lJ} is the set of
classes. Here, Ck is interpreted as the set of graphs in Ck and lj as the set of graphs in
lj in Equation 3.8. Larger cluster purities correspond to better agreement between the
clustering results and the class labels, with 1.0 indicating perfect concordance. Since the
index favors small clusters, with the degenerate case of a singleton cluster resulting in a
maximal cluster purity score, singleton clusters were excluded in the purity calculation.
The Omega Index generalizes the adjusted Rand index to compare non-disjoint cluster
memberships. In case of disjoint clustering solutions, the Omega Index is identical to the

93

3 Graph Clustering

original adjusted rand index. The highest possible score of 1.0 indicates that two solutions
perfectly agree on how each pair of graphs is clustered. Table 3.7 shows the clustering
results for different values of θ for the comparison methods. For a fair comparison with
PSCG, the similarity threshold θ was additionally adjusted in the second clustering stage
(i.e., θ was lowered by 0.05 on the SACA data and by 0.1 on the QSAR data) such that
approximately the same number of clusters and singletons as PSCG are achieved. In the
result tables, the modification is referred to as SCAPCluF it. The results show that SCAP
is able to discriminate the known structure classes in both data sets very well. Graphs in
the same cluster not only share common subgraphs but are also strongly associated with
specific classes. Across different values for θ it was observed that for higher values a finer
but cleaner grouping of the structures at the cost of generating a larger number of smaller
clusters is achieved. The graphs in each class are more cleanly discriminated from other
graphs in the data set.

3.3.2.3 Comparison to FP Clustering

SCAP was further compared with the FP clustering methods described in Section 3.3.2.1.3.
For the experiments with BIRCH, the distance threshold was varied from 0.4 to 0.7. The
branching factor was left at its default value. Tables 3.8 and 3.9 show the results for
different parameter settings. The results demonstrate that the incremental FP method is
not able to discriminate the known structure classes in the SACA data very well, indicated
by low values of cluster purity and the Omega Index. Increasing the value of the Tanimoto
threshold results in a finer but cleaner grouping of the structures at the cost of generating
a larger number of singletons. Comparing the BIRCH clustering approach to SCAP, the
values for the Omega Index are observed to be constantly higher for SCAP. However, for
some parameter settings the clusters produced by BIRCH result in larger cluster purity
values. This might be due to the fact that BIRCH generates many more clusters of smaller
size. Forcing SCAP to produce a comparable number of clusters by increasing θ (see Table
3.10) results in higher values for both validation metrics. The results show the advantage of
considering the graph topology for clustering. Clustering approaches based on fingerprints,
on the other hand, suffer to some extent from a loss of information with respect to the
actual graph topology. Overall, the results suggest that there is a clear advantage from
the use of the more sophisticated scaffold-based clustering algorithm SCAP, emphasizing
the need to develop more complex algorithms that consider the structure a graph directly,
as SCAP does.

3.3.2.4 Comparison to DP Clustering

SCAP was compared with a graph-based clustering based on variational Dirichlet process
(DP) mixture models and frequent subgraph mining by Tsuda and Kurihara [225] (see
Section 3.3.2.1.2 for a description). The goal of the experiment is to investigate if the DP
clustering approach is also able to rediscover the known structure classes in the SACA

94

3.3 Structural Clustering by Abstract Pre-clustering

Table 3.8: Clustering results for the incremental FP clustering (τ : Tanimoto similarity
threshold).

Data set τ = 0.4 τ = 0.5 τ = 0.6

SACA

clusters 19 18 15
singletons 24 36 43
cluster purity 0.649 0.726 0.879
Omega Index 0.043 0.113 0.301

QSAR

clusters 118 195 293
singletons 22 42 76
cluster purity 0.741 0.792 0.820
Omega Index 0.160 0.103 0.080

Table 3.9: Clustering results for BIRCH (t: distance threshold).

Data set t = 0.7 t = 0.6 t = 0.5 t = 0.4

SACA

clusters 25 28 26 26
singletons 21 32 42 47
cluster purity 0.821 0.879 0.908 0.882
Omega Index 0.109 0.094 0.072 0.055

QSAR

clusters 596 725 886 943
singletons 20 50 98 150
cluster purity 0.880 0.887 0.897 0.910
Omega Index 0.010 0.007 0.005 0.005

Table 3.10: Clustering results for SCAP using θ = 0.7.

Data set # clusters # singletons cluster purity Omega Index
SACA 20 48 0.949 0.157
QSAR 634 166 0.917 0.120

database described in Section 3.3.2.2. In this experiment, the parameters required by DP
clustering were chosen as follows. The number of featuresm was varied from 50 to 5000 and
set α = 0.01,0.1,1,10. Table 3.11 shows the experimental results for α = 0.1. The results
for α = 0.01,1,10 are similar. The number of clusters were observed to increase along
with the number of features for m ≤ 500; for m > 500 the number of clusters decreases
significantly. Compared to SCAP, DP clustering produces less clusters. In order to make
the results more comparable to the results of the method, the user-specified parameters
were varied. Nonetheless, it was not possible to parameterize the DP clustering method
to obtain more than seven clusters. The DP clustering results indicate that the method is
not able to discriminate the known structure classes in the SACA data set very well. The
DP clusters are, in many cases, associated with different structure classes, indicated by

95

3 Graph Clustering

lower values for cluster purity and the Omega Index (Table 3.11). The results demonstrate
that SCAP is better able to effectively grouping the 107 agents.

Table 3.11: Clustering results for DP Clustering.

Features 50 100 500 1000 5000
Clusters 6 7 7 6 2
Cluster purity 0.421 0.411 0.579 0.589 0.402
Omega Index 0.119 0.106 0.274 0.281 0.056

3.3.2.5 Experiments on Large Graph Data Sets

To study the scalability of SCAP, experiments were performed on different sized data sets.
The data sets are subsets of the ChemDB database, containing nearly 5 million commer-
cially available small molecules [48, 49]. Seven data sets were created from ChemDB of
size 50K, 100K, 250K, 500K, 1M, 2M and 3M graphs, respectively, using random sam-
pling. The mean graph size of these data sets is 27, the maximum graph size 435. The
experiments were carried out on a SUN x4600 system with 32 AMD Opteron CPU cores
(8 CPU sockets with 4 cpu cores). The processor in each node runs at 2.5 GHz with 2 GB
of main memory.

50k

100K

150k

200k

250k

300k

350k

400k

100k
250k

500k
1M 2M 3M

ru
nt
im

e
(s
ec
)

graphs

θ = 0.4
θ = 0.5

Figure 3.24: Runtime performance of the clustering approach SCAP on the data sets sam-
pled from the ChemDB database comprising 100k to 3M graphs.

Figure 3.24 shows the runtime performance on the sampled data sets for θ = {0.4,0.5}.
These values are suitable parameter settings under the aspect of producing a reasonable
number of clusters. Whereas a too small value of θ results in large, heterogeneous clusters,
a too large value of θ produces very few, small clusters or no clusters at all. Table 3.12

96

3.3 Structural Clustering by Abstract Pre-clustering

also reports the number of partitions produced by APreClus as well as the total number of
clusters produced by SCAP for the three largest data sets. Compared to previous results of
PSCG where the authors report that 300,000 graphs were clustered in 610,577 seconds for
θ = 0.4 using a similar architecture, SCAP is able to cluster an order of magnitude more
graphs in only a fraction of time. The results indicate that SCAP is able to handle large
data sets containing millions of graphs, in reasonable time. SCAP is therefore well capable
of structuring large graph databases such as real-world compound libraries as employed for
virtual screening. The runtime of SCAP was also compared against BIRCH [254]. BIRCH
requires two input parameter: the distance threshold t and the tree branching factor b.
Figure 3.25 shows the runtime of BIRCH on the data sets up to size 1M for different
parameter configurations. The results demonstrate the trade-off between precision and
computation. Whereas the BIRCH approach is computationally more efficient, the results
of the qualitative analysis presented in Section 3.3.2.3 are in favor of SCAP.

0

2000

4000

6000

8000

10000

12000

100k
250k

500k
1M

ru
nt
im

e
(s
ec
)

graphs

t=0.6,b=100
t=0.5,b=100
t=0.6,b=500
t=0.5,b=500
t=0.6,b=1000
t=0.5,b=1000

Figure 3.25: Runtime performance of BIRCH on the data sets sampled from ChemDB.

3.3.3 Conclusion

In this section, a scaffold-based graph clustering approach was presented that is able to
cluster large databases containing millions of graphs. SCAP first employs a pre-clustering
based on dynamic seed clustering to partition the data set into several smaller data sets
using an abstraction-based similarity measure. In the second clustering stage, the resulting
partitions are further clustered into a finer level of granularity using a variant of a recently
proposed parallel structural graph clustering algorithm. Several experiments were designed
to evaluate the effectiveness and efficiency of the approach on various real world data sets
of molecular graphs. First of all, the results indicate that the clustering method is able

97

3 Graph Clustering

Table 3.12: Runtime (in sec), number of #partitions produced by APreClus and number
of clusters generated by SCAP on the three large data sets sampled from ChemDB.

Data set θ runtime (sec) #partitions #clusters
APreClus SCAP

1,000,000 0.4 51,475 159 22,453
0.5 88,332 211 41,549

2,000,000 0.4 111,443 181 25,020
0.5 205,333 253 52,406

3,000,000 0.4 171,200 227 29,612
0.5 345,034 290 69,441

to rediscover known structure classes in two molecular graph data sets. Second, the
results on three large graph data sets show that SCAP is able to handle a much larger
number of graph instances compared to the previously proposed structure-based clustering
algorithms, i.e., an order of magnitude more instances in a fraction of time required before.
Given these performance improvements, the proposed algorithm is applicable to the large
structure databases used for virtual screening. To the best of my knowledge, it is for
the first time possible to cluster millions of compounds within a reasonable time using
an accurate scaffold-based similarity measure. This represents a step towards structuring
chemical space which could be defined by the structures of PubChem [176] currently
containing approximately 49.5 million chemical compounds. The presented approach is
general enough to be applicable not only in the domain of molecular graphs, but also in
the domain of general (non-molecular) graphs.

98

CHAPTER 4
Maximum Common Subgraph Based Locally Weighted Regression

This chapter investigates a simple, yet effective method for regression on graphs, in par-
ticular for applications in cheminformatics and for QSARs. The method combines Locally
Weighted Learning (LWL) with MCS-based graph distances. More specifically, a variant
of locally weighted regression on graphs (structures) is investigated that uses the maxi-
mum common subgraph for determining and weighting the neighborhood of a graph and
feature vectors for the actual regression model. It is shown that this combination, LWL-
MCS, outperforms other methods that use the local neighborhood of graphs for regression.
The performance of this method on graphs suggests it might be useful for other types of
structured data as well.

4.1 Introduction

The idea of using local neighborhoods of test instances to improve prediction quality has
a long tradition in statistics and machine learning [52]. Recently, local learning methods
have experienced renewed interest in the form of local models, i.e., high-quality models of
small regions of the input space that often have the advantage of being easier to predict
and easier to interpret by domain experts [192]. Several local models together can make
up a global model, or global models are the fallback solution (default) when no local
model is applicable. A more traditional, but related approach is locally weighted learning
[10]. Although it has been known to be highly effective for regression for a long time,
the combination with other learning schemes, for instance, classification, has not been
investigated thoroughly. Compared to local models, one would expect that locally weighted
learning is more time-consuming, but also potentially worth the effort, because it should
be able to adjust its predictions to the specifics of test instances.
Quite surprisingly, both locally weighted learning and local models have not been studied

systematically yet for structured data like graphs, although the approach makes sense for
at least two reasons. First, it makes sense to structure the input space before any predictive
model is inferred, because the structural composition and diversity of typical data sets for
graph classification and regression have a serious impact on the predictive performance of

99

4 Maximum Common Subgraph Based Locally Weighted Regression

methods. A closer look reveals that there exist structural islands in many data sets, i.e.,
subsets of instances that share a large common structural scaffold. Second, for structured
objects, local models or local neighborhoods are an opportunity, because the wealth of
possible descriptors and similarity/dissimilarity measures enable the use of one view for
determining the neighborhood, and a different view for actually making the prediction.
For these reasons, and because there is nothing yet known about the effectiveness of
this method, this chapter studies locally weighted regression on graphs and compares it
experimentally to other methods using local neighborhoods.
The method is studied in the context of so-called QSARs, i.e., models relating chemical

structure to biological activity. Both local neighborhoods of test instances (chemical struc-
tures) and structural islands for local models are defined by the size of common subgraphs.
More specifically, an MCS-based distance measure is used for locally weighted learning,
whereas a common structural scaffold with a minimal size is required for the local models.
The actual predictive models are then built using a feature-vector representation of the
chemicals where the features encode standard chemical descriptors. Combining structural
and non-structural descriptors in this way makes particular sense for the envisaged appli-
cation area, because the MCS retrieves structures with a large common structural scaffold
and is thus better suited to measure structural similarity between molecules, whereas chem-
ical descriptors are better suited to determine the actual biological activity of structurally
similar molecules. In a large-scale experimental comparison, it is shown that this learning
scheme consistently outperforms other learning schemes using local graph neighborhoods.
The chapter is organized as follows: After discussing related work in Section 4.2, MCS-

based locally weighted regression is presented in Section 4.3. Section 4.4 discusses exper-
imental results quantitatively and qualitatively, before Section 4.5 concludes the chapter.

4.2 Related Work

The idea of local learning and local models has been around in statistics for a long time.
One of the pioneers of using and weighting information close to a test (query) instance
was William S. Cleveland who, in 1979, proposed a method for estimating non-linear
regression models in this way [52]. This method, called LOESS, also known as locally
weighted polynomial regression, was further developed by Cleveland and Devlin in the
1980s. The basic concept of LOESS is to fit a polynomial using weighted least squares by
giving more weight to objects close to the test instance. In the subsequent section, locally
weighted (linear) regression is extended towards graph neighborhoods defined in terms
of maximum common subgraphs. More recently, a method combining local and global
models was proposed by Rüping [192]. In his study, a local model algorithm is presented
that learns a global classifier plus local models. The goal is to reduce the complexity
of the global model, ensure the prediction quality of the combined model and provide
guarantees that the combined and global model will differ only up to a user-specified
degree. This chapter experimentally compares locally weighted learning on graphs with

100

4.2 Related Work

local models defined in terms of structural graph clusters [38]. The clusters are obtained
by the previously proposed clustering method, PSCG. Another family of methods making
use of local neighborhoods are kernel methods. Kernels defined on graphs [87] typically
compare sets of common graph elements like chains, trees or subgraphs. As the goal of
this work is to exploit large structural scaffolds in structure databases by the maximum
common subgraph, locally weighted learning on graphs is compared with the empirical
kernel map based on the MCS, because it is the closest kernel method possible. The idea
behind the Empirical Kernel Map [222] is to redefine each input instance as the vector
of similarities to all training examples. To show the advantage of combining structural
and non-structural descriptors, this chapter further investigates the empirical kernel map
based on both the MCS and a set of non-structural descriptors.
Another topic of this chapter, the integration of multiple sources of information for

learning, has been approached in several ways. It is a central topic in inductive logic
programming (ILP) and statistical relational learning (SRL) [69]. In most approaches,
facts and rules from multiple sources are encoded in a logic programming representation
as part of the background knowledge. However, typically no distinction is made between
different types of data, and all parts of the background knowledge are treated equally.
The only exception are approaches that distinguish between the logical structure (e.g.,
of clauses) and the numerical values of variables separately, like the NuRMI system by
Alphonse et al. [7]. It is, at this point, unclear how this could be transferred to the setting
described in this chapter.

In multi-view learning (and, similarly, co-training) [23], groups of features are usually
taken into account alternatingly, where intermediate results are adjusted incrementally.
This is different from the LWL approach that consists of exactly two consecutive steps.
After considering the numerical features (physicochemical properties), it would not make
sense to go back to the graph view again in this setting, because the main idea is to refine
the predictions using those features once structural information is exploited already. The
assumption is that structural similarity is not sufficient anymore at one point, and other,
distinct information (e.g., in the form of physicochemical properties) is required to differ-
entiate further. Also, not the whole, uniformly weighted data set is used in both views,
but weighted neighborhoods of individual instances. Moreover, LWL-MCS belongs, dif-
ferent from most multi-view learning methods, to the field of lazy learning: the structural
neighborhood of a test instance is determined individually, on demand, at testing time.
The work is also related to methods combining different kernels (multiple kernel learn-

ing [133]) or distance or similarity measures [190]. Most of the approaches to multiple
kernel learning focus on classification and positive semi-definite kernels, whereas this work
focuses on regression and wishes to incorporate information about the maximum com-
mon subgraph, which does not naturally give a valid kernel (see above). As for distance
learning, a comparison with a recently proposed method [190] was performed and it was
found that it is substantially outperformed by LWL-MCS. Since the focus of the experi-
mental comparison in this chapter is on other methods that take into account structural

101

4 Maximum Common Subgraph Based Locally Weighted Regression

neighborhoods of graphs, the results of this preliminary comparison are not shown.

4.3 Method

4.3.1 Notation and Definitions

As opposed to the other chapters of this thesis, in this chapter, the size of a graph is
defined by the number of its edges, i.e., |E|. Given two graphs g1 and g2, a graph g is
called a Maximum Common Subgraph (MCS) of g1 and g2, denoted by MCS(g1,g2), if g
is a common subgraph of g1 and g2 and there exists no other common subgraph of g1 and
g2 with more edges than g.

The MCS between two graphs can be classified further by distinguishing between the
connected and disconnected case. A connected MCS is an MCS where each vertex is
connected to every other vertex by at least one path in the graph (i.e., the MCS consists
of a single subgraph). A disconnected MCS comprises one or more subgraph components.
In this chapter, the MCS is assumed to be disconnected.

4.3.2 MCS Algorithm

Computation of the MCS has received considerable attention in theoretical computer
science. Conte et al. [57] give a comprehensive overview of the various algorithms. When
processing chemical compounds, certain characteristics allow for fast processing in most
cases, even though in general MCS is NP-complete. Cao et al. [46] explore these options
in great detail. Generally the graphical 2D structures of chemical compounds are sparse
graphs, where the average number of incident edges at each node is very low. The most
common atoms are carbon with at most four bonds or edges, nitrogen with at most three
bonds and oxygen with at most two bonds. Additionally, all nodes and all edges are
labelled by atom and bond types respectively, further limiting the number of options for
computing matching sub-graphs in a pair of compounds. Most problematic in terms of
runtime are multiply connected ring structures. Still, as was mentioned in [198], many
compounds (e.g. about 95% of all compounds in the NCI collection) are actually outer-
planar graphs, for which polynomial-time algorithms exist.
For the experiments reported below all MCS-based similarity matrices were precom-

puted using an approximate depth-first search-based algorithm [46] with a reasonably low
timeout value (see Table 4.1). Precomputation is the most efficient option, as similarities
for all pairs of compounds are only computed once, but can be re-used over and over
again in multiple experiments. Assuming the size of the MCS can be represented by a
16 bit number, a short, a fully precomputed similarity matrix for a data set of 100,000
compounds will need about 10 gigabytes of memory, an amount easily available in server
class machines these days. The data sets used in this study are actually much smaller than
that, so memory is not an issue at all. On the other hand, large pharmaceutical companies
have data sets comprising a few million compounds. While precomputation in memory

102

4.3 Method

is not an option for such large data sets, precomputation could still be done using disk
space. The similarity matrix for one million examples would need about one terabyte of
disk space. Thanks to the way LWL works, access would not be random, but sequential,
retrieving the similarities for all compounds versus a single target compound at a time.
This sequential or streaming type of access to disk-based data is still rather efficient on
modern hardware. If even larger data sets would need to be handled, a hybrid approach
could be employed where precomputation identifies the “expensive” pairs and caches only
these, and all “cheap” similarity computations would be done on demand.
To give some indication of the runtimes seen during precomputation, Table 4.1 lists the

percentage of similarity computations that needed more than 10 milli-seconds to finish,
as well as those that needed more than 1.28 seconds to finish, for each of the data sets
used in the experiments reported later. It is very obvious that there are large differences
between these data sets, as the figures vary between 5% and 50% for the 10 ms limit, and
between less than 1% and up to 15% for the 1.28 second limit. These observations relate
well to the number of compounds comprising multiply connected ring structure, which
were mentioned earlier as the main source of inefficiency in MCS computation.

Table 4.1: Percentage of MCS computations that do not finish within either ten millisec-
onds or 1.28 seconds for each of the data sets used in the experiments reported later.

Data set 10 ms 1.28 secs
4QSAR COX2 44.355 9.641
4QSAR DHFR 31.640 4.257
CPD MOUSE 4.669 0.707
CPD RAT 4.873 0.821
FDAMDD 34.903 12.668
ISS MOUSE 6.037 0.768
ISS RAT 5.799 0.971
Suth COX2 50.497 14.793
Suth DHFR 42.675 9.149
Suth ER_TOX 45.107 7.626

4.3.3 MCS-based Distance Measure

This section presents the MCS-based distance measure that is used by the LWL approach
to compute the neighborhood of a test instance and to weight the instances in this neigh-
borhood. For a given graph data set D, the MCS(gi,gj) is calculated from all possible
graph pairs gi and gj in D using the method described in Section 4.3.2. The pairwise
MCSs between the graphs are represented in a symmetric matrix M(D). The (i,j)th
matrix element of M(D) is given by

M(D)i,j =

|MCS(gi,gj)| if i 6= j, 1 ≤ i,j ≤ |D|

|gi| if i = j
(4.1)

103

4 Maximum Common Subgraph Based Locally Weighted Regression

The size of a graph gi is denoted by |gi|. The similarity measure by Wallis [232] is used
to define the similarity between two graphs

s(gi, gj) = |MCS(gi,gj)|
|gi|+ |gj | − |MCS(gi,gj)|

, (4.2)

where a value of 0 (1) denotes that the graphs are maximally (minimally) dissimilar.
The similarity matrix is then defined as

Ms(D)i,j =

s(gi, gj) if i 6= j, 1 ≤ i,j ≤ |D|

1 if i = j.
(4.3)

4.3.4 MCS-based Locally Weighted Regression

MCS-based locally weighted linear regression (LWL-MCS) is a locally weighted version of
linear regression which uses an MCS-based distance measure to determine the neighbor-
hood of a test instance. It uses a local linear (ridge) regression model to fit a subset of
the training instances that is in the neighborhood of the test instance whose class value
is to be predicted. The linear regression model is one of the most important and widely-
used models in statistics. Linear regression is a simple, yet successful regression algorithm
which has been widely used in statistical applications for decades. In previous research
locally weighted learning was successfully combined with linear regression [10]. Motivated
by this idea, linear regression is used in locally weighted learning with an MCS-based dis-
tance measure. Training instances in the neighborhood of a test instance are weighted by
applying a linear kernel to the MCS-based distance measure. This means that less weight

HO

O

HNHO

O

...

... ...

Figure 4.1: Sample similarity matrix calculation. The MCS between the graph structures
g1 and g2 is marked blue.

104

4.3 Method

is assigned to instances that are further from the test instance. The subset of the training
data used to training each locally weighted linear regression model are determined by a
k-nearest-neighbor algorithm. The actual predictive models are then built using a feature-
vector representation of the training data. A regression prediction is obtained from the
linear regression model taking the attribute values of the test instance as input.
Assume DTrg = (xi,yi), 1 ≤ i ≤ n, represents the training data set, where xi are the

data points and yi their labels, respectively. Let xq be a given test instance. The k nearest
neighbors (x1, . . . ,xk) of the test instance, sorted in increasing order of the distance, are
defined in terms of an MCS-based distance. More precisely, the MCS-based distance
d(xq,xi) of xq to the ith nearest neighbor xi is defined as:

d(xq, xi) = 1−Ms(D)q,i

= 1− |MCS(xq,xi)|
|xq|+ |xi| − |MCS(xq,xi)|

(4.4)

where Ms(D)q,i is defined in Equation 4.2.
Figure 4.2 shows an example of determining the k nearest neighbors of a given test

instance xq from a set of graph instances.
Let K be a weighting kernel function with K(y) = 0 for all y ≥ 1. Then, the weight wi

of each instance xi is set to

wi = K

(
d(xq,xi)
d(xq,xk)

)
(4.5)

This means that instance xk receives weight zero, all instances that are further away
from the test instance also receive weight zero, and an instance identical to the test instance
receives weight one. This work uses a linear weighting kernel Klinear defined as

Klinear(d) = 1− d, for d ∈ [0,1] (4.6)

In other words, the weight is decreased linearly with the distance. The weights are then
scaled so that the total weight of the instances used to generate the linear ridge regression
model is approximately k. Thus, the rescaled weights w′i are computed as follows:

w′i = wi × k∑n
l=0wl

(4.7)

where n is the total number of training instances. Given a query instance xq, to obtain
the regression applicable to this query instance, the following cost function is minimized:

E(xq) =
k∑
i=1

wi(yi − ŷi)2 + λ||β||2 (4.8)

where λ is a regularization parameter.

105

4 Maximum Common Subgraph Based Locally Weighted Regression

Cl Cl

ClCl

Cl

CH3
H2N

CH3

CH3

H3C OH

CH3
HO

O

O-

N+

H3C

H3C

CH3N

H2N

O

O

Cl

ClCl

CH3Br

H3C

OHO

H3C

H3C

H3C

H3C

H3C O

H3C OH

H3C NH2

H3C

CH3

OO

CH3H3C

OH

O

O

O-

NH2N+

O O

O- O-

N+ N+

H2N

H3C

O-

O

N+

CH3HO

CH3

OH

HO
Cl

Cl

ClCl

H3C

O

(a)

Cl Cl

ClCl

Cl

CH3
H2N

CH3

CH3

H3C OH

CH3
HO

O

O-

N+

H3C

H3C

CH3N

H2N

O

O

Cl

ClCl

CH3Br

H3C

OHO

H3C

H3C

H3C

H3C

H3C O

H3C OH

H3C NH2

H3C

CH3

OO

CH3H3C

OH

O

O

O-

NH2N+

O O

O- O-

N+ N+

H2N

H3C

O-

O

N+

CH3HO

CH3

OH

HO
Cl

Cl

ClCl

H3C

O

(b)

Figure 4.2: Example of determining the k nearest neighbors (here: k = 6) of a given test
instance xq from a training set of graph instances.

106

4.3 Method

The training data can be represented by:

Xβ = y (4.9)

where X is a matrix whose ith row represents the ith training instance xTi and y is a
vector whose ith element represents the label of the ith training instance yi. Thus, the
dimensionality of X is n× d where n is the number of data points and d is the number of
features.
For a regression scheme, the weighted design matrix X ′ formed from the k nearest

neighbors and weighted label vector y′ can be formed using the unweighted quantities X
and y as

X ′ = W ′X and y′ = W ′y. (4.10)

W ′ is a diagonal matrix with diagonal elements w′i and zeros elsewhere. In the case of
linear ridge regression,

X ′ =


w′1 w′1x1

w′2 w′2x2
...

...
w′k w′kxk

 and y′ =


w′1y1

w′2y2
...

w′kyk

 . (4.11)

The LWLR prediction for the point xq is obtained by

ŷq = β̂Txq, where β̂ = (X ′TX ′ + λI)−1X ′T y′. (4.12)

The pseudocode of LWL-MCS is given in Algorithm 10.

