
Effect of Large Disturbances on the Local Behavior

of Nonlinear Physically Interconnected Systems

Motivation – Sensitivity in electric power systems: 

Subcritical instability & Ill-conditionedness

- [2]: In highly loaded situations, inherent tolerance to local

small variations reduces and the power systems moves from

being elastic to brittle.

- [3]: Increasing load leads to increasing condition number of

power flow Jacobian. Voltage instability is related to singularity.

- [4]: Interacting complex modes may cause

subcritical oscillatory instability.

Q1: What is the role of ill-condi-

tioning rather than singularity?

Q2: How are static behavior and

dynamic behavior interrelated?
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Problem Setting: 

Physically Interconnected systems

System class: 

 System of nonlinear DAEs

 has steady state operating point (with state )

 serving as set-point for controlled local dynamics

 Local dynamics determined by spectral properties:

Consider a steady forcing, so that ,  then,

Q 3: How to quantify the change in eigenvalue ?

Approach: 

Gateaux differentials & Constrained optimization

- The first variation of a nonlinear function has an expression as

inner product via the formalism of Gateaux differentials, i.e.

 Eigenvalue moves along gradient (most sensitive dir.)

-Gradient determined via constrained (Lagrangian) optimization

 Define the Lagrangian: (max spectral deviation s.t. EVP )

 Stationarity & Gateaux differential   

= Necessary optimality conditions

& Conditional equations for the gradient

Differences to classical eigenvalue sensitivity

Indendent of chosen coordinate system! [5]

Disturbance input vector contains structural

information

(Matrix valued perturbation of local dynamics

results from (nodal) disturbance input vector)

Main result & Implications:

Power flow Jacobian & Subcriticality

Theorem:  Estimate for deviations

 A2: Inverse of steady state Jacobian acts as gain matrix on 

eigenvalue senistivity! 

 A1: Condition number ~ worst case amplification

In simple models

Else, relations between can be characterized

using function maps (and their gradients) as introduced in [6]
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[1]:

Ill-conditioned linearized dynamics

 Eigenvalue sensitivity

Subcriticality (from interacting modes) 

Effect of transport mechanisms

in distributed physical systems

Voltage angle / magnitude

Active / reactive powers

Spectral sensitivity

Adjoint eigenvector

A3:

Discussion & Outlook

 Power flow not considered in linear models (for RT control) 

but interaction of the two has caused recent large blackouts!

 Large amplification possible scenario for subcritical Hopf-

bifurcation

 New, combined static/dynamic analysis tools, as in [7]


