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Abstract

X-ray crystallography is the main tool for the structural analysis of molecules today.

In this dissertation, an extension of the principles of this method to a general class of

highly symmetric structures is studied by introducing a criterion for the design of suitable

radiation. The solutions to these design equations are explicitly determined for a class

of nanotube-like structures. Under certain conditions, a generalization of the von Laue

condition of X-ray crystallography can be formulated. Tools include harmonic analysis

and representation theory.

Zusammenfassung

Die Röntgenstrukturanalyse ist heutzutage die zentrale Methode zur Bestimmung der

Struktur von Molekülen. Die vorliegende Arbeit behandelt die Verallgemeinerung der

Prinzipien, die dieser Methode zugrunde liegen, auf eine allgemeine Klasse von hochgradig

symmetrischen Strukturen. Ein theoretisches Kriterium für das Design strukturadap-

tierter elektromagnetischer Strahlung wird formuliert und für eine Klasse von Struk-

turen explizit gelöst. Unter bestimmten Bedingungen kann die von-Laue-Bedingung der

Kristallstrukturanalyse verallgemeinert werden. Dabei werden Methoden der harmonis-

chen Analysis sowie der Darstellungstheorie verwendet.
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Thanks to Frauke Bäcker for her help in administrative matters, and for many pleasant

chats.

Thanks to my family – to my mother Traudl, my father Jürg, my brother Martin, my

sisters Susi and Ela, and my niece Lisa – and to Gitti and Franzi for all the little and big

things they did to support me.

Finally, I thank Hedi for her emotional support, for her love, and for the little pushes

she gave me at times to keep me going.

v





Introduction

X-ray Crystallography. Before the invention of X-ray crystallography, structural

analysis of molecular structures at the atomic scale was limited to theoretical considera-

tions. This situation changed dramatically, when in 1912, Max von Laue, Walter Friedrich

and Paul Knippig first demonstrated the diffraction of X-rays by crystals [FKL12] in Wil-

helm Röntgen’s laboratory in Munich [Ewa62]. Von Laue’s team was awarded the 1914

Nobel Prize for Physics for this discovery. Not only did their experiment clarify the na-

ture of electromagnetic radiation, it also was quickly realized that the highly structured

diffraction patterns bear the possibility to reconstruct the atomic structure of a crystal.

polychromatic
x-ray source

single 
crystal

screen/detector
electron density 

of a unit cell

Figure 0.1. Visualization of the classic von Laue method of X-ray Crystal-
lography. Polychromatic X-rays are diffracted by a single crystal, resulting
in a structured peak pattern on a screen. The electron density of a unit
cell of the crystal can be recovered (up to the phase problem) from the
measured intensity of the outgoing radiation.

When measuring the intensity of the scattered radiation, a part of the information

contained in the field is lost. This problem is called the phase problem and makes the

reconstruction a mathematically challenging task.

William Lawrence Bragg and his father William Henry Bragg solved the first simple

crystal structures in the following years [Bra13], earning them the 1915 Nobel Prize for

Physics for their contributions. The list of Nobel laureates related to X-ray crystallog-

raphy is long. Most notably, Herbert Hauptman and Jerome Karle won the 1985 Nobel

Prize for Chemistry for their mathematical work on the phase problem [HK53] that led

1



2 INTRODUCTION

to the reconstruction of more complex structures and made X-ray crystallography the

central tool for the structural analysis of biomolecules, and Dan Shechtman won the 2011

Nobel Prize for Chemistry for his discovery of quasicrystals [SBGC84] that was motivated

by X-ray diffraction data. This illustrates the significance of X-ray crystallography for

the natural sciences.

The major drawback of X-ray crystallography is its exclusive applicability to crystal

structures. Because of this restriction, a lot of effort is put in the crystallization of

structures that naturally do not form crystals [GEA11]. A method to analyze the structure

of macromolecules without the need to crystallize them is therefore of great interest.

Coherent Diffraction Imaging. In 1999, the possibility of the extension of X-ray

diffraction methods for the analysis of non-crystalline samples was first demonstrated by

Jianwei (John) Miao et al. [MCKS99]. The method is based on an observation made by

David Sayre [Say52-2].

Coherent Diffraction Imaging (CDI) uses highly brilliant third generation X-ray sources

to illuminate a general sample. The continuous diffraction pattern is then used to recon-

struct a projection of the sample. The time gap between the idea and its realization has

two reasons – the need of high-quality sources and detectors on the one hand, and for

algorithms and computational power to solve the corresponding high-dimensional phase

problem for reconstruction on the other hand.

highly brilliant
x-ray source

general
structure

screen/detector
projection of the 
electron density

Figure 0.2. Visualization of Coherent Diffraction Imaging. Monochro-
matic X-rays are diffracted by a specimen. A projection of the electron
density of the sample can be recovered (up to the phase problem) from the
measured intensity of the outgoing radiation.

Even though CDI is a very promising method, it currently only achieves a resolution

of a few nanometers and is hence not useful for the analysis of molecular structures. The

resolution of the reconstruction depends on the quality of the source and the resolution

of the detector, as well as on the energy of the used radiation. For the analysis of
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biomolecules, this last point is crucial, because at high energies the specimen is destroyed.

Methods like femtosecond diffractive imaging [CEA06] try to avoid the destruction of the

specimen by a short exposure time. Many other methods related to CDI were proposed,

e.g. Ptychography [TEA08], Fresnel coherent diffractive imaging [WEA06] or massively

parallel X-ray holography [MEA08], just to name a few.

All these methods have one thing in common. They do not use any structural informa-

tion, even though, many interesting structures in biology and nanotechnology are highly

symmetric. The idea of this dissertation is to exploit these symmetries by designing new

kinds of radiation for the analysis of molecular structures.

The von Laue Condition and Radiation Design. X-ray Crystallography achieves

atomic resolution for crystals with a few hundred atoms per unit cell with little technical

requirements [US99]. For simple crystals, atoms can even be resolved using a simple X-

ray tube. The reason for this superiority in resolution is of theoretical nature and lies in

the intimate relationship between the periodic structure of a crystal and the translation

invariance of plane wave radiation. It leads to constructive interference of the outgoing

waves in a discrete set of directions and, more importantly, to destructive interference else.

As a consequence, on a screen in the far-field, a highly structured peak pattern is produced

by the outgoing radiation (see Figure 0.1). This pattern allows direct reconstruction of

the translational symmetries of the crystal – a fact that is mathematically expressed by

the von Laue condition.

This idea, that plane waves are the right choice for the analysis of crystals because of

the relationship of the symmetries of radiation and structure, is the starting point for the

theory developed in this dissertation.

When assuming that the structure under consideration is highly symmetric without

necessarily being a crystal, a natural question to ask is the following. Is there a certain

kind of electromagnetic radiation that reflects the symmetries of the structure in the

same way as plane waves do for crystals? And if there is, can we somehow reconstruct

the symmetries and/or the structure of the sample from the diffraction patterns? This

problem is called radiation design.

Time-Harmonic Maxwell Equations. To solve the design problem, the first thing

is to understand what is meant by ‘radiation’. Mathematically, we look for solutions to

Maxwell’s equations. These equations describe the behavior of electromagnetic fields in

the presence of electric charge and current densities. An important property of plane

waves is their periodicity in time that leads to harmonic oscillations of an illuminated

charge density. We keep this favorable property by considering time-harmonic solutions
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to Maxwell’s equations as our radiation space. This natural choice reduces the design

problem to the spatial part of the electromagnetic field.

A central contribution of this dissertation is a mathematical model of the scattering

of time-harmonic radiation. The resulting formula for the outgoing field was derived in

collaboration with Gero Friesecke and Richard D. James. Applying this formula to the

case of plane waves being scattered by a crystal, the theory behind X-ray crystallography

and CDI is recovered.

Objective Structures. The natural generalization of crystal structures was studied

by Richard D. James in [Jam06]. Objective structures are molecular structures with the

property that every atom ‘sees’ the same atomic environment. This kind of objectivity

gives these highly symmetric structures their name. Realizations of objective structures

are found in many areas of science. In nanotechnology, graphene, carbon nanotubes, and

fullerenes like the buckyball are examples. Qualitatively, also biological structures like

DNA or α-helices in proteins can be viewed as objective structures.

Rephrasing the definition in a group theoretic way makes objective structures accessi-

ble to mathematical theory. The translation group that defines the symmetries of crystal

structures is generalized to the Euclidean group of isometries of three-dimensional space.

This group, for example, also contains rotations, reflections, and screw displacements that

appear as symmetries of objective structures.

The Design Equations. Knowing the radiation space and a class of structures to

consider, we need a design criterion that relates the symmetries of structure and radiation.

The classic case of plane waves and crystals guides the way. The plane waves can be

characterized as the eigenfunctions of the translation group in our radiation space. At

the same time, the class of crystal structures is characterized as the objective structures

that are generated by a discrete closed subgroup of the translation group.

The generalization is now straightforward. Take an abelian closed subgroup G of the

Euclidean group that plays the role of the translation group. This group is called the

design group. It defines the structures to consider as the objective structures generated

by a discrete closed subgroup of G and the radiation to use as the eigenfunctions of the

action of G on our radiation space. This design criterion is summarized in the design

equations. These need to be solved to find radiation that induces resonant oscillations of

the molecules of the analyzed structure.

Nanotubes and Twisted Waves. A central example, that is worked out in detail,

is the design group that consists of all rotations and screw displacements about, and

all translations along a fixed axis. The corresponding structures are called nanotube
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structures. A carbon nanotube is an example of such a structure when considered as an

objective structure with a molecule that consists of two atoms.

The design equations are solved explicitly and define an interesting form of radiation.

We call the solutions twisted waves as they propagate helically in space and share many

properties of plane waves. The scattering of these waves by nanotube structures results

in a diffraction pattern on a screen that does not directly allow reconstruction of the

symmetries of the structure. However, when measuring the outgoing intensity in axis

direction as a function of the radiation parameters, we find a twisted von Laue condition.

The symmetries can directly be recovered, while the reconstruction of the charge density

reduces to a scalar phase problem.

A Generalized von Laue Condition. The treatment of the general case needs some

preliminary work. We coarsly classify the abelian design groups and find that most groups

are either combinations of a translation or a nanotube group with a compact group, or

are themselves compact.

When considering discrete or one-dimensional design groups, the solution spaces of

the design equations are very big, making it necessary to select a subset that still makes

reconstruction possible. The observation that twisted waves are projections of plane waves

onto invariant subspaces of the radiation space motivates the definition of symmetry-

adapted waves. Two mathematical tools that are introduced to study these waves are the

Wigner projections and a generalization of the Zak transform.

The scattering of symmetry-adapted waves by the corresponding class of objective

structures is related to an integral transform of the charge density. We call this transform

the wave transform. It plays the role that the Fourier transform plays in the classic case.

Its scalar counterpart – the scalar wave transform – is of mathematical interest in its

own right. It yields a symmetry-frequency decomposition of a function and has many nice

properties.

The main theorem is a generalized von Laue condition. If the orthogonal part of

the design group fixes an axis, the intensity measurements in axis direction allow direct

symmetry reconstruction. In this case, the reconstruction of the charge density reduces

to a phase problem for the scalar wave transform.

Many ideas can be generalized to non-abelian compact groups. However, a von Laue

condition cannot be formulated.

Reader’s Guide. Part 1 that treats the classic theory is written in a less formal style

as it is intended as an introduction to the different topics surrounding the problem of

reconstruction from diffraction patterns. Some basic concepts, notations and results from
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Fourier analysis, Maxwell’s equations, and Crystallography are included as Appendices

at the end of the text. For a detailed treatment of X-ray physics, Crystallography, and

reconstruction algorithms, we refer to [AM11], [GEA11], and [Thi07].

The fist part ends with an example that motivates the need for new kinds of radiation

by illustrating the problems that arise when the symmetries of structure and radiation

are not related.

Part 2 starts with the formulation of the design problem that is based on a model of the

scattering of time-harmonic radiation. The design criterion that relates the symmetries

of strucure and radiation is then solved explicitly for a special class of structures. This

part of the dissertation (Chapters 3 and 4) is joint work with Gero Friesecke and Richard

D. James.

From a more abstract point of view, the ideas are then generalized to classes of struc-

tures that are defined via abelian or compact isometry groups. The treatment uses meth-

ods from harmonic analysis and representation theory.

To improve the readability of the text, an index of the used notation with short

explanations is added at the very end.



Part 1

Analysis of Molecular Structures by Plane

Wave Diffraction



The standard method for the analysis of molecular structures today is the reconstruc-

tion from X-ray diffraction patterns. The discovery of the highly structured diffraction

of plane waves by crystals that resulted in the development of X-ray crystallography

depended on the following two facts.

First, plane waves appear naturally as the far-field limit of spherical waves that are

generated by oscillating charges. So, a simple X-ray tube essentially produces plane waves.

Second, most solids form crystals, making these structures available for experiments.

The relationship between the symmetries of radiation and structure leads to a highly

structured and sharply peaked diffraction pattern. The crucial observation is the follow-

ing. It is possible to directly reconstruct symmetry information from the structure of this

diffraction pattern. In addition, the intensity of the peaks is related to the Fourier trans-

form of the electron density in a unit cell of the crystal. This fact makes reconstruction

of the electron density possible in many cases and led to the development of generaliza-

tions of X-ray crystallography to general non-crystalline structures. By illuminating an

arbitrary sample with highly brilliant X-rays, the projection of the electron density in

propagation direction can be reconstructed from intensity measurements in the far field.

Before we begin to generalize the methods for the analysis of molecular structures

by plane wave radiation, we need to understand the mathematical theory behind these

methods and work out the reasons for their success. This is the main goal of this first

part.

However, it is not a mere summary of the existing theory, but contains some new results

and insights. In particular, the theory of X-ray crystallography and CDI is inferred from a

general result on the scattering of time-harmonic radiation that will be derived in Chapter

3. To gain a qualitative understanding of the diffraction patterns, the information that is

contained in the different features of the patterns is analyzed.

The inverse scattering problem of reconstructing a structure from its diffraction pat-

tern is in general not uniquely solvable. Since only the intensity is measured, the phase

information of the outgoing radiation is lost. Without any additional assumptions, there

is no hope of finding the right phases. The fact that in many situations the problem is

solvable when restricting to non-negative or compactly supported structures is still not

fully understood. We make some progress in this area by identifying different reasons for

non-uniqueness of the solution and giving some mathematical insight on the constraints

that are mainly used.

Finally, the standard algorithms for phase retrieval are presented. Simple algorithms

like the Gerchberg-Saxton scheme that iteratively enforces the right intensity on the

Fourier side and non-negativity and/or support constraints on the direct side have been
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greatly improved to more sophisticated projection-based algorithms and gradient flow

methods.

This first part will be followed by a central example that motivates the need of a dif-

ferent kind of radiation than plane waves, as it shows that a mismatch of the symmetries

of radiation and structure results in an extension of the phase problem to structural infor-

mation while at the same time making phase retrieval much harder by greatly enlarging

the dimension of the reconstruction problem.





CHAPTER 1

Scattering of Plane Waves

The interaction of electromagnetic fields and electric charges is classically described by

Maxwell’s equations and the Lorentz force. Consequently, the scattering of plane waves

by a charge density is analyzed in this framework. The line of thought in this chapter is

as follows.

First, plane waves are introduced as solutions of the homogeneous Maxwell equations,

i.e. when no charge or current is present. Properties like frequency, wavelength, phase,

polarization and intensity of a plane wave are defined and justify the usual intuitive

understanding of plane waves.

Next, when an electric charge distribution is present, it feels the Lorentz force that

is exerted by a plane wave. The non-transient solution of this periodic forcing is an

oscillating charge that itself produces an electromagnetic field as dictated by Maxwell’s

equations. These are solved by the Liénard-Wiechert potentials. In an appropriate limit,

we obtain a formula for the electromagnetic field resulting from the scattering event. A

rigorous derivation of this scattering formula will be given in Chapter 3 for general time-

harmonic radiation. The resulting outgoing field is a modulated spherical wave with the

same frequency as the incoming wave (elastic scattering) and an intensity that is up to

a constant and dependencies on distance and direction the absolute value squared of the

Fourier transform of the charge density evaluated at a certain point.

When the analyzed structure is a crystal, the reconstruction of structural information

from the diffraction pattern is called X-ray Crystallography. In this case, the diffraction

pattern consists of sharp peaks whose location contains information on the translational

symmetries of the crystal. This fact is mathematically expressed by the von Laue condition

that can be directly inferred from the scattering formula by applying it to a model for the

electron density of a perfect crystal. Additional information on the structure is contained

in other features of the pattern. The peak intensities encode the electron density in a unit

cell, while the peak shape results from the shape of the crystal sample.

When dealing with non-crystalline structures, the diffraction pattern of a plane wave

is not as structured as in the crystalline case but still contains a lot of information on the

structure. Using the scattering formula, we show that locally the intensity on a screen is

the absolute value squared of the Fourier transform of a projection of the charge density.

11
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This result is the mathematical justification of Coherent Diffraction Imaging and related

methods.

1. Plane Wave Radiation

The material presented in this section is standard textbook material from classic elec-

trodynamics (see e.g. [Jac98, Gri99]). For the convenience of the reader and for later

reference we give a short review.

The first step towards understanding the scattering of plane waves by a general electron

density, is to understand plane waves themselves.

The electric field E of a plane wave at a point x ∈ R3 and a time t ∈ R is described

by the formula

E(x, t) = n cos(k · x− ωt+ ζ), (1.1)

with amplitude n ∈ R3, wave vector k ∈ R3 , angular frequency ω > 0 and phase angle

ζ ∈ [0, π), that satisfy |k|2 = ω2

c2
and k · n = 0 with c denoting speed of light. More

precisely, E is the special case of a linearly polarized plane wave. We will shortly see

what that means.

First, we have a look at some important properties of plane waves. Like all electro-

magnetic fields, plane waves are solutions to Maxwell’s equations – a set of coupled partial

differential equations that describe the dependence of the electric field E and the magnetic

field B on present charges, currents and on each other (see also Appendix B). Denoting

the electric charge density by ρel and the current density by Jel, Maxwell’s equations in

SI units are

div E = 1
ε0
ρel, (M1)

div B = 0, (M2)

curl E = −∂tB, (M3)

curl B = µ0(Jel + ε0∂tE), , (M4)

where ε0 and µ0 are the electric and magnetic constants, respectively (see [Jac98]). We

call the pair (E,B) the electromagnetic field.

The electric field (1.1) of a linearly polarized plane wave together with the magnetic

field B, given by

B(x, t) =
k× n

ω
cos(k · x− ωt+ ζ) (1.2)
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at a point x ∈ R3 and a time t ∈ R, are easily seen to solve Maxwell’s equations without

charge and current, i.e. for ρel = 0 and Jel = 0. We call this special case the homogeneous

Maxwell equations.

The relations between k, n and ω follow directly from Maxwell’s equations: Applying

(M1) to E shows that k ·n = 0, meaning that the field is perpendicular to its propagation

direction. Waves of this kind are called transverse waves (in contrast to longitudinal waves,

e.g. sound waves). Analogously, (M2) says that the magnetic field B is a transverse wave,

which is in addition perpendicular to the electric field by (M3) (see Figure 1.1).

Figure 1.1. Visualization of plane wave radiation. The electric field and
the (normalized) magnetic field of a linearly polarized plane wave are plotted
along a line in k-direction.

The relation |k|2 = ω2

c2
between the wave vector and the angular frequency relates the

spatial shape and the time evolution of the wave. Defining the wave length λ := 2π
|k| that

describes the spatial periodicity of the wave in k-direction, and the frequency f0 := |ω|
2π

,

describing the time-periodicity of the wave, the relation can be restated as

λ =
c

f0

, (1.3)

saying that high-frequency electromagnetic waves have a short wavelength and vice versa.

This relation can directly be inferred from the homogeneous wave equations for E and B:(
∆− 1

c2
∂2
t

)
E = 0,

(
∆− 1

c2
∂2
t

)
B = 0. (1.4)

These equations are derived from Maxwell’s equations as follows:

∂2
t E

(M4)
= c2curl ∂tB

(M3)
= −c2curl(curl E) = −c2(∇(div E)−∆E)

(M1)
= c2∆E,

∂2
t B

(M3)
= −curl ∂tE

(M4)
= −c2curl(curl B) = −c2(∇(div B)−∆B)

(M2)
= c2∆B.

Usually, Maxwell’s equations are solved assuming that the electric and magnetic fields

are complex vector fields, since many calculations are much easier in the complex number

field. The physical fields are then taken as the real parts of the complex fields (Note that



14 1. SCATTERING OF PLANE WAVES

by linearity, the real part is again a solution.). To simplify notation, we will write Ẽ and

B̃ for the complex solutions and define

E := Re(Ẽ), B := Re(B̃). (1.5)

The general complex form of a plane wave is given by the vector fields

Ẽ(x, t) = nei(k·x−ωt), B̃(x, t) =
k× n

ω
ei(k·x−ωt), x ∈ R3, t ∈ R, (1.6)

with k ∈ R3, ω ∈ R and n ∈ C3 that satisfy k · n = 0 and |k|2 = ω2

c2
. Again, these fields

are easily seen to solve the homogeneous Maxwell equations.

To make the real parts of these solutions easier to interpret, one usually writes the

vector n ∈ C3 – called complex amplitude of the wave – in a different way. Letting

n ·n = |n ·n|e2iζ with ζ ∈ [0, π), and n = eiζ(n1− in2) with n1,n2 ∈ R3, we immediately

get n ·n = e2iζ(n1 ·n1−2in1 ·n2−n2 ·n2) and thus n1 ·n2 = 0. Consequently, the general

form of a real plane wave can be written as follows:

E(x, t) = n1 cos(k · x− ωt+ ζ) + n2 sin(k · x− ωt+ ζ),

B(x, t) =
k× n1

ω
cos(k · x− ωt+ ζ) +

k× n2

ω
sin(k · x− ωt+ ζ)

(1.7)

at a point x ∈ R3 and a time t ∈ R with real vectors n1,n2 ∈ R3 that are orthogonal.

Since, for fixed x, the field vectors in (1.7) describe an ellipse about x when moving

forward in time, these general plane waves are called elliptically polarized. There are two

important special cases of elliptic polarization:

• linear polarization for n2 = 0, and

• spherical polarization for |n1| = |n2|.

The different kinds of polarization are visualized in Figure 1.2.

Next, we want to investigate the radiation properties of electromagnetic plane waves.

Radiation in general is a process of energy transfer. In our particular case, the electro-

magnetic energy density u is defined as

u(x, t) :=
1

2

(
ε0|E(x, t)|2 +

1

µ0

|B(x, t)|2
)
, x ∈ R3, t ∈ R. (1.8)

The directional energy flux density is described by the so-called Poynting vector S that

is defined as

S(x, t) :=
1

µ0

E(x, t)×B(x, t), x ∈ R3, t ∈ R. (1.9)
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Figure 1.2. Visualization of the polarization of plane wave radiation. The
field vector of a linearly polarized, an elliptically polarized, and a spherically
polarized plane wave (from left to right) is plotted along a line in k-direction.
On the bottom the shape that the tips of the field vectors describe is shown.

For plane wave radiation, traveling with the speed of light c in direction k
|k| , this can be

seen to be equivalent to the conventional definition of directional energy flux density:

S(x, t) = cε0|E(x, t)|2 k

|k|
= c

k

|k|
u(x, t),

where we used that c2 = 1
ε0µ0

and |B| = 1
c
|E| what can be seen from (1.6) and yields

u(x, t) = ε0|E(x, t)|2 for x ∈ R3 and t ∈ R.

The quantity that is usually measured in diffraction experiments is the intensity I of an

electromagnetic field. Intensity is the power transferred per unit area. At a point x ∈ R3

it is defined as the time average of the magnitude of the Poynting vector S (see [Gri99]):

I(x) := lim
T→∞

1

T

∫ T/2

−T/2
|S(x, t)|dt. (1.10)
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For a plane wave, the intensity can be determined by averaging over one time period.

Since the averages of cos2 and sin2 are equal to 1
2

and n1 · n2 = 0, we get

I(x) =
cε0

2

(
|n1|2 + |n2|2

)
=
cε0

2
|n|2. (1.11)

I.e., the intensity of a plane wave is essentially the absolute value squared of its complex

amplitude.

Since plane waves are central objects throughout the text, we introduce a short nota-

tion. For k ∈ R3, we set

Ek(x) := neik·x for some n ∈ k⊥ \ {0} and all x ∈ R3, (1.12)

suppressing the dependence on n, since the complex amplitude will play a minor role.

We also introduce the notation

ek := eik·x, x ∈ R3, (1.13)

for the scalar counterparts.

At times, we will need families of plane waves {Ek}k∈K , {ek}k∈K , for some set K ⊆ R3.

Then, as the complex amplitude depends on the wave vector, we write Ek(x) = n(k)eik·x,

k ∈ K, for the single plane waves. We also introduce the notations Eω,k0 := Ek and

eω,k0 := ek to emphasize the dependence on the two parameters frequency and propagation

direction k0 := k
|k| .

2. Scattering of Plane Waves

Our goal in this section is to determine the electromagnetic field that results from the

interaction of plane wave radiation with an electric charge density ρel. Mathematically

minded readers that are not interested in the physical origin of the expressions can take

Definition 1.2 as a starting point.

When a charge density ρel is illuminated by plane wave radiation (E,B) as in (1.7),

it feels a force – the so-called Lorentz force FL – that is given by

FL := ρelE + Jel ×B, (1.14)

and starts moving according to Newtonian mechanics. At the same time, a moving charge

density influences the electromagnetic field as dictated by Maxwell’s equations.

Let n ∈ R3 be the complex amplitude of the linearly polarized plane wave

E(x, t) = n cos(k · x− ωt)
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with n ·k = 0 and |k|2 = ω2

c2
. We start by considering a point charge ρel(x, t) := eelδr(t)(x)

at a point y0 ∈ R3 with electric charge eel moving in n-direction, i.e. r(t) = y0 + ξy0(t)n.

The current density is then given as Jel(x, t) = eelδr(t)(x)∂tr(t) = eelδr(t)(x)∂tξy0(t)n.

Consequently, using (1.7), the Lorentz force exerted on the point charge at r(t) is

FL(r(t), t) = eeln cos(k · r(t)− ωt) + eel∂tξy0(t)n×
k× n

ω
cos(k · r(t)− ωt)

= eel

(
n +

∂tξy0(t)

c

k

|k|

)
cos(k · y0 − ωt),

where we used that k · n = 0.

Assuming that the velocity ∂tξy0(t) of the charge is non-relativistic, i.e. ∂tξy0(t)� c,

we neglect the contribution of the magnetic field. When melδr(t)(x) is the mass density,

Newton’s second law FL(r(t), t) = mel∂
2
t r(t) reads

eeln cos(k · y0 − ωt) = meln∂
2
t ξy0(t),

yielding the non-transient solution

ξy0(t) = − eel

melω2
cos(k · y0 − ωt).

This results in the following charge and current densities:

ρel(x, t) = eelδr(t)(x), Jel(x, t) = − eel

melω
sin(k · y0 − ωt)nδr(t)(x),

with r(t) = y0 + eel
melω2 cos(k · y0 − ωt)n.

As we don’t want to investigate the scattering of point charges, but of general charge

densities, we now consider ρel to be a function supported on a compact set Ω ⊂ R3. The

main assumption we make for the following is that the density oscillates in phase when

illuminated by plane wave radiation, i.e.

ρel(x + ξx(t), t) = ρel(x, 0).

Maxwell’s equations (M1)-(M4) can be solved in terms of potentials (for details see Ap-

pendix B). We define the vector potential Ael and the scalar potential ϕel via

B = curl Ael, E + ∂tAel = −∇ϕel,

using that B is divergence-free and E + ∂tAel is curl-free under suitable regularity as-

sumptions on E and B. In addition, we have some freedom in the choice of the potentials

and can impose the additional condition

div Ael +
1

c2
∂tϕel = 0, (1.15)
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which is called Lorenz gauge condition. Maxwell’s equations then reduce to a set of

inhomogeneous wave equations

−∆ϕel +
1

c2
∂2
t ϕel =

1

ε0

ρel, −∆Ael +
1

c2
∂2
t Ael = µ0Jel.

A particular solution of these equations are the retarded potentials:

ϕel(x, t) =
1

4πε0

∫
R3

ρel

(
y, t− |x−y|

c

)
|x− y|

dy,

Ael(x, t) =
µ0

4π

∫
R3

Jel

(
y, t− |x−y|

c

)
|x− y|

dy.

(1.16)

In an appropriate regime that will be defined in Chapter 3 in a more general setting, these

potentials result in an approximation of the electric field E = −∂tAel −∇ϕel given by

E(x, t) =cel
P((x− yc)

⊥)n

|x− yc|

×
∫

Ω

cos

(
−ω
c

(
x− yc
|x− yc|

− k

|k|

)
· y + ω

(
(x− yc) · x
c|x− yc|

− t
))

ρel(y)dy,

where cel := − e2el
4πε0melc2

is the scattering constant, yc ∈ Ω is a typical point in the sam-

ple (e.g. the center of mass) and P(x⊥) :=
(
I− x

|x| ⊗
x
|x|

)
is the projection onto the

orthogonal complement of a vector x ∈ R3.

Since the dependence on the point yc is not important for our considerations, we choose

yc = 0 as a natural choice of origin to get the final version of the outgoing electromagnetic

field which will be subsequently called the scattering formula

E(x, t) = cel
P(x⊥)n

|x|

∫
Ω

cos

(
−ω
c

(
x

|x|
− k

|k|

)
· y + ω

(
|x|
c
− t
))

ρel(y)dy. (1.17)

The analog approximation of the magnetic field B = curl Ael is given by

B(x, t) =
cel

c

x× n

|x|2

∫
Ω

cos

(
−ω
c

(
x

|x|
− k

|k|

)
· y + ω

(
|x|
c
− t
))

ρel(y)dy. (1.18)

A short calculation shows that

P(x⊥)n×
(

x

|x|
× n

)
= |n|2 sin2(^(x,n))

x

|x|
,

where ^(x,n) is the angle between the outgoing direction and the field vector.
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By equation (1.9), the Poynting vector S of the field (E,B) is thus given by

S(x, t) =c2
el

cε0|n|2

|x|2
sin2(^(x,n))

x

|x|

×
(∫

Ω

cos

(
−ω
c

(
x

|x|
− k

|k|

)
· y + ω

(
|x|
c
− t
))

ρel(y)dy

)2

.

To determine the intensity I via equation (1.10), we use the following lemma.

Lemma 1.1 (Intensity of the Scattered Field). Let F ∈ Cb(R3;C3), ρel ∈ S(R3),

ρel ≥ 0, and ω > 0. Then

lim
T→∞

1

T

∫ T/2

−T/2

∣∣∣∣∫
Ω

Re(F(y)e−iωt)ρel(y)dy

∣∣∣∣2 dt =
1

2

∣∣∣∣∫
Ω

F(y)ρel(y)dy

∣∣∣∣2 . (1.19)

Proof. We first expand the integrand:∣∣∣∣∫
Ω

Re(F(y)e−iωt)ρel(y)dy

∣∣∣∣2
=

(∫
Ω

Re(F(y)) cos(ωt)ρel(y)dy +

∫
Ω

Im(F(y)) sin(ωt)ρel(y)dy

)2

= cos2(ωt)

(∫
Ω

Re(F(y))ρel(y)dy

)2

+ sin2(ωt)

(∫
Ω

Im(F(y))ρel(y)dy

)2

+ 2 cos(ωt) sin(ωt)

∫
Ω

Re(F(y))ρeldy

∫
Ω

Im(F(y))ρel(y)dy.

Now, we can evaluate the time integrals

lim
T→∞

1

T

∫ T/2

−T/2
cos2(ωt)dt = lim

T→∞

1

T

∫ T/2

−T/2
sin2(ωt)dt =

ω

2π

∫ π/ω

−π/ω
sin2(ωt)dt =

1

2

and

lim
T→∞

1

T

∫ T/2

−T/2
cos(ωt) sin(ωt)dt =

ω

2π

∫ π/ω

−π/ω
cos(ωt) sin(ωt)dt = 0.

Consequently,

lim
T→∞

1

T

∫ T/2

−T/2

∣∣∣∣∫
Ω

Re(F(y)e−iωt)ρel(y)dy

∣∣∣∣2 dt

=
1

2

(∫
Ω

Re(F(y))ρel(y)dy

)2

+
1

2

(∫
Ω

Im(F(y))ρel(y)dy

)2

=
1

2

∣∣∣∣∫
Ω

F(y)ρel(y)dy

∣∣∣∣2 ,
where we used the linearity of the integral and the fact that |z|2 = Re(z)2 + Im(z)2 for

z ∈ C. �
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Now, setting F(y) := x
|x|e

i(−ωc ( x
|x|−

k
|k|)·y+

ω|x|
c ), y ∈ R3, we can determine the intensity

I from equation (1.10) using Lemma 1.1.

I(x) = c2
el

cε0|n|2

|x|2
sin2(^(x,n)) lim

T→∞

1

T

∫ T/2

−T/2

∣∣∣∣∫
Ω

Re(F(y)e−iωt)ρel(y)dy

∣∣∣∣2 dt

= c2
el

cε0|n|2

|x|2
sin2(^(x,n))

1

2

∣∣∣∣∫
Ω

F(y)ρel(y)dy

∣∣∣∣2
= c2

el

cε0|n|2

2|x|2
sin2(^(x,n))

∣∣∣∣∫
Ω

e−i
ω
c ( x
|x|−

k
|k|)·yρel(y)dy

∣∣∣∣2
The term sin2(^(x,n))|n|2 can be reformulated as the absolute value squared of the vector

P(x⊥)n, while the integral is recognized as the Fourier transform of the charge density ρel

evaluated at the point ω
c

(
x
|x| −

k
|k|

)
. So, our final result for the intensity of the outgoing

radiation is the following special case of equation (3.28).

I(x) = c2
el

cε0

2|x|2

∣∣∣∣P(x⊥)nρ̂el

(
ω

c

(
x

|x|
− k

|k|

))∣∣∣∣2 , (1.20)

at a point x ∈ R3 and a time t > 0.

This formula shows the relationship between the scattering of plane waves and the

Fourier transform. The fact that only the absolute value squared of the Fourier transform

of the charge density is given by the intensity of the outgoing radiation is known as the

phase problem. We loose the phase of the complex function ρ̂el, which makes it hard

to reconstruct the density. The phase problem and algorithms for reconstruction will be

discussed in the next chapter.

From now on, we are done with physical considerations and take equations (1.17),

(1.18), and (1.20) as a starting point for subsequent mathematical analysis. We summarize

our results in the following

Definition 1.2 (Plane Wave Scattering Data). For given vectors k ∈ R3 (wave

vector), n ∈ k⊥ (complex amplitude), and a given function ρel ∈ Cc(R3) (charge density),

the integrals (1.17), (1.18), and (1.20) are called the outgoing electric field, outgoing

magnetic field, and scattering intensity, respectively.

It is convenient to work with the square root of the intensity. We call this quantity

the scattering amplitude A := I1/2. For the scattering of a plane wave, A is given by

A(x) = cel

(
cε0

2|x|2

)1/2 ∣∣∣∣P(x⊥)nρ̂el

(
ω

c

(
x

|x|
− k

|k|

))∣∣∣∣ . (1.21)

Mathematically, the scattering amplitude has the advantage that it can be extended to

more general models for the electron density. When assuming that the electron density
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is an infinite sum of delta distributions as is usually done in X-ray Crystallography,

the intensity might not be well-defined as the square of a tempered distribution. The

scattering amplitude, instead, is in this case a well-defined tempered distribution again.

We use this property of the scattering amplitude to formulate the von Laue condition in

the next section.

3. X-ray Crystallography

When plane wave radiation is scattered by a crystal, a highly structured peak pattern

emerges on a screen in the far-field. This fact was first observed in 1912 by Max von Laue

and his team [FKL12]. We will explain in this section why this is the case by modeling

the electron density of a crystal and applying the formula for the scattering amplitude

(1.21) we inferred in the last section. The crystallographic terminology that is used in

this section is explained in Appendix C.

3.1. Von Laue Condition and Bragg’s Law. We assume that the electron density

ρel of a crystal sample shares the symmetry of the crystal. Moreover, the density shall be

smooth and well-localized.

The translational symmetries of a crystal lattice are described by a Bravais lattice (see

Definition C.1). Given an invertible matrix A = (a1, a2, a3) ∈ GL(3,R), a Bravais lattice

B ⊂ R3 is defined as the set

B := AZ3.

It is the set of points of the form ja1 + ka2 + `a3, j, k, ` ∈ Z, that form a lattice in R3.

Now, given a finite set M ⊂ R3, a crystal lattice L ⊂ R3 is defined as a set of the form

L := B + M.

Translating the set M by the elements of the Bravais lattice B, we obtain a model for the

atom positions in a periodic crystal structure.

When B = AZ3 ⊂ R3 , A ∈ GL(3,R), is a three-dimensional Bravais lattice that

generates our crystal, consider the following model for its electron density

ρel := (δB · 1Ω) ∗ ϕ, (1.22)

where δB =
∑

b∈B δb ∈ S ′(R3) is the tempered distribution associated to B, Ω ⊂ R3 is

a compact set and ϕ ∈ S(R3) is a Schwartz function. This model is a finite section of a

B-periodic function.

The function ϕ is a model for the electron density in one single unit cell, while the

multiplication with 1Ω selects the finitely many unit cells that are contained in Ω (see

Figure (1.3)). The restriction of δB to Ω is obviously a compactly supported distribution.
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Since the convolution of a compactly supported distribution with a Schwartz function is

again a Schwartz function, we see that ρel ∈ S(R3) is a smooth and well-localized function.

Figure 1.3. A model for the electron density ρel of a two-dimensional
crystal. The function ϕ is a model for the electron density of the atoms in
one unit cell. The compact set Ω selects finitely many of these unit cells.

When a plane wave is scattered by the charge density ρel, we can use equation (1.20)

to determine the intensity of the outgoing radiation. The central term in this formula is

the Fourier transform of the electron density. Using the convolution theorem (Theorem

A.3) in both directions and the generalized Poisson summation formula (Theorem C.2),

we get

ρ̂el = F((δB · 1Ω) ∗ ϕ) =
1

VB
(δB⊥ ∗ 1̂Ω) · ϕ̂, (1.23)

where VB := | det(A)|, and B⊥ is the reciprocal lattice of B, that is defined as

B⊥ := {k ∈ R3. k · b ∈ 2πZ for all b ∈ B} = 2πA−TZ3.

We introduce the notation A⊥ := 2πA−T for the generator matrix of the reciprocal lattice.

In the case of a perfect crystal, i.e. ρel = δB ∗ ϕ, we recover the von Laue condition.

Even though the formula for the scattering amplitude (1.21) is not applicable in this case,

the result can be seen as an approximation of the case of a single crystal with a diameter

that is large compared to the size of a unit cell.

Theorem 1.3 (von Laue Condition). The scattering amplitude A defined in for-

mula (1.21) (physically arising from scattering a plane wave E(x, t) = n cos(k · x − ωt),

n,k ∈ R3, n · k = 0, ω = c|k|), in the case ρel = δB ∗ ϕ for a Bravais lattice B and a

Schwartz function ϕ ∈ S(R3), satisfies

A(x) = (2π)3cel

(
cε

2|x|2

)1/2

|P(x⊥)n| (δB⊥ · |ϕ̂|)
(
ω

c

(
x

|x|
− k

|k|

))
, (1.24)

for x ∈ R3 and t > 0.
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I.e. constructive interference occurs if and only if ω
c

(
x
|x| −

k
|k|

)
is a reciprocal lattice

vector.

Remark 1.4 (Bragg’s Law). The von Laue condition is often expressed differently

in form of Bragg’s law. Consider the angle θ defined by∣∣∣∣ x

|x|
− k

|k|

∣∣∣∣ = 2 sin θ.

It is half the angle between incoming direction k
|k| and outgoing direction x

|x| (see Figure

(1.4)). Now, when ω
c

(
x
|x| −

k
|k|

)
is an arbitrary reciprocal lattice vector, it can be written

in the form jkι, j ∈ N, ι ∈ Z3, gcd(ι1, ι2, ι3) = 1, where kι = A⊥ι. The vector ι is called

the Miller index of the family Nkι of reciprocal lattice vectors. As shown in Appendix C,

we know that |kι| = 2π
λι

, where λι is the distance of neighboring lattice planes with Miller

index ι. Consequently,

2 sin θ =

∣∣∣∣ x

|x|
− k

|k|

∣∣∣∣ =
c

ω

∣∣∣∣ωc
(

x

|x|
− k

|k|

)∣∣∣∣ =
c

ω
|jkι| =

c

ω
j

2π

λι
.

Since c
ω

= λ
2π

, where λ is the wavelength of the incoming radiation, we conclude that

2λι sin θ = jλ, j ∈ N, (1.25)

what is known as Bragg’s law.

Figure 1.4. Visualization of Bragg’s law. Plane waves that are ‘reflected’
at neighboring lattices planes need to have a wavelength that satisfies
Bragg’s law, i.e. λι sin θ = jλ for some j ∈ N, to achieve constructive
interference in x-direction. In the depicted example, Bragg’s law is not
satisfied – the outgoing waves almost cancel.
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It gives a geometric interpretation of the scattering event. When the incoming waves

are ‘reflected’ at neighboring lattice planes, the waves going out from two atoms in these

planes need to have a relative phase shift that is a multiple of its wavelength to achieve

constructive interference.

Formula (1.24) does not only describe the location of the peaks on a screen, it also

shows that the scattering amplitude at a peak is essentially the absolute value of the

Fourier transform of the function ϕ. This fact makes it possible to reconstruct the density

within a unit cell up to the phase problem.

3.2. Reconstruction of the Translational Symmetries. First, we show how to

reconstruct the translational symmetries of ρel from the peak locations. If we know the

incoming direction k
|k| and the angular frequency ω of the incoming plane wave, a peak

in outgoing direction x
|x| means that the vector b′ given by b′ := ω

c

(
x
|x| −

k
|k|

)
is an

element of the reciprocal lattice B⊥. Collecting the peaks in different directions and for

different frequencies, we can eventually determine the reciprocal lattice. The lattice B
that describes the translational invariances of ρel can be recovered by the observation that

the reciprocal lattice of the reciprocal lattice is the original lattice:

(B⊥)⊥ = 2π(2πA−T )−TZ3 = 2π

(
1

2π
A

)
Z3 = AZ3 = B.

When polychromatic radiation is used and the intensity of the outgoing radiation is mea-

sured on a flat screen in the far-field, a highly structured peak pattern – called a Laue

photograph – is observed (see Figure (1.5)). Even though, the scattering formula is not

applicable, it is experimentally confirmed that this pattern is a superposition of the pat-

terns for the single plane waves.

To determine the symmetries from a Laue photograph, an additional step is necessary.

The procedure of determining the frequency of the plane wave that produced a specific

peak in a Laue photograph is called indexing. This name comes from the fact that the

Miller index of the corresponding reciprocal lattice vector is identified. In view of Bragg’s

law (1.25), the peak with Miller index ι ∈ Z3 results from the waves that are reflected at

the family of lattice planes with Miller index ι. In particular, because of peak overlap,

not all values of |ϕ̂| are accessible from a Laue photograph.

This short discussion shows that a Laue photograph can be used to identify the sym-

metries, but is not the best choice for the reconstruction of ρel.

A very clever way to collect data for the analysis of crystal structure is the rotating

crystal method. Using monochromatic radiation with a fixed frequency ω, the resulting

peaks can directly be indexed. Instead of changing the frequency or changing the incoming
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Figure 1.5. Simulated Laue photograph of an fcc-lattice along a 3-fold
axis. The left figure shows the forward, the right shows the backscattering
pattern.

direction k
|k| , the crystal is rotated. This is equivalent to rotating the argument of the

electron density what again is equivalent to rotating the argument of its Fourier transform.

So, fixing k and ω, we vary x
|x| and rotate ω

c

(
x
|x| −

k
|k|

)
. Like that, we reach every reciprocal

lattice vector b′ ∈ B⊥ that satisfies |b′| ≤ 2ω
c
. The used frequency thus determines

the resolution of the reconstruction. Different measurement techniques will be shortly

discussed in Chapter 3, Section 2.2, from a more abstract point of view.

3.3. The Phase Problem for the Electron Density. Measuring the peak inten-

sities, we have access to the data

{|ϕ̂(b′)|}b′∈B⊥ .

Now, the inverse Fourier transform of the distribution δB · |ϕ̂| ·eiζ is a B-invariant periodic

function for every choice of the phase function ζ : R3 → R by the Poisson summation

formula. This shows that instead of ϕ, we can reconstruct the content of a unit cell of the

crystal from this data (this is the same effect as in music technology when undersampling

an audio file, see [Fri07]).

Indexing the peaks, we get the reciprocal lattice B⊥ and choose a generator matrix

A⊥ ∈ GL(3,R), s.t. B⊥ = A⊥Z3. Defining A := (A⊥)⊥, we have B = AZ3 as we saw

above. Now, consider the canonical unit cell UA
B := A[0, 1)3 of B with respect to A.
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Then, when ρel = δB ∗ ϕ, the electron density can be rewritten as

ρel = δB ∗
(

(δB ∗ ϕ)|UA
B

)
= δB ∗ ϕA

B ,

where ϕA
B := (δB ∗ ϕ)|UA

B
will be called the canonical unit cell density. We immediately

see that

|ρ̂el| =
(2π)3

VB
δB⊥ · |ϕ̂A

B |.

In words, the scattering amplitude at the peaks is essentially the absolute value of the

Fourier coefficients of the canonical unit cell density. Here, we run into the so-called phase

problem. By taking the absolute value, we loose the phase information. Finding the right

phases to get back ϕA
B via an inverse Fourier transform is called phase retrieval. The next

chapter is devoted to these topics.

In our model density (1.22) we had an additional term that determined the support

Ω from the crystal sample. If you want to determine Ω from the diffraction pattern, the

term to consider in formula (1.23) for the Fourier transform of the electron density is the

Fourier transform of the characteristic function 1̂Ω. This factor essentially determines the

shape of the peaks. We do not directly see what information on the support is contained

in the shape of the peaks on a flat screen. The answer to this question is given in the

following section on Coherent Diffraction Imaging.

4. Coherent Diffraction Imaging

A method for the analysis of arbitrary samples was first demonstrated in 1999 (see

[MCKS99]). Coherent Diffraction Imaging uses highly brilliant third generation X-ray

sources to generate diffraction patterns from which a projection of the sample can be

reconstructed. It is not obvious that the diffraction pattern contains the necessary infor-

mation. Using the formula for the scattering intensity (1.20), we proof the following

Corollary 1.5 (Coherent Diffraction Imaging). Let ρel ∈ S(R3) (electron density)

and x = D k
|k| + x0 with D > 0, k ∈ R3 and x0 ∈ k⊥ (point on the screen). The scattering

intensity I defined in formula (1.20) satisfies

I(x) = c2
el

cε0

2

|n|2

D2

∣∣∣p̂kρel

(ωx0

cD

)∣∣∣2 +O

(
|x0|2

D2

)
as D →∞, (1.26)

where pkϕ(x0) :=
∫∞
−∞ ϕ(x0 + rk/|k|)dr for x0 ∈ k⊥ and ϕ ∈ S(R3) is the projection

operator along k.

Proof.

We evaluate the intensity of the scattered radiation (1.20) at the point x = D k
|k| + x0.
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The sine-term can be written as follows:

sin2(^(x,n)) = 1− cos2(^(x,n)) = 1− (x · n)2

|x|2|n|2

= 1− (x0 · n)2

D2
(

1 + |x0|2
D2

)
|n|2

= 1 +O

(
|x0|2

D2

)
,

where we used that n · k = 0 and |x|2 = D2 + |x0|2. By Talyor expansion, we find that

|x|−2 = D−2

(
1 +
|x0|2

D2

)−1

= D−2

(
1 +O

(
|x0|2

D2

))
.

For the argument of the Fourier transform, we get

ω

c

(
x

|x|
− k

|k|

)
=
ω

c

(
D k
|k| + x0√
D2 + |x0|2

− k

|k|

)

=
ω

c

x0
1

D
√

1 + |x0|2
D2

+
k

|k|

 1√
1 + |x0|2

D2

− 1


=
ω

c

(
x0

(
1

D
+O

(
|x0|2

D2

))
+

k

|k|
O

(
|x0|2

D2

))
=
ωx0

cD
+O

(
|x0|2

D2

)
again by Taylor expansion of the respective terms.

So, with (1.20), we have

I(x) = c2
el

cε0

2
|n|2

(
1

D2
+O

(
|x0|2

D2

)) ∣∣∣∣ρ̂el

(
ωx0

cD
+O

(
|x0|2

D2

))∣∣∣∣2 .
With e

−iO
(
|x0|

2

D2

)
= 1 +O

(
|x0|2
D2

)
and ρel being a Schwartz function, we get

ρ̂el(y)

(
ωx0

cD
+O

(
|x0|2

D2

))
= ρ̂el

(ωx0

cD

)
+O

(
|x0|2

D2

)
.