Algorithm 10 LWL-MCS
1: Given: test instance xq, n training points (xi,yi)
2: Compute Prediction:
3: a) Determine the k nearest neighbors of xq in terms of the MCS-based distance
4: d(xq, xi) = 1− |MCS(xq ,xi)|

|xq |+|xi|−|MCS(xq ,xi)|
5: b) Compute the diagonal weight matrix W ′

6: where w′i = wi×k∑n

l=0 wl
with wi = K

(
d(xq ,xi)
d(xq ,xk)

)
7: c) Build the matrix X ′ = W ′X and y′ = W ′y
8: d) Compute the locally linear model β̂ = (X ′TX ′ + λI)−1X ′T y′

9: e) The prediction for xq is ŷq = β̂Txq

107

4 Maximum Common Subgraph Based Locally Weighted Regression

4.4 Experimental Results

This section empirically compares the performance of LWL-MCS, introduced in Section
4.3.4, against six methods.

1. Linear SVM with the MCS-based empirical kernel map (EKM-MCS): The
method learns a linear SVM on the empirical kernel map based on the MCS.

2. Linear SVM with the empirical kernel map based on the MCS and a
chemical feature set (EKM-COMB): The method learns a linear SVM on the
empirical kernel map based on the MCS and a standard chemical feature set.

3. A locally weighted linear regression method which uses a feature-vector rep-
resentation of the graphs to determine the nearest neighbors of a query graph and
applies a linear weighted kernel shape based on an Euclidean distance to give the
most weight to the nearest neighbors. In this work, the method will be called LWL-
EUC. Note the difference between LWL-EUC and LWL-MCS: LWL-MCS combines
different kinds of information. It uses an MCS-based distance measure for neigh-
borhood determination and neighborhood weighting, whereas the actual prediction
models are built using a feature-vector representation of the training instances. In
contrast, LWL-EUC only uses the feature-vectors for both neighborhood determina-
tion and weighting and model building.

4. Local Model Learning (LoMoGraph) with cluster size weighting (CS)
[38]: A method that combines clustering and classification or regression for making
predictions on graph structured data. The approach consists of two steps: First, a
structural clustering procedure is applied to find groups in a structural space that
consist of similar graphs. More specifically, the graph structures in the clusters share
a common structural scaffold that makes up a specific proportion, θ, of the size of
each graph in the cluster. Second, one local model is learned per structural cluster.
In the prediction step, the query graph is assigned to one or more clusters using the
structural clustering procedure. Based on this assignment, the prediction is made.
Since the structural clustering procedure is overlapping and non-exhaustive, a graph
can fall into no cluster, one cluster or multiple clusters. If it falls into no cluster, a
global model is applied for prediction. If the query graph falls into a single cluster,
the local model based on this cluster is used for prediction, and if it is assigned to
multiple clusters, weighted local models are used dependent on cluster membership.
The weight for a cluster is linearly dependent on its size. Thus, larger weights are
assigned to larger clusters assuming that the more graphs a cluster has, the more
reliable the corresponding model is.

5. LoMoGraph with equal size weighting (EQ) [38]: The method differs from
CS (method 4) only in the weighting scheme. The predicted value of a query graph
is the sum of the weighted predicted values.

108

4.4 Experimental Results

6. Global Model Learning (GL): The method uses all the training data to learn a
linear regression model.

To avoid overfitting the data, user parameters are optimized by internal cross-validation.
LWL-MCS, LWL-EUC, EKM-MCS and EKM-COMB implement an internal grid search
using only the training data to determine the best parameter values via inner 10-fold
cross-validation. For LWL, the number of neighbors, k, was varied from 25 to 300
using a step size of 25 and the ridge regression parameter R was varied in the range
{1,10,25,50,100,150,200}. For EKM-MCS and EKM-COMB, the complexity constant C is
optimized in {10−3,10−2,10−1,100,101,102}. The parameter combination resulting in the
lowest mean absolute error was then used for building the final model. It is observed that
in the majority of cases the optimum parameter combinations lie within the grid, not at
the border of the grid. In other words, this means that good or even optimal parameter
combinations were found. For the remaining parameters, WEKA’s [97] default parameter
setting were used. As for the local model methods, the parameters that were used for clus-
tering were defined based on a set of criteria: The similarity coefficient θ of the clustering
procedure was chosen so that the local models consist of minimally 5% and maximally
20% of the training data. The rationale behind this choice is that a too small value of
θ results in large, heterogeneous clusters whereas a too big value of θ produces very few,
small clusters or no clusters at all. In both cases the predictivity of LoMoGraph would be
negatively affected. Another parameter called minimum cluster size controls how many
graphs a cluster must have at least so that a local model can be learned. This parameter
was chosen larger or equal to 20 as a lower bound for the number of graphs that are needed
to train meaningful models. Moreover, the ridge regression parameter R was varied in the
range {1,10,25,50,100,150,200}. Performance estimates are obtained using 100 times hold-
out validation with a training set fraction of (i) 66% and (ii) 90% of the data. This means
that 2/3 (9/10) of the data are used for training a model while the remaining 1/3 (1/10) is
reserved for testing. To quantify predictive accuracy, the relative mean error, a standard
measure in regression settings, is chosen. The Wilcoxon signed-rank test is applied to test
for significant differences at a significance level of 5%.
The chemical domain is employed as application area by using real data sets of molec-

ular graphs. The data sets are available at www.cheminformatics.org and the same
data sets as used by Buchwald et al. [38] (see Table 4.2). All results are based on the
same base learning algorithm, i.e., linear (ridge) regression [104] and on the same fea-
ture vectors. For each data set, standard chemical descriptors (e.g., molecular weight,
LogP, topological diameter, hydrogen bound acceptor/donor, polar surface area, num-
ber of atoms/bonds) were used that were computed using the cheminformatics library
JOELib2 (http://www-ra.informatik.uni-tuebingen.de/software/joelib).

Tables 4.3 and 4.4 show the detailed experimental results in terms of relative mean
absolute error, standard error and runtime performance for each algorithm on each data
set. The first line for each data set show the performance of LWL-MCS as baselines to

109

www.cheminformatics.org
http://www-ra.informatik.uni-tuebingen.de/software/joelib

4 Maximum Common Subgraph Based Locally Weighted Regression

Table 4.2: Overview of the data sets used for assessing the LWL-MCS method. n denotes
the number of molecules in the respective data set.

Data set n Reference
4QSAR COX2 282 4QSAR database [217]
4QSAR DHFR 362 4QSAR database [217]
CPD MOUSE 442 ACD DSSTox databases [93]
CPD RAT 580 ACD DSSTox databases [93]
ISS MOUSE 316 Benigni/Vari Carcinogenicity [21]
ISS RAT 375 Benigni/Vari Carcinogenicity [21]
Suth COX2 414 Sutherland data set [216]
Suth DHFR 672 Sutherland data set [216]
Suth ER TOX 410 Sutherland data set [216]
FDAMDD 1216 ACD DSSTox databases [162]

compare against. Significance of differences between LWL-MCS and LWL-EUC, EKM-
MCS, EKM-COMB, CS, EQ and GL respectively, is judged by a Wilcoxon signed-rank test
at a confidence level of 95%. A summary of the results can also be seen in the bar charts
shown in Figures 4.3 and 4.4. The experimental results show that LWL-MCS significantly
outperforms LWL-EUC in 8 out of 10 cases for fD = 66% and in 7 out of 10 cases for fD =
90%. There is only a small number of cases where LWL-EUC performs best. In particular,
for the Sutherland ER TOX and ISS MOUSE data set (for fD = 66% and fD = 90%) as
well as for the Suth COX2 data set (for fD = 90%), LWL-EUC seems to be the better
choice. Note, however, that only one of these three wins is statistically significant. For all
remaining data sets LWL-MCS is significantly better than LWL-EUC. These results show
that taking into account structurally related molecules to query molecules in combination
with chemical descriptors improves in most of the cases the predictive performance in a
statistically significant way. Using chemical descriptors alone, ignoring explicit structure
information, will retrieve a set of structurally more diverse molecules, which lead to inferior
predictions and make interpretation harder for the expert chemist. Using molecular graphs
by themselves, ignoring chemical descriptors, will retrieve similar structures, but may
overlook important binding site effects [160]. In contrast to LWL-EUC, LWL-MCS uses
a combination of both chemical and structure descriptors. Whereas the MCS is better
suited to measure structural similarity between molecules, chemical descriptors are better
suited to discriminate between structurally similar molecules with regard to their actual
biological activities.
The comparison with EKM-MCS shows that LWL-MCS significantly outperforms the

MCS empirical kernel map in 8 out of the 10 data sets for both fD = 66% and fD =
90%. Extending the Empirical Kernel Map approach by additionally taking into account
chemical descriptors the performance advantage of LWL-MCS diminishes. In 7 out of 10
cases, LWL-MCS shows a statistically significant improvement compared to EKM-COMB
for fD = 66%. For fD = 90%, 5 wins, 4 draws and 1 loss are observed using LWL-MCS.
The results suggest that EKM-COMB yields better prediction performance compared to

110

4.4 Experimental Results

Table 4.3: Mean absolute errors (MAE) with standard errors and the results of the
Wilcoxon signed-rank test with a 95% confidence level between LWL-MCS and LWL-EUC,
EKM-MCS, EKM-COMB, CS, EQ and GL respectively. Abbreviations: fD = fraction of
data set used for training; Wil = Wilcoxon signed-rank test, W/L = wins/losses.

Data set Method MAE [fD = 66%] Wil (W/L) MAE [fD = 90%] Wil (W/L)

4QSAR COX2

LWL-MCS 0.65252 ± 0.00652 0.63270 ± 0.01099
LWL-EUC 0.65842 ± 0.00596 ++ (62/38) 0.64790 ± 0.01194 == (56/44)
EKM-MCS 0.68752 ± 0.00552 ++ (74/26) 0.68284 ± 0.01171 ++ (72/28)
EKM-COMB 0.66618 ± 0.00610 ++ (63/37) 0.63679 ± 0.01100 == (52/48)

CS 0.66796 ± 0.00598 ++ (71/29) 0.65675 ± 0.01821 == (59/41)
EQ 0.67089 ± 0.00606 ++ (72/28) 0.68934 ± 0.04501 ++ (60/40)
GL 0.69208 ± 0.00634 ++ (86/14) 0.67668 ± 0.01099 ++ (72/28)

4QSAR DHFR

LWL-MCS 0.61831 ± 0.00444 0.60833 ± 0.00884
LWL-EUC 0.64055 ± 0.00499 ++ (77/23) 0.63281 ± 0.00945 ++ (68/32)
EKM-MCS 0.61485 ± 0.00419 == (49/51) 0.61603 ± 0.00841 == (56/44)
EKM-COMB 0.61127 ± 0.00455 −− (42/58) 0.60098 ± 0.00818 == (41/59)

CS 0.65722 ± 0.00600 ++ (83/17) 0.65909 ± 0.01058 ++ (81/19)
EQ 0.65863 ± 0.00665 ++ (83/17) 0.66154 ± 0.01067 ++ (80/20)
GL 0.65066 ± 0.00476 ++ (84/16) 0.64704 ± 0.00911 ++ (74/26)

CPD MOUSE

LWL-MCS 0.75381 ± 0.00478 0.71661 ± 0.00986
LWL-EUC 0.77212 ± 0.00485 ++ (74/26) 0.74309 ± 0.00954 ++ (75/25)
EKM-MCS 0.80529 ± 0.00516 ++ (94/6) 0.78438 ± 0.00922 ++ (86/14)
EKM-COMB 0.79113 ± 0.00494 ++ (88/12) 0.76894 ± 0.00957 ++ (78/22)

CS 0.82652 ± 0.00445 ++ (100/1) 0.80785 ± 0.01026 ++ (93/7)
EQ 0.82643 ± 0.00445 ++ (100/1) 0.80751 ± 0.01025 ++ (93/7)
GL 0.83234 ± 0.00439 ++ (99/1) 0.81250 ± 0.01015 ++ (9/6)

CPD RAT

LWL-MCS 0.87851 ± 0.00453 0.82912 ± 0.00863
LWL-EUC 0.91396 ± 0.00432 ++ (95/5) 0.88585 ± 0.00963 ++ (85/15)
EKM-MCS 0.93815 ± 0.00503 ++ (95/5) 0.91812 ± 0.01067 ++ (86/14)
EKM-COMB 0.91594 ± 0.00473 ++ (84/16) 0.89104 ± 0.00981 ++ (83/17)

CS 0.96375 ± 0.00433 ++ (100/0) 0.93886 ± 0.01052 ++ (97/3)
EQ 0.96377 ± 0.00434 ++ (100/0) 0.93859 ± 0.01051 ++ (96/4)
GL 0.98125 ± 0.00407 ++ (100/0) 0.95755 ± 0.01029 ++ (100/0)

ISS MOUSE

LWL-MCS 0.75470 ± 0.00575 0.73286 ± 0.01003
LWL-EUC 0.74874 ± 0.00597 == (46/54) 0.72582 ± 0.01196 == (44/56)
EKM-MCS 0.78007 ± 0.00594 ++ (86/14) 0.77894 ± 0.01118 ++ (80/20)
EKM-COMB 0.78803 ± 0.00599 ++ (86/14) 0.77536 ± 0.01045 ++ (76/24)

CS 0.82052 ± 0.00566 ++ (97/3) 0.79935 ± 0.01102 ++ (91/9)
EQ 0.81973 ± 0.00567 ++ (96/4) 0.79793 ± 0.01100 ++ (91/9)
GL 0.82662 ± 0.00571 ++ (96/4) 0.81208 ± 0.01135 ++ (91/9)

ISS RAT

LWL-MCS 0.89128 ± 0.00592 0.85751 ± 0.01191
LWL-EUC 0.91542 ± 0.00590 ++ (79/21) 0.88418 ± 0.01158 ++ (67/33)
EKM-MCS 0.92283 ± 0.00571 ++ (78/22) 0.87540 ± 0.01051 ++ (62/38)
EKM-COMB 0.90249 ± 0.00580 ++ (57/43) 0.86287 ± 0.01053 == (56/44)

CS 0.93018 ± 0.00584 ++ (88/12) 0.90689 ± 0.01204 ++ (78/22)
EQ 0.92915 ± 0.00588 ++ (85/15) 0.90460 ± 0.01205 ++ (75/25)
GL 0.95365 ± 0.00562 ++ (95/5) 0.93690 ± 0.01145 ++ (86/14)

Suth COX2

LWL-MCS 0.61090 ± 0.00482 0.60006 ± 0.01652
LWL-EUC 0.62060 ± 0.00429 ++ (77/28) 0.59036 ± 0.00827 ++ (71/29)
EKM-MCS 0.59428 ± 0.00401 −− (37/63) 0.57554 ± 0.00909 == (56/44)
EKM-COMB 0.58943 ± 0.00398 −− (30/70) 0.55685 ± 0.00849 −− (41/59)

CS 0.62180 ± 0.00423 ++ (66/34) 0.59526 ± 0.00831 ++ (70/30)
EQ 0.62111 ± 0.00427 ++ (67/33) 0.59398 ± 0.00830 ++ (73/27)
GL 0.63966 ± 0.00563 ++ (80/20) 0.61014 ± 0.00749 ++ (72/28)

Suth DHFR

LWL-MCS 0.54921 ± 0.00262 0.52557 ± 0.00592
LWL-EUC 0.57875 ± 0.00276 ++ (93/7) 0.55893 ± 0.00607 ++ (87/13)
EKM-MCS 0.60307 ± 0.00271 ++ (100/0) 0.58643 ± 0.00577 ++ (90/10)
EKM-COMB 0.60925 ± 0.00304 ++ (100/0) 0.59002 ± 0.00503 ++ (93/7)

CS 0.64540 ± 0.00326 ++ (100/0) 0.60911 ± 0.00586 ++ (94/6)
EQ 0.64400 ± 0.00326 ++ (100/0) 0.60722 ± 0.00576 ++ (94/6)
GL 0.68201 ± 0.00286 ++ (100/0) 0.66562 ± 0.00527 ++ (100/0)

Suth ER_TOX

LWL-MCS 0.83777 ± 0.00488 0.79448 ± 0.01088
LWL-EUC 0.82392 ± 0.00531 −− (31/69) 0.78053 ± 0.01107 == (45/55)
EKM-MCS 0.90229 ± 0.00530 ++ (95/5) 0.87545 ± 0.01074 ++ (86/14)
EKM-COMB 0.83593 ± 0.00528 == (51/49) 0.79222 ± 0.01054 == (51/49)

CS 0.87209 ± 0.00577 ++ (78/22) 0.83548 ± 0.01051 ++ (73/27)
EQ 0.87257 ± 0.00578 ++ (77/23) 0.83802 ± 0.01057 ++ (74/26)
GL 0.90017 ± 0.00482 ++ (97/3) 0.87262 ± 0.01110 ++ (81/19)

FDAMDD

LWL-MCS 0.62019 ± 0.00213 0.59895 ± 0.00490
LWL-EUC 0.64402 ± 0.00224 ++ (97/3) 0.62501 ± 0.00497 ++ (87/13)
EKM-MCS 0.66924 ± 0.00211 ++ (100/0) 0.65202 ± 0.00513 ++ (93/7)
EKM-COMB 0.68599 ± 0.00232 ++ (100/0) 0.66542 ± 0.00542 ++ (97/3))

CS 0.69865 ± 0.00229 ++ (100/0) 0.67665 ± 0.00502 ++ (98/2)
EQ 0.69456 ± 0.00229 ++ (100/0) 0.67110 ± 0.00501 ++ (99/1)
GL 0.75061 ± 0.00224 ++ (100/0) 0.74424 ± 0.00531 ++ (100/0)

++,==,−− statistically significant improvement, or degradation 111

4 Maximum Common Subgraph Based Locally Weighted Regression

Table 4.4: Mean runtime (training and testing time in sec) of one time hold-out validation
with standard deviations for LWL-MCS and LWL-EUC, EKM-MCS, EKM-COMB, CS, EQ
and GL. The abbreviations correspond to Table 4.3.

Data set Method t [fD = 66%] t [fD = 90%]

4QSAR COX2

LWL-MCS 188.41± 3.18 228.49± 2.62
LWL-EUC 76.38± 1.00 121.91± 1.44
EKM-MCS 51.20± 5.64 97.73± 9.23
EKM-COMB 156.31± 20.19 357.48± 29.84
CS, EQ, GL 81.07± 7.94 95.17± 9.45

4QSAR DHFR

LWL-MCS 274.20± 7.64 322.82± 4.62
LWL-EUC 114.71± 2.87 167.56± 3.96
EKM-MCS 110.42± 11.86 246.04± 18.63
EKM-COMB 304.41± 28.69 820.21± 69.52
CS, EQ, GL 126.07± 9.84 184.21± 13.42

CPD MOUSE

LWL-MCS 450.31± 6.58 549.99± 2.90
LWL-EUC 188.56± 3.05 265.62± 2.19
EKM-MCS 234.87± 31.57 870.38± 0.11
EKM-COMB 329.47± 74.14 1314.22± 115.53
CS, EQ, GL 174.16± 7.76 270.37± 10.06

CPD RAT

LWL-MCS 742.57± 6.26 810.01± 7.52
LWL-EUC 253.80± 4.01 360.78± 2.75
EKM-MCS 554.07± 47.46 1869.56± 180.28
EKM-COMB 663.36± 52.07 2631.27± 268.62
CS, EQ, GL 282.15± 13.11 446.36± 16.92

ISS MOUSE

LWL-MCS 255.16± 1.86 314.17± 4.82
LWL-EUC 120.24± 1.38 178.48± 1.92
EKM-MCS 64.71± 6.31 282.76± 22.17
EKM-COMB 70.33± 8.46 372.32± 30.99
CS, EQ, GL 97.91± 5.11 145.69± 6.26

ISS RAT

LWL-MCS 338.51± 4.21 429.99± 2.51
LWL-EUC 150.22± 1.74 224.27± 4.96
EKM-MCS 122.08± 11.99 443.76± 37.32
EKM-COMB 133.08± 12.92 600.08± 60.16
CS, EQ, GL 133.43± 6.58 199.43± 9.06

Suth COX2

LWL-MCS 389.10± 6.53 432.79± 6.16
LWL-EUC 135.01± 4.06 194.28± 3.73
EKM-MCS 246.72± 25.23 576.46± 46.10
EKM-COMB 540.76± 56.04 1356.16± 124.03
CS, EQ, GL 135.78± 15.64 146.68± 13.04

Suth DHFR

LWL-MCS 792.44± 9.38 1001.70± 18.57
LWL-EUC 249.47± 3.90 372.17± 4.70
EKM-MCS 1232.64± 148.81 2972.67± 300.90
EKM-COMB 2034.21± 158.88 5427.62± 354.86
CS, EQ, GL 347.67± 20.08 483.39± 18.62

Suth ER_TOX

LWL-MCS 395.38± 3.81 458.13± 4.93
LWL-EUC 156.38± 3.26 221.10± 1.89
EKM-MCS 249.21± 27.32 602.03± 45.19
EKM-COMB 409.58± 37.27 1132.35± 84.65
CS, EQ, GL 195.04± 23.98 273.89± 35.78

FDAMDD

LWL-MCS 3159.39± 120.76 3263.67± 29.01
LWL-EUC 638.87± 6.53 964.28± 5.58
EKM-MCS 4133.40± 277.01 11345.37± 584.25
EKM-COMB 1662.30± 95.56 26449.16± 1247.72
CS, EQ, GL 2267.15± 179.19 3157.60± 237.64

EKM-MCS. This means that taking into account non-structural descriptors in addition to
structural descriptors improves in many cases the predictive performance in a statistically
significant way.

112

4.4 Experimental Results

For the remaining three comparison methods (CS, EQ an GL), it is observed that LWL-
MCS outperforms all of them in 10 out of 10 cases for fD = 66%. Using 90% of the data
for training, LWL-MCS significantly outperforms CS in 9 of 10 cases and EQ and GL in
all cases. However, the runtime results in Table 4.4 suggest a clear advantage of the local
model learning approaches over LWL-MCS. The results demonstrate the trade-off between
the runtimes of the algorithms and the quality of the results achieved. Whereas methods
which perform lazy learning, like LWL-MCS, achieve better performance regarding predic-
tion accuracy, methods performing eager learning, like local model learning, show better
performance regarding runtime, but at the same are limited in their expressive power.
While there is no one rule for what is acceptable, there are some applications, e.g., in the
domain of graphs, where users are willing to accept higher runtime for significant accuracy
improvements.
In the following, the performance difference between LWL-MCS and the local model

methods is analyzed on (i) the COX2 data sets, (ii) the CPD and ISS data sets, (iii)
FDAMDD and (iv) Suth DHFR. For the COX2 data sets, a relatively small difference
in performance compared to the remaining data sets (see results for CS in Figure 4.5)
is observed. The data sets contain extremely similar molecules, often differing in only
one atom. Hence, the structural clustering procedure applied by the local model methods
results in a small number of relatively large, structurally homogeneous clusters so that the
majority of molecules are predicted with local models. This leads to only slight differences
in performance between LWL-MCS and the local model approaches. For the CPD and
ISS data sets, a comparison between the mean absolute errors shows a clear performance
advantage for LWL-MCS. Primarily, this positive effect is explained as a result of the
structurally heterogeneity of the data sets consisting of many small molecules (∼ up to
10 atoms), not particularly suitable to find many large homogeneous structural clusters.
For these data sets CS and EQ produce rather few, relatively small clusters, so that the
majority of molecules are predicted with global models. On the FDAMDD data set, LWL-
MCS achieves a strong gain over local models. This data set is the largest one, comprising
structurally more heterogeneous molecules. Consequently, local model methods use a
relatively low similarity threshold resulting in large, heterogeneous clusters. Hence, local
models are often applicable, but still inferior, due to the relative structural inhomogeneity
of each cluster. LWL-MCS achieves its largest gain on the Suth DHFR data set. This
data consists of structurally more heterogeneous molecules resulting in few and relatively
small structural clusters. Hence, inferior global models need to be applied more often,
causing the local model approach to underperform in comparison to LWL-MCS (similarly
to CPD and ISS). Figure 4.5 shows a strong relationship between the average Tanimoto
similarity and the advantage of LWL-MCS: gains increase for lower similarities. The only
exceptions are the ISS RAT and Suth DHFR data sets, where the latter can be viewed as
an outlier.

113

4 Maximum Common Subgraph Based Locally Weighted Regression

0.4

0.5

0.6

0.7

0.8

0.9

1

4QSAR
COX2

4QSAR
DHFR

CPD
MOUSE

CPD
RAT

ISS MOUSE

ISS RAT

Suth COX2

Suth DHFR

Suth ER_TOX

FDAMDD

LWL-MCS
LWL-EUC
EKM-MCS
EKM-COMB
CS
EQ
GL

Figure 4.3: Mean absolute errors and 95% confidence intervals for the compari-
son methods using 66% of the data for training.

0.4

0.5

0.6

0.7

0.8

0.9

1

4QSAR
COX2

4QSAR
DHFR

CPD
MOUSE

CPD
RAT

ISS MOUSE

ISS RAT

Suth COX2

Suth DHFR

Suth ER_TOX

FDAMDD

LWL-MCS
LWL-EUC
EKM-MCS
EKM-COMB
CS
EQ
GL

Figure 4.4: Mean absolute errors and 95% confidence intervals for the compari-
son methods using 90% of the data for training.

114

4.5 Discussion and Conclusion

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.1 0.2 0.3 0.4 0.5 0.6

D
iff

er
en

ce
 in

 M
A

E

Tanimoto similarity

CPD MOUSE

ISS MOUSE

CPD RAT

ISS RAT

FDAMDD

Suth ER_TOX

Suth COX2

Suth DHFR

4QSAR COX2

4QSAR DHFR

Figure 4.5: Relation between the Tanimoto similarity and the difference in MAE between
LWL-MCS and CS (fD = 66%).

4.5 Discussion and Conclusion

The chapter investigated locally weighted linear regression based on maximum com-
mon subgraph based distances (LWL-MCS). Clearly, LWL-MCS is not a completely new
method, but a novel combination that, quite surprisingly, has not been considered so far.
The experimental evaluation showed that the method outperforms other methods build-
ing on the neighborhood of graphs for regression. Determining the neighborhood of graph
instances based on the MCS and making the actual prediction based on feature vectors ap-
parently works particularly well for the application area of quantitative structure-activity
relationships. The MCS retrieves structures with a large common structural scaffold, for
which differences in the activities can be explained by differences in the physicochemical
properties. However, given the performance of this conceptually simple learning scheme
compared to other methods using the local neighborhood of graphs, it appears worthwhile
to study similar approaches on other types of structured data (like sequence, tree, logical
or database representations). This could be similarly successful whenever such structural
similarity (longest common subsequence, maximum common subtree, least general gener-
alization) can be complemented by feature vectors with orthogonal information.

115

CHAPTER 5
The Structural Cluster Kernel

In recent years, graph kernels have received considerable interest within the machine learn-
ing and data mining community. This chapter introduces a novel approach enabling kernel
methods to utilize additional information hidden in the structural neighborhood of the
graphs under consideration. The novel SCK incorporates similarities induced by a struc-
tural clustering algorithm to improve state-of-the-art graph kernels. The approach taken
is based on the idea that graph similarity can not only be described by the similarity be-
tween the graphs themselves, but also by the similarity they possess with respect to their
structural neighborhood. The novel kernel is applied in a supervised and a semi-supervised
setting to regression and classification problems on a number of real-world data sets of
molecular graphs. The experimental results show that the structural cluster similarity
information can indeed leverage the prediction performance of the base kernel, particu-
larly when the data set is structurally sparse and consequently structurally diverse. By
additionally taking into account a large number of unlabeled instances the performance
of the structural cluster kernel can further be improved.

