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Abstract—This work investigates the problem of direction-
of-arrival estimation with a large number of antennas. As in
practice the number of antennas M is limited by power and
hardware constraints, here the possibility to compress the receive
signal, prior to the estimation task, to K < 2M real-valued
outputs is discussed. Under a Bayesian perspective, we state
the problem of finding a linear spatial filter (2M inputs, K
outputs) which preserves the information about the direction-
of-arrival parameter in an optimum way. In order to attain
the lowest possible mean squared error with the compressed
data, the filter is designed such that the Bayesian Cramér-Rao
bound is minimized. An iterative gradient-based filter solution is
proposed and the potential estimation performance is investigated
for different setups. Simulations of the maximum a posteriori
(MAP) estimator show that the accuracy predicted by theory
can be attained in practice at low computational cost.

Index Terms—array signal processing, direction-of-arrival esti-
mation, dimensionality reduction, compression, estimation theory

I. INTRODUCTION

Estimating direction-of-arrival parameters is essential in a
wide range of signal processing applications including radar,
satellite-based positioning and wireless communication. In
order to achieve high accuracy, it is attractive to use sen-
sor arrays with a large number of antennas. However, in
a variety of situations, scaling up the number of antennas
is not possible due to limitations with respect to energy
consumption and receiver complexity. Each of the M sensors
requires an individual radio front-end with two real-valued
analog-to-digital converters (ADC) and the amount of spatial
samples processed at each time instance in the digital part of
the receiver increases linearly with the number of sensors.
The algorithmic complexity of classical direction-of-arrival
methods becomes a problem especially with a large number
of antennas. For instance for subspace-based estimation tech-
niques, like MUSIC [1], ESPRIT [2] and Unitary ESPRIT
[3], an eigenvalue or a singular value decomposition has to
be computed or updated, thus requiring O(M3) operations
[4]. Hence, it is of practical interest, to design a multi-
antenna receiver which allows to scale up the number of
sensors M with low complexity, moderate energy consumption
and without sacrificing the performance of direction-of-arrival
estimation. Additionally the architecture of the receiver should
allow to trade-off complexity versus estimation performance
in a simple way and pose no limitations on the array geometry.

A. Contribution

Here we follow the idea of forming K linear combinations
(spatial filter) of the 2M real-valued sensor signals with
K < 2M . Further processing is then performed with the
signals of the K virtual sensors at the filter output. For a
fixed number of outputs K, this allows to increase the amount
of sensors M arbitrarily without changing the structure of the
receiver behind the spatial filter. In applications where the data
has to be stored for later processing, such an approach can be
used to diminish the size of the required memory. Note that
such a filter can be implemented in the analog or the digital
domain. However, while in such a way the number of spatial
samples can be reduced severely, an inappropriate design of
the spatial filter will result in significant performance degra-
dation for the estimation of the direction-of-arrival parameter.
Therefore, this work discusses the design of the spatial filter
matrix. Investigating a theoretic performance characterization,
associated with Bayesian estimation theory and optimizing
the spatial filter with respect to this analytical measure, we
show that with an appropriate filter design and an efficient
estimation algorithm, high-performance parameter estimation
is possible by exclusively using the compressed receive signal
with reduced spatial dimension K < 2M . A particular strength
of our approach is that priori knowledge about the angle-of-
arrival parameter in form of a probability density can be taken
into account during the filter design.

B. Related Work

The design criterions for linear transformations that have
been proposed in the array processing literature can be divided
into two frameworks: An energy-based compression method
[5] and a sensitivity-based approach [6]. In [5], the linear
mapping is chosen such that the average signal-to-noise ratio
(SNR) of all impinging signals after the transformation is max-
imized (energy-based compression). The authors then propose
to perform MUSIC on the data set with reduced dimension-
ality. If the transformation is chosen such that it preserves
the signal energy, i.e. the original data set is projected onto
the entire signal subspace, the SNR after the transformation
is larger than the SNR of the original data set. This is since
the noise variance in the subspace is smaller than the noise
variance in the original data set. Hence, the computational
complexity of the MUSIC estimation algorithm can be reduced
with such a transformation and an additional SNR gain can
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be achieved, leading to higher estimation performance with
MUSIC. This SNR gain is a direct consequence of taking into
account the a priori knowledge that the angle-of-arrival lies
within a given sector1.