Now, introducing the slice operator sk : S(R3) → S(k⊥), skϕ(x0) := ϕ(x0) for x0 ∈ k⊥,

we can use the projection-slice theorem (Theorem A.14), that says p̂kϕ = skϕ̂. We get

I(x) = c2
el

cε0

2

|n|2

D2

∣∣∣skρ̂el

(ωx0

cD

)∣∣∣2 +O

(
|x0|2

D2

)
= c2

el

cε0

2

|n|2

D2

∣∣∣p̂kρel

(ωx0

cD

)∣∣∣2 +O

(
|x0|2

D2

)
.

�
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This corollary tells us that on a flat screen in the far-field we get the absolute value

squared of the two-dimensional Fourier transform of the projection of ρel along the propa-

gation direction of the plane wave. The frequency and the distance of the screen appear as

scaling parameters. To reconstruct the projection of the sample, one again has to solve a

phase problem – this time in two dimensions. How can we determine pkρel, given |p̂kρel|?
In the last section, we saw that we can reconstruct the full three-dimensional electron

density in a unit cell of a crystal sample from plane wave diffraction data, when we

solve the phase problem. In Coherent Diffraction Imaging, the three-dimensional electron

density is not accessible from one single diffraction pattern. But, since we saw in the above

proof that we get the absolute values of a slice of the three-dimensional Fourier transform,

we could in principle determine the full Fourier modulus by rotating the sample and

collecting all the diffraction patterns. This is an example of a tomographic reconstruction.

A Laue photograph can also be understood from the CDI point of view. The forward

diffraction pattern is a superposition of slices through the reciprocal lattice, where each

slice is scaled by the corresponding frequency.

We also get an answer to the question, what information is contained in the shape of a

Bragg peak. It is essentially the modulus of the Fourier transform of the projection of the

support of the sample. This idea has been used to reconstruct the shape of nanocrystals

in [REA01].

In the following chapter, we discuss the phase problem and introduce some state-of-

the-art algorithms for phase retrieval.



CHAPTER 2

Reconstruction from Intensity Measurements

Now, that we have solved the direct problem and know the outgoing radiation of our

diffraction experiment, we will investigate the inverse problem. How can we reconstruct

the charge density from intensity measurements in the far-field?

As we can only measure the intensity, part of the information that is carried by the

field is lost. By formula (1.20), we only have access to the absolute value squared of the

Fourier transform of the density, while the phase information is lost.

It is easily seen that the reconstruction problem is in general ill-posed, since any

choice of phase yields a reconstruction that could be the solution. However, we can utilize

additional information on the structure. A first try is to analyze the problem in a space

of non-negative functions, since the electron density ρel is non-negative. Additionally, we

know that the structure has compact support what might be useful information as well.

As turns out, with these assumptions, one can get reasonable results in many situa-

tions. However, we will present examples of non-negative compactly supported smooth

functions that share the same Fourier modulus, showing that one still needs to be careful

when interpreting the results.

We give some mathematical insight on the non-negativity constraint. Up to mod-

ulations (or equivalently translations of the structure) there is no manipulation of the

phases, s.t. for any non-negative function the corresponding reconstruction is again a

non-negative Schwartz function.

When considering the inverse problem in X-ray crystallography, one comes across a

different flavor of the phase problem. Usually, the crystal is assumed to be perfect, i.e.

that it extends infinitely in space. To reconstruct the content of a translational unit cell

from the Fourier coefficient modulus, we do not have a support constraint at hand and run

into the following problem. When the density is not only non-negative, but greater than

an ε > 0, we find a whole neighborhood of solutions by a continuity argument. Because

of this fact, the assumption that molecular structures are atomistic – meaning that the

electron density consists of peaks at the atom positions – is usually made. When the goal

is to locate the atoms, this might give reasonable results, but it is not clear that it can

be used to find an approximation for the electron density.

29
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In the second part of this chapter, we present a few standard algorithms for phase

retrieval. Some of them can be motivated from a variational point of view, while others

have counterparts in the field of convex optimization. Numerical examples show that a

simple iterative scheme as the Gerchberg-Saxton algorithm often runs into areas where

stagnation of the approximation error occurs, while more involved projection-based algo-

rithms like Fienup’s hybrid input-output algorithm or Elser’s difference-map algorithm

converge much faster.

1. The Phase Problem

As we have seen in the previous chapter, the task of reconstructing a structure from

its diffraction pattern can be essentially reduced to the problem of finding the electron

density ρel ∈ S(R3) from its Fourier modulus |ρ̂el|. The loss of the phase of ρ̂el causes the

reconstruction problem to be ill-posed. In general, there is no unique solution – a fact

that is known as the phase problem.

It is easily seen that, when only assuming that ρel is a Schwartz function, there are

many possible solutions to the phase problem. Take any measurable function ζ : R3 → R,

s.t. |ρ̂el|eiζ is a Schwartz function and define the function

ρζ := F−1(|ρ̂el|eiζ) ∈ S(R3).

We find that

|ρ̂ζ | =
∣∣|ρ̂el|eiζ

∣∣ = |ρ̂el|,

s.t. ρζ solves the phase problem for every such ζ. There are many such functions. For

example, when ζel is the phase of ρ̂el, i.e. ρ̂el = |ρ̂el|eiζel , and ζ0 is a tempered function,

then ζ := ζel + ζ0 satisfies the condition.

Consequently, we need additional information on the function ρel to reduce the number

of solutions. Choosing the space of real Schwartz functions doesn’t help, since for a

function ρel to be real is equivalent to satisfying ρ̂el = ρ̂el−, where ρel−(x) := ρel(−x) for

x ∈ R. So, again choosing a measurable function ζ : R3 → R3, s.t. |ρ̂el|eiζ is a Schwartz

function and additionally satisfying ζ− = −ζ, we get

ρ̂ζ− = |ρ̂el−|eiζ− = |ρ̂el|e−iζ = |ρ̂el|eiζ = ρ̂ζ ,

s.t. the real Schwartz function ρζ solves the phase problem.
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As an electron density is naturally non-negative, and a physical sample is finite in size,

we consider the two subsets of the space of Schwartz functions

S≥0(R3) := {ϕ ∈ S(R3). ϕ ≥ 0},

SΩ(R3) := {ϕ ∈ S(R3). supp(ϕ) ⊆ Ω}, Ω ⊂ R3 compact.

Note that SΩ(R3) is a subspace of S(R3), while S≥0 is not. As turns out, these sets do

the trick in many cases. Before we turn to these constraints, we consider some special

choices of ζ.

When ζel is the phase of ρ̂el, i.e. ρ̂el = |ρ̂el|eiζel , and we choose ζ(x) := ζel(x) + y · x
for some y ∈ R3 and all x ∈ R3, we get

ρζ(x) = F−1(|ρ̂el|eiζ) = F−1(|ρ̂el|eiζeleiy·x) = F−1(eiy·xρ̂el) = ρel(x + y),

where we used the translation-modulation duality (A.5).

So, this special choice of ζ gives just a translate of the original function. The set

S≥0(R3) is closed w.r.t. translations, s.t. this ambiguity will stay for the non-negativity

constraint. However, as we are interested in the structure and not the exact position of

ρel, this is not a problem for structure analysis.

Another special choice of ζ is ζ = −ζel, s.t.

ρζ = F−1(|ρ̂el|e−iζel) = F−1(|ρ̂el|eiζel) = F−1(ρ̂el) = F−1(ρ̂el)− = ρel−.

Again, this is not a problem for structure determination, if one is not interested in ori-

entation. For complex functions, one further trivial solution to the phase problem is the

multiplication by a complex number of absolute value one – a global phase.

In summary, what we can hope for, is to reconstruct ρel up to translations and inversion

when ρel is real, and up to translations, inversion plus complex conjugation and a global

phase when it is complex.

1.1. The General Phase Problem. We introduce a notion that specifies if a given

constraint set is strong enough, in the sense that one cannot directly give multiple solutions

for every set of measurements, as we saw is possible in the space of (real) Schwartz

functions.

Consider the following operators on a set of functions F(R3) ⊆ S ′(R3):

Mζϕ := F−1(eiζϕ̂), ϕ ∈ F(R3),

for measurable functions ζ : R3 → R, s.t. Mζϕ is again a function in F(R3). Then

|M̂ζϕ| = |eiζϕ̂| = |ϕ̂|.
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So, this family of operators specifies the operations on the phases of the Fourier transform

that solve the phase problem for every function in F(R3). In this sense, they define

a general phase problem in the set F(R3). For example, we saw that for the choice

F(R3) = S(R3), every real tempered function ζ ∈ T (R3) yields an operator Mζ s.t.

Mζϕ ∈ S(R3) for all ϕ ∈ S(R3).

The global phase and the translations are operations on the phases of this kind. They

correspond to ζ being an affine linear form, i.e. ζ = 〈y, ·〉+a for some y ∈ R3 and an a ∈ R.

We call the space of affine linear forms Aff(R3,R). The inversion (plus conjugation),

however, depends on ρel (via ζel) and is therefore not a general phase problem in our

sense.

Introducing the set Z(F(R3)) of phase functions that produce a phase problem of this

general kind,

Z(F(R3)) := {ζ : R3 → R measurable. Mζϕ ∈ F(R3) for all ϕ ∈ F(R3)},

and noting that it is a group with respect to addition, we make the following definition

Definition 2.1 (General phase problem). Let F(R3) ⊂ S ′(R3) be a set of func-

tions. We say that there is no general phase problem in F(R3), if Z(F(R3)) is a subgroup

of the group of affine linear forms Aff(R3,R). If this is not the case, we say that there is

a general phase problem in F(R3).

We already showed that there is a general phase problem in the space of (real) Schwartz

functions.

For the choice F(R3) = S≥0(R3), we show that there is no general phase problem.

Proposition 2.2 (No General Phase Problem in S≥0(R3)). There is no general

phase problem in S≥0(R3). In particular,

Z(S≥0(R3)) = {ζ : x 7→ 〈y,x〉 for some y ∈ R3}.

Proof. We introduce the set K(F(R3)) := {Kζ := F−1(eiζ). ζ ∈ Z(F(R3))} ⊂ S ′(R3).

Obviously, the group (K(F(R3)), ∗) is isomorphic to (Z(F(R3)),+). Now, we show that

K(S≥0(R3)) = {δy. y ∈ R3} what is equivalent to the statement of the proposition.

First, we show that

Kζ ∈ K(S≥0(R3))⇒ Kζ ≥ 0. (∗)

Assume that Kζ 6≥ 0, i.e. there is a ψ ∈ S≥0(R3), s.t. Kζ(ψ) < 0 (note that Kζ is a

tempered distribution). When Gε(x) := 1
(2πε2)3/2

e−|x|
2/2ε2 , x ∈ R3 is the Gaussian with
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standard deviation ε > 0, we conclude that by continuity of Kζ , for ε small enough

Mζψ−(Gε) = (Kζ ∗ ψ−)(Gε) = Kζ(ψ ∗Gε) < 0,

where we interpreted Mζψ− as tempered distribution and used that ψ∗Gε → ψ in S≥0(R3)

for ε→ 0. Thus Mζψ− 6≥ 0 and therefore Mζψ− 6∈ S≥0(R3), showing (∗).
So, assuming Kζ ∈ K(S≥0(R3)), we know that Kζ ≥ 0 and |K̂ζ | = |eiζ | = 1 and have

to show that Kζ = δy for some y ∈ R3.

Now, since Kζ ≥ 0, we know that Kζ is actually a measure (Proposition A.15). In

addition, |K̂ζ | = 1, so Kζ is a probability measure.

Using the convolution theorem (Corollary A.11), we get

1 = |K̂ζ |2 = K̂ζ · K̂ζ = F(Kζ ∗Kζ−) = F(Kζ ∗Kζ−),

so that by an inverse Fourier transform, we get

Kζ ∗Kζ− = δ0.

Now, for the support of the convolution of two probability measures µ and ν, we know

that

supp(µ ∗ ν) = supp(µ) + supp(ν).

In our case, we get

{0} = supp(Kζ ∗ (Kζ)−) = supp(Kζ) + supp(Kζ−) = supp(Kζ)− supp(Kζ),

where we used that supp(T−) = −supp(T ). Assuming that |supp(Kζ)| ≥ 2, we get that

1 = |{0}| = |supp(Kζ)− supp(Kζ)| ≥ 2,

what is a contradiction and shows that |supp(Kζ)| = 1.

But the only probability measures supported on a single point are the measures δy for

y ∈ R3. �

Note, that this result can be extended to the n-dimensional case with the exact same

proof.

This proposition shows that it is not totally meaningless to try to solve the phase

problem in the set S≥0(R3).

To make use of the support constraint, we need to find an explicit compact set Ω ⊂ R3,

s.t. supp(ϕ) ⊆ Ω, given the Fourier modulus of a Schwartz function ϕ that is compactly

supported. Calculating the inverse Fourier transform of |ϕ̂|2, we get the autocorrelation

function (Corollary A.12):

F−1(|ϕ̂|2) = ϕ ∗ ϕ−.
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Now,

supp(ϕ ∗ ϕ−) = supp(ϕ) + supp(ϕ−) = supp(ϕ)− supp(ϕ),

which is a compact set when supp(ϕ) is compact.

Hence, defining Ω := supp(F−1(|ϕ̂|2)), we get supp(ϕ) ⊆ Ω, so ϕ ∈ SΩ(R3). Better

estimates for the support of a function given its autocorrelation support are for example

given in [CFT90].

As a corollary, we get

Corollary 2.3 (No General Phase Problem in S≥0
Ω (R3)). Let Ω ⊂ R3 be a compact

set such that there is a function ϕ ∈ S(R3) with supp(ϕ) = Ω and

S≥0
Ω (R3) := {ϕ ∈ S(R3). ϕ ≥ 0, supp(ϕ) ⊆ Ω}.

There is no general phase problem in S≥0
Ω (R3). In particular, Z(S≥0

Ω (R3)) is trivial.

Proof. That Z(S≥0
Ω (R3)) ≤ {ζ : x 7→ 〈y,x〉 for some y ∈ R3} follows from Proposi-

tion 2.2. Now, as there is a Schwartz function ϕ with support supp(ϕ) = Ω, we find that

for ζ(x) := 〈y,x〉 for some y ∈ R3 and all x ∈ R3,

Mζϕ(x) = ϕ(x + y).

So, when y 6= 0, supp(Mζϕ) = Ω + y 6⊆ Ω, showing that Z(F(R3)) is trivial. �

1.2. The Phase Problem in 1D and its Consequences. Even though these

results show that it is not entirely hopeless to try to solve the phase problem in the

respective spaces, we did not get an answer to the question if there is a phase problem

for a given function.

This question has been investigated by different authors starting with [BS79]. There,

distributions on R of the form

T =
N∑
j=0

ajδj∆x ∈ S ′(R), N ∈ N, aj > 0, j ∈ {0, . . . , N}, ∆x > 0,

are considered. T can be seen as as approximation of the electron density of a one-

dimensional atomic structure or as sampling of a continuous electron density. Since the

functions T ∗ ϕ are elements of S≥0(R) for all ϕ ∈ S≥0(R), and |T̂ ∗ ϕ| = |T̂ ||ϕ̂|, these

distributions are also relevant for the case of smooth functions.

The main result of [BS79] is the construction of all solutions to the phase problem of

the same form as T , i.e. all distributions T̃ of the form T̃ =
∑N

j=0 ãjδj∆x that satisfy

|̂̃T | = |T̂ |. The construction is the following:
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First, a polynomial pT is constructed that is related to the Fourier modulus |T̂ |. Let

pT (z) :=
N∑
j=0

ajz
j.

Then, setting zk := e−ik∆x for k ∈ R, we get |T̂ (k)| = |pT (zk)|.
Now, writing pT (z) = aN

∏N
j=1(z−zj) for zj ∈ C, j = 1, . . . , N , using the fundamental

theorem of algebra, we define another function QT that is related to the squared Fourier

modulus:

QT (z) := |pT (z)pT (z−1)zN | = aNa0

N∏
j=1

|z − zj||z − z−1
j |.

Because pT (z−1)zN is the polynomial that you get by reversing the order of the coefficients

of pT , we immediately get that

QT (zk) = |T̂ (k)|2.

Now choosing z̃j ∈ {zj, z−1
j }, j = 1, . . . , N , we define the polynomial

pT̃ (z) :=

√
aNa0∏N
j=1 |z̃j|

N∏
j=1

(z − z̃j).

Considering the distribution T̃ associated to pT̃ , i.e. choosing the coefficients ãj as the

respective coefficients of pT̃ , we see that

QT = QT̃ ,

and hence |̂̃T | = |T̂ |.
The simplest non-trivial example of this phase problem is the distribution

T1 := 4δ0 + 4δ1 + δ2.

We get pT1(z) = (z + 2)2 and QT1 = 4(z + 2)2(z + 1/2)2. Choosing z̃1 = 2 and z̃2 = 1
2
, we

define the distribution T2 by the polynomial

pT2(z) = 2(z + 2)(z + 1/2) = 2z2 + 5z + 2,

so, T2 = 2δ0 + 5δ1 + 2δ2. The two distributions T1 and T2 then have identical Fourier

modulus, what can also be seen by direct calculation:

|T̂1|2 = |T̂2|2 = 33 + 40 cos(k) + 8 cos(2k).

As we saw above, choosing a function ϕ ∈ S≥0(R), we also get |T̂1 ∗ ϕ| = |T̂2 ∗ ϕ|.
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The construction can also be used to construct examples in higher dimensions by

forming tensor products. Define

Tij := (Ti ∗ ϕ)⊗ (Tj ∗ ϕ) ∈ S(R2), i, j = 1, 2, i ≥ j.

Then, for k = (k1, k2) ∈ R2

|T̂ij(k)|2 = |T̂i ∗ ϕ(k1) · T̂j ∗ ϕ(k2)|2 = |T̂i(k1)ϕ̂(k1)T̂j(k2)ϕ̂(k2)|2

= |T̂i(k1)|2|ϕ̂(k1)|2|T̂j(k2)|2|ϕ̂(k2)|2,

so, |T̂ij| = |T̂i′j′ | for any choice of i, j, i′, j′. These three functions are shown in Figure 2.1

for ϕ being a Gaussian. Choosing ϕ ∈ S≥0 with compact support instead, this yields an

example fot the phase problem in the set S≥0
Ω , when choosing Ω appropriately.

Figure 2.1. The three functions T11, T12, and T22 for ϕ being a Gaussian.
These functions share the exact same Fourier modulus. This is an example
for the phase problem in S≥0(R2).

The construction of Bruck and Sodin has been generalized to investigate the phase

problem in higher dimension in [Hay82]. The author comes to the conclusion that the

phase problem is not as severe as in one dimension, since the polynomials that can be

factored as above are a null set in the space of all polynomials. In this sense, there

seems to be almost no phase problem in higher dimensions. However, this is a very weak

statement, since a null set can be dense, making the reconstruction problem unstable.

In addition, the set of electron densities of molecular structures is not a random set and

could intersect this null set non-trivially. We will see, that the phase problem is far from

being harmless when considering a special class of periodic functions.

1.3. The Phase Problem for Periodic Functions. First, we go back to Proposi-

tion 2.2. The functions eiζ , ζ : R3 → R measurable, can be identified with functionals Lζ

on the space of finite complex measures M1(R3):

Lζµ :=

∫
R3

eiζdµ, µ ∈ M1(R3).
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The tempered distribution Kζ := F−1(eiζ) can thus be extended to a functional on the

space of Fourier transforms of finite complex measures FM1(R3) by

Kζµ̂ := LζF−1µ̂ = Lζµ, µ ∈ M1(R3).

With this construction, the proof of Proposition 2.2 with S≥0(R3) replaced by FM1
≥0(R3)

gives

Corollary 2.4 (No General Phase Problem in FM1
≥0(R3)). Let

FM1
≥0(R3) := {ϕ ∈ FM1(R3). ϕ ≥ 0}.

There is no general phase problem in FM1
≥0(R3). In particular,

Z(FM1
≥0(R3)) = {ζ : x 7→ 〈y,x〉 for some y ∈ R3}.

Now, Fourier transforms of finite measures are bounded continuous functions. In

particular, choosing a non-negative function ϕ ∈ S≥0(R3), define the bounded continuous

function

ρel := δB ∗ ϕ,

where B ⊂ R3 is a Bravais lattice. Then we know that

ρ̂el =
(2π)3

VB
δB⊥ · ϕ̂.

Now, since δB⊥ is a tempered distributionand and ϕ̂ ∈ S(R3),

ρ̂el(R3) =
(2π)3

VB

∑
b∈B⊥

ϕ̂(b) =
(2π)3

VB
δB⊥(ϕ̂) <∞.

Consequently, ρ̂el ∈ M1(R3) and ρel ∈ FM1
≥0(R3). This means, that our model densities

from Chapter 1, Section 3, fall into this class of functions. Consequently, Corollary 2.4

says that it is not absolutely hopeless to try to solve the phase problem.

However, we come across a different flavor of the phase problem due to the continuity

of the phase transformations Mζ . Consider the following set of functions:

FM1
ε(R3) := {ϕ ∈ FM1(R3). ϕ ≥ ε}, ε > 0.
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Then choosing the phase function ζ s.t. ‖ζ‖∞ ≤ δ for some δ > 0, we get for ϕ ∈ FM1
ε(R3):

|Mζϕ(x)− ϕ(x)| = |F−1(eiζϕ̂)(x)−F−1ϕ̂| = |F−1(ϕ̂(eiζ − 1))(x)|

=
1

(2π)3

∣∣∣∣∣∣∣
∫
R3

(eiζ(k) − 1)︸ ︷︷ ︸
=2ieiζ(k)/2 sin(ζ(k)/2)

eik·xdϕ̂(k)

∣∣∣∣∣∣∣
≤ 2

(2π)3

∫
R3

| sin(ζ(k)/2)|d|ϕ̂|(k) ≤ δ

(2π)3
‖ϕ̂‖M1(R3) <∞,

where we used | sin(x)| ≤ |x|. So, whenever δ ≤ (2π)3ε
‖ϕ̂‖M1(R3)

, then Mζ ∈ FM1
≥0(R3). In other

words, when the electron density in the unit cell of a crystal is greater than an ε > 0, then

there is a whole neighborhood of solutions to the phase problem. This seems to be one of

the reasons that in X-ray Crystallography, in contrast to Coherent Diffraction Imaging,

additional constraints are needed to solve the phase problem uniquely.

Usually, the electron density of a crystal is highly concentrated at the atom positions.

So, it is natural to try to find the solution to a given phase problem that is most con-

centrated in some sense. The corresponding constraint is usually called atomicity. In its

most restrictive form it says that the density consists of non-overlapping equal atoms, i.e.

ϕ(x) = δMA
B
∗ ϕa(x), x ∈ R3,

where MA
B ⊂ R3 is a finite set and ϕa ∈ S(R3) satisfies

supp(ϕa(· − y)) ∩ supp(ϕa(· − y′)) = ∅ for all y,y′ ∈ B + MA
B , y 6= y′.

A crucial observation was made by D. Sayre in [Say52-1], where he found an invariance

property of the considered structures. Since the atoms do not overlap, we have

ρ2
el = δL ∗ ϕ2

a, where L := B + MA
B .

Defining the function

ϕSayre(x) := F−1

(
ϕ̂a

ϕ̂2
a

1{ϕ̂2
a 6=0}

)
(x), x ∈ R3,

the density satisfies the so-called Sayre equation (compare the account in [Els03]):

ρel = ϕSayre ∗ ρ2
el. (2.1)

This equation is closely related to the development of the tangent formula of J. Karle

and H. Hauptman that were awarded the 1985 Nobel prize in chemistry for their so-called

direct methods for solving crystal structures [HK53]. These methods were refined over

the years (e.g. [CW55,Gia76,US99]) and are still in use today.
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A different idea for the solution of the phase problem in X-ray crystallography is to

simply measure the phases experimentally. In [Wol09,Wol10] a method is proposed but, to

the knowledge of the author, hasn’t been successfully realized for determining the phases

in X-ray diffraction experiments.

2. Phase Retrieval

In the last section, we saw that given the Fourier modulus |ρ̂el| of a function ρel, one

can only reconstruct the original function up to the phase problem. However, for data

coming from experiments, it is often possible to uniquely solve the phase problem.

In this section, therefore, we suppose that the phase problem is solvable and ask the

question how to find a solution explicitly. This problem is known as phase retrieval.

Suppose that the electron density ρel ∈ S≥0(Rn) of the structure is non-negative and

compactly supported, and that the absolute value squared of the Fourier transform of ρel

that we extracted from intensity measurements is I. In the previous chapter, we saw that

when defining

Ω := supp(F−1I),

or have any other support constraint at hand, then we know that ρel ∈ S≥0
Ω (Rn). Therefore,

we have three constraints any solution must fulfill:

(i) |ρ̂el|2 = I,

(ii) ρel ≥ 0,

(iii) supp(ρel) ⊆ Ω.

We shortly discuss a few algorithms for phase retrieval that use these constraints with-

out going into details concerning convergence results. Instead, to get a feeling for the

performance of the algorithms, we provide a numerical example at the end of the section.

2.1. The Error-Reduction Algorithm. A very simple algorithm was origined by

Gerchberg and Saxton [GS72] and is called Gerchberg-Saxton algorithm or error-reduction

algorithm. In its basic form, it only cares about the constrainsts (i) and (ii) and works as

follows. Start with a random choice ζ0 for the phase function that satisfies (ζ0)− = −ζ0

to get a real inverse Fourier transform and set

ρ̃0 := F−1(
√
Ieiζ0).

This first guess perfectly satisfies condition (i), but most certainly is not non-negative.

So, one defines

ρ1 := ρ̃0 · 1{ρ̃0≥0}.
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Now, ρ1 satisfies (ii), but in general not (i). Consequently, one starts another iteration by

writing ρ̂1 = |ρ̂1|eiζ1 (note that ζ1 is not unique – we will come to that later) and setting

ρ̃1 := F−1(
√
Ieiζ1) and ρ2 := ρ̃1 · 1{ρ̃1≥0}.

The error-reduction algorithm thus woks as follows. For j ∈ N repeat the two steps

ρ̃j := F−1(
√
Ieiζj), (ER1)

ρj+1 := ρ̃j · 1{ρ̃j>0}, (ER2)

until the algorithm converges in some sense.

It is not obvious that ρn+1 should be a better guess than ρn. But in fact it is. This

can be seen as follows (see [Fie82]).

Define the following two quantities to track the progress of the iteration:

ej := ‖ρj+1 − ρ̃j‖2, êj := ‖ρ̂j − ̂̃ρj‖2.

Note, that êj = ‖|ρ̂j|−
√

I‖2, because ρ̂j and ̂̃ρj share the same phases as can be seen from

the definition of ρ̃j. So êj gives the L2-distance of our guess ρj from being a solution.

We will show that êj+1 ≤ (2π)n/2ej ≤ êj. Hence, the errors are non-increasing,

justifying the name error-reduction algorithm.

First, we note that for all x,k ∈ Rn

|ρj+1(x)− ρ̃j(x)| = min{|a− ρ̃j(x)|. a ≥ 0},

|ρ̂j+1(k)− ̂̃ρj+1(k)| = min{|ρ̂j+1(k)− b|. b ∈ C, |b| =
√

I(k)}.

The first equation is true, because the non-negative number that is closest to a negative

number is zero and ρj+1 is zero where ρ̃j is negative and equal else. The second equation

is true, because the complex number with given absolute value that is closest to another

complex number is the one with identical phase and ρ̂j and ̂̃ρj have identical phases. In

particular, we have for all x,k ∈ Rn:

|ρj+1(x)− ρ̃j(x)| ≤ |ρj(x)− ρ̃j(x)|,

|ρ̂j+1(k)− ̂̃ρj+1(k)| ≤ |ρ̂j+1(k)− ̂̃ρj(k)|.

Thus, using the Plancherel formula, we get

êj+1
2 = ‖ρ̂j+1 − ̂̃ρj+1‖2

2 ≤ ‖ρ̂j+1 − ̂̃ρj‖2
2 = (2π)n‖ρj+1 − ρ̃j‖2

2

= (2π)ne2
j ≤ (2π)n‖ρj − ρ̃j‖2

2 = ‖ρ̂j − ̂̃ρj‖2
2 = êj

2.
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We can use the exact same proof, when instead of our definition of ρj+1, we set

ρj+1 := ρ̃j · 1{ρ̃j≥0}∩Ω,

meaning that we also include the support constraint (iii).

Although the error-reduction algorithm decreases the error, it has a serious problem.

In most cases, the error stagnates and stays at the same level for long periods of time.

When getting closer to a solution, the stagnation times increase, making the algorithms

very slow. In Figure 2.2, an example for the progress of the error-reduction algorithm is

shown.

2.2. Gradient Flow Methods. A different view on the error-reduction algorithm

is given in [Fie82]. There it is shown that the error-reduction algorithm can also be seen

as a steepest descent algorithm for the functional ê2(ρ) := 1
2

∥∥∥|ρ̂| − √I
∥∥∥2

2
with a certain

step size and an additional step to satisfy (ii). This is seen as follows. We calculate the

L2-gradient of ê2. Let ψ ∈ L2(Rn), then

〈∇ê2(ρ), ψ〉 =
d

dε

∣∣
ε=0

ê2(ρ+ εψ) =

∫
Rn

(|ρ̂| −
√

I)
d

dε

∣∣
ε=0
|ρ̂+ εψ|dLn

=

∫
{ρ̂6=0}

(|ρ̂| −
√

I)
ρ̂

|ρ̂|
ψ̂dLn =

∫
{ρ̂ 6=0}

(
ρ̂− ρ̂

|ρ̂|
√

I

)
ψ̂dLn.

Writing ρ̂ = |ρ̂|eiζ(ρ̂), using the Plancherel formula and setting ρ̃ := F−1(
√

Ieiζ(ρ̂)), we get

〈∇ê2(ρ), ψ〉 = (2π)n
∫
{ρ̂6=0}

(ρ−F−1(
√

Ieiζ(ρ̂)))ψdLn = (2π)n
∫
{ρ̂6=0}

(ρ− ρ̃)ψdLn.

So, ∇ê2(ρ) = (2π)n(ρ− ρ̃), giving the steepest-descent algorithm

ρj+1 := ρj − h∇ê2(ρj) = ρj − (2π)nh(ρj − ρ̃j)

with stepsize h > 0. The particular choice h = (2π)−n results in the first step of the

error-reduction algorithm.

In [Fie82], the non-negativity step is added to get the full error-reduction step, showing

that this algorithm can be seen as a projected gradient method. We will show that

this part of the algorithm can also be viewed as a steepest-descent step for a different

functional. Define

e2
≥0(ρ) :=

1

2
‖1{ρ<0}ρ‖2

2 =
1

2

∥∥∥∥1

2
(|ρ| − ρ)

∥∥∥∥2

2

.
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Then for all ψ ∈ L2(Rn)

〈∇e2
≥0(ρ), ψ〉 =

d

dε

∣∣
ε=0

e2
≥0(ρ+ εψ) =

d

dε

∣∣
ε=0

1

2

∫
Rn

1

4
(|ρ+ εψ| − (ρ+ εψ))2dLn

=
1

4

∫
Rn

(|ρ| − ρ)

(
ρ

|ρ|
− 1

)
ψdLn =

1

4

∫
Rn

2(ρ− |ρ|)ψdLn =

∫
{ρ<0}

ρψdLn.

So, ∇e2
≥0 = 1{ρ<0}ρ. The non-negativity step can thus be written as a steepest descent

step with respect to e2
≥0 with step size h = 1:

ρj := ρ̃j−1 −∇e2
≥0(ρ̃j−1), j ∈ N.

Hence, the error-reduction algorithm can be seen as alternating between two different

steepest-descent algorithms.

Of course, one could define different functionals that combine different constraints to

get new gradient based methods.

Before we introduce further algorithms, we reformulate the phase problem as set in-

tersection problem and the error-reduction algorithms in terms of projections onto sets

(see [BCL02]).

2.3. Phase Retrieval as Set Intersection Problem. As we assumed that the

electron density ρel is a Schwartz function, we can identify the different constraints with

the corresponding subsets of S(Rn). We already did that for the non-negativity con-

straint and the support constraint by defining the set S≥0(Rn), SΩ(Rn) and S≥0
Ω (Rn).

Analogously, one can define

SI(Rn) := {ϕ ∈ S(Rn). |ϕ̂|2 = I},

where I is the square of the Fourier modulus obtained from our intensity measurements.

The phase problem associated to I can then be reformulated as the question, if there is

an element in the intersection S≥Ω (Rn) ∩ SI(Rn).

For the moment, we will change the setting a bit by considering ρel ∈ L2(Rn) to have

Hilbert space methods at hand. We introduce the sets L2
≥0(Rn), L2

Ω(Rn), and L2
I (Rn) as

the analogs of the respective subsets of Schwartz space, where the properties are defined

in the L2-sense.

The set L2
Ω(Rn) is a closed subspace of L2(Rn) and hence a closed convex set. L2

≥(Rn)

is also a closed convex set, but not a subspace, whereas L2
I (Rn) is closed but not convex.

The non-convexity of L2
I (Rn) makes phase retrieval such a hard problem.
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Now, defining the operators

p≥0 : L2(Rn)→ L2
≥0(Rn), f 7→ 1f≥0f,

pΩ : L2(Rn)→ L2
Ω(Rn), f 7→ 1Ωf,

pI : L2(Rn)→ L2
I (Rn), f 7→ F−1

(
√

I

(
1{|f̂ |>0}

f̂

|f̂ |
+ 1{|f̂ |=0}

))
,

we find that p≥0 and pΩ are the projections on the respective closed convex sets. For pI,

there is no unique projection (as we already noted earlier), so we made a choice by setting

the phase to zero at the points where f̂ vanishes.

Now, we can reformulate the error-reduction algorithm in its original form as

ρj+1 := p≥0 ◦ pI(ρj), j ∈ N. (ER)

In convex optimization, an algorithm of this form is called alternating projection method

or projection onto convex sets (POCS). Thus, it is a non-convex version of POCS.

Some relations between algorithms in convex optimization and phase retrieval algo-

rithms have been studied in [BCL02]. Here, we use the language of convex optimization

for a clear formulation of some of the known phase retrival algorithms.

Some important algorithms – called input-output algorithms were introduced by Fienup

in [Fie82]. We only introduce the most important of these algortihms, since the others are

not a great improvement of the ER algorithm. We also only formulate it for the combined

projection pΩ ◦ p≥0, but could also use only the non-negativity constraint instead.

Fienup’s hybrid input-output alogirthm (HIO, [Fie82]) does not stagnate as much as

the previous algorithms and converges quite quickly to regions of reasonable approxima-

tions of the solution. Even though it sometimes does not minimize the error as effectively

as the ER algorithms, a visual inspection often shows qualitatively good results. It is

for that reason that in praxis, after using the HIO algorithm, one usually adds some

error-reduction steps. The algorithm has been shown to be related to a Douglas-Rachford

algorithm when one of the constraint sets is a subspace (see [BCL02]). For a parameter

h, a step of this algortihm works as follows:

ρj+1 := ((1 + h)pΩ ◦ p≥0 ◦ pI − pΩ ◦ p≥0 − hpI + id)ρj, j ∈ N. (HIO)

We remark that, as noted in [Els03], there are two versions of the HIO algorithm. For

our combined constraint, Fienup’s original version (see [Fie82]) uses the non-negativity

constraint always w.r.t. pIρj, i.e. ψ 7→ 1{pIρj≥0}ψ. Instead, Elser (see [Els03]) uses the

variant that we introduced above.
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Finally, we consider a general framework called difference-map that was introduced

in [Els03]. This class of algorithms is based on two projections p1 and p2 and has the

form

ρj+1 := ρj + h(p1 ◦ f1 − p2 ◦ f2)ρj,

where h is a parameter and f1, f2 : L2(Rn) → L2(Rn) are two maps that need to be

specified. A reasonable choice of the fi, i = 1, 2 is the following

fi(ρ) := (1− γi)piρ− γiρ, i = 1, 2,

with parameters γ1 and γ2.

Choosing the projections p1 := pΩ◦p≥0 and p2 := pI, and the parameters γ1 := −1 and

γ2 := h−1, we get Elser’s version of the HIO algorithm as a special case of the difference

map.

In [Els03] the local convergence properties of the difference-map with the above fi is

optimized. The result is an algorithm that in our special case reads:

ρj+1 := ρj − pΩ ◦ p≥0 ((h− 1)pI + id) ρj + pI ((h+ 1)pΩ ◦ p≥0 − id) ρj, j ∈ N. (DM)

Note, that choosing a negative h results in exchanging the two projections.

This algorithm which we will call difference-map algorithm (DM), outperforms the

other algorithms most of the time.

2.4. Comparison of Performance. The performance of the following three algo-

rithms is shown in Figures 2.2 and 2.3. They are the error-reduction algorithm (ER) for

the combined projection pΩ ◦ p≥0, Elser’s version of the hybrid input-output algorithm

(HIO) for h = 1, and the difference-map algorithm (DM) for h = 1.

ρj+1 := pΩ ◦ p≥0 ◦ pIρj, (ER)

ρj+1 := (2pΩ ◦ p≥0 ◦ pI − pΩ ◦ p≥0 − pI + id)ρj, (HIO)

ρj+1 := ρj − pΩ ◦ p≥0ρj + pI (2pΩ ◦ p≥0 − id) ρj. (DM)

We generated a test set of uniformly distributed Gaussian atoms with uniformly dis-

tributed standard deviations and amplitudes that are clustered near the origin and sim-

ulated 500 steps of the respective algorithms.The results are shown in Figure 2.3.
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Figure 2.2. Typical reconstruction of a two-dimensional function ρel by
the three algorithms (ER), (HIO), and (DM). The reconstructions by (ER)
and (HIO) show the inversion ambiguity.
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Figure 2.3. Loglog-plot of the mean value of the L2-error of 100 recon-
structions by the phase retrieval algorithms (ER), (HIO), and (DM). The
test densities were randomly generated sums of scaled Gaussians. A typical
density and its reconstructions are shown in Figure 2.2



Motivating Example: A Nanotube

After having studied the scattering of plane waves and the reconstruction of molecular

structures from far-field intensity measurements in the first part, we want to develop new

kinds of radiation that are specifically designed for the analysis of a more general class of

molecular structures than crystals.

Before doing that, an example of a structure that is just as simple as a crystal, but

with different symmetries will show that a mismatch in the symmetries of the structure

and the radiation causes severe problems for reconstruction.

Given an integer n ∈ N, a real number τ 6= 0, and an angle ϑ ∈ T, we consider the

two isometries

h := (Rϑ|τe), g := (R2π/n|0),

where e ∈ S2 is a unit vector, Rµ is the rotation about the axis Re by the angle µ ∈ T,

and (Q|c), Q ∈ O(3), c ∈ R3, is the isometry of R3 defined by

(Q|c)x := Qx + c, x ∈ R3. (2.2)

The group of all isometries of R3 is called the Euclidean group E(3). The natural action

of an isometry (Q|c) ∈ E(3) on the function ρel is given by

((Q|c)ρel)(x) := ρel((Q|c)−1x) = ρel(Q
−1(x− c)).

Now, we define the group HN that is generated by these two isometries

HN := {hjgk. j, k ∈ Z}

and the structure

N := HNMN ⊂ R3,

where MN ⊂ R3 is a finite set. N is the orbit of the set MN under the group HN . Instead

of translating the molecule MN to form a crystal, we rotate about and translate along

Re to form a nanotube (see Figure 2.4).

Again, we put the details of the unit cell into a Schwartz function ϕ ∈ S≥0(R3) and

define the model of our non-crystalline electron density by

ρel(x) :=
∑
h∈HN

ϕ(h−1x), x ∈ R3.

47
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Figure 2.4. A nanotube structure like N .

This function is obviously invariant with respect to the action of HN , i.e. (hρel) = ρel for

all h ∈ HN .

To understand the Fourier transform of ρel, we observe the following. Define the

rotation Q := R(jϑ+2πk/n), j, k ∈ Z, and the translation c := jτe. Then we know that

(Q|c) ∈ HN . Now, rotating the Fourier transform with Q yields

(Qρ̂el)(k) = ρ̂el(Q
−1k) =

∫
R3

e−iQ
−1k·xρel(x)dx =

∫
R3

e−ik·Qxρel(x)dx

=

∫
R3

e−ik·xρel(Q
−1x)dx = Q̂ρel(k),

where we used that Q is an orthogonal transformation and the invariance of the Lebesgue

measure with respect to isometries.

Since, ρel is HN invariant, we find that

(Qρel)(x) = ρel(Q
−1x) = ρel(Q

−1((x + c)− c)) = ρel((Q|c)−1(x + c))

= ρel(x + c).

Finally, the translation-modulation duality yields

(Qρ̂el)(k) = Q̂ρel(k) = ̂ρel(·+ c)(k) = e−ik·cρ̂el(k).

Thus a rotation of the Fourier transform by Q is equivalent to a modulation by e−ik·c.

For the Fourier modulus this means that

|Qρ̂el| = |ρ̂el|.

The Fourier modulus is invariant with respect to every transformation Q that appears

as the orthogonal part of an element of HN . Obviously, these transformations form a

subgroup of O(3). This group is called the isogonal point group IsoHN of HN :

IsoHN := {Q ∈ O(3). (Q|c) ∈ HN for some c ∈ R3}.
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As we didn’t use the special structure of HN , and every isometry is of the form (2.2) by

the Mazur-Ulam theorem (see [Vai03]), we just proved the following proposition.

Proposition 2.5 (Isogonal Invariance of the Fourier Modulus). Let H be an

isometry group and ρel :=
∑

h∈H hϕ for some ϕ ∈ S(R3). The Fourier modulus of ρel is

invariant w.r.t. the isogonal point group IsoH of H:

|Qρ̂el| = |ρ̂el| for all Q ∈ IsoH .

When ϑ 6∈ 2πQ, the situation is especially bad. The set ϑZ mod 2π is then dense in

T. Thus, the isogonal point group is a dense subset of all rotations about the axis Re.

Because |ρ̂el| is continuous, Proposition 2.5 shows that |ρ̂el| has full rotational symmetry.

In addition, the group HN does not contain any translations in this case, because

hjgk = (I|c) ⇔ jϑ2πk/n mod 2π = 0.

This only happens, when j = 0 and k ∈ nZ, i.e. when hjgk = idR3 . Consequently, the

structure has no translational invariance at all.

In summary, |ρ̂el| does not reveal any symmetry of the structure, except its axis.

So, it turns out that the phase problem extends to symmetry information when the

symmetries of radiation and structure are not related in a suitable way. For our crys-

tal model, the Fourier modulus is supported on a lattice, effectively reducing the phase

problem to a discrete set while ensuring that for any guess of the phases, the resulting

structure has the right translational symmetry. This largely simplifies phase retrieval.

For the model of the tube structure, in turn, the Fourier modulus only tells that the

structure is axial in some sense and doesn’t have translational symmetry. But instead

of a highly symmetric discrete structure, it could also be a fully rotationally invariant

structure. In particular, the order n of the rotational symmetry of ρel doesn’t influence

the rotational symmetry of |ρ̂el| when ϑ 6∈ 2πQ. The Fourier modulus is not supported

on a discrete set, largely increasing the dimension of the phase problem.

The only thing we can do to improve the situation for structures that are not crystalline

but still highly structured as the tube considered above is to use different radiation than

plane waves. The goal of part two is to design new forms of radiation in a way that reveals

structural information directly.





Part 2

Radiation Design for Non-Crystalline

Structures



Having understood the methods for the analysis of molecular structures by X-ray

diffraction, we can turn our attention to the main topic of this dissertation – the design

of new forms of radiation suited for the high-resolution analysis of symmetric molecular

structures that are not necessarily crystals.

The need for such new kinds of radiation is motivated in the example following Part 1.

Even though, in principle, one could reconstruct any structure from its Fourier modulus

up to the phase problem, there are two difficulties when trying to analyze non-crystalline

structures with plane wave radiation.

First, modern techniques for the analysis of general structures, like Coherent Diffrac-

tion Imaging only achieve a resolution of a few nanometers. This is mainly due to technical

reasons: the quality of the X-ray beams and the resolution of the detectors does not yet

allow reconstructions at the atomic scale.

X-ray Crystallography on the other hand achieves atomic resolution for a moderate

number of atoms in the unit cell with less technical requirements. The reason for this

superior resolution lies in the translational invariance of both plane waves and crystals.

The central result of this relationship is the von Laue condition (Theorem 1.3) that makes

direct reconstruction of symmetry information possible.

As we have seen in the motivating example, an incompatibility of the symmetries of

the radiation and the structure leads to an extension of the phase problem to structural

information. Thus, the goal must be to find some kind of von Laue condition for non-

crystalline structures by designing radiation that reflects the symmetries of the structure

in the same way as plane waves do for crystals. This program will be carried out in the

following chapters.

First, we need to become clear about the radiation space – the space of solution of

Maxwell’s equations – in which to formulate a design criterion. A natural choice is the

space of time-harmonic solutions of the homogeneous Maxwell equations. These share the

property of plane waves to induce harmonic oscillations of a charge density.

We determine the outgoing field that is produced when a charge density is illuminated

by time-harmonic radiation by solving Maxwell’s equations via the Liénard-Wiechert po-

tentials. In the regime of small oscillations, the formula for the outgoing radiation is

closely related to the Fourier transform, motivating the notion Fourier radiation.

Interpreting Fourier radiation as an integral transform of the electron density, we

consider the general reconstruction problem – how can the density be reconstructed from

intensity measurements? Unlike for plane waves, this in not just a scalar phase problem.

In addition to the phase, orientational information is lost in the measurement process.
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Guided by the classic case, we formulate the corresponding design problem as follows.

Given a class of molecular structures, how to choose the incoming radiation, s.t. the

intensity of the outgoing Fourier radiation develops characteristic peaks as either the

observation point or the radiation parameters are varied?

We introduce a family of molecular structures that are highly symmetric without

necessarily being a crystal. So-called objective structures are the natural generalization

of crystal structures: they are the orbits of a finite number of atoms under a discrete

closed subgroup of the euclidean group E(3) of isometries of R3. Prominent examples of

objective structures are graphene, carbon nanotubes and the buckball, as well as some

secondary and quaternary protein structures or tail and capsids of certain viruses [Jam06].

Just as the plane waves are the eigenfunctions of the translation group, we consider

time-harmonic radiation that is an eigenfunction of a general closed isometry group G –

these are our design equations. The group G is called the design group, as it defines at

the same time the radiation and the class of structures that can be analyzed, namely, the

objective structures that are generated by a discrete closed subgroup of G.

As a first and central example, nanotube structures like the one in the motivating

example are analyzed. The corresponding design group is the group Ce of all rotations

and screw displacements about and all translation along an axis Re, e ∈ S2. The solutions

are explicitly determined and turn out to share many properties of plane waves. We call

these solutions twisted waves, as they propagate helically in space. The reconstruction

problem is shown to reduce to a scalar phase problem, while the symmetries can be directly

reconstructed from intensity measurements in axis direction while varying the radiation

parameters. This result generalizes the von Laue condition, showing the potential of

twisted waves for the analysis of chiral structures.

Next, we move on to the general case. Introducing two mathematical tools – the

Wigner projections and the Zak transform, we find a generalization of plane and twisted

waves – so-called symmetry-adapted waves. While for compact abelian design groups,

these are defined in a straight-forward manner, we need some structure theory to define the

symmetry-adapted waves for general abelian isometry groups in a rather ad hoc manner.

The scattering intensity of symmetry-adapted waves is closely related to the integral

transform of the density with the symmetry-adapted waves being the integral kernel. We

call this transform the wave transform. It maps a charge density to a function on the ra-

diation parameter space that can be interpreted as a frequency-symmetry decomposition.

Its scalar counterpart – the scalar wave transform – is the generalization of the Fourier

transform and the scalar transform appearing in the reconstruction problem for nanotube

structures.
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The main theorem is the generalized von Laue condition for abelian design groups. If

the isogonal point group of the design group is axial, the reconstruction problem reduces to

a phase problem for the scalar wave transform. The symmetries of the analyzed structure

can directly be reconstructed from the support of the radiation transform in parameter

space. The classic phase retrieval algorithms can be adapted to the situation.

Finally, we try to generalize this result to compact (non-abelian) design groups. The

theory for the scalar wave transform is analog to the abelian case, while the vector-valued

theory does not allow for a generalized von Laue condition.



CHAPTER 3

Radiation Design

The content of this chapter is based on joint work which will appear in [FJJ-1,FJJ-2].

We will formulate the problem of radiation design and provide a design criterion for its

solution.

Since the object we want to design is an electromagnetic field, the first thing we need

to specify is a space of solutions to Maxwell’s equations that suitably generalizes plane

wave radiation. As we want to keep the capability to induce oscillations of the charge

density, we consider the time-harmonic Maxwell equations. Its solutions are seen to be

superpositions of plane waves of a fixed frequency. The space of bounded solutions of the

time-harmonic Maxwell equations is our choice for the radiation space to work in.

Since the classical theory of the scattering of radiation by matter is not explained very

detailed in textbooks, we give a derivation of the full vector valued scattering formula for

time-harmonic radiation. It sheds some light on the simplifications that are usually made.

Calculating the outgoing field from the Liénard-Wiechert potentials and considering the

regime of small oscillations, we find an expression fot the scattering intensity. As the

scattered field has the form of a Fourier integral, we name it Fourier radiation.