5.1 Introduction

The topic of graph similarity and in particular kernel approaches have attracted consider-
able interest in recent years [87, 166, 191, 230]. To determine the similarity of two graphs,
most approaches decompose the graphs in different ways: either into a potentially very
large set of smaller subgraphs or related graph features, or into one or more larger common
subgraphs (connected or disconnected). This chapter investigates the question whether
the structural neighborhood of two graphs can also contribute to similarity searches and
consequently to improve prediction performance. To determine the structural neighbor-
hood of a graph, the previously proposed structural graph clustering method PSCG is
used.
In the work presented here, a novel kernel called SCK is proposed, which in addition to

existing kernel approaches measures the similarity between two graphs, by their assignment
to structural clusters found with PSCG. The SCK first employs the structural clustering

117

5 The Structural Cluster Kernel

algorithm to determine small, structurally homogeneous regions in the input space, and
then uses the pairwise similarities between these regions to define a similarity measure for
graphs. The approach taken here is to extend two state-of-the-art graph kernels using this
structural distance measure: the WDK [166] and the NSPDK [61].
To study the effectiveness of the SCK, the prediction performance is measured in both

the regression and classification setting, by employing several real-world data sets of molec-
ular graphs within the experiments. To show the advantage of combining graph similarity
and structural cluster similarity, the SCK approach is compared with the base kernels
using graph similarity alone. Furthermore, the SCK is compared against two approaches,
(i) an approach that also employs structural clustering during model construction and
learns one local model per structural cluster and (ii) an approach called LWL-MCS, a
variant of locally weighted regression on graphs (structures) that uses the maximum com-
mon subgraph for determining and weighting the neighborhood of a graph and feature
vectors for the actual regression model. The performance of the SCK approach is further
investigated in the semi-supervised setting, where the base kernel is deformed by a cluster
kernel encoding similarities between both labeled and unlabeled examples.
This chapter is organized as follows: In Section 5.2, the proposed structural cluster

kernel is introduced. Section 5.3 presents and discusses the experimental results, before
Section 5.4 gives a conclusion.

5.2 Method

5.2.1 Structural Cluster Kernel

This section introduces a novel kernel, called structural cluster kernel, that leverages infor-
mation of a clustering algorithm to improve a base kernel representation. The main idea is
to change the similarity metric of a base kernel so that the relative similarity between two
points is higher if the points are in the same cluster. The kernel uses a combination of two
similarity measures: (1) a base kernel that computes structural similarity between pairs of

Algorithm 11 Structural Cluster Kernel
1: Given: training points DTrg = {(x1,y1), . . . ,(xt,yt)} and test points DTst =
{xt+1, . . . ,xn}, xi ∈ Rn, i = 1, . . . ,n

2: a) Cluster training points using PSCG
3: c) Build cluster matrix on the training set
4: KCl(xi,xj) = 1

|nxi ||nxj |
∑

Ck:xi∈Ck

∑
Cl:xj∈Cl

K(Ck,Cl), i,j ∈ {1, . . . ,t}

5: d) Build the SCK on the training data set by taking the product between the base
kernel Kb and the cluster kernel KCl

6: KSC(xi,xj) = KCl(xi,xj)×Kb(xi,xj), i,j ∈ {1, . . . ,t}
7: e) Compute cluster assignments for all test points
8: f) Compute KSC(xj ,xi) between each test point xj and all training points xi, i =

1, . . . ,t.

118

5.2 Method

graphs and (2) a cluster-based similarity measure that describes how close examples are to
each other in terms of the similarities between the clusters they belong to. The similarity
between two clusters is computed by taking the average of the similarities between the
cluster instances. In application to molecule regression and classification, the WDK and
NSPDK (see Section 2.3.2.2 and 2.3.2.3) are used as base kernel. For the cluster-based
kernel, the structural clustering approach introduced in section 3.2 that clusters a data
set of graphs based on structural similarity. The cluster similarity information is used to
improve pointwise similarities, based on which the final kernel is constructed.
In the following, the steps which are necessary to build the structural cluster kernel are

described. Let DTrg = {(x1,y1), . . . ,(xt,yt)} denote the training data, where xi ∈ X rep-
resent the data points and yi their labels, respectively. Further, let DTst = {xt+1, . . . ,xn}
denote the set of test points. First, the training set is clustered by the structural clustering
procedure PSCG presented in Section 3.2. The resulting clusters are used to build a kernel
representing the pairwise similarities between all clusters. In this kernel representation,
each of the pairwise sets of the structural clusters is seen as a single data point, and a
higher level kernel is designed so as to compare the two clusters. The similarity between
two clusters is computed by taking the average of the sum of the pairwise similarities
between all graph instances in both clusters. The kernel K(Ci,Cj) is defined as

K(Ci,Cj) =


1

|Ci||Cj |
∑

xk∈Ci

∑
xl∈Cj

Kb(xk,xl) if i 6= j

1 if i = j,

(5.1)

where Kb(xk,xl) represents the base kernel and Ci,Cj ∈ {C1, . . . ,Cp}. As mentioned
earlier, the WDK and NSPDK are used as base kernel to compute the pairwise similarities
between graphs. In the next step, a kernel representation KCl(xi,xj) is built based on the
averaged pairwise similarities between the clusters xi and xj belong to. KCl(xi,xj) is
defined as

KCl(xi,xj) =


1

|nxi ||nxj |
∑

Ck:xi∈Ck

∑
Cl:xj∈Cl

K(Ck,Cl) if i 6= j

1 if i = j

(5.2)

where nxi denotes the number of clusters containing xi, nxj denotes the number of
clusters containing xj and Ck,Cl ∈ {C1, . . . ,Cp}. Thus, the points are mapped to a
feature space where the pointwise similarities are equal to the cluster similarities in the
input space. The points belonging to the same cluster will result in matrix entries close to
one, whereas for the points from different clusters, the entries will be close to zero. Figure
5.1 illustrates the cluster kernel concept.
The cluster similarity weightsKCl(xi,xj) are combined with the values of the base kernel

Kb(xi,xj), thus forming the final kernel matrix. To sum up, the new structural cluster
kernel is

119

5 The Structural Cluster Kernel

KSC(xi,xj) = Kb(xi,xj)×KCl(xi,xj) (5.3)

We are faced with two problems in the construction of the above structural cluster
kernel: (i) the base kernel matrix has to be positive semi-definite and (ii) the structural
cluster kernel must be positive semi-definite. The first requirement is obvious, since the
WDK and NSPDK are used as base kernels, which are known to be valid kernels. In the
following, a proof sketch is provided to show that the structural cluster kernel is a valid
kernel.

5.2.1.0.1 Proof Sketch: KCl is a valid kernel, since each kernel value KCl(xi,xj) contains
the average sum of pairwise similarities between all clusters, which in turn encompass the
average sum of all training instances xi ∈ {x1, . . . ,xt}.
For each pair of clusters, one kernel is defined that returns the average similarity between

the two clusters for the first instance in cluster one and the second in cluster two. For all
other instances, it returns zero. As the sum of two valid kernels is again a valid kernel, the
resulting function is a valid kernel as well. Applying the kernel to two instances, only the
clusters to which the respective two instances are assigned are considered. Consequently,
most of the summands are equal to zero:

KCl(xi,xj) = 1
|nxi ||nxj |

∑
Ck:xi∈Ck

∑
Cl:xj∈Cl

K(Ck,Cl)

= 1
|nxi ||nxj |

∑
Ck:xi∈Ck

∑
Cl:xj∈Cl

K(Ck,Cl)

+ 1
|mxi ||mxj |

∑
Ck:xi /∈Ck

∑
Cl:xj /∈Cl

K(Ck,Cl)

︸ ︷︷ ︸
0

+ 1
|nxi ||mxj |

∑
Ck:xi∈Ck

∑
Cl:xj /∈Cl

K(Ck,Cl)

︸ ︷︷ ︸
0

+ 1
|mxi ||nxj |

∑
Ck:xi /∈Ck

∑
Cl:xj∈Cl

K(Ck,Cl)︸ ︷︷ ︸
0

,

(5.4)

where nxi denotes the number of clusters containing xi and mxi denotes the number of
clusters not containing xi.
In kernel methods, for predicting the label of a new test point kernel function calculations

need to be performed only between the test points and the training points. For computing
the kernel entries, each test point first needs to be assigned to one or more clusters using the
structural clustering procedure to compute KCl(xi,xt). Based on this cluster assignment
the similarityKCl(xi,xt) between the test point xt and all training points xi is computed by

120

5.2 Method

H3C

H3C

H3C C2

C3

C1

x1

x2
O

O-

N+

NH2
O

O-

N+

H3C

H3C O

H3C

O

C1,C3

C2,C3

C1,C2

Figure 5.1: Illustration of the cluster kernel concept. The cluster-based similarity
KCl(x1,x2) between the highlighted structures x1 and x2 is computed based on the aver-
aged pairwise similarities between the clusters they belong to. x1 belongs to C1 and C2, x2
to C2 and C3. Thus, the pairwise similarities between the cluster instances of cluster C1C2,
C1C3, C2C2 (which equals 1) and C2C3 need to be computed.

averaging the pairwise similarities between all clusters xt and xi are assigned to (Equation
5.2). The kernel matrix KSC is extended by taking the inner product between KCl(xi,xt)
and Kb(xi,xt) between each test point xt and all training points xi, i = 1, . . . ,t. The steps
needed for the calculation of the structural cluster kernel are shown in Algorithm 11.

5.2.2 Semi-Supervised Setting

In semi-supervised learning, one tries to improve a classifier trained on labeled data by
exploiting a relatively large set of unlabeled data. If unlabeled data is added to the
relatively small labeled data set, it is expected that the new similarity, obtained via struc-
tural clustering and the use of unlabeled data, induces a better representational space for
classification and regression than using only the labeled data. Therefore, the kernel con-
struction in Section 5.2.1 is extended by involving a large number of unlabeled data. The
structural cluster kernel is constructed as follows: First, both the labeled and unlabeled
training data are clustered with the structural clustering procedure to determine small,
structurally homogeneous neighborhoods of the input space. The resulting clusters are
then used to build a kernel representing the pairwise similarities between all clusters. As
in the supervised setting, the cluster similarity information is used to improve pointwise
similarities between the labeled data samples, based on which the final structural cluster
kernel is constructed. Figure 5.2 illustrates the workflow.

121

5 The Structural Cluster Kernel

Figure 5.2: Flowchart illustrating the construction of the structural cluster kernel in the
semi-supervised setting.

5.3 Experimental Results

This section studies the performance of the proposed structural cluster kernel in a su-
pervised setting. Next, the performance of the cluster kernel is investigated in a semi-
supervised setting using large amounts of unlabeled data to augment the labeled data in
order to test if the prediction performance can be improved. For all experiments, the
chemical domain is employed as application area by using real data sets of molecular
graphs. In Table 5.1 an overview of the data sets is provided.

Table 5.1: Overview of the data sets used for assessing the structural cluster kernel. n de-
notes the number of molecular graphs in the respective data set.

Data set n
class.(SAR)/ Referenceregr.(QSAR)

4QSAR COX2 282 regression 4QSAR database [217]
4QSAR DHFR 362 regression 4QSAR database [217]
CPD MOUSE 442 regression ACD DSSTox databases [93]
CPD RAT 580 regression ACD DSSTox databases [93]
ISS MOUSE 316 regression Benigni/Vari Carcinogenicity [21]
ISS RAT 375 regression Benigni/Vari Carcinogenicity [21]
Suth COX2 414 regression Sutherland data set [216]
Suth DHFR 672 regression Sutherland data set [216]
Suth ER TOX 410 regression Sutherland data set [216]
FDAMDD 1216 regression ACD DSSTox databases [162]
Biodeg 328 regression Biodegradability data set [73]
Tox09 1213 regression Environmental Toxicity

Prediction Challenge 2009 [45]
ER_LIT 381 regression Sutherland data set [216]
CYP INH 2C9 700 classification Yap and Chen [248]
CYP SUB 2C9 700 classification Yap and Chen [248]
Fontaine 435 classification Fontaine et al. [80]
NCI AIDS 1000 classification DTP AIDS Antiviral Screen [54]
CPDB MUT 684 classification Mutagenicity data set [102]

122

5.3 Experimental Results

5.3.1 Supervised Setting

This section empirically compares the performance of the structural cluster kernel ap-
proach against five methods.

1. WDK: The Weighted Decomposition Kernel is used to build a classification or
regression model. Section 2.3.2.2 provides a detailed description of the WDK.

2. NSPDK: The Neighborhood Subgraph Pairwise Distance Kernel (see Section
2.3.2.3) is used to build a classification or regression model.

3. LoMoGraph: LoMoGraph [38] combines clustering and classification or regression
for making predictions on graph structured data. The approach consists of two steps:
First, the structural clustering procedure PSCG is applied to find groups of graphs
in a structural space that share a common structural scaffold with a minimum size.
The sizes of these common subgraphs are used as a measure of similarity between
the graphs. A graph is assigned to a cluster provided that there exists at least
one common subgraph, whose size is equal or greater than a user-defined threshold
θ. Second, one local model is learned per structural cluster using a feature-vector
representation of the graphs where the features encode standard chemical descriptors
in the setting of molecular graphs. In the prediction step, the query graph is assigned
to one or more clusters using PSCG. Based on this assignment, the prediction is
made. Since the structural clustering procedure is overlapping and non-exhaustive,
a graph can fall into no cluster, one cluster or multiple clusters. If it falls into no
cluster, a global model is applied for prediction. If the query graph falls into a
single cluster, the local model based on this cluster is used for prediction, and if it
is assigned to multiple clusters, weighted local models are used dependent on cluster
membership. The weight for a cluster is linearly dependent on its size. Thus, larger
weights are assigned to larger clusters, assuming that the more graphs a cluster has,
the more reliable the corresponding model is.

4. LoMoGraph WDK: The method combines LoMoGraph with WDK. More pre-
cisely, one local model is learned per structural cluster based on the WDK.

5. LoMoGraph NSPDK: The method combines LoMoGraph with NSPDK, i.e., one
local model is learned per structural cluster based on the NSPDK.

The structural cluster kernel approach was investigated using both NSPDK and WDK
as base kernel. For SCK with NSPDK and SCK with WDK, not only the approach with
the diagonal elements in the kernel matrices K(Ci,Cj) (Equation 5.1) and KCl(xi,xj)
(Equation 5.2) set to one was investigated, but also a second approach, where the diag-
onal elements are computed in the same way as the non-diagonal elements. These four
approaches are referred to as SCK NSPDK (d=1), SCK NSPDK (d 6=1), SCK WDK (d=1)
and SCK WDK (d 6=1).

123

5 The Structural Cluster Kernel

In the experiments, regression and classification were performed using the SVM al-
gorithm. Several user parameters were optimized by internal cross-validation. For
SCK WDK, SCK NSPDK, WDK, NSPDK, LoMoGraph WDK, and LoMoGraph
NSPDK, the trade-off between training error and margin, C, was selected from
{10−3,10−2,10−1,100,101,102}. Further, the radius r for WDK was optimized in the range
{1,2,3,4}. The parameter combination resulting in the lowest mean absolute error (the
highest accuracy) was then used for building the final model. All other SVM parameters
were left at their default values. For NSPDK, the maximum radius r∗ was set to 2, and
the maximum distance d∗ to 5. For the SCK approaches, the similarity coefficient θ used
by PSCG was set to 0.5. For FDAMDD and NCI AIDS an exception was made setting
θ to 0.3 to take into account the size and structural heterogeneity of the data sets. As
for LoMoGraph, the parameters that were used for clustering were defined based on a
set of criteria: the similarity coefficient of PSCG was chosen such that the local models
consist of minimally 5% and maximally 20% of the training data. The rationale behind
this choice is that a too small value of θ results in large, heterogeneous clusters whereas a
too big value of θ produces very few, small clusters or no clusters at all. In both cases the
predictivity of LoMoGraph would be negatively affected. For the experiments on SCK,
the same values were used for θ for all data sets. Another parameter called minimum
cluster size controls how many graphs a cluster must have at least so that a local model
can be learned. This parameter was chosen greater than or equal to 20 as a lower bound
for the number of graphs that are needed to train meaningful models.
Performance estimates were obtained using 100 times hold-out validation with a training

set fraction of 66%. This means that 2/3 of the data were used for training a model while
the remaining 1/3 were reserved for testing. To quantify predictive accuracy, the relative
mean error (regression) and classification accuracy (classification) were chosen, which are
standard measures in regression and classification settings. The Wilcoxon signed-rank test
and the corrected resampled t-test [172] were applied to test for significant differences at
a significance level of 5%.
Tables 5.2, 5.3, 5.4 and 5.5 show the detailed experimental results in terms of relative

mean absolute error (regression) and accuracy (classification) for the various methods on
all data sets. The results for LoMoGraph were taken from the original publication [38].
Since not all data sets were used in this paper, the table contains missing values. In the
same tables the second column shows the performance of the respective SCK method as
baseline to compare against. For better illustration, the reference method is highlighted in
italic. It is indicated whether the respective SCK method is significantly better or worse
than the comparison methods at p < 0.05 using both the Wilcoxon signed-ranked test
and the corrected resampled t-test. In the following, the results are discussed based on
the more conservative corrected resampled t-test. Overall, the experimental results show
that the structural cluster kernel with NSPDK as base kernel performs always better than
all comparison methods using WDK as base kernel. This demonstrates that NSPDK is
a much more powerful base kernel compared to WDK. Moreover, it is observed that the

124

5.3 Experimental Results

Table 5.2: Mean absolute errors with standard deviations of SCK NSPDK, NSPDK, Lo-
MoGraph NSPDK and LoMoGraph on the regression data sets. Statistically significant re-
sults are reported using both the Wilcoxon signed-rank test and the corrected resampled
t-test (separated by a ’|’).

Data set SCK NSPDK SCK NSPDK NSPDK LoMoGraph LoMoGraph(d 6=1) (d=1) NSPDK

4QSAR COX2 0.607 ± 0.055 0.625 ± 0.055 •| 0.601 ± 0.054 ◦| 0.628 ± 0.055 •| 0.868 ± 0.135 •|•

4QSAR DHFR 0.551 ± 0.035 0.572 ± 0.037 •|• 0.541 ± 0.033 ◦| 0.562 ± 0.035 •| 0.955 ± 0.102 •|•

CPD MOUSE 0.751 ± 0.041 0.760 ± 0.041 •| 0.764 ± 0.040 •| 0.775 ± 0.039 •|• 1.276 ± 0.154 •|•

CPD RAT 0.868 ± 0.045 0.870 ± 0.044 •| 0.887 ± 0.043 •|• 0.877 ± 0.042 | 1.529 ± 0.116 •|•

ISS MOUSE 0.738 ± 0.046 0.740 ± 0.046 | 0.753 ± 0.045 •|• 0.761 ± 0.048 •|• 1.197 ± 0.111 •|•

ISS RAT 0.860 ± 0.050 0.863 ± 0.047 | 0.900 ± 0.046 •|• 0.873 ± 0.051 •| 1.371 ± 0.109 •|•

Suth COX2 0.559 ± 0.039 0.586 ± 0.041 •|• 0.552 ± 0.038 ◦|◦ 0.573 ± 0.040 •| 0.905 ± 0.137 •|•

Suth DHFR 0.504 ± 0.026 0.519 ± 0.030 •|• 0.493 ± 0.026 ◦|◦ 0.498 ± 0.027 ◦| 0.941 ± 0.066 •|•

Suth ER TOX 0.828 ± 0.046 0.842 ± 0.045 •| 0.820 ± 0.042 | 0.847 ± 0.052 •| 1.216 ± 0.141 •|•

FDAMDD 0.629 ± 0.029 0.647 ± 0.023 •|• 0.612 ± 0.024 ◦|◦ 0.621 ± 0.026 ◦| 0.951 ± 0.051 •|•

Biodeg 0.844 ± 0.051 0.875 ± 0.055 •|• 0.867 ± 0.050 •|• 0.874 ± 0.053 •|• -

Tox09 0.345 ± 0.015 0.386 ± 0.016 •|• 0.342 ± 0.015 | 0.367 ± 0.016 •|• -

ER_LIT 0.492 ± 0.039 0.499 ± 0.035 •| 0.495 ± 0.039 | 0.495 ± 0.041 | -

•,◦ statistically significant improvement, or degradation of SCK NSPDK (d 6=1) over the other methods

Table 5.3: Mean absolute errors with standard deviations of SCK WDK, WDK, LoMo-
Graph WDK and LoMoGraph on the regression data sets. Statistically significant results
are reported using both the Wilcoxon signed-rank test and the corrected resampled t-test
(separated by a ’|’).

Data set SCK WDK SCK WDK WDK LoMoGraph LoMoGraph(d=1) (d6=1) WDK

4QSAR COX2 0.673 ± 0.088 0.691 ± 0.056 •|• 0.683 ± 0.055 | 0.676 ± 0.053 | 0.868 ± 0.135 •|•

4QSAR DHFR 0.669 ± 0.054 0.805 ± 0.132 •|• 0.733 ± 0.051 •|• 0.702 ± 0.047 •| 0.955 ± 0.102 •|•

CPD MOUSE 0.827 ± 0.052 0.874 ± 0.085 •| 0.888 ± 0.063 •|• 0.880 ± 0.052 •|• 1.276 ± 0.154 •|•

CPD RAT 1.002 ± 0.048 1.070 ± 0.103 •| 1.129 ± 0.154 •|• 1.043 ± 0.048 •|• 1.529 ± 0.116 •|•

ISS MOUSE 0.798 ± 0.049 0.826 ± 0.053 •|• 0.850 ± 0.056 •|• 0.859 ± 0.062 •|• 1.197 ± 0.111 •|•

ISS RAT 0.977 ± 0.064 1.018 ± 0.074 •|• 1.031 ± 0.061 •|• 1.022 ± 0.062 •|• 1.371 ± 0.109 •|•

Suth COX2 0.612 ± 0.042 0.620 ± 0.047 •| 0.603 ± 0.041 ◦| 0.610 ± 0.044 | 0.905 ± 0.137 •|•

Suth DHFR 0.625 ± 0.036 0.639 ± 0.086 •| 0.633 ± 0.032 •| 0.610 ± 0.031 ◦| 0.941 ± 0.066 •|•

Suth ER TOX 0.993 ± 0.064 1.301 ± 0.439 •|• 1.175 ± 0.071 •|• 1.130 ± 0.076 •|• 1.216 ± 0.141 •|•

FDAMDD 0.727 ± 0.029 0.809 ± 0.077 •|• 0.833 ± 0.329 •|• 0.727 ± 0.029 | 0.951 ± 0.051 •|•

Biodeg 1.011 ± 0.072 1.051 ± 0.119 •| 1.110 ± 0.071 •|• 1.086 ± 0.080 •|• -

Tox09 0.440 ± 0.021 0.643 ± 0.168 •|• 0.464 ± 0.017 •|• 0.425 ± 0.017 ◦| -

ER_LIT 0.594 ± 0.040 0.590 ± 0.058 ◦| 0.609 ± 0.040 •| 0.591 ± 0.043 •| -

•,◦ statistically significant improvement, or degradation of SCK WDK (d=1) over the other methods

choice of setting the diagonal entries in the kernel matrix has a different effect on both SCK
methods. Whereas setting the diagonal entries of the kernel matrix unequal to one leads to

125

5 The Structural Cluster Kernel

Table 5.4: Classification accuracies with standard deviations of SCK NSPDK, NSPDK,
LoMoGraph NSPDK and LoMoGraph on the classification data sets. Statistically significant
results are reported using both the Wilcoxon signed-rank test and the corrected resampled
t-test (separated by a ’|’).

Data set SCK NSPDK SCK NSPDK NSPDK LoMoGraph LoMoGraph(d 6=1) (d=1) NSPDK

CYP INH 76.33 ± 2.35 75.62 ± 2.52 •| 75.55 ± 2.50 •| 75.88 ± 2.56 •| 74.08 ± 2.55 •|•

CYP SUB 76.84 ± 2.28 75.11 ± 2.84 •|• 75.95 ± 2.17 •| 76.21 ± 1.99 •| 71.37 ± 2.46 •|•

Fontaine 95.56 ± 1.57 95.37 ± 1.57 •| 95.71 ± 1.66 | 95.62 ± 1.60 | 92.08 ± 2.01 •|•

NCI AIDS 90.13 ± 1.58 89.86 ± 1.69 •| 90.58 ± 1.35 •| 89.02 ± 1.62 •|• 84.93 ± 1.61 •|•

CPDB MUT 76.71 ± 2.10 75.15 ± 2.20 •|• 77.25 ± 2.12 ◦| 73.85 ± 2.50 •|• -

•,◦ statistically significant improvement, or degradation of SCK NSPDK (d 6=1) over the other methods

Table 5.5: Classification accuracies with standard deviations of SCK WDK, WDK, LoMo-
Graph WDK and LoMoGraph on the classification data sets. Statistically significant results
are reported using both the Wilcoxon signed-rank test and the corrected resampled t-test
(separated by a ’|’).

Data set SCK WDK SCK WDK WDK LoMoGraph LoMoGraph(d=1) (d 6=1) WDK

CYP INH 74.05 ± 3.02 70.78 ± 3.85 •|• 75.05 ± 2.51 ◦| 75.42 ± 2.42 ◦| 74.08 ± 2.55 |

CYP SUB 72.07 ± 3.84 70.63 ± 4.63 •| 75.77 ± 2.38 ◦|◦ 75.74 ± 2.46 ◦|◦ 71.37 ± 2.46 •|

Fontaine 94.01 ± 1.86 94.48 ± 1.83 ◦| 94.41 ± 1.54 ◦| 93.03 ± 5.14 •| 92.08 ± 2.01 •|•

NCI AIDS 84.28 ± 2.04 83.67 ± 2.20 •| 79.97 ± 8.32 •|• 82.27 ± 1.82 •|• 84.93 ± 1.61 •|

CPDB MUT 72.80 ± 2.48 71.51 ± 2.88 •| 73.29 ± 2.57 | 70.85 ± 2.64 •| -

•,◦ statistically significant improvement, or degradation of SCK WDK (d=1) over the other methods

better predictive performance for SCK NSPDK, setting the diagonal entries equal to one
results in better predictive performance for SCK WDK. In the following, the performance
of the SCK approaches is analyzed on the different data sets. On the COX2 data sets, no
performance improvement of SCK NSPDK and SCK WDK is observed over the respective
base kernel. The data sets contain extremely similar molecules, often differing in only one
atom. Hence, the base kernel cannot be improved by the similarities induced by the
structural clustering procedure. For the CPD, ISS and Biodeg data sets, a comparison
between the mean absolute errors shows a clear performance advantage of SCK using both
WDK and NSPDK as base kernel. Primarily, this positive effect can be explained as a
result of the structurally heterogeneity of the data sets consisting of many small molecules
(∼ up to 10 atoms). Hence, the NSPDK alone is not suited to determine similarity between
graphs. As a consequence, for these data sets the pairwise similarities between the small,
structurally homogeneous neighborhoods can contribute to similarity and consequently
to predictive performance. On FDAMDD, the proposed structural cluster kernel with
NSPDK as base kernel yields performance degradation compared to NSPDK. This shows
that taking into account the similarities induced by PSCG has an adverse effect on the

126

5.3 Experimental Results

predictive performance. Although for this data set a significant performance gain of SCK
over the base kernel can be achieved by using WDK as base kernel, SCK WDK still has a
higher mean absolute error compared to NSPDK. This demonstrates that NSPDK is much
more powerful compared to WDK. For NCI AIDS and both CYP data sets the results on
classification are clearly in favor of SCK NSPDK. On these data sets the structural cluster
kernel with NSPDK improves over all other compared methods. However, for the corrected
resampled t-test only four of the nine wins are statistically significant. Using WDK as
base kernel, SCK can only achieve strong performance improvements on NCI AIDS. On
the remaining classification data sets taking into account similarities induced by PSCG
has either no significant effect or an adverse effect on predictive accuracy compared to
the baseline methods (except for LoMoGraph on the Fontaine data set). In summary,
the structural cluster kernel approach SCK is comparative to other methods, yet shows
a strong performance increase on structurally more sparse data sets, i.e., chemically and
structurally more diverse data sets. On these data sets the base kernel alone is not suited to
determine similarities between graphs due to the high structural heterogeneity within the
data set. Hence, the structural neighborhood of two graphs can substantially contribute
to graph similarity and therefore to predictive performance of the constructed models.