Another interesting approach is discussed in [6]. Here the
linear transformation is designed based on the Cramér-Rao
lower bound of the angle-of-arrival parameter (or equivalently
the Fisher information matrix), which provides a direct per-
formance characterization of efficient estimation algorithms
(sensitivity-based compression). The authors show that the
minimum number of dimensions of the reduced data set has to
be at least equal to twice the number of impinging wavefronts
in order to formulate a transformation that is lossless with
respect to estimation performance. However, a serious problem
within the Fisher estimation framework considered in [6] is
the fact, that the optimum linear transformation depends on the
deterministic angles-of-arrival which are unknown during the
compression step. So, formulating the compression problem
from a Fisher theoretic perspective (estimation of unknown
deterministic parameters) can only lead to suboptimal solu-
tions for the situations encountered in practical array signal
processing scenarios. Here we circumvent this problem by
stating the problem from a Bayesian perspective (estimation
of unknown random parameters).

II. SYSTEM MODEL

For the discussion, we assume an analog receive signal

y(t) =
[
yI(t) yQ(t)

]T ∈ R
2M , (1)

which results from an uniform linear array (distance between
sensors equal to half the wavelength) of M sensors with in-
phase output yI(t) ∈ R

M and quadrature output yQ(t) ∈ R
M .

The receive signal model under a narrowband assumption and
with a single signal source is

y(t) = γA(ζ)Φ(φ)x(t) + η(t), (2)

where the steering matrix

A(ζ) =
[
AT

I (ζ) AT
Q(ζ)

]T ∈ R
2M×2, (3)

with the direction-of-arrival parameter ζ ∈ R, is determined
by the steering matrix of the in-phase sensor outputs

AI(ζ) =

⎡
⎢⎢⎢⎣
α1(ζ) β1(ζ)
α2(ζ) β2(ζ)

...
...

αM (ζ) βM (ζ)

⎤
⎥⎥⎥⎦ ∈ R

M×2 (4)

and the steering matrix of the quadrature outputs

AQ(ζ) =

⎡
⎢⎢⎢⎣
−β1(ζ) α1(ζ)
−β2(ζ) α2(ζ)

...
...

−βM (ζ) αM (ζ)

⎤
⎥⎥⎥⎦ ∈ R

M×2, (5)

1This increase in performance is similar to the one that can be achieved
by the Vandermonde invariant transformation proposed in [7], which can be
interpreted as a zoom into the sector which contains the angles of arrival.

with entries

αm(ζ) = cos
(
(m− 1)π sin (ζ)

)
βm(ζ) = sin

(
(m− 1)π sin (ζ)

)
. (6)

The channel phase-offset at the first sensor is modeled by

Φ(φ) =

[
cos (φ) − sin (φ)
sin (φ) cos (φ)

]
∈ R

2×2, (7)

while the attenuation is characterized by γ ∈ R. The signal
source consists of an in-phase and a quadrature component

x(t) =
[
xI(t) xQ(t)

]T ∈ R
2, (8)

which are assumed to be independent wide-sense stationary
random Gaussian processes∫ ∞

−∞
xI(λ)xQ(λ− t)dλ = 0 ∀t, (9)

with identical auto-correlation function

Rx(t) =

∫ ∞

−∞
xI/Q(λ)xI/Q(λ− t)dλ ∀t. (10)

The signal impinges on the array with a random angle-of-
arrival ζ, where all prior knowledge on ζ is incorporated into
the prior distribution p(ζ). The term η(t) ∈ R

2M in (1) stands
for additive white sensor noise. Note that we have chosen a
notation based on real-valued signals in order to allow to map
the signals also on to an odd number K of real-valued outputs.
The model used here is based on the complex-valued receive
signal model with steering vector

a(ζ) =
[
1 e−jπ cos ζ . . . e−j(M−1)π cos ζ

]T ∈ C
M , (11)

found in array processing literature.