Having chosen the radiation space we work in and understood the scattering of its

elements, we take a different point of view. We interpret the essential part of the Fourier

radiation formula as an integral transform of the charge density. This radiation transform

allows to formulate the general reconstruction problem given the intensities of the outgoing

field in different directions and for varying radiation parameters. We also loosely formulate

the design problem by orienting ourselves at the crystalline case: How do we need to choose

the radiation for a given class of molecular structures to achieve characteristic peaks as

either the outgoing direction or the radiation parameters are varied?

To answer this question, we analyze the relationship between the invariances of plane

waves and the symmetries of crystals. The central observation is the following: the plane

waves are exactly the simultaneous eigenfunctions of the action of the translation group

on the radiation space.

To follow this idea, we need to find a class of molecular structures that generalize

crystal structures in the right way. Crystals are generated by discrete closed subgrouops

of the translation group. Similarly, so-called objective structures are generated by discrete

55
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closed isometry groups. We give a short introduction to this class of molecular structures

that is in detail discussed in [Jam06]. Realizations of objective structures can be fre-

quently found in nanotechnology and biology. Examples are graphene, carbon nanotubes,

fullerenes like the buckyball, capsids and tails of certain viruses and some secondary and

quaternary protein structures.

Then we have everything in place to formulate a design criterion. Given a closed

abelian subgroup G of E(3) playing the role of the translation group, we define the class

of structures we want to anlayze as the objective structures that are generated by a

discrete closed subgroup of G. To reflect the symmetries of these structures in the right

way, the radiation needs to be an eigenfunction of the action of G on our radiation space.

This approach seems promising, as the characters of the group G appear naturally in the

design equations, giving hope that one might end up with Fourier transform information.

1. Scattering of Time-Harmonic Radiation

This section is the basis of the theory developed in this dissertation. Its main result is

a formula for the electromagnetic field that results from the interaction of time-harmonic

radiation with a charge density. The special case for plane wave radiation was already

used in Chapter 1 to derive the classical theory.

1.1. Time-Harmonic Radiation. The first question we have to address is how to

generalize plane wave radiation. We have to define an appropriate space of solutions to

Maxwell’s equations to work with.

As we have seen in Chapter 1, plane waves are particular solutions to the homogeneous

Maxwell equations. So, a natural space to work in, is the space of all solutions to these

equations. However, we want to keep the property of plane wave radiation to induce

oscillations of the charge density. We do this by setting the time-dependent part of the

radiation to e−iωt for some angular frequency ω > 0. The result are the time-harmonic

Maxwell equations:

Proposition 3.1 (Time-Harmonic Maxwell Equations). Let E0, B0 ∈ S ′(R3),

and ω > 0. Then the tempered distributions

Ẽ(t) := E0e
−iωt and B̃(t) := B0e

−iωt
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solve the homogeneous Maxwell equations if and only if E0 and B0 satisfy the following

equations.

∆E0 = −ω
2

c2
E0, (T1)

div E0 = 0, (T2)

B0 = − i
ω

curl E0. (T3)

In particular, the Fourier transforms Ê0 and B̂0 are supported on a subset of the set{
(k, ω) ∈ R4. |k|2 = ω2

c2

}
. The spatial parts E0 and B0 are tempered vector fields.

Proof. We need to check that the three equations (T1)-(T3) are equivalent to Maxwell’s

equations (M1)-(M4) for the given fields and ρel = 0, Jel = 0.

Plugging Ẽ and B̃ into (M1)-(M4) yields

div E0e
−iωt = 0, (M1)

div B0e
−iωt = 0, (M2)

curl E0e
−iωt = iωB0e

−iωt, (M3)

curl B0e
−iωt = −iωε0µ0E0e

−iωt. (M4)

This shows that (M1) and (M3) are equivalent to (T2) and (T3), respectively. Now,

note that (T1) is equivalent to the wave equation (1.4) for Ẽ. As (1.4) was inferred

from the homogeneous Maxwell equations, we have already shown that (M1)-(M4) imply

(T1)-(T3).

We still have to derive (M2) and (M4) from the time-harmonic equations. Calculating

the divergence of (T3) yields (M2), using div curl = 0, while (M4) is obtained as follows.

curl B0
(T3)
= − i

ω
curl(curl E0) = − i

ω
(∇(div E0)−∆E0)

(T2)
=

i

ω
∆E0

(T1)
=

i

ω

(
−ω

2

c2
E0

)
= −iωε0µ0E0,

where we used that c−2 = ε0µ0.

Next, we show that supp(Ê0), supp(B̂0) ⊆
{

(k, ω) ∈ R4. |k|2 = ω2

c2

}
. Applying a

Fourier transform to (T1) yields (
|k|2 − ω2

c2

)
Ê0 = 0. (∗)

Now, assume that there is a (k0, ω0) ∈ supp(Ê0) with |k0|2 6= ω2
0

c2
. Let U ⊂ R4 be an

open neighborhood of (k0, ω0) with d(U, ω
c
S2) > 0. By the definition of the support of
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a tempered distribution, there is a Schwartz function ϕ0 ∈ S(U) with Ê0(ϕ0) 6= 0. The

function f : (k, ω) 7→
(
|k|2 − ω2

c2

)−1

is bounded and C∞ on U . Thus fϕ0 ∈ S(U) and

consequently

0
(∗)
= (f−1Ê0)(fϕ0) = Ê0(ϕ0),

in contradiction to the assumption that (k0, ω0) ∈ supp(Ê0). This argument shows that

supp(Ê0) ⊆
{

(k, ω) ∈ R4. |k|2 = ω2

c2

}
. Applying the Fourier transform to (T3) yields

B̂0 = − i
ω

(−ik× Ê0), implying that supp(B̂0) = supp(Ê0) ⊆
{

(k, ω) ∈ R4. |k|2 = ω2

c2

}
.

Finally, since we have in particular shown that Ê0 and B̂0 are compactly supported

distributions, the inverse Fourier transform of E0 is given by the tempered function

F−1Ê0(x) := (2π)−4Ê0(ex) = E0(x), x ∈ R3.

That B0 is a tempered function follows analogously. �

In other words, a time-harmonic electric field is a divergence-free eigenfunction of the

vector Laplacian, while the magnetic field is given as a constant multiple of its curl via

the third equation of the above proposition.

Based on this proposition, we define the radiation space we will work with in the

following chapters. Besides time-harmonicity, we ask for boundedness of the fields.

Definition 3.2 (Time-harmonic radiation). The space Rω
b of time-harmonic ra-

diations is defined as

Rω
b :=

{
E0 : R3 → C3, bounded measurable. ∆E0 = −ω

2

c2
E0, div E0 = 0

}
.

The elements of Rω
b are called time-harmonic radiations.

Note that we reduced the radiation to the spatial part of the electric field. We will

at times also call the full electric field E0e
−iωt (or the full electromagnetic field) time-

harmonic radiation, but this shouldn’t lead to confusion.

In Proposition 3.1 we already saw that the elements of Rω
b are not only measurable,

but even tempered functions.

We introduce the natural generalization of the complex amplitude of a plane wave.

Assuming that a time-harmonic radiation E0 ∈ Rω
b has a Fourier transform Ê0 that is

a finite complex measure on the set
{

(k, ω) ∈ R4. |k|2 = ω2

c2

}
, we can write E0 as an

integral. Note that{
(k, ω) ∈ R4. |k|2 =

ω2

c2

}
=
{

(k, c|k|) ∈ R4. k ∈ ω
c
S2
}
.
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So, for x ∈ R3

E0(x) = (2π)−4Ê0(ex) = (2π)−4

∫
ω
c
S2
eik·xdÊ0(k, c|k|). (3.1)

Defining the complex vector measure n on ω
c
S2 by A 7→ (2π)4Ê0(A, {c|a|. a ∈ A}), we get

E0(x) =

∫
ω
c
S2
eik·xdn(k) = n(eik·n).

So, the electric field is a superposition of plane waves with wave vectors k ∈ ω
c
S2 and

complex amplitudes n(k). Thus the natural generalization of the complex amplitude of

a plane wave is the distribution n := (2π)4Ê0 interpreted as distribution on ω
c
S2.

1.2. Modelling X-ray Diffraction Patterns. X-ray diffraction patterns arise from

four basic physical processes, all of which need to be considered to obtain a predictive

mathematical model: a suitable electromagnetic wave is turned on and sent towards a

stationary electronic charge distribution; the incoming field induces an oscillatory motion

of the charges; this motion produces electromagnetic radiation; the intensity of the out-

going radiation is measured by a detector. In the following subsections, we deal in turn

with each process. Depending on the approximations made, one arrives in a natural way

at three models of increasing simplicity but decreasing accuracy which we term Maxwell

radiation, dipole radiation and Fourier radiation.

Mathematically, each model may be viewed as an input-output map

incoming electromagnetic field

stationary electronic charge distribution
−→ (intensity of) outgoing radiation.

It solves the ’direct’ problem of predicting the diffraction pattern of a known structure

for given incoming field. Once such a map is available, one can address ’inverse’ problems

where the diffraction pattern is known but the structure unknown, or begin to tackle our

ultimate goal – to contemplate novel forms of incoming fields adapted to the structures

one seeks to analyze.

We note that our most accurate model already involves substantial approximations, in-

cluding treating the electron motion induced by the incoming field classically instead of

quantum mechanically. A detailed account of the difficulties that arise when modelling

charged particles is given in [Spo04]. Nevertheless, even our least accurate model predicts

experimentally observed X-ray patterns with remarkable precision; see Figure 1.5.
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We begin by assuming that the incoming radiation is time-harmonic, i.e. a solution

to Maxwell’s equations of form

E(x, t) = E0(x)e−iωt. (3.2)

The associated magnetic field is given by B0(x)e−iωt, B0 = −(i/ω)curlE0. Prototypical

are plane waves,

E(x, t) = αnei(k0·x−ωt) (3.3)

where α ≥ 0 is the amplitude and |n| = 1. Mathematically, n is allowed to be complex.

This solves Maxwell’s equations with no charge or current sources (J = ρ = 0) provided

k0 · n = 0 and ω2 = c2|k0|2 and the corresponding magnetic field is

B(x, t) =
α

c

k0

|k0|
× nei(k0·x−ωt). (3.4)

The more general form (3.2) is important when scattering from non-crystalline structures

is under consideration.

1.3. Oscillation of a single electron. Now assume that there is a single electron

present of mass m and charge e. It feels a force e(E + v×B) (electric force plus Lorentz

force), where v is the electron velocity. We treat the electron classically, so its motion

satisfies

mq̈(t) = e
(
E0(q(t)) + q̇(t)×B0(q(t))

)
e−iωt, (3.5)

where we used the notation ḟ := ∂tf for more transparency.

A simplified model which still captures the essential physics is obtained by three

assumptions: (i) transient solutions to (3.5) can be ignored; (ii) the magnetic contribution

to the force can be dropped; (iii) the position dependence of the field term E0(q(t)) can

be neglected. This leads to the equation

mq̈(t) = eE0(q0)e−iωt, (3.6)

where q0 is the expected electron position in the absence of incoming radiation. As-

sumption (i) is empirical, and we are not aware of attempts to justify it theoretically. A

theoretical analysis would be highly desirable but lies beyond our scope. Assumption (ii)

relies on the fact that in X-ray structure determination, the induced electron motion is

much slower than the speed of light,

|v|
c

=
|q̇|
c
� 1 (3.7)

(note the extra factor 1/c in front of the magnetic field (3.4)). Finally, assumption (iii)

(neglecting the position dependence of the field term) is justified provided the maximum



1. SCATTERING OF TIME-HARMONIC RADIATION 61

electron displacement is much smaller than the spatial wavelength λ0 of the incoming

radiation,

(∆q)max � λ0 =
2π

|k0|
= 2π

c

ω
. (3.8)

Both (3.7) and (3.8) place indirect limitations on the field strength. To understand these

limitations, we estimate v/c and (∆q)max via the unique nontransient solution of (3.6),

q(t) = q0 −
e

mω2
E0(q0)e−iωt.

It follows that v = (e/mω)|E0| and (∆q)max = |q(t) − q0| = (e/mω2)|E0|, whence both

(3.7) and (3.8) lead, interestingly, to the same restriction

|E0| �
cmω

e
. (3.9)

To summarize: the model (3.6) relies on the semi-empirical assumption of a non-transient

electron response and the moderate field strength condition (3.9).

1.4. Field produced by the electron. The moving electron is a source of charge

and current and therefore produces a field. This field solves Maxwell’s equations with

ρ(x, t) = eδq(t)(x), J(x, t) = eδq(t)(x)q̇(t). (3.10)

Note that the source terms satisfies charge conservation in the sense of distributions.

This problem can be solved using vector potentials. The solution is well known and

goes back to Liénard and Wiechert. Since we are not aware of a mathematially satisfactory

derivation in the literature, we give our own derivation here.

Put B = curlA to solve the second of Maxwell’s equations; the third then becomes

curl(Ȧ+E) = 0, which implies that E = −Ȧ−∇ϕ. Using the freedom of gauge invariance

(e.g., A→ A +∇ψ), we require that

c2divA + ϕ̇ = 0. (3.11)

(This Lorenz gauge condition, named after Ludvik Lorenz not Hendrik Lorentz, has the

geometric meaning that the four-potential in SI units, obtained by setting A0 = ϕ/c, is

divergence-free in space-time, with respect to the coordinates x0 = ct, x1, x2, x3.) Then,

using curl curl = ∇div−∆, we have that the first and third Maxwell’s equations become

sourced wave equations:

1

c2
Ä−∆A = µ0J,

1

c2
ϕ̈−∆ϕ =

1

ε0

ρ. (3.12)

Note that (3.11) together with the second of (3.12) and E = −Ȧ − ∇ϕ gives charge

conservation. For smooth, as well as distributional, solutions, (3.11) and (3.12) imply

Maxwell’s equations.
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A particular solution of (3.11) and (3.12) is given by the follwing “retarded potentials”

which involve the time τx,x′(t) = t − |x − x′|/c at which an electromagnetic signal must

have emanated from x′ in order to arrive at x at time t:

A(x, t) =
µ0

4π

∫
R3

J(x′, τx,x′(t))

|x− x′|
dx′,

ϕ(x, t) =
1

4πε0

∫
R3

ρ(x′, τx,x′(t))

|x− x′|
dx′. (3.13)

Uniqueness of time-harmonic solutions to Maxwell’s equations is, for example, studied

in [BCX12].

Substituting (3.10) into (3.13), one gets

A(x, t) =
eµ0

4π

∫
R3

q̇(τx,x′(t))

|x− x′|
δ(x′ − q(τx,x′(t))) dx′,

ϕ(x, t) =
e

4πε0

∫
R3

1

|x− x′|
δ(x′ − q(τx,x′(t))) dx′. (3.14)

It is not trivial to evaluate the integrals on the right hand side. The first step is to

introduce the concept of retarded time.

Definition 3.3 (Retarded Time). Assume we are given the position of a moving

particle as a function of time, denoted q(t) (t ∈ R). The retarded time τx(t) is the time

at which the particle must have sent out a signal if this signal reaches point x at time t.

(See Figure 3.1.) That is to say it is the solution to the nonlinear equation

τ = t− |x− q(τ)|/c. (3.15)

The retarded time is well defined because of:

Lemma 3.4. If q is continuously differentiable and moves slower than the speed of

light, s := supt∈R |q̇(t)| < c, then for each x ∈ R3 and each t ∈ R, eq. (3.15) possesses a

unique solution τ = τx(t).

Proof. One way to see this is to appeal to Banach’s fixed point theorem: the iteration

τ (n+1)
x (t) = t− |x− τ (n)

x (t)|/c =: F (τ (n)
x (t))

satisfies |τ (n+1)
x − τ (n)

x | ≤ 1
c
|q(τ

(n)
x )−q(τ

(n−1)
x )| ≤ (s/c)|τ (n)

x − τ (n−1)
x |, so F is a contraction

due to the assumption s/c < 1, and hence possesses a unique fixed point. �

To carry out the integration in (3.14) over x′ we need a further lemma to deal with

the difficulty that the integration variable appears nonlinearly inside the delta function.

This difficulty appears to be a source of considerable confusion in the literature.
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Figure 3.1. Geometric meaning of retarded time. The condition that
the particle moves slower than the speed of light means geometrically that
the slope of the particle trajectory q is always steeper than that of the
backward light cone {(x′, t′) : |x′ − x| = c|t′ − t|, t′ ≤ t}, leading to a
unique intersection point.

Lemma 3.5 (Chain rule for the delta function). If f : Rd → Rd is continuously

differentiable and satisfies

(i) f(x0) = 0

(ii) f(x′) 6= 0 for x′ 6= x0

(iii) detDf(x0) 6= 0,

then δ(f(x′)) = 1

|detDf(x0)|
δ(x′ − x0).

Here the composition δ(f(x′)) is rigorously defined as follows: approximate δ(x) by

gε(x) = (1/εd)g(x/ε), where g : Rd → R is nonnegative, smooth, zero outside |x| ≤ 1,∫
g = 1. Define δ(f(x)) as the limit of gε(f(x)) in the sense that∫
δ(f(x))ϕ(x) dx = lim

ε→0

∫
gε(f(x))ϕ(x) dx for all continuous, compactly supported ϕ

(mathematically, δ ◦ f is the weak* limit in the sense of Radon measures of gε ◦ f). The

argument below shows that the limit exists and is given by the expression in the lemma,

and in particular does not depend on the choice of the approximating functions gε.

Proof. By the implicit function theorem, under the assumptions of the lemma f is a

diffeomorphism from a neighbourhood U of x0 to a neighbourhood V of 0. Moreover f(x)

is bounded away from zero in (suppϕ)\U and so for sufficiently small ε, gε(f(x)) vanishes
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in this region. Using the transformation of variables y = f(x), dy = |detDf(x)| dx gives∫
Rd
gε(f(x))ϕ(x) dx =

∫
U

gε(f(x))ϕ(x) dx =

∫
V

gε(y)ϕ(f−1(y))
1

|detDf(f−1(y))|
dy

−→ ϕ(f−1(0))
1

|detDf(f−1(0))|
=

ϕ(x0)

|detDf(x0)|
as ε −→ 0,

as was to be shown. �

To apply the lemma to the integrals in (3.14) we fix x and t and let f be the map

which appears inside the delta function,

f(x′) = x′ − q(τx,x′(t)) = x′ − q(t− |x− x′|/c). (3.16)

This map is zero at the point x′ = q(τx(t)) =: x0 (i.e., at the particle position at the

retarded time), since at this point the argument of q in (3.16) is equal to τx(t) so that the

right hand side becomes q(τx(t))− q(τx(t)) = 0. Next we need to determine the value of

the Jacobian determinant of f at x0. Differentiating (3.16) with respect to x′ gives

Df(x′) = I − q̇(t− |x− x′|/c)⊗ (−∇x′
|x− x′|

c
) = I − q̇(t− |x− x′|/c)

c
⊗ x− x′

|x− x′|
,

where for any a,b ∈ R3, a ⊗ b denotes the 3×3 matrix A = abT . To simplify this

expression, it is useful to introduce

v(τ) = q̇(τ) (velocity of particle at time τ),

n(x, τ) =
x− q(τ)

|x− q(τ)|
(direction from particle at time τ). (3.17)

Hence Df(x0) = I − v(τ)
c
⊗ n(x, τ)|τ=τx(t). Now Df(x0) has a double eigenvalue 1, corre-

sponding to eigenvectors orthogonal to n, and a single eigenvalue 1− v
c
·n, corresponding

to the eigenvector v. It follows that

detDf(x0) = 1− v(τ)

c
· n(x, τ)

∣∣∣
τ=τx(t)

.

Applying Lemma 3.5 to the integrals (3.14) yields

A(x, t) =
eµ0

4π

1

1− v(τ)
c
· n(x, τ)

v(τ)

|x− q(τ)|

∣∣∣
τ=τx(t)

,

ϕ(x, t) =
e

4πε0

1

1− v(τ)
c
· n(x, τ)

1

|x− q(τ)|

∣∣∣
τ=τx(t)

(3.18)

These expressions are called Liénard-Wiechert potentials, and are solutions to equations

(3.10), (3.11), (3.12). We remark that the Jacobian factor 1/(1−v/c) which emerged here

from the chain rule for the delta function can be interpreted physically as a relativistic
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length change factor of the charge distribution when viewed from a distant point x.

To understand the presence of this factor despite the source being a point charge, it is

essential that the two operations of integration over x′ and sending the width of the charge

distribution to zero are carried out in the correct order, namely integration before sending

the width to zero. This order arises naturally in the derivation of Lemma 3.5, and is also

respected in discussions in the physics literature which obtain (3.18) from the principle

of relativistic length contraction, such as [Fey64]).

To obtain the electromagnetic fields E and B, we need various derivatives associated with

the retarded time.

Lemma 3.6. For a given particle motion q as in Lemma 3.4, let v, n be as defined

in (3.17). We have

(i) (time derivative of retarded time) τ̇x(t) = 1

1−v(τ)
c
·n(x,τ)

∣∣∣
τ=τx(t)

(ii) (space derivative of retarded time) ∇xτx(t) = −1
c

n

1−v(τ)
c
·n(x,τ)

∣∣∣
τ=τx(t)

(iii) (time derivative of retarded distance) ∂
∂t
|x− q(τx(t))| = −v(τ)·n(x,τ)

1−v(τ)
c

∣∣∣
τ=τx(t)

(iv) (space derivative of retarded distance) ∇x|x− q(τx(t))| = n

1−v(τ)
c
·n(x,τ)

∣∣∣
τ=τx(t)

.

Proof (i): Differentiating (3.15) with respect to t yields

τ̇x(t) = 1− 1

c

〈 x− q(τx(t))

|x− q(τx(t))|
, −q̇(τx(t))τ̇x(t)

〉
= 1 + τ̇x(t)

〈
n(x, τ),

v(τ))

c

〉∣∣∣
τ=τx(t)

.

Solving for τx(t) yields (i).

(ii): Let {e1, e2, e3} be some orthonormal basis of R3, and denote the associated compo-

nents of any vector a by a1, a2, a3. Differentiating (3.15) with respect to any component

xi of x yields
∂τx
∂xi

(t) = −1

c

∂

∂xi
|x− q(τx(t))|. (3.19)

Carrying out the differentiation on the right explicitly gives

∂

∂xi
|x− q(τx(t))| = x− q(τx(t))

|x− q(τx(t))|
·
(
ei − q̇(τx(t))

∂τx
∂xi

(t)
)

= ni(x, τx(t))− n(x, τ) · q̇(τ)
∣∣∣
τ=τx(t)

· ∂τx
∂xi

(t).

Substituting into (3.19) and solving for ∂τx
∂xi

(t) yields

∂τx
∂xi

(t) = −1

c

ni(x, τ)

1− n(x, τ) · v(x,τ)
c

∣∣∣
τ=τx(t)

.

(iii): This follows from the fact that ∂
∂t
|x− q(τx(t))| = ∂

∂t
c(t− τx(t)) and (i).
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(iv): This is immediate from (ii) and the fact that ∇τx(t) = −(1/c)∇|x − q(τx(t))| by

(3.19).

We are finally in a position to derive the electric and magnetic fields ensuing from the

potentials (3.18), via E = −∇ϕ − ∂A
∂t

, B = curl A. Armed with Lemma 3.6, we can

compute the required derivatives explicitly and find after some calculation, abbreviating

β(τ) = v(τ)/c (relative particle velocity with respect to the speed of light), n = n(x, τ),

and dropping the argument τ from q, q̈, β

E(x, t) =
e

4πε0

1

(1− β · n)3

(n× [(n− β)× q̈
c2

]

|x− q|
+ (1− |β|2)

n− β
|x− q|2

)∣∣∣
τ=τx(t)

B(x, t) =
1

c
n(x, τx(t))× E(x, t). (3.20)

These fields solve Maxwell’s equations with charge and current given by (3.10); we there-

fore call them Maxwell radiation.

A simplified model for the fields (3.20) is obtained via the same simplifying assumptions

discussed in the previous section. We assume that the particle motion is much slower than

the speed of light, eq. (3.7), and the maximum electron displacement is much smaller than

the wavelength of the incoming radiation, (3.8). Hence the β terms can be dropped and

the vector n(x, τx(t)) can be replaced by the fixed direction vector

n0 =
x− q0

|x− q0|
.

Moreover by the identity for iterated vector products that a× (b×c) = b(a ·c)−c(a ·b),

n0 × (n0 × q̈) = −(I − n0 ⊗ n0)q̈.

Thus expression (3.20) for the electric field reduces to

E(x, t) =
e

4πε0

(
−(I − n0 ⊗ n0)

q̈(τx(t))/c2

|x− q0|
+

x− q0

|x− q0|3
)
.

Approximating the retarded time τx(t) which appears inside q̈ is a little more tricky.

Clearly

τx(t) = t− |x− q0|
c

+O

(
(∆q)max

c

)
, (3.21)

but the admissibility of dropping the error term depends on the timescales on which q̈ is

varying. We therefore confine ourselves to the case when the particle motion is governed

by eq. (3.6). In this case the retarded time enters only through the phase factor e−iωτx(t).

Hence dropping the error term in (3.21) is admissible provided

(∆q)max ·
ω

c
� 2π. (3.22)
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Remarkably, due to the relation ω/c = 2π/λ0 between frequency and spatial wavelength

of the incoming time-harmonic radiation, this is precisely equivalent to the assumption we

already made in (3.8) that the particle displacement is much smaller than the wavelength

of the incoming radiation. Thus expression (3.20) finally simplifies to

E(x, t) =
e

4πε0

(
−(I − n0 ⊗ n0)

q̈(t− |x− q0|/c)/c2

|x− q0|
+

x− q0

|x− q0|3
)
. (3.23)

The first term is a kind of dipole radiation, and is absent when the charged particle is not

moving. It is similar to the typical starting point in books on X-ray analysis. The second

term is the usual static Coulomb field produced by a charged particle at position q0.

When the particle motion is driven by an incoming field of form (3.2), combining

(3.23), (3.6) gives

E(x, t) =
e

4πε0

(
−(I − n0 ⊗ n0)

eE0(q0)

mc2|x− q0|
e−iω(t−|x−q0|/c) +

x− q0

|x− q0|3
)
. (3.24)

Note that after the approximations made, the particle trajectory has been eliminated and

the field produced by the electron has been expressed directly in terms of the expected

initial electron position q0 and the incoming field Ein(q0, τ) = E0(q0)e−iωτ at that position

at the approximate retarded time τ = t− |x− q0|/c.

1.5. Field produced by a charge density. Assume now that instead of a single

electron, a whole molecule is present. The molecule consists of electrons and atomic nuclei,

and can be described by an electron density and a density of nuclei. The field produced

by the electron density is a superposition of the field given above for one electron. An

analogous field is produced by the atomic nuclei. For each individual atom, the total

electronic charge and the total nuclear charge are equal and opposite, whence the second,

electrostatic, part in (3.24) almost completely cancels outside the region where electronic

and nuclear charge are localized. On the other hand, the first term in (3.24) contains the

inverse mass of the particle as a prefactor. Hence the first term does not cancel; instead

the term coming from the nuclei can be neglected, due to the much heavier nuclear mass.

These considerations lead to the following expression for the outgoing radiation. Let

ρel(y) be the number of electrons per unit volume at y. Suppose the illuminated region

is Ω. Then the outgoing radiation at a point x outside Ω is, by simple superposition of

the first term of (3.24),

E(x, t) = − e2

4πε0mc2

∫
Ω

(
I− x− y

|x− y|
⊗ x− y

|x− y|

)
E0(y)

|x− y|
ρel(y) e−iω(t−|x−y|/c) dy. (3.25)
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As in Chapter 1, we introduce the scattering constant cel := − e2

4πε0mc2
and the projection

P((x−y)⊥) := I− x−y
|x−y|⊗

x−y
|x−y| , and remove the time-dependence from the integral. Then

E(x, t) = cele
−iωt

∫
Ω

P((x− y)⊥)

|x− y|
E0(y)ei

ω
c
|x−y|ρel(y)dy.

At this point, we want to exploit the fact that dia(Ω) � |x − y| for y ∈ Ω. We directly

see that in the term P((x−y)⊥)
|x−y| , we can replace y by an arbitrary point yc ∈ Ω and remove

the resulting term from the integral.

We linearize the exponential term. Writing

ω

c
|x− y| = ω

c

x− yc
|x− yc|

· (x− y) +
ω

c

(
x− y

|x− y|
− x− yc
|x− yc|

)
· (x− y),

we need the second term to vanish. Taylor expansion in y at yc yields

ω

c

(
x− y

|x− y|
− x− yc
|x− yc|

)
· (x− y)

≈ 0 + 0 +
ω

2c
(y − yc)

T

(
1

|x− yc|

(
I− x− yc
|x− yc|

⊗ x− yc
|x− yc|

))
(y − yc)

≈ dia(Ω)2|k|
2|x− yc|

≈ dia(Ω)2|k|
2d(x,Ω)

=
1

2
F(x; k,Ω),

where in the last two approximations, we again used that |x − y| � 1 for y ∈ Ω. The

quantity F(x; k,Ω) is called Fresnel number and relates the wavelength, the diameter

of the sample and the distance of the obsevation point. The right limit to consider is

F(x; k,Ω) → 0 which is know as far-field or Fraunhofer approximation. In fact, this

approximation should more precisely be called a linear phase approximation.

The final version of the outgoing electromagnetic field which will be subsequently

called Fourier radiation, as it actually is a Fourier integral, is

E(x, t) = cele
iω
c

x−yc
|x−yc|

·x−iωtP((x− yc)
⊥)

|x− yc|

∫
Ω

E0(y)e−i
ω
c

x−yc
|x−yc|

·yρel(y)dy, (3.26)

B(x, t) =
cel

c
ei
ω
c

x−yc
|x−yc|

·x−iωt x− yc
|x− yc|2

×
∫

Ω

E0(y)e−i
ω
c

x−yc
|x−yc|

·yρel(y)dy. (3.27)

As we did for plane wave radiation, we calculate the intensity of Fourier radiation. Denote

the integral in (3.26) and (3.27) by F. Then a short calculation shows that

P((x− yc)
⊥)F×

(
x− yc
|x− yc|

× F

)
= sin2(^(x− yc,F))

x− yc
|x− yc|

|F|2,

where ^(x − yc,F) is the angle between the outgoing direction and F. Again, we write

sin2(^(x− yc,F)|F|2 = |P((x− yc)
⊥)F|2.
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By equation (1.9), the Poynting vector S of the field (E,B) is thus given by

S(x, t) =c2
el

cε0

|x− yc|2
|P((x− yc)

⊥)F|2 x− yc
|x− yc|

To determine the intensity I via equation (1.10), we use Lemma 1.1 to find

I(x) = c2
el

cε0

2|x− yc|2

∣∣∣∣P((x− yc)
⊥)

∫
Ω

E0(y)e−i
ω
c

x−yc
|x−yc|

·yρel(y)dy

∣∣∣∣2 , (3.28)

We summarize our results in the following

Definition 3.7 (Fourier Radiation Data). For a given time-harmonic radiation

E0 ∈ Rω
b , and a given function ρel ∈ Cc(R3) (charge density), the integrals (3.26), (3.27),

and (3.28) are called Fourier radiation and Fourier radiation intensity, respectively.

Again, we introduce the scattering amplitude A := I1/2. For Fourier radiation, A is

given by

A(x) = cel

(
cε0

2|x− yc|2

)1/2 ∣∣∣∣P((x− yc)
⊥)

∫
Ω

E0(y)e−i
ω
c

x−yc
|x−yc|

·yρel(y)dy

∣∣∣∣ . (3.29)

2. Reconstruction and Design

In the previous section we modeled the radiation that results from the interaction of

time-harmonic radiation with a charge density and introduced an approximate expression

– so-called Fourier radiation. Having solved the direct problem, we turn our attention

to the inverse problem of determining the charge density from measurements of Fourier

radiation intensity.

For this purpose, we look at Fourier radiation in a different light. The essential part of

the formula can be seen as an integral transform that depends on the incoming radiation

and maps the charge density to a vector-valued function on the 2-sphere. We call this

integral the radiation transform of the density with respect to the incoming radiation. The

intensity of the outgoing radiation is essentially the absolute value squared of a projection

of the radiation transform.

To gain more flexibility for reconstruction, we consider multi-parameter families of

radiation. A family of plane waves, for example, can be parametrized by its wave vectors.

The reconstruction problem is then formulated as the recovery of the charge density from

the intensity of the outgoing radiation with respect to the family of incoming radiation.

This problem is in general ill-posed due to the information loss resulting from the reduction

of a complex vectorial quantity to a non-negative scalar quantity.
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Given a family of structures (e.g. crystals), it is then natural to ask how to choose

the radiation family to reconstruct these structures in an optimal manner.

2.1. The Outgoing Radiation as an Integral Transform. The Fourier radiation

approximation of the outgoing field resulting from the interaction of a charge density

ρel ∈ L1(R3) and an incoming time-harmonic field E0 ∈ Rω
b , ω > 0, is given in formula

(3.28). The essential part of the expression is the integral term that determines the

amount of constructive/destructive interference of the outgoing waves at a point on the

screen. We interpret this term as an integral transform that depends on the incoming

field E0 and maps the charge density ρel to a vector field. This transform will be called

the radiation transform of ρel with respect to E0 and is defined as follows:

Definition 3.8 (Radiation Transform). Let E0 ∈ Rω
b be time-harmonic radiation

with frequency ω > 0 (see Definition 3.2) and ρel ∈ L1(R3). The radiation transform

R[E0]ρel of ρel with respect to E0 is defined as

R[E0]ρel(s0) :=

∫
R3

e−i
ω
c
s0·yE0(y)ρel(y)dy, s0 ∈ S2. (3.30)

As the integral in (3.28) only depends on the outgoing direction x−yc
|x−yc| ∈ S2, we define

the transform R[E0]ρel as a vector-valued function on the unit sphere S2 as is usually

done for outgoing fields or intensities in scattering theory.

The following lemma collects some basic properties of the radiation transform of in-

tegrable functions:

Lemma 3.9 (Properties of the Radiation Transform on L1(R3)). Let ω > 0 and

E0 ∈ Rω
b . The radiation transform associated to E0 maps integrable functions ρel ∈ L1(R3)

(“charge densities”) to continuous vector-valued functions on S2 (“radiation fields”). The

operator R[E0] : L1(R3) → C(S2,C3) is bounded and linear. It satisfies the following

transformation law under E(3). When (Q|c) ∈ E(3), then

R[(Q|c)E0]ρel(s0) = e−i
ω
c
s0·cQR[E0]((Q|c)−1ρel)(Q

−1s0) (3.31)

for all s0 ∈ S2.

Proof. Observing that the radiation transform is a Fourier integral

R[E0]ρel(s0) = F(E0ρel)
(ω
c

s0

)
,

we directly see that the operator R[E0] is linear and bounded. Since E0ρel is an L1-vector

field, we know that its Fourier transform F(E0ρel) is continuous. Then R[E0]ρel is also

continuous, as it is the restriction of F(E0ρel) to the set ω
c
S2.
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For (Q|c) ∈ E(3) and s0 ∈ S2, we get

R[(Q|c)E0]ρel(s0) =

∫
R3

e−i
ω
c
s0·yQE0(Q−1(y − c))ρel(y)dy

= Q

∫
R3

e−i
ω
c
s0·(Q|c)yE0(y)ρel((Q|c)y)dy

= e−i
ω
c
s0·cQ

∫
R3

e−i
ω
c
Q−1s0·yE0(y)ρel((Q|c)y)dy

= e−i
ω
c
s0·cQR[E0]((Q|c)−1ρel)(Q

−1s0).

�

Remark 3.10. The restriction of the radiation transform to integrable functions is

not necessary. It can be extended to tempered measures via the formulation as a Fourier

transform. This extension maps to the space of vector-valued distributions on S2.

In the special case that the incoming radiation is a plane wave Eω,k0(x) := nei
ω
c
k0·x,

x ∈ R3, with frequency ω > 0, k0 ∈ S2 and n · k0 = 0, according to (1.17), the radiation

transform is up to a constant vector the Fourier transform of the charge density ρel

evaluated at a certain point:

R[Eω,k0 ]ρel(s0) = nρ̂el

(ω
c

(s0 − k0)
)
, s0 ∈ S2. (3.32)

A variation of the incoming direction k0 can be realized via a rotation of the incoming

field. For Q ∈ SO(3) we get:

(QEω,k0)(x) = Qneik0·Q−1x = QneiQk0·x = QEω,Qk0(x), x ∈ R3.

Using lemma 3.9, we infer

R[QEω,Qk0 ]ρel(s0) = QR[Eω,k0 ](Q
−1ρel)(Q

−1s0), s0 ∈ S2. (3.33)

Thus, instead of varying the incoming direction, one can rotate the sample and adjust the

observation point. This fact is exploited in the rotating crystal method and the powder

method of X-ray crystallography.

2.2. Reconstruction Problem and Design Problem. The information contained

in the outgoing radiation for one single incoming field is in general not enough to suc-

cessfully reconstruct a three-dimensional density. To overcome this problem, parameters

of the incoming radiation are varied to collect additional information and thereby make

reconstruction possible. These radiation parameters could for example be the frequency

or incoming angle of a plane wave or the relative orientation and relative phase of multiple

incoming plane waves.
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We introduce a radiation parameter set P that parametrizes a family of time-harmonic

radiation:

{Eω,p}(ω,p)∈P , where Eω,p ∈ Rω
b for ω ∈ [0,∞). (3.34)

We can, for example, parametrize a family of plane wave radiations {Eω,k0}(ω,k0)∈P with

the parameter set P := [0,∞)× S2 by setting Eω,k0(x) := n(k0)ei
ω
c
k0·x for x ∈ R3, where

the vectors n(k0) satisfy n(k0) · k0 = 0 for k0 ∈ S2. The additional freedom in n(k0), i.e.

in amplitude and polarization of the waves, plays a minor role for reconstruction as can

be seen from (3.32).

Assume that we have a family of time-harmonic radiation {Eω,p}(ω,p)∈P with radiation

parameter set P and want to reconstruct the charge density ρel from intensity measure-

ments. Formula (3.28) yields the following relation between the measured intensities and

the radiation transform:

I(x) = c2
el

cε0

2|s0|2
∣∣P(s⊥0 )R[Eω,p]ρel(s0)

∣∣2 , (3.35)

where s0 := x−yc
|x−yc| is the outgoing direction.

So, we essentially measure the absolute value squared of a projection of the radiation

transform. It might not be possible to measure the intensity in every outgoing direction

s0. Reasons for missing data could for example be the experimental setup (e.g. a beam

stop) or the resolution of the detector that only allows a certain spatial sampling rate.

We model these cases by introducing an observation parameter set O ⊂ S2 that contains

the directions in which measurements are available.

The general reconstruction problem can now be formulated as follows:

Reconstruction Problem:

Given a parameter family {Eω,p}(ω,p)∈P of time-harmonic radiation with radiation param-

eter set P and an observation parameter set O ⊂ S2, reconstruct the charge density ρel

from the data set {∣∣P(s⊥0 )R[Eω,p]ρel(s0)
∣∣2}

(ω,p)∈P,s0∈O
. (3.36)

Assume that we want to reconstruct a charge density ρel from measurements with respect

to the family {Eω,k0}(ω,k0)∈P of plane waves Eω,k0(x) = n(k0)ei
ω
c
k0·x, x ∈ R3, with radia-

tion parameter set P = [0,∞)× S2. With the full observation parameter set O = S2, the

reconstruction problem is to find ρel, given the data{
|n(k)|2 sin2(^(n(k), s0))

∣∣∣ρ̂el

(ω
c

(s0 − k0)
)∣∣∣2}

(ω,k0)∈P,s0∈O
.
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Since this data set determines all values of the function |ρ̂el|2, the reconstruction problem

reduces to a scalar phase retrieval problem. Note that the data is redundant. Choos-

ing one single incoming direction k0 or one single observation point s0 and varying the

other parameters, the data set still determines |ρ̂el|2 at every point in R3. This redun-

dancy gives some flexibility in the measurement techniques that can be used for structure

determination (see the list below).

Remark 3.11. Since the radiation transform R[Eω,p]ρel is a vector field, reconstruc-

tion will in general not reduce to a scalar phase problem. Instead, the information that

is lost by projecting the radiation transform perpendicular to the outgoing direction and

then taking the absolute value of this vectorial quantity needs to be reconstructed as well.

We enumerate the most common measurement techniques for reconstruction from

plane wave diffraction, focusing on the subsets of the parameter sets P = [0,∞)×S2 and

O = S2 that are used.

• Laue method: Fixing an incoming direction k0 ∈ S2, a polychromatic (“white”)

X-ray source is used to obtain the highly structured diffraction pattern of a crystal

on a screen in propagation direction (“forward scattering”) or in the opposite

direction (“backscattering”) (see Figure 1.5). The parameter sets are

P = [0,∞)× {k0}, and O = S2.

By using a polychromatic source, the measurements of all the frequencies are

made at the same time. Because of peak overlaps, the density cannot be recon-

structed with this method. However, the symmetries can be determined, as we

already saw in Chapter 1.

• Rotating crystal method: Monochromatic X-rays with frequency ω0 ∈ [0,∞)

illuminate a crystal sample that is rotated while the intensity is measured at

the screen. As seen in (3.33), rotating the sample is equivalent to changing the

incoming direction, so the parameter sets are

P = {ω0} × S2, and O = S2.

With these sets, it is easily checked, that the argument ω0

c
(s0−k0) of the Fourier

transform attains all values in B2ω0/c(0). So, the used frequency ω0 determines

the resolution of the reconstruction.

• Powder method (Debye-Scherrer): When instead of a single crystal, crystal

powder is analyzed with monochromatic X-rays of frequency ω0 ∈ [0,∞), a ring

pattern emerges on the screen. This is due to the different orientations of the

crystal grains in the powder. Lemma 3.9 tells us that the diffraction pattern is a
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superposition of the diffraction patterns for the different incoming directions that

correspond to these orientations. Because of the redundancy of the pattern, it

is enough to measure the intensity on a (half) great circle through the incoming

direction k0. The result is a so-called 2θ-plot, where 2θ is the angle between

incoming and outgoing direction. The corresponding parameter sets are

P = {ω0} × S2, and O = S2 ∩ E,

where E ⊂ R3 is a two-dimensional subspace of R3 that contains k0. The 2θ-plot

does not contain enough information for reconstruction of ρel, but is a clever way

to determine the Bravais class and the lattice parameters of a crystal.

• Coherent Diffraction Imaging (CDI): Highly brilliant X-rays of frequency

ω0 ∈ [0,∞) coming from a fixed direction k0 illuminate a sample that is not

necessarily a crystal. The diffraction pattern is then not concentrated in peaks

but continuous. As detectors are restricted to a specific spatial sampling rate, a

discrete subset D of the full observation parameter set is selected:

P = {ω0} × {k0}, and O = D ⊂ S2, D discrete.

Knowing a compact support constraint, a projection of the structure (see Corol-

lary 1.5) can in principle be reconstructed by invoking the Shannon sampling

theorem [Say52-2]. It has been shown in [MSC98, Mil96] that with a certain

amount of oversampling, the phase problem can be solved successfully in many

cases. When collecting the measurements for all incoming directions (or equiv-

alently, all orientations of the sample), the three-dimensional structure can be

tomographically reconstructed.

• Variation of Radiation Parameters: In theory, it would also be possible to

fix an outgoing direction s0 ∈ S2 and to only vary the radiation parameters ω

and k0. The corresponding parameter sets are

P = [0,∞)× S2, and O = {s0}.

As already mentioned above, these parameter sets are sufficient to reconstruct

ρel up to the phase problem, as the function |ρ̂el|2 is known everywhere. We will

come across this theoretical way of reconstruction again in Chapters 4 and 6.

The family of plane waves is naturally parametrized by its wave vectors, i.e. by the

corresponding radiation parameter set P = [0,∞)× S2. But how does this family stand

out among the many possible families of time-harmonic radiation?
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For the class of crystal structures, the usage of plane waves leads to particularly nice

diffraction patterns. The highly structured peak patterns have the following favorable

features:

• The characteristic locations of the peaks make a direct reconstruction of symme-

try information possible without having to solve a phase problem. This is due

to the von Laue condition 1.24 that relates the translational symmetries of the

crystal to the peak locations.

• The huge amount of destructive interference singles out a discrete set of ob-

servation points, thereby reducing the dimension of the reconstruction problem

severely.

• The concentration of the intensity to sharp peaks makes the use of highly brilliant

sources unnecessary.

Taking these features as a guideline, we formulate the following general radiation design

problem for a given class of molecular structures.

The Design Problem

For a given class of molecular structures S, find a family {Eω,p}(ω,p)∈P of time-harmonic

radiation with parameter set P and an observation parameter set O ⊂ S2, s.t. for every

structure ρel ∈ S, the data set
{∣∣P(s⊥0 )R[Eω,p]ρel(s0)

∣∣2}
(ω,p)∈P,s0∈O

develops sharp char-

acteristic peaks as either the observation point s0 or the radiation parameters (ω, p) are

varied.

In the following, we formulate a mathematically precise design criterion for certain

classes of highly symmetric structures that are not necessarily crystalline. The plane

waves turn out to be the solutions of this criterion when choosing the class of crystal

structures.

3. The Design Equations for Abelian Design Groups

3.1. Plane Waves as Solutions to a Design Criterion. We have a second look at

plane waves. Why exactly are they the right radiation to use for the analysis of crystals?

The answer lies in the derivation of the von Laue condition (1.24), where we used the

generalized Poisson summation formula for a Bravais lattice B,

δ̂B =
(2π)3

VB
δB⊥ ,
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to get the result. The plane waves appear in this formula in their scalar form as the

building blocks of the Fourier transform on Schwartz space S(R3). Qualitatively, the

above equation can be written as

lim
R→∞

∑
b∈B,|b|<R

e−ik·b =

0, k 6∈ B⊥,

+∞, k ∈ B⊥,
, k ∈ R3. (3.37)

When k ∈ B⊥, i.e. k ·b ∈ 2πZ for all b ∈ B, all the terms on the left hand side become 1

and add up constructively to produce a peak. This is due to the translational invariance

of the complex exponentials. Defining the translation operators Tyf(x) := f(x−y) for a

continuous function f on R3 and x,y ∈ R3, and and usual writing ek(x) := eik·x, x ∈ R3,

we get

Tyek(x) = e−ik·yek(x).

In particular,

Tbek = ek for all b ∈ B, k ∈ B⊥.

This justifies an alternative definition of the reciprocal lattice that puts more emphasis

on this fact:

B⊥ = {k ∈ Rn. Tbek = ek for all b ∈ B}. (3.38)

So, the scalar plane waves are simultaneous eigenfunctions of the group of translation

operators – called the translation group. The ones with wave vector in the reciprocal

lattice B⊥ are exactly the ones that are invariant w.r.t. to the operators associated to B.

In fact, this property characterizes the plane waves – not only in the scalar case.

Proposition 3.12 (Characterization of Plane Waves). Let ω > 0. The plane

waves

Eω,k0(x) := nei
ω
c
k0·x, k0 ∈ S2, n ∈ C3, k0 · n = 0, x ∈ R3,

are exactly the eigenfunctions of the translation group in the space Rω
b of time-harmonic

radiation, i.e. the bounded measurable vector fields satisfying

(i) ∆Eω,k0 = −ω
2

c2
Eω,k0,

(ii) div Eω,k0 = 0,

(iii) Eω,k0(x− y) = χ(y)Eω,k0 for all x,y ∈ R3 and some χ(y) ∈ C.

Proof. Assume that a vector field E0 ∈ Cb(R3,C3) satisfies (i)-(iii).

Since E0 is bounded and continuous, the left hand side of (iii) is bounded and contin-

uous with respect to y. But then the same must be true for the right hand side, showing
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that χ ∈ Cb(R3,C). For y1,y2 ∈ R3 and x ∈ R3, we get

χ(y1 + y2)E0(x)
(iii)
= E0(x− (y1 + y2) = E0((x− y1)− y2)

(iii)
= χ(y1)χ(y2)E0(x).

This shows that the function χ : R3 → C is a bounded continuous group homomorphism

from (R3,+) to (C \ {0}, ·) when E0 6= 0 (else there is nothing to show). Such functions

are called characters of the group (R3,+). The characters of R3 are well-known to be of

the form χ(y) = eik·y for some k ∈ R3.

Thus, we get for x ∈ R3

E0(x) = E0(0− (−x))
(iii)
= χ(−x)E0(0) = e−ik·xE0(0).

Setting n := E0(0), the vector field E0 already is of the right form E0(x) = ne−ik·x.

The vector Helmholtz equation (i) yields

∆E0 = −|k|2E0
(i)
= −ω

2

c2
E0,

showing that k ∈ ω
c
S2, while from (ii)

div E0 = −ik · E0(x) = −ik · ne−ik·x (ii)
= 0,

we get that k · n = 0. �

So, being an eigenfunction of a group of symmetries turns out to be the right design

criterion in this case. The appearance of the characters when considering the eigenvalues

as functions on the group brings the Fourier transform into play. This will be an important

feature in the general case as well.

Before we generalize this criterion, we introduce a class of molecular structures that

generalizes crystal structures in a natural way.