5.3.2 Semi-Supervised Setting

This section investigates whether incorporating unlabeled data in the clustering process
can positively contribute to predictive performance. Since semi-supervised methods poten-
tially give the greatest benefit when a large amount of unlabeled data is used, the structural
cluster kernel approach was tested in large-scale experiments, enriching the training data
by a large number of molecules from the vast chemical space. To this end, the ChemDB
database was employed, which contains nearly 5 M commercially available small molecules
[48, 49], as a source of unlabeled data, randomly sampling 100,000 structures from it. Since
in the supervised setting, SCK NSPDK (d 6=1) performs always better than or equal to
all methods using WDK as base kernel as well as to SCK NSPDK (d=1), LoMoGraph
NSPDK and LoMoGraph, SCK was only compared in the semi-supervised setting against
SCK NSPDK (d6=1) and NSPDK. As in the supervised setting, the SVM complexity con-
stant, C, was selected from {10−3,10−2,10−1,100,101,102}. Further, the same parameter
setting were used for the NSPDK and the similarity coefficient θ of PSCG.
The experimental results are shown in Tables 5.6 and 5.7 and in the bar charts in Fig-

ures 5.3 and 5.4. For completeness, the bar charts also depict the results for LoMoGraph
NSPDK and LoMoGraph. The following discussion is based on the corrected resampled
t-test. The results show that in the semi-supervised setting, SCK NSPDK achieves a
strong performance gain on all data sets over the supervised approach: 10 of the 18 wins
are statistically significant. For regression, the best results can be achieved on the toxicity
data sets consisting of structurally more heterogeneous graphs. The results indicate that
incorporating a large set of unlabeled data into the structural clustering process has a def-

127

5 The Structural Cluster Kernel

inite positive effect on the predictive performance. As opposed to the supervised setting,
SCK NSPDK can improve over the base kernel on the FDAMDD data set. This data set
is the largest one, comprising structurally heterogeneous molecules. Hence, exploiting a
large set of unlabeled data in the clustering step can contribute to graph similarity. The
strongest performance gains with respect to NSPDK can be achieved on the classification
data sets. Whereas in the supervised setting SCK NSPDK was not able to gain signifi-
cantly with respect to the base kernel on the classification data sets, the semi-supervised
approach shows significant improvements over NSPDK in three out of five cases.

Table 5.6: Mean absolute errors with standard deviations of SCK NSPDK in both the
semi-supervised and supervised setting and NSPDK on the regression data sets. Statisti-
cally significant results are reported using the Wilcoxon signed-rank test and the corrected
resampled t-test (separated by a ’|’).

Data set SCK NSPDK SCK NSPDK NSPDKSemi-Sup (d6=1)

4QSAR COX2 0.606 ± 0.055 0.607 ± 0.055 | 0.601 ± 0.054 ◦|

4QSAR DHFR 0.548 ± 0.033 0.551 ± 0.035 | 0.541 ± 0.033 ◦|

CPD MOUSE 0.746 ± 0.043 0.751 ± 0.041 •| 0.764 ± 0.040 •|•

CPD RAT 0.861 ± 0.046 0.868 ± 0.045 •|• 0.887 ± 0.043 •|•

ISS MOUSE 0.731 ± 0.049 0.738 ± 0.046 •|• 0.753 ± 0.045 •|•

ISS RAT 0.850 ± 0.050 0.860 ± 0.050 •|• 0.900 ± 0.046 •|•

Suth COX2 0.556 ± 0.040 0.559 ± 0.039 •| 0.552 ± 0.038 |

Suth DHFR 0.501 ± 0.025 0.504 ± 0.026 | 0.493 ± 0.026 ◦|◦

Suth ER TOX 0.808 ± 0.041 0.828 ± 0.046 •|• 0.820 ± 0.042 •|•

FDAMDD 0.608 ± 0.020 0.629 ± 0.029 •|• 0.612 ± 0.024 •|

Biodeg 0.840 ± 0.051 0.844 ± 0.051 •|• 0.867 ± 0.050 •|•

Tox09 0.339 ± 0.014 0.345 ± 0.015 •|• 0.342 ± 0.015 •|

ER_LIT 0.492 ± 0.039 0.492 ± 0.039 | 0.495 ± 0.039 •|

•,◦ statistically significant improvement, or degradation of SCK NSPDK Semi-Sup over the other methods

Table 5.7: Classification accuracies with standard deviations of SCK NSPDK in both the
semi-supervised and supervised setting and NSPDK on the classification data sets. Statisti-
cally significant results are reported using the Wilcoxon signed-rank test and the corrected
resampled t-test (separated by a ’|’).

Data set SCK NSPDK SCK NSPDK NSPDKSemi-Sup (d6=1)

CYP INH 77.37 ± 2.26 76.33 ± 2.35 •|• 75.55 ± 2.50 •|•

CYP SUB 78.78 ± 2.16 76.84 ± 2.28 •|• 75.95 ± 2.17 •|•

Fontaine 95.80 ± 1.42 95.56 ± 1.57 | 95.71 ± 1.66 |

NCI AIDS 90.92 ± 1.00 90.13 ± 1.58 •| 90.58 ± 1.35 •|

CPDB MUT 78.47 ± 2.40 76.71 ± 2.10 •|• 77.25 ± 2.12 •|•

•,◦ statistically significant improvement, or degradation of SCK NSPDK Semi-Sup over the other methods

128

5.3 Experimental Results

0.2

0.4

0.6

0.8

1

1.2

1.4

4QSAR
COX2

4QSAR
DHFR

CPD
MOUSE

CPD
RAT

ISS MOUSE

ISS RAT

Suth COX2

Suth DHFR

Suth ER
TOX

FDAMDD

Biodeg

Tox09
ER

LIT

SemiSup SCK NSPDK
SCK NSPDK (d6=1)
SCK NSPDK (d=1)
NSPDK
LoMoGraph NSDPK
LoMoGraph

Figure 5.3: Mean absolute errors with 95% confidence intervals on the different compari-
son methods for the regression data sets in Table 5.1.

5.3.3 Comparison to Locally Weighted Learning

The structural cluster kernel was further compared against a simple, yet effective method
for regression on graphs that combines LWL with MCS-based graph distances. The ap-
proach called LWL-MCS was introduced in Chapter 4. To recapitulate, LWL-MCS is a
variant of locally weighted regression on graphs that uses the maximum common subgraph
for determining and weighting the neighborhood of a graph and feature vectors for the
actual regression model.

For LWL-MCS, regression was performed using linear ridge regression. LWL-MCS im-
plements an internal grid search using only the training data to determine the best pa-
rameter values via inner 10-fold cross-validation. The number of neighbors, k, was varied
from 25 to 300 using a step size of 25 and the ridge regression parameter R was varied
in the range {1,10,25,50,100,150,200}. The parameter combination resulting in the lowest
mean absolute error was then used for building the final model. As for SCK, performance
estimates were obtained using 100 times hold-out validation with a training set fraction of
66%. To quantify predictive accuracy, the relative mean error was chosen. The Wilcoxon
signed-rank test was applied to test for significant differences at a significance level of 5%.
For the experiments, the first ten regression data sets provided in Table 5.1 were used.

The experiments are only conducted on the regression data sets, since the LWL-MCS
method was developed for regression on graphs. For each data set, standard chemical

129

5 The Structural Cluster Kernel

0

20

40

60

80

100

120

CYP
INH

CYP
SUB

Fontaine

NCI AIDS

cpdb mutagen

SemiSup SCK NSPDK
SCK NSPDK (d6=1)
SCK NSPDK (d=1)
NSPDK
LoMoGraph NSDPK
LoMoGraph

Figure 5.4: Classification accuracies with 95% confidence intervals on the different com-
parison methods for the classification data sets in Table 5.1.

descriptors (e.g., molecular weight, LogP, topological diameter, hydrogen bound accep-
tor/donor, polar surface area, number of atoms/bonds) computed using the cheminfor-
matics library JOELib2 [236] were used. In the experiments, LWL-MCS was compared
against the SCK in the semi-supervised and supervised setting. For the supervised setting,
the approach that computes the diagonal elements in the kernel matrix in the same way
as the non-diagonal elements is used.
The experimental results are shown in the bar chart in Figure 5.5. The following dis-

cussion is based on the corrected resampled t-test. The results show that in the semi-
supervised setting, SCK NSPDK achieves a strong performance gain on all data sets over
LWL-MCS: four of the ten wins are statistically significant. The best results can be
achieved on the data sets consisting of structurally more homogeneous graphs. In the
supervised setting, three of the nine wins of SCK NSPDK over LWL-MCS are statistically
significant. Only on the FDAMDD data set, LWL-MCS can significantly improve over
SCK NSPDK in the supervised setting. A closer look at the results in Table 5.1 reveals
that the performance difference between LWL-MCS and SCK is smaller on the data sets
containing structurally more heterogeneous molecules, i.e., on the CPD and ISS data sets
and on FDAMDD. On these data sets, the strategy of LWL-MCS to determine the neigh-
borhood of graph instances based on the MCS and to make the actual prediction based
on feature vectors seems to work particularly well. Still, LWL-MCS does not reach the

130

5.3 Experimental Results

performance of the SCK approach.

Table 5.8: Mean absolute errors with standard deviations of SCK NSPDK in both the
semi-supervised and supervised setting and LWL-MCS on the regression data sets. Statis-
tically significant results are reported using the Wilcoxon signed-rank test and the corrected
resampled t-test (separated by a ’|’).

Data set SCK NSPDK SCK NSPDK LWL-MCSSemi-Sup (d6=1)

4QSAR COX2 0.606 ± 0.055 •| 0.607 ± 0.055 •| 0.65252 ± 0.00652

4QSAR DHFR 0.548 ± 0.033 •|• 0.551 ± 0.035 •|• 0.61831 ± 0.00444

CPD MOUSE 0.746 ± 0.043 •| 0.751 ± 0.041 •| 0.75381 ± 0.00478

CPD RAT 0.861 ± 0.046 •| 0.868 ± 0.045 •| 0.87851 ± 0.00453

ISS MOUSE 0.731 ± 0.049 •| 0.738 ± 0.046 •| 0.75470 ± 0.00575

ISS RAT 0.850 ± 0.050 •| 0.860 ± 0.050 •| 0.89128 ± 0.00592

Suth COX2 0.556 ± 0.040 •|• 0.559 ± 0.039 •|• 0.61090 ± 0.00482

Suth DHFR 0.501 ± 0.025 •|• 0.504 ± 0.026 •|• 0.54921 ± 0.00262

Suth ER TOX 0.808 ± 0.041 •| 0.828 ± 0.046 •| 0.83777 ± 0.00488

FDAMDD 0.608 ± 0.020 •|• 0.629 ± 0.029 ◦| 0.62019 ± 0.00213

•,◦ statistically significant improvement, or degradation of SCK NSPDK Semi-Sup and SCK NSPDK over
LWL-MCS

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

4QSAR
COX2

4QSAR
DHFR

CPD
MOUSE

CPD
RAT

ISS MOUSE

ISS RAT

Suth COX2

Suth DHFR

Suth ER_TOX

FDAMDD

SemiSup SCK NSPDK
SCK NSPDK (d6=1)
LWL-MCS

Figure 5.5: Mean absolute errors with 95% confidence intervals on the different compari-
son methods for the first ten regression data sets in Table 5.1.

131

5 The Structural Cluster Kernel

5.4 Conclusion

This chapter proposed a novel graph kernel approach that incorporates similarity informa-
tion based on structural graph clustering to improve state-of-the-art graph kernels. The
proposed kernel is based on the idea that graph similarity can not only be determined
by the similarity of the graphs alone, i.e., their structure, but also by the similarity of
the graphs’ structural neighborhood. The performance of the structural cluster kernel
was investigated for regression and classification by using several real-world data sets of
molecular graphs. In the experiments, a comparison to the weighted decomposition kernel,
the neighborhood subgraph pairwise distance kernel, a learning method combining clus-
tering with classification or regression for the prediction task and a method that combines
Locally Weighted Learning with Maximum Common Subgraph based graph distances for
regression on graphs was conducted. The results demonstrate that the proposed kernel
approach yields an increase in performance on a number of data sets, in particular on
structurally more diverse data sets. The performance of the SCK was further investigated
in the semi-supervised setting, by enriching relatively small labeled data sets by a large set
of unlabeled data instances from the vast chemical space. The results show that within
the semi-supervised setting the proposed approach achieves gains in performance when
compared to the supervised version as well as to the pure base kernel, in particular for
classification. I believe that the approach presented is general as such, and can also be
employed in conjunction with a variety of different kernels and clustering approaches and
is therefore not restricted to graph mining alone.

132

CHAPTER 6
Mining Support Vectors of the Structural Cluster Kernel

Statistical machine learning algorithms building on patterns found by pattern mining
algorithms have to cope with large solution sets and thus the high dimensionality of the
feature space. Vice versa, pattern mining algorithms are frequently applied to irrelevant
instances, thus causing noise in the output. Solution sets of pattern mining algorithms
also typically grow with increasing input data sets. This chapter proposes an approach
to overcome these limitations. The approach extracts information from trained support
vector machines, in particular their support vectors and their relevance according to their
coefficients. It uses the support vectors along with their coefficients as input to pattern
mining algorithms able to handle weighted instances. The experiments in the domain of
graph mining and molecular graphs show that the resulting models are not significantly
less accurate than models trained on the full data sets, yet require only a fraction of the
time using much smaller sets of patterns.

6.1 Introduction

Two of the most important families of classification methods for structured data (like
graphs, trees, and sequences) are kernel-based and pattern-based methods. Kernel-based
methods, on the one hand, are often superior in terms of predictivity, but frequently lack
the possibility of interpretation and extraction of relevant features. Pattern-based meth-
ods, on the other hand, are often less accurate, but offer the advantage of explicit feature
spaces, for instance, for the inspection of feature usage or feature weights. As pattern-
based classification methods build upon the output of pattern-mining algorithms, they are
heavily affected by the typically huge solution sets produced by those algorithms. Despite
enormous progress in the area of condensed representations and compression methods for
pattern sets (see, e.g., BBRCs [163] and KRIMP [231]), the output size may, in some
cases, remain too large for practical application.
Kernel-based methods from the first family of methods, based on SVMs, are often

considered as state-of-the-art classification methods in machine learning. An important
advantage of SVMs is that their classification decision is based on a subset of the training

133

6 Mining Support Vectors of the Structural Cluster Kernel

examples, referred to as the support vectors. However, a drawback of SVMs is their black
box character. The generated non-linear models typically lack interpretability. Therefore,
the topic of opening the black box or making SVMs interpretable has received considerable
attention in the literature, e.g. in areas such as credit evaluation, graph reconstruction
and others [159, 14, 239]. Martens et al., for example, attempted to mimic the behavior of
SVM models and to add comprehensibility to them by extracting rules from the trained
models [159]. Another attempt to extract information from SVMs was made by Bakir et al.
[14]. The authors trained an SVM regression model to represent the inverse mapping from
the feature space to the input space, thus obtaining a pre-image function. This enables
sampling of novel instances into the input space. Weston et al. [239] considered the
task of learning dependencies between a general class of objects. Their approach referred
to as Kernel Dependency Estimation uses a kernel principal component analysis (PCA)
to implicitly model correlations among both inputs and outputs. Kernel Dependency
Estimation decouples output correlations by first applying Kernel PCA over the outputs
and then learning the mappings from the input space to dimension-reduced space by ridge
regression. A pre-image calculation is required in order to recover the output in the original
representation. Whereas pre-image methods are well-established for vectorial data, their
usage for graph data seems limited so far. In particular, there is no well-known approach
for deriving an explicit graph-based feature representation from a trained SVM with a
graph kernel.
In the light of this, the chapter addresses the following question: Can we make use of

trained SVM models to obtain more compact pattern-based classification models? There
are at least two possible ways of doing so: by analyzing a trained SVM model together
with the training set, or by using the models as oracles to label instances [62].
In this chapter, the former of the two approaches is studied. As the wish is take

advantage of any SVM with a graph-based kernel and all the information regarding the
classification is actually contained in the graph, the feature space of the graph kernel is
not necessarily assumed to correspond to the pattern language of the graph miner.
This work investigates this question and a possible solution in the context of graphs

and, in particular, molecular graphs. Many graph kernels have been proposed in this
domain, including the random walk graph kernel [88, 229], the optimal assignment kernel
[82], the shortest-path graph kernel [32], the subtree pattern kernel [211], the neighbor-
hood subgraph pairwise distance kernel [61] and the structural cluster kernel proposed in
Chapter 5. As mentioned above, a major drawback of kernel approaches is the lack of
interpretability, as it may be difficult to figure out which features play an important role
in classification. On the other hand, graph pattern-based approaches build graph classi-
fiers based on different types of graph substructure features. The basic idea is to extract
frequent substructures, local graph fragments, or cyclic patterns and trees and use them
as descriptors to represent the graph data. A major problem with pattern mining is that
it usually generates too many patterns on training data, many of which are redundant.
When the input data sets attain considerable size, the mining process becomes computa-

134

6.2 Problem Definition

tionally expensive or simply infeasible. Further, pattern mining algorithms are frequently
applied to irrelevant instances. Thus, the interpretation of the results turns out to be a
difficult task as the interesting patterns are blurred into the huge amount of outputted
patterns.
The approach proposed in this chapter aims to overcome some of the aforementioned

limitations. More specifically, the approach is motivated by the question whether a small
set of representative patterns can be derived from a set of relevant structures extracted
from a given data set such that the classifier trained on this pattern set still leads ac-
ceptable prediction performance. To this end, graph mining techniques are combined
with graph kernel-based classifiers. To extract a set of relevant graph instances from a
given input data, an SVM is trained on the recently proposed graph kernel, called the
structural cluster kernel (SCK). The basic idea of the SCK is to improve a base graph
kernel by incorporating similarity information induced by a structural graph clustering
algorithm. The extracted graph instances, i.e., the support vectors, and their according
weights reflecting the relevance of each support vector are then used as input to a pattern
mining algorithm that can cope with weighted instances. More specifically, an extension
of the pattern mining algorithm Backbone Refinement Class Mining (BBRC) [163] that
mines compact sets of subgraph descriptors from a set of weighted graphs is employed.
By considering only the support vectors for the mining process, i.e., the instances that
are critical for classification, it is expected that the resulting models achieve similar or at
least not significantly worse accuracy than the model trained on the full data set. The
experiments in the domain of molecular graphs indeed show that on most of the data sets,
in particular on data sets comprising structurally more homogeneous graphs, the models
trained on the support vectors are not significantly less accurate than models trained on
the full data sets, yet require only a fraction of the time while using less patterns.
The chapter is organized as follows: The problem definition is presented in Section 6.2.

Section 6.3 presents the approach to information extraction from SVMs for pattern-based
classification along with necessary background information about the employed methods.
In Section 6.4, an overview of the data sets and baseline methods used in the chapter is
given as well as a description of the experimental setup. Further, the Section presents
and discusses experimental results quantitatively and qualitatively. Finally, a conclusion
is given in Section 6.5.

6.2 Problem Definition

The proposed approach investigates the question whether trained SVM models can be
employed to obtain more compact pattern-based classification models. To do so, the
approach extracts information from trained support vector machines, i.e., their support
vectors and their relevance according to their coefficients (weights). It uses the support
vectors along with their coefficients as input to pattern mining algorithms able to handle
weighted instances. The motivation for this is the following: (a) Only the support vectors,

135

6 Mining Support Vectors of the Structural Cluster Kernel

i.e., the training instances relevant for the classification according to the trained SVM,
are being subjected to the pattern mining. (b) These training instances enter the graph
mining not with uniform weight, but a weight corresponding to their contribution to the
classification according to the SVM’s objective and loss function.
Formally, the problem is framed as follows. Consider the binary classification scenario,

and a training data set DTrg = {(x1, y1), . . . , (xt, yt)}, where xi ∈ X represent the data
points and yi ∈ {−1,1} their corresponding class labels. Further, letDTst = {xt+1, . . . , xn}
denote the set of test instances. By training an SVM on the training dataDTrg, the support
vectors s = {s1,s2, . . . ,sk} ⊆ DTrg are obtained. Given the set of support vectors s along
with their corresponding weights α = {α1,α2, . . . ,αk}, the goal of this approach is to
extract a small set of representative subgraph patterns {q1, q2, . . . , qm} (m ∈ N) correlated
with the class labels from only the support vectors, such that the classifier trained on
the reduced pattern set still yields acceptable, i.e., not significantly worse, classification
accuracy.

6.3 Method

In this section, the proposed approach to information extraction from SVMs for pattern-
based classification is presented. The section starts by introducing the employed approach
to pattern mining for mining a compact sets of subgraph descriptors from a set of weighted
graphs.

6.3.1 Backbone Refinement Class Mining

BBRC Mining [163] is an algorithmic approach to mine compact sets of subgraph descrip-
tors in the search space of chemical structure graphs, creating compressed representations
of chemical structure. It can be applied to class-labeled 2D graph databases and combines
feature generation and feature selection into one step. The extended version employed in
this work, allows to weight individual instances of the graph database according to their
importance. BBRC mining creates a sparse selection from the search space of frequent
and significant subtrees, based on a weighted minimum frequency, structural and statis-
tical constraints. In the work presented here, weights (β) for individual instances can be
positive real numbers and zero and are not normalized in any way. Furthermore, the mini-
mum frequency constraint can be set to any positive real number, reflecting each instance’s
importance in the data set and hence also of the induced patterns. It has very high com-
pression potential, which has been shown theoretically [163] from the unweighted version
of BBRCs. Empirical results confirmed the compression results in practice, while retain-
ing good database coverage. Moreover, it has been shown that the structural constraints
produce structurally diverse features with low co-occurrence rates. BBRC descriptors com-
pare favorably to other compressed representations in the context of classification models.
In classification tasks with either nearest-neighbor or SVM models, the accuracy of models

136

6.3 Method

based on BBRC descriptors was equal to models with the complete set of frequent and
significant subtrees, but significantly better than that of other compressed representations.
The algorithm performs substructure selection with regard to the endpoint under inves-
tigation, and calculates substructure associations to the endpoint in the form of p-values
from a chi-squared distribution test. In the following, the basic concepts of BBRC are
recapitulated.
First, the definition of Backbone Refinement Classes is given.
Undirected, labeled graphs are partially ordered via the refinement relation. Here, only

acyclic graphs (paths and trees) are considered. Specifically, any path has a sequence,
and sequences can be lexicographically ordered. Accordingly, any tree has a backbone,
which is defined as the longest path with the lexicographically lowest sequence within the
tree. An immediate tree refinement is an addition of a node and an edge to a tree such
that it remains a tree, i.e., not possesses a cycle. The Backbone Refinement Classes are
considered, where the members of each such class are tree refinements of each other and
share the same backbone. The backbone refinement class relation is denoted by �b. Note
that the classes are not disjoint for the same backbone (but they are across different ones).
For example, in Figure 6.1, q1 and q3 are in different classes, but q2 is in the respective
classes of both q1 and q3.
A categorical target class labeling function for the graphs in the database is assumed, en-

abling significance tests on trees by calculating their weighted occurrences in the database
and therefore in the weighted target classes.
The problem of weighted BBRC Mining can be defined as follows. Given a graph

database, corresponding weights, a user-defined minimum support and user-defined mini-
mum χ2 value, for all backbone refinement classes within the database, find the smallest
(according to �b) of the most significant trees in each class that is frequent and significant
with respect to their weighted occurrences in the target classes. The complexity of BBRC
mining is upper-bounded by the complexity of regular tree mining [174]. However, running
times are significantly lower for practical applications.
For significance testing, BBRC employs the χ2 distribution test using weighted in-

stances. Given a subgraph q, the original weights β, and I disjoint target classes Gi,
whose weighted member graphs make up the database, a I×2 contingency table is sought
that lists q’s weighted support values per target class in the first column and the overall

(a) q1

(b) q2

(c) q3

Figure 6.1: Three example trees with the same backbone (bold). Its sequence is
’c:c:c-C=C-O-C’ (reflecting that the fragments include part of an aromatic ring). It also
holds that q1 �b q2 and q3 �b q2, but neither q1 �b q3 nor q3 �b q1. Therefore, q1 and q3 are
not in the same Backbone Refinement Class.

137

6 Mining Support Vectors of the Structural Cluster Kernel

weighted distribution of target classes in the second column, as in Table 6.1.
These data serve to check whether q’s weighted support values differ significantly from

the overall weighted class distribution. The χ2
d function is used for distribution testing,

defined as

χ2
d(x,y) =

I∑
i=1

(ki − E(ki))2

E(ki)
, (6.1)

where ki = ∑
xj∈Gi

cover(q,xj)βxj with cover(q,xj) ∈ {0,1} denoting whether q satisfies
xj (1) or not (0). Furthermore, E(ki) = |Gi|k

|G| is the expected value of the weighted ki,
calculates the sum of squares of deviations from the expected weighted support for all
target classes Gi (where |Gi| is given by |Gi| =

∑
xj∈Gi

βxj , i.e., the weighted occurrence
of all instances for class Gi. Similarly, |G| reflects the weighted occurrences of all instances
in the database. The function value is then compared against the χ2 distribution function
to conduct a significance test with I − 1 degrees of freedom and obtain a p-value p(q).
It is possible to calculate an upper bound for the χ2 values of refinements of a pattern
[171], which can be used for antimonotonic pruning. Using a static, user-defined upper
bound threshold is referred to as static upper bound pruning. To speed up the search, this
threshold (dynamic upper bound adjustment) may be increased. For any frequent subtree
q, let χ2(q,R) and χ2

u(q,R) denote the χ2 value for q and χ2 upper bound for refinements
of q, respectively. Let umax(q) = max{χ2(p,R) | p �b q}. Then, if umax(q) > u, u may be
increased to umax(q), since only the maximum class element is searched.

6.3.2 Graph Mining On Support Vectors

In this section, the approach for extracting information from support vector machines
for pattern-based classification is introduced. The approach extracts information from
trained support vector machines, in particular their support vectors and their relevance
according to their coefficients (weights). Both the support vectors and their corresponding
weights are then used as input to the pattern mining algorithm BBRC (see Section 6.3.1
for a detailed description) that can handle weighted instances. BBRC reflects the weights
in its distribution test expressing individual importance of the instances. The intuition
behind this approach is the following. It is known that only the support vectors determine

Table 6.1: Contingency table for subgraph q.

q all

class 1 k1 |G1|

class 2 k2 |G2|

.

class I kI |GI |

Σ k |G|

138

6.3 Method

the final decision boundary of SVM, whereas instances other than support vectors have
no contribution to determine the decision boundary. The corresponding weights reflect
the relative importance of a graph instance in discriminating the classes. The higher the
weight of an instance, the more influential it is. Thus, by incorporating only the instances
that are important for classification along with their weights in the pattern mining process,
it is expected that the resulting models yield similar predictive performance compared to
the models trained on the full data set.
Formally, let DTrg = {(x1,y1), . . . ,(xt,yt)} denote the training data, where xi repre-

sent the graph instances and yi ∈ {−1,1} their class labels, respectively. Further, let
DTst = {xt+1, . . . ,xn} represent the test instance. To extract relevant information from
the given training data, the approach employs the structural cluster kernel SCK presented
in Chapter 5. The graph kernel is based on the assumption that graph similarity can not
only determined by the similarity of the graphs alone, i.e., their structure, but also by
the similarity of the graphs’ structural neighborhood. Following this idea, the SCK in-
corporates similarity information induced by a structural graph clustering algorithm (see
Section 3.2) to improve a base kernel. Chapter 5 evaluated the SCK using two different
state-of-the-art graph kernels. In this chapter, the NSPDK is used, since this kernel yields
better performance results with respect to predictive accuracy than the WDK.