A. Spatial Filter
The analog receive signal y(t) is processed by a spatial filter

B ∈ R
2M×K , such that a receive signal of reduced dimension

r(t) ∈ R
K is attained by

r(t) = BTy(t)

= γBTA(ζ)Φ(φ)x(t) +BTη(t). (12)

Band-limiting the K output signals to one-sided bandwidth B
and sampling at a rate of fs = 2B, results in temporally white
compressed spatial snapshots of the form

rn = BTyn (13)

= γBTA(ζ)Φ(φ)xn +BTηn, (14)

with rn ∈ R
K , yn ∈ R

2M , xn ∈ R
2 and ηn ∈ R

2M being
the sampled versions of r(t), y(t), x(t) and η(t), i.e.

rn = r
(n− 1

fs

)
yn = y

(n− 1

fs

)
xn = x

(n− 1

fs

)
ηn = η

(n− 1

fs

)
, (15)
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where n = 1, 2, . . . , N . The signal covariance Rx ∈ R
2×2 is

Rx = Exn

[
xnx

T
n

]
= I2, (16)

where we use Ez [·] to denote the expected value taken with
respect to the random variable z. Due to the array model, the
noise of the individual array elements can be assumed to be
spatially white, i.e. the noise covariance Rηn

∈ R
2M×2M is

Rηn
= Eηn

[
ηnη

T
n

]
= I2M . (17)

The compressed receive covariance Rr(ζ) ∈ R
K×K is

Rr(ζ) = Ern

[
rnr

T
n

]
= BTRy(ζ)B, (18)

with the original receive covariance Ry(ζ) ∈ R
2M×2M being

Ry(ζ) = Eyn

[
yny

T
n

]
= γ2A(ζ)AT (ζ) + I2M . (19)

The probability density (PDF) of a single snapshot rn ∈ R
K ,

within the receive signal consisting of N temporal samples

r =
[
rT1 rT2 . . . rTN

]T ∈ R
NK , (20)

in dependence of the direction-of-arrival parameter ζ is

p(rn|ζ) =
exp

(− 1
2r

T
n (B

TRy(ζ)B)−1rn
)

√
(2π)K det

(
BTRy(ζ)B

) . (21)

III. INFORMATION MEASURE AND FILTER DESIGN

Using the prior knowledge p(ζ) and the signal model
(21), the goal is to formulate the problem of finding the
optimum spatial filter B� with respect to the direction-of-
arrival estimation task. Under the assumption that an efficient
Bayesian estimator ζ̂(r) is used, the estimation performance
can be characterized by the Bayesian Cramér-Rao lower bound
(BCRLB) [8]

MSE = Er,ζ

[(
ζ̂(r)− ζ

)2]
≥ 1

N Eζ [F (B, ζ)] + Eζ

[(∂ ln p(ζ)
∂ζ

)2] . (22)

In order to minimize the mean squared error (MSE), the
filter B� has to be designed such that the expected Fisher
information measure (EFIM)

Eζ [F (B, ζ)] =

∫
Z

∫
R
p(ζ)p(r|ζ)

(
∂ ln p(r|ζ)

∂ζ

)2

drdζ

= F̄ (B), (23)

with Z and R denoting the support of ζ and r, is maximized

B� = argmax
B∈B

F̄ (B) (24)

over the allowed set of filters B. Note, that the classical Fisher
information (FIM) is defined as [9]

F (B, ζ) =

∫
R
p(r|ζ)

(
∂ ln p(r|ζ)

∂ζ

)2

dr. (25)

With (21) and the substitution

D = B
(
BTRy(ζ)B

)−1
BT , (26)

the FIM is found to be given by

F (B, ζ) =
1

2
tr

(
∂Ry(ζ)

∂ζ
D

∂Ry(ζ)

∂ζ
D

)
, (27)

where tr (·) is the trace operator. The derivative of the receive
covariance matrix Ry(ζ) is given by

∂Ry(ζ)

∂ζ
= γ2

(
∂A(ζ)