3.2. Objective Structures. In [Jam06], R. D. James introduced a notion describing

a special class of molecular structures – so-called objective structures. In words, every

atom of such a structure has the same atomic environment in the following sense. When

you locate yourself at one of the atoms, you can not decide at which specific atom of the

structure you are, because at every other atom you can orient yourself in a way that you

see exactly the same environment. This kind of objectivity gives these structures their

name.

Even from this vague description one can already see that Bravais lattices are an ex-

ample for objective structures. At two different atoms looking in the same direction, you

cannot decide where you are. This is just a different way of saying that a crystal is invari-

ant with respect to the respective translation. Objective structures as a generalization
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can be invariant with respect to more general transformations. Before we analyze which

these are, we give the precise definition from [Jam06].

Definition 3.13 (Objective Structure).

A discrete closed set S = {x1, . . . ,xN} ⊂ R3, N ∈ N ∪ {∞}, is called an objective atomic

structure, if there is a set of orthogonal transformations {Q1, . . . ,QN} ∈ O(3), s. t.

S = {xj + Qj(xk − x1). k = 1, . . . , N} ∀j = 1, . . . , N.

A discrete closed set S = {xj,k. j = 1, . . . , N, k = 1, . . . ,M} ⊂ R3, N ∈ N∪ {∞},M ∈ N,
is called an objective molecular structure, if there is a set of orthogonal transformations

{Qj,k. j = 1, . . . , N, k = 1, . . . ,M} ⊂ O(3), s. t. for all j, k

S = {xj,k + Qj,k(xn,m − x1,k). n = 1, . . . , N, m = 1, . . . ,M}.

Since every objective atomic structure is a objective molecular structure with M = 1,

we will in the following always refer to objective molecular structures just as objective

structures.

Consider S ⊂ R3 to be an objective structure. Then the mappings

ψj,k : R3 → R3, x 7→ xj,k + Qj,k(x− x1,k),

keep the structure fixed for j = 1, . . . , N , k = 1, . . . ,M . So, defining the group HS

generated by these mappings

HS := 〈ψj,k. j = 1, . . . , N, k = 1, . . . ,M〉,

we find that S is invariant with respect to this group:

S = HSS.

Moreover, since ψj,k(x1,k) = xj,k, defining MS := {x1,k. k = 1, . . . ,M}, we get the whole

group as the orbit of MS under HS :

S = HSMS .

The mappings ψj,k belong to a special class of transformations of R3: they are isometries,

i.e. ‖x−y‖ = ‖ψj,k(x)−ψj,k(y)‖ for all x,y ∈ R3, what is obviously true as Qj,k ∈ O(3).

The group E(3) of isometries of R3 is called Euclidean group. So, what we have seen so

far is that every objective structure is the orbit of a finite molecule under an isometry

group, i.e. a subgroup of E(3).

In fact, objective structures can be characterized as orbits of finite sets in the following

way
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Proposition 3.14 (Objective Structures as Orbits). A subset of R3 is an objec-

tive structures if and only if it is the orbit of a finite set under a discrete closed isometry

group.

Proof. For x ∈ R3 consider the mapping fx : E(3)→ R3, h 7→ h(x). fx is obviously

continuous. Since fx(HS) = HSx and HSx is closed, because it is an atomic objective

structure, we see that HS as the preimage of a closed set under a continuous map is closed.

Since HS is obviously discrete, we already have shown that every objective structure is

the orbit of a finite set under a discrete closed isometry group – namely S = HSMS .

So, it remains to show that the orbit of any finite set M under a discrete closed

subgroup H of E(3) is an objective structure.

Let S := HM. By the Mazur-Ulam theorem (see [Vai03]), every isometry h ∈ H has

the form

h(x) = Qx + c, for some Q ∈ O(3), c ∈ R3.

Usually the element h is then written in the form h = (Q|c) as in (2.2).

The set S can be written as

S = {h(m). h ∈ H, m ∈M} = {Qm + c. (Q|c) ∈ H, m ∈M}.

Now, let |M| = M ∈ N and |H| = N ∈ N ∪∞. Then we can enumerate the elements

M = {x1,k. k = 1, . . . ,M} and HS = {hj. j = 1, . . . , N}.

Setting xj,k := hj(x1,k), we get

S = {xj,k. j = 1, . . . , N, k = 1, . . . ,M}.

Writing hj = (Qj|cj) for some Qj ∈ O(3), cj ∈ R3, j = 1, . . . , N , we find that the

translational part is given by cj = xj,k − Qjx1,k from the definition of xj,k. Setting

Qj,k := Qj for j = 1, . . . , N , k = 1, . . . ,M , we get

hj(x) = xj,k + Qj,k(x− x1,k) = ψj,k(x).

Consequently, ψj,kS = S for all j ∈ {1, . . . , N} and k ∈ {1, . . . ,M}, showing that S is an

objective structure. �

The proof shows that in the above definition of an objective structure, indexing the

orthogonal transformations only by j would not change the class of structures defined.

As we already mentioned above, crystals are objective structures. When L = BL+MA
L ,

BL = AZ3, A ∈ GL(3,R), MA
L ⊂ R3 finite, is a crystal lattice, consider the group

HL := {(I|b). b ∈ BL}
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of translations associated to BL. Then, obviously,

L = HLM
A
L ,

giving a characterization as in Lemma 3.14.

We give some further examples of objective structures.

Given A ∈ Mat(3, 3;R) with rk(A) < 3, and a finite set M ⊂ R3, we set

S := AZ3 + M.

This structure is a rk(A)-dimensional crystal. Again, setting HS := (I|AZ3), we get

S = HSM.

These translational structures are already quite general, as it can be shown that the

groups (I|AZ3) are exactly the discrete closed subgroups of the full translation group.

Let’s reconsider the structure from the motivating example. The group HN considered

there is a discrete closed isometry group. So, the nanotube structure N is an objective

structure.

Given a unit vector e ∈ R3, we define the group

Ce := {(Rϑ|τe). ϑ ∈ T, τ ∈ R} (3.39)

of all rotations and screw displacements about and all translations along the axis Re.

Then every closed discrete subgroup of Ce has the form of HN (see Lemma 5.2), i.e. it is

generated by a rotation (which might be the identity) and a screw displacement (which

might be the identity or a translation). We call the objective structures that are generated

by an infinite closed subgroup of Ce for some unit vector e nanotube structures. We will

analyze these structures in more detail in the next chapter.

Another possible choice for HS is to take a discrete closed subgroup of O(3) to generate

a finite structure. For example the choice HS = {(R2πj/n|0). j = 1, . . . , n} leads to

structures that are n-fold rotationally invariant.

Figure 3.2 shows some examples of objective structures.

3.3. The Design Equations. In the last three sections we set the grounds for for-

mulating a design criterion. We have decided which kind of radiation we want to use and

which class of structures we want to analyze. Even more, we already found a criterion

that identifies the plane waves as the right choice of radiation to analyze crystals.

The plane waves with frequency ω > 0 are the eigenfunctions of the full translation

group in the space Rω
b of time-harmonic radiation, while crystal lattices are the orbits of

finite sets under a discrete closed subgroup of the translation group. So, the translation
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Figure 3.2. Examples of objective structures. Shown is a ring structure
with an improper rotation symmetry, an icosahedral structure like the buck-
yball, a finite sample of crystal structure and a nanotube-like structure.

group is the object that defines the radiation to use and the class of structures to analyze

with this radiation at the same time.

In the following, we will start from a general closed isometry group G ≤ E(3), that

defines the class of structures and the corresponding space of radiations. We call this

group the design group.

The natural action of the group E(3) on the space L∞(R3;C3) of L∞-vector fields is

the following. Let E0 ∈ L∞(R3;C3) and (Q|c) ∈ E(3). Then for x ∈ R3,

(Q|c)E0(x) := QE0(QT (x− c)).

Note, that QT (· − c) = (Q|c)−1.

First, we consider the case that the design group G is a closed abelian subgroup of

E(3). We formulate the design criterion analogous to the case when G is the translation

group.
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Definition 3.15 (Design Equations – Abelian Design Group). Let G be a closed

abelian subgroup of E(3). A vector field E0 ∈ L∞(R3;C3) solves the design equations for

G when it satisfies

(i) ∆E0 = −ω
2

c2
E0, for some ω > 0,

(ii) div E0 = 0,

(iii) gE0 = χ(g)E0 for some χ(g) ∈ C and all g ∈ G.

We denote the space of time-harmonic radiation with frequency ω that satisfies the design

equations for G with Rω
b (G).

The relation between the design group G, the class of objective structure it defines and

the radiation that solves the Design Equations is summarized in the following diagram:

We will solve these equations for a special choice of G in the next chapter. For the

moment, we show some similarities to the crystalline case that give hope that the choice of

criterion might be the right thing. However, it has to be noted that we are far from done,

since, even if we have solved the equations, it is not clear what information is contained

in the intensity of the outgoing raditation in the far-field and if we can reconstruct a

structure of the corresponding class.

In the proof of Proposition 3.12 we first showed that the eigenvalue χ as a function

on the group is actually a character. We can do the same in the general abelian case:

Lemma 3.16 (Character Lemma). Let G ≤ E(3) be a closed abelian isometry

group. The function χ : G → C from (iii) in Definition 3.15 is a character of the group

G.

Proof. Boundedness and continuity of χ are a direct consequence of the same prop-

erties for E0.
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χ is a group homomorphism from G to C∗, as for all g1, g2 ∈ G:

χ(g1g2)E0
(iii)
= (g1g2)E0 = g1(g2E0)

(iii)
= χ(g1)χ(g2)E0.

So, χ is a character of G. �

This Lemma shows that the Fourier transform on the group G will play an important

role in the following chapters.

It also gives some additional structure to the space Rω
b . Every element of this space

solves the eigenfunction equation for a specific character χ of G. We define the subspace

Rω,χ
b (G) := {E0 ∈ Rω

b . gE0 = χ(g)E0}, χ ∈ Ĝ.

So, we get the identity

Rω
b (G) =

⋃
χ∈Ĝ

Rω,χ
b (G).

The radiation we design, will thus have at least two parameters – the frequency ω > 0 and

the character χ ∈ Ĝ that describes its transformation under G. Considering the crystalline

case, i.e. G = R3 the translation group, we know that the characters are χ(k) = ek, while

ω fixes the absolute value of k by |k| = ω
c
. We write Rω,k

b for the corresponding radiation

space, and can restate our findings of Proposition 3.12 as

Rω,k
b (R3) = {nek. n ∈ C3, k · n = 0}.

This space is consequently isomorphic to the space of three-dimensional complex vectors

that are perpendicular to k, which is a 5-dimensional linear space.

In this case, we also found that given a Bravais lattice B, the reciprocal lattice B⊥

consisted of the wave vectors, s.t. the corresponding character is invariant w.r.t. B. In

particular, identifying the wave vectors with the corresponding character, the reciprocal

lattice can be identified with a subgroup of the dual group. Being invariant with respect

to B can also be expressed as being equal to one on B. In the theory of locally compact

abelian groups, this construction is known as the orthogonal group (see [Rei68] or [Fol95]).

It is defined as follows.

Definition 3.17 (Orthogonal group). Let G be a locally compact abelian group

with dual group Ĝ and H a closed subgroup of G. Then the orthogonal group H⊥G of H

with respect to G is defined as

H⊥G := {χ ∈ Ĝ. χ ↓GH≡ 1}.
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When G is the translation group and HL is the group of translations associated to a

crystal lattice L, we find that the mapping

B⊥L → H⊥L , k 7→ χ(k),

is a group isomorphism.

3.4. Example: Two-Dimensional Crystals. As a preliminary example, we want

to consider the case of a two-dimensional crystal. So, let A ∈ Mat(3, 3;R), rk(A) = 2,

and define the discrete closed group HL = (I|AZ3). Let e3 ∈ S2 with Ae3 = 0 be a normal

to the plane AR3. We consider the closed subgroup GL = (I|AR3) of E(3). Then every

discrete closed subgroup H of GL has the form H = (I|ÃZ3) for some Ã ∈ Mat(3, 3;R)

with rk(Ã) ≤ 2 and Ãe3 = 0. So the class of objective structures that we consider are

crystals of dimension ≤ 2 that lie in the plane AR3.

Let {e1, e2} be an orthonormal basis of AR3 = e⊥3 , s.t. {e1, e2, e3} form an orthonor-

mal basis of R3. The characters of GL are found via the isomorphism

ϕ : GL → R2, (I|y1e1 + y2e2) 7→ (y1, y2).

Now, the characters of R2 are

χ
(k1,k2)

R2 (y1, y2) := ei(k1y1+k2y2), (y1, y2) ∈ R2, (k1, k2) ∈ R2 ∼= R̂2,

yielding the characters of GL

χ
(k1,k2)
GL

:= χ
(k1,k2)

R2 ◦ ϕ.

The design equations for E0 ∈ R
ω,(k1,k2)
b are thus

(i) ∆E0 = −ω
2

c2
E0,

(ii) div E0 = 0,

(iii) E0(x− (y1e1 + y2e2)) = χ
(k1,k2)

R2 (y1, y2)E0(x), x ∈ R3, (y1, y2) ∈ R2.

As in the three-dimensional case, we use equation (iii) to determine E0 on the orbits of

GL. For every x = x1e1 + x2e2 + x3e3 ∈ R3:

E0(x) = E0(x3e3 − (−x1e1 − x2e2))
(iii)
= e−i(k1x1+k2x2)E0(x3e3).

Unlike in the three-dimensional case, we still have to determine the function E0(·e3) from

(i) and (ii).

The vector Helmholtz equation (i) simplifies to the ordinary differential equation

∂2

∂x2
3

E0(x3e3) = −
(
ω2

c2
− (k2

1 + k2
2)

)
E0(x3e3),
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yielding the solution

E(x3e3) = e±i
√
ω2

c2
−(k21+k22)x3n, n ∈ C3.

Since the solutions need to be bounded, we have to make the additional restriction√
k2

1 + k2
2 ≤ ω

c
. Setting k3 := ∓

√
ω2

c2
− (k2

1 + k2
2), and k := (k1, k2, k3), we find that

|k|2 = ω2

c2
and get

E0(x) = ne−ik·x.

As in the three-dimensional case, we get from (ii) that k · n = 0. Thus, the solutions to

the design equations are again the plane waves.

Now, assuming that we analyze our objective structure that is generated by the group

HL = (I|AZ3), we want to find the wave vectors that lead to resonance of all its unit

cells. The orthogonal group H⊥L of HL is given by

H⊥L = {χ ∈ ĜL. χ ↓GLHL≡ 1}
∼= {(k1, k2) ∈ R2. ei(k1x1+k2x2) = 1 for all (x1, x2) ∈ AZ3}

= {(k1, k2) ∈ R2. k1x2 + k2x2 ∈ 2πZ for all (x1, x2) ∈ AZ3}.

So, it consists of all vectors of the two-dimensional reciprocal lattice of AZ3. Note that,

as there is no condition on k3, the Fourier transform of the structure is supported on the

lines k1e1 + k2e2 + Re3, χ
(k1,k2)
GL

∈ H⊥L . These lines can thus be seen as the reciprocal

structure of a two-dimensional crystal.

There is an implication for reconstruction. The Fourier transform is supported on a

lattice in k1 and k2, giving a two-dimensional crystallographic reconstruction problem.

In the third dimension, however, it is supported continuously, yielding a one-dimensional

CDI reconstruction problem. Thus this problem is an intermediate case.

In the next chapter we will consider a special abelian closed subgroup of E(3) that

defines a novel form of radiation.





CHAPTER 4

Nanotube Structures and Twisted Waves

Like Chapter 3, this chapter is part of joint work which will appear in [FJJ-1,FJJ-2].

The class of nanotube structures is the class of objective structures that are generated

by a discrete closed subgroup of screw displacements about an axis Re, e ∈ S2. Prominent

examples of nanotube structures are carbon nanotubes.

Choosing the design group Ce = {(Rϑ|τe). ϑ ∈ T, τ ∈ R}, the design equations can

be explicitly solved, leading to electromagnetic fields that propagate helically in space.

They share many properties with plane waves and will be called twisted waves.

When these twisted waves are scattered by a nanotube structure, the outgoing inten-

sity does not reveal symmetry information by a simple geometric relationship between

incoming and outgoing radiation as in the case of plane waves scattered by crystals.

However, when considering the outgoing intensity in axis direction as a function of the

radiation parameters, we find the analog of the von Laue condition.

In addition, the reconstruction problem reduces to a scalar phase problem. Instead

of the Fourier transform, the corresponding scalar transform is a combination of Fourier

and Hankel transforms that is related to the expansion in cylindrical harmonics.

1. Solution of the Design Equations – Twisted Waves

1.1. Twisted Waves. The first non-crystalline class of objective structures that we

want to consider in detail is the class of nanotube structures that we already introduced

in the last chapter. Given a unit vector e ∈ S2 these are generated by an infinite discrete

closed subgroup of the group Ce that is defined as

Ce := {(Rϑ|τe). ϑ ∈ T, τ ∈ R}.

By lemma 3.16, the function χ : Ce → C appearing in the design equations is a

character of the group Ce. We find these characters via the following isomorphism between

Ce and the group T× R:

ι : Ce → T× R, (Rϑ|τe) 7→ (ϑ, τ).

87
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The dual group of T× R is

T̂× R = T̂× R̂ = {χ(α,ẑ)
T×R : T× R→ C, (ϑ, τ) 7→ ei(αϑ+ẑτ), α ∈ Z, ẑ ∈ R}.

Thus, the characters of Ce are given by

χ
(α,ẑ)
Ce

((Rϑ|τe)) := χ
(α,ẑ)
T×R ◦ ι((Rϑ|τe)) = ei(αϑ+ẑτ).

The Fourier transform on Ce turns out to be a Fourier series in the angle ϑ and a Fourier

transform in τ .

The elements of the spaces R
ω,(α,ẑ)
b (Ce) are given in the following theorem. They are

waves propagating helically in space that share many properties with plane waves. We

call these solutions of the design equations twisted waves.

Theorem 4.1 (Twisted Waves). Let e ∈ S2 be a unit vector, ω > 0, and E0 ∈ Rω
b

be an eigenfunction of the action of Ce on Rω
b , i.e. E0 solves the following equations:

(i) ∆E0 = −ω
2

c2
E0,

(ii) div E0 = 0,

(iii) RϑE0(R−ϑ(x− τe)) = χ(ϑ, τ)E0(x)

for all x ∈ R3, (ϑ, τ) ∈ T× R and some χ(ϑ, τ) ∈ C.

When E0 6= 0, there are α ∈ Z and ẑ ∈ R, |ẑ| ≤ ω
c
, s.t.

E0(x) =
1

2π

∫ π

−π
eiαϕ̂R−ϕ̂n0e

−iR−ϕ̂k0·xdϕ̂, x ∈ R3, (4.1)

where k0 := (0, r̂, ẑ)T , n0 ∈ k⊥0 , r̂ :=
√

ω2

c2
− ẑ2.

Given an orthonormal basis {e1, e2, e} of R3, these solutions are explicitly expressed

in cylindrical coordinates x = ξe(r, ϕ, z) = r cos(ϕ)e1 + r sin(ϕ)e2 + ze about e as follows:

E0(r, ϕ, z) = N

 Jα−1(r̂r)eiϕ

Jα+1(r̂r)e−iϕ

Jα(r̂r)

 e−i(αϕ+ẑz), r ∈ [0,∞), ϕ ∈ T, z ∈ R, (4.2)

where N = Udiag(c) for some c ∈ C3 that satisfies r̂√
2
(c1 + c2) + ẑc3 = 0, and U is the

unitary matrix U := 1√
2

i −i1 1 √
2

 ∈ U(3).

The vectors c and n0 are related by n0 = Uc.

Proof. By Lemma 3.16 there are (α, ẑ) ∈ Z× R, s.t. χ = χ
(α,ẑ)
Ce
∈ Ĉe.

Step 1: Exploiting the design equations (iii)
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First, we rewrite (iii) in cylindrical coordinates x = ξe(r, ϕ, z). These coordinates are

the natural choice when dealing with the action of the group Ce on R3 as the coordinate

surfaces for fixed r are Ce-invariant while the r-coordinate parametrizes the space of

orbits. The action simplifies to (Rϑ|τe)ξe(r, ϕ, z) = ξe(r, ϕ+ ϑ, z + τ). Let Ẽ0 := E0 ◦ ξe,
then (iii) reads

RϑẼ0(r, ϕ− ϑ, z − τ) = ei(αϑ+ẑτ)Ẽ0(r, ϕ, z).

Thus, we find that at x = ξe(r, 0, 0), and for (ϑ, τ) = (ϕ, z) we get the equation

RϕẼ0(r, 0, 0) = ei(αϕ+ẑz)Ẽ0(r, ϕ, z), yielding

Ẽ0(r, ϕ, z) = e−i(αϕ+ẑz)RϕẼ0(r, 0, 0). (1)

Note that the ϕ- and z-dependence of Ẽ0 is fully determined by (iii) as a consequence of

the transitivity of the group action on the coordinate surfaces. The dependence on r will

be determined in the next step via the Helmholtz equation (i).

Step 2: Solution of the vector Helmholtz equation (i)

We first simultaneously diagonalize the matrices Rϕ, ϕ ∈ T, by conjugating with a unitary

matrix U ∈ U(3), which is possible because these matrices form an abelian group.

Rϕ = U

eiϕ e−iϕ

1

U−1, where U :=
1√
2

i −i1 1 √
2

 ∈ U(3).

Equation (1) then becomes

U−1Ẽ0(r, ϕ, z) = e−i(αϕ+ẑz)

eiϕ e−iϕ

1

U−1Ẽ0(r, 0, 0). (2)

Setting EU(r) := U−1Ẽ0(r, 0, 0), r > 0, and using the fact that the vector Laplacian and

the multiplication by U commute, the vector Helmholtz equation reduces to the three

scalar equations

∆e−i((α+σj)ϕ+ẑz)EU,j(r) = −ω
2

c2
EU,j(r), where σ := (−1, 1, 0)T , j = 1, 2, 3.

The vector σ encodes the shift in the parameter α in the respective components that

results from the additional factors in the diagonal matrix.

The Laplacian in cylindrical coordinates is given by (ξe)∗∆ = 1
r
∂r(r∂r) + 1

r2
∂2
ϕ + ∂2

z ,

giving the following ordinary differential equations for the components of EU:(
∂2
r +

1

r
∂r +

((
ω2

c2
− ẑ2

)
− (α + σj)

2

r2

))
EU,j(r) = 0, j = 1, 2, 3.
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These are rescaled versions of Bessel differential equations. Setting r̂ :=
√

ω2

c2
− ẑ2, we

find that there is no non-trivial bounded solution to these equations when |ẑ| > ω
c
, since

then r̂ is purely imaginary and the solutions are the unbounded modified Bessel functions.

In case r̂ is real, the bounded solutions are

EU,j(r) = cjJα+σj(r̂r), where cj ∈ C, j = 1, 2, 3,

and Jα, α ∈ Z, is the Bessel function of the first kind of order α. The Bessel functions

of the second kind that also solve the equations for real r̂ are unbounded. With (2), we

arrive at

Ẽ0(r, ϕ, z) = Udiag(c)

 Jα−1(r̂r)eiϕ

Jα+1(r̂r)e−iϕ

Jα(r̂r)

 e−i(αϕ+ẑz), (3)

where diag(c) is the diagonal matrix with the components of c on the diagonal.

We still have to determine the vector c from the divergence condition (ii) and derive

the Fourier representation (4.1). We first move to the Fourier side.

Step 3: Switch to the Fourier side

We take a closer look at the function ξe(r, ϕ, z) 7→ Jα(r̂r)e−i(αϕ+ẑz) using the Bessel

integral

Jα(r̂r) =
1

2π

∫ π

−π
ei(αϕ̂−r̂r sin(ϕ̂))dϕ̂.

We find

Jα(r̂r)e−i(αϕ+ẑz) =
1

2π

∫ π

−π
ei(α(ϕ̂−ϕ)−r̂r sin(ϕ̂)+ẑz)dϕ̂ =

1

2π

∫ π

−π
ei(αϕ̂−r̂r sin(ϕ̂+ϕ)+ẑz)dϕ̂

=
1

2π

∫ π

−π
ei(αϕ̂−r̂r(sin(ϕ̂) cos(ϕ)+cos(ϕ̂) sin(ϕ))+ẑz)dϕ̂

=
1

2π

∫ π

−π
eiαϕ̂e

−i


r̂ sin(ϕ̂)

r̂ cos(ϕ̂)

ẑ

·

r cos(ϕ)

r sin(ϕ)

z


dϕ̂

=
1

2π

∫ π

−π
eiαϕ̂e

−iR−ϕ̂


0

r̂

ẑ

·ξe(r,ϕ,z)

dϕ̂,

where we translated the integrand without shifting the domain of integration using the

2π-periodicity of the integrand in the second equality and used the angle sum formula

for the sine in the third equality. We decomposed the function into scalar plane waves

and motivated the notation ẑ and r̂ for the parameters, as they are the e-component and



1. SOLUTION OF THE DESIGN EQUATIONS – TWISTED WAVES 91

the cylindrical radius of the wave vectors, respectively. Using this representation for the

components of the vector field E0 and setting k0 := (0, r̂, ẑ)T , we get

E0(x) =
1

2π

∫ π

−π
Udiag(c)

ei(α−1)ϕ̂

ei(α+1)ϕ̂

eiαϕ̂

 e−iR−ϕ̂k0·xdϕ̂

=
1

2π

∫ π

−π
eiαϕ̂ U

e−iϕ̂ eiϕ̂

1


︸ ︷︷ ︸

=R−ϕ̂U

ce−iR−ϕ̂k0·xdϕ̂

n0:=Uc
=

1

2π

∫ π

−π
eiαϕ̂R−ϕ̂n0e

−iR−ϕ̂k0·xdϕ̂

what is the Fourier representation (4.1). It remains to find the condition on n0 that

guarantees that E0 is divergence-free. Via n0 = Uc, we then get the respective condition

on c.

Step 4: The divergence condition (ii)

The divergence condition (ii) for the Fourier representation is

0 = div E0(x) =
1

2π

∫ π

−π
eiαϕ̂(−iR−ϕ̂k0 ·R−ϕ̂n0)e−iR−ϕ̂k0·xdϕ̂.

This is satisfied, if and only if

R−ϕ̂k0 ·R−ϕ̂n0 = 0 ⇔ k0 · n0 = 0.

For c, this means

0 = k0 · n0 = k0 ·Uc = UTk0 · c =
r̂√
2

(c1 + c2) + ẑc3.

Setting N := Udiag(c), we get the explicit representation (4.2) from (3). �

We will rewrite the Fourier representation (4.1) in a more abstract way. Define a

manifold M ⊂ ω
c
S2 and a parametrization ψ by

M :=
{

k ∈ ω
c
S2. k · e = ẑ

}
, ψ : [−π, π)→M, ϕ̂ 7→ R−ϕ̂k0.

With the following vector field n on M

n : M → R3, R−ϕ̂k0 7→
1

2πr̂
eiαϕ̂R−ϕ̂n0,
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the Fourier representation (4.1) of E0 can be written as follows:

E0(x) =
1

2π

∫ π

−π
eiαϕ̂R−ϕ̂n0e

−iR−ϕ̂k0·xdϕ̂ =

∫
ψ−1(M)

r̂n ◦ ψ(ϕ̂)e−iψ(ϕ̂)·xdH1(ϕ̂)

=

∫
M

r̂n(k)e−ik·xd(ψ∗H1)(k) =

∫
M

n(k)e−ik·xdH1(k),

noting that the pushforward measure ψ∗H1 satisfies (ψ∗H1)(A) = H1(ψ−1(A)) = 1
r̂
H1(A)

for measurable sets A, since M is a circle with radius r̂. Thus, a twisted wave is the Fourier

transform of the singular complex vector measure ndH1 on M .

The same construction shows that the scalar function ξe(r, ϕ, z) 7→ Jα(r̂r)e−i(αϕ+ẑz)

is the Fourier transform of the singular complex measure 1
2πr̂
eiαψ

−1(k)dH1(k) on M .

The field E0 can thus be seen as a superposition of plane waves with wave vectors on

M , which is a ring about Re, with a relative phase shift that depends on the parameter

α ∈ Z. This view of the representation (4.1) is visualized in Figure 4.1. The explicit

representation (4.2) shows that this superposition yields a field that is essentially a plane

wave in ϕ and z with different radial dependencies in every component.

Figure 4.1. Visualization of a hypothetical source of twisted waves ac-
cording to (4.1). Plane waves of a fixed frequency with wave vectors that
enclose a fixed angle with the axis of the structure superimpose to generate
a twisted wave, if their phases are aligned in the right way. The shading of
the ring on the left indicates the relative phases.

Since twisted waves will be important when considering a general class of non-compact

design groups, we introduce a special notation. Let k ∈ R3 and α ∈ Z. Then we define

E
(α)
k (x) :=

1

2π

∫ π

−π
e−iαϕ̂Rϕ̂ne

iRϕ̂k·xdϕ̂, x ∈ R3, (4.3)
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for some n ∈ k⊥. We also write

e
(α)
k (x) :=

1

2π

∫ π

−π
e−iαϕ̂eiRϕ̂k·xdϕ̂, x ∈ R3, (4.4)

for the scalar twisted waves.

1.2. Properties of Twisted Waves. We will go a bit further into detail concerning

the vector n0 ∈ k⊥0 . The space k⊥0 is parametrization of the space R
ω,(α,ẑ)
b (Ce), showing

that as for plane waves, these spaces are five-dimensional. We can write

n0 = eiζ(n1 − in2) with n1,n2 ∈ R3, n1 · n2 = 0.

Then, we say that E0 is linearly polarized when n2 = 0, spherically polarized when

|n1| = |n2|, and elliptically polarized else. So, polarization is a global property of a

twisted wave.

Let’s consider a linearly polarized twisted wave E0 ∈ R
ω,(α,ẑ)
b . Then

n0 = eiζn1 = eiζ |n1|
n1

|n1|
.

Choosing an orthonormal basis {b1,b2} of k⊥, we can define the angle η ∈ T by

n1

|n1|
= cos(η)b1 + sin(η)b2.

η is called polarization angle of the linearly polarized twisted wave E0.

Making the choice b1 = c
ω

(0, ẑ,−r̂)T and b2 = (1, 0, 0)T , we can determine the vector

c from the explicit representation (4.2) of E0 via the relation n0 = Uc. Solving for c, we

get

c = U−1n0 = eiζ |n1|
(
U−1b1 cos(η) + U−1b2 sin(η)

)
= eiζ |n1|

c√
2ω

ẑ cos(η)− iω
c

sin(η)

ẑ cos(η) + iω
c

sin(η)

−
√

2r̂ cos(η)

 .

Setting c(η) := ẑ√
2

cos(η) + i ω√
2c

sin(η), we get

c = eiζ |n1|
c

ω

 c(η)

c(η)

−r̂ cos(η)

 .
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Now, we can rewrite the matrix N = Udiag(c) from (4.2) in terms of the polarization

angle. We define the matrix N(η) := (eiζ |n1|)−1N, which evaluates to

N(η) =
c

ω


i c(η)√

2
−i c(η)√

2
0

c(η)√
2

c(η)√
2

0

0 0 −r̂ cos(η)

 . (4.5)

We call this matrix the polarization matrix of the twisted wave E0. The representation

of linearly polarized twisted waves with respect to the polarization angle is given by the

following corollary.

Corollary 4.2 (Linearly Polarized Twisted Waves).

Let E0 ∈ R
(α,ẑ)
b (Ce), |ẑ| ≤ ω

c
. When E0 is linearly polarized, it can up to a multiplicative

constant be written as

E0(r, ϕ, z) = N(η)

 Jα−1(r̂r)eiϕ

Jα+1(r̂r)e−iϕ

Jα(r̂r)

 e−i(αϕ+ẑz), η ∈ T. (4.6)

The corresponding spatial part of the electromagnetic field is then given as

B0(r, ϕ, z) = −c−1N
(
η +

π

2

) Jα−1(r̂r)eiϕ

Jα+1(r̂r)e−iϕ

Jα(r̂r)

 e−i(αϕ+ẑz), η ∈ T. (4.7)

Proof. Let E0 ∈ R
ω,(α,ẑ)
b (Ce) be linearly polarized. By Theorem 4.1, up to a multi-

plicative constant,

E0(x) =

∫ π

−π
eiαϕ̂R−ϕ̂n0e

−iR−ϕ̂k0·xdϕ̂,

with k0 = (0, r̂, ẑ)T and n0 ∈ k⊥0 . The spatial part B0 of the corresponding magnetic field

is given by

B0(x) = − 1

ω

∫ π

−π
eiαϕ̂R−ϕ̂(k0 × n0)e−iR−ϕ̂k0·xdϕ̂.

As above, as E0 is linearly polarized, we write n0 = eiζ |n1| cω (ω
c

sin(η), ẑ cos(η),−r̂ cos(η))T

for η ∈ T. Thus,

1

ω
k0 × n0 = eiζ |n1|

c

ω2

r̂2 cos(η) + ẑ2 cos(η)

−ωẑ
c

sin(η)
ωr̂
c

sin(η)

 = eiζ |n1|
1

ω


ω
c

cos(η)

−ẑ sin(η)

r̂ sin(η)



= eiζ |n1|
1

ω


ω
c

sin(η + π/2)

ẑ cos(η + π/2)

−r̂ cos(η + π/2)

 .
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As this expression has the same form as n0 in the derivation of the representation (4.6)

of E0 with polarization angle η + π/2 and a multiplicative constant c−1, we get the

representation (4.7) of B0 analogously. �

The representation of a linearly polarized twisted wave we just derived can be used to

calculate the Poynting vector

S(x, t) =
1

µ0

Re(E0(x)e−iωt)× Re(B0(x)e−iωt).

Proposition 4.3 (Poynting Vector of Twisted Waves). The Poynting vector S

of the electromagnetic field (E0e
−iωt,B0e

−iωt), t > 0, with E0,B0 as in Corollary 4.2 is

given by

S(r, ϕ, z, t) = − 1

2ωµ0

 r̂(Cα−1 + Cα+1)Cα

r̂(Sα−1 − Sα+1)Cα
ẑ
2
((Cα−1 + Cα+1)2 + (Sα−1 − Sα+1)2)

 , (4.8)

where Sα := Jα(r̂r) sin(αϕ+ ẑz − ωt), and Cα := Jα(r̂r) cos(αϕ+ ẑz − ωt).

Proof. The real parts of E0(x)e−iωt and B0(x)e−iωt are

Re(E0(x)e−iωt) = Re(N(η))

Cα−1

Cα+1

Cα

+ Im(N(η))

Sα−1

Sα+1

Sα

 ,

Re(B0(x)e−iωt) = −c−1Re(N(η + π/2))

Cα−1

Cα+1

Cα

− c−1Im(N(η + π/2))

Sα−1

Sα+1

Sα

 .

To determine S, we need to evaluate the four cross products between the different sum-

mands. The ones between the real parts and the imaginary parts yield

−c−1Re(N(η))

Cα−1

Cα+1

Cα

× Re(N(η + π/2))

Cα−1

Cα+1

Cα

 = − 1

2ω

r̂(Cα−1 + Cα+1)Cα

0
ẑ
2
(Cα−1 + Cα+1)2

 ,

−c−1Im(N(η))

Sα−1

Sα+1

Sα

× Im(N(η + π/2))

Sα−1

Sα+1

Sα

 = − 1

2ω

 0

0
ẑ
2
(Sα−1 − Sα+1)2

 .
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The sum of the mixed products simplifies to

− c−1Re(N(η))

Cα−1

Cα+1

Cα

× Im(N(η + π/2))

Sα−1

Sα+1

Sα



− c−1Im(N(η))

Sα−1

Sα+1

Sα

× Re(N(η + π/2))

Cα−1

Cα+1

Cα

 = − 1

2ω

 0

r̂(Sα−1 − Sα+1)Cα

0

 .

Summing these terms yields the Poynting vector (4.8). �

Note that, since an elliptically polarized twisted wave E0 ∈ R
ω,(α,ẑ)
b can be written as

E0 = E1 − iE2, where E1 and E2 are linearly polarized twisted waves that differ only in

amplitude and polarization, the formula for the Poynting vector (that does not depend

on the polarization angle) is also right in the general case.

From this representation of the Poynting vector, we can not directly see the energy

flow. However, at certain radii, we can determine the streamlines of the Poynting vector,

revealing a helical energy flow.

Corollary 4.4 (Streamlines of the Poynting Vector). Let rj ≥ 0 be the radius

at which the Bessel function Jα(r̂·) attains its j-th extremum. The Poynting vector S of

a linearly polarized twisted wave given in Corollary 4.3 at these radii simplifies to

S(rj, ϕ, z, t) = − α

ωµ0r2
j

C2
α

 rj cos(ϕ)

−rj sin(ϕ)
αẑ
r̂2

 , j ∈ N, (4.9)

where Cα := Jα(r̂rj) cos(αϕ+ ẑz − ωt).

In particular, the streamlines γS of the Poynting vector at these radii through rje1 are

given by

γS(s) =

rj sin(s)

rj cos(s)
αẑ
r̂2
s

 .

The electric field has the form

Re(E0(rj, ϕ, z)e−iωt) =
c

ω
CαRϕ

 ẑ α
r̂rj

cos(η)

− ωα
cr̂rj

sin(η)

−r̂ cos(η)

 (4.10)
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Along the streamlines at rj, the electromagnetic field has the wavelength

λj = 2π
c2
√
r2
j r̂

4 + α2ẑ2

αω2
.

Proof. The Bessel functions obey the identity

d

dr
Jα(r̂r) =

r̂

2
(Jα−1(r̂r)− Jα+1(r̂r)),

such that at the extrema of Jα(r̂·), we know that Jα−1(r̂rj) = Jα+1(r̂rj). By the further

identity
α

r
Jα(r̂r) =

r̂

2
(Jα−1(r̂r) + Jα+1(r̂r)),

we get that

Jα−1(r̂rj) = Jα+1(r̂rj) =
α

r̂rj
Jα(r̂rj).

The two terms (Cα−1 + Cα+1) and (Sα−1 − Sα+1) thus simplify as follows:

Cα−1 + Cα+1 =
α

r̂rj
Jα(r̂rj)(cos((α− 1)ϕ+ ẑz − ωt) + cos((α + 1)ϕ+ ẑz − ωt))

= 2
α

r̂rj
Jα(r̂rj) cos(αϕ+ ẑz − ωt) cos(ϕ) = 2

α

r̂rj
Cα cos(ϕ),

Sα−1 − Sα+1 =
α

r̂rj
Jα(r̂rj)(sin((α− 1)ϕ+ ẑz − ωt)− sin((α + 1)ϕ+ ẑz − ωt))

= −2
α

r̂rj
Jα(r̂rj) cos(αϕ+ ẑz − ωt) sin(ϕ) = −2

α

r̂rj
Cα sin(ϕ),

where we used the angle sum and difference identities for the sine and cosine functions

with argument (αϕ+ ẑz − ωt)± ϕ.

The Poynting vector (4.8) at rj thus is

S(rj, ϕ, z, t) = − 1

2ωµ0


2 α
rj
C2
α cos(ϕ)

−2 α
rj
C2
α sin(ϕ)

ẑ α2

r̂2r2j
C2
α(sin(ϕ)2 + cos(ϕ)2)

 = − α

ωµ0r2
j

C2
α

 rj cos(ϕ)

−rj sin(ϕ)
αẑ
r̂2


A streamline γS : R → R3 is defined by the condition γ′S × (S ◦ γS) = 0. The streamline

given above obviously satisfies this condition.

By direct calculation, using the special form of the terms Cα±1 and Sα±1, one arrives

at the simplified form of the electric field at the radii rj.

To find the wavelengths λj, we parametrize γS by arc length.
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Let γ̃S(s) := (rj sin(bs), rj cos(bs), αẑ
r̂2
bs)T for b ∈ R. We determine b via |γ̃S′|2 = 1. For

s ∈ R:

|γ̃S′(s)|2 =

∣∣∣∣∣∣∣
 brj cos(bs)

−brj sin(bs)
αẑ
r̂2
b


∣∣∣∣∣∣∣
2

= b2r2
j + b2α

2ẑ2

r̂4
.

So, b = 1√
r2j+α2ẑ2

r̂4

. Now, setting v(η) := (ẑ α
r̂rj

cos(η),− ωα
cr̂rj

sin(η),−r̂ cos(η))T the electric

field on γ̃S is

Re(E0 ◦ γ̃S(s)e−iωt) =
c

ω
Jα(r̂r) cos(αbs+ ẑ

αẑ

r̂2
bs− ωt)Rϕv(η).

So, we get the wavelength by

αbλj +
αẑ2

r̂2
bλj = 2π ⇔ λj = 2π

c2
√
r2
j r̂

4 + α2ẑ2

αω2
.

�

Note that for α� 1, the first maximum of Jα(r̂·) is approximately at r1 ≈ α
r̂
, s.t. the

wavelength is λ1 ≈ 2πc
ω

. This agrees with the relation between frequency and wavelength

of a plane wave given in (1.3).

Using this result, we can visualize a twisted wave by plotting the fields along the

streamline at the radius r1 as is shown in Figure 4.2.

Our discussion of the properties of twisted waves shows that in many aspects they

behave like plane waves just that they are propagating helically in space.

2. Scattering of Twisted Waves – the Twisted von Laue condition

2.1. Scattering of Twisted Waves. In the last section, we found the solutions to

the design equations for nanotube structures. We called them twisted waves in analogy

to plane waves, since they behave like that: they are waves propagating helically in space.

In this section, we will investigate the scattering of twisted waves by nanotube struc-

tures with our goal in mind: to find a generalized von Laue condition that enables us to

reconstruct the symmetries of the structure directly, and to formulate the analog of the

phase problem that has to be solved to reconstruct the electron density within a unit cell.

First, we draw some comparisons between crystal structures and cylindrical structures.

Let HC be a discrete closed subgroup of Ce, e ∈ S2, and let C = HCMC, MC ⊂ R3 finite,

be a nanotube structure. Then there are n ∈ N, ϑ ∈ T, and τ ∈ R, τ 6= 0, s.t. C is

generated by the two isometries

h = (Rϑ|τe), g = (R2π/n|0),
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Figure 4.2. A twisted wave for α = 3, ẑ = 4, and ω/c = 6, plotted along
the streamline of the Poynting vector at the radius r1. The pattern on the
right is a slice through the absolute value of the Poynting vector.

i.e.

HC = {hjgk. j, k ∈ Z}.

This will be shown in Lemma 5.2. Just as in the crystalline case, we can define a unit cell

of the structure as follows. Define the set H \ R3 of orbits of HC by

H \ R3 := {Hx. x ∈ R3}.

Then a unit cell of the structure C is a set of representatives of the orbits. Again, we can

define a canonical unit cell UC by

UC := {(Rλ1ϑ+λ22π/n|λ1τe)(r, 0, 0)T . λ1, λ2 ∈ [0, 1), r ∈ [0,∞)}.

Just as for a crystal, we scale the action of the group HC by scalars between 0 and 1, while

we have an additional degree of freedom in r ≥ 0. This quantity parametrizes the orbits

Ce \R3 of the group Ce and is thus in analogy to the additional dimension in the case of

a two-dimensional crystal in three-dimensional space considered in the last section.

Nanotube structures are particularly easy to describe in cylindrical coordinates about

the axis e. The structure C can be written as

S =
⋃

m∈MC

{ξ(rm, ϕm + ϕ, zm + z). (ϕ, z) ∈ CZ2}, where C =

(
ϑ τ

2π/n 0

)
,
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and m = ξe(rm, ϕm, zm) for m ∈ MC. So, a nanotube structure is crystalline in the

two parameters ϕ and z. We call C the generator matrix of C. The unit cell can then

alternatively be seen as

UC = {ξe(r, ϕ, z). r ∈ [0,∞), (ϕ, z) ∈ C[0, 1)2}.

Next, we model the electron density ρel of C. We put the details of the molecule M

into the Schwartz function ϕ ∈ S(R3) that describes the electron density in a unit cell.

We define the electron density

ρel :=
∑
h∈HC

(hϕ). (4.11)

To derive a generalization of the von Laue condition, we again made the assumption

of a infinite (perfect) structure. In this case, we can – as we did for a crystal – define the

canonical unit cell density ϕC by

ϕC :=

(∑
h∈HC

(hϕ)

)∣∣
UC
.

Then our model can be written as

ρel =
∑
h∈HC

(hϕC).

Now, let E0 ∈ R
ω,(α,ẑ)
b , |ẑ| ≤ ω

c
, be a twisted wave

E0(r, ϕ, z) = N

 Jα−1(r̂r)eiϕ

Jα+1(r̂r)e−iϕ

Jα(r̂r)

 e−i(αϕ+ẑz).

The scattering of the incoming electromagnetic field Ẽin(x, t) := E0(x)e−iωt, x ∈ R3,

t > 0, by the nanotube structure C is given by the following theorem.

Theorem 4.5 (Scattering of Twisted Waves). Let s0 := Rµ(0, sin(ν), cos(ν))T

(outgoing direction) in spherical coordinates µ ∈ T, ν ∈ [0, π]. Let E0 be a twisted wave

with parameters r̂ and ẑ as in Theorem 4.1 and ρel :=
∑

h∈HC(hϕC) a model for the

electron density of a cylindrical objective structure. The radiation transform R[E0]ρel of
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ρel at s0 is given by

R[E0]ρel(s0) =
2π

| det(C)|
N

∑
c′∈2πC−TZ2

δc′2

(
ẑ +

ω

c
cos(ν)

)

×
∫

[0,∞)×C[0,1)2
ϕC(r, ϕ, z)

 f̂c′1(α− 1)Jα−1(r̂r)eiϕ

f̂c′1(α + 1)Jα+1(r̂r)e−iϕ

f̂c′1(α)Jα(r̂r)

 e−i(αϕ+(ẑ+ω
c

cos(ν))z)rd(r, ϕ, z),

where f̂c′1(α) := e−i(c
′
1−α)(ϕ−µ)Jc′1−α

(
ω
c

sin(ν)r
)
.

Proof. We start by decomposing the radiation transform integral into integrals over

the unit cells of the action of HC.

R[E0]ρel(s0) =

∫
R3

E0(y)e−i
ω
c
s0·yρel(y)dy =

∫
UC

∑
h∈HC

E0(hu)e−i
ω
c
s0·huρel(hu)du.

Now for h = (Rη|λe) ∈ HC, we know from the design equations, that

E0(hu) = E0((Rη|λe)u) = RηR−ηE0((Rη|λe)u)

= Rη(Rη|λe)−1E0(u) = Rηe
−i(αη+ẑλ)E0(u).

Since we also know that ρel is invariant with respect to the action of HC, we find that

ρel(hu) = ϕC(u) for all h ∈ HC and all u ∈ UC. Plugging these two equalities into our

radiation transform and diagonalizing the matrices Rη by conjugation with a unitary

matrix U ∈ U(3) as given in Theorem 4.1, we get

R[E0]ρel(s0) =

∫
UC

∑
(Rη |λe)∈HC

Rηe
−i(αη+ẑλ)E0(u)e−i

ω
c
s0·(Rη |λe)uϕC(u)du

=

∫
UC

ϕC(u)U
∑

(Rη |λe)∈HC

eiη e−iη

1

 e−i(αη+ẑλ)e−i
ω
c
s0·(Rη |λe)u

︸ ︷︷ ︸
=:T

U−1E0(u)du.

Next, we calculate the diagonal entries of the matrix valued sum T.

Setting σ := (−1, 1, 0)T , these are

Tjj =
∑

(Rη |λe)∈HC

e−i((α+σj)η+ẑλ)e−i
ω
c
s0·(Rη |λe)u, j = 1, 2, 3.
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Now, writing u = ξe(r, ϕ, z) in cylindrical coordinates about e and identifying HC with

CZ2 as above, we have

Tjj =
∑

(η,λ)∈CZ2

e−i((α+σj)η+ẑλ)e

−iω
c
Rµ


0

sin(ν)

cos(ν)

·

r cos(ϕ+ ξ)

r sin(ϕ+ ξ)

z + λ


.

In the exponent, we get

Rµ

 0

sin(ν)

cos(ν)

 ·
r cos(ϕ+ ξ)

r sin(ϕ+ ξ)

z + λ

 = r sin(ν) sin(ϕ+ ξ − µ) + cos(ν)(z + λ),

using the angle difference formula for the sine.

Now, defining the function f on T by f(η) := e−i
ω
c

(r sin(ν) sin(ϕ+η−µ), η ∈ T, we find

that

Tjj = e−i
ω
c

cos(ν)z
∑

(η,λ)∈CZ2

e−i((α+σj)η+(ẑ+ω
c

cos(ν))λ)f(η).

The sum can be interpreted as a Fourier transform of the tempered distribution δCZ2 ·
(f ⊗1) on T×R, evaluated at (α+σj, ẑ+ ω

c
cos(ν)). We use the convolution theorem, the

generalized Poisson summation formula and the rule for the Fourier transform of tensor

products to get

Tjj = e−i
ω
c

cos(ν)zF(δCZ2 · (f ⊗ 1))(α + σj, ẑ +
ω

c
cos(ν))

= e−i
ω
c

cos(ν)z(2π)−2δ̂CZ2 ∗ (f̂ ⊗ 1̂))(α + σj, ẑ +
ω

c
cos(ν))

= e−i
ω
c

cos(ν)z| det(C)|−1δ2πC−TZ2 ∗ (f̂ ⊗ (2πδ0))(α + σj, ẑ +
ω

c
cos(ν)).

