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Is Non-Unique Decoding Necessary?
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Abstract—In multiterminal communication systems, signals
carrying messages meant for different destinations are often
observed together at any given destination receiver. Han and
Kobayashi proposed a receiving strategy, which performs a joint
unique decoding of messages of interest along with a subset of
messages, which are not of interest. It is now well-known that this
provides an achievable region, which is, in general, larger than if
the receiver treats all messages not of interest as noise. Nair and
El Gamal and Chong, Motani, Garg, and El Gamal independently
proposed a generalization called indirect or nonunique decoding
where the receiver uses the codebook structure of the messages
to uniquely decode only its messages of interest. Nonunique
decoding has since been used in various scenarios. The main
result in this paper is to provide an interpretation and a
systematic proof technique for why nonunique decoding, in all
known cases where it has been employed, can be replaced by
a particularly designed joint unique decoding strategy, without
any penalty from a rate region viewpoint.

Index Terms— Broadcast channel, joint decoding, non-unique
decoding, indirect decoding.

I. INTRODUCTION

ODING schemes for multi-terminal systems with many
C information sources and many destinations try to exploit
the broadcast and interference nature of the communication
media. A consequence of this is that in many schemes the
signals received at a destination carry information, not only
about messages that are expected to be decoded at the desti-
nation (messages of interest), but also about messages that are
not of interest to that destination.

Standard methods in (random) code design (at the encoder)
are rate splitting, superposition coding and Marton’s coding
[1], [2]. On the other hand, standard decoding techniques
are successive decoding and joint decoding [1], [3]. In [3],
Han and Kobayashi proposed a receiving strategy which
performs a joint decoding of messages of interest along with
a subset of messages which are not of interest. We will refer
to this receiving strategy as joint unique decoding (and to
the decoders as joint unique decoders) to emphasize the fact
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Fig. 1. The 3-receiver broadcast channel with two degraded message sets:
message M is destined to all receivers and message M; is destined to
receiver Y.
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that it seeks a unique choice not only for the messages of
interest, but also for the rest of the messages being jointly
decoded. It is now well-known that employing such a joint
unique decoder in the code design provides an achievable
region which is, in general, larger than if the receiver decodes
the messages of interest while treating all messages not of
interest as noise. Recently, Nair and El Gamal [4] and Chong,
Motani, Garg, and El Gamal [5] independently proposed a
generalization called indirect or non-unique decoding where
the decoder looks for the unique messages of interest while
using the codebook structure of all the messages (including the
ones not of interest). Unlike the joint unique decoder, such a
decoder does not necessarily uniquely decode messages not of
interest, though it might narrow them down to a smaller list.
We refer to such a decoder as a non-unique decoder. With
such a distinction, non-unique decoders perform at least as
well as joint-unique decoders. Coding schemes which employ
non-unique decoders have since played a role in achievability
schemes in different multi-terminal problems such as [6]-[10].
It is of interest, therefore, to see if they can achieve higher
reliable transmission rates compared to codes that employ joint
unique decoders.

In [4], the idea of non-unique (indirect) decoding is studied
in the context of broadcast channels with degraded message
sets. Nair and El Gamal consider a 3-receiver general
broadcast channel where a source communicates a common
message My to three receivers Y, Y», and Y3 and a private
message M only to one of the receivers, Y (Fig. 1). They
characterize an inner-bound to the capacity region of this
problem using non-unique decoding and show its tightness
for some special cases. It turns out that the same inner-bound
of [4] can be achieved using a joint unique decoding strategy
at all receivers. The equivalence of the rate region achievable
by non-unique decoding and that of joint unique decoding
was observed in [4], but it was arrived at by comparing single
letter expressions for the two rate regions. A similar equiv-
alence was also noticed in [5], again by comparing single-
letter expressions. For noisy network coding [6], it has been
shown that the same rate region can be obtained using joint
unique decoding and without the use of non-unique decoding
[11]-[14]. It was also observed in [7] that non-unique decoding
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is not essential to achieve the capacity region of certain state-
dependent multiple access channels and joint unique decoding
suffices.

