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Motivation and Example

@ Capacity-reaching LDPC codes exist

@ The optimal parameters are known for long block lengths

What is the best performance for finite block lengths? I

LDPC Codes [1]
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Definition: Low-density Parity-Check Code (Gallager,1962)

Low-density parity-check codes are codes specified by a matrix
containing mostly 0's and only a small number of 1's.
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Example: (2,4) regular code

e Regular (/,r) codes:
| ones in every column, respectively r ones in every row

o Irregular codes:
Edge degree distributions described by polynomials
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Graphical Representation as Tanner Graph (Tanner,1981):

Properties

o LDPC codes can reach capacity

o The decoding complexity stays linear
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Check equation for check node c:

> vk=0 mod?2
keN(c)

If variable nodes are erased due to the transmission over a binary
erasure channels (BEC), they can be iteratively restored with the help
of the knowledge of the rest of the graph of the code.

Protograph Based Construction [2]

@ Small Tanner graphs are used as a “blue print” of the structure
@ This structure gets copied several times

@ Similar connections are randomly permuted to obtain larger girths
which avoids dependencies during the iterative decoding

= “copy-and-permute”

Advantages
@ The protograph representation can be used for analysis

(I,r,L)p Codes Based on Coupled Protographs [3]
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@ Choose a simple (/, r) protograph

@® Couple L protographs to a spatially coupled protograph

© Lift the coupled protograph with the “copy-and-permute”
operation

The convolutional-like band matrix H consists of submatrices H; ;
which are permutation matrices for edge permutations:
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Advantages

@ Systematic encoding is possible

@ The MAP threshold can be reached with iterative belief
propagation (BP) decoding [4]

Peeling Decoding

The decoding can only proceed if check nodes with only 1 unknown
edge remain in the residual graph which is used as stability criterion.

o 7: Decoding iterations normalized by M

@ &(7): Sum of mean of deg-1 check nodes normalized by M
&(r) = 7 Ty R(0,7)
@ 01(7): Variance of deg-1 check nodes of all processes
Var[en(7)] = 3;01(7) = 7 21 32511 000,
@ ¢1(7,(): process covariance with time

¢1(7,¢) = E [er(T) ()] — &) (<)

Mean Evolution of Deg-1 Check Nodes
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Calculated & (7) for the (/,r, L)p = (3,6,50) ensemble for a varying €. For
€ = 0.45, the subplot includes actual decoding trajectories.

3 : T T
Prot. Monte Carlo
- - - Prot. Estimate
—— Rand. Monte Carlo
5 - - - Rand. Estimate

50

normalized iteration 7

Monte Carlo and the proposed estimates to d1(7) for the (3,6,100)» and
(3,6,100) ensembles with M = 2000.
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Process covariance estimation at 2 time instants for the same ensembles. All results
are computed for € = 0.45.

Conjecture of the Scaling Law [5]

Scaling laws stem from statistical physics where a system follows a
control parameter in a very specific way around a phase transition.
Around the threshold there holds a scaling law for LDPC codes using
an iterative erasure decoder:

P 1 exp <_M>

wo(M, e, 1, r)

@ (eL — 7*) is the duration of the steady-state phase

@ The average survival time g of ci(7) during the steady-state
phase is a function of &;(7), d1(7).

These parameters depend on the code ensemble.
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Word error rate on the BEC for the (/,r, L) = (3,6,100) and
(1,r,L)p = (3,6,100)p ensembles.

Protograph ensembles significantly improve the performance in the
waterfall region. The scaling The resulting scaling law prediction
matches the slope of the simulation results closely.
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Outview and Future Tasks

@ Can the complexity be reduced?

@ Can we use this tool to design better codes?
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