Eventually, we determine the Fourier transform of the function f . f is 2π-periodic, so its

Fourier transform for integer arguments is up to a scalar given by its Fourier coefficients

f̂(α) =

∫ π

−π
f(η)e−iαηdη = eiα(ϕ−µ)

∫ π

−π
e−i

ω
c

sin(ν)r sin(η)e−iαηdη

= eiα(ϕ−µ)J−α

(ω
c

sin(ν)r
)
, α ∈ Z,

where we used the integral representation of the Bessel function of the first kind. So,

Tjj =
2πe−i

ω
c

cos(ν)z

| det(C)|
∑

c′∈2πC−TZ2

e−i(c
′
1−(α+σj))(ϕ−µ)Jc′1−(α+σj)

(ω
c

sin(ν)r
)

︸ ︷︷ ︸
=:f̂c′1

(α+σj)

δc′2

(
ẑ +

ω

c
cos(ν)

)
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Now, we collect our results. Since N = Udiag(c), with c from Theorem 4.1, we find that

UTU−1N = UTU−1Udiag(c) = UTdiag(c) = Udiag(c)T = NT,

where we used that the diagonal matrices T and diag(c) commute.

Thus, writing the integral over UC in cylindrical coordinates

R[E0]ρel(s0) =

∫
[0,∞)×C[0,1)2

ϕC(r, ϕ, z)UTU−1E0(r, ϕ, z)rd(r, ϕ, z)

=
2π

| det(C)|
N

∫
[0,∞)×C[0,1)2

ϕC(r, ϕ, z)
∑

c′∈2πC−TZ2

e−i
ω
c

cos(ν)zδc′2

(
ẑ +

ω

c
cos(ν)

)

×

 f̂c′1(α− 1)Jα−1(r̂r)eiϕ

f̂c′1(α + 1)Jα+1(r̂r)e−iϕ

f̂c′1(α)Jα(r̂r)

 e−i(αϕ+ẑz)rd(r, ϕ, z)

=
2π

| det(C)|
N

∑
c′∈2πC−TZ2

δc′2

(
ẑ +

ω

c
cos(ν)

)

×
∫

[0,∞)×C[0,1)2
ϕC(r, ϕ, z)

 f̂c′1(α− 1)Jα−1(r̂r)eiϕ

f̂c′1(α + 1)Jα+1(r̂r)e−iϕ

f̂c′1(α)Jα(r̂r)

 e−i(αϕ+(ẑ+ω
c

cos(ν))z)rd(r, ϕ, z).

�

Even though the formula we just derived looks quite complicated, it has the main

features we were looking for. With respect to ẑ it behaves just as in the crystalline case.

When ẑ is the second component of a vector in 2πC−TZ2, we get the Fourier transform

with respect to z shifted by ω
c

cos(ν). If it is not the second component of a reciprocal

lattice vector, the whole expression becomes zero. However, with respect to α, we do

not have this nice structure. The formula is a sum over the reciprocal lattice but the

transform of the canonical unit cell density is not just a Fourier transform with respect

to ϕ. Instead, the contributions of the different α-values in 2πC−TZ2 mix, and it is not

directly visible how to separate them.

2.2. The Twisted von Laue Condition. When looking closely, at a certain point

s0 (remember that s0 = Rµ(0, sin(ν), cos(ν))T ), the formula simplifies dramatically. Set-

ting ν = 0, i.e. s0 = e, we see that

e−i(c
′
1−(α+σj))(ϕ−µ)Jc′1−(α+σj)

(ω
c

sin(0)r
)

= δc′1,α+σj .

The result is a von Laue condition for twisted waves:
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Corollary 4.6 (Twisted von Laue Condition). In axial direction s0 = e, the

radiation transform in Theorem 4.5 for a linearly polarized twisted wave with polarization

angle η ∈ T simplifies to

P(e⊥)R[E0]ρel(e) =
2π

| det(C)|
N(η)

∑
c′∈2πC−TZ2

δc′+(1,0)

δc′−(1,0)

0

(α, ẑ +
ω

c

)

×
∫

[0,∞)×C[0,1)2
ϕC(r, ϕ, z)Jc′1(r̂r)e

−i(c′1ϕ+c′2z)rd(r, ϕ, z).

In particular, the Fourier radiation intensity I at x = De is given by

I(De) =c2
el

cε0

2

(2π)2

| det(C)|2D2

(
c2ẑ2

ω2
cos2(η) + sin2(η)

)
(4.12)

×
∑

c′∈2πC−TZ2

δc′±(1,0)

(
α, ẑ +

ω

c

) ∣∣WCe/HCϕC (ω, c′)
∣∣2 , (4.13)

where WCe/HCϕ denotes the scalar transform

WCe/HCϕ(ω, c′) :=

∫
[0,∞)×C[0,1)2

ϕ(r, ϕ, z)Jc′1

(√
ω2

c2
− ẑ2r

)
e−i(c

′
1ϕ+c′2z)rd(r, ϕ, z).

For unpolarized incoming radiation, the η-dependent factor reduces to 1
2

(
c2ẑ2

ω2 + 1
)

.

Proof. The simplified form of the radiation transform follows directly by setting ν = 0

in Theorem 4.5.

The intensity is inferred from (3.28). The field vector of the outgoing radiation is

one of the first two columns of N(η), depending on whether α ∈ 2πC−TZ2 ± 1. These

are perpendicular to s0 = e. Moreover, the two columns have the same absolute value

squared:

|(N(η)i,j)i|2 =
c2

ω2
|c(η)|2 =

1

2

(
c2ẑ2

ω2
cos2(η) + sin2(η)

)
, j = 1, 2.

When the incoming radiation is unpolarized, averaging over η ∈ T yields the simplified

factor. �

This corollary makes it in principle possible to reconstruct ρel from the intensity mea-

surements in the far-field at the specific point x = De on the symmetry axis, given the

transformWCe/HCϕC is invertible and the phase problem can be solved. In fact, this trans-

formation is a combination of a Fourier transform, a Fourier series and a Hankel transform

and is thus invertible. Where this transform comes from will be seen in Chapter 6.
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2.3. Reconstruction of a Nanotube. We demonstrate the twisted von Laue con-

dition by analyzing a nanotube structure as given in the motivating example. There we

saw, that with plane wave radiation we cannot make any useful statement about the

symmetries of the structure from the diffraction patterns.

Comparing with the measurement techniques for plane wave radiation that were dis-

cussed in Chapter 3, we see that fixing the outgoing direction of our measurements, we use

the method of variation of radiation parameters. As the plane waves were parametrized

by its wave vectors, we parametrize a family of twisted waves by its parameters (ω, α, ẑ):{
E

(α)
k(ω,ẑ)

}
(ω,α,ẑ)∈P

, P := [0,∞)× Z× R,

where k(ω, ẑ) := (0, r̂, ẑ)T , r̂ :=
√

ω2

c2
− ẑ2 and |ẑ| ≤ ω. The observation parameter set is

chosen as O := {e}.
The structure we want to analyze with this radiation family is shown in Figure 4.3. It

is a nanotube structure with a molecule that consists of 16 atoms and has no rotational

symmetry. Since the structure has translational symmetry, it would also be possible to

analyze it with plane wave radiation. However, the translational unit cell contains 2336

atoms – a phase problem that cannot be solved from a realistic data set without additional

knowledge about the structure.

Figure 4.3. Side and front view of a nanotube structure with a 16-atom
molecule. The sample consists of 6832 atoms, i.e. 427 nanotube unit cells.
It also has translational symmetry. The translational unit cell contains 2336
atoms.

As a model for the electron density ρel, we consider equal Gaussians at the atom

positions. Corollary 4.6 tells us, that the scattering amplitude in direction e considered

as a function of the radiation parameters is supported in the set

[0,∞)× (C⊥Z3 ± (1, 0)T ).

The double peak pattern in (α, ẑ) is shown in Figure 4.4. The intensity at each of the two

peaks at (ω, α±1, ẑ+ ω
c
) is equal to a multiple ofWCe/HCϕC(ω, α, ẑ). So, the reconstruction
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problem is to find the canonical unit cell density ϕC given the data{∣∣WCe/HC(ω, α, ẑ)
∣∣} , for (ω, α, ẑ) ∈ [0,∞)×C⊥. (4.14)
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Figure 4.4. The scattering amplitude in direction e for ω
c

= 8, plotted in
dependence on α and ẑ. The double peak pattern predicted by Corollary
4.6 is clearly visible. Note also the shift in ẑ. The origin of the reciprocal
lattice is shifted to α = 0, ẑ = −8 = −ω

c
.

From the support, we can directly reconstruct the group HC as the reciprocal lattice

of C⊥Z3. This gives us the unit cell UC of the structure.

We formulate this scalar phase problem as a set intersection problem as in Chapter 2.

First, we define the space of Schwartz functions on the unit cell UC as

S(UC) :=

{
ϕ : UC → C.

∑
h∈HC

(hϕ) ∈ C∞(R3), r 7→ rβϕ(r, ϕ, z) ∈ L∞ for β ∈ N

}
.

Then, consider the following subsets of S(UC):

S≥0(UC) := {ϕ ∈ S(UC). ϕ ≥ 0},

SA(UC) := {ϕ ∈ S(UC). |WCe/HCϕ| = A},

where A := |WCe/HCϕC| is the data. Then the phase retrieval problem is to find an element

of the set S≥0(UC) ∩ SA(UC).
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Defining the projections

p≥0 : S(UC)→ S≥0(UC), ϕ 7→ ϕ · 1{ϕ≥0},

pA : S(UC)→ SA(UC), ϕ 7→ W−1
Ce/HC

(
A(eiζϕ1{ϕ 6=0} + 1{ϕ=0})

)
,

where ζϕ is the phase function of WCe/HCϕ, i.e. WCe/HCϕ = |WCe/HCϕ|eiζϕ .

Using these projections, we can generalize the phase retrieval algorithms we introduced

in Chapter 2. To reconstruct the considered structure, we use the following difference map

algorithm

ϕn+1 := ϕn − p≥0ϕn + pA(2p≥0 − id)ϕn, n ∈ N, (DMC)

where we choose ϕ0 with an arbitrary initial phase function ζ0, i.e. ϕ0 :=W−1
Ce/HC

(Aeiζ0).

The reconstruction of a radial slice of 3×3 unit cells is shown in Figure 4.5. It is close to

the original up to an inversion. This is due to the inversion ambiguity we found in our dis-

cussion of the phase problem in Chapter 1. The transformWCe/HC is a Fourier transform in

(α, ẑ), resulting in this possibility. It is an inversion in the cylindrical coordinates (ϕ, z).

Now, ξe(r,−ϕ,−z) = (r cos(−ϕ), r sin(−ϕ),−z)T = (r cos(ϕ),− sin(ϕ),−z)T , showing

that this is a rotation by 180◦ about an axis perpendicular to e.

Figure 4.5. Reconstruction of a radial slice of 3 × 3 nanotube unit cells
by the difference map algorithm (DMC). The original density is shown on
the left. The reconstruction on the right is very close to the original density
up to an inversion. This shows the analog of the inversion ambiguity of
classical phase retrieval.
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The interesting part of the reconstruction is the radial direction. In this direction,

the transform WCe/HC is a Hankel transform of order α. Because the Bessel functions are

real functions, the phase problem in this dimension is actually only a sign problem. In

Figure 4.6, the radial distribution ϕr of the reconstructed function is plotted against the

original. This quantity is defined as follows

ϕr(r) :=

∫
C⊥[0,1)2

ϕC(r, ϕ, z)d(ϕ, z). (4.15)
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Figure 4.6. Reconstruction of the average radial distribution ϕr given in (4.15).

The reconstruction is in good agreement with the original, showing that the difference

map algorithm can also be used for nanotube phase problems.

This example also shows the potential of twisted wave diffraction for the analysis of

nanotube structures that cannot be analyzed with plane waves.



CHAPTER 5

Symmetry-Adapted Waves

Having successfully solved the design equations for nanotube structures in Chapter

4, we solve the case of general abelian design groups next. The main idea is to utilize,

and adapt to our context, tools from representation theory which appear to go back to

E. Wigner [Wig31] in the context of quantum mechanics.

First, we study the structure of abelian design groups. By utilizing the structure

theory for compactly generated groups, we coarsly classify these groups in Proposition

5.3. It turns out that closed abelian isometry groups are either compact, of nanotube

type, or belong to a quite general class of translational structures. To keep the account

transparent, we focus on a subset of the translational class, noting that the remaining

cases are of minor interest and can be worked out similarly.

The structure of the radiation spaces Rω,χ
b (G) for an abelian design group G and χ ∈ Ĝ

is analyzed next. For this purpose, we introduce the Wigner projections (see [Wig31]) for

compact abelian design groups K. These map time-harmonic radiation to the invariant

subspaces Rω,χ
b (K), resulting in Proposition 5.4 that gives a direct sum decomposition of

Rω
b with respect to K. Since the spaces Rω,χ

b (K) can be quite big for small groups K,

we identify an important subset that will turn out to be the right choice for structure

analysis – the symmetry-adapted waves.

For non-compact design groups, the Wigner projections cannot be defined in the same

way as in the compact case. Therefore, we introduce a tool we call the Zak transform as

it is a generalization of the classic Zak transform (see [Zak67]). This transform allows to

decompose time-harmonic radiation into its invariant parts in a distributional sense. Even

though we cannot give a decomposition of Rω
b , we are able to define the symmetry-adapted

waves for abelian design groups using the Zak transform. They turn out to be variants of

plane waves, twisted waves and compact symmetry-adapted waves (Proposition 5.13).

1. The Structure of Abelian Design Groups

To design radiation for abelian design groups, we first need to understand these groups,

i.e. closed abelian isometry groups. First, we use a structure theorem for compactly

generated locally compact abelian groups to decompose the design group into a direct

product of simple factors. This decomposition enables us to give a coarse classification of

109
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abelian design groups. We use this classification later to define the central objects – the

symmetry-adapted waves – for general abelian design groups.

Lemma 5.1 (Structure of Abelian Design Groups). An abelian design group

G ≤
fracωc can be decomposed as follows:

G = K ×
n∏
j=1

Rj ×
m∏
k=1

Zk, (5.1)

where n,m ∈ N, Rj
∼= R, j = 1, . . . , n, Zk ∼= Z, k = 1, . . . ,m, and K ≤ E(3) is a closed

compact abelian group.

Moreover, the groups Rj, j = 1, . . . , n, are of one of the following forms

(R1) Rj = {(I|τae). a ∈ R},
with e ∈ S2, τ 6= 0.

(R2) Rj = (I|c0){(Rλa|τae). a ∈ R}(I| − c0),

with e ∈ S2, λ, τ 6= 0, c0 ∈ e⊥.

The groups Zk, k = 1, . . . ,m, are of one of the following forms:

(Z1) Zk = {(I|τje). j ∈ Z},
with e ∈ S2, τ 6= 0.

(Z2) Zk = (I|c0){(Rλj|τje). j ∈ Z}(I| − c0)

with e ∈ S2, λ, τ 6= 0, c0 ∈ e⊥.

(Z3) Zk = (I|c0){((I− 2e⊥ ⊗ e⊥)j|τje). j ∈ Z}(I| − c0)

with e, e⊥ ∈ S2, e · e⊥ = 0, τ 6= 0, c0 ∈ Re⊥.

Proof. The group E(3) is a compactly generated locally compact group (generated

by the set {(Q|c). Q ∈ O(3), |c| ≤ 1}, for example). Thus, every abelian subgroup is as

well compactly generated.

By the structure theorem for compactly generated locally compact abelian groups

(see [Rei68], 2.9 (i), p. 97), the design group G is isomorphic to a direct product of

simpler groups as follows

G ∼= K̃ × Rn × Zm, n,m ∈ N, K̃ closed compact abelian. (5.2)
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Given an isomorphism ι : G→ K̃ × Rn × Zm, we set

Rj := ι−1({eK̃} × (0, . . . , 0︸ ︷︷ ︸
j−1

,R, 0, . . . , 0)× {0}m), j = 1, . . . , n,

Zk := ι−1({eK̃} × {0}
n × (0, . . . , 0︸ ︷︷ ︸

k−1

,R, 0, . . . , 0)), k = 1, . . . ,m,

K := ι−1(K̃ × {0}n+m),

where eK̃ is the neutral element of K̃. These definitions yield

G = ι−1(K̃ × Rn × Zm) = K ×
n∏
j=1

Rj ×
m∏
k=1

Zk

with Rj
∼= R, j = 1, . . . , n, Zk ∼= Z, k = 1, . . . ,m and K ≤ E(3) closed compact abelian.

Let 1 ≤ j ≤ n and ιj : R → Rj be an isomorphism. Then there are continuous

functions Q : R→ O(3) and c : R→ R3, s.t. ιj(a) = (Q(a)|c(a)) for all a ∈ R. So,

(Q(a+ b)|c(a+ b)) = ιj(a+ b) = ιj(a)ιj(b)

= (Q(a)Q(b)|Q(a)c(b) + c(a))

= (Q(b)Q(a)|Q(b)c(a) + c(b))

for all a, b ∈ R, using commutativity of Rj for the last equation.

In particular, we get Q(a + b) = Q(a)Q(b) for a, b ∈ R. So, Q : R → O(3) is a real

(orthogonal) representation of the group R on R3. Consequently, there is a λ ∈ R and an

e ∈ S2, s.t. Q(a) = Rλa for a ∈ R, where as usual, Rλa is the rotation about the axis Re

by the angle λa.

We decompose c : R→ R3 orthogonally w.r.t. the axis e: c(a) = ce(a) +c⊥(a), where

ce(a) ∈ Re and c⊥(a) ∈ e⊥ for all a ∈ R. Then, in the translation component of ιj(a+ b)

we find that

c(a+ b) = Q(a)c(b) + c(a) = Q(b)c(a) + c(b)

for a, b ∈ R. Using Q(a) = Rλa, the decomposition of c and the fact that Rλace(a) = ce(a)

for a ∈ R, we find that this is true if and only if

ce(a+ b) = ce(a) + ce(b), and

c⊥(a+ b) = Rλac⊥(b) + c⊥(a) = Rλbc⊥(a) + c⊥(b)

for all a, b ∈ R. The first equation says that ce : R → Re is linear (using continuity),

so there is a τ ∈ R, s.t. ce(a) = τae for a ∈ R. From the second equations, we get

(I −Rλa)c⊥(a) = (I −Rλb)c⊥(b). We need to distinguish two cases.
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When λ = 0, we get c⊥(a + b) = c⊥(a) + c⊥(b). So, together with the form of ce, it

follows that there is a τ ∈ R and an e ∈ S2, s.t. c(a) = aτe. Since ιj is injective, we need

τ 6= 0. This yields the case (R1).

When λ 6= 0, we can determine c⊥ with the following trick. At the point b = π
λ
, we

find Q(π
λ
) = Rπ = −ide⊥ . So, for all a ∈ R:

(I−Rλa)c⊥

(π
λ

)
= 2c⊥(a).

So, c⊥(a) = 1
2
(I −Rλa)c⊥(π

λ
). When setting c0 := 1

2
c⊥(π

λ
), we get by direct calculation

that for a ∈ R
(Q(a)|c(a)) = (I|c0)(Rλa|τae)(I| − c0).

Injectivity of ιj again yields the restriction τ 6= 0. Thus, we established (R2).

The special form of the factors Zk ∼= Z, k = 1, . . . ,m, is easier to proof. Let 1 ≤ k ≤ m

and ι̃k : Z→ Zk be an isomorphism. Then

ι̃k(j) = ι̃k(1)j for all j ∈ Z.

So, it suffices to determine ι̃k(1). Since ι̃k is injective, the element ι̃k(1) is of infinite

order. This restricts to the following three cases. ι̃(1) is either a translation, a screw

displacement or a glide reflection (see [DEJ]). Closedness of Zk excludes the additional

cases of ι̃k(1) being a rotation or improper rotation by an angle that is not in 2πQ.

In the first case, ι̃(1) = (I|c) for some c 6= 0. This is case (Z1), choosing e = c/|c| and

τ = |c| 6= 0.

In the second case, ι̃(1) = (Q|c) with det Q = 1 and c · e 6= 0, where e ∈ S2 is on

the axis of Q. This yields case (Z2) analog to the similar representation of the factors

isomorphic to R.

Finally, when ι̃(1) is a glide reflection, there is a e⊥ ∈ S2 and a c ∈ R3 \ {0} with c

not parallel to e⊥, s.t. ι̃(1) = (I− 2e⊥ ⊗ e⊥|c). Decomposing c = c⊥ + c̃ with c⊥ ∈ Re⊥

and c̃ · e⊥ = 0, and setting c0 := 1
2
c⊥, we find by direct calculation that

(Q|c) = (I|c0)(I− 2e⊥ ⊗ e⊥|c̃)(I| − c0).

Setting τ := |c̃| and e := c̃/τ , this is case (Z3) and completes the proof. �

This lemma shows that the non-compact factors of the group G are either continuous

groups of translations or screw displacements or discrete groups that are generated by a

translation, a screw displacement or a glide reflection.

We want to give a more detailed classification of abelian design groups. For this

purpose, we first proof the following lemma which was already used in Chapter 4 to write

nanotube structures in their canonical form.
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Lemma 5.2 (Closed Subgroups of Ce). Every closed subgroup G of Ce, e ∈ S2, is

of the form

G = K × S, (5.3)

where K is a subgroup of the group Re of all rotations about Re and S is either trivial or

isomorphic to R or Z and consists of translations or screw displacements.

Proof. Since G ≤ Ce, there are sets T ⊆ T and R ⊆ R, s.t.

G = {(QG(a)|cG(a)). a ∈ T ×R}.

Let K := {(QG(a)|cG(a)). cG(a) = 0}. Obviously, K is a subgroup of G as well as of Re.

When K = G, then we are done.

When there is an element in G with non-trivial translational part, using Lemma 5.1,

we get that G = K × S, where S is a direct product of isometry groups with at least one

non-compact factor.

We will show that S ∼= R or S ∼= Z. The result is then a consequence of Lemma 5.1.

First, assume that S is not discrete. Then it has a subgroup isomorphic to R by

Lemma 5.1 that is of the form

R = {(Rλa|τae). a ∈ R}, λ ∈ R, τ 6= 0, e ∈ S2.

If S contains a further element g = (Rµ|δe) 6∈ R, then δ 6= 0, because else g ∈ K. Then

for all a ∈ R

(Rλa|τae)(Rµ|δe) = (Rλa+µ|(τa+ δ)e)

= (Rµ−λδ/τ |0)(Rλ(a+δ/τ)|τ(a+ δ/τ)e) ∈ S.

So, (Rµ−λδ/τ |0) ∈ S, hence µ = λδ/τ . But then g = (Rλδ/τ |τδ/τe) ∈ R in contradiction

to g 6∈ R. This shows that S ∼= R if it is not discrete.

So, assume that S is discrete. Let g = (Rλ|τe) ∈ S be an element with τ > 0 minimal,

i.e. for all g′ = (Rλ′ |τ ′e) ∈ S we have |τ ′| ≥ τ .

We show that S = {gj. j ∈ Z}. Assume there is a h = (Rµ|δe) ∈ S \ {gj. j ∈ Z}.
Then for all j ∈ Z

(Rµ|δe)(Rjλ|jτe) = (Rjλ+µ|(jτ + δ)e)

= (Rµ−λδ/τ |0)(Rλ(j+δ/τ)|τ(j + δ/τ)e) ∈ S.

Again, µ = λδ/τ follows, s.t. h = (Rλδ/τ |δe).

When δ = jτ for some j ∈ Z then h ∈ S in contradiction to our selection of h.
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So, δ 6∈ Zτ . Let k := bδ/τc, then

hg−k = (Rλδ/τ |δe)(R−kλ| − kτe) = (Rλδ/τ−kλ|(δ − kτ)e) ∈ S.

But δ − kτ < τ in contradiction to the minimality of τ . So S ∼= Z in this case.

Lemma 5.1 yields the desired form of the factor S. �

We use this lemma to refine the structure of closed abelian isometry groups. The

following proposition coarsly classifies these groups into three classes.

Proposition 5.3 (Coarse Classification of Abelian Design Groups).

Let G ≤ E(3) be a closed abelian isometry group. Then G can be written in one of the

following forms:

(1) G = K ×
n∏
j=1

Rj ×
m∏
k=1

Zk,

where Rj
∼= R, j = 1, . . . , n, and Zk ∼= Z, k = 1, . . . ,m, n + m ≤ 3, are

either translation groups, glide reflection groups or screw displacement groups

with isogonal point group of order 2, and K is closed and compact.

(2) G = K × S,

where S ∼= R or S ∼= Z is a screw displacement group with order greater than 2,

and K is closed and compact.

(3) G = K,

where K is closed and compact.

Proof. We compose G as in Lemma 5.1:

G = K0 ×
n∏
j=1

Rj ×
m∏
k=1

Zk, (∗)

where Rj
∼= R, j = 1, . . . , n, Zk ∼= Z, k = 1, . . . ,m, K0 compact, are closed isometry

groups.

Now, assume that G is not of type (1) or (3). Then one of the non-compact factors of

G in (∗) is a group of screw displacements about an axis Re, e ∈ S2. We call this factor

S0. In addition, the isogoal point group IsoS0 of S0 is of order greater or equal than 3.

When A ≤ E(3) is another non-compact factor of G, then every element (QA|cA) ∈ A
needs to commute with every element (QS|cS) ∈ S0, i.e.

(QAQS|QAcS + cA) = (QSQA|QScA + cS). (∗∗)

We set the origin, s.t. (QS|cS) = (Rλ|τSe) for some λ, τS ∈ R and consider the different

possibilities for the factor A:
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• If A is a group of translations, i.e. QA = I for all elements of A, then (∗∗)
says that (QS|cS + cA) = (QS|QScA + cS), showing that QScA = cA. So, every

translation in A is of the form (QA|cA) = (I|τAe) for some τA ∈ R, i.e. all

translational factors of G share the axis of S0.

• If A is a group generated by a glide reflection

(QA|cA) = (I− 2ẽ⊥ ⊗ ẽ⊥|2ẽ⊥ ⊗ ẽ⊥c0 + τAẽ),

τA 6= 0, ẽ, ẽ⊥ ∈ S2, ẽ⊥ · ẽ = 0, c0 ∈ R3. Then the orthogonal part of (∗∗) yields

(ẽ⊥ ⊗ ẽ⊥)QS = QS(ẽ⊥ ⊗ ẽ⊥). (∗ ∗ ∗)

In particular, applying this to the vector ẽ, we get

(ẽ⊥ ⊗ ẽ⊥)QS ẽ = QS(ẽ⊥ ⊗ ẽ⊥)ẽ = 0.

Consequently, QS ẽ ∈ ẽ⊥⊥, showing that either e = ±ẽ or e = ±ẽ⊥.

In the first case, there is a (QS|cS) ∈ S0, s.t. QS(ẽ⊥⊗ ẽ⊥)ẽ⊥ = QS ẽ⊥ 6∈ Rẽ⊥,

because IsoS0 is of order ≥ 3. So, we can decompose QS ẽ⊥ = v⊥+ v, v⊥ ∈ Rẽ⊥,

v · ẽ⊥ = 0, v 6= 0. But then (ẽ⊥ ⊗ ẽ⊥)QS ẽ⊥ = (ẽ⊥ ⊗ ẽ⊥)(v⊥ + v) = v⊥ in

contradiction to (∗ ∗ ∗).
In the second case, comparing the translational parts of (∗∗), we find that

(Rλ − I)τAẽ = −2τSe. Since e 6= 0, this is true if and only if Rλẽ = −ẽ for all

elements of S0, what contradicts e = ±ẽ⊥. So, G has no glide reflection factors.

• If A is a group of screw displacements, then IsoA needs to be an abelian subgroup

of the group of rotations about the axis e, because these are the only elements

of SO(3) that commute with IsoS0 . So, every screw discplacement factor shares

the axis of S0.

In addition, when the elements of A are of the form (I|c0)(Rµ|δe)(I| − c0),

then a comparison of the translational parts shows that c0 ∈ Re.

In summary, we have shown that all the factors Rj, j = 1, . . . , n, Zk, k = 1, . . . ,m, are

groups of translations along or screw displacements about Re. This shows that

n∏
j=1

Rj ×
m∏
k=1

Zk ≤ Ce.

By Lemma 5.2, we get that
∏n

j=1Rj ×
∏m

k=1 Zk = K̃ × S for some closed compact K̃ and

a group of screw displacements S. Defining K := K0 × K̃, we get G = K × S. �

Proposition 5.3 shows that abelian design groups are either compact, of nanotube type

or belong to class (1) which are essentially translational groups. This last class can have
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non-compact factors that are either generated by glide reflections or screw displacements

by 180◦. These additional non-compact symmetries are of minor interest, because they

have translational subgroups of order 2. Because of that we will in the following focus on

the subset of class (1) with all non-compact factors being translation groups. This will

keep the presentation more transparent.

2. Wigner-Projections and the Zak Transform

To find a general method for the construction of solutions to the design equations, we

have a second look at the Fourier representation (4.1) of twisted waves

E0(x) =
1

2π

∫ π

−π
eiαϕ̂R−ϕ̂n0e

−iR−ϕ̂k0·xdϕ̂, k0 = (0, r̂, ẑ)T , n0 ∈ k⊥0 .

Interpreting the complex exponential as a conjugated character eiαϕ̂ = χ
(−α)
T (ϕ̂) of T and

the rest of the integrand as the action of T on the plane wave Eω,k0 = n0e
−ik0· via the

representation ϕ̂ 7→ R−ϕ̂, ϕ̂ ∈ T, we can write the integral as follows:

E0(x) =

∫
T
χ

(−α)
T (ϕ̂)(R−ϕ̂Eω,k0)(x)dµT(ϕ̂), (5.4)

where dµT(ϕ̂) := 1
2π

dϕ̂ is the normalized Haar measure on the torus group T.

Now, consider the operator

P
(α)
T : Rω

b → Rω
b , E 7→ P

(α)
T E :=

∫
T
χ

(α)
T (ϕ̂)(Rϕ̂E) dµT(ϕ̂).

It maps to the space of time-harmonic radiation Rω
b , because the time-harmonic Maxwell

equations are linear and invariant with respect to isometries. This operator is a so-called

Wigner-projection or symmetry-projection operator. We will see that these operators

provide a method to characterize the invariant spaces Rω,χ
b (K) for compact isometry

groups K and χ ∈ K̂. They were first introduced and studied by Eugene Wigner (see

[Wig31]) for applications in quantum mechanics.

Before studying these operators in detail, we come back to our twisted wave E0. We

ask ourselves what happened to the projection with respect to the translational part of

the group Ce. We know that Ce
∼= T×R, s.t. for the corresponding symmetry-projection
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operator, written as operator-valued integral,

P
(α,ẑ)
Ce

=

∫
Ce

χ
(α,ẑ)
Ce

(g)g dµCe(g)

=

∫
T×R

χ
(α,ẑ)
T×R (g1, g2)(g1, g2) dµT×R(g1, g2)

=

∫
T

∫
R
χ

(α)
T (g1)χ

(ẑ)
R (g2)g1 ◦ g2 dµR(g2) dµT(g1)

= P
(α)
T ◦ P (ẑ)

R ,

where the Haar measure of Ce is normalized, s.t. µCe = µT ⊗ µR.

Note that the projection with respect to R acting by translations along the axis is in

the above integral formulation only defined for nice functions (e.g. Schwartz or compactly

supported). In particular, the projection P
(ẑ)
R Eω,k0 cannot be defined in this way, because

the integral diverges.

However, we can reformulate the projection in a way that allows a generalization of

the concept. Consider once again the projection with respect to T acting by rotations

about the axis Re. We write FT for the Fourier transform on T, i.e. mapping a function

f ∈ L1(T) to its Fourier coefficients considered as a function on the dual group that is

isomorphic to Z:

FTf : Z→ C, k 7→ 1

2π

∫ π

−π
e−ikxf(x)dx.

Now, consider the bounded continuous function

Ex : T→ C3, ϕ̂ 7→ (Rϕ̂Eω,k0)(x), x ∈ R3.

Then we recognize the projection in (5.4) as a Fourier transform on the group T evaluated

at the integer −α ∈ Z:

E0(x) = FTEx(−α).

This idea can now be generalized to the group R acting by translations. Defining the

function

Ex : R→ C3, y 7→ E(x− ye),

we would like to write the projection operator via the Fourier transform of Ex in the

distributional sense: Êx ∈ S ′(R)3. Now, the projection of E with respect to the character

χ(ẑ) of R would be the evaluation of Êx at ẑ. Of course, it is not clear that this evaluation

can be defined in some sense, as distributions are not defined pointwise.
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Following this strategy for the plane wave Eω,k0 , we find for all ϕ ∈ S(R3):

Êxϕ = Exϕ̂ =

∫
R

Ex(y)ϕ̂(y)dy = n

∫
R
e−ik(x−ye)ϕ̂(y)dy

= ne−ik·x
∫
R
eiyk·eϕ̂(y)dy = ne−ik·x ̂̂ϕ(−k · e) = 2πEω,k0ϕ(k · e).

So, Êx = 2πEω,k0(x)δk·e, where the 2π come from our non-unitary definition of the Fourier

transform. The projection of Eω,k0 with respect to χ(ẑ) is then naturally defined as

P
(ẑ)
R Eω,k0 := (2π)−1Êx(1{ẑ}) =

Eω,k0 , k · e = ẑ,

0, else.
(5.5)

In summary, we can then say that

P
(−α,ẑ)
Ce

Eω,k0 = P
(−α)
T ◦ P (ẑ)

R Eω,k0 = P
(−α)
T Eω,k0 = E0.

So, twisted waves are projections of plane waves with respect to the design group Ce. We

will call these functions symmetry-adapted waves in the general case.

In the following, we discuss symmetry-projection operators for general closed abelian

design groups G. For non-compact groups we have to formalize the idea used above

to define the projection in a meaningful way. The main tool we will introduce is a

generalization of the Zak transform.

2.1. Compact Abelian Design Groups. Let K ≤ O(3) be a compact abelian

design group. Given time-harmonic radiation E0 ∈ Rω
b and a character χ ∈ K̂, the

symmetry-projection P χ
KE0 is defined by the integral

P χ
KE0(x) :=

∫
K

χ(g)(gE0)(x)dµK(g) for x ∈ R3,

where µK is the normalized Haar measure of K. As K is compact, the Haar measure is

finite (see [Rei68], 3.1. (iv), p. 56), s.t. the function P χ
KE0 is bounded and continuous.

The projection operators can be used to characterize the solutions to the design equa-

tions for compact design groups as shown in the following statement.

Proposition 5.4 (Decomposition of Rω
b – Compact Abelian Design Groups).

Let K ≤ O(3) be a compact abelian design group. The operators P χ
K, χ ∈ K̂, are projec-

tions and map to the space Rω,χ
b (K) of solutions to the design equations. In particular,

Rω,χ
b (K) = P χ

KRω
b , and Rω

b =
⊕
χ∈K̂

Rω,χ
b (K).

Proof. We first show that for every E0 ∈ Rω
b , the projection P χ

KE0 is an element of

Rω,χ
b (K), i.e. satisfies the design equations. The invariance of the time-harmonic Maxwell
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equations with respect to isometries together with the fact that P χ
KE0 is bounded and

continuous, shows that P χ
KE0 ∈ Rω

b . That P χ
KE0 is an eigenfunction of the action of K

follows with the translation invariance of the Haar measure. Let h ∈ K, then for x ∈ R3:

hP χ
KE0(x) =

∫
K

χ(g)(hgE0)(x)dµK(g) =

∫
K

χ(h−1g)(gE0)(x)dµK(g)

= χ(h−1)

∫
K

χ(g)(gE0)(x)dµK(g) = χ(h)P χ
KE0(x).

So, P χ
KE0 ∈ Rω,χ

b (K).

Using this invariance and the normalization of the Haar measure, we can proof that

P χ
K is a projection. For E0 ∈ Rω,χ

b (K):

P χ
KE0(x) =

∫
K

χ(g)(gE0)(x)dµK(g) =

∫
K

χ(g)χ(g)E0(x)dµK(g)

=

∫
K

dµK(g)E0(x) = E0(x).

From P χ
KE0 ∈ Rω,χ

b (K) for all E0 ∈ Rω
b , we get P χ

KRω
b ⊆ Rω,χ

b (K), while from P χ
KE0 = E0

for all E0 ∈ Rω,χ
b (K), we get P ω,χ

K (K) ⊆ P χ
KRω

b . So, in summary, P χ
KRω

b = Rω,χ
b (K).

Finally, the Schur orthogonality relations show that the space Rω
b is the direct sum of

the invariant subspaces. Let E0 ∈ Rω,χ
b (K) and χ′ ∈ K̂ another character of K. Then

with the same calculation as above

P χ′

K E0(x) =

∫
K

χ′(g)(gE0)(x)dµK(g) =

∫
K

χ′(g)χ(g)E0(x)dµK(g)

=

∫
K

χ′(g)χ(g)dµK(g)E0(x) = δχ′,χE0(x).

�

As a result of this proposition, we get a symmetry decomposition of time-harmonic

radiation E0 ∈ Rω
b as follows:

PKE0 : K̂ → Rω
b , χ 7→ P χ

KE0.

The orthogonality relations for the dual group show that reconstruction of E0 from PKE0

can be achieved by simple superposition:

E0 =
∑
χ∈K̂

P χ
KE0.

Even though this statement describes all solutions of the design equations, it doesn’t

give the final answer to the question which radiation to use for the analysis of the respective

class of objective structures.
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Consider the case of T acting via the representation ϕ̂ 7→ Rϕ̂, ϕ̂ ∈ T, by rotations

about an axis Re, e ∈ S2. Proposition 5.4 says that Rω,α
b (T) = P

(α)
T Rω

b for all α ∈ Z.

In particular, this space is very big, as every time-harmonic radiation E0 ∈ Rω
b with a

complex amplitude distribution n supported on the half circle that is the intersection of
ω
c
S2 with a half plane bordered by the axis yields a different symmetry-adapted radiation.

Consequently, there are at least as many elements as there are finite measures on an

interval.

To design a reasonable method for structure analysis, we need to select a small set

of radiation that is sufficient for reconstruction. The following elements of Rω,χ
b (K) will

turn out to be the right choice for our purposes.

Definition 5.5 (Symmetry-Adapted Waves – Compact Abelian Design Group).

Let K ≤ O(3) be a compact abelian design group and χ ∈ K̂. We define the symmetry-

adapted waves Eω,k0,χ with wave vector k = ω
c
k0 as follows:

Eω,k0,χ := P χ
KEω,k0 . (5.6)

The corresponding scalar symmetry-adapted wave is

eω,k0,χ := P χ
Keω,k0 . (5.7)

The definition of the symmetry-adpated waves is very natural. It combines the struc-

ture of the underlying space R3 with the structure of the group K that acts on R3. We

can already anticipate that these functions will be a complete set in appropriate function

spaces while at the same time being invariant with respect to K.

Before we can define the symmetry-adapted waves for general abelian design groups,

we need to understand how to generalize the projection operators to this case. For this

purpose we take a different point of view on projections by introducing a transform that

is closely related to the projection operators – the Zak transform.

Definition 5.6 (Zak transform on Rω
b – compact abelian design group). Let

K ≤ O(3) be a compact closed abelian isometry group and E0 ∈ Rω
b . The Zak transform

ZKE0 of E0 with respect to K is defined as

ZKE0(x, χ) := FKEx(χ) for x ∈ R3, χ ∈ K̂, (5.8)

where the function Ex : K → C3 is defined as

Ex(g) := (gE0)(x) for g ∈ K.
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We call this transform the Zak transform, as it is a generalization of the classic Zak

transform that was first in detail studied by J. Zak in [Zak67] (see Remark 6.2). We

summarize some properties in the following lemma.

Lemma 5.7 (Properties of the Zak Transform on Rω
b – Compact Abelian De-

sign Group). The Zak transform maps time-harmonic radiation to bounded continuous

functions from R3 × K̂ to C3. In particular,

ZKE0(x, χ) = P χ
KE0(x) for x ∈ R3, χ ∈ K̂. (5.9)

The inverse Zak transform Z−1
K is defined as

Z−1
K f(x) :=

∑
χ∈K̂

f(x, χ) = F−1
K f(x, idR3), for x ∈ R3, (5.10)

for all functions f : R3 × K̂ → C3, s.t. f(x, ·) is l1 for all x ∈ R3. It satisfies

Z−1
K ZK = idRωb

.

Proof. The identity (5.9) follows directly from the definitions of the Zak transform

and the Fourier transform. For E0 ∈ Rω
b , x ∈ R3 and χ ∈ K̂:

ZKE0(x, χ) = FKEx(χ) =

∫
K

χ(g)Ex(g)dµK(g)

=

∫
K

χ(g)(gE0)(x)dµK(g) = P χ
KE0(x).

The inversion formula is a direct consequence of the Fourier inversion formula on K. For

E0 ∈ Rω
b , x ∈ R3:

Z−1
K ZKE0(x) = F−1

K (FKEx)(idR3) = Ex(idR3) = E0(x).

�

The Zak transform is a space-symmetry decomposition of a function and can also be

defined similarly for non-compact abelian groups.

2.2. Abelian Design Groups. For the non-compact factors, the symmetry-projection

cannot be defined as an integral, as this integral diverges in general. Instead, we generalize

the Zak transform.

For an extension of the Zak transform to non-compact design groups, one has to

overcome the difficulty that the radiations E0 ∈ Rω
b are not necessarily in L1(R3;C3),

s.t. the functions Ex are in general not in L1(G;C3). However, since these functions are

bounded and continuous, the task is to extend the Fourier transform on G to this space

of functions. To avoid the technicalities that come along with the introduction of the
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Schwartz-Bruhat spaces of smooth rapidly decaying functions on locally compact abelian

groups (see [Osb75]), we make a minimal extension that is tailored to our needs.

Definition 5.8 (Fourier transform on Cb(G;C3)). Let G ≤ E(3) be an abelian

closed isometry group, and E ∈ Cb(G;C3). We define the Fourier transform FG on

Cb(G;C3) as a linear operator on the space FM1(G) of Fourier transforms of finite com-

plex measures on G. The mapping FGE : FM1(G)→ C3 is defined by

(FGE)ψ :=

∫
G

E(g)dFĜψ(g) for ψ ∈ FM1(G). (5.11)

The corresponding inverse Fourier transform F−1
G is given by

(F−1
G F)ψ := F(F−1

Ĝ
ψ) for ψ ∈M1(G), (5.12)

where F ∈ FCb(G;C3).

This definition inherits all the nice properties of the Fourier transform on L1-functions

in the same way as the Fourier transform of tempered distribution on Rn. These properties

will be discussed when they are explicitly needed.

With this definition, we can introduce the generalized Zak transform for general

abelian design groups.

Definition 5.9 (Zak transform on Rω
b – abelian design group). Let G ≤ E(3)

be a closed abelian isometry group and E0 ∈ Rω
b . The Zak transform ZGE0 of E0 with

respect to G is defined as

ZGE0(x, ψ) := (FGEx)(ψ) for x ∈ R3, ψ ∈ FM1(G), (5.13)

where the function Ex : G→ C3 is defined as

Ex(g) := (gE)(x) for g ∈ G.

Unlike in the compact case, the Zak transform cannot be used in general to define

projection operators, because it cannot be pointwise evaluated (note that δχ, χ ∈ Ĝ, is

not in FM1(G)). When ψχ ∈ FL1(Ĝ) is concentrated around a character χ ∈ Ĝ, the

function x 7→ ZG(x, ψχ) is in some sense ‘almost invariant’.

We summarize some properties of the Zak transform in the following lemma.

Lemma 5.10 (Properties of the Zak Transform on Rω
b – Abelian Design

Group). For ψ ∈ FM1(G), the operator Pψ
G on Rω

b , defined by

Pψ
GE0(x) := ZGE0(x, ψ) for E0 ∈ Rω

b , x ∈ R3, (5.14)
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maps to Rω
b . When E0 ∈ Rω,χ

b (G), χ ∈ Ĝ, then

ZGE0(x, ψ) = ψ(χ)E0(x). (5.15)

The inverse Zak transform Z−1
G is given by

Z−1
G f(x) := f(x,1Ĝ) = F−1

G f(x, δidR3
).

It satisfies Z−1
G ZG = idRωb

.

Proof. Let E0 ∈ Rω
b and ψ ∈ FM1(G). Then Pψ

GE0 is continuous, because of the

continuity of E0 and of FG. It is also bounded, as

‖Pψ
GE0‖∞ = sup

x∈R3

|FGEx(ψ)| = sup
x∈R3

∣∣∣∣∫
G

(gE0)(x)dFĜψ(g)

∣∣∣∣
≤
∫
G

|(gE0)(x)|d|FĜψ|(g) ≤ ‖E0‖∞ · ‖FĜψ‖M1(G) <∞.

Linearity and invariance with respect to isometries of the time-harmonic Maxwell equa-

tions implies that Pψ
GE0 ∈ Rω

b .

Now, let E0 ∈ Rω,χ
b (G) for some χ ∈ Ĝ. Then

ZGE0(x, ψ) = FGEx(ψ) =

∫
G

(gE0)(x)dFĜψ(g)

=

∫
G

χ(g)E0(x)dFĜψ(g) =

∫
G

χ(g)dFĜψ(g)E0(x)

= ψ(χ)E0(x),

using the invariance of E0 and the Fourier inversion formula on M1(G).

Finally, for E0 ∈ Rω
b :

Z−1
G ZGE0(x) = ZGE0(x,1Ĝ) = FGEx(1Ĝ)

= Ex(FĜ(1Ĝ)) = Ex(δidR3
) = E0(x).

�

We will use the Zak transform to define symmetry-adapted waves with respect to

abelian design groups in the next section.

3. Symmetry-Adapted Waves for Abelian Design Groups

To define symmetry-adapted waves for abelian design groups, we want to utilize Propo-

sition 5.3 in the following way. We first determine the symmetry-adapted waves for the

single factors of the decomposition using the Zak transform and then make an iterative

construction to generalize the definition to general abelian design groups.
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Even though this method is very ad hoc, once we have done the work, we can use

this explicit construction to easily determine the symmetry-adapted waves for concrete

examples.

We start with the non-compact factors of an abelian isometry groups by computing

the Zak transform of plane waves with respect to these groups.

Lemma 5.11 (Zak Transform of Plane Waves).

Let the groups R = {(QR(a)|cR(a)). a ∈ R} ≤ E(3) be closed and isomorphic to R, and

Z = {(QZ(j)|cZ(j)). j ∈ Z} ≤ E(3) be closed and isomorphic to Z, respectively, and let

Eω,k0 = neik·, k = ω
c
k0, be a plane wave.

The Zak transforms of the plane waves Eω,k0 with repsect to R and Z at x ∈ R3 and

ψ ∈ FM1(R3) are given by

(1) When R is a group of translations, i.e. QR(a) = I, cR(a) = τae for some τ 6= 0,

e ∈ S2 and all a ∈ R, then

ZREω,k0(x, ψ) = 2πEω,k0(x)ψ(−τk · e).

(2) When R is a group of screw displacements, i.e. QR(a) = Rλa and cR(a) = τae

for some λ, τ 6= 0, e ∈ S2 and all a ∈ R, then

ZREω,k0(x, ψ) = 2π
∑
`∈Z

E
(`)
ω,k0

(x)ψ(λ`− τk · e).

(3) When Z is a group of translations, i.e. QZ(j) = I and cZ(j) = τje for some

τ 6= 0, e ∈ S2 and all j ∈ Z, then

ZZEω,k0(x, ψ) = 2πEω,k0(x)
∑
m∈2πZ

ψ(m− τk · e).

(4) When Z is a group of screw displacements, i.e. QZ(j) = Rλj and cZ(j) = τje

for some λ, τ 6= 0, e ∈ S2 and all j ∈ Z, then

ZZEω,k0(x, ψ) = 2π
∑
`∈Z

E
(`)
ω,k0

(x)
∑
m∈2πZ

ψ(m+ λ`− τk · e).

(5) When Z is a group of glide reflections, i.e. QZ(1) = I − 2e ⊗ e, cZ(1) = τc⊥

for some e ∈ S2, τ 6= 0 and c⊥ ∈ e⊥ ∩ S2, then, when defining ñ := QZ(1)n and

k̃0 := QZ(1)k0,

ZZEω,k0(x, ψ) =
2π

2

∑
m∈2πZ

(Eω,k0(x) + Eω,k̃0
(x))ψ(m− τk · c⊥)

+ (Eω,k0(x)− Eω,k̃0
(x))ψ(m+ τk · c⊥).
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Proof. In the case that R is a group of translations, i.e. QR(a) = I, cR(a) = τae for

some τ 6= 0, e ∈ S2 and all a ∈ R, for ψ ∈ FM1(R):

ZREω,k0(x, ψ) =

∫
R

neik·(x−τae)dFR̂ψ(a) = neik·x
∫
R
e−iaτk·edψ̂(a)

= Eω,k0(x)
̂̂
ψ(τk · e) = 2πEω,k0(x)ψ(−τk · e).