The approach in this chapter starts by constructing the structural cluster kernel SCK
from the training data DTrg and by training an SVM on the resulting kernel. Given the
model trained on the SCK, the graph instances are extracted whose corresponding SVM
coefficients are nonzeros, i.e., the support vectors, along with their weights.
Formally, let s = {s1,s2, . . . ,sk} denote the set of extracted support vectors associated

with the training data DTrg and let α = {α1,α2, . . . ,αk} represent their corresponding
weights. The weights are normalized such that the sum of all weights equals the number
of training data, i.e., each weight αj , 1 ≤ j ≤ k, is normalized according to βj = |DT rg |∑

l
αl
.

Next, the support vectors and the modified weights β are used as input for BBRC to derive
a set of class-correlated subgraph patterns {q1, q2, . . . , qm}. As described in Section 6.3.1,
BBRC incorporates weights for instances in the χ2 distribution test expressing individual
importance of the instances.
Given the resulting subgraph patterns, a feature vector is constructed for each support

vector representing the mined subgraph patterns. Formally, each instance is represented
from the set of support vectors, si, by a binary feature vector fsi = [f1

si
, f2
si
, . . . , fmsi

]
corresponding to the set of mined subgraph patterns {q1, q2, . . . , qm}. Each element j ∈
{1, . . . ,m} in the feature vector fsi indicates the presence and absence of the corresponding
subgraph pattern gj in the graph object si. Next, a linear SVM is trained on the support
vectors using the feature vectors constructed from the derived subgraph patterns.
Given a test set DTst, the subgraph patterns {q1, q2, . . . , qm} obtained by performing

graph mining on the support vectors are matched back onto the test instances. For
each test instance, a feature vector is created indicating the occurrence of each subgraph
pattern in the test instance. The selected features are then evaluated by the accuracy of

139

6 Mining Support Vectors of the Structural Cluster Kernel

classification.
To summarize, given the training points DTrg = {(x1,y1), . . . ,(xt,yt)}, where xi ∈ X,

1 ≤ i ≤ t, represent the data points and yi ∈ {−1,1} (i = 1, . . . ,n) their corresponding
class labels, and test points DTst = {xt+1, . . . ,xn}, the approach performs the following
steps:

1. Construct the SCK on the training data DTrg and train an SVM with the SCK.

2. Extract the set of support vectors s = {s1,s2, . . . ,sk} associated with DTrg and their
corresponding weights α = {α1,α2, . . . ,αk} obtained by training an SVM with the
SCK.

3. Normalize each weight αj , 1 ≤ j ≤ k, according to the formula βj = |DT rg |∑
l
αl

and use
the extracted support vectors s and their weights β as input for BBRC to derive a
set of subgraph patterns {q1, . . . ,qm}.

4. For each support vector si, create a feature vector fsi = [f1
si
, f2
si
, . . . , fmsi

] correspond-
ing to the set of derived subgraph patterns {q1, . . . , qm}.

5. Use the feature vectors associated with the support vectors to train a linear SVM.

6. For each test instance xj ∈ DTst:

a) Match the subgraph patterns {q1, . . . , qm} back onto xj .

b) Create a feature vector fxj = [f1
xj
, f2
xj
, . . . , fmxj

] corresponding to the matched
subgraph patterns.

c) Classify the test instance xj according to the prediction of the model built in
step 5.

Figure 6.2 illustrates the steps of the approach in a flowchart.

140

6.4 Experiments

Training data

Create feature vector
 for each :

Train SVM on SCK

BBRC Mining

Patterns

Train SVM

Figure 6.2: Flowchart of the proposed approach for extracting information from support
vector machines for pattern-based classification.

6.4 Experiments

In this section, the performance of the method proposed in this chapter is studied. The goal
is to investigate whether reducing the entire training data to a set of k support vectors
that have the highest contribution to classification still yields acceptable classification
performance. The section presents the baseline methods, the data sets, the experimental
setup and the results.

6.4.1 Baseline Methods

To investigate the effectiveness of the proposed approach in terms of its ability to reduce
the training set size while maintaining the generalization performance, it was compared
against a method that calculates a set of subgraph patterns from the entire training data
DTrg. The derived subgraph patterns are then used as features to build a classification
model using a linear SVM. Similar to the proposed approach, the method applies BBRC
for computing the subgraph patterns.
Further, the approach is compared against a method that builds a classification model

141

6 Mining Support Vectors of the Structural Cluster Kernel

on a reduced feature set obtained by conducting feature selection on the training data. The
following two approaches are employed for feature selection. The first approach to feature
selection, referred to as FStop-k, produces a ranked list of attributes using a linear SVM
as attribute evaluator and specifies a number of top-ranked attributes to retain. In the
experiments, the number of top-ranked attributes corresponds to the number of features
obtained by the proposed approach by using 60% of the training data as support vectors
for model building. The second approach, referred to as FS, also produces a ranked list
using a linear SVM as attribute evaluator. It then steps through this list evaluating each
subsequently larger subset (i.e., top attribute, top two attributes etc.) using an SVM-
based subset evaluator. For both approaches, a linear SVM is trained over the training
data represented by the reduced feature set.

6.4.2 Data Sets

For the experiments, the chemical domain is employed as the application area by using
real data sets of molecular graphs. Table 6.2 provides an overview of the data sets. All of
the data sets are associated with a classification endpoint, e.g., carcinogenicity.

6.4.3 Experimental Setup

In all experiments, classification was performed using SVMs as the classifier. To build a
classification model using the SCK, ν-SVM is used as classifier [200] (see Section 2.3.4.3).
The fraction of support vectors dwas controlled by choosing ν such that the number of
support vectors covers a specific fraction of the training samples. For the experiments,
the number of support vectors is required to cover 50% and 60% of the training data,
respectively. For each data set, three values for the minimum frequency (MF) parameter
of BBRC were selected. For NCI_AIDS, dhfr and bloodbarr MF = 6%, 8% and 10%
were chosen, respectively. Due to the structural diversity of the kazius data set, smaller
values for the MF were chosen, since higher values result in too few patterns. On the other
hand, for the structural homogeneous data sets er_tox and Fontaine, higher values for the

Table 6.2: Overview of the data sets used for assessing the method. n denotes the number
of graph instances in the respective data set and Tanimoto Sim. describes the mean pair-
wise Tanimoto similarity using ChemAxon’s chemical fingerprint with default parameter
setting.

Data set n Tanimoto Sim. Proportion positive class
kazius [129] 4337 0.159 0.41
dhfr [216] 393 0.428 0.32
bloodbarr [145] 413 0.237 0.67
Fontaine [80] 435 0.461 0.64
er_tox [216] 446 0.416 0.41
NCI_AIDS [54] 1000 0.305 0.42

142

6.4 Experiments

MF were chosen, since for smaller values BBRC generates too many features resulting in
an increased computational complexity. To build a classification model on the subgraph
patterns, a linear SVM was used. The trade-off between training error and margin, C,
was optimized by internal cross-validation selecting from {10-3,10-2,10-1,100,101,102}. The
parameter resulting in the the highest accuracy was then used for building the final model.
All other SVM parameters were left at their default values. Performance estimates were
obtained using 15 times hold-out validation using the same data for training and testing for
all comparison methods. According to Nadeau and Bengio [172], a 15 holdout run provides
good power, in terms of the probability of rejecting the null hypothesis when it is false,
with reasonable computational effort, whereas going beyond 15 gives little additional power
and is probably not worth the computational effort. To quantify predictive accuracy, the
classification accuracy was chosen, which is a standard measure in classification settings.
To test for significant differences between the methods the corrected resampled t-test [172]
at the 5% significance level was used. Further, the number of computed subgraph patterns
and the runtime for model building and prediction were investigated.

6.4.4 Results

Table 6.3 shows the detailed experimental results in terms of classification accuracy, num-
ber of computed subgraph patterns and runtime performance (time for model building and
prediction) for the various methods on all data sets. The corrected resampled t-test is used
to indicate whether the proposed approach using both 50% and 60% support vectors is
significantly better or worse than the method employing all the training data at p < 0.05.
Further, the same table reports whether the feature selection approaches, FStop-k and FS,
are significantly better or worse than the proposed approach using 60% support vectors.
The results show that the proposed approach achieves the best performances in terms of

prediction accuracy on the data sets comprising structurally more homogeneous graphs,
i.e., on all data sets except for kazius. On these data sets using 60% of the training
data as support vectors the approach yields similar predictive performance and at the
same time employs less features and requires only a fraction of the time compared to the
approach that uses the entire training data to build a model. On the other hand, the results
on the kazius toxicity data set show that the models trained on the support vectors are
significantly less accurate than models trained on the full data sets. Primarily, this negative
effect can be explained as a result of the structurally heterogeneity of the examples. On this
data set the proposed approach yet generates a much smaller pattern set and at the same
time requires less time. However, the patterns generated from only the support vectors
are not sufficient for classification, indicated by significantly worse classification accuracies.
Reducing the fraction of support vectors to 50% results in a decrease in performance with
respect to prediction accuracy. However, on the dhfr, bloodbarr and er_tox data sets
and on Fontaine for MF=22% the performance differences with respect to the approach
using the full training data for graph mining are not statistically significant. For better

143

6 Mining Support Vectors of the Structural Cluster Kernel

Table 6.3: Classification accuracies (ACC), number of attributes (#Feats) and runtime (in
sec). MF denotes the minimum frequency parameter of BBRC.

Fontaine MF=22% MF=20% MF=18%
ACC 91.26 ± 1.90 92.30 ± 1.96 92.34 ± 2.86

DTrg #Feats 4864.3 ± 3486.3 4923.6 ± 3483.7 5868.6 ± 2952.2
Time 25.5 ± 22.7 60.0 ± 69.9 21.9 ± 18.1
ACC 90.59 ± 2.11 91.12 ± 1.87 91.40 ± 2.52

SV60% #Feats 140.6 ± 119.0 237.3 ± 151.5 291.9 ± 169.5
Time 2.8 ± 4.3 3.7 ± 5.5 4.5 ± 5.6
ACC 89.14 ± 2.73 89.28 ± 2.66 ◦ 89.64 ± 3.16 ◦

SV50% #Feats 113.8 ± 120.3 143.7 ± 153.5 176.45± 159.3
Time 4.0 ± 9.2 2.8 ± 5.2 4.7 ± 7.5
ACC 86.26 ± 8.05 ◦ 90.26 ± 3.40 90.96 ± 2.57

FStop-k #Feats 140.6 ± 119.0 237.3 ± 151.5 291.9 ± 169.5
Time 763.4 ± 871.8 1893.2 ± 3418.9 1135.4 ± 2086.8
ACC 90.63 ± 1.72 91.08 ± 2.47 91.36 ± 1.84

FS #Feats 65.7 ± 24.2 104.8 ± 45.3 144.8 ± 132.1
Time 8771.4 ± 9873.8 9998.2 ± 13405.2 18068.5 ± 25696.9

er_tox MF=12% MF=10% MF=8%
ACC 75.31 ± 2.62 75.26 ± 2.78 75.00 ± 2.75

DTrg #Feats 7927.5 ± 2135.3 7998.0 ± 2171.3 8131.2 ± 1867.0
Time 74.9 ± 31.1 75.0 ± 29.7 75.5 ± 32.1
ACC 75.18 ± 2.68 75.18 ± 3.37 75.35 ± 3.87

SV60% #Feats 5826.3 ± 2730.1 6796.1 ± 2823.1 7474.5 ± 3045.7
Time 30.0 ± 18.9 31.9 ± 22.5 37.5 ± 23.1
ACC 70.79 ± 5.49 71.14 ± 8.17 72.63 ± 3.88

SV50% #Feats 2000.4 ± 3321.0 3473.6 ± 4487.6 3833.8 ± 5150.2
Time 5.3 ± 13.0 7.6 ± 14.0 12.7 ± 26.4
ACC 74.66 ± 2.39 74.76 ± 2.46 74.83 ± 2.89

FStop-k #Feats 5826.3 ± 2730.1 6796.1 ± 2823.1 7474.5 ± 3045.7
Time 2056.1 ± 1557.4 2882.7 ± 3329.3 3646.1 ± 2924.7
ACC 74.61 ± 1.22 74.91 ± 1.25 75.10 ± 1.99

FS #Feats 501.0 ± 159.4 727.0 ± 161.0 971.0 ± 280.0
Time 28460.2 ± 23104.2 30508.4 ± 28020.3 34460.2 ± 30104.2

bloodbarr MF=10% MF=8% MF=6%
ACC 71.87 ± 2.88 70.83 ± 4.00 71.87 ± 2.64

DTrg #Feats 73.4 ± 27.0 141.3 ± 66.8 321.2 ± 173.4
Time 15.4 ± 9.2 18.3 ± 7.6 29.0 ± 67.2
ACC 72.81 ± 2.92 72.96 ± 3.10 73.43 ± 2.77

SV60% #Feats 35.8 ± 10.8 52.1 ± 17.5 142.6 ± 137.5
Time 1.8 ± 3.9 1.4 ± 1.3 2.2 ± 3.9
ACC 69.31 ± 3.57 69.22 ± 2.91 70.02 ± 3.34

SV50% #Feats 21.4 ± 10.0 41.8 ± 21.6 87.6 ± 50.7
Time 1.8 ± 4.4 1.2 ± 2.1 2.2 ± 5.0
ACC 71.89 ± 2.96 70.35 ± 3.84 ◦ 71.73 ± 3.43

FStop-k #Feats 35.8 ± 10.8 52.1 ± 17.5 142.6 ± 137.5
Time 108.07 ± 282.33 138.65 ± 147.33 140.16 ± 27.19
ACC 72.29 ± 2.98 70.50 ± 3.13 71.73 ± 2.74

FS #Feats 42.3 ± 20.9 51.7 ± 25.9 123.3 ± 51.9
Time 113.7 ± 248.2 137.8 ± 147.5 388.2 ± 533.4
•,◦ statistically significant improvement, or degradation

144

6.4 Experiments

Table 6.3: (continued)
kazius MF=6% MF=4% MF=3%

ACC 75.44 ± 1.10 75.82 ± 1.05 77.08 ± 1.00
DTrg #Feats 169.5 ± 9.7 250.5 ± 15.4 350.2 ± 33.8

Time 3122.5 ± 1456.9 4572.9 ± 1053.0 7016.5 ± 1155.50
ACC 70.62 ± 0.80 ◦ 72.97 ± 1.42 ◦ 73.46 ± 1.25 ◦

SV60% #Feats 54.2 ± 12.1 145.5 ± 21.9 207.1 ± 42.7
Time 70.3 ± 26.4 154.9 ± 64.5 227.4 ± 91.8
ACC 67.56 ± 2.43 ◦ 67.85 ± 3.36 ◦ 68.78 ± 2.49 ◦

SV50% #Feats 29.3 ± 8.9 54.8 ± 15.6 95.0 ± 37.9
Time 21.5 ± 13.5 40.5 ± 23.9 71.0 ± 42.3
ACC 74.17 ± 1.00 • 75.07 ± 1.23 • 76.31 ± 0.86 •

FStop-k #Feats 54.2 ± 12.1 145.5 ± 21.9 207.1 ± 42.7
Time 6443.9 ± 5036.9 6870.5 ± 12745.4 14107.0 ± 29832.0
ACC 75.05 ± 0.84 • 76.04 ± 0.93 • 76.73 ± 0.73 •

FS #Feats 151.0 ± 10.2 165.2 ± 19.6 265.3 ± 68.59
Time 12266.9 ± 8266.9 19819.4 ± 15778.5 32730.9 ± 28721.1

dhfr MF=10% MF=8% MF=6%
ACC 76.22 ± 2.57 77.16 ± 2.89 77.51 ± 3.63

DTrg #Feats 607.4 ± 161.4 1054.1 ± 280.5 1596.9 ± 366.0
Time 20.7 ± 7.1 38.5 ± 60.7 41.8 ±41.1
ACC 76.82 ± 4.18 77.06 ± 3.39 77.16 ± 3.93

SV60% #Feats 290.0 ± 152.4 362.0 ± 210.0 576.5 ± 315.1
Time 3.7 ± 3.8 4.8 ± 4.4 5.7 ± 4.6
ACC 75.97 ± 1.70 76.12 ± 3.08 76.31 ± 4.06

SV50% #Feats 135.6 ± 85.3 213.5 ± 250.3 497.0 ± 377.0
Time 2.5 ± 4.1 3.2 ± 4.5 3.0 ± 1.6
ACC 74.73 ± 4.28 ◦ 76.02 ± 3.47 76.61 ± 3.43

FStop-k #Feats 290.0 ± 152.4 362.0 ± 210.0 576.5 ± 315.1
Time 88.9 ± 91.2 144.4 ± 140.6 303.6 ± 322.6
ACC 74.98 ± 4.40 76.57 ± 3.45 76.96 ± 4.14

FS #Feats 127.7 ± 86.9 163.7 ± 55.3 288.3 ± 377.5
Time 876.0 ± 894.7 1451.4 ± 1544.1 3153.1 ± 3468.6

NCI_AIDS MF=10% MF=8% MF=6%
ACC 83.20 ± 2.44 83.63 ± 1.84 84.86 ± 1.88

DTrg #Feats 321.1 ± 83.3 632.6 ± 142.0 1071.6± 224.9
Time 399.0 ± 113.0 471.7 ± 145.7 210.8 ± 95.9
ACC 82.31 ± 2.05 82.90 ± 1.61 84.20 ± 1.65

SV60% #Feats 219.9 ± 72.4 389.4 ± 107.8 675.5 ± 222.4
Time 15.9 ± 6.4 20.7 ± 5.8 19.4 ± 3.2
ACC 77.94 ± 2.77 ◦ 78.35 ± 1.44 ◦ 79.22 ± 1.86 ◦

SV50% #Feats 72.2 ± 22.2 96.8 ± 37.6 154.3 ± 79.9
Time 6.5 ± 5.1 7.3 ± 5.2 8.6 ± 5.6
ACC 82.13 ± 1.94 82.42 ± 1.85 83.90 ± 1.83

FStop-k #Feats 219.9 ± 72.4 389.4 ± 107.8 675.5 ± 222.4
Time 602.8 ± 1167.9 1010.1 ± 2155.3 1450.0 ± 2416.3
ACC 82.26 ± 2.03 82.95 ± 1.89 84.25 ± 1.66

FS #Feats 137.0 ± 61.1 238.1 ± 81.4 437.7 ± 98.9
Time 4559.9 ± 12782.3 4408.7 ± 4050.0 13997.9 ± 13719.4
•,◦ statistically significant improvement, or degradation

145

6 Mining Support Vectors of the Structural Cluster Kernel

illustration, Figure 6.3 shows the relationship between the number of features and the
prediction performance on all data sets for the method with the number of support vectors
covering 60% of the training data and the method that employs all training data.
Comparing the proposed approach using 60% support vectors to both feature selection

approaches, FStop-k and FS, it can be observed that on all data sets except for kazius the
proposed approach yields similar or even better predictive performance. At the same time,
it approach requires far less time for training and testing than FStop-k, while employing
the same number of features. Even though the approach named FS produces less features
than the proposed approach (except for kazius), it needs far more time for model building
and prediction (up to factors of thousands). To summarize, the experimental results
demonstrate that the classification models resulting from the proposed approach are on
most data sets, more specifically on data sets comprising structurally more homogeneous
graphs, not significantly less accurate than the models trained on the full data sets.

146

6.4 Experiments

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000

P
e
rf

o
rm

a
n
c
e

features

60% SVs; MF=22%
60% SVs; MF=20%
60% SVs; MF=18%

train; MF=22%
train; MF=20%
train; MF=18%

(a) Fontaine

 0 2000 4000 6000 8000 10000

P
e
rf

o
rm

a
n
c
e

features

60% SVs; MF=12%
60% SVs; MF=10%
60% SVs; MF=8%

train; MF=12%
train; MF=10%
train; MF=8%

(b) er_tox

 50

 55

 60

 65

 70

 75

 80

 0 50 100 150 200 250 300 350

P
e
rf

o
rm

a
n
c
e

features

60% SVs; MF=10%
60% SVs; MF=8%
60% SVs; MF=6%

train; MF=10%
train; MF=8%
train; MF=6%

(c) bloodbarr

 0 50 100 150 200 250 300 350 400

P
e
rf

o
rm

a
n
c
e

features

60% SVs; MF=6%
60% SVs; MF=4%
60% SVs; MF=3%

train; MF=6%
train; MF=4%
train; MF=3%

(d) kazius

 60

 65

 70

 75

 80

 85

 90

 0 200 400 600 800 1000 1200 1400 1600

P
e
rf

o
rm

a
n
c
e

features

60% SVs; MF=10%
60% SVs; MF=8%
60% SVs; MF=6%

train; MF=10%
train; MF=8%
train; MF=6%

(e) dhfr

 0 200 400 600 800 1000 1200

P
e
rf

o
rm

a
n
c
e

features

60% SVs; MF=10%
60% SVs; MF=8%
60% SVs; MF=6%

train; MF=10%
train; MF=8%
train; MF=6%

(f) NCI_AIDS

Figure 6.3: Relationship between the number of patterns (features) generated by BBRC
and the predictive performance of the compared methods on all benchmark data sets. In
each figure ”train“ denotes the method using the full data set as input for pattern min-
ing, whereas ”60% SVs“ represents the approach incorporating only the support vectors and
their corresponding weights into the mining process.

147

6 Mining Support Vectors of the Structural Cluster Kernel

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

P
e

rf
o

rm
a

n
c
e

Runtime (sec)

60% SVs; MF=22%
60% SVs; MF=20%
60% SVs; MF=18%

train; MF=22%
train; MF=20%
train; MF=18%

(a) Fontaine

 0 10 20 30 40 50 60 70 80

P
e

rf
o

rm
a

n
c
e

Runtime (sec)

60% SVs; MF=12%
60% SVs; MF=10%

60% SVs; MF=8%
train; MF=12%
train; MF=10%

train; MF=8%

(b) er_tox

 50

 55

 60

 65

 70

 75

 80

 0 5 10 15 20 25 30

P
e

rf
o

rm
a

n
c
e

Runtime (sec)

60% SVs; MF=10%
60% SVs; MF=8%
60% SVs; MF=6%

train; MF=10%
train; MF=8%
train; MF=6%

(c) bloodbarr

 0 2000 4000 6000 8000

P
e

rf
o

rm
a

n
c
e

Runtime (sec)

60% SVs; MF=6%
60% SVs; MF=4%
60% SVs; MF=3%

train; MF=6%
train; MF=4%
train; MF=3%

(d) kazius

 60

 65

 70

 75

 80

 85

 90

 0 5 10 15 20 25 30 35 40 45

P
e

rf
o

rm
a

n
c
e

Runtime (sec)

60% SVs; MF=10%
60% SVs; MF=8%
60% SVs; MF=6%

train; MF=10%
train; MF=8%
train; MF=6%

(e) dhfr

 0 200 400 600 800 1000 1200

P
e

rf
o

rm
a

n
c
e

Runtime (sec)

60% SVs; MF=10%
60% SVs; MF=8%
60% SVs; MF=6%

train; MF=10%
train; MF=8%
train; MF=6%

(f) NCI_AIDS

Figure 6.4: Relationship between the runtime and the predictive performance of the com-
pared methods on all benchmark data sets. In each figure ”train“ denotes the method using
the full data set as input for pattern mining, whereas ”60% SVs“ represents the approach
incorporating only the support vectors and their corresponding weights into the mining pro-
cess.

148

6.5 Conclusion

6.5 Conclusion

In the work presented here, an approach for extracting information from support vector
machines for pattern-based classification was proposed. More specifically, the approach
extracts information from trained support vector machines, in particular their support
vectors and their relevance according to their coefficients. It uses the support vectors
along with their coefficients as input to pattern mining algorithms able to handle weighted
instances. The approach was evaluated on several real-world data sets of molecular graphs
and compared it against a method that builds a classification model on a set of subgraph
patterns derived from the full data sets. The results show that the models resulting from
the proposed approach are on most data sets, i.e., on data sets containing structurally
similar graphs, not significantly less accurate than models trained on the full data sets.
At the same time the resulting models tend to be better interpretable, due to the smaller
set of patterns generated by the mining process. Compared to using the full data set in
the mining process, the proposed approach allows an analysis, which is up to an order
of magnitude faster using often a substantially smaller number of features. This enables
feasible parameter and feature optimization for given problems using tens of thousands of
experiments in a fraction of the original time required.

149

CHAPTER 7
Conclusion and Outlook

This thesis covers scalable methods for clustering large graph databases as well as ap-
plications for graph classification and regression. First, three algorithms for clustering
large databases of small graphs were introduced: i) structural graph clustering, ii) PSCG
and iii) SCAP. These three methods cluster graph instances by common scaffolds, i.e., the
existence of one sufficiently large subgraph shared by all cluster elements. Next, two meth-
ods exploiting local structural graph similarity neighborhoods for building regression and
classification models were presented. The first method employs locally weighted learning,
a form of lazy learning, in combination with a distance measure based on the maximum
common subgraph. The second method exploits the clusters produced by PSCG to define
a new graph kernel. Finally, an approach was presented that extracts knowledge from
SVMs trained on the SCK. Figure 7.1 illustrates the structure of this thesis.

Structural Graph Clustering
Scalable Methods and Applications for Graph Classification and Regression

Section 3.1
Structural Graph

Clustering

Chapter 3 Graph Clustering

Exploiting local structural graph neighborhoods

using

extending extending

using

Section 3.2
Parallel Structural
Graph Clustering

(PSCG)

Section 3.3
Structural Clustering

 by Abstract
Pre-clustering

(SCAP)

Chapter 5
Structural

Cluster Kernel
(SCK)

Chapter 4
Maximum Common

Subgraph Based Locally
Weighted Regression

(LWL-MCS)

Chapter 6
Mining Support

Vectors of the SCK

Figure 7.1: Overview of the contributions of the thesis.