In this paper, we will provide a proof technique which
systematically shows an equivalence between the rate region
achievable through non-unique decoders and joint unique
decoders in several examples. In particular, our line of argu-
ment is applicable to all known instances where non-unique
decoding has been employed in the literature as we discuss
in Section III. Our technique is based on designing a special
auxiliary joint unique decoder which replaces the non-unique
decoder and sheds some light on why this equivalence holds.
However, we would like to note that analysis using non-unique
decoding is often simpler and gives a more compact represen-
tation of the rate-region—a fact observed in [4] and [5]-which
still makes it a valuable tool for analysis.

Three remarks follow.

Remark 1: The reader might wonder if such an equivalence
holds on the rate-regions of schemes employing joint unique
decoders and non-unique decoders more generally. While
our proof technique is systematic and general, it is coupled
with the random nature of the codebook generation and the
encoder design. Indeed, any decoding scheme is coupled
with the encoding scheme and therefore asking for a more
general equivalence (for any encoding scheme) seems to be
a challenging problem (even to properly pose).

Remark 2: Non-unique decoders are usually easier to work
with (analytically), and they capture the correct error events
(conceptually). One might wonder what the advantages of joint
unique decoders are. It is generally interesting to know if
certain messages may be uniquely decoded at a receiver at
no rate-cost. In principle, such messages may be exploited to
improve the encoding schemes. We refer the interested reader
to [15] where an application of using joint unique decoders is
illustrated in designing a block Markov encoding scheme for
the broadcast channel with degraded messages.

Remark 3: In a related line of research, [16] proves opti-
mality of non-unique decoding for general discrete mem-
oryless interference channels, when encoding is restricted
to randomly generated codebooks, superposition coding, and
time sharing. The result of this paper and the techniques we
develop indicate that the same performance can be achieved
by employing joint unique decoding, and that joint unique
decoding is also optimal in the sense discussed in [16].

In Section II, we develop our proof technique in the context
of [4]. While much of the discussion in this paper is confined
to this framework, we show in Section III that the technique
applies more generally.

II. WHY JOINT UNIQUE DECODING SUFFICES IN THE
INNER-BOUND OF NAIR AND EL GAMAL IN [4]

We start this section by briefly reviewing the work of [4]
where inner and outer bounds are derived for the capacity
region of a 3-receiver broadcast channel with degraded mes-
sage sets. In particular, we consider the case where a source
communicates a common message (of rate Ry) to all receivers,
and a private message (of rate R;) only to one of the receivers.
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A coding scheme is a sequence of ((2"R0,2"R1) ») codes
consisting of an encoder and a decoder and is said to achieve
a rate-tuple (Rp, R1) if the probability of error at the decoders
decays to zero as n grows large.

Joint Unique Decoder vs. Non-Unique Decoder: We
consider joint typical set decoding. A decoder at a certain
destination may, in general, examine a subset of messages
which includes, but is not necessarily limited to, the messages
of interest to that destination. By the term examine, we mean
that the decoder will try to make use of the structure (of the
codebook) associated with the messages it examines. We say a
coding scheme employs a joint unique decoder if the decoder
tries to uniquely decode all the messages it considers (and
declares an error if there is ambiguity in any of the messages,
irrespective of whether such messages are of interest to the
destination or not). In contrast, we say that a coding scheme
employs a non-unique decoder if the decoder tries to decode
uniquely only the messages of interest to the destination and
tolerates ambiguity in messages which are not of interest.

Within this framework, [4, Proposition 5] establishes an
achievable rate region for the problem of 3-receiver broadcast
channel with degraded message sets. The achievability is
through a coding scheme that employs a non-unique decoder.
It turns out that employing a joint unique decoder, one can
still achieve the same inner-bound of [4]. In this section,
we develop a new proof technique to show this equivalence
systematically. The same technique allows us to show the
equivalence in all the examples considered in Section III.