When R is a group of screw displacements, i.e. QR(a) = Rλa and cR(a) = τae for

some λ, τ 6= 0, e ∈ S2 and all a ∈ R, for every ψ ∈ FM1(R), we get

ZREω,k0(x, ψ) =

∫
R

Rλane
ik·R−λa(x−τae)dψ̂(a)

= U

∫
R

eiλa

e−iλa

1

eik·(R−λax−τae)dψ̂(a)

︸ ︷︷ ︸
=:S

U−1n,

where U ∈ U(3) is the unitary matrix that simultaneously diagonalizes the matrices Rλa

in the given way. Writing x = ξe(r, ϕ, z) and k = ξe(r̂, ϕ̂, ẑ) in cylindrical coordinates

about Re, we can use the angle difference formula of the cosine to write the exponent of

the exponential as follows:

k · (R−λax− τae) = r̂r(cos(ϕ̂) cos(ϕ− λa) + sin(ϕ̂) sin(ϕ− λa)) + ẑ(z − τa)

= r̂r cos(ϕ̂− ϕ+ λa) + ẑ(z − τa).

Now, setting σ := (−1, 1, 0)T , we can write the diagonal elements of the matrix-valued

integral S as follows:

Skk = eiẑz
∫
R
e−iτ ẑeiaσkλeir̂r cos(ϕ̂−ϕ+λa)dψ̂(a)

= eiẑzF(eiσkλeir̂r cos(ϕ̂−ϕ+λ·)ψ̂)(τ ẑ)

= eiẑzF(eiσkλeir̂r cos(ϕ̂−ϕ+λ·)) ∗ (2πψ−)(τ ẑ)

= eiẑz
∑
`∈λZ

∫ π

−π
e−ia`/λeiσkaeir̂r cos(ϕ̂−ϕ+a)da δl ∗ ψ−(τ ẑ)

=
∑
`∈λZ

∫ π

−π
e−ia`/λeiσkaeik·R−axdaψ(`− τk · e),

where we used the convolution theorem, the formula for the double Fourier transform and

the Fourier transform of a periodic function.
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So,

ZREω,k0(x, ψ) =
∑
`∈λZ

∫ π

−π
e−ia`U

eia

e−ia

1

U−1neiRak·xdaψ(`− τk · e)

=
∑
`∈λZ

∫ π

−π
e−ia`Rane

iRak·xdaψ(`− τk · e).

Comparing with formula (4.3), we find

ZREω,k0(x, ψ) = 2π
∑
`∈λZ

E
(`)
ω,k0

(x)ψ(`− τk · e).

Next, we consider the discrete case that Z is a group of translations, i.e. QZ(j) = I

and cZ(j) = τje for some τ 6= 0, e ∈ S2 and all j ∈ Z. We see that this is a discretization

of the continuous case. We extend the function Ex : j 7→ (QZ(j)|c(j))Eω,k0(x) to R
by setting QZ(a) := I and cZ(a) = τae for a ∈ R. Now, using the theory of tempered

distributions on R and the convolution theorem, we find that for a Schwartz function

ψ ∈ S(R)

FR(δZ · Ex)ψ = δ2πZ ∗ ZRE0(x, ψ),

for all E0 ∈ Rω
b , x ∈ R3, where Ex is the extended function considered above and the

convolution is with respect to the second argument. Then the Zak transform ZZEω,k0(x, ·)
is the restriction of this function to FM1(T). For FM1(T) we get:

δ2πZ ∗ ZRE0(x, ψ) = 2πEω,k0(x)(δ2πZ ∗ δ−τk·e)ψ

= 2πEω,k0(x)
∑
m∈2πZ

ψ(m− τk · e).

The same trick works for the discrete group Z generated by a screw displacement, i.e.

QZ(j) = Rλj and cZ(j) = τje for some λ, τ 6= 0, e ∈ S2 and all j ∈ Z. With the same

notation as for the translations, we get

δ2πZ ∗ ZRE0(x, ψ) = 2π
∑
`∈λZ

E
(`)
ω,k0

(x)δ2πZ ∗ δ`−τk·e

= 2π
∑
`∈λZ

E
(`)
ω,k0

(x)
∑
m∈2πZ

δm+`−τk·e.

Finally, we treat the case that the group Z is generated by QZ(1) = I−2e⊗e, cZ(1) = τc⊥

for some e ∈ S2, τ 6= 0 and c⊥ ∈ e⊥ ∩ S2. It can be reduced to the case of two discrete

groups generated by translations as follows. Define ñ := (I−2e⊗e)n and k̃ := (I−2e⊗e)k.
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Then for all ψ ∈ FM1(T):

ZZEω,k0 ==
∑
j∈Z

(I− 2e⊗ e)jneik·(I−2e⊗e)(x−τjc⊥)FĜψ(j)

=
∑
j∈2Z

neik·(x−τjc⊥)ψ̂(j) +
∑

j∈2Z+1

ñeik̃·(x−τjc⊥)ψ̂(j)

= Eω,k0(x)
∑
j∈2Z

e−iτk·c⊥jψ̂(j) + Eω,k̃0
(x)

∑
j∈2Z+1

e−iτ k̃·c⊥jψ̂(j)

= Eω,k0(x)
∑
m∈2πZ

2π

2
(ψ(m− τk · c⊥) + ψ(m+ τk · c⊥))

+ Eω,k̃0
(x)

∑
m∈2πZ

2π

2
(ψ(m− τk · c⊥)− ψ(m+ τk · c⊥))

So,

ZZEω,k0 =
2π

2

∑
m∈2πZ

(Eω,k0(x) + Eω,k̃0
(x))δm−τk·c⊥ + (Eω,k0(x)− Eω,k̃0

(x))δm+τk·c⊥ .

�

This lemma shows in particular, that the distributions ZREω,k0(x, ·) and ZZEω,k0(x, ·)
are point measures on R and T, respectively, in all the cases. This means that we can

define symmetry-adapted waves with respect to the non-compact factors as follows

Definition 5.12 (Symmetry-Adapted Waves – Non-Compact Factors). Let

R ∼= R and Z ∼= Z be closed abelian isometry groups and Eω,k0 be a plane wave with

frequency ω > 0 and wave vector k = ω
c
k0. We define the symmetry-adapted waves with

respect to R and Z pointwise at x ∈ R3 by

Eω,k0,α(x) := (2π)−1ZREω,k0(x,1{α}), α ∈ R, (5.16)

Eω,k0,β(x) := (2π)−1ZZEω,k0(x,1{β}), β ∈ T. (5.17)

We define the operators P
(α)
R and P

(β)
Z on the space of time harmonic radiation that is

a finite sum of plane waves as follows. Let E0 ∈ Rω
b be given by E0 =

∑n
j=1 Eω,kj with

kj ∈ S2, j = 1, . . . , n. Then we define P
(α)
R E0 and P

(β)
Z E0 by

P
(α)
R E0 :=

n∑
j=1

Eω,kj ,α, P
(β)
Z E0 :=

n∑
j=1

Eω,kj ,β.

We still have to check that these functions are elements of the corresponding spaces

Rω,α
b (R) and Rω,β

b (Z). We do this by explicitly writing down the functions.
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Proposition 5.13 (Symmetry-Adapted Waves). Let R ∼= R and Z ∼= Z be closed

abelian isometry groups and Eω,k0 be a plane wave with frequency ω > 0 and wave vector

k = ω
c
k0. For α ∈ R and β ∈ T, the non-trivial symmetry-adapted waves with respect to

R and Z are explicitly given as follows.

(1) When R is a group of translations, i.e. QR(a) = I, cR(a) = τae for some τ 6= 0,

e ∈ S2 and all a ∈ R, then

Eω,k0,α = Eω,k0 , α = −τk · e.

(2) When R is a group of screw displacements, i.e. QR(a) = Rλa and cR(a) = τae

for some λ, τ 6= 0, e ∈ S2 and all a ∈ R, then

Eω,k0,α = E
(`)
ω,k0

, ` :=
α + τk · e

λ
∈ Z.

(3) When Z is a group of translations, i.e. QZ(j) = I and cZ(j) = τje for some

τ 6= 0, e ∈ S2 and all j ∈ Z, then

Eω,k0,β = Eω,k0 β = −τk · e mod 2π.

(4) When Z is a group of screw displacements, i.e. QZ(j) = Rλj and cZ(j) = τje

for some λ, τ 6= 0, e ∈ S2 and all j ∈ Z, then

(a) when β + τk · e 6= 0 mod 2π, then

Eω,k0,β = E
(`)
ω,k0

, ` :=
β + τk · e

λ
mod 2π ∈ Z.

(b) when β + τk · e = 0 mod 2π, then

Eω,k0,β =
1

λq
Eω,k0 , λ = 2π

p

q
, p ∈ Z \ {0}, q ∈ N.

(5) When Z is a group of glide reflections, i.e. QZ(1) = I − 2e ⊗ e, cZ(1) = τc⊥

for some e ∈ S2, τ 6= 0 and c⊥ ∈ e⊥ ∩ S2, then, when defining ñ := QZ(1)n and

k̃0 := QZ(1)k0,

Eω,k0,β =


1
2
(Eω,k0 + Eω,k̃0

), β = −τk · c⊥ mod 2π, τk · c⊥ 6∈ πZ,
1
2
(Eω,k0 − Eω,k̃0

), β = τk · c⊥ mod 2π, τk · c⊥ 6∈ πZ,

Eω,k0 , β = τk · c⊥ mod 2π, τk · c⊥ ∈ πZ

.

In particular, Eω,k0,α ∈ Rω,α
b (R) and Eω,k0,β ∈ Rω,β

b (Z) in all the cases.

Proof. As in all the cases, the functions are plane waves, twisted waves or sums of

two plane waves, they are obviously elements of Rω
b . The proper invariance is shown as
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follows. For ψ ∈ FM1(R) and b ∈ R we get

(QR(b)|cR(b))ZREω,k0(x, ψ) = (QR(b)|cR(b))

∫
R
(QR(a)|cR(a))Eω,k0(x)dψ̂(a)

=

∫
R
(QR(a+ b)|cR(a+ b))Eω,k0(x)dψ̂(a)

=

∫
R
(QR(a)|cR(a))Eω,k0(x)dψ̂(a− b)

=

∫
R
(QR(a)|cR(a))Eω,k0(x)dêib·ψ(a)

= Ex(êib·ψ) = (eib· · Êx)ψ,

where Ex(a) = (QR(a)|cR(a))Eω,k0(x) for x ∈ R3, a ∈ R.

Thus, for α ∈ R,

(QR(b)|cR(b))Eω,k0,α = (QR(b)|cR(b))ZREω,k0(x,1{α})

= (eib· · Êx)(1{α}) = eibαEω,k0,α(x).

For Z the invariance follows analogously.

The explicit formulas in cases (1)-(3) and (4a) follow directly from Lemma 5.11 by

evaluating at 1{α} and 1{β}, respectively.

In case (4b), when β + τk · e = 0 mod 2π, say α + τk · e = 2π`, ` ∈ Z, then the

equation λn + 2π(m − `) = 0 has to be solved for (n,m) ∈ Z2. Let m′ := m − `, then

m′ = − λ
2π
n, s.t. this equation has no solution for λ 6∈ 2πQ. When λ = 2π p

q
, p ∈ Z \ {0},

q ∈ N, then (n,−p
q
n), n ∈ qZ, are all solutions. Thus, in ‘physics notation’:

ZZEω,k0(x,1{β}) = 2π
∑
`∈λqZ

E
(`)
ω,k0

(x) = 2π
∑
`∈λqZ

∫ π

−π
e−ia`Rane

iRak·xda

= 2π

∫ π

−π

∑
`∈λqZ

e−ia`Rane
iRak·xda = 2π

∫ π

−π
δ(aλq)Rane

iRak·xda

=
2π

λq
neik·x =

2π

λq
Eω,k0(x).

In case (5), the third row results from the fact that when β = τk · c⊥ ∈ πZ, then

β ∈ 2πZ + τk · c⊥ and β ∈ 2πZ − τk · c⊥, s.t. the Eω,k̃0
-terms cancel while the others

sum to Eω,k0(x). �

As a corollary, we get the scalar symmetry-adapted waves for the single non-compact

factors by replacing Eω,k0 by eω,k0 with the appropriate action of E(3). In particular, the
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scalar twisted waves e
(`)
ω,k0

are given in cylindrical coordinates x = ξe(r, ϕ, z) by

e
(`)
ω,k0

(r, ϕ, z) = J`(r̂r)e
−i(`(ϕ+ϕ0)+ẑz), where k0 = Rϕ0(0, r̂, ẑ)T . (5.18)

The scalar versions of the projections with respect to a glide reflection can also be given

more explicitly. Decomposing the wave vector k = k⊥ + ke with k⊥ · e = 0 and ke ∈ Re,

we find that

eω,k0,β(x) =


eik⊥·x cos(ke · x), β = −τk · c⊥ mod 2π, τk · c⊥ 6∈ πZ,

ieik⊥·x sin(ke · x), β = τk · c⊥ mod 2π, τk · c⊥ 6∈ πZ,

eω,k0(x), β = τk · c⊥ mod 2π, τk · c⊥ ∈ πZ.

(5.19)

Having explicitly determined the symmetry-adapted waves for the single factors of an

abelian design group, we can gather our results to treat the general case.

First, we determine the characters of an abelian design group G. Let

G = K ×
n∏
j=1

Rj ×
m∏
k=1

Zk ∼= K × Rn × Zm

be the decomposition of G according to Lemma 5.1, i.e. K is compact, Rj
∼= R for

j = 1, . . . , n, and Zk ∼= Z, k = 1, . . . ,m. Let ι : G → K × Rn × Zm be an isomorphism.

The characters of G are then given by

χ
(χK ,α,β)
G (g) = χ(χK ,α,β)(ι(g)) := χK(k)ei(α·a+β·b),

for some (χK , α, β) ∈ K̂×Rn×Tm, where ι(g) = (k, a,b) ∈ K×Rn×Zm. We define the

symmetry-adapted waves for the following three classes of abelian design groups.

Definition 5.14 (Symmetry-Adapted Waves – Abelian Design Group). Let

G ≤ E(3) be an abelian design group. The symmetry-adapted waves with wave vector

k = ω
c
k0, k0 ∈ S2, ω > 0, are defined as follows.

(1) When G = K ×
∏n

j=1Rj ×
∏m

k=1 Zk, where K is compact, and the group

T :=
∏n

j=1 Rj ×
∏m

k=1 Zk is a translation group, then for χG = χ(χK ,α,β) ◦ ι ∈ Ĝ
with (χK , α, β) ∈ K̂ × Rn × Tm,

Eω,k0,χG := P χK
K ◦ P (α1)

R1
◦ · · · ◦ P (αn)

Rn
◦ P (β1)

Z1
◦ · · · ◦ P (βm)

Zm
Eω,k0 .

(2) When G = K × S with K compact, S ∼= R or S ∼= Z a group of screw displace-

ments and χG = χ(χK ,α) ◦ ι ∈ Ĝ with (χK , α) ∈ K̂ × R or (χK , α) ∈ K̂ × Z,

then

Eω,k0,χG := P χK
K ◦ P (α)

S Eω,k0 .



3. SYMMETRY-ADAPTED WAVES FOR ABELIAN DESIGN GROUPS 131

(3) When G = K compact and χK ∈ K̂ then

Eω,k0,χK := P χK
K Eω,k0 .

That these symmetry-adapted waves are well-defined can be seen as follows. The

operators P
(βk)
Zk

and P
(αj)
Rj

in case (1) map plane waves to plane waves by Definition 5.12

and Proposition 5.13. The operator P
(α)
S in case (2) maps a plane wave to a twisted wave

by Proposition 5.13, again. Finally, the operator P χK
K maps from Rω

b to Rω
b by Proposition

5.4. So, Eω,k0,χG ∈ Rω
b . The right transformation under group action follows from the

facts that the single operators map to the respective spaces of invariant functions and

that the group is abelian.

Before we study the usage of symmetry-adapted waves for the analysis of molecular

structures, we determine the set of symmetry-adapted waves for some specific abelian

design groups.

3.1. Examples: Symmetry-Adapted Waves. Let G = T = {(I|c). c ∈ R3} be

the translation group. It is isomorphic to R3, s.t. the symmetry-adapted waves are

projections with respect to three groups that are isomorphic to R. Let {e1, e2, e3} be an

orthonormal basis of R3, then T can be written as the direct product T =
∏3

j=1Rj, where

Rj := {(I|aej). a ∈ R}, j = 1, 2, 3.

According to Proposition 5.13, when χ(αj)((I|aej)) := eiαja, αj, a ∈ R, is a character

of Rj and k = ω
c
k0 for some ω > 0 and k0 ∈ S2, then Eω,k0,α1 = Eω,k0 if and only if

kj := k · ej = −αj.
Thus, the symmetry adapted plane waves are given by

Eω,k0,−k(x) = neik·x for x ∈ R3.

For every character χ(α) of R3 the corresponding non-trivial symmetry-adapted waves are

the ones with wavevector k = −α ∈ R3.

The radiation family that our design suggests to use for the analysis of structures that

are generated by discrete closed subgroups of T , namely crystal structures, is the family

of plane waves. We already got that result from the design equation, as we did for the

case of degenerated two-dimensional crystal structures.

For the group R = {(I|ae). a ∈ R} ∼= R of translations along an axis in direction

e ∈ S2, the corresponding structures are the degenerated case of one-dimensional crystal

structures. The design equations for this group yield a very large set of solutions. We

determine the set of symmetry-adapted waves for this case. By Proposition 5.13, given

a character χ(α)((I|ae)) = eiαa, a ∈ R, the wave vectors of the non-trivial symmetry-

adapted waves satisfy k ·e = −α. These are the wave vectors in the plane −αe+e⊥. The
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union of all these planes is again the whole space R3, s.t. the symmetry-adapted waves

turn out to be once again the family of plane waves.

Let’s consider a discrete translation group B = {(I|b). b ∈ B}, where B = AZ3 is a

Bravais lattice generated by A ∈ GL(3,R). The dual group B̂ is parametrized by a unit

cell of the reciprocal lattice B⊥. Let A⊥ := 2πA−T be the generator of the reciprocal

lattice, then the corresponding canonical unit cell of B⊥ is given by

UB⊥ := A⊥[0, 1)3.

The characters are thus of the form

χ(b′)((I|b)) = eib
′·b, b′ ∈ UB⊥ , b ∈ B.

Consequently, the symmetry-adapted waves Eω,k0,b′ are the plane waves with wave vector

k ∈ −UB⊥ . Of course, one could also parametrize the dual group with −UB⊥ and end up

with the wave vectors k ∈ UB⊥ .

In the case that the design group is the trivial group, describing the class of structures

that have no symmetry at all, the symmetry-adapted waves are also the plane waves. In

this sense, CDI is the right choice for the analysis of arbitrary structures according to our

design.

Another very degenerate case is the case of the compact group T acting by rotations

about an axis Re, e ∈ S2. The characters are of the form χ(α)(Rϕ̂) = eiαϕ̂, ϕ̂ ∈ T,

α ∈ Z. We already discussed that the solution space of the design equations is too big for

structure analysis. The symmetry-adapted waves give the right choice of invariant fields.

They can be determined via the projection operators:

Eω,k0,α(x) =
1

2π

∫ π

−π
e−iαϕ̂Rϕ̂ne

ik·R−ϕ̂xdϕ̂.

These are exactly the twisted waves, Eω,k0,α = E
(α)
ω,k0

.

A new kind of radiation are the symmetry-adapted waves with respect to a finite

rotation group. Let Cn := {(R2πj/n|0). j = 0, . . . , n − 1} be the n-fold rotation group

about the axis Re. The characters are given by χ(α)(R2πj/n) = e2πiαj/n, α = 0, . . . , n− 1.

Again, as the group is compact, the symmetry-adapted waves are given by the projections

Eω,k0,α(x) =
1

n

n∑
j=1

e2πiαj/nR2πj/nne
ik·R−2πj/nx, x ∈ R3. (5.20)

We call these waves n-twisted waves. A cross-section of the absolute value of a 5-twisted

wave perpendicular to the axis reveals a quasi-crystalline pattern (see Figure 5.1). This

is due to the fact that the Fourier transform of this wave has by construction a 5-fold axis
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and is discrete. It might be possible to exploit this relationship between the symmetries

of n-fold waves and quasicrystals.

Figure 5.1. A slice through the absolute value of a 5-twisted wave showing
its quasicrystalline nature.

The n-fold twisted waves might also be useful for the analysis of nanotube structures

with a finite isogonal point group. By simple plane wave radiation, the order n of the

isogonal point group can be determined. Consequently, the order of the rotational sym-

metry of the structure divides n making the n-fold twisted waves a possible radiation

family for analysis. These waves might be easier to produce than twisted waves as only

n single plane waves have to be phase aligned.





CHAPTER 6

Radiation Design for Abelian Design Groups

In this central chapter, we will investigate the scattering of symmetry-adapted waves

by invariant structures for abelian design groups.

First, we need to understand the relation between symmetry-adapted waves and the

charge density. For this purpose, we introduce the generalized Zak transform on our

model space S(R3). This transform has applications in quantum mechanics and signal

processing in its classic form (see [Zak67, Kut02]). It carries the structure of the design

group to the function space, making it possible to transfer results on the group structure,

like the Poisson summation formula, to the space of charge densities.

We find that we can decompose the charge density into scalar symmetry-adapted

waves. This motivates the introduction of the scalar wave transform – the integral

transform of the density with the scalar symmetry-adapted waves being the integral

kernel. This transform is a function on the space of radiation parameters , which are

(ω,k0, χ) ∈ (0,∞)×S2× Ĝ, and is closely related to the Fourier transform on R3 and the

Zak transform with respect to the design group G. The scalar wave transform will turn

out to be the generalization of the scalar transforms that appear in the phase retrieval

problem for plane waves and twisted waves.

When a function is invariant with respect to a discrete closed subgroup of the design

group, the scalar wave transform is supported on the orthogonal group. This fact is

central for the derivation of the generalized von Laue condition.

We lift the scalar theory to the vector-valued case by introducing the vector-valued

wave transform that is seen to be closely related to the radiation transform with respect

to symmetry-adapted waves. We show that this transform is invertible and infer the

central result. If the isogonal point group of the design group fixes a non-trivial vector,

then the symmetry can be reconstructed directly from intensity measurements, and the

reconstruction problem reduces to a scalar phase problem. This is the generalized von

Laue condition for abelian design groups and generalizes the classical as well as the twisted

von Laue condition.

Finally, the phase retrieval problem for the inferred scalar phase problem is discussed

shortly. The standard algorithms can be adapted to the general case in a straight-forward

manner. Because of the close relation of the wave transform to the Fourier transforms on

135
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R3 and G, the algorithms can be implemented in an efficient way using the Fast Fourier

Transform.

1. The Scalar Wave Transform

In this section, we analyze the space of charge densities with respect to the action of

the design group G. As a model space, we consider the space S(R3) of Schwartz functions.

The restriction to non-negative functions is not necessary at this point – it will become

important when we consider the phase retrieval problem later.

1.1. Zak Transform and Wigner Projections. We consider an abelian design

group G ≤ E(3). The natural action of E(3) on the space S(R3) is

(gf)x := f(g−1x), for f ∈ S(R3), x ∈ R3, g ∈ E(3).

The Zak transform and the Wigner projections with respect to this action are then as

usual defined as

Definition 6.1 (Zak Transform and Wigner Projections on S(R3) – abelian

design group). Let G ≤ E(3) be a closed abelian isometry group, and f ∈ S(R3). The

Zak transform ZGf of f with respect to G is defined as

ZGf(x, χ) := FGfx(χ), for x ∈ R3, χ ∈ Ĝ. (6.1)

Given χ ∈ Ĝ, the projection operator P χ
G is defined as

P χ
Gf(x) := ZGf(x, χ) for x ∈ R3. (6.2)

Remark 6.2 (Classic Zak transform). The classic Zak transform (see [Zak67]) is

the special case of the non-compact abelian group aZ acting on R by translations. The dual

group of aZ is the torus group a−1T, s.t. the Zak transform Za of a function f ∈ S(R),

for example, is (up to sign and normalization conventions) given by

Zaf(x, ω) := FZfx(ω) =
∑
j∈Z

f(x− aj)e−iajω. (6.3)

The Zak transform has been successfully applied in quantum mechanics and signal pro-

cessing. It has also been generalized to the action of a lattice on a quite general class of

locally compact groups in [Kut02].

We summarize some properties of the Zak transform in the following lemma.

Lemma 6.3 (Properties of the Zak Transform on S(R3)). Let G ≤ E(3) be a

closed abelian isometry group. For all χ ∈ Ĝ, the Wigner projection P χ
Gf of a function
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f ∈ S(R3) is a tempered function that satisfies

gP χ
Gf = χ(g)P χ

Gf for all g ∈ G. (6.4)

The inverse Zak transform is given by

Z−1
G F (x) := F−1

G F (x, idR3), x ∈ R3, (6.5)

for F : R3 × Ĝ→ C with χ 7→ F (x, χ) ∈ FL1(G) for all x ∈ R3.

When G = K is compact, then

P χ
KS(R3) ⊆ S(R3), and S(R3) =

⊕
χ∈Ĝ

P χ
KS(R3). (6.6)

In this case, the Zak transform commutes with the Fourier transform on R3, i.e.

ZK ◦ F = F ◦ ZK .

Proof. The form of the inverse Zak transform follows immediately from the definition

of the Zak transform.

Given a function f ∈ S(R3) and a character χ ∈ Ĝ, the projection P χ
Gf is bounded

and continuous, since the function fx : G→ C is integrable. In addition, all derivatives of

P χ
Gf are bounded, because we can exchange the order of differentiation and projection via

dominated convergence. The boundedness follows then from the fact that the derivative

of f is again a Schwartz function.

The action of G on P χ
Gf yields

gP χ
Gf(x) =

∫
G

χ(h)((gh)f)(x)dµG(h) =

∫
G

χ(g−1h)(hf)(x)dµG(h) = χ(g)P χ
Gf(x).

When G = K is compact, the Wigner projection of a Schwartz function is a compact inte-

gral of Schwartz functions and hence again a Schwartz function. The invariance property

plus the orthogonality relations of the characters yields the direct sum decomposition just

as for Rω
b in Proposition 5.4.

That for compact design group, the Zak transform commutes with the Fourier trans-

form on R3 uses the fact that K ≤ O(3).

P̂ χ
Kf(k) =

∫
R3

e−ik·x
∫
K

χ(g)f(g−1x)dµK(g)dx

=

∫
K

χ(g)

∫
R3

e−ik·xf(g−1x)dxdµK(g)

=

∫
K

χ(g)

∫
R3

e−ig
−1k·xf(x)dxdµK(g) = P χ

K f̂(k).

�
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The Zak transform carries the structure of the group G to a function space. This is

best seen by the following important proposition that shows that the Zak transform of

invariant functions is of a very special form.

For this purpose, we need to generalize the Zak transform using the generalization

of the Fourier transform on G to bounded continuous function in Definition 5.8. For

f ∈ Cb(G), we define

ZGf(x, ψ) := FGfx(ψ), for all ψ ∈ FM1(G). (6.7)

We can then show the following:

Proposition 6.4 (Zak Transform of Invariant Functions). Let G ≤ E(3) be a

closed abelian isometry group and H ≤ G a discrete closed subgroup of G. When f is an

H-invariant function, s.t. fx is compactly supported on a fundamental domain of H, then

ZGf(x, χ) = ZG/Hf(x, χ ↓GG/H)δH⊥G (χ) (6.8)

in the distributional sense.

Proof. We use the Poisson summation formula for locally compact abelian groups

(see [Fol95], Theorem 4.42, or [Rei68], Ch. 5, 5.). Choose a fundamental domain of H

and identify it with G/H. Let ψ ∈ FM1(G) and x ∈ R3. Then

ZGf(x, ψ) = FGfx(ψ) =

∫
G

fx(g)dFĜψ(g) =

∫
G

∑
h∈H

fx
∣∣
G/H

(hg)dFĜψ(g)

Poisson
=

∫
G

∫
H⊥G

FGfx
∣∣
G/H

(χ)χ(g)dµH⊥G (χ)dFĜψ(g)

=

∫
H⊥G

ZG/Hf(x, χ ↓GG/H)

∫
G

χ(g)dFĜψ(g)dµH⊥G (χ)

=

∫
H⊥G

ZG/Hf(x, χ ↓GG/H)ψ(x)dµH⊥G (χ),

where we used the Fourier inversion formula on M1(G). �

Proposition 6.4 shows that the Zak transform has the potential to induce resonance

of the unit cells of an invariant structure. Consequently, for radiation design we need

to implement the Zak transform via an integral transform. We introduce and study the

natural choice for such a transform, next.

1.2. The Scalar Wave Transform. Lemma 6.3 tells us how to decompose a Schwartz

function into invariant functions. But what we really want, is to decompose it into scalar

versions of time-harmonic radiation that are invariant. The Fourier transform is the nat-

ural representation of a function in terms of ‘scalar radiation’. For compact design groups
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K, we can make this radiation invariant using Proposition 5.4. We decompose the scalar

plane waves into its invariant components.

Let f ∈ S(R3), and eω,k0(x) := eik·x, k = ω
c
k0, the scalar plane waves. Then we can

decompose eω,k0 into its invariant components, which are the scalar symmetry-adapted

waves: eω,k0,χ := P χ
K(eω,k0) ∈ Cb(R3):

eω,k0 =
∑
χ∈K̂

eω,k0,χ.

Then, Fourier-expanding f , we get

f(x) =
1

(2π)3

∫
R3

eω,k0(x)f̂(k)dk =
1

(2π)3

∫
R3

∑
χ∈K̂

eω,k0,χ(x)f̂(k)dk. (6.9)

In view of this decomposition, we introduce the following transform that will turn out to

be the natural choice for the analysis of invariant structures.

Definition 6.5 (Scalar Wave Transform). Let G ≤ E(3) be a closed abelian isom-

etry group and f ∈ S(R3). We define the scalar wave transform WGf of f with respect

to G by

WGf(k, χ) :=

∫
R3

eω,k0,χ(x)f(x)dx, (6.10)

where eω,k0,χ := P χ
Geω,k0 is a scalar symmetry-adapted wave with wave vector k = ω

c
k0.

For compact design groups, the relation to the Zak and the Fourier transform is given

in the following lemma. We also find the inverse scalar wave transform.

Lemma 6.6 (Properties of the Scalar Wave Transform – Compact Abelian

Design Group). Let K ≤ O(3) be a compact abelian design group. The wave transform

satisfies

WKf = ZK f̂ = FZKf for f ∈ S(R3). (6.11)

In particular, the inverse wave transform W−1
K is given by

W−1
K F := F−1 ◦ Z−1

K F = Z−1
K ◦ FF, (6.12)

for functions F : R3 × K̂ → C, that lie in the image of S(R3) under WK.
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Proof. Let f ∈ S(R3), k ∈ R3 and χ ∈ K̂. Then

WKf(k, χ) =

∫
R3

eω,k0,χ(x)f(x)dx =

∫
R3

∫
K

χ(g)e−ik·g
−1xdµK(g)f(x)dx

=

∫
K

χ(g)

∫
R3

e−igk·xf(x)dxdµK(g) =

∫
K

χ(g)f̂(gk)dµK(g)

=

∫
K

χ(g−1)f̂(g−1k)dµK(g) = P χ
K f̂(k) = ZK f̂(k, χ),

where we used Fubini, the fact that K is a group of orthogonal transformations and the

inversion invariance of the Haar measure of a compact group. Now, in Lemma 6.3 we

showed that for compact groups the Fourier transform and the Zak transform commute,

showing that WK = FZK . The forms of the inverse transform follows immediately. �

For non-compact abelian design groups, the situation is a bit tricky, as we introduced

the wave transform via the symmetry-adapted waves. The ad hoc construction of those

does not allow a direct generalization of Lemma 6.6. Instead, we can show the invertibility

of the scalar wave transform by reducing it to a scalar wave transfrom for a compact design

group. We again do this only for the classes of design groups from Definition 5.14. We

start by considering two examples.

Let G = R ∼= R be a group of translations along an axis Re, e ∈ S2. Then the group

elements are given by R = {(I|τae). a ∈ R} for some τ 6= 0. The dual group R̂ of R is

given by R̂ = {χ(α). α ∈ R}, χ(α)(a) = eiαa, α, a ∈ R. Now, consider the mapping

ϕR : R3 → R̂, k 7→ χ(−τk·e).

This mapping is obviously surjective, since ϕ−1
R ({χ(α)}) = {k ∈ R3. k · e = −α/τ} is a

plane in R3 for every α ∈ R. Now, for f ∈ S(R3)

WRf(k, ϕR(k)) =

∫
R3

eω,k0,ϕ(k)(x)f(x)dx =

∫
R3

eω,k0(x)f(x)dx = f̂(k),

since eω,k0,ϕ(k) = eω,k0 when ϕR(k) = χ(−τk·e) by Proposition 5.13. So, the wave transform

WRf restricted to its support supp(WRf) ⊆ {(k, χ(α)) ∈ R3× R̂. α = −τk · e} is nothing

but the Fourier transform of f .

A similar argument works for a screw displacement group G = S ∼= R, given by

S = {(Rλa|τae). a ∈ R}, where λ, τ 6= 0, e ∈ S2. The dual group is then again given by

Ŝ = {χ(α). α ∈ R}. We consider the mapping

ϕS : [0,∞)× Z× R→ R3 × Ŝ, (ω, α, ẑ) 7→ (k(ω, ẑ), χ(λα−τ r̂)),
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where k(ω, ẑ) = (0, ẑ, r̂)T , r̂ :=
√

ω2

c2
− ẑ2. Then again by Proposition 5.13, we find that

for f ∈ S(R3)

WSf(ϕS(ω, α, ẑ)) =

∫
R3

e
(α)
ω,k0(ω,ẑ)(x)f(x)dx,

where k0(ω, ẑ) := c
ω
k(ω, ẑ). So, the scalar wave transform WS reduces to the twisted

wave transform treated in Chapter 4.

This relation to the cases of plane and twisted waves can be generalized to our classes

of design groups as follows.

Lemma 6.7 (The Scalar Wave Transform for Abelian Design Groups). Let

G ≤ E(3) be a closed abelian isometry group.

(1) When G = K × T , where K is compact and T :=
∏n

j=1Rj ×
∏m

k=1 Zk is a

translation group with Rj
∼= R, j = 1, . . . , n, and ZK ∼= Z, k = 1, . . . ,m, then

there is a function ϕT : R3 → T̂ , s.t. for f ∈ S(R3)

WGf(k, (χK , ϕT (k))) =WKf(k, χK).

(2) When G = K × S where K is compact and S ∼= R or S ∼= Z is a screw displace-

ment group, then there is a function ϕS : R3 × Z→ Ŝ, s.t.

WGf(k, (χK , ϕS(k, α))) =WK×Tf(k, χK · χ(α)
T ).

Proof. In case (1), we consider the mapping

ϕT : R3 → T̂ , k 7→ (−τ1k · e1, . . . ,−τnk · en, τ̃1k · ẽ1, . . . ,−τ̃mk · ẽm),

where Rj = {(I|τjaej). a ∈ R}, τj 6= 0, ej ∈ S2, j = 1, . . . , n, and Zk = {(I|τ̃kjẽk). j ∈ Z},
τ̃k 6= 0, ẽk ∈ S2, k = 1, . . . ,m.

Then for S(R3), we get

WTf(k, ϕT (k)) = f̂(k)

using Proposition 5.13. Now, when (χK , χT ) ∈ Ĝ = K̂ × T̂ , then

WGf(k, (χK , χT )) =

∫
R3

P χK
K eω,k0,χT (x)f(x)dx

=

∫
R3

∫
K

χK(g)geω,k0,χT (x)dµK(g)f(x)dx.

Thus, when χT = ϕT (k), then

WGf(k, (χK , ϕT (k))) =

∫
R3

∫
K

χK(g)e−ik·g
−1xdµK(g)f(x)dx

=

∫
R3

eω,k0,χK (x)f(x)dx =WKf(k, χK).
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In case (2), we consider the case S ∼= Z, because part of the case S ∼= R was already

treated above. Let S = {(Rλj|τje). j ∈ Z}, λ, τ 6= 0, e ∈ S2. Then consider the mapping

ϕS : R3 × Z→ Ŝ, (k, α) 7→ χ(β),

where β := λα − τk · e mod 2π. Then by Proposition 5.13, we get that the scalar wave

transform is given by WSf(ϕS(α, ẑ)) =
∫
R3 e

(α)
ω,k0

(x)f(x)dx just as in the case S ∼= R.

Now, e
(α)
ω,k0

= P
(α)
T eω,k0 , where T acts via ϕ̂ 7→ Rϕ̂. Thus, for χK ∈ K̂ and f ∈ S(R3)

WGf(k, (χK , ϕS(k, α))) =

∫
R3

P χK
K e

(α)
ω,k0

(x)f(x)dx

=

∫
R3

P χK
K P

(α)
T eω,k0(x)f(x)dx =WK×Tf(k, χK · χ(α)

T ).

�

Thus, the treatment of the scalar wave transform for the considered classes reduces

to the compact case. The construction can, of course, be also applied to different non-

compact design groups. When the group is the product of a compact group K and a glide

reflection group, for example, the corresponding compact group the scalar wave transform

reduces to will be of the form K × Z2, where Z2 acts by reflection.

As a corollary of Lemma 6.7, we immediately get the inverse transform for the non-

compact cases considered there by using Lemma 6.6.

1.3. Generalized Translation Operators. Before we address the wave transform

of invariant functions, we shortly discuss a different topic. Since we found that the plane

waves and the twisted waves are the solutions to the design equations for the corresponding

design groups, we ask ourselves, if we can motivate the symmetry-adapted waves in a

similar way. For compact design groups, this is possible.

As elements of the invariant spaces P χ
KS(R3), the symmetry-adapted scalar plane

waves eω,k0,χ are simultaneous eigenfunctions of the group action. In fact they can be

seen to be a complete set of simultaneous eigenfunctions of operators that are very natural

in this context – the so-called generalized translation operators TKy , y ∈ R3. They are

defined as follows:

TKy f(x) :=

∫
K

f(x− g−1y)dµK(g) for f ∈ Cb(R3), x ∈ R3. (6.13)

We can proof the following:

Proposition 6.8 (Generalized Translation Operators). The generalized trans-

lation operators TKy , y ∈ R3 map bounded continuous functions to bounded continuous

functions.
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Moreover, when f ∈ Cχ
b (R3) := P χ

KCb(R3), χ ∈ K̂, then

TKy f = P χ
Kf(· − y). (6.14)

In particular, TKy C
χ
b (R3) ⊂ Cχ

b (R3).

The symmetry-adapted waves eω,k0,χ ∈ Cχ
b (R3), ω > 0, k0 ∈ S2, are simultaneous

eigenfunctions of the generalized translation operators. In particular,

TKy eω,k0,χ = eω,k0,1(y)eω,k0,χ for all y ∈ R3. (6.15)

Proof. The generalized translation of a Cb-function is an integral of Cb-functions over

a compact set and hence again bounded and continuous.

When f ∈ Cχ
b (R3) for some χ ∈ K̂, then for all x,y ∈ R3:

TKy f(x) =

∫
K

f(x− g−1y)dµK(g) =

∫
K

f(g−1(gx− y))dµK(g)

=

∫
K

χ(g)f(gx− y)dµK(g) =

∫
K

χ(g)f(g−1x− y)dµK(g)

= (P χ
Kf(· − y))(x),

where we used the eigenfunction property of f and the inversion-invariance of the Haar

measure.

Hence, TKy = P χ
Kf(· − y) ∈ Cχ

b (R3), showing that Cχ
b (R3) is closed under generalized

translations.

Now, let eω,k0,χ be a symmetry-adapted wave, then

TKy eω,k0,χ(x) =

∫
K

eω,k0,χ(x− g−1y)dµK(g)

=

∫
K

∫
K

χ(h)eik·h
−1(x−g−1y)dµK(h)dµK(g)

=

∫
K

∫
K

eik·(gh)−1ydµK(g)χ(h)eik·h
−1xdµK(h)

=

∫
K

eik·g
′−1ydµK(g′)

∫
K

χ(h)eik·h
−1xdµK(h)

= eω,k0,1(y)eω,k0,χ(x),

where we used Fubini, and the translation invariance of the Haar measure. �

So, for the compact case, we can formulate design equations for the symmetry-adapted

waves. For non-compact groups, the generalized translation operators can not be defined

as above, because, again, the integrals would diverge. It might be possible to define these

operators via the constructions we used above to generalize the Zak transform, but we
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will not follow this idea here. Instead, we shortly remark on a special structure that is

related to generalized translation operators.

Remark 6.9 (Orbit Hypergroups).

The space of K-invariant L1-functions L1,1
K (R3) := P 1

KL
1(R3) has a special structure. The

invariant functions are determined by their values on the orbits of the group K.

Let K := {Kx. x ∈ R3}, then the space L1,1
K (R3) is isometrically isomorphic to

the space L1(K, dµK) where µK is the projection of the Lebesgue measure to K, i.e.∫
K f(Kx)dµK(Kx) =

∫
R3 f(x)dx.

Defining the convolution f ∗K g of two functions f, g ∈ L1(K, dµK) by

f ∗K g(x) :=

∫
K
TKy f(x)g(y)dµK(y) for x,y ∈ K,

and extending it to the space M1(K) of finite measures on K, we can identify the points

of K with the corresponding Dirac deltas and define the convolution on K by

x ∗K y := δx ∗K δy.

With the involution ˜ : K → K, x 7→ x̃ := −x, the triple (K, ∗K ,˜) is a so-called

hypergroup. This special kind of a hypergroup is known as an orbit hypergroup and can

more generally be defined for the action of a compact automorphism group on a locally

compact group (see [Jew75, Rau05]).

Proposition 6.8 shows, that the symmetry-adapted waves eω,k0,1 satisfy the functional

equation

TKy eω,k0,1(x) = eω,k0,1(y) · eω,k0,1(x), x,y ∈ R3.

They also satisfy eω,k0,1(x̃) = eω,k0,1(x), showing that they are (hermitian) characters

of the hypergroup, i.e. bounded continuous hypergroup homomorphisms from K to C∗.
The calculation can be generalized to a compact automorphism group acting on a lo-

cally compact abelian group, giving a natural method to identify hypergroup characters as

symmetry-adapted characters.

The decomposition of a K-invariant function into symmetry-adapted waves is the

Fourier decomposition with respect to this hypergroup, while the wave transform restricted

to the K-invariant functions is the hypergroup Fourier transform.

See [BH94] and the forthcoming monograph [Las] for more information on hypergroups.

1.4. Scalar Wave Transform of Invariant Functions. To show the potential of

symmetry-adapted waves for the analysis of objective structures, we consider a function

f to be invariant with respect to a discrete closed subgroup H of the abelian design group

G. Using Proposition 6.4, we show that the wave transform of f is supported on the
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orthogonal group of H analog to the Fourier transform of a function that is invariant with

respect to a Bravais lattice that is supported on the reciprocal lattice.

For this purpose, we have to generalize the scalar wave transform to bounded contin-

uous functions. Having defined the Zak transform for bounded continuous functions in

(6.7), we can define the analog of the symmetry-adapted waves as eω,k0,ψ := ZGeω,k0(·, ψ),

where ψ ∈ FM1(G).

The corresponding wave transform on S(R3) looks as follows:

Definition 6.10 (Distributional Scalar Wave Transform). Let G ≤ E(3) be a

closed abelian isometry group and f ∈ S(R3). We define the distributional scalar wave

transform WGf of f with repsect to G by

WGf(k, ψ) :=

∫
R3

eω,k0,ψ(x)f(x)dx, k ∈ R3, ψ ∈ FM1(R3), (6.16)

where eω,k0,ψ := ZGeω,k0(·, ψ), and eω,k0(x) := eik·x, x ∈ R3, k = ω
c
k0.

We will drop the ‘distributional’ and just call this transform the wave transform,

because it is clear from the context which transform we talk about.

As in the compact case, this transform is closely related to the Zak transform.

Lemma 6.11 (Properties of the Scalar Wave Transform). Let G ≤ E(3) be a

closed abelian isometry group. For k ∈ R3 and ψ ∈ FM1(G), the scalar wave transform

satisfies:

WGf(k, ψ) = FZGf(k, ψ) for f ∈ S(R3). (6.17)

In particular, the inverse wave transform W−1
G is given by

W−1
G F := Z−1

G ◦ F
−1F (·, ·) (6.18)

for functions F : R3 × Ĝ→ C, that lie in the image of S(R3) under WG.

Proof. Let f ∈ S(R3), k ∈ R3 and ψ ∈ FM1(R3). Then

WGf(k, ψ) =

∫
R3

eω,k0,ψ(x)f(x)dx =

∫
R3

P χ
Geω,k0(x)f(x)dx

=

∫
R3

∫
G

e−ik·g
−1xdFĜψ(g)f(x)dx =

∫
R3

∫
G

e−ik·g
−1xdFĜψ(g−1)f(x)dx

=

∫
R3

∫
G

e−ik·gxdFĜψ(g)f(x)dx =

∫
G

∫
R3

e−ik·gxf(x)dxdFĜψ(g)

=

∫
G

∫
R3

e−ik·xf(g−1x)dxdFĜψ(g) =

∫
R3

e−ik·x
∫
G

f(g−1x)dFĜψ(g)

= FZGf(k, ψ),
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where we used the generalization of the rule FGf(g) = FGf(g−1) to measures, the invari-

ance of the Lebesgue measure with repsect to isometries and Fubini twice.

The formula for the inverse transform follows immediately. �

In a final step, we can generalize the scalar wave transform to bounded continuous

functions. Note that for f ∈ Cb(R3) and ψ ∈ FM1(G), the function x 7→ ZGf(x, ψ) is

again bounded and continuous. So, we can define

WGf := FZKf(·, ψ) (6.19)

in a distributional sense.

With this definition, we can study the scalar wave transform of invariant functions.

Proposition 6.12 (Scalar Wave Transform of Invariant Functions).

Let G ≤ E(3) be a a closed compact abelian isometry group and H a discrete closed

subgroup of G. The scalar wave transform of an H-invariant function f , s.t. fx is

compactly supported on a fundamental domain of H, is given by

WGf(k, χ) =WG/Hf(k, χ ↓GG/H)δH⊥G (χ), (6.20)

for all k ∈ R3, χ ∈ Ĝ.

Proof. Let f ∈ Cb(R3) be an H-invariant function, s.t. fx is compactly supported on

a fundamental domain of H. Then for k ∈ R3 and ψ ∈ FM1(G), using Proposition 6.4,

WGf(k, ψ) = FZGf(k, ψ) = FZG/Hf(k, ψ
∣∣
G/H

)δH⊥G (ψ) =WG/Hf(k, ψ
∣∣
G/H

)δH⊥G (ψ).

�

So, the scalar wave transform is the integral transform that implements the Zak trans-

from we were looking for.

As a corollary, we get the following. The subgroup H can be recovered from the scalar

wave transform.

Corollary 6.13 (Reconstruction of Symmetry). Let G ≤ E(3) be a closed abelian

isometry group and f invariant with respect to a discrete closed subgroup H of G, s.t. f is

not invariant with respect to any group H ′ that lies in between G and H, i.e. G ≤ H ′ < H.

Then H can be reconstructed from WGf as follows:

H = {g ∈ G. χ(g) = 1 for all χ ∈ supp(WGf)}. (6.21)

Proof. Identifying the double dual
̂̂
G with G itself by Pontryagin duality (see [Fol95],

Theorem 4.31), and noting that supp(WGf) = H⊥G by Proposition 6.12, we find that

{g ∈ G. χ(g) = 1 for all χ ∈ supp(WGf)} = (H⊥G )⊥
Ĝ
.
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Now, the orthogonal group of the orthogonal group (as subgroup of G) is the original

group itself – (H⊥G )⊥
Ĝ

= H – when H is closed (see [Fol95], Proposition 4.38, p. 104). �

Proposition 6.12 and Corollary 6.13 formulate a kind of scalar generalized von Laue

condition – or better – a Poisson summation formula for group actions. From the scalar

wave transform of an invariant function, the symmetry can be reconstructed from the

support.

In the following section, we lift the scalar theory we developed to the vector-valued

case and relate it to the radiation transform to formulate a generalized von Laue condition.

2. The Generalized von Laue Condition

Finally, we will gather all our results to derive the generalized von Laue condition. We

introduce the vector-valued wave transform and relate it to both the scalar wave transform

and the radiation transform, showing that it is the link between the decomposition of the

charge density and the outgoing field of the diffraction experiment.

Let G ≤ E(3) be a closed abelian isometry group. We work in the distributional

setting. For this purpose, we introduce

Eω,k0,ψ(x) := FGEx(ψ), for ψ ∈ FM1(G), (6.22)

where Ex(g) := (gEk)(x). Then we define the wave transform as follows.