∂ζ
AT (ζ) +A(ζ)

∂AT (ζ)

∂ζ

)
∈ R

2M×2M ,

(28)

where the derivative of the steering matrix is

∂A(ζ)

∂ζ
=

[
∂AT

I (ζ)
∂ζ

∂AT
Q(ζ)

∂ζ

]T
∈ R

2M×2, (29)

with in-phase component

∂AI(ζ)

∂ζ
=

⎡
⎢⎢⎢⎢⎣

∂α1(ζ)
∂ζ

∂β1(ζ)
∂ζ

∂α2(ζ)
∂ζ

∂β2(ζ)
∂ζ

...
...

∂αM (ζ)
∂ζ

∂βM (ζ)
∂ζ

⎤
⎥⎥⎥⎥⎦ ∈ R

M×2 (30)

and quadrature component

∂AQ(ζ)

∂ζ
=

⎡
⎢⎢⎢⎢⎣
−∂β1(ζ)

∂ζ
∂α1(ζ)

∂ζ

−∂β2(ζ)
∂ζ

∂α2(ζ)
∂ζ

...
...

−∂βM (ζ)
∂ζ

∂αM (ζ)
∂ζ

⎤
⎥⎥⎥⎥⎦ ∈ R

M×2, (31)

while the individual entries of the derivatives are

∂αm(ζ)

∂ζ
= −(m− 1)π cos (ζ) sin

(
(m− 1)π sin (ζ)

)
∂βm(ζ)

∂ζ
= (m− 1)π cos (ζ) cos

(
(m− 1)π sin (ζ)

)
. (32)

IV. FILTER SOLUTION THROUGH GRADIENT ASCENT

In order to investigate the potential estimation performance
which can be attained with the compressed data r, we propose
an iterative gradient method to determine an approximate
solution B�. In each step l the previous solution B(l−1) is
updated by the gradient weighted by the step-size κ(l)

B(l) = B(l−1) + κ(l) ∂F̄ (B)

∂B

= B(l−1) + κ(l) Eζ

[
∂F (B, ζ)

∂B

]
. (33)
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The Fisher information gradient ∂F (B,ζ)
∂B ∈ R

2M×K is

∂F (B, ζ)

∂B
=

1

2

∑
i,j

∂ tr
(

∂Ry(ζ)
∂ζ D

∂Ry(ζ)
∂ζ D

)
∂[D]ij

∂[D]ij
∂B

=
1

2

∑
i,j

⎡
⎣∂ tr

(
∂Ry(ζ)

∂ζ D
∂Ry(ζ)

∂ζ D
)

∂D

⎤
⎦
ij

∂[D]ij
∂B

=
∑
i,j

⎡
⎣
(
∂Ry(ζ)

∂ζ

)T

D

(
∂Ry(ζ)

∂ζ

)T
⎤
⎦
ij

∂[D]ij
∂B

.

(34)

In the following we define the matrix

Δij = (eje
T
i + eie

T
j ) ∈ R

2M×2M , (35)

where ej R
2M is a vector with 2M elements set to zero except

the j-th element which is set to one. With this convention

∂[D]ij
∂B

=
∂eTi B

(
BTRy(ζ)B

)−1
BTej

∂B

=
∂ tr

(
BTeje

T
i B

(
BTRy(ζ)B

)−1
)

∂B

=
1

2

∂ tr
(
BTΔijB

(
BTRy(ζ)B

)−1
)

∂B

=
(
I −Ry(ζ)D

)
ΔijB

(
BTRy(ζ)B

)−1
, (36)

the information gradient is found to be given by

∂F (B, ζ)

∂B
=

∑
i,j

[(
∂Ry(ζ)

∂ζ

)T

D

(
∂Ry(ζ)

∂ζ

)T
]
ij

·

· (I −Ry(ζ)D
)
ΔijB

(
BTRy(ζ)B

)−1
(37)

and can finally be simplified to

∂F (B, ζ)

∂B
=

(
I −Ry(ζ)D

)
GB

(
BTRy(ζ)B

)−1
, (38)

where

G =
∂RT

y (ζ)