A. Non-Unique Decoding in the Achievable Scheme
of Nair and El Gamal

The main problem studied in [4] is that of sending two
messages over a 3-receiver discrete memoryless broadcast
channel p(yi, y2, y3|x). The source intends to communicate
messages Moy and M to receiver 1 and message My to
receivers 2 and 3. Rates of messages Mo and M are denoted
by Rp and Rj, respectively. In [4] an inner-bound to the capac-
ity region is proved using a standard encoding scheme based
on superposition coding and Marton’s coding, and a non-
unique decoding scheme called indirect decoding. We briefly
review this scheme.

1) Random Codebook Generation and Encoding: To design
the codebook, split the private message M; into four inde-
pendent parts Mg, M11, M2, and M3 of non-negative rates
So, S1, S2, S3, respectively. Let Ry = So + S; + S2 + S3,
T, = S and T3 > S3. Fix a joint probability distribu-
tion p(u,v2,v3,x). Randomly and independently generate
27(Ro+50)  sequences U™ (mo, so), mo € [1 2R and
so € [1 :2"50], each distributed according to [T pu ).
For each sequence U" (myg, sg), generate randomly and condi-
tionally independently (i) 2"2 sequences V3 (mo, s0, 1), t2 €
[1:2"T2], each according to Hi pvou (02ilu;), and (ii) 2nTs
sequences V3'(mo, s0,13), 3 € [1 : 21731 each distributed
according to [[; pv, v (v3ilu;). Randomly partition sequences
V5 (mo, S0, t2) into 2752 bins Ba(mo, 50, s2) and sequences
V3t (mo, 50, t3) into 2"53 bins Bs(mo, so,53). In each prod-
uct bin By (mo, so, s2) x Bz(mo, so, s3), choose one (random)
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jointly typical sequence pair (V' (mo, so, t2), V3 (mo, S0, 3)).
If there is no such pair, declare an error whenever the message
(mo, S0, 52, $3) is to be transmitted. Finally for each chosen
jointly typical pair (V;' (mo, so, 2), V3'(mo, s0, #3)) in each
product bin (s7, s3), randomly and conditionally independently
generate 251 sequences X" (mo, 5o, 52, 53, 51), 51 € [1:2"51],
each distributed according to Hi px|uvav; (Xilui, 02i, 03;).
To send the message pair (mg,m;), where m; is
expressed as (sg, s, 52, 53), the encoder sends the codeword
X" (mo, 50, 52, 53, 51).

2) Non-Unique Decoding: Receiver Y; jointly uniquely
decodes all messages My, M19, M11, M12, and M3. Receivers
Y> and Y3, however, decode M indirectly, through a non-
unique decoding scheme. More precisely,

o Receiver Y; declares that the message tuple
(mo, S0, 52, 53, s1) was sent if it is the unique quintuple
such that the received signal Y| is jointly typical with
(U"(mo, s0), V5 (mo, so, 12), V3' (mo, s0, 13), X" (mo, so,
52,53, 51)), where s is the bin index of Vj'(my, so, 22)
and s3 is the bin index of V3'(my, o, 13).

« Receiver Y> declares that the message pair (Mo, M1o) =
(mo, so) was sent if it finds a unique pair of indices
(mo, so) for which the received signal Y3 is jointly
typical with (U" (mo, s0), V,' (mo, so, t2)) for some index
ne[l:2"2].

e Receiver Y3 is similar to receiver Y» with V3 and 3,
respectively, instead of V, and #,.

The above encoding/decoding scheme achieves rate pairs
(Ro, Ry) for which inequalities (1) to (12) below are satisfied
for a joint distribution p(u, v2, 03, x). The reader is referred
to [4] for the analysis of the error probabilities.

Rate splitting constraints:

Ri=S+S1+5+$3 €))

T,> 8 )

T3> S3 3)

S0, S1, 82,83 = 0 “)
Encoding constraint:

D+ T3> S+ 83+ 1(Va; V3|U) (5)
Joint unique decoding constraints at receiver Y7:

S1 = 1(X; "1|U, Va2, V3) (6)

S1+ 8 < I(X; "1 |UV3) @)

S1+ 83 < I(X; 1 [UV2) (®)

S1+ 8+ 8 < I(X; Y1|U) )

Ro+So+S1+S+8S3<I(X;Y7) (10)
Non-unique decoding constraint at receiver Y»:

Ro+So+ T < 1(UVy; Ya) (11)
Non-unique decoding constraint at receiver Y3:

Ro + So + T3 < I(UV3; Y3). (12)

B. Joint Unique Decoding Suffices in the Achievable
Scheme of Nair and El Gamal in [4]

Fix the codebook generation and encoding scheme to be
that of Section II-A. We will demonstrate how a joint unique
decoding scheme suffices by following these steps:
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(1) We first analyze the non-unique decoder to characterize
regimes where it uniquely decodes all the messages it
considers and regimes where it decodes some of the
messages non-uniquely.