Definition 6.14 (Wave Transform). Let G ≤ E(3) be a closed abelian isometry

group. The wave transform WGf of a function f ∈ S(R3) is defined as

WGf(k, ψ) :=

∫
R3

Eω,k0,ψ(x)f(x)dx for k ∈ R3, χ ∈ Ĝ, for k ∈ R3, ψ ∈ FM1(G),

(6.23)

where {Eω,k0}(ω,k0)∈[0,∞)×S2 is a family of plane waves, i.e. Eω,k0(x) = n(k)eik·x for some

n(k) ∈ k⊥, where k := ω
c
k0, and all x ∈ R3.

An immediate question is, whether this vector-valued wave transform is invertible. The

answer is affirmative, as its values determine the corresponding scalar wave transform. In

the following proofs, we will wirte the group Fourier transform FG as an integral, always

keeping in mind that the distributional Fourier transform on FM1(G) is meant.

Lemma 6.15 (Invertibility of the Wave Transform). Let G ≤ E(3) be a closed

compact abelian isometry group and {Eω,k0}(ω,k0)∈[0,∞)×S2 a family of plane waves given

by Eω,k0(x) = n(k)eik·x, n(k) 6= 0. The associated wave transform WGf of a function

f ∈ S(R3) is related to the scalar wave transform WGf as follows. There is a unitary
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matrix U ∈ U(3), s.t. when setting

v(k, χ) := U−1WGf(k, χ), and ñ(k) := U−1n(k),

for k ∈ R3 and χ ∈ Ĝ, we have

vj(k, χ) =WGf(k, χ · χj)ñj(k) (6.24)

for some χj ∈ K̂, j = 1, 2, 3, and all k ∈ R3, χ ∈ Ĝ.

In particular, the wave transform WG is invertible.

Proof. We write the symmetry adapted plane waves as integrals, keeping in mind

that we mean the distributional Fourier transform. For k ∈ R3 and χ ∈ K̂:

WGf(k, χ) =

∫
R3

Eω,k0,χ(x)f(x)dx =

∫
R

∫
G

χ(Q)Qn(k)e−ik·Q
−1xdµG(Q)f(x)dx

= U

∫
R3

∫
G

χ(Q)diag(χ1(Q), χ2(Q), χ3(Q))e−ik·Q
−1xdµG(Q)f(x)dxU−1n(k),

where U ∈ U(3) is a unitary matrix that simultaneously diagonalizes the matrices Q in

G and χj ∈ Ĝ, j = 1, 2, 3, are the characters of G with

Q = Udiag(χ1(Q), χ2(Q), χ3(Q))U−1.

The integral is matrix-valued with diagonal-entries Tjj, j = 1, 2, 3 given by

Tjj =

∫
R3

∫
G

χ(Q)χj(Q)e−ik·Q
−1xdµG(Q)f(x)dx

=

∫
R3

∫
G

(χ · χj)(Q)e−ik·Q
−1xdµG(Q)f(x)dx =WGf(k, χ · χj).

In particular,

vj(k, χ) = (U−1WGf)j(k, χ) = Tjjñj(k) =WGf(k, χ · χj)ñj(k).

Since n(k) 6= 0 for all k ∈ R3 and U is unitary, we get ñ(k) 6= 0. Consequently, for

every k ∈ R3 there is a j ∈ {1, 2, 3} s.t. ñj(k) 6= 0. Thus, all values of the scalar wave

transform are accessible, and it can be inverted by the inverse scalar wave transform given

in Lemma 6.11. �

The character χj, j = 1, 2, 3, appearing in Lemma 6.15 are the irreducible components

of the representation of the isogonal point group of G on R3 that acts on the field vector. In

the case of twisted waves, these components lead to the double peak pattern in parameter

space by translation in Fourier space (see Figure 4.4). The same happens in the general

case. We proof the vector analog of Proposition 6.12 concerning the wave transform of

functions that are H-invariant.



2. THE GENERALIZED VON LAUE CONDITION 149

Corollary 6.16 (Wave Transform of Invariant Functions). Let G ≤ E(3) be a

compact abelian closed isometry group and H a discrete closed subgroup of G. The wave

transform of an H-invariant function f is given by

WGf(k, χ) = U
(
WG/Hf(k, (χ · χj) ↓GG/H)δH⊥Gχ

−1
j

(χ)ñj(k)
)
j=1,2,3

, (6.25)

where ñ(k) := U−1n(k) and n(k) is the complex amplitude of the symmetry-adapted wave

with wave vector k, U ∈ U(3), and χj, j = 1, 2, 3 are the irreducible components of the

representation of the isogonal point group on R3.

Proof. By Lemma 6.15, we know that for j = 1, 2, 3,

(U−1WGf(k, χ))j =WGf(k, χ · χj)ñj(k).

Now, Proposition 6.12 says that WGf(k, χ · χj) = WG/Hf(k, (χ · χj) ↓GG/H)δH⊥G (χ · χj).
Since δH⊥G (χ · χj) = δH⊥Gχ

−1
j

(χ), we get the desired result. �

This lemma has an immediate consequence for the radiation transform associated to a

family of symmetry-adapted waves with respect to a compact abelian design group. This

is seen from the relationship between the radiation transform with respect to symmetry-

adapted waves and the wave transform. When ρel ∈ S(R3) is the charge density of a

molecular structure, then

R[Eω,k0,ψ]ρel(s0) = WG

(
ei
ω
c
s0·ρel

)
(k, ψ), (6.26)

for s0 ∈ S2, k ∈ R3, and ψ ∈ FM1(G).

We can use the last corollary to formulate the main theorem – the generalized von

Laue Condition.

Theorem 6.17 (Generalized von Laue Condition). Let G ≤ E(3) be a compact

abelian closed isometry group, H a discrete closed subgroup of G, and {Eω,k0,χ}(ω,k0,χ)∈P

a family of symmetry-adapted waves with respect to G with the full radiation parameter

set P = [0,∞)× S2 × Ĝ.

When there is an s0 ∈ S2 that is IsoH-invariant, then

R[Eω,k0,χ]ρel(s0) = U
(
WG/H(e−i

ω
c
s0·ρel)(k, (χ · χj) ↓GG/H)δH⊥Gχ

−1
j

(χ)ñj(k)
)
j=1,2,3

, (6.27)

where ñ(k) := U−1n(k) and n(k) is the complex amplitude of the symmetry-adapted wave

with wave vector k and U ∈ U(3), and χj, j = 1, 2, 3 are the irreducible components of

the representation of the isogonal point group on R3.

In particular, the data set{∣∣P(s⊥0 )R[Eω,k0,χ]ρel(s0)
∣∣2}

(ω,k0,χ)∈P
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is supported on a subset of [0,∞)× S2 ×
⋃3
j=1H

⊥
Gχ
−1
j ⊂ P.

When s0 is IsoG-invariant, the reconstruction problem reduces to a scalar phase prob-

lem. In particular, the data makes the following values accessible:{∣∣∣WG/Hρel

(ω
c

(k0 + s0), χ
)∣∣∣2} , (ω,k0, χ) ∈ [0,∞)× S2 × Ĝ/H.

When ρel is real, the values for negative first argument, i.e.
∣∣WG/Hρel

(
−ω

c
(k0 + s0), χ

)∣∣2
are also accessible.

Proof. Equation (6.27) is a direct consequence of Corollary 6.16 and the IsoH-invariance

of s0. The restricted support of the data set follows immediately.

Since the dual group of G/H is the orthogonal group H⊥G restricted to G/H (see

[Rei68], Ch. 4, 2.8, (i)), we have access to the values∣∣WG/H(e−i
ω
c
s0·ρel) (k, χ)

∣∣2
for k ∈ R3 and χ ∈ H⊥G

∣∣
G/H

= Ĝ/H. Now, for k ∈ R3 and χ ∈ Ĝ/H,

WG/H(e−i
ω
c
s0·ρel)(k, χ) =

∫
R3

∫
G/H

χ(g)e−ik·g
−1xdµG/H(g)e−i

ω
c
s0·xρel(x)dx

=

∫
G/H

χ(g)

∫
R3

e−ik·g
−1xe−i

ω
c
s0·xρel(x)dxdµG/H(g)

=

∫
G/H

χ(g)

∫
R3

e−i((gk+ω
c
s0)·xρel(x)dxdµG/H(g)

=

∫
G/H

χ(g)

∫
R3

e−i
ω
c

(k0+s0)·g−1xρel(x)dxdµG/H(g)

=

∫
R3

∫
G/H

χ(g)e−i
ω
c

(k0+s0)·g−1xdµG/H(g)ρel(x)dx

=WG/Hρel

(ω
c

(k0 + s0), χ
)
,

using the G-invariance of s0.

When ρel is real, the accessibility of the values for negative first argument follows from

the identity

WG/Hρel(−k, χ) =WG/Hρel(k, χ)

and the closedness of Ĝ/H with respect to conjugation. �

So, for the related diffraction experiment, this means that constructive interference in

axis direction occurs if and only if the character, the radiation is adapted to, lies in the

orthogonal group of its symmetry group.
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Let’s have a second look at twisted waves and nanotube structures. In Theorem

4.6, we reduced the reconstruction problem to a phase problem for a function we called

WCe/HCϕC. This was a slight abuse of notation, because the arguments of this function

were the radiation parameters (ω, α, ẑ + ω
c
) instead of the corresponding wave vector and

character. Introducing the mapping κ : [0,∞)× Z× R→ R3 × Ĉe by

κ(ω, α, ẑ) := (k(ω, ẑ), χ(α,ẑ)), (6.28)

we find that

κ
(
ω, α, ẑ +

ω

c

)
=
(
k
(
ω, ẑ +

ω

c

)
, χ(α,ẑ+ω

c
)
)

=
(ω
c

(k0(ω, ẑ) + e) , χ(α,ẑ+ω
c

)
)
,

showing that Corollary 4.6 is an instance of Theorem 6.17.

In the classic case of X-ray crystallography, the scalar wave transform reduces to the

Fourier transform. In Theorem 1.3, we saw that the accessible data is
∣∣ρ̂el

(
ω
c
(s0 − k0)

)∣∣.
The different sign of k0 results from our definition of the wave transform via the conjugated

symmetry-adapted waves. In the classic case, we started with a plane wave Ek instead of

Ek = E−k.

3. Phase Retrieval

We shortly consider generalizations of the phase retrieval algorithms introduced in

Chapter 2. To use Theorem 6.17, we consider an abelian design group G, such that there

is a vector s0 ∈ S2 with gs0 = s0 for all g ∈ IsoG, and a charge density ρel ∈ S≥0(R3)

that is invariant with respect to a discrete closed subgroup H of G. Furthermore, assume

that we know the intensity of the outgoing radiation in s0-direction that results from the

scattering of symmetry-adapted waves on the whole parameter space [0,∞)× S2 × Ĝ.

In the case of twisted waves (see Chapter 4), we found an explicit version of scalar the

wave transform what made it easy to formulate phase retrieval algorithms. In the general

case, we make the following observation.

The scalar wave transform is the Fourier transform of the Zak transform according

to Lemma 6.11, and the Zak transform itself is a group Fourier transform. So, given a

function ρel ∈ S(R3), and an abelian design group G ≤ E(3), we define the function

ρG : R3 ×G→ C, (x, g) 7→ (gρel)(x) = ρel(g
−1x). (6.29)

Then the scalar wave transform of ρel can be written as

WGf(k, χ) = FR3×GρG(k, χ), (6.30)

where χ ∈ Ĝ and the character ek of R3 is identified with its wave vector k.
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So, the scalar wave and inverse scalar wave transform can be implemented as a Fourier

transform on the group R3 ×G, using the FFT algorithm.

There is one problem with this approach. The functions on R3×G are a much bigger

class then the functions f on R3 ×G that satisfy f(h−1x, g) = f(x, hg) for h ∈ G. These

functions are determined by its values on the set R3/G×G, because f(gx, eG) = f(x, g)

for all g ∈ G, x ∈ R3, where eG is the neutral element of G. Of course, they are also

determined by the values for (x, g) ∈ R3 × {eG}.
From Theorem 6.17, we know that the outgoing intensity in s0 direction is supported on

a superposition of two translated versions of H⊥G . Using Corollary 6.13, we can determine

H from this pattern. Then, we know that ρG is determined by its values at the points

(x, g) ∈ R3/H × {eG}, or equivalently for (x, g) ∈ R3/G × G/H. In the case of twisted

waves, i.e. for G = Ce, the set R3/Ce is parametrized by the radial variable r ∈ [0,∞),

while Ce/H is the unit cell on a cylindrical surface.

So, by restricting the reconstruction to R3/G × G/H or equivalently, by imposing

the corresponding symmetries, we can formulate generalization of the phase retrieval

algorithms of Chapter 2.

Define the space of functions on R3/G × G/H that are Schwartz functions when

extended to R3 by

S(R3/G×G/H) :=

{
ϕ : R3/G×G/H → C.

(
g−1x 7→

∑
h∈H

ϕ(x, hg)

)
∈ S(R3)

}
.

Again, we consider the following subsets of S(R3/G×G/H):

S≥0(R3/G×G/H) := {ϕ ∈ S(R3/G×G/H). ϕ ≥ 0},

SA(R3/G×G/H) := {ϕ ∈ S(R3/G×G/H). |WG/Hϕ| = A},

whereWG/Hϕ is defined as the application ofWG/H to the function on R3 that corresponds

to ϕ, and A is the given data.

The projections to formulate the algorithms are

p≥0 : S(R3/G×G/H)→ S≥0(R3/G×G/H), ϕ 7→ ϕ · 1{ϕ≥0},

pA : S(R3/G×G/H)→ SA(R3/G×G/H), ϕ 7→ W−1
G/H(A(eiζϕ1{ϕ 6=0} + 1{ϕ=0})),

where ζϕ is the phase function of WG/Hϕ. The corresponding difference map algorithms

would be

ϕn+1 := ϕn − p≥0ϕn + pA(2p≥0 − id)ϕn, n ∈ N., (DMG/H)

where ϕ0 is chosen with an arbitrary initial phase function ζ0, i.e. ϕ0 :=W−1
G/H(Aeiζ0).



CHAPTER 7

Radiation Design for Compact Design Groups

Having identified the abelian design groups that lead to a generalized von Laue con-

dition (Theorem 6.17), we consider the non-abelian case, next. Since a Fourier tranform

analog is only available for compact groups K, we restrict ourselves to this case.

First, we give a short summary of harmonic analysis on compact groups to introduce

the central objects and notations. We then need to generalize the design equations to

the non-abelian case. Eigenvalues of the action are one-dimensional unitary irreducible

representations of K and thus carry only information about the center of K. The right

non-abelian analog of being an eigenfunction is belonging to an irreducible K-invariant

subspace of the radiation space. These functions transform via irreducible representations

of K under the group action, and these representations define the Fourier transform on

K.

The transforms introduced in Chapter 6 can be generalized to the compact case in two

different ways. The characters of the irreducible representations of the group are a basis

for the space of class functions on K, while the matrix coefficients span the whole L2(K).

Both viewpoints lead to a decomposition of functions on R3 via the action of the group.

We introduce the Zak and wave transform related to the character decomposition and

call the matrix coefficient versions the refined Zak transform and refined wave transform,

respectively.

For simplicity, the special case of finite groups is treated in detail. An analog to

the Poisson summation formula is available – the so-called Frobenius reciprocity theorem

(which can also be generalized to general compact groups, see [Fol95], Theorem 6.10). We

can identify a generalization of the orthogonal group and generalize the theory for the

scalar wave transform.

For the vector-valued case things are more complicated. The action on the field vector

does not simply lead to multiple translated versions of the orthogonal structure as in

the abelian case. Instead, the resonances mix in a way that doesn’t allow to reconstruct

the symmetries. Consequently, a generalized von Laue condition cannot be formulated.

However, we can give a result on the support of the wave transform that could be useful

for some special compact design groups.

153
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1. The Design Equations – Characters and Matrix Coefficients

The design equations introduced in Chapter 3, are intrinsically abelian. In particular,

when a bounded continuous function f ∈ Cb(R3) is a simultaneous eigenfunction of an

action of a group G, it satisfies

(gh)f = χ(g)(hf) = χ(g)χ(h)f = χ(h)χ(g)f = χ(h)(gf) = (hg)f,

where g, h ∈ G and χ : G→ C is the eigenvalue considered as a function on G. So, even

though the group is non-abelian, the action on a simultaneous eigenfunction is abelian

in the sense that (gh)f = (hg)f , g, h ∈ G. The reason is that the function χ is scalar

and thus maps the group to an abelian structure. Consequently, it cannot capture the

non-abelian features of the group G.

The right framework for harmonic analysis on non-abelian groups is representation

theory. We will restrict ourselves to compact groups, i.e. in our case subgroups K of the

orthogonal group O(3), as in this case the Peter-Weyl theorem provides us with a Fourier

theory for these groups (see e.g. [Fol95] Ch. 5, or [SD80], Ch. IV).

We give a short summary of harmonic analysis on compact groups.

1.1. Harmonic Analysis on Compact Groups. To generalize the design equa-

tions to non-abelian compact groups, we reverse the argument of Lemma 3.16 and start

from the non-abelian analog of the characters of an abelian group – the unitary irreducible

representations. It can be shown (e.g. [Fol95], Theorem 5.2) that all irreducible represen-

tations of a compact group K are finite dimensional. The set of equivalence classes of

unitary irreducible representations of K is called the dual of K and is denoted by K̂ like

the dual group of an abelian group:

K̂ := {[σ]. σ unitary irreducible representation of K}, (7.1)

where [σ] denotes the unitary equivalence class of σ. Unlike for abelian groups, the dual

of a non-abelian group is itself not a group. However, it still carries a lot of information

on K.

Given an element σ ∈ K̂ (we will use this as short notation for ‘a representative of an

element of the dual’), σ : K → Hσ, where Hσ a Hilbert space of dimension dσ ∈ N, we

define two important related objects. The character χσ of the representation σ is defined

as the mapping

χσ(g) := tr(σ(g)), g ∈ K, (7.2)

while the matrix coefficients σj,k, j, k = 1, . . . , dσ, of σ are given by

σj,k(g) := 〈σ(g)hk,hj〉Hσ , (7.3)
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where {h1, . . . ,hdσ} is a basis of Hσ and 〈·, ·〉Hσ denotes the scalar product on Hσ.

With the scalar product on L2(K)

〈f1, f2〉L2(K) :=

∫
K

f1(g)f2(g)dµK(g)

for f1, f2 ∈ L2(K), the characters as well as the normalized matrix coefficients obey

orthogonality relations. When σ, σ′ ∈ K̂ are representations of dimensions d and d′,

respectively, then

〈χσ, χσ′〉L2(K) = δσ,σ′ , (7.4)

〈
√
dσj,k,

√
d′σ′j′,k′〉L2(K) = δσ,σ′δj,j′δk,k′ , (7.5)

for j, k = 1, . . . , d and j′, k′ = 1, . . . , d′.

The set of normalized matrix coefficients of all elements of K̂ is an orthonormal basis

of the space L2(K) with the corresponding Fourier transform FK on L2(K) given by

FKf(σj,k) :=

∫
K

σj,k(g)f(g)dµK(g), j, k = 1, . . . , dσ. (7.6)

Note, that in this Formula, the Fourier transform depends on the choice of the basis

as we defined it via the matrix coefficients. The basis independent definition of the

Fourier transform is the family of operators {FKf(σ)}σ∈K̂ . Our formulation is then the

representation of FKf in our basis, i.e. FKf(σ)j,k = FKf(σ)j,k.

Given a family of operators {F (σ)}σ∈K̂ in the image of FK , we define its inverse

Fourier transform F−1
K F by

F−1
K :=

∑
σ∈K̂

dσtr(σ(g)∗F (g)).

This sum converges in the L2-sense.

We can also introduce a Fourier transform on the subspace of L2(K) consisting of all

functions that are constant on conjugacy classes

L2
class(K) := {f ∈ L2(K). f(h−1gh) = f(g) for all g, h ∈ K}.

These functions are called class functions (or central functions). The characters χσ, σ ∈ K̂,

are not only class functions, they form an orthonormal basis of L2
class(K). The correspond-

ing decomposition of a class function f ∈ L2
class(K) is its Fourier transform FK,class that

is given by

FK,classf(σ) :=

∫
K

χσ(g)f(g)dµK(g)
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with the corresponding inverse transform

F−1
K,classF (σ) :=

∑
σ∈K̂

χσ(g)F (σ)

for functions F : K̂ → C that lie in the image of FK,class.

Remark 7.1 (Class Hypergroup and Character Hypergroup). As already

noted, the dual K̂ of a non-abelian compact group is not a group itself. However, the set

of characters of a finite group has the algebraic structure of a hypergroup (see [Wil97]).

First, consider the conjugacy classes of K as elements of the group algebra CK. When

Cj ⊂ K, j = 1, . . . , n are the conjugacy classes of K, i.e. Cj = {h−1gjh. h ∈ K} for

some gj ∈ G, j = 1, . . . , n, then we define

cj :=
1

|Cj|
∑
g∈Cj

g ∈ CK, j = 1, . . . , n.

The set K := {c1, . . . , cn} is a hypergroup – the so-called class hypergroup of K. The

convolution operation of the hypergroup is given by the product of conjugacy classes

cj ∗ ck := cjck =
n∑
`=1

aj,k(`)c`, j, k = 1, . . . , n,

for some coefficients aj,k(`) ∈ N, while the involution is given by c̃j := 1
|Cj |
∑

g∈Cj g
−1.

Now, the characters χσ, σ ∈ K̂ can be identified with functions on K by setting

χσ(cj) := χσ(gj) for some gj ∈ Cj. This definition is independent of the choice of the

element gj as characters are constant on conjugacy classes. It can now be shown that the

set K̂ := {Xσ := χσ/dσ. σ ∈ K̂} of normalized characters satisfies

Xσ(cj)Xσ(ck) =
n∑
`=1

aj,k(`)Xσ(c`),

showing that they are hypergroup characters. The normalized characters form themselves

a hypergroup with a convolution that is again given by the expansion of the product:

Xj ∗Xk := XjXk =
n∑
`=1

bj,k(`)X`,

and involution X̃j := Xj. This hypergroup can be shown to be the dual hypergroup of the

class hypergroup.

1.2. Wigner Projections and the Design Equations. Both structures intro-

duced in the last subsection can be utilized for decomposition of functions. Consider

a bounded continuous function f ∈ Cb(R3) and the natural action (gf)(x) = f(g−1x),
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g ∈K , x ∈ R3. We define the Wigner projection operators (compare [Wig31])

P χσ
K f(x) :=

∫
K

χσ(g)(gf)(x)dµK(g), (7.7)

P σ,j,k
K f(x) :=

∫
K

σj,k(g)(gf)(x)dµK(g). (7.8)

We write P σ,j
K := P σ,j,j

K to simplify notation. We also introduce the matrix valued projec-

tion P σ
K by

P σ
Kf(x) :=

∫
K

σ(g)∗(gf)(x)dµK(g). (7.9)

This will simplify notation later.

For finite groups, a function f ∈ Cb(R3) can be reconstructed from its projections by

f =
1

|K|
∑
σ∈K̂

P χσ
K f =

1

|K|
∑
σ∈K̂

dσ∑
j=1

P σ,j
K f. (7.10)

Usig the column orthogonality relations
∑

σ∈K̂ χσ(g) = |K|δg,eK where eK is the neutral

element of K, we can see this as follows:

1

|K|
∑
σ∈K̂

dσ∑
j=1

P σ,j
K f(x) =

1

|K|
∑
σ∈K̂

dσ∑
j=1

∫
K

σj,j(g)(gf)(x)dµK(g)

=
1

|K|
∑
σ∈K̂

∫
K

(
dσ∑
j=1

σj,j(g)

)
︸ ︷︷ ︸

=χσ(g)

(gf)(x)dµK(g)

=
1

|K|
∑
σ∈K̂

P χσ
K f(x) =

1

|K|

∫
K

∑
σ∈K̂

χσ(g)


︸ ︷︷ ︸

=|K|δg,eK

(gf)(x)dµK(g)

= f(x).

The transformation properties of the projections P χσ
K f and P σ,j

K f are the non-abelian

analog of being an eigenfunction. They are derived from the transformation properties of

characters and matrix coefficients. Let σ ∈ K̂, χσ = tr(σ), and g, h ∈ K, then

hχσ(g) = χσ(h−1g) = tr(σ(h−1g)) = tr(σ(h−1)σ(g))

= tr(σ(h)∗σ(g)) =
dσ∑

j,k=1

σj,k(h)σj,k(g),
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and

hσj,k(g) = σj,k(h
−1g) = 〈σ(h−1g)hk,hj〉Hσ = 〈σ(g)hk, σ(h)hj〉

=
dσ∑
`=1

σ`,j(h)σ`,k(g).

Consequently, for f ∈ Cb(R3)

hP χσ
K f =

dσ∑
j,k=1

σj,k(h)P σ,j,k
K f = tr(σ(h)P σ

Kf), (7.11)

hP σ,j
K f =

dσ∑
`=1

σ`,j(h)P σ,`,j
K f = (σ(h)P σ

Kf)j,j. (7.12)

We define the invariant subspaces of the space Cb(R3) as follows

Cχσ
b (R3) := {f ∈ Cb(R3). gf = tr(σ(g)P σ

Kf) for all g ∈ K},

Cσ,j
b (R3) := {f ∈ Cb(R3). gf = (σ(g)P σ

Kf)j,j for all g ∈ K}.

Then we can summarize our findings as follows

Cb(R3) =
⊕
σ∈K̂

Cχσ
b (R3) =

⊕
σ∈K̂

dσ⊕
j=1

Cσ,j
b (R3).

This decomposition can, of course, also be applied to the space of vector valued functions

Cb(R3;C3) and our radiation spaces Rω
b . To use our notation in this case, we formally

introduce matrices with vector entries. Define

P σ
KE(x) : {1, . . . , dσ}2 → C3, (j, k) 7→

∫
K

σk,j(g)(gE)(x)dµK(g).

In an analog manner, we define the multiplication of a matrix with P σ
KE, the trace and

the component function. Then we can decompose the radiation spaces Rω
b as follows

Rω
b =

⊕
σ∈K̂

Rω,χσ
b (K) =

⊕
σ∈K̂

dσ⊕
j=1

Rω,σ,j
b (K), (7.13)

where

Rω,χσ
b (K) := {E0 ∈ Rω

b . gE0 = tr(σ(g)P σ
KE0) for all g ∈ K},

Rω,σ,j
b (K) := {E0 ∈ Rω

b . gE0 = (σ(g)P σ
KE0)j,j for all g ∈ K}.

The design equation for compact isometry groups can now be stated as follows
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Definition 7.2 (Design Equations – Compact Groups). Let K ≤ O(3) be a

compact isometry group. A time-harmonic radiation E0 ∈ Rω
b with frequency ω > 0

is said to satisfy the design equations for K when it belongs to the invariant subspace

Rω,χσ
b (K) for some σ ∈ K̂, i.e. when it satisfies the equations

(i) ∆E0 = −ω
2

c2
E0,

(ii) div E0 = 0,

(iii) gE0 = tr(σ(g)P σ
KE0) for all g ∈ G.

When E0 additionally satisfies

(iv) gE0 = (σ(g)P σ
KE0)j,j for some j ∈ {1, . . . , dσ} and all g ∈ G,

i.e. when it is an element of one of the spaces Rω,σ,j
b (K), then E0 is said to satisfy the

refined design equations.

2. The Wave Transform

As we did for abelian groups before, we define the Zak transform, the symmetry-

adapted waves, and the (scalar) wave transform. All these objects come in two flavours –

with respect to the characters or the matrix coefficients.

Definition 7.3 (Zak transform). Let K ≤ O(3) be a compact isometry group and

f ∈ S(R3). We define the Zak transform and the refined Zak transform by

Zclass
K f(x, σ) := F class

K fx(σ) = P χσ
K f(x), (7.14)

ZKf(x, σ) := FKfx(σ) = P σ,j
K f(x), (7.15)

where fx(g) := (gf)(x), g ∈ G.

The corresponding inverse Zak transforms are given by

(Zclass
K )−1Fclass(x) := (F class

K )−1Fclass(x, idK), Z−1
K F (x) := F−1

K F (x, idK), (7.16)

where Fclass and F are elements of the image of S(R3) under Zclass
K and ZK, respectively.

To define the wave transform, we introduce the symmetry-adapted waves. As the space

of bounded continuous functions is closed with respect to projections onto irreducible

subspaces of compact groups, these are again bounded and continuous functions. Let

eω,k0(x) := eik·x and Eω,k0(x) := neik·x for all x ∈ R3, where ω > 0 and k := ω
c
k0, n ∈ k⊥.
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We set

Eω,k0,χσ := P χσ
K Eω,k0 ∈ Rω,χσ

b (K), eω,k0,χσ := P χσ
K eω,k0 ∈ C

χσ
b (R3),

Eω,k0,σ,j := P σ,j
K Eω,k0 ∈ Rω,σ,j

b (K), eω,k0,σ,j := P σ,j
K eω,k0 ∈ C

σ,j
b (R3).

The wave transform and scalar wave transform on S(R3) are then defined as follows.

Definition 7.4 (Wave Transform – Compact Design Group). Let K ≤ O(3) be

a closed compact isometry group. The scalar wave transform Wclass
K f and refined scalar

wave transform WKf of a function f ∈ S(R3) are defined as follows.

Wclass
K f(k, σ) :=

∫
R3

eω,k0,χσ(x)f(x)dx, (7.17)

WKf(k, σ) :=

∫
R3

eω,k0,σ,j(x)f(x)dx. (7.18)

The corresponding vector-valued wave transforms Wclass
K f and WKf are given by

Wclass
K f(k, σ) :=

∫
R3

Eω,k0,χσ(x)f(x)dx, (7.19)

WKf(k, σ) :=

∫
R3

Eω,k0,σ,j(x)f(x)dx. (7.20)

These wave transforms share the properties of their abelian counterparts.

Lemma 7.5. Let K ≤ O(3) ba a closed compact isometry group. The scalar wave

transforms satisfy

Wclass
K = Zclass

K ◦ F = F ◦ Zclass
K , (7.21)

WK = ZK ◦ F = F ◦ ZK . (7.22)

Consequently, the inverse transforms are given by

(Wclass
K )−1 := (Zclass

K )−1 ◦ F−1, W−1
K := Z−1

K ◦ F
−1. (7.23)

Proof. The proofs are identical to the respective proofs for abelian compact groups

in Lemma 6.6. �

Up to this point, everything works out exactly as in the abelian compact case. This

changes when we consider the scalar wave transform of functions that are invariant with

respect to a discrete closed (i.e. finite) subgroup H of the design group K. In the abelian

case, the scalar wave transform with respect to K reduced to the scalar wave transform

with respect to the subgroup K/H supported on the orthogonal group H⊥K of H, which

is a subgroup of the dual group K̂. For compact groups, neither the quotient K/H nor

the dual K̂ is a group in general.
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If we start from a finite group K and the subgroup H is a normal subgroup, i.e. the

quotient K/H is a group, we can get a similar result as in the abelian case.

We first need to define the analog of the orthogonal group H⊥K . Just like H⊥K is the

set of all characters that are trivial when restricted to H in the abelian case, we define

the orthogonal set of a normal subgroup H with respect to K by

H⊥K := {σ ∈ K̂. mult(1, σ ↓KH) ≥ 1}. (7.24)

The multiplicity mult(σ, σ′) of a unitary irreducible representation σ in an arbitrary uni-

tary representation σ′ is defined as

mult(σ, σ′) := 〈χσ, χσ′〉L2(K).

The formulation via multiplicities is necessary, because the restriction of an irreducible

representation to a subgroup need not be irreducible. So H⊥K is the set of unitary irre-

ducible representations of K that contain at least one copy of the trivial representation

when restricted to H. For abelian groups this construction reduces to the orthogonal

group. To the knowledge of the author, this construction for non-abelian hasn’t been

considered before.

In the abelian case, we cited a result that says that the restrictions of the elements of

H⊥K to K/H form the dual K̂/H. A similar identification is possible in the finite case.

Lemma 7.6 (Dual of K/H). Let K ≤ O(3) be a finite isometry group and H a

normal subgroup of K. Then

K̂/H = {σ ↓KK/H . σ ∈ H⊥K}. (7.25)

Proof. First, we construct elements of H⊥K explicitly from the elements of K̂/H. Let

σ̃ ∈ K̂/H. We lift σ̃ to a representation σ of K by setting

σ(g) := σ̃(g′H), for g ∈ g′H, g′ ∈ G.

Then, obviously, σ(h) = σ̃(H) = 1 for all h ∈ H, so, σ ↓KH= 1. Moreover, we know that

mult(1, σ ↓KH) = dσ.

The representation σ is irreducible, since

〈χσ, χσ〉L2(K) =
1

|K|
∑
g∈K

χσ(g)χσ(g) =
1

|K|
∑

g′H∈K/H

∑
h∈H

χσ(g′h)χσ(g′h)

=
|H|
|K|

∑
g′H∈K/H

χσ(g′)χσ(g′) =
1

|K/H|
∑

g′∈K/H

χσ̃(g′)χσ̃

= 〈χσ̃, χσ̃〉L2(K/H) = 1.
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So, σ ∈ H⊥K and σ ↓KK/H= σ̃ ∈ K̂/H, i.e.

K̂/H ⊆ {σ ↓KK/H . σ ∈ H⊥K}.

Now, by Frobenius reciprocity (see [JL04]), we get that

dσ = mult(1, σ ↓KH) = mult(σ, 1 ↑KH).

So, sigma is contained in the induced representation of the trivial representation 1 ↑KH
with multiplicity dσ. By the formula for the induced character (e.g. [JL04], Proposition

21.19), the character χ1 ↑KH of 1 ↑KH is given by

χ1 ↑KH (g) =
∑

g′H∈K/H

1̃(g′−1gg′),

where 1̃ = 1 ·1H is the trivial character set to zero except on H. Evaluation at the neutral

element eK yileds

χ1 ↑KH (eK) =
∑

g′H∈K/H

1̃(g′−1eKg
′) =

∑
g′H∈K/H

1 = |K/H|.

Thus, the dimension of the representation 1 ↑KH is |K/H|. We already know that the

representation contains every representation σ that was lifted from K/H with multiplicity

dσ. Since, ∑
σ̃∈K̂/H

mult(σ, 1 ↑KH)dσ =
∑

σ̃∈K̂/H

d2
σ = |K/H|,

the lifted representations σ are the only components of 1 ↑KH , i.e.

1 ↑KH=
⊕

σ̃∈K̂/H

dσσ.

Hence, mult(1, σ ↓KH) ≥ 1, if and only if σ ↓KK/H∈ K̂/H. �

Using this identification, we can proof the following.

Lemma 7.7 (Scalar Wave Transform of H-invariant functions – Finite De-

sign Group). Let K ≤ O(3) be a finite isometry group and H a normal subgroup of G.

The scalar wave transform of a function f that is H-invariant is given by

Wclass
K f(k, σ) =Wclass

K/Hf(k, σ ↓KK/H)δH⊥K (σ) (7.26)

for all k ∈ R3, σ ∈ K̂.
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Proof. Let f ∈ S(R3) be H-invariant. Then for k ∈ R3 and σ ∈ K̂

Wclass
K f(k, σ) =

∫
R3

eω,k0,χσ(x)f(x)dx =

∫
R3

∫
K

χσ(g)e−ik·g
−1xdµK(g)f(x)dx

=

∫
R3

∫
K/H

∫
H

χσ(gh)e−ik·(gh)−1xdµH(h)dµK/H(g)f(x)dx

=

∫
R3

∫
K/H

∫
H

dσ∑
j,k=1

σj,k(g)σk,j(h)e−ik·(gh)−1xdµH(h)dµK/H(g)f(x)dx

=

∫
K/H

∫
H

dσ∑
j,k=1

σj,k(g)σk,j(h)

∫
R3

e−ik·g
−1x f(hx)︸ ︷︷ ︸

=f(x)

dxdµH(h)dµK/H(g)

=
dσ∑

j,k=1

∫
R3

∫
K/H

σj,k(g)

∫
H

σk,j(h)dµH(h)e−ik·g
−1xdµK/H(g)f(x)dx

Now, we can apply Lemma 7.6. When σ ↓KH does not contain the trivial representation,

then in particular
∫
H
σk,j(h)dµH(h) = 0 for all j, k = 1, . . . , dσ by the orthogonality

relations. In addition, when σ ∈ H⊥K then
∫
H
σk,j(h)dµH(h) = δk,j, so

Wclass
K f(k, σ) =

∫
R3

∫
K/H

dσ∑
j=1

σj,j(g)e−ik·g
−1xdµK/H(g)f(x)dxδH⊥K (σ)

=

∫
R3

∫
K/H

χσ ↓KK/H (g)e−ik·g
−1xdµK/H(g)f(x)dxδH⊥K (σ)

=Wclass
K/Hf(k, σ ↓KK/H)δH⊥K (σ).

�

We can proof the analog result for the refined scalar wave transform

Lemma 7.8 (Refined Scalar Wave Transform of H-invariant functions –

Finite Design Group). Let K ≤ O(3) be a finite isometry group and H a normal

subgroup of G. The refined scalar wave transform of a function f that is H-invariant is

given by

WKf(k, σ, j) =WK/Hf(k, σ ↓KK/H , j)δH⊥K (σ) (7.27)

for all k ∈ R3, σ ∈ K̂.

Proof. The proof is analog to the proof of Lemma 7.7. �

We can again show that the symmetries of f can be reconstructed from the scalar

wave transform.
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Proposition 7.9 (Reconstruction of Symmetry). Let K ≤ O(3) be a finite isom-

etry group and f ∈ S(R3) invariant with respect to a normal subgroup H of K, s.t. f is

not invariant with respect to any group H ′ in between H and K, i.e. K ≤ H ′ < H. Then

H can be reconstructed from the scalar wave transforms as follows:

H =
⋂

σ∈supp(Wclass
K f)

ker(σ) =
⋂

σ∈supp(WKf)

ker(σ). (7.28)

Proof. First, we note that the support of the scalar wave transforms with respect to

the second argument is the orthogonal set H⊥K ⊆ K̂. It is easily seen that the intersection

of the kernels of all elements of H⊥K is a normal subgroup:

Let g, h ∈
⋂
σ∈H⊥K

ker(σ), i.e. σ(g) = σ(h) = idHσ for all σ ∈ H⊥K . Then also

σ(h−1g) = σ(h−1)σ(g) = σ(h)∗σ(g) = idHσ .

When g ∈
⋂
σ∈H⊥K

ker(σ) and h ∈ K, then σ(h−1gh) = σ(h−1)σ(g)σ(h) = idHσ . So,

H̃ :=
⋂
σ∈H⊥K

ker(σ) is a normal subgroup of K.

Next, assume that H̃ is greater that H. Then by definition of H̃, for all σ ∈ H⊥K

σ ↓K
H̃

= 1⇒ mult(1, σ ↓K
H̃

) = dσ = mult(σ, 1 ↑K
H̃

),

using Frobenius reciprocity. Since 1 ↑K
H̃

contains all elements of H⊥K with multiplicity equal

to the dimension, and H⊥K
∼= K̂/H, we find that dim(1 ↑K

H̃
) ≥ |K/H| = |K|

|H| . On the other

hand, repeating the argument of Lemma 7.6, we find that dim(1 ↑K
H̃

) = |K/H̃| = |K|
|H̃|

.

Thus, |H| ≥ |H̃|, in contradiction to the assumption H < H̃. Since H ≥ H̃ by the

definition of H⊥K , we find that H̃ = H. �

Unlike in the abelian case, this property does not carry over to the vector-valued wave

transform. The action of the compact group on the field vector leads to a modulation of

the components of the field when diagonalizing the action. This modulation becomes a

translation on the Fourier side, s.t. the reciprocal structure is a superposition of translated

versions of the orthogonal group of the symmetry group of the structure.

Now, in the non-abelian compact case, the action of the group on the field vector

cannot be diagonalized, but only decomposed into its irreducible components. Moreover,

the modulation by a matrix coefficient is not a simple translation on the Fourier side.

Still, we can give an expression for the supports of the wave transforms. In explicit

examples, this information could help to reconstruct symmetry information.

Proposition 7.10 (Support of the Wave Transform). Let K ≤ O(3) be a finite

isometry group and f ∈ S(R3) be invariant with respect to a subgroup H of K. The wave
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transform is supported on the following sets.

supp(Wclass
K f(k, ·)) ⊆

n⋃
k=1

{
σ ∈ K̂. mult

(
σ, σ

(k)

R3

∗
↓KH↑KH

)
≥ 1
}
, k ∈ R3. (7.29)

where σR3 is the standard representation of K on R3 given by σR3(g)x = gx, that decom-

poses as

σR3 =
n⊕
k=1

σ
(k)

R3 .

Proof. Let f ∈ S(R3) be H-invariant. then for all k ∈ R3 and σ ∈ K̂

Wclass
K f(k, σ) =

∫
R3

Eω,k0,χσ(x)f(x)dx

=

∫
R3

∫
K

χσ(g)σR3(g)n(k)e−ik·g
−1xdµK(g)f(x)dx

= U

∫
R3

∫
K

χσ(g)diag(σ
(k)

R3 (g))nk=1e
−ik·g−1xdµK(g)f(x)dxU−1n(k).

We consider the entries of the matrix-valued integral. At the (`,m)-element of σ
(k)

R3 , we

get ∫
R3

∫
K

χσ(g)σ
(k)

R3,`,m(g)e−ik·g
−1xdµK(g)f(x)dx

=

∫
R3

∫
K

dσ∑
j=1

σj,j(g)σ
(k)

R3,`,m(g)e−ik·g
−1xdµK(g)f(x)dx

=

∫
R3

∫
K/H

∫
H

dσ∑
j=1

σj,j(gh)σ
(k)

R3,`,m(gh)e−ik·(gh)−1xdµH(h)dµK/H(g)f(x)dx

Now using the transformation rule for the matrix coefficients, we end up with integrals of

the type ∫
H

σi,j(h)σ
(k)

R3,l,m(h)dµH(h).

These integrals vanish when the restriction of σ to H is not contained in the restriction

of σ∗R3 to H by the orthogonality relations. In other words, when mult(σ ↓KH , σR3 ↓KH) = 0.

Thus, the support of the wave transform is contained in the set

{σ ∈ K̂. mult(σ ↓KH , σR3 ↓KH) ≥ 1}.

By Frobenius reciprocity and the fact that χσ⊕σ′ = χσ + χσ′ , we get the result. �
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With exactly the same proof, the same result can be shown for the support of the

refined wave transform, i.e.

supp(WKf(k, ·, j)) ⊆
n⋃
k=1

{
σ ∈ K̂. mult

(
σ, σ

(k)

R3

∗
↓KH↑KH

)
≥ 1
}

(7.30)

for all k ∈ R3 and all appropriate j ∈ N.



Outlook

To conclude this work, we shortly discuss some ideas related to the results of this

dissertation.

X-Ray Optics and Electron Beams. When considering the generalized von Laue

condition (Theorem 6.17) for orientation preserving design groups, i.e. closed subgroups

of SE(3) := {(Q|c) ∈ E(3). det Q = 1}, the result reduces to essentially three different

kinds of radiation: plane waves, twisted waves and n-twisted waves. The corresponding

minimal design groups are the trivial group for plane waves, the group Re of rotations

about an axis Re, e ∈ S2, for twisted waves and the corresponding finite rotation group

R
(n)
e for n-twisted waves.

These are the central cases that lead to a von Laue condition. Our work reduces the

problem of structure analysis with these kinds of radiation to a problem of X-ray optics.

How can these kind of radiations be produced? In light of the Fourier representations

(4.1) and (5.20) for twisted and n-twisted waves, respectively, the task is to phase align

the single plane waves in the right way to achieve the needed chirality.

Several approaches to produce analogs of twisted waves for electron beams (e.g.

[VTS10], vortex beams) or visible light (e.g. [AD00], high-order Bessel beams) have been

proposed. These beams are used as particle traps, for information transmission or in

astrophysics.

Using twisted waves for structure analysis turns out to be an even harder task. To

vary the radiation parameters, the method for the generation has to be adaptive.

A different approach would be to use electron vortex beams instead of X-rays for the

analysis. We believe that the theory developed in this dissertation can be adapted to

the use of electron beams instead of electromagnetic waves. A further advantage of this

idea is the scalar nature of the electron beam that simplifies the corresponding von Laue

condition.

The Diffraction Pattern. We focused on the derivation of a generalized von Laue

condition and neglected the possibility of reconstruction from the diffraction pattern. we

saw in Chapter 3 that the scatterring of time-harmonic radiation always leads to an analog

167
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of the CDI reconstruction problem that allows in principle to reconstruct a projection of

the sample. If this is the goal, it is, of course, preferable to use plane wave radiation.

However, the scattering formula for twisted waves (Theorem 4.5) contains a lot of

information on the symmetries of the structure. It might be possible to extract it via a

clever transformation of the pattern, even though, we do not see an easy way to do this

at the moment.

A simpler approach to use the diffraction patterns for reconstruction is to include

the data in a phase retrieval algorithm. It could, for example, be used as an additional

constraint set.

Compressed Sensing. A different approach to phase retrieval arose from the field

of compressed sensing. In [CSV12], the authors propose a way to reconstruct a general

sample from plane wave diffraction patterns that are post-scattered by a random binary

matrix. The corresponding algorithm is called PhaseLift and reformulates the phase

retrieval problem as a matrix completion problem.

We believe that our framework of the scattering of time-harmonic radiation could

provide a different way to use the theory of compressed sensing for phase retrieval. It

might be possible to use the difficulty of phase aligning plane waves to our advantage

by incorporating the needed randomness in the relative phases of the single plane wave

components of the radiation.

A Generalized Bloch-Floquet Theorem. The decomposition of a scalar function

into invariant functions via the Zak transform is closely related to the Bloch theorem

concerning the electronic Schrödinger equation for a perfect crystal with Bravais lattice

B (see [Blo29], and for a mathematically rigorous account, [RSIV]). It states that the

solution space has a basis of eigenstates ψk that are of the special form

ψk(x) = eik·xu(x), (7.31)

where k ∈ UB⊥ is a wave vector in the fundamental domain of the reciprocal lattice B⊥

of B and u is B-invariant.

Mathematically it is an application of the Floquet theorem on the solutions of periodic

linear differential equations. Even more general, we can decompose arbitrary functions

into Bloch waves as follows. Given a Bravais lattice B, every function f ∈ S(R3) can be

written as

f(x) =
1

VB⊥

∫
UB⊥

eik·xu(x,k)dk, (7.32)

where u is B-invariant in x. This formulation is sometimes called Bloch-Floquet theorem

[SEA03]. It is a direct consequence of the Poisson summation formula and can be proved
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as follows. Fourier decomposing f and splitting the integral into the integrals over the

fundamental domains of B⊥, we get

f(x) =
1

(2π)3

∫
R3

eik·xf̂(k)dk =
∑

b′∈B⊥

∫
UB⊥

ei(k+b′)·xf̂(k + b′)dk

=

∫
UB⊥

eik·x
1

(2π)3

∑
b′∈B⊥

eib
′·xf̂(k + b′)dk

=
1

VB⊥

∫
UB⊥

eik·x
VB⊥

(2π)3

∑
b′∈B⊥

eib
′·xf̂(k + b′)︸ ︷︷ ︸

=:u(x,k)

dk.

The B-invariance of u is now seen with the Poisson summation formula:

u(x,k) =
VB⊥

(2π)3

∑
b′∈B⊥

eib
′·xf̂(k + b′) =

∑
b∈B

e−ik·(x+b)f(x + b).

The relation to the Zak transform becomes clear, when observing that the integrand of

(7.32) is actually the Zak transform with respect to the group HB:

eik·xu(x,k) =
∑
b∈B

e−ik·bf(x + b) = ZHBf(x,k).

Noting that the unit cell UB⊥ of the reciprocal lattice is a parametrization of the quotient

group T/HB⊥ ∼= ĤB, we find that the Bloch-Floquet decomposition (7.32) is simply the

reconstruction formula of the Zak transform: f(x) = Z−1
HB
ZHBf(x, idR3).

The generalized Zak transform we introduced can thus be used to formulate a general-

ized Bloch-Floquet theorem. Given an abelian isometry group H ≤ E(3), every function

f ∈ S(R3) can be decomposed as follows:

f(x) =

∫
Ĥ

ZHf(x, χ)dµĤ(χ). (7.33)

The transformation law is analog to the one for classic Bloch waves. The function

ZHf(x, χ) is H-invariant in x up to a phase that is given by the character χ:

gZHf(x, χ) = ZHf(g−1x, χ) = χ(g)ZHf(x, χ).

This generalization of the Bloch theorem could, for example, be useful for studying the

electronic structure of objective structures.

Note that this construction can also be generalized to non-abelian compact groups via

the Zak transforms introduced in Chapter 7. The corresponding Bloch waves are then not

invariant up to a phase, but transform as in equation (7.11) and (7.12). But still, given

the wave in a fundamental domain, it is determined in a different fundamental domain

up to transformation by an irreducible representation.





APPENDIX A

Fourier analysis

Fourier Analysis on Rn. In this chapter we will cite central results of Fourier

analysis without proof, that can be found in almost every textbook about the topic

(e.g. [Fri07, SD80, Fol95]). We present the results in a form focusing on the structural

content rather than as mere rules of calculus. We begin with the definition on L1(Rn).