∂ζ
D

∂RT
y (ζ)

∂ζ
+

∂Ry(ζ)

∂ζ
DT ∂Ry(ζ)

∂ζ
. (39)

V. THEORETIC PERFORMANCE ANALYSIS

For an initial performance analysis we assume that the
direction-of-arrival parameter ζ has zero mean and is dis-
tributed according to a symmetric beta distribution

p(ζ) =
1

π

Γ(2ρ)

Γ2(ρ)

( π
2 + ζ

π

)(ρ−1)( π
2 − ζ

π

)(ρ−1)

, (40)

with support [−π
2 ;

π
2 ] and ρ > 2, where

Γ(x) =

∫ ∞

0

λx−1e−λdλ (41)

is the gamma function. In this setting the variance is

σ2
ζ = Eζ

[
(ζ − μζ)

2
]

=
π2

4(2ρ+ 1)
. (42)

Larger values of ρ indicate that the variance of the angle-of-
arrival ζ is smaller. In Fig. 1 the distribution p(ζ) is shown for
different ρ. Note that the presented technique is not restricted
to scenarios with the distribution p(ζ) used in this example.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

ζ in rad

p
(ζ
)

ρ = 25
ρ = 15
ρ = 10
ρ = 5

Fig. 1. Beta distribution p(ζ)

A. Results - Setup Gradient Method

With the prior (40), we run the algorithm derived in section
IV with random initial filter B(0) and a diminishing step size

κ(l) =
1

l + β
, (43)

where β = 10 to guarantee convergence [10]. The algorithm is
terminated when the information measure F̄

(
B(l)

)
improves

less than 10−4 percent with respect to the absolute value of
F̄
(
B(l−1)

)
. Recall that the EFIM F̄ (B) is defined in (23).

B. Results - Performance and Number of Sensors M

In order to evaluate the performance of the proposed di-
mension reduction technique, in Fig. 2 the square root of
F̄ (B�) is depicted as a function of the amount of antennas
M for different number of filter outputs K. For the plot we
assume SNR = 0 dB with ρ = 25 to characterize the a
priori information about the angle-of-arrival. It is observed
that for each setting K, the information measure

√
F̄ (B�)

scales faster than linear with the number of antennas M .
While with K = 1 the performance is far from optimum,
K = 16 outputs are sufficient to perform estimation without
considerable accuracy-loss for the depicted range of M .
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100
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√ F̄
(B

�
)

K = 2M
K = 16
K = 8
K = 4
K = 2
K = 1

Fig. 2. EFIM vs. number of antennas (SNR = 0 dB, ρ = 25)

C. Results - Information-loss and Filter Output Size K

Fig. 3 shows the information loss

χ = 10 log

(
F̄ (B�)

F̄ (I2M )

)
(44)

in dB, for the scenario described in Fig. 2. The loss in (44)
compares the estimation error achieved with the compressed
sensor data and the original signal. It is observed that with
K = 16 and M = 40 the loss is less than 1.0 dB.

10 20 30 40
−6

−4

−2

0

M

χ
in

dB

K = 16
K = 8
K = 4

Fig. 3. Information-loss vs. number of antennas (SNR = 0 dB, ρ = 25)

D. Results - Information-loss and Prior Knowledge ρ

In order to visualize the impact of the prior knowledge p(ζ),
in Fig. 4 the performance-loss χ is depicted for different prior
qualities ρ for a SNR = 0 dB and for M = 50 antennas. It
becomes obvious, that the prior p(ζ) plays an important role
for the design of the compression matrix. If the variability of

the angle of arrival parameter decreases (ρ → ∞), the signal
can be compressed with smaller performance-loss χ.

10 20 30 40 50
−8

−6

−4

−2

0

ρ

χ
in

dB

K = 16
K = 8
K = 4

Fig. 4. Information-loss vs. prior knowledge (SNR = 0 dB, M = 50)

E. Results - Information-loss and Signal-to-Noise Ratio

The information-loss χ for ρ = 10 and with M = 50
antennas is depicted in Fig. 5 as a function of SNR. For
medium SNR, where the first term of the covariance matrix
Ry(ζ) (see eq. 19) is dominant, the loss χ is smaller than at
low SNR values.