151

7 Conclusion and Outlook

7.1 Conclusion

Chapter 1 gave an introduction to the field of graph clustering, which is the task of
grouping a set of graphs into clusters based on structural similarity. Graph clustering is an
interesting and challenging research problem which has received much attention recently
[4, 79, 181]. The identification of clusters in graph data is useful in many applications
involving bio- and cheminformatics and the web. To motivate the presented work, several
application areas with a focus on the domain of cheminformatics were introduced followed
by an outline of the thesis.
Chapter 2 introduced the basics and notations for graph theory used throughout the

thesis. Subsequently, a review on the topic of graph clustering and an overview of state-
of-the-art algorithms for clustering vectorial data and graph data was provided. Next, the
chapter gave an introduction to kernels and kernel methods with a particular focus on
graph kernels. The last part of the chapter introduced the topic of knowledge extraction
from SVMs and presented related work on this topic.
The main part of the thesis was presented in Chapter 3, where three new approaches for

graph clustering were introduced with a special focus on scalability. All three approaches
have in common that they consider clustering graph databases according to structural
similarity. The first approach introduced the problem formulation of structural graph
clustering providing the basics for the following two graph clustering approaches. The
presented clustering approach works online and produces overlapping (non-disjoint) and
non-exhaustive clusters. The resulting clusters encompass all graphs that share a suffi-
ciently large common subgraph. The size of this common subgraph has to take at least a
user-specified fraction of the size of each graph. Three factors contribute to the practically
favorable performance of the approach: First, the use of a gSpan variant to compute a suf-
ficiently large common subgraph, which is known to be effective on graphs of low density.
Second, the possibility to terminate search as soon as such a subgraph is found. Third,
the cluster exclusion criteria to avoid unnecessary subgraph mining runs. The experi-
mental results on various real-world data sets of molecular graphs demonstrate that the
proposed approach is able to rediscover known structure classes in data sets. Compared
to fingerprint-based clustering, this approach yields larger and more representative cluster
scaffolds contributing to an increase in intra-cluster homogeneity. Due to the introduction
of several cluster exclusion criteria, the efficiency of the approach could further be im-
proved resulting in a scalable, overlapping, non-exhaustive structural clustering approach
that generates interpretable clusters in acceptable time.
The second part of Chapter 3 introduced a parallel version of the previously proposed

structural graph clustering algorithm referred to as PSCG. Parallelization is an efficient
technique to design fast algorithms for clustering huge data sets. Such algorithms are
highly desirable due to the explosive growth of graph-structured data. In the domain of
cheminformatics, for instance, graph databases representing chemical compounds routinely
encompass several hundred thousands or even millions of graphs; thus, clustering methods

152

7.1 Conclusion

that are able to explore and structure the vast graph space are highly required. The paral-
lelized graph clustering approach PSCG presented in Section 3.2 divides the cluster tasks
among processors with minimal communication costs, thus making it distributable across
a large number of computing nodes. The implementation of PSCG adopts the master-
worker agenda paradigm for parallelization. To reduce the number of cluster membership
tests, PSCG employs two clustering exclusion criteria, a set abstraction of graphs and
a size-based clustering criterion. Further, to reduce subgraph mining running times for
larger clusters, a cluster representative is defined for each cluster composed of the common
cluster scaffold once this scaffold is unique. These optimizations together enable PSCG
to achieve near-linear scalability and near-linear speed-up with the number of processors.
Compared to previously proposed structure-based clustering algorithms, the algorithm is
able to handle a much greater number of graph instances. In addition to obtaining time
gain, the quality of the clusters is preserved in the parallel version. Given these perfor-
mance improvements, PSCG is already applicable to the large structure databases from
virtual screening. Further, PSCG is the first solution for the structural (i.e., scaffold-
based) graph clustering problem that is able to handle data sets encompassing several
hundred thousand graphs. The majority of previously proposed structural graph-based
clustering algorithms, involving, e.g., the computation of the MCS, is hardly suitable for
such data sets. The graph data sets covered in related papers typically contain only several
hundred graphs [3, 107, 182], and hardly any effort has been spent on characterizing the
performance of the clustering algorithms.
Due to the rapid and constant growth of graph databases the demand is increasing for

clustering algorithms that are able to structure even larger libraries containing millions
of graphs. An important requirement in this endeavor is scalability, as it allows us to
cope with the large real-world compound libraries rapidly increasing in size. For this pur-
pose, the third part of Chapter 3 introduced a scalable scaffold-based graph clustering
approach that was designed for the purpose of clustering such massive graph data sets.
The approach referred to as SCAP employs two clustering stages. First, a pre-clustering
based on dynamic seed clustering is employed to partition the data set into several smaller
data sets using an abstraction-based similarity measure. Next, the resulting partitions are
clustered into a finer level of granularity using a scaffold-based structural graph cluster-
ing approach that produces overlapping (non-disjoint) and non-exhaustive clusters. More
precisely, a modified version of PSCG is used that avoids cluster comparisons with all
cluster members, which grow computationally more expensive with increasing cluster size,
by defining a cluster representative for each cluster at an early clustering stage. To sum-
marize, the main contribution of Section 3.3 is scalability, which is achieved by employing
a pre-clustering step and by leveraging an incremental clustering algorithm that runs ef-
ficiently on very large data sets. Compared to previously proposed structure-based graph
clustering algorithms, SCAP is able to handle a much larger number of graph instances,
i.e., an order of magnitude more instances in a fraction of time required before. Further,
SCAP has been shown to rediscover known structure classes in graph data sets. Given

153

7 Conclusion and Outlook

these performance improvements, SCAP is applicable to the large structure databases.
With this approach, it is for the first time possible to cluster millions of graphs within a
reasonable time using an accurate scaffold-based similarity measure. There are many po-
tential areas which could benefit from the use of the proposed graph clustering approach.
In the area of cheminformatics, for instance, this represents an important step towards
structuring the chemical space which could be defined by the structures of PubChem [176]
currently containing approximately 49.5 million compounds.
Local structural graph similarity neighborhoods obtained, for instance, by the previ-

ously proposed graph clustering approaches, can be useful for a variety of purposes, for
instance for building models for classification and regression. Chapters 4 and 5 presented
two approaches that exploit local structural graph similarity neighborhoods for model
building. The former of the two approaches presented in Chapter 4 investigates a simple,
yet effective method for regression on graphs, in particular for applications in chemin-
formatics and for QSARs. The approach called LWL-MCS presents a variant of locally
weighted regression on graphs that uses the maximum common subgraph for determining
and weighting the neighborhood of a graph and feature vectors for the actual regression
model. LWL-MCS belongs to the field of lazy learning, meaning that the structural neigh-
borhood of a test instance is determined individually, on demand, at testing time. The
presented combination outperforms other methods in the evaluation that use the local
neighborhood of graphs for regression and works particularly well for the employed appli-
cation area of QSARs. In this domain, the MCS retrieves structures with a large common
structural scaffold, for which differences in the activities can be explained by differences in
the physicochemical properties. Hence, the approach performs particularly well on struc-
turally more heterogeneous graph data sets that really benefit from the combination of
structural and chemical descriptors. On these data sets, using chemical descriptors alone
while ignoring explicit structure information, the approach retrieves a set of structurally
more diverse molecules. This leads to inferior predictions and makes interpretation harder
for the expert chemist. On the other hand, using molecular graphs by themselves and
ignoring chemical descriptors, the approach retrieves similar structures, but may overlook
important binding site effects [160]. LWL-MCS uses a combination of both chemical and
structure descriptors. Whereas the MCS is better suited to measure structural similarity
between molecules, chemical descriptors are better suited to discriminate between struc-
turally similar molecules with regard to their actual biological activities. Compared to
local model learning, locally weighted learning is more time-consuming, but also poten-
tially worth the effort, because it is able to adjust its predictions to the specifics of test
instances. Though the approach works particularly well for the employed application area
of QSARs, the performance of this method on graphs suggests that the approach might
be useful for other types of structured data as well.
Chapter 5 introduced an approach that exploits structural graph neighborhoods to

define a new kernel. More specifically, the novel kernel, called SCK, incorporates similar-
ities induced by a structural graph clustering algorithm to improve state-of-the-art graph

154

7.2 Outlook

kernels. The approach is motivated by the idea that graph similarity can not only be
described by the similarity between the graphs themselves, but also by the similarity they
possess with respect to their structural neighborhood. The SCK was investigated using
both NSPDK and WDK as base kernel. For the clustering task, PSCG is used. In the
evaluation, the novel approach was applied in a supervised and a semi-supervised setting
to regression and classification problems on a number of real-world data sets of molecular
graphs using SVMs. The experimental results indicate that the structural cluster similarity
information can leverage the prediction performance of the base kernel, particularly when
the data set is structurally sparse and consequently structurally diverse. The performance
of the SCK approach was further investigated in the semi-supervised setting enriching the
relatively small labeled graph data sets by a large set of unlabeled graph instances. The
assumption is that if unlabeled data is added to the relatively small labeled data set, the
new similarity, obtained via structural clustering and the use of unlabeled data, induces a
better representational space for classification and regression than using only the labeled
data. Compared to the supervised setting, the SCK in the semi-supervised setting yields
performance gains, in particular for classification. The presented kernel-based approach is
general as such, and can also be employed in conjunction with a variety of different kernels
and clustering approaches and is therefore not restricted to graph mining alone.
Chapter 6 addressed the question whether incomprehensible trained SVM models can be

used to obtain more compact pattern-based classification models. To do so, the proposed
approach extracts information from the support vector machines trained on the SCK, in
particular their support vectors and their relevance according to their coefficients. It uses
the support vectors along with their coefficients as input to pattern mining algorithms
able to handle weighted instances. The experiments in the domain of graph mining and
molecular graphs show that the resulting models are not significantly less accurate than
models trained on the full data sets, yet require only a fraction of the time using much
smaller sets of patterns. The approach performs particularly well on data sets containing
structurally similar graphs, i.e., on structurally homogeneous data sets.

7.2 Outlook

This thesis tackles the challenges in clustering large databases of graphs and applications
for graph classification and regression. As the field of graph clustering is an interesting
and challenging research problem that has received much attention recently, there exist
many ways where future research could proceed.
The investigation of graph clustering in Chapter 3 is probably the part of the thesis

which gives rise to the most opportunities for further research. It would be interesting
and useful to suitably extend graph clustering to take into account multiple “views” on
the data simultaneously to produce a more accurate and robust partitioning of the data.
In many application domains of machine learning and data mining, such as bioinformatics,
information retrieval, and social network analysis, it is natural to assume that there are

155

7 Conclusion and Outlook

multiple views on the same data. Views are typically defined as sets of features or vari-
ables that together describe one aspect of the objects of interest. In many cases, it can be
shown that working just with the union of variables (instead of defined views) decreases
the performance on the task at hand (e.g., clustering, classification and regression). The
increasing prevalence of multi-view data has given rise to the development of algorithms
that employ multiple views simultaneously. Despite the interest in multi-view learning
in general and multi-view clustering in particular, multi-view clustering in the domain of
graphs has not received much attention so far. However, methods for multi-view graph
clustering are currently called for in several application domains of data mining. For
instance, there is a pressing need for multi-view clustering in many areas of cheminfor-
matics, QSAR and predictive toxicology, where multiple endpoints are tested routinely
and the task is not only prediction, but also the formation of categories homogeneous
in both the structure and the biological profiles. Such categories are urgently required,
for instance, in the context of REACH [186], the European Union regulation for the reg-
istration, evaluation, authorization and restriction of chemicals. Technically speaking,
chemical structures can be represented by their graph structure, by a vector representing
chemical fingerprints, by a vector representing various standard chemical descriptors (e.g.,
molecular weight, LogP, topological diameter and polar surface area) or by a binary vector
indicating the biological activity against certain targets. Although these individual views
might be sufficient on their own for a given learning task, they may often provide useful
complementary information to each other which can lead to improved performance on the
learning task at hand. The central axiom of QSAR is that the activity of molecules is
reflected in their structure, i.e., structurally similar chemical structures should also have
similar biological activity. Hence, by exploiting information from both the structural view
as well as the biological view in the clustering process, one may expect to find a set of struc-
turally homogeneous clusters reflecting similar biological or toxicological profiles. Though
adding more views helps on average, adding a noisy view to a set of informative views
might hurt the clustering accuracy for certain cases. Hence, another future research direc-
tion is to investigate how to carefully select the most informative views of a graph while
downgrading the noisy ones. There are many more possible future research directions in
the domain of graph clustering. From an application point of view, further work, e.g., in
the domain of cheminformatics, could also investigate the effects of preprocessing steps,
e.g., downweighting longer chains (acyclic substructures) or reduced graph representations
(transforming cycles, in chemical terms: rings, into special nodes).
The LWL-MCS approach presented in Chapter 4 also offers a wide range of potential

extensions. Due to the good performance of this conceptually simple learning scheme
compared to other methods using the local neighborhood of graphs, it appears worthwhile
to study similar approaches on other types of structured data (like sequence, tree, logical
or database representations). This could be similarly successful whenever such structural
similarity (longest common subsequence, maximum common subtree, least general gener-
alization) can be complemented by feature vectors with orthogonal information. Further,

156

7.2 Outlook

it might be worthwhile to study the approach in the context of classification.
Promising directions for further research can also be found in the structural cluster

kernel approach presented in Chapter 5. The empirical evaluation was limited to a specific
clustering approach, i.e., PSCG and to two base kernel, i.e., the WDK and the NSPDK.
However, as the SCK approach is general as such and not restricted to a special base kernel
or clustering method, it may also be employed in conjunction with a variety of different
kernels and clustering approaches which might work equally well or even better. Further,
the approach is not restricted to graph mining alone, but may be useful in many other
domains.
Chapter 6 addressed the question whether one can make use of trained SVM models to

obtain more compact pattern-based classification models. As stated in the chapter, there
are at least two possible ways of doing so: by analyzing a trained SVM model together
with the training set, or by using the models as oracles to label instances [62]. In this
thesis, only the former of the two approaches was studied. The second approach, however,
may be a promising future direction. More precisely, trained SVM models may be used
as an oracle to label or classify a set of unlabeled examples which are then added to
the labeled data. The black box SVM model is thus used as an oracle to answer class
membership queries about unlabeled data points. A new model is then learned and the
process iterated. The idea behind this technique is the assumption that the trained model
can better represent the data than the original data set. That is, the data is cleaner and
free of apparent conflicts. It is expected that this process improves the SVM classifier’s
performance. Further, the newly created data set may provide more useful information
for pattern-based classification. The problem is also referred to as active learning in the
literature [53]. Active learning is a technique originally designed for learning tasks in which
training data is scarcely available. The approach can be further extended by selecting the
most informative samples for labeling by the oracle, so as to reduce the classification error.
Different heuristics may be considered to approximate the “informativeness” measure, such
as uncertainty and diversity [220, 146].
Given the research presented in the previous chapters and the manifold directions for

future work, I believe that graph clustering approaches as presented in this thesis have a
role to play in future and upcoming research challenges in many application areas such as
bio- and cheminformatics.

157

List of Figures

1.1 Overview of the contributions of the thesis. 7
1.2 A 2D graph representation of a molecular compound (1-Phenylethanone). . . . 8

2.1 Examples for directed, undirected and labeled graphs. Left: Undirected graph.
Center: Directed graph. Right: Labeled undirected graph. 12

2.2 Examples for graph isomorphism and subgraph isomorphism. The centered
graph is isomorphic to the left graph, and the right graph is isomorphic to a
subgraph of the left graph. The node labels are indicated by different letters.
All edge are assumed to have identical edge labels. 13

2.3 Maximum common subgraph example. The right graph is a maximum common
subgraph of the left graph and centered graph. 14

2.4 Example of a graph represented by a binary feature vector indicating the pres-
ence or absence of subgraph occurrences. 16

2.5 Fragment spectrum of a graph adapted from Yoshida et al. [250]. 18
2.6 Comparing the explicit mapping of patterns x and x′ in a feature space H via ϕ

and subsequent dot product computation with the shortcut kernel-trick. Note
that the pattern space X can be any domain (e.g. the domain of graphs G, or
a vector space H). 26

2.7 Example of selector (light blue vertex) and context (dark blue vertices and light
blue vertex) for a graph. Adapted from Menchetti [165]. 29

2.8 Example of a linear classifier separating two classes (filled dots and unfilled
dots). The decision surface (in dark blue) is a hyperplane defined by 〈w, xi〉+
b = 0. The margin (dashed line) is defined by the distance of the closest points
(x1 and x2). Data points located on the margin are support vectors. 32

2.9 Illustration of the slack variables ξi, for i = 1 . . . n. Note that only the values
ξi 6= 0 are shown, corresponding to points on the wrong side of the margin. All
the other points lying either on the margin or on the correct side have ξi = 0. . 33

2.10 Toy example illustrating the kernel trick. Mapping a circle into feature space:
data distribution in input space (left) and feature space (right). By transfor-
mation from input space X to feature space H by function ϕ, the light blue
and dark blue dots become linearly separable. 36

159

List of Figures

2.11 The translucency criterion for categorizing techniques for extracting knowledge
from trained SVMs. 40

2.12 Example illustrating the approach by Núñez et al. [175]. 41
2.13 Example illustrating the approach by Fung et al. [84]. The non-overlapping

rules covering the half-space are represented as rectangles. 42
2.14 Pedagogical rule extraction approach by Barakat and Diederich [16]. Adapted

from [18]. 44
2.15 Illustration of the pre-image problem in kernel-based machines. Adapted from

Honeine and Richard [105]. 47

3.1 (Above) Results of gSpan: Runtime behavior (left) and number of subgraphs
(right) on COX2 and CPDB. (Below) Results of structural clustering on COX2
(left) and CPDB (right). 51

3.2 Sample output from structural clustering. Atoms correspond to labeled ver-
tices, bonds to edges. Vertices without atom labels represent carbon (C) atoms.
Only heavy atoms are considered, i.e., hydrogen atoms (H) are ignored. The
figure distinguishes two bond types: Single bonds and double bonds. 52

3.3 Schematic overview of the cluster membership assignment for instance xi.
Graph instances are represented by x1,...,xn, clusters by C1,...,Ck. 53

3.4 Example illustrating the cluster assignment step of the proposed structural
clustering approach for θ = 0.6. The figure shows the clustering state at differ-
ent time steps. To be assigned to the cluster, query instance x3 needs to share
at least one common subgraph with the cluster members x1 and x2 that meets
the minSize threshold defined in Equation 3.2. As x3 shares such a subgraph
with x1 and x2 that meets the minSize threshold of 5.4, x3 is assigned to the
cluster. 54

3.5 Results of structural clustering (a), (c), (e) vs. fingerprint clustering (b), (d),
(f) on CPD MOUSE, CPD RAT and EPAFHM. 58

3.6 Histogram of the share of the MCS of the largest cluster instance for fingerprint
clustering on (a) CPD MOUSE, (b) CPD RAT and (c) EPAFHM using a
Tanimoto coefficient value of 0.6. 59

3.7 Results of (a) structural clustering for θ = 0.6 and (b) DP Clustering for
α = 0.1 and m = 1000 on the SACA data set. The different symbols for the
cluster instances represent the six SACA classes. 60

3.8 Runtime performance of the structure-based clustering approach with and with-
out clustering exclusion criteria on CPD MOUSE (left), CPD RAT (middle)
and EPAFHM (right). 62

3.9 Runtime performance of the structure-based clustering approach on ten data
sets from the NCI anti-HIV database consisting of x graphs (x ∈ [1000,10000]). 63

3.10 Flowchart of the master-worker paradigm employed by PSCG. 69
3.11 Flowchart of the worker computation. 69

160

List of Figures

3.12 Example sequence of steps of PSCG. 71
3.13 Example illustrating the use of the size-based cluster exclusion criterion on

a data set of chemical compounds containing eight graphs (θ = 0.5). Left:
Clustering at time t1.Only graphs of size ≤ 1

θ · xmin = 4
0.5 = 8, i.e., graph x2,

need to be considered for comparison against cluster 1. Right: Clustering at
time t2. Only graphs of size ≤ 1

θ · xmin = 7
0.5 = 14, i.e., graphs x3 to x7, need

to be considered for clustering against cluster 2. 73
3.14 Example use of the feature vector-based cluster exclusion criterion (θ = 0.6).

Since the similarity between the feature vectors of query graph x3 and cluster
1 is smaller than the minimum required size of the common subgraph, the
common subgraph computation step can be omitted. 75

3.15 Example illustrating the definition of a cluster representative. At time t1, the
cluster members x1 and x2 share two common subgraphs that meet theminSize
threshold. Hence, there does not exist a unique cluster scaffold. At time t2,
there exists a unique cluster scaffold which is used as cluster representative for
further cluster assignments. 76

3.16 Execution time (left) and speedup (right) of PSCG on the first 10,000 graphs
of the NCI anti-HIV data set. 77

3.17 Runtime reduction due to algorithm improvements. 78
3.18 Relative frequency of size-based and feature vector-based exclusion criterion

and number of gSpan calls. 79
3.19 Example of the pending cluster conversion process using two neighboring clus-

ters reaching the threshold size max_pending = 5 (left). For both clusters, the
fixed seeds and the fixed cluster members are determined (center and right).
After the conversion process, the former pending seed of the cluster can be
shifted to another member of the original pending cluster (see arrows). 85

3.20 Example of the pending cluster conversion process using two neighboring clus-
ters. The pending cluster Cp1 reaches the threshold size max_pending = 3
(left). Hence, for this cluster, the fixed seed and the fixed cluster members are
determined (center). If a graph that is assigned to the new fixed cluster is also
member of a pending cluster, it has to be removev from the pending cluster
(right). 85

3.21 APreClus workflow . 87
3.22 Example illustrating the use of the abstraction-based similarity measure em-

ployed by APreClu (θ = 0.6). Since the similarity between the feature vectors
of query graph x3 and the cluster representative seedCp is smaller than the min-
imum required size of the common subgraph, x3 won’t be assigned to cluster
Cp. 88

161

List of Figures

3.23 Example illustrating the definition of a cluster representative (for θ = 0.7).
Left: Cluster at time t1. To be assigned to the cluster, the query graph x2

needs to share at least one common subgraph with the cluster member x1 that
meets the minSize threshold defined in Equation 3.2. As x2 shares such a
subgraph with x1 that meets the minSize threshold of 8, x2 is assigned to the
cluster. Right: Cluster at time t2. The minimum common subgraph is taken
as cluster representative. In the following, all subsequent graphs are compared
only against the cluster representative. 90

3.24 Runtime performance of the clustering approach SCAP on the data sets sam-
pled from the ChemDB database comprising 100k to 3M graphs. 96

3.25 Runtime performance of BIRCH on the data sets sampled from ChemDB. . . . 97

4.1 Sample similarity matrix calculation. The MCS between the graph structures
g1 and g2 is marked blue. 104

4.2 Example of determining the k nearest neighbors (here: k = 6) of a given test
instance xq from a training set of graph instances. 106

4.3 Mean absolute errors and 95% confidence intervals for the comparison methods
using 66% of the data for training. 114

4.4 Mean absolute errors and 95% confidence intervals for the comparison methods
using 90% of the data for training. 114

4.5 Relation between the Tanimoto similarity and the difference in MAE between
LWL-MCS and CS (fD = 66%). 115

5.1 Illustration of the cluster kernel concept. The cluster-based similarity
KCl(x1,x2) between the highlighted structures x1 and x2 is computed based
on the averaged pairwise similarities between the clusters they belong to. x1

belongs to C1 and C2, x2 to C2 and C3. Thus, the pairwise similarities between
the cluster instances of cluster C1C2, C1C3, C2C2 (which equals 1) and C2C3

need to be computed. 121
5.2 Flowchart illustrating the construction of the structural cluster kernel in the

semi-supervised setting. 122
5.3 Mean absolute errors with 95% confidence intervals on the different comparison

methods for the regression data sets in Table 5.1. 129
5.4 Classification accuracies with 95% confidence intervals on the different com-

parison methods for the classification data sets in Table 5.1. 130
5.5 Mean absolute errors with 95% confidence intervals on the different comparison

methods for the first ten regression data sets in Table 5.1. 131

6.1 Three example trees with the same backbone (bold). Its sequence is
’c:c:c-C=C-O-C’ (reflecting that the fragments include part of an aromatic
ring). It also holds that q1 �b q2 and q3 �b q2, but neither q1 �b q3 nor
q3 �b q1. Therefore, q1 and q3 are not in the same Backbone Refinement Class. 137

162

List of Figures

6.2 Flowchart of the proposed approach for extracting information from support
vector machines for pattern-based classification. 141

6.3 Relationship between the number of patterns (features) generated by BBRC
and the predictive performance of the compared methods on all benchmark data
sets. In each figure ”train“ denotes the method using the full data set as input
for pattern mining, whereas ”60% SVs“ represents the approach incorporating
only the support vectors and their corresponding weights into the mining process.147

6.4 Relationship between the runtime and the predictive performance of the com-
pared methods on all benchmark data sets. In each figure ”train“ denotes
the method using the full data set as input for pattern mining, whereas ”60%
SVs“ represents the approach incorporating only the support vectors and their
corresponding weights into the mining process. 148

7.1 Overview of the contributions of the thesis. 151

163

List of Tables

2.1 List of well-known positive definite kernels for vectorial data. 25

3.1 Overview of the data sets used for assessing the structural clustering method. . 56
3.2 Number of clusters and Rand index values for structural clustering on SACA. . 60
3.3 Number of clusters and size of the DFS code tree for DP clustering on the

SACA data set with α = 0.1. 61
3.4 Runtime (in sec) of the sequential clustering version vs. PSCG on the first

10,000 graphs of the NCI anti-HIV data set for different values of θ. 79
3.5 Runtime (in sec) for the sampled data sets. 79
3.6 Number of clusters for the sampled data sets. 80
3.7 Clustering results for SCAP and PSCG. 93
3.8 Clustering results for the incremental FP clustering (τ : Tanimoto similarity

threshold). 95
3.9 Clustering results for BIRCH (t: distance threshold). 95
3.10 Clustering results for SCAP using θ = 0.7. 95
3.11 Clustering results for DP Clustering. 96
3.12 Runtime (in sec), number of #partitions produced by APreClus and number of

clusters generated by SCAP on the three large data sets sampled from ChemDB. 98

4.1 Percentage of MCS computations that do not finish within either ten millisec-
onds or 1.28 seconds for each of the data sets used in the experiments reported
later. 103

4.2 Overview of the data sets used for assessing the LWL-MCS method. n denotes
the number of molecules in the respective data set. 110

4.3 Mean absolute errors (MAE) with standard errors and the results of the
Wilcoxon signed-rank test with a 95% confidence level between LWL-MCS and
LWL-EUC, EKM-MCS, EKM-COMB, CS, EQ and GL respectively. Abbrevi-
ations: fD = fraction of data set used for training; Wil = Wilcoxon signed-rank
test, W/L = wins/losses. 111

4.4 Mean runtime (training and testing time in sec) of one time hold-out validation
with standard deviations for LWL-MCS and LWL-EUC, EKM-MCS, EKM-
COMB, CS, EQ and GL. The abbreviations correspond to Table 4.3. 112

165

List of Tables

5.1 Overview of the data sets used for assessing the structural cluster kernel. n

denotes the number of molecular graphs in the respective data set. 122
5.2 Mean absolute errors with standard deviations of SCK NSPDK, NSPDK, Lo-

MoGraph NSPDK and LoMoGraph on the regression data sets. Statistically
significant results are reported using both the Wilcoxon signed-rank test and
the corrected resampled t-test (separated by a ’|’). 125

5.3 Mean absolute errors with standard deviations of SCK WDK, WDK, LoMo-
Graph WDK and LoMoGraph on the regression data sets. Statistically sig-
nificant results are reported using both the Wilcoxon signed-rank test and the
corrected resampled t-test (separated by a ’|’). 125

5.4 Classification accuracies with standard deviations of SCK NSPDK, NSPDK,
LoMoGraph NSPDK and LoMoGraph on the classification data sets. Statisti-
cally significant results are reported using both the Wilcoxon signed-rank test
and the corrected resampled t-test (separated by a ’|’). 126

5.5 Classification accuracies with standard deviations of SCK WDK, WDK, Lo-
MoGraph WDK and LoMoGraph on the classification data sets. Statistically
significant results are reported using both the Wilcoxon signed-rank test and
the corrected resampled t-test (separated by a ’|’). 126

5.6 Mean absolute errors with standard deviations of SCK NSPDK in both the
semi-supervised and supervised setting and NSPDK on the regression data
sets. Statistically significant results are reported using the Wilcoxon signed-
rank test and the corrected resampled t-test (separated by a ’|’). 128

5.7 Classification accuracies with standard deviations of SCK NSPDK in both the
semi-supervised and supervised setting and NSPDK on the classification data
sets. Statistically significant results are reported using the Wilcoxon signed-
rank test and the corrected resampled t-test (separated by a ’|’). 128

5.8 Mean absolute errors with standard deviations of SCK NSPDK in both the
semi-supervised and supervised setting and LWL-MCS on the regression data
sets. Statistically significant results are reported using the Wilcoxon signed-
rank test and the corrected resampled t-test (separated by a ’|’). 131

6.2 Overview of the data sets used for assessing the method. n denotes the number
of graph instances in the respective data set and Tanimoto Sim. describes the
mean pair-wise Tanimoto similarity using ChemAxon’s chemical fingerprint
with default parameter setting. 142

6.3 Classification accuracies (ACC), number of attributes (#Feats) and runtime
(in sec). MF denotes the minimum frequency parameter of BBRC. 144

166

List of Algorithms

1 Structural Clustering . 55
2 PSCG: Master . 66
3 PSCG: Worker . 66
4 PSCG: Structural Clustering . 67
5 PSCG: Maintainance of cluster membership information 68
6 SCAP . 82
7 APreClus . 83
8 APreClus: Reassign step . 84
9 PSCG’ . 91

10 LWL-MCS . 107

11 Structural Cluster Kernel . 118

167

Bibliography

[1] Abou-Rjeili, A., and Karypis, G. Multilevel algorithms for partitioning power-
law graphs. In Proceedings of the 20th International Conference on Parallel and
Distributed Processing (2006), IPDPS 2006, IEEE Computer Society, pp. 124–124.