Definition A.1 (Fourier transform on L1). Let f ∈ L1(Rn). Then its Fourier

transform f̂ : Rn → C is defined as

f̂(k) :=

∫
Rn
f(x)e−ik·xdx, k ∈ R3. (A.1)

We also write F(f) := f̂ .

The following are the main results of the L1-theory

Lemma A.2 (Riemann-Lebesgue). The space FL1(Rn) of Fourier transforms of

L1-functions is a subspace of the space of continuous functions that vanish at infinity:

FL1(Rn) ⊂ C0(Rn).

Theorem A.3 (Convolution Theorem). The spaces L1(Rn) with convolution and

involution f 7→ f− and C0(Rn) with pointwise multiplication and complex conjugation are

Banach-*-algebras.

The Fourier transform F : L1(Rn)→ C0(Rn) is a *-algebra morphism, i.e.

(i) f̂ ∗ g = f̂ ĝ,

(ii) f̂− = f̂ .

Theorem A.4 (Inversion Theorem). Let f ∈ L1(Rn). When f̂ ∈ L1(Rn), then f

can be reconstructed pointwise a.e. by

f(x) = F−1f̂(x) := (2π)−n
∫
Rn
f̂(k)eik·xdk, for a.e. x ∈ R3. (A.2)

The transformation f̂ 7→ F−1f̂ is called inverse Fourier transform.

The Fourier transform on L1 ∩ L2 can uniquely be extended to L2.
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Theorem A.5 (Fourier transform on L2, Plancherel). There is a unique continu-

ous map F : L2(Rn)→ L2(Rn) that agrees with the Fourier transform on L1(Rn)∩L2(Rn).

Moreover, the rescaled version (2π)−n/2F is a unitary transformation (Hilbert space

isomorphism), i.e. for all f, g ∈ L2(Rn):

〈(2π)−n/2Ff, (2π)−n/2Fg〉L2(Rn) = 〈f, g〉L2(Rn).

In particular, the Plancherel identity holds:

‖f‖2
2 = (2π)−n‖Ff‖2

2, f ∈ L2(Rn). (A.3)

The inverse operator F−1 : L2(Rn) → L2(Rn) is called inverse Fourier transform on

L2(Rn) and satisfies

F−1f = (2π)−nFf− f ∈ L2(Rn).

The regular representation π : R3 → U(L2(Rn)) of the translation group R3 on the

Hilbert space L2(R3) is given by

π(y)f(x) := f(x− y), x,y ∈ R3, f ∈ L2(Rn).

Defining the modulation representation π̂ : R3 → U(L2(Rn)) of the group R3 by

π̂(y)f(x) := e−iy·xf(x), x,y ∈ R3, f ∈ L2(Rn),

the Fourier transform F is an intertwining operator for π and π̂, i.e.

Fπ = π̂F . (A.4)

The same is true for the unitary version (2π)−n/2F , showing that the representations π and

π̂ are unitary equivalent. This identity is often explicitly stated as translation-modulation

duality:
̂f(· − y)(k) = e−iy·kf̂(k), x,k ∈ Rn, f ∈ L2(Rn). (A.5)

To extend the Fourier transform by duality, we first restrict it to a space of ‘nice’ functions

– the smooth and rapidly decaying Schwartz functions.

Definition A.6 (Schwartz functions). Define the family of semi-norms

‖ϕ‖`,m := sup
x∈Rn
|x`Dmϕ(x)|, `,m ∈ Nn

0 , ϕ : Rn → C.

The Schwartz space of smooth rapidly decaying functions is defined as

S(Rn) := {ϕ ∈ C∞(Rn). ‖ϕ‖`,m <∞ for all `,m ∈ Nn
0}. (A.6)

The elements of S(Rn) are called Schwartz functions.
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Theorem A.7 (Schwartz). The space S(Rn) is a Fréchet space with respect to the

locally convex topology induced by the semi-norms ‖·‖`,m, `,m ∈ Nn
0 . It is a locally convex

algebra w.r.t. both convolution and pointwise multiplication.

The Fourier transform F : S(Rn) → S(Rn) and the inverse Fourier transform F−1 :

S(Rn)→ S(Rn) are algebra homomorphisms between the two algebra structures.

Consider a polynomial p =
∑
|m|≤N pmxm ∈ C[x, . . . ,xn], N ∈ N, and the associated

linear transformations

D(p) : S(Rn)→ S(Rn), f 7→ D(p)f :=
∑
|m|≤N

pmD
mf,

M(p) : S(Rn)→ S(Rn), f 7→M(p)f := p(i·) · f.

Then the Fourier transform is an intertwining operator for D(p) and M(p), i.e.

FD(p) = M(p)F .

This identity is often explicitly stated as differentiation-multiplication duality:

∂̂jϕ(k) = ikjϕ̂(k), j ∈ {1, . . . , n}, k ∈ R3, ϕ ∈ S(Rn). (A.7)

Definition A.8 (Tempered distributions). The dual space S ′(Rn) of continuous

linear functionals on S(Rn) is called the space of tempered distributions. Its elements are

called tempered distributions.

For 1 ≤ p ≤ ∞, functions f ∈ Lp(Rn) can be seen as tempered distributions by

identifying them with the functionals

Lf (ϕ) :=

∫
Rn
fϕdLn, ϕ ∈ S(Rn).

We will not distinguish between the function f and the associated distribution Lf , i.e. we

will write f(ϕ) := Lf (ϕ) for ϕ ∈ S(Rn). A nice account of the theory of distributions is

found in [Hor83].

The Fourier transform of a tempered distribution is defined as follows:

Theorem A.9 (Fourier transform on S ′). The space S ′(Rn) of tempered distribu-

tions with the weak topology σ(S ′(Rn),S(Rn)) is a locally convex space.

The Fourier transform F : S ′(Rn)→ S ′(Rn),defined by

FT (ϕ) := T (Fϕ), T ∈ S ′(Rn), ϕ ∈ S(Rn),

is a linear map. The same is true for the inverse Fourier transform F−1 that is defined

similarly.

We also write T̂ := FT .
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Multiplication and convolution of two tempered distributions are in general not de-

fined. Considering special classes of functions, we can, however, define the multiplication

and convolution of tempered distributions with these functions.

Lemma A.10 (Tempered functions). A function f : Rn → C is called slowly

increasing, if there is a C ≥ 0 and an N ∈ N, s.t.

|f(x)| ≤ C(1 + |x|2)N .

Consider the space T (Rn) of smooth slowly increasing functions

T (Rn) := {f ∈ C∞(Rn). Dmf slowly increasing for all m ∈ Nn
0}.

The space S(Rn) of Schwartz functions is closed under multiplication with tempered func-

tions, i.e.

T (Rn) · S(Rn) ⊆ S(Rn).

In particular, the functional Lf , f ∈ T (Rn), is a tempered distribution.

Now, we can define basic operations on the space S ′(Rn) of tempered distributions.

Corollary A.11 (Basic operations on tempered distributions). Let T ∈ S ′(Rn),

ϕ, ψ ∈ S(Rn), f ∈ T (Rn), y ∈ R3 and m ∈ Nn
0 . We define

(i) T ∗ ϕ ∈ S ′(Rn) by (T ∗ ϕ)ψ := T (ϕ− ∗ ψ),

(ii) T · f ∈ S ′(Rn) by (T · f)ψ := T (f · ψ),

(iii) π(y)T ∈ S ′(Rn) by (π(y)T )ψ := T (π(−y)ψ),

(iv) DmT ∈ S ′(Rn) by (DmT )ψ := (−1)|m|T (Dmψ).

The operators π̂, D(p), and M(p) for p ∈ C[x1, . . . ,xn] are defined via (ii) and (iv).

These operations satisfy

(1) T̂ ∗ ϕ = T̂ · ϕ̂,

(2) π̂(y)T = π̂(y)T̂ ,

(3) D̂(p)T = M(p)T̂ .

Note that by (1) the definition of the convolution can be extended to Fourier transforms

of tempered functions (e.g. distributions of compact support by Schwartz-Paley-Wiener

(e.g. [Die75]).

We collect some results that are used in the main text:

Corollary A.12 (Autocorrelation). Let T ∈ FT (Rn) be a tempered distribution

that is the Fourier transform of a tempered function. Define its autocorrelation function
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CT ∈ S ′(Rn) by

CT := T ∗ T−.

Then

ĈT = |T̂ |2.

Note that T̂ ∈ T (Rn), s.t. |T̂ |2 is well-defined.

Theorem A.13 (Poisson summation formula). The measure δZ :=
∑

j∈Z δj is a

tempered distribution. Its Fourier transform is

δ̂Z = 2πδ2πZ.

Theorem A.14 (Projection-slice theorem). Let k ∈ S2 and define the following

two operators on S(Rn):

pk : S(Rn)→ S(k⊥), ϕ 7→
∫
R
ϕ(·+ rk)dr

sk : S(Rn)→ S(k⊥), ϕ 7→ ϕ
∣∣
k⊥
.

The operators are called projection and slice operators, respectively. They satisfy

p̂kϕ = skϕ̂.

Many measures can also be seen as tempered distribution.

Proposition A.15 (Tempered measures). A Borel measure µ on Rn is called

tempered measure, if there is an N ∈ N, s.t.∫
Rn

(1 + |x|2)−Ndµ(x) <∞.

Every tempered measure is a tempered distribution when identified with the functional

Lµ ∈ S ′(Rn) that is defined as

Lµ(ϕ) :=

∫
Rn
ϕ dµ.

Moreover, every positive tempered distribution, i.e. Tϕ ≥ 0 for all ϕ ∈ S≥0(Rn), is a

tempered measure.

Fourier Analysis on Locally Compact Abelian Groups. Fourier theory can be

extended to a locally compact abelian group G. The role of the complex exponentials ek,

k ∈ R3, is played by the characters, i.e. the bounded continuous group homomorphisms

from G to C∗ := C \ {0}. They are collected in the dual grop Ĝ.

Ĝ := {χ : G→ C∗ bounded continuous. χ(gh) = χ(g)χ(h), χ(g−1) = χ(g)}. (A.8)

The Fourier transform on L1(G) is then defined as follows
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Definition A.16 (Fourier Transform on L1(G)). Let G be a locally compact abelian

group and f ∈ L1(G). Then the Fourier transform FGf : Ĝ→ C of f is defined as

FGf(χ) :=

∫
G

χ(g)f(g)dµG(g), (A.9)

for χ ∈ Ĝ, where µG is the Haar measure of G.

The inverse Fourier transform is given by the Fourier inversion theorem.

Theorem A.17 (Fourier Inversion). Let f ∈ L1(G) be continuous with an L1

Fourier transform FGf ∈ L1(Ĝ). Then

f(g) =

∫
Ĝ

χ(g)FGf(χ)dµĜ(χ), (A.10)

for all g ∈ G, where µĜ is a suitably normalized Haar measure on Ĝ.

The Fourier transform on L1(G) can be extended to the space M1(G) of finite complex

measures on G. It is defined as the boounded continuous function on Ĝ given by

FGµ(χ) :=

∫
G

χ(g)dµ(g), (A.11)

for µ ∈M1(G) and χ ∈ Ĝ.

Most of the results for the Fourier transform can be generalized to the case of locally

compact abelian groups. In particular, there is a convolution theorem: For f1, f2 ∈ L1(G),

FG(f1 ∗ f2) = FGf1 · FGf2, (A.12)

where f1 ∗ f2(g) :=
∫
G
f1(h−1g)f2(h)dµG(h) for all g ∈ G.

There is also a translation-modulation duality. For f ∈ L1(G) and χ ∈ Ĝ,

FG(f(g−1·))(χ) = χ(g)FGf, g ∈ G. (A.13)

For further results on harmonic analysis on groups, we refer to [Fol95], [Rei68], [Ter85,

Ter88], and to the classic account [HR63,HR70].



APPENDIX B

Maxwell’s equations

Maxwell’s equations are four coupled partial differential equations that govern the

behavior of the electric field E and the magnetic field B when an electric charge density

ρel and a current density Jel is present. They were inferred from suitable experiments in

their integral form.

The first of Maxwell’s equations is usually called Gauß’s law and says that the outward

normal electric flux through a closed surface ∂Ω is proportional to the electric charge

contained in Ω. When Ω is suitably regular (e.g. a bounded C1-domain), then∫
∂Ω

E · dS =
1

ε0

∫
Ω

ρel dL3, (Gauß’s law)

where the constant ε0 is called vacuum permittivity or electric constant. The correspond-

ing outward normal magnetic flux equals zero:∫
∂Ω

B · dS = 0.

When E is continuously differentiable, applying the divergence theorem to the left hand

sides of these two laws for the choice Ω = Bε(x) with ε > 0 and x ∈ R3, yields the

differential forms of the first two Maxwell equations

div E =
1

ε0

ρel,

div B = 0,

in the limit ε→ 0 by continuity. Interpreting the divergence of a vector field as the source

strength, one can say that the source of the electric field is the electric charge, while there

is non source quantity for the magnetic field.

The third and fourth of Maxwell’s equations couple the two fields E and B by relating

their respective circulations around a closed curve ∂A to the time derivatives of the

flux through the surface A enclosed by ∂A, as well as to the current. With A being

an orientable two-dimensional submanifold of R3 that is parametrized by a single chart

ψ : U → R3, where U is a suitably regular subset of R2 (e.g. a bounded C1-domain), they

177
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are ∫
∂A

E · ds = −∂t
∫
A

B · dS, (Faraday’s law)∫
∂A

B · ds = µ0

∫
A

(Jel + ε0∂tE) · dS. (Ampère’s law)

The constant µ0 := 4π · 10−7 V ·s
A·m is called vacuum permeability or magnetic constant

and defines ε0 as ε0 := 1
µ0c2

, where c = 299792458m
s

is the speed of light. Using Stoke’s

theorem on the left hand side, we get the differential forms of these equations, again by

a continuity argument.

In summary, Maxwell’s equations in differential form (in SI units) are

div E =
1

ε0

ρel, (M1)

div B = 0, (M2)

curl E = −Ḃ, (M3)

curl B = µ0(Jel + ε0Ė), . (M4)

To solve Maxwell’s equations for given charge and current densities ρel and Jel, they are

usually reformulated in terms of potentials.

Under appropriate regularity assumptions, the divergence-free magnetic field B can

be written as the curl of a vector field A – the so-called vector potential:

B = curl A. (B.1)

Plugging this expression into the differential form of Faraday’s law (M3), we find that

curl(E + ∂tA) = 0. We can apply the Poincaré lemma and express the argument as a

gradient

E + ∂tA = −∇ϕ, (B.2)

where the function ϕ is called the scalar potential.

The two remaining equations (M1) and (M4) give the dependence of the potentials on

the charge and current densities:

−∆ϕ− ∂tdiv A =
1

ε0

ρel, (B.3)

−∆A +∇
(

div A +
1

c2
∂tϕ

)
+

1

c2
∂2
t A = µ0Jel. (B.4)

These two equations can be decoupled by making the following observation. Adding a

gradient ∇ψ to the vector potential A does not change the magnetic field B. To keep the

electric field E unchanged, the scalar potential ϕ needs to be modified to ϕ−∂tψ following
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(B.2). By a suitable choice of ψ, we can achieve that the argument div A + 1
c2
∂tϕ of the

gradient in (B.4) vanishes, since this happens if and only if ψ satisfies the inhomogeneous

wave equation

−∆ψ +
1

c2
∂2
t ψ = divA +

1

c2
∂tϕ.

This special choice of potentials A and ϕ that satisfy

div A +
1

c2
∂tϕ = 0 (B.5)

is called Lorenz gauge. Equation (B.5) is called Lorenz gauge condition. As a consequence

of this gauge condition, Maxwell’s equations (M1)-(M4) reduce to a set of inhomogeneous

wave equations for the potentials

−∆ϕ+
1

c2
∂2
t ϕ =

1

ε0

ρel, (B.6)

−∆A +
1

c2
∂2
t A = µ0Jel. (B.7)

An equation of this type (
−∆ +

1

c2
∂2
t

)
u = f (B.8)

can be solved by calculating Green’s function for the linear differential operator for the

wave equation L := −∆ + 1
c2
∂2
t . This function is defined as the solution G ∈ S ′(R3 × R)

to

LG = δ0. (B.9)

Knowing G, the tempered distribution u := G ∗ f can be defined that solves (B.8). When

L∗ is the adjoint of L, then for a Schwartz function ϕ ∈ S(R3 × R)

(Lu)ϕ = u(L∗ϕ) = G ∗ f(L∗ϕ) = G(f− ∗ L∗ϕ) = G(L∗(f− ∗ ϕ))

= LG(f− ∗ ϕ) = δ0(f− ∗ ϕ) = (δ0 ∗ f)ϕ = Lf (ϕ).

Assuming that Ĝ is defined point-wise, by applying a Fourier transform to (B.9), we get(
|k|2 − ω2

c2

)
Ĝ(k, ω) = 1 for all (k, ω) ∈ R3 × R,

such that Ĝ(k, ω) = c2

(c|k|)2−ω2 . What we would like to do now, is to calculate G as the

inverse Fourier transform of Ĝ. But it is not clear how to define the inverse Fourier

transform, because Ĝ is not a tempered distribution as it is singular at (c|k|)2 = ω2.

We introduce the perturbed version

Ĝε(k, ω) :=
c2

−ω2 + 2iωε+ (c|k|)2
, ε > 0,
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of Ĝ with shifted singularities, s.t. Ĝε is a tempered distribution on R3 × R. We then

consider the limit of the inverse Fourier transform of Ĝε for ε → 0 as a possible Green’s

function

G := lim
ε→0
F−1

k F
−1
ω Ĝε.

We start by calculating the one-dimensional inverse Fourier transform F−1
ω Ĝε by utilizing

the residue theorem of complex analysis. Defining the meromorphic function

fε(ω) :=
eiωt

c2
Ĝε(k, ω) for ω ∈ C \ {ω1, ω2},

where ω1 and ω2 are zeros of the denominator, we get

F−1
ω Ĝε(k, t) =

c2

2π

∫
R
fε(ω)dω.

The function fε has singularities at

ω1/2 = iε±
√

(c|k|)2 − ε2︸ ︷︷ ︸
=:ω̃(ε)

.

For t ≥ 0, we choose the contour γ+
r , r > 0, from −r to r on the real line and back to r on

a semicircle in the upper complex half plane, since in the limit r →∞, the contributions

on the semicircle vanish as eiωt → 0 for Im(ω) → ∞. For similar reasons, for t < 0,

we choose the contour γ−r going from −r to r on the real line and then back again on a

semicircle in the lower complex half plane. In this case, we get

c2

2π

∫
R
fε(ω)dω =

c2

2π
lim
r→∞

∮
γ−r

fε(ω)dω = 0

since the singularities lie in the upper half complex plane. The residues of fε at ω1 and

ω2 are

Resω1(fε) =
−eiω1t

2ω̃(ε)
, and Resω2(fε) =

eiω2t

2ω̃(ε)
,

so we get for t ≥ 0 that

c2

2π

∫
R
fε(ω)dω =

c2

2π
lim
r→∞

∮
γ+r

fε(ω)dω = ic2(Resω1(fε) + Resω2(fε))

= c2e−iεt
sin(ω̃(ε)t)

ω̃(ε)
.

At this point we can already take the limit ε→ 0 to get

G(·, t) = F−1
k lim

ε→0
F−1
ω Ĝε(·, t) = cF−1

k

sin(ct| · |)
| · |

.
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The inverse Fourier transform of the function sin(ct|·|)
|·| is known to be the distribution

1
4πct

σct, where σct is defined as

σctϕ :=

∫
ctS2

ϕ dH2 for ϕ ∈ S(R3).

This can easily checked by calculating σ̂ct. Thus, Green’s function for the inhomogeneous

wave equation is

G =

 1
4πt
σct, t ≥ 0,

0, t < 0.
(B.10)

For t ≥ 0, the solution to equation (B.8) is then given by

u(x, t) = G ∗ f(x, t) =
1

4π

σct
t
∗ f(x, t)

=
1

4π

∫ ∞
0

∫
cτS2

f(x− y, t− τ)

τ
dH2(y)dτ

=
1

4π

∫ ∞
0

∫
τS2

f(x− y, t− |y|/c)
|y|

dH2(y)dτ

=
1

4π

∫
R3

f
(
y, t− |x−y|

c

)
|x− y|

dy.

Applying this to the wave equations (B.6) and (B.7) for the scalar and vector potential,

we end up with the so-called retarded potentials solution for Maxwell’s equations:

ϕ(x, t) =
1

4πε0

∫
R3

ρel

(
y, t− |x−y|

c

)
|x− y|

dy,

A(x, t) =
µ0

4π

∫
R3

Jel

(
y, t− |x−y|

c

)
|x− y|

dy.

(B.11)

If we had chosen the perturbation of Ĝ such that the singularities of fε lie in the lower

complex half plane, we would have ended up with a different solution that vanishes for

t ≥ 0 and is called the advanced potentials solution.





APPENDIX C

Crystallography

Crystals are macroscopic structures that are highly organized on the atomic scale.

They are composed of atoms or molecules in a periodic fashion, i.e. a certain part of the

crystal – the so-called unit cell – is repeated in all three space dimensions. Many solids

form crystals, because the periodic arrangement is energetically favorable.

Mathematically, the structure of a crystal is described by a crystal lattice, which

is the set of the locations of the atoms in space. The periodic structure is extended to

infinity what should be seen as an approximation of the macroscopic nature of the crystal.

Even though real crystals are three-dimensional, we define crystal structures in arbitrary

dimensions.

Definition C.1 (Bravais lattice, Crystal lattice). An n-dimensional Bravais lat-

tice B ⊂ Rn is a set of the form

B = AZn with A ∈ GL(n,R). (C.1)

The column vectors aj := (Aij)i are called generators of the Bravais lattice B.

An n-dimensional crystal lattice L ⊂ Rn is a set of the form

L = B + M with M ⊂ Rn, |M| <∞, (C.2)

where B is a Bravais lattice. B is said to generate the crystal lattice L. The set M is

called a molecule of the crystal lattice.

A unit cell of a Bravais lattice B or a crystal lattice L = B+M is a set of representatives

of the quotient Rn/B. Given a matrix A ∈ GL(n,R) that generates B, the canonical unit

cell UA
B is defined as

UA
B := A[0, 1)n.

Its volume VB is independent of the choice of the generator matrix A and equals

VB = | det A|.

We introduce a canonical form of a crystal lattice L by defining the canonical generating

Bravais lattice BL as the generating Bravais lattice with minimal unit cell volume (Note

that the generating Bravais lattices of a crystal lattice are partially ordered by their unit
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cell volume). Given a generator matrix A of BL, we can also define a canonical molecule

MA
L by choosing the representatives within the canonical unit cell UA

L . In summary, we

have the following canonical form of the crystal lattice L:

L = BL + MA
L , BL = AZ3, MA

L ⊂ UA
L = A[0, 1)3. (C.3)

Figure C.1. (a) A 2-dimensional Bravais lattice B generated by two vec-
tors e1 and e2. The unit cell UA

B with respect to the generator matrix
A := (e1, e2) is shaded in light blue. (b) A 2-dimensional crystal lattice
B + M with the Bravais lattice B shown in (a) (indicated in light gray).
The unit cell UA

B is shaded in light blue and the molecule M is coloured in
dark blue. (c) The 2-dimensional crystal lattice L = B+ M from (b). The
molecule M is coloured in dark blue. Here BL = B and MA

L = M.

An important structure related to a Bravais lattice is its reciprocal lattice. It describes

the structure of the lattice in terms of its lattice planes and a plays a prominent role in

X-ray Crystallography. Given a Bravais lattice B ⊂ Rn, its reciprocal lattice B⊥ ⊂ Rn is

defined as

B⊥ := {k ∈ Rn. k · b ∈ 2πZ for all b ∈ B}. (C.4)

Given a generator matrix A ∈ GL(n,R), of B, i.e. B = AZ3, it is easily seen that

B⊥ = 2πA−TZn, (C.5)

so that A⊥ := 2πA−T is a generator matrix of B⊥ which is itself a Bravais lattice. The

column vectors a⊥j := (A⊥ij)i generate B⊥ and are related to the generators of B by

ai · a⊥j = 2πδij.

The relation to lattice planes is the following. Given the vector kι ∈ B⊥ with index

ι ∈ Zn, i.e. kι = A⊥ι, with ι additionally satisfying gcd(ι1, . . . , ιn) = 1, define the sets

pι(j) := {b ∈ B. kι · b = 2πj} ⊂ B, j ∈ Z.
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These sets pι(j) are parallel lattice planes of B. The index ι is called Miller index of the

family of lattice planes (pι(j))j∈Z. Obviously,

B =
⋃
j∈Z

pι(j).

The importance of the reciprocal lattice for X-ray Crystallography comes from the follow-

ing fact. The distance λι of two neighboring lattice planes pι(j) and pι(j + 1) with Miller

index ι ∈ Zn is

λι =
2π

|kι|
what can be seen from the definition of the lattice planes (Note that every reciprocal

lattice vector k ∈ B⊥ can be written as k = jkι = kjι with j ∈ N and a Miller index ι).

As a consequence, plane waves Ẽ(x, t) := neik·x with wave vector k ∈ B⊥ are constant

on B. So, the reciprocal lattice can also be seen as the set of wave vectors, s.t. the

corresponding plane waves are invariant with respect to translations by vectors b ∈ B.

Consider an electric charge density that is invariant with respect to B – say the electron

density of a crystal. The oscillations induced by a plane wave with wave vector k ∈ B⊥

are in phase and lead to constructive interference of the outgoing waves.

Figure C.2. (a) The 2-dimensional Bravais lattice B from Figure (C.1)
with two generators e1 and e2. The light blue lines show the lattice planes

with Miller index ι = (1, 3) and spacing λ1,3 =
2π

|k1,3|
. (b) The reciprocal

lattice B⊥ of the Bravais lattice B shown in (a) (up to scaling) with genera-
tors e′1 and e′2. The reciprocal lattice vector k1,3 shown in orange is normal
to the direct lattice planes with Miller index (1, 3) shown in (a).
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One might ask the same question for wave vectors k not on the reciprocal lattice B⊥.

How do the outgoing waves interfere in this case? The answer is quite surprising and a

result of a theorem in Fourier analysis. Consider the tempered distribution associated to

the Bravais lattice B ⊂ Rn:

δB :=
∑
b∈B

δb ∈ S ′(Rn).

Then, formally, adding up the phases means evaluating the Fourier transform of δB at k.

Theorem C.2 (Fourier transform of a Bravais lattice). The Fourier transform

of δB is

δ̂B =
(2π)n

VB
δB⊥ . (C.6)

Proof. For all ϕ ∈ S(Rn):

δ̂Bϕ = δBϕ̂ =
∑

k∈AZn
ϕ̂(k) =

∑
k∈Zn

ϕ̂(Ak).

Now,

ϕ̂(Ak) =

∫
Rn
ϕ(x)e−i(Ak)·xdx =

∫
Rn
ϕ(x)e−ik·(A

Tx)dx

=

∫
Rn
ϕ(A−Tx)e−ik·x | det(A−T )|︸ ︷︷ ︸

=1/|det(A)|

dx =
1

| det(A)|
̂̃ϕ(k),

with ϕ̃(x) := ϕ(A−Tx) for all x ∈ Rn.

Writing the n-dimensional Fourier transform as the iteration of n one-dimensional Fourier

transforms ϕ̂ = Fxn · · · Fx1ϕ and iterating the Poisson summation formula, we get

δ̂Bϕ =
1

| det(A)|
∑
k∈Zn

̂̃ϕ(k) =
(2π)n

| det(A)|
∑
k∈Zn

ϕ̃(2πk)

=
1

| det(A)|
∑
k∈Zn

ϕ(2πA−Tk) =

(
(2π)n

| det(A)|
∑

k∈2πA−TZn
δk

)
ϕ

=
(2π)n

VB
δB⊥ϕ.

�

This theorem is a generalized version of the Poisson summation formula, which in its

distributional formulation says δ̂Z = 2πδ2πZ. It says that the outgoing waves add up,

when the wave vector belongs to the reciprocal lattice and – more surprisingly – that the

waves fully cancel, if it doesn’t. This is the mathematical reason for the success of X-ray

Crystallography.
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Bravais lattices are named after Auguste Bravais who in 1850 gave a classification of

Bravais lattices [Bra50]. We state this result here in a modern version (see [EW08]).

Let B = AZn, A ∈ GL(n,Z), be a Bravais lattice. Define the lattice metric gA on Rn

gA := ATA, i.e. (gA)ij = ai · aj, i, j = 1, . . . , n.

Then the arithmetic holohedry Ha
A of B w.r.t. A is defined as

Ha
A := {B ∈ GL(n,Z). BTgAB = gA}, (C.7)

where GL(n,Z) is the group of n× n integer matrices B with det B = ±1. Note that Ha
A

is a subgroup of GL(n,Z). In words, it is the group of changes of basis that leaves the

lattice metric fixed and thus describes fundamental symmetries of the lattice B. Since

the arithmetic holohedry depends on the choice of the generator matrix A, we consider

conjugacy classes of Ha
A in GL(n,Z).

Definition C.3 (Bravais class). Let B = AZn, A ∈ GL(n,R), be a Bravais lattice.

The Bravais class BCB of B is the conjugacy class of the arithmetic holohedry in GL(n,Z):

BCB := {B−1Ha
AB. B ∈ GL(n,Z)}. (C.8)

The number of different Bravais classes in n dimensions determines the fundamentally

different Bravais lattices. Bravais found this number for three dimensional Bravais lattices:

Theorem C.4 (Bravais classification). There are exactly 14 Bravais classes in

three dimensions.

In two dimensions there are 5 Bravais classes.

A different classification of Bravais lattices is given by the notion lattice system. It

is less fine than the Bravais classification and focuses on orthogonal transformations that

fix the lattice. The geometric holohedry of a Bravais lattice B is defined as the following

subgroup of O(3):

Hg
B := {Q ∈ O(n). QB = B}. (C.9)

Again, we do not want to distinguish lattices that are related by an orthogonal transfor-

mation and thus define:

Definition C.5 (Lattice system). Let B ⊂ Rn be a Bravais lattice. The lattice

system LSB of B is the conjugacy class of the geometric holohedry in O(n):

LSB := {QTHg
BQ. Q ∈ O(n)}. (C.10)

There are 7 lattice systems in three dimensions: triclinic, monoclinic, orthorhombic,

tetragonal, rhombohedral, hexagonal and cubic.
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The Bravais classification is a subclassification of the classification into lattice systems,

i.e. every lattice system is a union of Bravais classes. The different Bravais classes that

belong to a lattice system can be defined by different centerings: primitive, body-centered,

face-centered and base-centered. In the cubic lattice system, for example, there are three

Bravais classes: primitive-centered cubic (pcc or sc for ’simple cubic’), body-centered

cubic (bcc) and face-centered cubic (fcc).
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[Hor83] L. Hörmander, The Analysis of Linear Partial Differential Operators I,

Springer (1983).

[HR63] E. Hewitt, and K. A. Ross, Abstract Harmonic Analysis I, Springer (1963).

[HR70] E. Hewitt, and K. A. Ross, Abstract Harmonic Analysis II, Springer

(1970).

[Jac98] J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, New York,

(1998).

[Jam06] R. D. James, Objective structures, J. Mech. Phys. Solids, 54 (2006), pp. 2354–

2390.

[Jew75] R. I. Jewett, Spaces with an Abstract Convolution of Measures, Advances in

Mathematics 18 (1975), pp. 1–101.

[JL04] G. James, and M. Liebeck, Representations and Characters of Groups,

Second Edition, Cambridge University Press (2004).

[Kut02] G. Kutyniok, The Zak Transform on Certain Locally Compact Groups, J. of

Math. Sciences 1 (2002), pp. 62-85.

[Las] R. Lasser, Monograph on hypergroups, in preparation.

[MCKS99] J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Extending the

methodology of X-ray crystallography to allow imaging of micrometer-sized

non-crystalline specimens, Nature, 400 (1999), pp. 342344.

[MSS12] J. Miao, R. L. Sandberg, and C. Song, Coherent X-Ray Diffraction

Imaging, IEEE J. Sel. Top. Quant., 18 (2012), pp. 399–410.

[MSC98] J. Miao, D. Sayre, and H. N. Chapman, Phase retrieval from the magni-

tude of the Fourier transforms of nonperiodic objects, J. Opt. Soc. Am. A, 15

(1998), pp. 16621669.

[Mil96] R. P. Millane, Multidimensional phase problems, J. Opt. Soc. Am. A, 13

(1996), pp. 725–734.

[MEA93] R. Miller, G. T. DeTitta, R. Jones, D. A. Langs, C. M. Weeks,

and H. A. Hauptman, On the application of the minimal principle to solve

unknown structures, Science, 259 (1993), pp. 14301433.

[MEA08] S. Marchesini, et al., Massively parallel X-ray holography, Nature Photon-

ics 2 (2008), pp. 560-563.



192 BIBLIOGRAPHY

[Osb75] M. S. Osborne, On the Schwartz-Bruhat Space and the Paley-Wiener The-

orem for Locally Compact Abelian Groups, Journal of Functional Analysis 19

(1975), pp. 40-49.

[Rau05] H. Rauhut, Time-Frequency and Wavelet Analysis of Functions with Sym-

metry Properties, Dissertation, Logos Verlag Berlin (2005).

[Rei68] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford

Mathematical Monographs, Oxford University Press (1968).

[REA01] I. K. Robinson, I. A. Vartanyants, G. J. Williams, M. A. Pfeifer,

and J. A. Pitney, Reconstruction of the Shape of Gold Nanocrystals Using

Coherent X-Ray Diffraction, Phys. Rev. Lett., 87 (2001), 195505.

[RSIV] M. Reed, and B. Simon, Methods of Modern Mathematical Physics IV:

Analysis of Operators, Academic Press (1978).

[Say52-1] D. Sayre, The squaring method: a new method for phase determination, Acta

Cryst., 5 (1952), p. 60–65.

[Say52-2] D. Sayre, Some implications of a theorem due to Shannon, Acta Cryst., 5

(1952), p. 843.

[SBGC84] D. Shechtman, I. Blech, D. Gratias, J. Cahn, Metallic Phase with

Long-Range Orientational Order and No Translational Symmetry, Phys. Rev.

Lett. 53 (1984), pp. 1951–1954.

[SD80] W. Schempp, and B. Dreseler, Einführung in die harmonische Analyse,
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[Vai03] J. Väisälä, A Proof of the Mazur-Ulam Theorem, The American Mathemat-

ical Monthly, Vol. 110, No. 7 (2003), pp. 633-635.

[VTS10] J. Verbeeck, H. Tian, and P. Schattschneider, Production and appli-

cation of electron vortex beams, Nature 467 (2010), pp. 301–304.

[WEA06] G. J. Williams, H. M. Quiney, B. B. Dhal, C. Q. Tran, K. A. Nu-

gent, A. G. Peele, D. Paterson, and M. D. de Jonge, Fresnel Coherent

Diffractive Imaging, Phys. Rev. Lett. 97 (2006), 025506.

[Wig31] E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik

der Atomspektren, Vieweg (1931).

[Wil97] N. J. Wildberger, Duality and Entropy for Finite Commutative Hyper-

groups and Fusion Rule Algebras, J. London Math. Soc. 2 (1997), pp. 275–291.

[Wol09] E. Wolf, Solution of the Phase Problem in the Theory of Structure Determi-

nation of Crystals from X-Ray Diffraction Experiments, Phys. Rev. Lett. 103

(2009), 075501.

[Wol10] E. Wolf, Determination of phases of diffracted x-ray beams in investigations

of structure of crystals, Phys. Lett. A, 374 (2010), pp. 491–495.

[Zak67] J. Zak, Finite Translations in Solid-State Physics, Phys. Rev. Lett., Vol. 19,

Issue 24 (1967), pp. 1385-1387.





Nomenclature

E electric field, E R3× → R3, page 12

x space variable, x = (x1,x2,x3)T ∈ R3, in cylindrical coordinates

x = ξ(r, ϕ, z) = (r cos(ϕ), r sin(ϕ), z)T , page 12

t time variable, t ∈ R, page 12

n complex amplitude, n ∈ C3, page 12

k wave vector, reciprocal space variable, k = (k1,k2,k3)T ∈ R3,

in cylindrical coordinates k = ξ(r̂, ϕ̂, ẑ) = (r̂ cos(ϕ̂), r̂ sin(ϕ̂), ẑ)T ,

page 12

ω angular frequency, ω > 0, page 12

ζ phase angle, ζ ∈ [0, π), page 12

c speed of light, c = 299792458m
s

, page 12

B magnetic field, B : R3 × R→ R3, page 12

ρel electric charge density, ρel : R3 × R→ [0,∞), page 12

Jel electric current density, Jel : R3 × R→ R3, page 12

div F divergence of the vector field F, page 12

curl F curl of the vector field F, page 12

∂t partial derivative with respect to t, ∂t = ∂
∂t

, page 12

ε0 vacuum permittivity, electric constant, ε0 = 1
µ0c2

, page 12

µ0 vacuum permeability, magnetic constant, µ0 = 4π·10−7 V ·s
A·m , page 12

λ wavelength, λ > 0, page 13

f0 frequency, f0 > 0, page 13

∆F vector Laplacian of the vector field F, ∆F := ∇(div F)−curl(curl F),

page 13

Ẽ complex electric field, Re(Ẽ) = E, page 14
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B̃ complex magnetic field, Re(B̃) = B, page 14

Re(z) real part of a complex number z ∈ C, Re(z) := z+z
2

, page 14

u(x, t) electromagnetic energy density,

u(x, t) := 1
2

(
ε0|E(x, t)|2 + 1

µ0
|B(x, t)|2

)
at a point x ∈ R3 and a

time t ∈ R, page 14

S(x,t) Poynting vector S(x, t) := 1
µ0

E(x, t) × B(x, t) at a point x ∈ R3

and a time t ∈ R, page 15

I(x) electromagnetic intensity I(x) := limT→∞
1
T

∫ T/2
−T/2 |S(x, t)|dt at a

point x ∈ R3, page 16

Ek = Eω,k0 plane wave with wave vector k = ω
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k0 ∈ R3, Ek(x) := neik·x for

some n ∈ k⊥ \ {0} and all x ∈ R3, page 16

x⊥ orthogonal complement of x ∈ R3, x⊥ := {y ∈ C3. x · y = 0},
page 16

ek = eω,k0 scalar plane wave with wave vector k = ω
c
k0 ∈ R3, ek(x) := eik·x

for x ∈ R3, page 16

FL Lorentz force, FL := ρelE + J×B, page 16

δx the δ-distribution at the point x ∈ R3, δx(ϕ) := ϕ(x) for

ϕ ∈ S(R3), page 17

eel elementary charge, page 17

mel mass mel ∈ [0,∞), page 17

Ω compact set Ω ⊂ R3, supp(ρel) ⊆ Ω, page 17

Ael vector potential Ael : R3 × R→ R3, B = curl Ael, page 17

ϕel scalar potential ϕel : R3 × R→ R, E + ∂tAel = −∇ϕel, page 17

∇f gradient of a function f on R3, page 17
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, page 18

P(x⊥) projection onto the orthogonal complement of a vector x ∈ R3,

P(x⊥) :=
(
I− x
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)
, page 18

I unit matrix, page 18
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2 , page 18
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Cb(R3,C3) space of bounded continuous complex vector fields on R3, page 19

S(R3) Schwartz space of rapidly decaying smooth functions on R3, page 19

Im(z) imaginary part of a complex number z ∈ C, Im(z) := z−z
2i

, page 19

FT = T̂ the Fourier transform of a tempered distribution T ∈ S ′(Rn),

T̂ϕ := T ϕ̂ for all Schwartz functions ϕ ∈ S(Rn), where

ϕ̂(k) =
∫
Rn ϕ(x)e−ik·xdx, page 20

dia(Ω) diameter of the set Ω ⊆ R3, dia(Ω) := sup{|x − y|. x,y ∈ Ω},
page 68

A(x) scattering amplitude A(x) := I(x)1/2 at a point x ∈ R3, page 69

F(x; k,Ω) Fresnel number of a point x ∈ R3 with respect to the wave vector

k ∈ R3 and the set Ω ⊆ R3, F(x; k,Ω) := dia(Ω)2|k|
2πd(x,Ω)

, page 68

Cc(R3) space of continuous functions on R3 with compact support, page 20

A(x) scattering amplitude A(x) := I(x)1/2 at a point x ∈ R3, page 20

B a Bravais lattice in R3, B = AZ3 for some A ∈ GL(3,R), page 21

GL(n,R) general linear group in n dimensions, page 21

T ∗ ϕ convolution of a tempered distribution T ∈ S ′(R3) with a Schwartz

function ϕ ∈ S(R3), T ∗ϕ(ψ) := T (ϕ−∗ψ) for all ψ ∈ S(R3), where

ψ1 ∗ ψ2(x) :=
∫
R3 ψ1(x− y)ψ2(y)dy for ψ1, ψ2 ∈ S(R3), page 21

δX the δ-distribution associated to a countable set X ⊂ R3,

δX :=
∑

x∈X δx, page 21

1Ω characteristic function of the measurable set Ω ⊆ R3, page 21

S ′(R3) space of tempered distributions on R3, page 21

VB volume of the unit cell of a Bravais lattice B, VB := | det(A)| with

B = AZ3, page 22

B⊥ reciprocal lattice of a Bravais lattice B,

B⊥ := {k ∈ R3. k · b ∈ 2πZ for all b ∈ B}, page 22

A⊥ generator matrix of the reciprocal lattice B⊥ of the Bravais lattice

B = AZ3, A ∈ GL(3,R), A⊥ := 2πA−T , page 22

kι reciprocal lattice vector with Miller index ι ∈ Z3, kι := A⊥ι,

page 23
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ι Miller index, ι ∈ Z3, gcd(ι1, ι2, ι3) = 1, page 23

λι distance of neighboring lattice planes with Miller index ι, page 23

UA
B canonical unit cell of a Bravais lattice B with respect to the gen-

erator matrix A, UA
B := A[0, 1)3, page 25

ϕA
B canonical unit cell density of a crystal with electron density

ρel = δB ∗ ϕ, ϕA
B := ρel

∣∣
UA
B

, page 26

pk projection operator along k, pkϕ(x0) :=
∫∞
−∞ ϕ(x0 + rk/|k|)dr for

x0 ∈ k⊥ and ϕ ∈ S(R3), page 26

sk slice operator, sk : S(R3)→ S(k⊥), skϕ(x0) := ϕ(x0) for x0 ∈ k⊥,

page 27

F−1T the inverse Fourier transform of a tempered distribution

T ∈ S ′(Rn), (F−1T )ϕ := T (F−1ϕ) for all Schwartz functions ϕ ∈
S(Rn), where F−1ϕ(x) = 1

(2π)n

∫
Rn ϕ(k)eik·xdk, page 30

f− inversion of the function f , f−(x) := f(−x) for x ∈ R3, page 30

S≥0(R3) set of non-negative Schwartz functions,

S≥0(R3) := {ϕ ∈ S(R3). ϕ ≥ 0}, page 31

SΩ(R3) space of Schwartz functions supported on Ω ⊂ R3,

SΩ(R3) := {ϕ ∈ S(R3). supp(ϕ) ⊆ Ω}, page 31

supp(T ) support of a tempered distribution T ∈ S ′(R3),

supp(T ) := {x ∈ R3. ∀ Uopen, x ∈ U ∃ ϕ ∈ S(U). Tϕ 6= 0},
page 31

Mζ phase operator associated to the phase function ζ,

Mζϕ := F−1(eiζϕ̂) for ϕ ∈ S(R3), page 31

T (R3) space of tempered functions,

T (R3) := {f ∈ C∞(R3). Dmf slowly increasing for all m ∈ N3
0},

page 32

M1(Ω) space of finite complex Borel measures on a measurable set Ω ⊆ R3,

page 37

FM1(Ω) space of Fourier transforms of finite complex Borel measures on a

measurable set Ω ⊆ R3, page 37

T the torus group, T := Z/2πZ, page 47
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S2 the 2-sphere in R3, S2 := {x ∈ R3. |x| = 1}, page 47

(Q|c) the isometry on R3 given by (Q|c)(x) := Qx + c for x ∈ R3, with

Q ∈ O(3), c ∈ R3, (Q|c) ∈ E(3), page 47

O(n) orthogonal group in n dimensions, page 47

E0 spatial part of the electric field of time-harmonic radiation

E : R3 → C3, E(x, t) = E0(x)e−iωt for some ω > 0, page 56

E(n) Euclidean group of isometries of n-dimensional space, page 53

B0 spatial part of the magnetic fileld of time-harmonic radiation

B : R3 → C3, B(x, t) = B0(x)e−iωt for some ω > 0, page 56

Ck(R3) space of k times continuously differentiable functions, k ∈ N0,

page 58

Rω
b space of time-harmonic radiation of frequency ω > 0, page 58

v(τ) velocity of a particle at the time τ , v(τ) = q̇(τ), page 64

n(x, τ) direction from particle to x at time τ , n(x, τ) = x−q(τ)
|x−q(τ)| , page 64

β(τ) relative particle velocity with respect to the speed of light,

β(τ) = v(τ)/c, page 66

L1(R3) (equivalence classes of) integrable functions on R3, page 70

R[E0]ρel radiation transform of ρel ∈ L1(R3) with respect to the time-

harmonic radiation E0 ∈ Rω
b ,

R[E0]ρel(s0) :=
∫
R3 e

−iω
c
s0·yE0(y)ρel(y)dy for s0 ∈ S2, page 70

P radiation parameter set, page 72

O observation parameter set, page 72

χ character of a unitary irreducible representation of a locally com-

pact group, page 77

((Q|c)E0) action of the isometry (Q|c) ∈ E(3) on the L∞-vector field E0,

((Q|c)E0)(x) = QE0((Q|c)−1x), page 81

Rω
b (G) space of bounded vector fields that satisfy the design equations for

the design group G and frequency ω > 0, page 82



200 Nomenclature

Rω,χ
b (G) space of bounded vector fields that satisfy the design equations for

the abelian design group G, the frequency ω > 0 and the character

χ ∈ Ĝ, page 83

Ĝ dual group of a locally compact abelian group or dual of a compact

group, page 83

H⊥G orthogonal group of a subgroup H ≤ G of a locally compact

abelian group G, H⊥G := {χ ∈ Ĝ. χ ↓GH (h) = 1 for all h ∈ H},
page 83

σ ↓GH subduced representation of a unitary irreducible representation σ

of the locally compact group G to the subgroup H ≤ G, page 83

Jα Bessel function of the first kind of integer order α ∈ Z, page 90

diag(v) diagonal n×n-matrix with components of v ∈ Rn on the diagonal,

(diag(v))jj = vj, j = 1, . . . , n, page 90

Hm the m-dimensional Hausdorff measure, m ∈ N0, page 92

E
(α)
k a twisted wave with wave vector k ∈ R3 and phase shift α ∈ Z,

E
(α)
k (x) = 1

2π

∫ π
−π e

−iαϕ̂Rϕ̂ne
iRϕ̂k·xdϕ̂ for some n ∈ k⊥ and all

x ∈ R3, page 93

e
(α)
k a scalar twisted wave with wave vector k ∈ R3 and phase shift

α ∈ Z, e
(α)
k (x) = 1

2π

∫ π
−π e

−iαϕ̂eiRϕ̂k·xdϕ̂ for x ∈ R3, page 93

SO(n) special orthogonal group in n dimensions, page 115

FG Fourier transform on a locally compact abelian or compact group

G, page 117

P χ
K Wigner projection for a compact group K and a character χ ∈ K̂,

P χ
Kf(x) :=

∫
K
χ(g)(gf)(x)dµK(g) for f ∈ Cb(R3), page 118

Eω,k0,χ symmetry-adapted wave with wave vector k = ω
c
k0 for a character

χ ∈ Ĝ for an isometry group G; when G is compact, then

Eω,k0,χ = P χ
GEω,k0 , page 120

eω,k0,χ scalar symmetry-adapted wave with vector k = ω
c
k0 for a character

χ ∈ Ĝ for an isometry group G; when G is compact, then

eω,k0,χ = P χ
Geω,k0 , page 120
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group G, page 120
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WG scalar wave transform for a locally compact abelian or compact

closed isometry group G

WG wave transform for a locally compact abelian or compact closed

isometry group G, page 147

σj,k matrix coefficient of a irreducible unitary representation σ ∈ K̂ of

a compact group, page 155

σ ↑GH induced representation of a unitary irreducible representation σ of

the subgroup H to the locally compact group G ≥ H, page 162

C0(R3) space of continuous functions on R3 vanishing at infinity, page 171∫
A

v · dS surface integral of the continuous vector field v over the oriented

surface (A,n) with A a two-dimensional submanifold of R3 and

n : A→ R3 a continuous normal vector field on A,∫
A

v · dS :=
∫
A

v · n dH2, page 177

Bε(x) open ball of radius ε > 0 at a point x ∈ R3,

Bε(x) := {y ∈ R3. |y − x| < ε}, page 177∫
C v · ds line integral of the continuous vector field v along the curve (C, τ)

with C a one-dimensional submanifold of R3 and τ : C → R3 a unit

tangent vector field on C,
∫
C v · ds :=

∫
C v · τ dH1, page 178

Resx(f) Residue of the meromorphic function f at the isolated singularity

x, page 180