(2) For each of the regimes, we deduce that the non-unique
decoder may be replaced by a joint unique decoder.

For the rest of this section, we only consider decoding schemes

at receiver Y. Similar arguments are valid for receiver Y3

due to the symmetry of the problem. We refer to inequality

(11), which is shown in [4] to ensure reliability of the non-

unique decoder at receiver Y», as the non-unique decoding

constraint (11).

Let the rate pair (Rp, R1) be such that the non-unique
decoder of receiver Y> decodes message My with high proba-
bility; i.e., the non-unique decoding constraint (11) is satisfied.
Consider the following two regimes:

(@) Ro+ So < I(U; Yr),

(b) Ro+ So > I(U; o).

In regime (a), it is clear from the defining condition
that a joint unique decoder which decodes (My, Mjg) =
(mo, so) by finding the unique sequence U" (myg, sg) such that
(U"(mo, s0), Y;') is jointly typical will succeed with high
probability. This is the joint unique decoder we may use in
place of the non-unique decoder for this regime. Notice that
in this regime, while the non-unique decoder obtains (g, so)
uniquely with high probability, it may not necessarily succeed
in uniquely decoding #>. Indeed, in this regime insisting on
joint unique decoding of U" (my, s0), V,' (mo, so, t2) could, in
some cases, result in a strictly smaller achievable region.

Regime (b) is the more interesting regime. Here it is
clear that simply decoding for (My, M1g9) and treating all
other messages as noise will not work. Non-unique decoding
must indeed be taking advantage of the codeword V;' as
well. The non-unique decoder looks for a unique pair of
messages (mg, so) such that there exists some fp for which
(U"(mo, s0), V" (mq, s0, 12), ¥3') is jointly typical. One may,
in general, expect that there could be several choices of 1,
even in this regime. An important observation is that, in this
regime, there is (with high probability) only one choice for #,.
In other words, in this regime, receiver 2 decodes tr uniquely
along with mg and so. To see this, notice that using inequality
(11) and (b) above, we have

T, < I(Vy; Y2|U). (13)

Inequalities (11) and (13) together guarantee that a joint unique
decoder can decode messages My, Mg, and M, with high
probability. Note that condition (11) makes the probability of
an incorrect estimate for (Mg, M) vanish; and condition on
My, M1 being correctly estimated, inequality (13) drives the
probability of an incorrect estimate for M1, to zero. In other
words, in regime (b) the non-unique decoder ends up with
a unique decoding of the satellite codeword V' (my, so, t2)
with high probability; i.e., we may replace the non-unique
decoder with a joint unique decoder for messages My, Mo,
M>. To summarize loosely, whenever the non-unique decoder
is forced to derive information from the codeword V' (i.e.,
when treating V,' as noise will not result in correct decoding),
the non-unique decoder will recover this codeword also
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uniquely. We make this loose intuition more concrete in
Section II-C.

The same argument goes through for receiver Y3 and
this shows that insisting on jointly uniquely decoding at all
receivers is not restrictive in this problem. Thus, we arrive at
the following:

Theorem 1: For every rate pair (Rp, R;) satisfying the
inner-bound of (1)-(12), there exists a coding scheme employ-
ing joint unique decoders which achieves the same rate pair.

The idea behind the proof of Theorem 1 was simple and
general. Consider a non-unique decoder which is decod-
ing some messages of interest. The message of interest in
our problem is Mp. Along with this message of interest,
the decoder might also decode certain other messages,
Mo and M, for example. The two main steps of the proof
is then as follows.