[2] Aggarwal, C. C., and Reddy, C. K. Data Clustering: Algorithms and Applica-
tions. CRC Press, 2014.

[3] Aggarwal, C. C., Ta, N., Wang, J., Feng, J., and Zaki, M. XProj: a
framework for projected structural clustering of XML documents. In Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (New York, NY, USA, 2007), KDD 2007, ACM, pp. 46–55.

[4] Aggarwal, C. C., and Wang, H. Managing and Mining Graph Data, vol. 40 of
Advances in Database Systems. Springer, 2010.

[5] Agrawal, R., Imielinski, T., and Swami, A. Database mining: A performance
perspective. IEEE Transactions on Knowledge and Data Engineering 5, 6 (Dec.
1993), 914–925.

[6] Agrawal, R., and Srikant, R. Fast algorithms for mining association rules in
large databases. In Proceedings of the 20th International Conference on Very Large
Data Bases (1994), VLDB 1994, Morgan Kaufmann Publishers Inc., pp. 487–499.

[7] Alphonse, E., Girschick, T., Buchwald, F., and Kramer, S. A numer-
ical refinement operator based on multi-instance learning. In Proceedings of the
20th International Conference on Inductive Logic Programming (2011), ILP 2010,
Springer-Verlag, pp. 14–21.

[8] Ambauen, R., Fischer, S., and Bunke, H. Graph edit distance with node
splitting and merging, and its application to diatom identification. In Proceedings of
the 4th IAPR International Conference on Graph Based Representations in Pattern
Recognition (2003), GbRPR 2003, Springer-Verlag, pp. 95–106.

[9] Andrews, R., Diederich, J., and Tickle, A. B. Survey and critique of tech-
niques for extracting rules from trained artificial neural networks. Knowledge-Based
Systems 8, 6 (1995), 373–389.

169

Bibliography

[10] Atkeson, C., Moore, A., and Schaal, S. Locally weighted learning. Artificial
Intelligence Review 11, 1-5 (1997), 11–73.

[11] Bader, D. A., and Madduri, K. A graph-theoretic analysis of the human protein-
interaction network using multicore parallel algorithms. Parallel Computing 34, 11
(Nov. 2008), 627–639.

[12] Bahlmann, C., Haasdonk, B., and Burkhardt, H. On-line handwriting recog-
nition with support vector machines - a kernel approach. In Proceedings of the Eighth
International Workshop on Frontiers in Handwriting Recognition (2002), IWFHR
’02, IEEE Computer Society, pp. 49–.

[13] Bakir, G. H., Weston, J., and Schölkopf, B. Learning to find pre-images.
In Advances in Neural Information Processing Systems 16 (2003), NIPS 2003, MIT
Press, pp. 449–456.

[14] Bakir, G. H., Zien, A., and Tsuda, K. Learning to find graph pre-images.
In Pattern Recognition: Proceedings of the 26th DAGM Symposium (2004), DAGM
2004, Springer-Verlag, pp. 253–261.

[15] Barakat, N., and Bradley, A. P. Rule extraction from support vector ma-
chines: Measuring the explanation capability using the area under the ROC curve.
In Proceedings of the 18th International Conference on Pattern Recognition - Volume
02 (2006), ICPR 2006, IEEE Computer Society, pp. 812–815.

[16] Barakat, N., and Diederich, J. Learning-based rule-extraction from support
vector machines: Performance on benchmark data sets. In Proceedings of the Confer-
ence on Neuro-Computing and Evolving Intelligence (2004), N. Kasabov and Z. S. H.
Chan, Eds.

[17] Barakat, N., and Diederich, J. Eclectic rule extraction from support vector
machines. International Journal of Computational Intelligence 2 (2005), 59–62.

[18] Barakat, N. H., and Bradley, A. P. Rule extraction from support vector
machines: A sequential covering approach. IEEE Transactions on Knowledge and
Data Engineering 19, 6 (June 2007), 729–741.

[19] Barbella, D., Benzaid, S., Christensen, J., Jackson, B., Qin, X. V., and
Musicant, D. R. Understanding support vector machine classifications via a rec-
ommender system-like approach. In Proceedings of the 5th International Conference
on Data Mining 2009 (2009), R. Stahlbock, S. F. Crone, and S. Lessmann, Eds.,
DMIN 2009, CSREA Press, pp. 305–311.

[20] Ben-Hur, A., Horn, D., Siegelmann, H. T., and Vapnik, V. Support vector
clustering. Journal of Machine Learning Research 2 (Mar. 2002), 125–137.

170

Bibliography

[21] Benigni, R., Bossa, C., and Vari, M. Chemical Carcinogens: Structures
and Experimental Data, http://www.iss.it/binary/ampp/cont/ISSCANv2aEn.

1134647480.pdf. Last accessed on 2014-04-27.

[22] Bennett, K. P., and Mangasarian, O. L. Multicategory separation via linear
programming. Optimization Methods and Software 3 (1993), 27–39.

[23] Bickel, S., and Scheffer, T. Multi-view clustering. In Proceedings of the Fourth
IEEE International Conference on Data Mining (2004), ICDM 2004, IEEE Com-
puter Society, pp. 19–26.

[24] Bishop, C. M. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[25] Bitsch, A., Jacobi, S., Melber, C., Wahnschaffe, U., Simetska, N., and
Mangelsdorf, I. REPDOSE: A database on repeated dose toxicity studies of com-
mercial chemicals - a multifunctional tool. Regulatory Toxicology and Pharmacology
46, 3 (2006), 202–210.

[26] Blei, D. M., and Jordan, M. I. Variational inference for dirichlet process mix-
tures. Bayesian Analysis 1 (2005), 121–144.

[27] Bodo, Z. Hierarchical cluster kernels for supervised and semi-supervised learning.
In Proceedings of the 4th International Conference on Intelligent Computer Com-
munication and Processing (2008), ICCP 2008, IEEE, pp. 9–16.

[28] Bodo, Z., and Csato, L. Hierarchical and reweighting cluster kernels for semi-
supervised learning. International Journal of Computers Communications and Con-
trol 5, 4 (2010), 469–476.

[29] Boehm, M. Virtual Screening of Chemical Space: From Generic Compound Col-
lections to Tailored Screening Libraries. Wiley-VCH Verlag GmbH & Co. KGaA,
2011, pp. 1–33.

[30] Borgelt, C., and Berthold, M. R. Mining molecular fragments: Finding rel-
evant substructures of molecules. In Proceedings of the 2002 IEEE International
Conference on Data Mining (2002), ICDM 2002, IEEE Computer Society, pp. 51–.

[31] Borgwardt, K. M. Graph kernels. PhD thesis, 2007.

[32] Borgwardt, K. M., and Kriegel, H.-P. Shortest-path kernels on graphs. In
Proceedings of the Fifth IEEE International Conference on Data Mining (2005),
ICDM 2005, IEEE Computer Society, pp. 74–81.

[33] Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S. V. N.,
Smola, A. J., and Kriegel, H.-P. Protein function prediction via graph kernels.
Bioinformatics 21, 1 (Jan. 2005), 47–56.

171

http://www.iss.it/binary/ampp/cont/ISSCANv2aEn.1134647480.pdf
http://www.iss.it/binary/ampp/cont/ISSCANv2aEn.1134647480.pdf

Bibliography

[34] Boser, B. E., Guyon, I. M., and Vapnik, V. N. A training algorithm for optimal
margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory (1992), COLT 1992, ACM, pp. 144–152.

[35] Boyd, M. R. Cancer: Principles and Practice of Oncology, vol. 3. DeVita, V. T.,
Jr. and Hellman, S. and Rosenberg, S. A., Eds, Lippincott: Philadelphia, PA, 1989,
pp. 1–12.

[36] Bradley, J. K., Kyrola, A., Bickson, D., and Guestrin, C. Parallel co-
ordinate descent for l1-regularized loss minimization. In Proceedings of the 28th
International Conference on Machine Learning, ICML 2011 (2011), ICML 2011,
Omnipress, pp. 321–328.

[37] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S.,
Stata, R., Tomkins, A., and Wiener, J. Graph structure in the web. In
Proceedings of the 9th International World Wide Web Conference on Computer Net-
works : The International Journal of Computer and Telecommunications Netowrking
(2000), North-Holland Publishing Co., pp. 309–320.

[38] Buchwald, F., Girschick, T., Seeland, M., and Kramer, S. Using local
models to improve (Q)SAR predictivity. Molecular Informatics 30, 2-3 (2011), 205–
218.

[39] Bunke, H., and Allermann, G. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters 1, 4 (May 1983), 245–253.

[40] Bunke, H., Foggia, P., Guidobaldi, C., and Vento, M. Graph clustering us-
ing the weighted minimum common supergraph. In Proceedings of the Fourth IAPR
International Conference on Graph Based Representations in Pattern Recognition
(2003), GbRPR 2003, Springer-Verlag, pp. 235–246.

[41] Bunke, H., and Günter, S. Weighted mean of a pair of graphs. Computing 67,
3 (2001), 209–224.

[42] Bunke, H., Münger, A., and Jiang, X. Combinatorial search versus genetic
algorithms: a case study based on the generalized median graph problem. Pattern
Recognition Letters 20, 11-13 (1999), 1271–1277.

[43] Burges, C. J. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery 2 (1998), 121–167.

[44] Burges, C. J. C. Simplified support vector decision rules. In Proceedings of the
13th International Conference on Machine Learning (1996), ICML 1996, Morgan
Kaufmann, pp. 71–77.

[45] CADASTER. Environmental Toxicity Prediction Challenge, http://www.

cadaster.eu/node/65. Last accessed on 2014-04-27.

172

http://www.cadaster.eu/node/65
http://www.cadaster.eu/node/65

Bibliography

[46] Cao, Y., Jiang, T., and Girke, T. A maximum common substructure-based
algorithm for searching and predicting drug-like compounds. Bioinformatics 24, 13
(2008), i366–i374.

[47] Chapelle, O., Weston, J., and Schölkopf, B. Cluster kernels for semi-
supervised learning. In Advances in Neural Information Processing Systems (2003),
vol. 15 of NIPS 2002, MIT Press, pp. 585–592.

[48] Chen, J., Swamidass, S. J., Dou, Y., and Baldi, P. ChemDB: a public
database of small molecules and related chemoinformatics resources. Bioinformatics
21 (2005), 4133–4139.

[49] Chen, J. H., Linstead, E., Swamidass, S. J., Wang, D., and Baldi, P.
ChemDB update – full-text search and virtual chemical space. Bioinformatics 23
(2007), 2348–2351.

[50] Chen, M.-S., Han, J., and Yu, P. S. Data mining: An overview from a database
perspective. IEEE Transactions on Knowledge and Data Engineering 8, 6 (Dec.
1996), 866–883.

[51] Chen, Z., Li, J., and Wei, L. A multiple kernel support vector machine scheme
for feature selection and rule extraction from gene expression data of cancer tissue.
Artificial Intelligence in Medicine 41, 2 (2007), 161–175.

[52] Cleveland, W. Robust locally weighted regression and smoothing scatterplots.
Journal of the American Statistical Association 74 (1979), 829–836.

[53] Cohn, D., Atlas, L., and Ladner, R. Improving generalization with active
learning. Machine Learning 15, 2 (1994), 201–221.

[54] Collins, J. M. The DTP AIDS Antiviral Screen Program 1999, http://dtp.nci.

nih.gov/docs/aids/aidsdata.html. Last accessed on 2014-04-27.

[55] Collins, L. M., and Dent, C. W. Omega: A general formulation of the rand
index of cluster recovery suitable for non-disjoint solutions. Multivariate Behavioral
Research 23 (1988), 231–242.

[56] Comaniciu, D., and Meer, P. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligen 24,
5 (May 2002), 603–619.

[57] Conte, D., Foggia, P., Sansone, C., and Vento, M. Thirty years of graph
matching in pattern recognition. International Journal of Pattern Recognition and
Artificial Intelligence 18, 3 (2004), 265–298.

173

http://dtp.nci.nih.gov/docs/aids/aids data.html.
http://dtp.nci.nih.gov/docs/aids/aids data.html.

Bibliography

[58] Cook, D. J., and Holder, L. B. Substructure discovery using minimum descrip-
tion length and background knowledge. Journal of Artificial Intelligence Research
1, 1 (Feb. 1994), 231–255.

[59] Cook, D. J., and Holder, L. B. Mining Graph Data. John Wiley & Sons, 2006.

[60] Cortes, C., and Vapnik, V. Support vector networks. In Machine Learning
(1995), vol. 20, pp. 273–297.

[61] Costa, F., and De Grave, K. Fast neighborhood subgraph pairwise distance
kernel. In Proceedings of the 26th International Conference on Machine Learning
(2010), ICML 2010, Omnipress, pp. 255–262.

[62] Craven, M., and Shavlik, J. W. Using sampling and queries to extract rules from
trained neural networks. In Proceedings of the Eleventh International Conference on
Machine Learning (1994), ICML 1994, Morgan Kaufmann, pp. 37–45.

[63] Craven, M., and Shavlik, J. W. Extracting tree-structured representations of
trained networks. In Advances in Neural Information Processing Systems 8 (1995),
NIPS 1995, pp. 24–30.

[64] Craven, M. W. Extracting comprehensible models from trained neural networks.
PhD thesis, 1996.

[65] Cristianini, N., and Shawe-Taylor, J. An introduction to support Vector Ma-
chines and other kernel-based learning methods. Cambridge University Press, New
York, NY, USA, 2000.

[66] da Costa F. Chaves, A., Vellasco, M. B. R., and Tanscheit, R. Fuzzy
rule extraction from support vector machines. In 5th International Conference on
Hybrid Intelligent Systems (2005), HIS 2005, IEEE Computer Society, pp. 335–340.

[67] Dalamagas, T., Cheng, T., Winkel, K.-J., and Sellis, T. Clustering
XML documents using structural summaries. In Proceedings of the 2004 Interna-
tional Conference on Current Trends in Database Technology (2004), EDBT 2004,
Springer-Verlag, pp. 547–556.

[68] de Mauro, C., Diligenti, M., Gori, M., and Maggini, M. Similarity learning
for graph-based image representations. Pattern Recognition Letters 24, 8 (May 2003),
1115–1122.

[69] De Raedt, L. Logical and Relational Learning. Springer, 2008.

[70] Dickinson, P. J., Bunke, H., Dadej, A., and Kraetzl, M. On graphs with
unique node labels. In Proceedings of the 4th IAPR International Conference on
Graph Based Representations in Pattern Recognition (2003), GbRPR 2003, Springer-
Verlag, pp. 13–23.

174

Bibliography

[71] Dickinson, P. J., Kraetzl, M., Bunke, H., Neuhaus, M., and Dadej, A.
Similarity measures for hierarchical representations of graphs with unique node la-
bels. International Journal of Pattern Recognition and Artificial Intelligence 18, 3
(2004), 425–442.

[72] Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

[73] Dzeroski, S., Blockeel, H., Kompare, B., Kramer, S., Pfahringer, B.,
and Van Laer, W. Experiments in predicting biodegradability. In Applied Artifi-
cial Intelligence (1999), Springer, pp. 80–91.

[74] Ellison, N. B., Steinfield, C., and Lampe, C. The benefits of facebook
"friends:" social capital and college students’ use of online social network sites. Jour-
nal of Computer-Mediated Communication 12, 4 (2007), 1143–1168.

[75] Emms, D., Wilson, R. C., and Hancock, E. Graph embedding using quantum
commute times. In Proceedings of the 6th IAPR-TC-15 International Conference on
Graph-based Representations in Pattern Recognition (2007), GbRPR 2007, Springer-
Verlag, pp. 371–382.

[76] Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law relationships
of the internet topology. In Proceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (1999), SIGCOMM
1999, ACM, pp. 251–262.

[77] Ferrer, M., Serratosa, F., and Sanfeliu, A. Synthesis of median spectral
graph. In Proceedings of the Second Iberian conference on Pattern Recognition and
Image Analysis - Volume Part II (2005), IbPRIA 2005, Springer-Verlag, pp. 139–
146.

[78] Ferrer, M., Valveny, E., Serratosa, F., Bardají, I., and Bunke, H. Graph-
based k-means clustering: A comparison of the set median versus the generalized
median graph. Computer Analysis of Images and Patterns (2009), 342–350.

[79] Flake, G. W., Tarjan, R. E., and Tsioutsiouliklis, K. Graph clustering and
minimum cut trees. Internet Mathematics 1, 4 (2003), 385–408.

[80] Fontaine, F., Pastor, M., Zamora, I., and Sanz, F. Anchor−grind: Filling
the gap between standard 3d qsar and the grid-independent descriptors. Journal of
Medicinal Chemistry 48 (2005), 2687–2694.

[81] Fortunato, S. Community detection in graphs. Physics Reports 486, 3-5 (2010),
75 – 174.

175

Bibliography

[82] Fröhlich, H., Wegner, J. K., Sieker, F., and Zell, A. Optimal assignment
kernels for attributed molecular graphs. In Proceedings of the 22nd International
Conference on Machine learning (2005), ICML 2005, ACM, pp. 225–232.

[83] Fu, X., Ong, C., Keerthi, S., Hung, G. G., and Goh, L. Extracting the
knowledge embedded in support vector machines. In Proceedings of the 2004 IEEE
International Joint Conference on Neural Networks (2004), vol. 1 of IJCNN 2004,
pp. 291–296.

[84] Fung, G., Sandilya, S., and Rao, R. B. Rule extraction from linear sup-
port vector machines. In Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2005), KDD 2005, ACM,
pp. 32–40.

[85] Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer,
M., and Haussler, D. Support vector machine classification and validation of can-
cer tissue samples using microarray expression data. Bioinformatics 16, 10 (2000),
906–914.

[86] Garcez, A. S. d., Broda, K., and Gabbay, D. M. Symbolic knowledge extrac-
tion from trained neural networks: A sound approach. Artificial Intelligence 125,
1-2 (2001), 155–207.

[87] Gärtner, T. Kernels for Structured Data. PhD thesis, Universität Bonn, 2005.

[88] Gärtner, T., Flach, P. A., and Wrobel, S. On graph kernels: Hardness
results and efficient alternatives. In Proceedings of the 16th Annual Conference on
Computational Learning Theory (2003), COLT 2003, Springer, pp. 129–143.

[89] Gasteiger, J., and Engel, T., Eds. Chemoinformatics: A Textbook, 1 ed. Wiley-
VCH, 2003.

[90] Geamsakul, W., Matsuda, T., Yoshida, T., Motoda, H., and Washio, T.
Performance evaluation of decision tree graph-based induction. In Proceedings of
the 6th International Conference on Discovery Science (2003), DS 2003, Springer,
pp. 128–140.

[91] Gibson, D., Kumar, R., and Tomkins, A. Discovering large dense subgraphs in
massive graphs. In Proceedings of the 31st International Conference on Very large
Data Bases (2005), VLDB 2005, VLDB Endowment, pp. 721–732.

[92] Gold, L. S. The Carcinogenic Potency Database (CPDB): http://potency.

berkeley.edu/. Last accessed on 2014-04-27.

[93] Gold, L. S., Slone, T., Ames, B. N., Manley, N. B., Garfinkel, G. B.,
and Rohrbach, L. Handbook of Carcinogenic Potency and Genotoxicity Databases.
CRC Press, 1997, ch. Carcinogenic Potency Database, pp. 1–605.

176

http://potency.berkeley.edu/
http://potency.berkeley.edu/

Bibliography

[94] Günter, S. Graph clustering using Kohonen’s method, Master’s thesis. PhD thesis,
University of Bern, 2000.

[95] Günter, S., and Bunke, H. Self-organizing map for clustering in the graph
domain. Pattern Recognition Letters 23, 4 (2002), 405–417.

[96] Günter, S., and Bunke, H. Validation indices for graph clustering. Pattern
Recognition Letters 24, 8 (2003), 1107–1113.

[97] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and
Witten, I. H. TheWEKA data mining software: an update. SIGKDD Explorations
11, 1 (2009), 10–18.

[98] Han, J. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

[99] Han, J.-D. J., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang,
L. V., Dupuy, D., Walhout, A. J. M., Cusick, M. E., Roth, F. P., and
Vidal, M. Evidence for dynamically organized modularity in the yeast protein-
protein interaction network. Nature 430, 6995 (2004), 88–93.

[100] Harchaoui, Z., and Bach, F. Image classification with segmentation graph ker-
nels. In IEEE Conference on Computer Vision and Pattern Recognition (2007),
CVPR 2007, IEEE Computer Society, pp. 1–8.

[101] Haussler, D. Convolution kernels on discrete structures. Technical report, Uni-
versity of California at Santa Cruz, Santa Cruz, CA, USA, 1999.

[102] Helma, C., Cramer, T., Kramer, S., and De Raedt, L. Data mining and
machine learning techniques for the identification of mutagenicity inducing substruc-
tures and structure activity relationships of noncongeneric compounds. Journal of
Chemical Information and Computer Sciences 44, 4 (2004), 1402–1411.

[103] Hlaoui, A., and Wang, S. Median graph computation for graph clustering. Soft
Computing 10, 1 (2006), 47–53.

[104] Hoerl, A. E., and Kennard, R. W. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics 12 (1970), 55–67.

[105] Honeine, P., and Richard, C. A closed-form solution for the pre-image problem
in kernel-based machines. Journal of Signal Processing Systems 65, 3 (2011), 289–
299.

[106] Horváth, T., Gärtner, T., and Wrobel, S. Cyclic pattern kernels for predictive
graph mining. In Proceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2004), KDD 2004, ACM, pp. 158–167.

177

Bibliography

[107] Hossain, M. S., and Angryk, R. A. GDClust: A graph-based document cluster-
ing technique. In Proceedings of the Seventh IEEE International Conference on Data
Mining Workshops (2007), ICDMW 2007, IEEE Computer Society, pp. 417–422.

[108] Hou, T., and Xu, X. Recent development and application of virtual screening in
drug discovery: an overview. Current Pharmaceutical Design 10, 9 (2004), 1011–
1033.

[109] Huan, J., Wang, W., and Prins, J. Efficient mining of frequent subgraphs in the
presence of isomorphism. In Proceedings of the Third IEEE International Conference
on Data Mining (2003), ICDM 2003, IEEE Computer Society, pp. 549–552.

[110] Huan, J., Wang, W., Prins, J., and Yang, J. SPIN: Mining maximal frequent
subgraphs from graph databases. In Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (2004), KDD 2004,
ACM, pp. 581–586.

[111] Huysmans, J., Baesens, B., and Vanthienen, J. ITER: An algorithm for
predictive regression rule extraction. In Proceedings of the Eighth International
Conference on Data Warehousing and Knowledge Discovery (2006), A. M. Tjoa and
J. Trujillo, Eds., DaWaK 2006, Springer, pp. 270–279.

[112] Inokuchi, A., Washio, T., and Motoda, H. An APriori-based algorithm for
mining frequent substructures from graph data. In Proceedings of the 4th European
Conference on Principles of Data Mining and Knowledge Discovery (2000), PKDD
2000, Springer-Verlag, pp. 13–23.

[113] Inokuchi, A., Washio, T., and Motoda, H. Complete mining of frequent
patterns from graphs: Mining graph data. Machine Learning 50, 3 (2003), 321–354.

[114] Jaccard, P. Nouvelles recherches sur la distribution florale. Bulletin de la Société
Vaudoise des Sciences Naturelles 44 (1908), 223–270.

[115] Jahn, K., and Kramer, S. Optimizing gSpan for molecular datasets. In Proceed-
ings of the Third International Workshop on Mining Graphs, Trees and Sequences
(2005), MGTS 2005.

[116] Jain, A. K., and Dubes, R. C. Algorithms for clustering data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[117] Jain, A. K., Murty, M. N., and Flynn, P. J. Data clustering: A review. ACM
Computing Surveys 31, 3 (Sept. 1999), 264–323.

[118] JChem Java package. Version 5.1.3 2, ChemAxon, 2008: http://www.chemaxon.

com. Last accessed on 2014-04-27.

178

http://www.chemaxon.com
http://www.chemaxon.com

Bibliography

[119] Jiang, X., Müunger, A., and Bunke, H. On median graphs: Properties, al-
gorithms, and applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence 23, 10 (2001), 1144–1151.

[120] Joachims, T. Text categorization with suport vector machines: Learning with
many relevant features. In Proceedings of the 10th European Conference on Machine
Learning (1998), ECML 1998, Springer-Verlag, pp. 137–142.

[121] Johansson, U., König, R., and Niklasson, L. The truth is in there - rule
extraction from opaque models using genetic programming. In Proceedings of the
Seventeenth International Florida Artificial Intelligence Research Society Confer-
ence (2004), V. Barr and Z. Markov, Eds., FLAIRS Conference 2004, AAAI Press,
pp. 658–663.

[122] Jorissen, R. N., and Gilson, M. K. Virtual screening of molecular databases
using a support vector machine. Journal of Chemical Information and Modeling 45,
3 (2005), 549–561.

[123] Jouili, S., and Tabbone, S. A hypergraph-based model for graph clustering: Ap-
plication to image indexing. In Computer Analysis of Images and Patterns, X. Jiang
and N. Petkov, Eds., vol. 5702 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pp. 360–368.

[124] Jouili, S., Tabbone, S., and Lacroix, V. Median graph shift: A new clus-
tering algorithm for graph domain. In 20th International Conference on Pattern
Recognition (2010), ICPR 2010, IEEE, pp. 950–953.

[125] Karger, D. R. Random sampling in cut, flow, and network design problems. In
Proceedings of the 26th Annual ACM symposium on Theory of Computing (1994),
STOC 1994, ACM, pp. 648–657.

[126] Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing 20, 1 (Dec.
1998), 359–392.

