
Multiple Object Tracking Using an RGB-D Camera
by Hierarchical Spatiotemporal Data Association

Seongyong Koo, Dongheui Lee and Dong-Soo Kwon

Abstract— In this paper, we propose a novel multiple object
tracking method from RGB-D point set data by introducing the
hierarchical spatiotemporal data association method (HSTA)
in order to robustly track multiple objects without prior
knowledge. HSTA is able to construct not only temporal
associations between multiple objects, but also component-level
spatiotemporal associations that allow the correction of falsely
detected objects in the presence of various types of interaction
among multiple objects. The proposed method was evaluated
using the four representative interaction cases such as split,
complete occlusion, partial occlusion, and multiple contacts. As
a result, HSTA showed significantly more robust performance
than did other temporal data association methods in the
experiments.

I. INTRODUCTION

The emergence of RGB-D cameras as one of several
standard visual sensor systems for intelligent robots has
promoted the development of point cloud processing tech-
nology [19] and its many applications such as environment
reconstruction [18], object pose and shape estimation [4],
[13], and tracking of human behavior [15], [16]. Tracking
multiple objects from the visual information is one of several
important and necessary abilities for a robot, allowing it to
observe and perform complex tasks. This system produces
each object’s movement history, which is useful for learning
complex actions by human demonstration, such as locating
tasks [1] and assembly tasks [5].

Multiple object tracking from a set of point clouds involves
many complex problems. The first issue is the representation
and tracking of a single object. Once a target object can be
specified, the object model is designed prior to the tracking
process that is performed based on the pre-defined model
[16], [14]. On the other hand, there have been two approaches
for tracking unknown targets. One approach is model-based
tracking, which uses the supervised learning technique to
construct a model of an unknown object [4], [13]. Another
more recent approach is model-free tracking, which uses
particle filtering [21], interaction with a human [7], and
incremental construction of an arbitrary model using the
Gaussian Mixture Model (GMM) [10].

The second issue is robust tracking of multiple targets in
the presence of interaction between objects such as occlu-
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(a) Before association (b) After association

Fig. 1. Example of a spatiotemporal graph of multiple objects. Colored
entities are used to represent each object. Directed edges show temporal
associations; an undirected edge shows spatial association of two partitions
of an identical object (gray), which are separated by the occlusion of another
object (red).

sions, contact, and split. In addition, there are typical issues
pertaining to multi-target tracking, such as different numbers
of tracks, temporally missing targets, and mismatched tem-
poral associations [22]. These problems can be formulated
by constructing true associations (tracks) between nodes in
a spatiotemporal graph in which each node represents each
detected object, as shown in Fig. 1. When each single target
is identified perfectly, temporal data associations, depicted
as directed edges in Fig. 1, can be achieved using a multi-
hypothesis tracker (MHT) in a stochastic manner [17] or
a multi-frame tracker (MFT) in a deterministic way [20].
For example, [15] presented multiple people tracking from
RGB-D data using a Combo-HOD person detector and MHT
for temporal data association. Without previously constructed
target models, however, distortion of each detected object
can arise from interactions among multiple moving objects.
At t − 1 in Fig. 1, the gray object is occluded by the red
object and separated into two different entities. In this case,
the spatial association process is needed to combine the
two falsely segmented parts, which are represented as the
undirected edge in Fig. 1.

In the area of 2D image processing, there have been sev-
eral recent works that have attempted to construct spatiotem-
poral data associations between multiple targets wherein
the above two problematic issues were tackled synthetically
[2], [23]. However, in the filed of 3D RGB-D point cloud
data processing, these issues have not been investigated
sufficiently despite their importance in many applications, es-
pecially in the field of intelligent robots. In order to robustly
track multiple objects without prior knowledge, we have
proposed the model-free multiple object tracking framework
in [11]. This framework has the merits of both flexibility
in incremental learning and robustness in tracking multiple
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Fig. 2. Overview of the model-free multiple object tracking method

unknown objects because of the feedback connection of the
two components: GMM-based single object tracking and
robust multiple object tracking, as in Fig. 2. The details
and performance of the single object tracking part can be
found in [10], which will be briefly summarized in the
next chapter. In this paper, we propose a novel hierarchical
spatiotemporal data association (HSTA) method for robust
multiple object tracking.1 HSTA is able to construct not
only temporal associations between multiple objects, but
also component-level spatiotemporal associations that allow
the correction of falsely detected objects in the presence
of various types of interaction among multiple objects, as
in Fig. 1. The proposed method was evaluated using the
four representative interaction cases such as split, complete
occlusion, partial occlusion, and multiple contacts. As a
result, HSTA showed significantly more robust performance
than did other temporal data association methods in the
experiments.