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

SNR in dB

χ
in

dB

K = 16
K = 8
K = 4

Fig. 5. Information-loss vs. SNR (ρ = 10, M = 50)

VI. PRACTICAL PERFORMANCE ANALYSIS

As the presented results exclusively rely on theoretic mea-
sures, the last part of the discussion is devoted to demonstrate
the practical impact of the proposed approach. Therefore, the
performance of a real estimation algorithm is investigated. We
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use the filter matrices B� found with the proposed method and
calculate the maximum a posteriori estimator (MAP)

ζ̂MAP(r) = argmax
ζ

(
ln p(r|ζ) + ln p(ζ)

)

= argmax
ζ

(
N∑

n=1

ln p(rn|ζ) + ln p(ζ)

)
. (45)

With the PDF of a single snapshot given by (21), we obtain

ln p(rn|ζ) = −K

2
ln(2π)− 1

2
ln

(
det

(
BTRy(ζ)B

))−
− 1

2
rTn (B

TRy(ζ)B)−1rn, (46)

and the MAP estimator can be written as

ζ̂MAP(r) = argmin
ζ

ln
(
det

(
BTRy(ζ)B

))
+

+ tr
(
R̃r(B

TRy(ζ)B)−1
)
− 2

N
ln p(ζ), (47)

where the covariance matrix

R̃r =
1

N

N∑
n=1

rnr
T
n (48)

represents an approximation of the covariance matrix Rr.

A. Results - MAP Performance and Signal-to-Noise Ratio

In Fig. 6 the root mean squared error

RMSE =

√
Er,ζ

[
(ζ̂MAP(r)− ζ)2

]
(49)

of the MAP estimator is plotted for different values K as
a function of SNR. We compare the RMSE to the theoretic
performance measure (BRCLB), while for all simulations we
assume M = 16, ρ = 25 and N = 2500 and use 10000
realizations to approximate the expectation in (49). Results
in Fig. 6 show that the performance predicted in theory by
the Bayesian Cramér-Rao lower bound (BCRLB) is in indeed
achieved in practice if the observation length N and the
SNR are chosen sufficiently large. Since we consider an array
with M = 16 antennas, the case K = 32 represents the
performance with the original data set. In the example the
dimension of the original data (2M = 32 real-valued outputs)
can be reduced by 50 percent (K = 16 real-valued outputs)
without significant loss in estimation accuracy.2

VII. CONCLUSION

The problem of performing direction-of-arrival estimation
from observation data of reduced dimension has been dis-
cussed. In order to compress the array data without substantial
loss in the information about the direction-of-arrival parameter
ζ, an optimization problem for the filter matrix B was
established which leads to the smallest mean squared error
with fixed output dimensionality K. Since a closed solution

2For a subspace-based estimation algorithm like MUSIC/ESPRIT, the
complexity reduces from O(163) to O(83). Therefore, at the expense of a
negligible performance loss, the number of operations is diminished to 12.5
percent (factor 8) in this example by using the proposed compression method.

−4 −2 0 2 4 6 8 10
0.5

1

1.5

2

2.5

3
·10−2

SNR in dB

R
M

SE
in

de
gr

ee
s

K = 8 (BCRLB)
K = 8 (RMSE)
K = 16 (BCRLB)
K = 16 (RMSE)
K = 32 (BCRLB)

Fig. 6. RMSE with MAP estimator vs. SNR (ρ = 25, M = 16)

B� seems difficult to obtain, we have used a gradient-based
method. Although this choice of B� might be suboptimal, re-
sults show that the dimension of the receive data (and therefore
the analog or digital complexity of the receiver) can be reduced
without loosing the capability of high-accuracy direction-of-
arrival estimation. In particular the possibility to trade-off
complexity versus accuracy, through the design parameter K, is
an interesting feature of the proposed approach. Future works
will focus on generalizing the presented results to scenarios
with multiple signal sources and investigate the performance
of classical direction-of-arrival methods with compressed data.
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