[127] Kashima, H., Tsuda, K., and Inokuchi, A. Marginalized kernels between la-
beled graphs. In Proceedings of the Twentieth International Conference on Machine
Learning (2003), ICML 2003, AAAI Press, pp. 321–328.

[128] Kaufman, L., and Rousseeuw, P. J. Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley, 1990.

[129] Kazius, J., McGuire, R., and Bursi, R. Derivation and validation of toxi-
cophores for mutagenicity prediction. Journal of Medicinal Chemistry 48, 1 (2005),
312–320.

179

Bibliography

[130] Kecman, V. Learning and Soft Computing: Support Vector Machines, Neural
Networks, and Fuzzy Logic Models. MIT Press, Cambridge, MA, USA, 2001.

[131] Kernighan, B. W., and Lin, S. An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell system technical journal 49, 1 (1970), 291–307.

[132] Kilpeläinen, P. Tree matching problems with applications to structured text
databases. Tech. rep., 1992.

[133] Kloft, M., Rückert, U., and Bartlett, P. L. A unifying view of multiple
kernel learning. In Proceedings of the 2010 European Conference on Machine Learn-
ing and Knowledge Discovery in Databases: Part II (2010), ECML PKDD 2010,
Springer-Verlag, pp. 66–81.

[134] Kohonen, T. Self-Organizing maps. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1997.

[135] Koutsoukos, A. D., Rubinstein, L. V., Faraggi, D., Simon, R. M., Kalyan-
drug, S., Weinstein, J. N., Kohn, K. W., and Paull, K. D. Discrimination
techniques applied to the NCI in vitro anti-tumour drug screen: Predicting biochem-
ical mechanism of action. Statistics in Medicine 13 (1994), 719–730.

[136] Koza, J. R. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[137] Kramer, S., De Raedt, L., and Helma, C. Molecular feature mining in hiv
data. In Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2001), KDD 2001, ACM, pp. 136–143.

[138] Kriege, N., and Mutzel, P. Subgraph matching kernels for attributed graphs.
In Proceedings of the 29th International Conference on Machine Learning (2012),
ICML 2012, icml.cc / Omnipress, pp. 1015–1022.

[139] Kudo, T., Eisaku, M., and Matsumoto, Y. An application of boosting to graph
classification. In Advances in Neural Information Processing Systems 17 (2004),
NIPS 2004.

[140] Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A.,
and Upfal, E. The web as a graph. In Proceedings of the 19th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (2000), PODS
2000, ACM, pp. 1–10.

[141] Kuramochi, M., and Karypis, G. An efficient algorithm for discovering frequent
subgraphs. IEEE Transactions on Knowledge and Data Engineering 16, 9 (Sept.
2004), 1038–1051.

180

Bibliography

[142] Kurihara, K., Welling, M., and Vlassis, N. Accelerated variational dirichlet
process mixtures. In Advances in Neural Information Processing Systems (2006),
NIPS 2006, pp. 761–768.

[143] Le Saux, B., and Bunke, H. Feature selection for graph-based image classifiers.
In Proceedings of the Second Iberian Conference on Pattern Recognition and Image
Analysis - Volume Part II (2005), IbPRIA 2005, Springer-Verlag, pp. 147–154.

[144] Leslie, C. S., Eskin, E., Cohen, A., Weston, J., and Noble, W. S. Mismatch
string kernels for discriminative protein classification. Bioinformatics 20, 4 (2004),
467–476.

[145] Li, H., Yap, C. W., Ung, C. Y., Xue, Y., Cao, Z. W., and Chen, Y. Z.
Effect of selection of molecular descriptors on the prediction of blood-brain barrier
penetrating and nonpenetrating agents by statistical learning methods. Journal of
Chemical Information and Modeling 45, 5 (2005), 1376–1384.

[146] Liu, D., Hua, X.-S., Yang, L., and Zhang, H.-J. Multiple-instance active
learning for image categorization. In Proceedings of the 15th International Multime-
dia Modeling Conference on Advances in Multimedia Modeling (2008), MMM 2009,
Springer-Verlag, pp. 239–249.

[147] Luo, B., Wilson, R. C., and Hancock, E. R. The independent and principal
component of graph spectra. In Proceedings of the 16th International Conference on
Pattern Recognition (2002), ICPR 2002, pp. 164–167.

[148] Luo, B., Wilson, R. C., and Hancock, E. R. Spectral feature vectors for graph
clustering. In Proceedings of the Joint IAPR International Workshop on Structural,
Syntactic, and Statistical Pattern Recognition (2002), Springer-Verlag, pp. 83–93.

[149] Luo, B., Wilson, R. C., and Hancock, E. R. Spectral embedding of graphs.
Pattern Recognition 36, 10 (2003), 2213–2223.

[150] Lyne, P. D. Structure-based virtual screening: An overview. Drug Discovery Today
7, 20 (2002), 1047 – 1055.

[151] MacQueen, J. B. Some methods for classification and analysis of multivariate
observations. In 5th Berkeley Symposium on Mathematical Statistics and Probability
(1967), vol. 1, University of California Press, pp. 281–297.

[152] Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., and Vert, J.-P. Graph
kernels for molecular structure−activity relationship analysis with support vector
machines. Journal of Chemical Information and Modeling 45, 4 (2005), 939–951.

[153] Mahé, P., and Vert, J.-P. Graph kernels based on tree patterns for molecules.
Machine Learning 75, 1 (Apr. 2009), 3–35.

181

Bibliography

[154] Maio, D., and Maltoni, D. A structural approach to fingerprint classification.
In Proceedings of the 13th International Conference on Pattern Recognition (1996),
vol. 3, pp. 578–585.

[155] Mangan, S., and Alon, U. Structure and function of the feed-forward loop
network motif. Proceedings of the National Academy of Sciences 100, 21 (2003),
11980–11985.

[156] Mannino, M. V., and Koushik, M. V. The cost-minimizing inverse classification
problem: a genetic algorithm approach. Decision Support Systems 29, 3 (2000),
283–300.

[157] Martens, D., Baesens, B., and Van Gestel, T. Decompositional rule ex-
traction from support vector machines by active learning. IEEE Transactions on
Knowledge and Data Engineering 21, 2 (Feb. 2009), 178–191.

[158] Martens, D., Baesens, B., Van Gestel, T., and Vanthienen, J. Compre-
hensible credit scoring models using rule extraction from support vector machines.
European Journal of Operational Research 183, 3 (2007), 1466–1476.

[159] Martens, D., Huysmans, J., Setiono, R., Vanthienen, J., and Baesens, B.
Rule extraction from support vector machines: An overview of issues and application
in credit scoring. In Rule Extraction from Support Vector Machines, J. Diederich,
Ed., vol. 80 of Studies in Computational Intelligence. Springer, 2008, pp. 33–63.

[160] Martin, Y. C., Kofron, J. L., and Traphagen, L. M. Do structurally sim-
ilar molecules have similar biological activity? Journal of Medicinal Chemistry 45
(2002), 4350–4358.

[161] Matsuda, T., Motoda, H., Yoshida, T., and Washio, T. Mining patterns
from structured data by beam-wise graph-based induction. In Proceedings of the 5th
International Conference on Discovery Science (2002), DS 2002, Springer-Verlag,
pp. 422–429.

[162] Matthews, E., Kruhlak, N., Benz, R., and Contrera, J. Assessment of the
health effects of chemicals in humans: I. QSAR estimation of the maximum recom-
mended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals
based on clinical trial data. Current Drug Discovery Technologies 1, 1 (2004), 61–76.

[163] Maunz, A., Helma, C., and Kramer, S. Efficient mining for structurally diverse
subgraph patterns in large molecular databases. Machine Learning 83, 2 (2011),
193–218.

[164] McGregor, M. J., and Pallai, P. V. Clustering of large databases of com-
pounds: Using the MDL "keys" as structural descriptors. Journal of Chemical In-
formation and Computer Sciences 37, 3 (1997), 443–448.

182

Bibliography

[165] Menchetti, S. Learning Preference and Structured Data: Theory and Applications.
PhD thesis, Dipartimento di Sistemi e Informatica, DSI, Università di Firenze, Italy,
2005.

[166] Menchetti, S., Costa, F., and Frasconi, P. Weighted decomposition kernels.
In Proceedings of the 22nd International Conference on Machine Learning (2005),
ICML 2005, ACM, pp. 585–592.

[167] Meschkowski, H. Hilbertsche Räume mit Kernfunktion. Springer Verlag, 1962.

[168] Messmer, B. T., and Bunke, H. A new algorithm for error-tolerant subgraph
isomorphism detection. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 20, 5 (May 1998), 493–504.

[169] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and
Alon, U. Network motifs: simple building blocks of complex networks. Science
298, 5594 (2002), 824–827.

[170] Mitchell, T. M. Machine Learning, 1 ed. McGraw-Hill, Inc., New York, NY,
USA, 1997.

[171] Morishita, S., and Sese, J. Transversing itemset lattices with statistical metric
pruning. In Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (2000), PODS 2000, ACM, pp. 226–236.

[172] Nadeau, C., and Bengio, Y. Inference for the generalization error. Machine
Learning 52, 3 (2003), 239–281.

[173] Nijssen, S., and Kok, J. N. A quickstart in frequent structure mining can make
a difference. In Proceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2004), KDD 2004, ACM, pp. 647–652.

[174] Nijssen, S., and Kok, J. N. The gaston tool for frequent subgraph mining.
Electronic Notes in Theoretical Computer Science 127, 1 (2005), 77–87.

[175] Núñez, H., Angulo, C., and Català, A. Rule extraction from support vec-
tor machines. In 10th Eurorean Symposium on Artificial Neural Networks (2002),
ESANN 2002, pp. 107–112.

[176] PubChem Compound Database. http://www.ncbi.nlm.nih.gov/pccompound?

term=all[filt]&cmd=search. Last accessed on 2014-04-27.

[177] Quinlan, J. R. C4.5: Programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

[178] Raghavan, S., and Garcia-Molina, H. Representing web graphs. In Proceedings
of the 19th International Conference on Data Engineering (2003), ICDE 2003, IEEE
Computer Society, pp. 405–416.

183

http://www.ncbi.nlm.nih.gov/pccompound?term=all[filt]&cmd=search
http://www.ncbi.nlm.nih.gov/pccompound?term=all[filt]&cmd=search

Bibliography

[179] Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. Graph kernels for
chemical informatics. Neural Networks 18, 8 (2005), 1093–1110.

[180] Ramon, J., and Gärtner, T. Expressivity versus efficiency of graph kernels.
In Proceedings of the First International Workshop on Mining Graphs, Trees and
Sequences (2003), pp. 65–74.

[181] Rattigan, M. J., Maier, M., and Jensen, D. Graph clustering with network
structure indices. In Proceedings of the 24th International Conference on Machine
learning (2007), ICML 2007, ACM, pp. 783–790.

[182] Raymond, J. W., Blankley, C. J., and Willett, P. Comparison of chemi-
cal clustering methods using graph-based and fingerprint-based similarity measures.
Journal of Molecular Graphics and Modelling 21, 5 (2003), 421–433.

[183] Raymond, J. W., Gardiner, E. J., and Willett, P. Heuristics for rapid
similarity searching of chemical graphs using a maximum common edge subgraph
algorithm. Journal of Chemical Information and Computer Sciences 42 (2002),
305–316.

[184] Raymond, J. W., Gardiner, E. J., and Willett, P. RASCAL: Calculation of
graph similarity using maximum common edge subgraphs. The Computer Journal
45 (2002), 2002.

[185] Raymond, J. W., and Willett, P. Effectiveness of graph-based and fingerprint-
based similarity measures for virtual screening of 2D chemical structure databases.
Journal of Computer-Aided Molecular Design 16, 1 (2002), 59–71.

[186] Regulation (EC). No 1907/2006 of the European Parliament and of the Council
of 18 December 2006 concerning the Registration, Evaluation, Authorisation and
Restriction of Chemicals (REACH), establishing a European Chemicals Agency,
2006.

[187] Ren, L., and d’Avila Garcez, A. S. Symbolic knowledge extraction from support
vector machines: A geometric approach. In Proceedings of the 15th International
Conference on Advances in Neuro-Information Processing (2009), ICONIP 2008,
Springer, pp. 335–343.

[188] Riesen, K., Neuhaus, M., and Bunke, H. Graph embedding in vector spaces by
means of prototype selection. In Proceedings of the 6th IAPR-TC-15 International
Conference on Graph-based Representations in Pattern Recognition (2007), GbRPR
2007, Springer-Verlag, pp. 383–393.

[189] Robles-Kelly, A., and Hancock, E. R. A riemannian approach to graph em-
bedding. Pattern Recognition 40, 3 (Mar. 2007), 1042–1056.

184

Bibliography

[190] Rückert, U., Girschick, T., Buchwald, F., and Kramer, S. Adapted transfer
of distance measures for quantitative structure-activity relationships. In Proceed-
ings of the 13th International Conference on Discovery Science (2010), DS 2010,
Springer-Verlag, pp. 341–355.

[191] Rückert, U., Girschick, T., Buchwald, F., and Kramer, S. Adapted transfer
of distance measures for quantitative structure-activity relationships. In Proceed-
ings of the 13th International Conference on Discovery Science (2010), DS 2010,
Springer-Verlag, pp. 341–355.

[192] Rüping, S. Globalization of local models with SVMs. In LeGo-08 - From Local
Patterns to Global Models, Workshop at ECML/PKDD (2008).

[193] Russom, C., Bradbury, S., Broderius, D., Hammermeister, S., and Drum-
mond, R. Predicting modes of action from chemical structure: Acute toxicity in the
fathead minnow (pimephales promelas). Environmental Toxicology and Chemistry
5, 16 (1997), 948–967.

[194] Sanfeliu, A., Alquézar, R., and Serratosa, F. Clustering of attributed
graphs and unsupervised synthesis of function-described graphs. In Proceedings of
the 15th International Conference on Pattern Recognition (2000), ICPR, pp. 6022–
6025.

[195] Schaeffer, S. E. Graph clustering. Computer Science Review 1, 1 (2007), 27–64.

[196] Schenker, A., Bunke, H., Last, M., and Kandel, A. Graph-theoretic tech-
niques for web content mining. World Scientific Publishing (2005).

[197] Schenker, A., Last, M., Bunke, H., and Kandel, A. Classification of web
documents using graph matching. International Journal of Pattern Recognition and
Artificial Intelligence 18, 03 (2004), 475–496.

[198] Schietgat, L., Costa, F., Ramon, J., and De Raedt, L. Effective feature
construction by maximum common subgraph sampling. Machine Learning 83, 2
(2011), 137–161.

[199] Schölkopf, B., and Smola, A. J. Learning with Kernels. MIT Press, 2002.

[200] Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L. New
support vector algorithms. Neural Computation 12, 5 (2000), 1207–1245.

[201] Schölkopf, B., Tsuda, K., and Vert, J. P. Kernel Methods in Computational
Biology. MIT Press, 2004.

[202] Seeland, M., Berger, S. A., Stamatakis, A., and Kramer, S. Parallel struc-
tural graph clustering. In Proceedings of the 2011 European Conference on Machine

185

Bibliography

Learning and Knowledge Discovery in Databases - Volume Part III (2011), ECML
PKDD 2011, Springer-Verlag, pp. 256–272.

[203] Seeland, M., Buchwald, F., Kramer, S., and Pfahringer, B. Maximum
common subgraph based locally weighted regression. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing (2012), SAC 2012, ACM, pp. 165–
172.

[204] Seeland, M., Girschick, T., Buchwald, F., and Kramer, S. Online struc-
tural graph clustering using frequent subgraph mining. In Proceedings of the 2010
European Conference on Machine Learning and Knowledge Discovery in Databases
- Volume Part III (2010), ECML PKDD 2010, Springer-Verlag, pp. 213–228.

[205] Seeland, M., Karwath, A., and Kramer, S. A structural cluster kernel for
learning on graphs. In Proceedings of the 18th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (2012), KDD 2012, ACM, pp. 516–
524.

[206] Seeland, M., Karwath, A., and Kramer, S. Structural clustering of millions
of molecular graphs. In Proceedings of the 29th Annual ACM Symposium on Applied
Computing (2014), SAC 2014, ACM, pp. 121–128.

[207] Seeland, M., Kramer, S., and Pfahringer, B. Model selection based product
kernel learning for regression on graphs. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing (2013), SAC 2013, ACM, pp. 136–143.

[208] Seeland, M., Maunz, A., Karwath, A., and Kramer, S. Extracting informa-
tion from support vector machines for pattern-based classification. In Proceedings of
the 29th Annual ACM Symposium on Applied Computing (2014), SAC 2014, ACM,
pp. 129–136.

[209] Shasha, D., Wang, J. T. L., and Giugno, R. Algorithmics and applications
of tree and graph searching. In Proceedings of the Twenty-first ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (2002), PODS
2002, ACM, pp. 39–52.

[210] Shawe-Taylor, J., and Cristianini, N. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[211] Shervashidze, N., and Borgwardt, K. M. Fast subtree kernels on graphs. In
Advances in Neural Information Processing Systems 22 (2009), NIPS 2009, Curran,
pp. 1660–1668.

[212] Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A. J., Strehl,
A. L., and Vishwanathan, V. Hash kernels. In Proceedings of the Twelfth Inter-

186

Bibliography

national Conference on Artificial Intelligence and Statistics (2009), AISTATS 2009,
pp. 496–503.

[213] Stahl, M., and Mauser, H. Database clustering with a combination of fingerprint
and maximum common substructure methods. Journal of Chemical Information and
Modeling 45 (2005), 542–548.

[214] Steinhaus, H. Sur la division des corp materiels en parties. Bulletin de l’Académie
Polonaise des Sciences 1 (1956), 801–804.

[215] Subianto, M., and Siebes, A. Understanding discrete classifiers with a case
study in gene prediction. In Proceedings of the 2007 Seventh IEEE International
Conference on Data Mining (2007), ICDM 2007, IEEE Computer Society, pp. 661–
666.

[216] Sutherland, J. J., O’Brien, L. A., and Weaver, D. F. Spline-fitting with
a genetic algorithm: A method for developing classification structure-activity rela-
tionships. Journal of Chemical Information and Computer Sciences 43, 6 (2003),
1906–1915.

[217] Sutherland, J. J., O’Brien, L. A., and Weaver, D. F. A comparison of meth-
ods for modeling quantitative structure-activity relationships. Journal of Medicinal
Chemistry 47, 22 (2004), 5541–5554.

[218] Thrun, S. B. Extracting provably correct rules from artificial neural networks.
Tech. rep., University of Bonn, 1993.

[219] Tong, S., and Chang, E. Support vector machine active learning for image
retrieval. In Proceedings of the Ninth ACM International Conference on Multimedia
(2001), Multimedia 2001, ACM, pp. 107–118.

[220] Tong, S., and Koller, D. Active learning for parameter estimation in bayesian
networks. In Neural Information Processing Systems (2000), NIPS 2000, pp. 647–
653.

[221] Torsello, A., and Hancock, E. R. Graph embedding using tree edit-union.
Pattern Recognition 40, 5 (May 2007), 1393–1405.

[222] Tsuda, K. Support vector classifier with asymmetric kernel functions. In Pro-
ceedings of the Seventh European Symposium on Artificial Neural Networks (1999),
ESANN 1999, pp. 183–188.

[223] Tsuda, K., and Kudo, T. Clustering graphs by weighted substructure mining.
In Proceedings of the 23rd International Conference on Machine Learning (2006),
ICML 2006, ACM, pp. 953–960.

187

Bibliography

[224] Tsuda, K., and Kudo, T. Clustering graphs by weighted substructure mining. In
Proceedings of the 23rd International Conference on Machine learning (2006), ICML
2006, ACM, pp. 953–960.

[225] Tsuda, K., and Kurihara, K. Graph mining with variational Dirichlet process
mixture models. In Proceedings of the Eighth SIAM International Conference on
Data Mining (2008), SDM 2008, pp. 432–442.

[226] Vapnik, V. Statistical learning theory. Wiley, 1998.

[227] Vapnik, V., and Lerner, A. Pattern recognition using generalized portrait
method. Automation and Remote Control 24 (1963), 774–780.

[228] Vapnik, V. N. The nature of statistical learning theory. Springer-Verlag, 1995.

[229] Vishwanathan, S. V. N., Borgwardt, K. M., and Schraudolph, N. N. Fast
computation of graph kernels. In Proceedings of the 20th Annual Conference on
Neural Information Processing Systems (2006), NIPS 2006, pp. 1449–1456.

[230] Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borg-
wardt, K. M. Graph kernels. Journal of Machine Learning Research 11 (2010),
1201–1242.

[231] Vreeken, J., Leeuwen, M., and Siebes, A. KRIMP: Mining itemsets that
compress. Data Mining and Knowledge Discovery 23, 1 (2011), 169–214.

[232] Wallis, W. D., Shoubridge, P., Kraetz, M., and Ray, D. Graph distances
using graph union. Pattern Recognition Letters 22, 6-7 (2001), 701–704.

[233] Walters, W. P., Stahl, M. T., and Murcko, M. A. Virtual screening - An
overview. Drug Discovery Today 3, 4 (1998), 160 – 178.

[234] Wang, K., and Han, J. Bide: Efficient mining of frequent closed sequences. In
International Conference on Data Engineering (2004).

[235] Waszkowycz, B., Perkins, T. D. J., Sykes, R. A., and Li, J. Large-scale
virtual screening for discovering leads in the postgenomic era. IBM Systems Journal
40, 2 (Feb. 2001), 360–376.

[236] Wegner, J. Joelib2. http://www-ra.informatik.uni-tuebingen.de/software/joelib/.

[237] Weinstein, J., Kohn, K., Grever, M., and Viswanadhan, V. Neural com-
puting in cancer drug development: Predicting mechanism of action. Science 258
(1992), 447–451.

[238] Weislow, O., Kiser, R., Fine, D., Bader, J., Shoemaker, R., and Boyd,
M. New soluble formazan assay for HIV-1 cytopathic effects: Application to high

188

Bibliography

flux screening of synthetic and natural products for AIDS antiviral activity. Journal
National Cancer Institute 81 (1989), 577–586.

[239] Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., and Vapnik, V.
Kernel dependency estimation. In Advances in Neural Information Processing Sys-
tems (2002), NIPS 2002, pp. 873–880.

[240] Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff, A., and Noble, W. S.
Semi-supervised protein classification using cluster kernels. Bioinformatics 21, 15
(2005), 3241–3247.

[241] Willett, P., Barnard, J. M., and Downs, G. M. Chemical similarity search-
ing. Journal of Chemical Information and Computer Sciences 38, 6 (1998), 983–996.

[242] Wilton, D., Willett, P., Lawson, K., and Mullier, G. Comparison of rank-
ing methods for virtual screening in lead-discovery programs. Journal of Chemical
Information and Computer Sciences 43, 2 (2003), 469–474.

[243] Xu, R., and Wunsch, D., I. Survey of clustering algorithms. IEEE Transactions
on Neural Networks 16, 3 (May 2005), 645–678.

[244] Yan, X., Cheng, H., Han, J., and Yu, P. S. Mining significant graph patterns
by leap search. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data (2008), SIGMOD 2008, ACM, pp. 433–444.

[245] Yan, X., and Han, J. gSpan: Graph-based substructure pattern mining. In
Proceedings of the 2002 IEEE International Conference on Data Mining (2002),
ICDM 2002, IEEE Computer Society, pp. 721–724.

[246] Yan, X., and Han, J. CloseGraph: Mining closed frequent graph patterns. In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2003), KDD 2003, ACM, pp. 286–295.

[247] Yao, J. T. Sensitivity analysis for data mining. In Proceedings of the 22nd Inter-
national Conference of the North American Fuzzy Information Processing Society
(2003), NAFIPS 2003, pp. 272–277.

[248] Yap, C. W., and Chen, Y. Z. Prediction of cytochrome P450 3A4, 2D6, and 2C9
inhibitors and substrates by using support vector machines. Journal of Chemical
Information and Modeling 45, 4 (2005), 982–992.

[249] Yoshida, K., and Motoda, H. CLIP: Concept learning from inference patterns.
Artificial Intelligence 75, 1 (May 1995), 63–92.

[250] Yoshida, T., Shoda, R., and Motoda, H. Graph clustering based on struc-
tural similarity of fragments. In Federation over the Web, K. Jantke, A. Lunzer,

189

Bibliography

N. Spyratos, and Y. Tanaka, Eds., vol. 3847 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2006, pp. 97–114.

[251] Zaki, M. J., and Aggarwal, C. C. XRules: An effective structural classifier for
XML data. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2003), KDD 2003, ACM, pp. 316–325.

[252] Zeng, Z., Wang, J., Zhou, L., and Karypis, G. Out-of-core coherent closed
quasi-clique mining from large dense graph databases. ACM Transactions on
Database Systems 32, 2 (2007).

[253] Zhang, T., Ramakrishnan, R., and Livny, M. BIRCH: An efficient data clus-
tering method for very large databases. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data (1996), SIGMOD 1996, ACM,
pp. 103–114.

[254] Zhang, T., Ramakrishnan, R., and Livny, M. BIRCH: A new data clustering
algorithm and its applications. Data Mining and Knowledge Discovery 1, 2 (1997),
141–182.

[255] Zhang, Y., Li, Z., Tang, Y., and Cui, K. DRC-BK: Mining classification rules
with help of SVM. In Advances in Knowledge Discovery and Data Mining, 8th
Pacific-Asia Conference (2004), PAKDD 2004, pp. 191–195.

[256] Zhang, Y., Su, H., Jia, T., and Chu, J. Rule extraction from trained support
vector machines. In Proceedings of the 9th Pacific-Asia conference on Advances
in Knowledge Discovery and Data Mining (2005), PAKDD 2005, Springer-Verlag,
pp. 61–70.

[257] Zheng, Z., Kramer, S., and Schmidt, B. DySC: Software for greedy clustering
of 16S rRNA reads. Bioinformatics 28, 16 (2012).

190

	Contents
	Acronyms
	Introduction
	Motivation
	Contributions
	Applications
	Definition of Chemical Categories
	Predictive Toxicology
	Virtual Screening

	Outline of the Thesis

	Related Work
	Introduction to Graph Theory
	Graph
	Graph Isomorphism and Subgraph Isomorphism

	Graph Clustering
	Clustering Vectorial Data
	Graph-based Clustering

	Kernel Methods
	Kernels
	Graph Kernels
	Cluster Kernels
	Support Vector Machines

	Knowledge Extraction from SVMs
	Rule Extraction from SVMs
	Other Knowledge Extraction Methods from SVMs

	Graph Clustering
	Structural Graph Clustering
	Problem Definition
	Method
	Experiments
	Conclusion

	Parallel Structural Graph Clustering
	Method
	Experimental Results
	Conclusion

	Structural Clustering by Abstract Pre-clustering
	Method
	Experimental Results
	Conclusion

	Maximum Common Subgraph Based Locally Weighted Regression
	Introduction
	Related Work
	Method
	Notation and Definitions
	MCS Algorithm
	MCS-based Distance Measure
	MCS-based Locally Weighted Regression

	Experimental Results
	Discussion and Conclusion

	The Structural Cluster Kernel
	Introduction
	Method
	Structural Cluster Kernel
	Semi-Supervised Setting

	Experimental Results
	Supervised Setting
	Semi-Supervised Setting
	Comparison to Locally Weighted Learning

	Conclusion

	Mining Support Vectors of the Structural Cluster Kernel
	Introduction
	Problem Definition
	Method
	Backbone Refinement Class Mining
	Graph Mining On Support Vectors

	Experiments
	Baseline Methods
	Data Sets
	Experimental Setup
	Results

	Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