II. GMM-BASED SINGLE OBJECT TRACKING

In order to represent each object stochastically, a GMM
is constructed from the RGB-D point set data involved in
the object O = {p1, ..., pn}, each of which consists of the 3D
position and the RGB color information of a point, pi ∈R6.

p(x) = ∑
k
i=1 wiφ(x|µi,Σi), ∑

k
i=1 wi = 1 (1)

φ(x|µ,Σ) = 1√
(2π)6|Σ|

exp
(
− 1

2 (x−µ)T Σ−1(x−µ)
)

(2)

Equation (1) represents the probability density of a 6-
dimensional point x belonging to the object. At each time
step, the captured RGB-D point set data is segmented into
each object by comparing the maximum likelihood estima-
tions of each point to the updated objects’ GMMs from
the previous multiple object tracking results. The segmented
point set of each object is then down-sampled with a constant
sampling distance using the VoxelGrid filter in [19] in
order to construct the initial GMM by evenly weighted n
Gaussians centered at each point with the same spherical

1The components of the method were originally proposed in the authors’
previous paper [11]. In this paper, they are unified in the proposed HSTA
and their performances are elaborately investigated in comparison with other
approaches.

covariance matrix. The initial GMM with n components is
simplified into k components using the hierarchical clustering
method [6] for computational efficiency. The two control
parameters, the sampling distance and the ratio between n
and k, determine the representation capacity of the object
models, which, in turn, affect on the trade-off between the
computation time and the tracking accuracy.2

Each constructed single object as a GMM (measurement
distribution) is then filtered to estimate the current probability
distribution (filtering distribution) of an object in the form
of GMM. Once a dynamic model of a moving object can
be obtained, the filtering distribution can be estimated using
Gaussian Sum Filtering (GSF) by performing the time update
and measurement update steps3 recursively [12]. The time
update step in GSF follows the Extended Kalman Filtering
(EKF) method with a linearized one-step prediction model
to produce the predictive distribution from the prior filtering
distribution. In this study, the unknown dynamics of an object
is approximated as a piece-wise linear function, and the pre-
diction model is estimated using the GMM-based robust 3D
registration method [8] at each time step. In the measurement
update step, the target distribution can be obtained from
the measurement distribution and the predictive distribution
according to the Bayes’ theorem and the Markov property.
This contains the recursive products of two GMMs that
result in the exponential growing number of Gaussians. The
GMM simplification process is needed to limit the size of the
Gaussians to the given number. In this study, the HC method
[6] with L2 distance is used for the simplification process;
the number of Gaussians is determined proportional to the
size of the point set constructing an object.

III. HIERARCHICAL SPATIOTEMPORAL DATA
ASSOCIATION

This chapter illustrates the proposed hierarchical spa-
tiotemporal data association method (HSTA) in order to solve
the second issue of multiple object tracking, addressed in the
chapter I. An object Oi, represented as GMM (1), consists of
ki-components, Oi = {ci

1,c
i
2, ...,c

i
ki
}, each of which represents

a cluster of points. Once multiple objects are detected at
time t, Ot = {Ot

1,O
t
2, ...,O

t
nt}, tracking is the process of

constructing temporal associations between objects in O1:t .
The proposed hierarchical spatiotemporal association not
only constructs a temporal association on the object-level but
also establishes temporal and spatial associations between
components of each object. This component-level associa-
tions allow the correct generation of new objects with the
spatiotemporal relations between components, which results
in a modifying of the set of detected objects Ot into the
correct objects O?

t .
Fig. 3 shows an example of hierarchical spatiotemporal as-

sociation, which corrects the detected objects Ot = {O1,O2}
to the modified objects O?

t = {O1,O2,O3}, as in Fig. 3(a)
to 3(c), and then constructs the temporal associations for

2An empirical study of this effect was performed and analyzed in [10].
3The details of the time update and measurement update processes are

explained in [10].
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(a) Detected clusters (b) Low-level temporal association

(c) association (d) High-level temporal association

Fig. 3. Example of hierarchical spatiotemporal data association. White
nodes stand for objects and gray nodes represent detected components.
Dashed directed edges are temporal associations in each level; undirected
edges are spatial associations.

multiple objects, as in Fig. 3(d). The newly detected com-
ponents at t in Fig. 3(a) make their temporal associations
with existing components in the same object at t− 1, as in
Fig. 3(b). The temporal associations allow the estimation of
the movement differences between the components, and with
the position differences, produce spatiotemporal relations be-
tween components, which disconnect the relations of c1−c3
and c2−c4 and split Ot−1

1 = {c1,c2,c3,c4} into Ot
1 = {c1,c2}

and Ot
3 = {c3,c4}, as in Fig. 3(c).