(1) Analyze the non-unique decoder to determine what mes-
sages it decodes uniquely. Depending on the regime
of operation, the non-unique decoder ends up uniquely
decoding a subset of its intended messages, and non-
uniquely the rest of its intended messages. For example
in regime (a) above, the non-unique decoder uniquely
decodes only My and Mjp and it might not be able
to settle on My>. While in regime (b), the non-unique
decoder ends up decoding all of its three messages My,
Mo, and M1, uniquely.

(2) In each regime of operation characterized in step (1), use
a joint unique decoder to only decode the messages that
the non-unique decoder uniquely decodes. In the above
proof, this would be a joint unique decoder that decodes
My and M in regime (a) and a joint unique decoder
that decodes messages My, M1o, and Mj, in regime (b).
Verify that the resulting joint unique decoder does support
the corresponding part of the rate region achieved by the
non-unique decoding scheme.

Though the idea is generalizable, analyzing the non-unique
decoder in step (1) is a tedious task. Even for this very
specific problem, it may not be entirely clear how the condition
dividing cases (a) and (b) can be derived. Next, we try
to resolve this using an approach which generalizes more
easily.

C. An Alternative Proof to Theorem 1:
An Auxiliary Decoder

We take an alternative approach in this section to prove
Theorem 1. The proof technique we present here has the same
spirit as the proof in Section II-B, but the task of determining
which subset of messages should be decoded in what regimes
will be implicit rather than explicit as before. To this end,
we introduce an auxiliary decoder which serves as a tool to
help us develop the proof ideas. We do not propose this more
complicated auxiliary decoder as a new decoding technique,
but only as a proof technique to show sufficiency of joint
unique decoding in the problem of [4]. We analyze the error
probability of the auxiliary decoder at receiver Y> and show
that under the random coding experiment, it decodes correctly
with high probability if the non-unique decoding constraint
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(11) holds. From this auxiliary decoder and its performance,
we will then be able to conclude that there exists a joint unique
decoding scheme that succeeds with high probability.

We now define the auxiliary decoder. The auxiliary decoder
at receiver Y, is a more involved decoder which has access to
two component (joint unique) decoders:

e Decoder 1 is a joint unique decoder which decodes
messages My and Mig. It finds My, and M1 by looking
for the unique sequence U"(myo, sp) for which the pair
(U"(mo, s0), Y3') is jointly typical, and declares an error
if there exists no such unique sequence.

o Decoder 2 is a joint unique decoder which decodes mes-
sages Moy, Mo, My>. It finds My, M19, M12 by looking
for the unique sequences U" (myo, so) and VJ'(myg, o, t2)
such that triple (U" (mo, s0), V,' (mo, so, 2), Y3') is jointly
typical, and declares an error when such sequences do not
exist.

The auxiliary decoder declares an error if either (a) both
component decoders declare errors, or (b) if both of them
decode, but their decoded (Mo, M1o) messages do not match.
In all other cases it declares the (Mp, Mip) output of the
component decoder which did not declare an error as the
decoded message.

We analyze the error probability under the random coding
experiment of such an auxiliary decoder at receiver Y> and
prove that for any € > 0, there is a large enough n such
that

Pr(error at the auxiliary decoder)

< ¢ + 2" Ro+S0+ T2 =1 (UV2:Y2) 47 (€)) (14)
where y (¢€) — 0 as € — 0. Inequality (14) shows that for large
enough n and under the non-unique decoding constraint (11),
the auxiliary decoder has an arbitrary small probability of
failure.

To prove (14), assume that (mo, so, s1,52,53) = (1,1,1,
1,1) is sent and indices f; and # in the encoding pro-
cedure are (f,13) = (1,1). This assumption causes no
loss of generality due to the symmetry of the code-
book construction. We denote the random variables cor-
responding to these indices by Z,,, Zy,, ..., Z; and
we refer to the tuple (Zyn, Zsy, Zs,» Zsy» Lsy» Lty» Z13) by ZI.
In the rest of this section, we assume Z = 1, the
all 1’s vector, and analyze the probability that receiver
Y> declares My # 1. Receiver Y» makes an error in
decoding My only if at least one of the following events
occur:

E1: The channel and/or the encoder is atypical: the triple
(1, 1), vy, 1,1), Vi1, 1,1), Yj) is not jointly
typical.