The temporal data association process is required to solve
typical multiple object tracking problems, i.e., generating
and removing an object, correcting false matching, and
the robustness against occlusion. Multi-Hypothesis Tracking
(MHT) [17] is one of the representative probabilistic methods
which can give a globally optimal solution for the problems.
Multi-Frame Tracking (MFT) [20], which find the optimal
pairs of associations to maximize the sum of weight values
on the matched correspondences using the greedy method,
is more robust for a large variety of motions and more
computationally efficient for a large number of targets than
the MHT method. In [9], improved MFT (IMFT) has been
proposed to enhance the computational efficiency in the long-
term complete occlusion case. The IMFT method is used
as a preliminary tool for the robust and efficient temporal
association in the HSTA.

A. Component-level temporal association

In any object at each time frame t, each component is a
new node in the t frame of IMFT. The only parts necessary
to construct an IMFT for components are the definition
of the weight function between two components and the
size of the time frame k to make the associations in the

frames. k is determined by the given situations to consider the
length of the complete occlusion time. The weight function
between two components that are represented as Gaussians,
c1 = {µ1,Σ1} and c2 = {µ2,Σ2}, is determined using the
L2 distance. With the property of a Gaussian function,∫

φ(x|µ1,Σ1)φ(x|µ2,Σ2)dx = φ(0|µ1− µ2,Σ1 +Σ2), the L2
distance of c1 and c2 can be expressed as follows.

dL2(c1,c2) =
∫
(pc1(x)− pc2(x))

2dx

=2−2φ(0|µ1−µ2,Σ1 +Σ2)
(3)

Because the matching algorithm in MFT maximizes the sum
of weight values in the matched associations, the L2 distance,
that is 0 for the closeness components, is converted to a
weight value between 0 and 1 by introducing the maximum
value of the distance in the graph.

weight(c1,c2) = 1− dL2(c1,c2)

maxi, j(dL2(ci,c j))
(4)

B. Spatiotemporal association

In order to represent the spatial and temporal relations
among the components in an object, the relations can be rep-
resented as a topological graph where each node represents
each component and the undirected edge between two nodes.
Each edge contains the weight value of the association. In
order to reflect the spatial and temporal relations, the weight
value of an edge is determined as a convex combination
of the differences of position and velocity between two
components, which is controlled by a parameter 0≤ α ≤ 1.

w(ei, j) = α×wpos(ei, j)+(1−α)×wvel(ei, j) (5)

The position difference of two components is defined by the
normalized KL distance in an object and converted into a
weight of association between 0 and 1 as follows.

wpos(ei, j) = 1−
dKL(ci,c j)

maxi, j(dKL(ci,c j))
(6)

Because each object has a different size, the closeness of two
components in the object should be relatively determined.
The normalized value regardless of the object size is useful
to determine a common threshold value to cut off the
association later. In the case of defining the relation between
spatially distributed components, the KL distance is more
appropriate than the L2 distance due to its global effect.
The symmetrised KL distance (7) is used for the undirected
edges.

dKL(c1,c2) = dKL(c1||c2)+dKL(c2||c1), where

dKL(c1||c2) =

1
2

(
tr(Σ−1

2 Σ1)+(µ2−µ1)
T

Σ
−1
2 (µ2−µ1)− ln

(
|Σ1|
|Σ2|

)
−6
) (7)

The weight value for referring temporal property is a normal-
ized velocity difference between two components. Because
each component already has a historical track from the
component-level temporal associations, the velocity can be
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calculated by the change of position vectors in a component
as follows.

wvel(ei, j) = 1−
dvel(ci,c j)

maxi, j(dvel(ci,c j))
, where

dvel(ci,c j) =
∣∣∣(µ t

i −µ
t−1
i )− (µ t

j−µ
t−1
j )

∣∣∣ (8)

The fully connected topological graph with initial weight
values of all edges needs to be simplified to construct a
meaningful topology of the object. The weight value of each
edge is tested with a threshold value, thedge, to erase the edge
in the graph.

As in Fig. 3(c), the constructed spatiotemporal association
needs to be separated in cases of generating new objects.
Because the weight value of an edge represents the close-
ness of two components in terms of the spatial positions
and temporal movements, two individual objects are easily
disconnected when they move in different ways as in the split
case. On the other hand, even if there is a partial occlusion of
an object, components are not easily disconnected when they
have the same movement pattern. Therefore, a connectivity
test of the topological graph can decide the separation of one
object only in the split case. Each separated graph constructs
a new object with its components as shown in Fig. 3(c).

C. Object-level temporal association

Like the component-level temporal association, object-
level temporal association can be constructed using the IMFT
method. The modified objects O?

t after the spatiotemporal
association process construct the nodes in a new frame at t;
the weight function is characterized by the L2-distance of
the objects’ GMMs, e.g., O1 = {k1,w1,µµµ1,ΣΣΣ1} and O2 =
{k2,w2,µµµ2,ΣΣΣ2}, as follows.

dL2(O1,O2) = ∑
k1

i=1 ∑
k1

j=1 w1
i w1

jφ(0|µ1
i −µ

1
j ,Σ

1
i +Σ

1
j)

−2∑
k1

i=1 ∑
k2

j=1 w1
i w2

jφ(0|µ1
i −µ

2
j ,Σ

1
i +Σ

2
j)

+∑
k2

i=1 ∑
k2

j=1 w2
i w2

jφ(0|µ2
i −µ

2
j ,Σ

2
i +Σ

2
j)

(9)

Because the L2-distance presents a smaller number with
greater closeness of the two objects, the weight function is
defined by (10), and takes a value between 0 and 1.

weight(O1,O2) = 1− dL2(O1,O2)

maxi, j(dL2(Oi,O j))
(10)

IV. EXPERIMENTS AND RESULTS

The purpose of this study is to track multiple objects
robustly in the presence of interaction between objects. We
conducted several experiments to examine the performance
of the proposed HSTA method in the following four cases.
• Split: One object is separated into two different objects,

like a hand putting an object on a table.
• Complete occlusion: One object is completely occluded

by another object, like a hand covering a smaller object.
• Partial occlusion: One object is partially occluded by

another object, like a hand passing over a bigger object.
• Multiple contacts: Multiple objects are in contact with

each other and move independently.

A. Experimental environments

The experiments involve tracking human hands and multi-
ple objects on a table.4 The data is captured using a RGB-D
camera (ASUS Xtion) established at a height of 90cm over
the table. The size of the workspace is 70cm×70cm×70cm
and the surface of the table is not included in the space.
The computation device is an Intel i7 2.8GHz CPU; RGB-
D point set data, with a size of 640×480, is captured at an
average of 30Hz frequency. The data is then transformed into
6-dimensional point data (x, y, z, r, g, and b) with respect
to the coordinates on the table. The data in the workspace
enter the proposed tracking process as shown in Fig. 2.

The four cases were evaluated according to the two ex-
perimental scenarios shown in Fig. 4. Two human hands put
small objects onto the table in consecutive order. When the
hands place the objects on the table, the objects are separated
from the hands (split) as shown in Fig. 4(a). Subsequently,
each hand completely covers each object for a while and
uncovers it at the same time. At that moment, the small
objects are completely occluded by the hands (complete
occlusion) as shown in Fig. 4(a). In addition, the occluded
objects held in the two hands change their positions. The
partial occlusion and multiple contacts cases were evaluated
with two white boxes as shown in Fig. 4(b). Each hand passes
over the two objects one at a time and holds each object. The
hands make the two objects come into contact and move
them in the direction of the rotation and translation.

B. Evaluation results

In order to assess the performance of multiple object
tracking methods, CLEAR MOT metrics were proposed in
[3]. There are two metrics, multiple-object tracking preci-
sion (MOTP), which represents the ability to estimate pre-
cise object positions, and multiple-object tracking accuracy
(MOTA), which is defined in order to account for all object
tracking errors over all frames. In this studty, MOTA is
used and modified for calculating point-level multiple object
tracking accuracy (PMOTA). The three error components in
MOTA, misses, false positives, and mismatches, are calcu-
lated by counting the number of error targets. Because in this
study an object is represented by a set of points, PMOTA is
defined by counting the number of error points in each object,
as follows.

PMOTA = 1− ∑t ∑
Ot
i mt

i + f pt
i +mmet

i

∑t ∑
Ot
i nt

i

(11)

The number of misses of an object Ot
i , mt

i , is defined by
the entire number of points in the missed object, such as
the small ball-in-hand of the first column in Fig. 4(a). The
number of false positives, f pt

i , is the number of falsely
identified points in Ot

i like the blue points in the object
(id:66) of the sixth column in Fig. 4(b). mmet

i stands for the
entire number of points in the object Ot

i if it is a mismatched
object, like the two small balls in the last column of Fig.

4The movie clips of the experiments can be found at the official webpage
of this work: (http://robot.kaist.ac.kr/project/pmot).
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(a) Test of the split and complete occlusion cases

(b) Test of the partial occlusion and multiple contact cases

Fig. 4. Snapshots of the tracking multiple objects in the sequence (from left to right) of the movements. The first row of each figure show the original
captured point set data. The second row illustrate Gaussian mixture models as a set of 3D ellipsoids with tempo-spatial topological graph. The tracking
results of the proposed algorithm are depicted in the figures on the third row.

4(a). In these experiments, ground truth data for all points
are manually labeled by referring to the RGB-D data, as in
the first rows of Fig. 4.

In order to analyze the proposed HSTA algorithm for
multiple object tracking, two comparators were performed
as the object-level temporal association methods, MFT and
Nearest Neighbor (NN) wherein a new object is matched to
the closest object in the previous frame within a particular
region of interest. All these methods used the identical single
object tracking method of [10], with a 0.02m sampling rate
and 0.15 simplification ratio. The HSTA method used 0.98
of α in (5) and 0.7 of thedge. Table I shows the PMOTA
results of the three different methods for the four cases; Fig.
5 shows examples of the change of PMOTA according to the
time step in the two meaningful cases.

TABLE I
PMOTA OF THREE METHODS FOR THE FOUR CASES

Task Split Complete Partial Multiple
occlusion occlusion contacts

NN 0.7326 0.8912 0.9652 0.8075
MFT 0.7346 0.9703 0.9745 0.8052
HSTA 0.8689 0.9752 0.9725 0.8095

In the split case, HSTA performs better than other methods
because of the object separation process in the component-
level spatiotemporal associations. The separation process

(a) The split case

(b) The complete occlusion case

Fig. 5. The change of PMOTA according to the time step
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can be found in Fig. 4(a); PMOTA recovers to 1 after the
separation as shown in Fig. 5(a). The effects of MFT allows
the retaining of the tracks of a completely occluded object in
a long-term period, as shown in Figs. 4(a) and 5(b). However,
when occluded objects change their positions, they cannot
be tracked, as is shown in the last column of Fig. 4(a) and
the last part of the blue graph in Fig. 5(b). The tracking
performance in the partial occlusion and multiple contacts
cases is subject to the single object tracking method. In this
study, all three algorithms yield similar results with the same
single object tracking method. The details of the evaluation
of the method can be found in [10].

V. CONCLUSION AND FURTHER WORKS

In this paper, we have presented a novel multiple object
tracking method from RGB-D point set data by proposing the
hierarchical spatiotemporal data association method (HSTA).
The method uses component-level temporal association, spa-
tiotemporal association, and object-level temporal associa-
tion in order to enhance the robustness of tracking in the
presence of various types of interaction among multiple ob-
jects such as split, complete occlusion, partial occlusion, and
multiple contacts. In order to construct temporal associations
on both levels, IMFT was applied due to its robustness and
computational efficiency, and the spatiotemporal association
process constructs a topological graph of an object that
contributes to the generation of new objects in the split case.

The proposed method was evaluated using two experimen-
tal scenarios including four types of interaction; the results
show that this method successfully attains better performance
than that of other temporal association methods. Although
the results showed the feasibility of the algorithm, there are
some areas that can be supplemented in further work. First, as
shown in Fig. 5(b), occluded objects such as objects-in-hand
were not correctly tracked anymore when they moved within
other objects. This problem can be tackled by considering the
merge case or by using task-level knowledge. In the future,
the HSTA structure will be extended to construct object-
level spatial relations. Second, the structure model of an
object was constructed by introducing the topological graph,
but this graph was not directly used to enhance the single
object tracking performance. The automatically constructed
structure model will be able to facilitate movement prediction
for objects that are arbitrarily articulated and this, in turn,
will improve the tracking accuracy.
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