&r: Both decoders fail to decode uniquely and declare
errors: there are at least two distinct pairs (g, So)
and (mg, So) such that both pairs (U" (10, 50), ¥;') and
(U"(mo, 50), Y3') are jointly typical; and similarly there
are at least two distinct triples (1729, o, £2) and (1, 5o, 12)
such that both triples (U" (10, 50), V' (1o, S0, 12), Y3')
and  (U"(mo, 50), V3 (1o, S0, 1), Y)) are jointly
typical.
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Therefore, the probability that receiver Y» makes an error is
upper-bounded in terms of the above events.

Pr(error at the auxiliary decoder|Z = 1)
<Pr(EZ=1D)+Pr(&N&ENT =1)

<e+Pr(&NENT =1). (15)

where (15) follows because Pr(&|Z = 1) =
Pr((U"(1,1), V3 (1,1, 1), V5'(1,1,1),Y)) ¢ AZ|IT = 1) < €
(ensured by the encoding and the Asymptotic Equipartition
Property). To upper-bound Pr(£; N &(|Z = 1), we write

Pr(&NENT=1)

0", 1), Vi (1, 1, 1), V31, 1, 1), Y,) e AZ,
and
(U"(mo, 50), ¥,') € A¢
Pr for some (mo, 59) % (1, 1),
and
(U" (o, $0), V3 (1o, S0, 12), Y3') € AZ
for some (i119, S0, £2) # (1,1, 1)

(16)

=1

(17)
o, 1, Vzn(l, 1, 1), V3”(1, 1, 1), YS)GA?,
and
(U" (mo, 50), Y5') € A?
for some (mo, So) # (1, 1),
and
(U" (1o, $0), V3 (o, S0, 12), Y3') € A
for some (1119, o) # (1, 1) and 7>

U™(1,1), V21,1, 1), VA(1, 1, 1), ¥ € A",
and
(U™ (mo, 50), Y;) €Al

for some (o, So) # (1, 1),

and
all (U" (mo, S0), VZ"(nAlo, 50, 1), Y)eA;
are s.t. (g, So)=(1, 1)
with at least one s.t. 7 # 1

+ Pr

(18)

In the above chain of inequalities, (a) holds because event
& N &£ is a subset of the event on the right hand
side.

It is worthwhile to interpret inequality (18). The error event
of interest, roughly speaking, is partitioned into the following
two events.

(1) The auxiliary decoder makes an error and the non-unique
decoder of Section II-A also makes an error.

(2) The auxiliary decoder makes an error but the non-unique
decoder of Section II-A decodes correctly. We will show
that the probability of this event is small. Note that under
this error event, (a) component decoder 1 fails (i.e., it
is not possible to decode (Mp, M1p) by treating V' as
noise), but still (b) non-unique decoder succeeds (i.e., the
non-unique decoder must be deriving useful information
by considering V;'). By showing that this error event
has a small probability, we in effect show that whenever
(a) and (b) hold, it is possible to jointly uniquely decode
the V' codeword as well. This makes the rough intuition
from Section II-B more concrete.
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To bound the error probability, we bound the two terms of
inequality (18) separately. The first term of (18) is bounded
by the probability of the non-unique decoder making an
error:

", n,vya, 1, 1), v, 1, 1), Y5 € Az,
and
(U"(mo, 50), Y') € A¢
Pr for some (mo, 5o) # (1, 1)
and,
(U™ (o, S0), V3 (o, So, 12), Y} € A”
for some (7o, §o) # (1, 1) and %

=1

<pr (U" (1o, 50), an(fflo, 50, 12), Y3) € A¢
- for some (rg, So) # (1, 1) and 1,

)

< > Pr(U" (o, $0), V5 (1ho, S0, 12), Y € AZ|T = 1)
(0, 30)#(1,1)

15}

< nTann(Ro+50) p—n(1(UV2;Y2) =71 (e)).[Spt] (19)
The second term of (18) is upper-bounded by the expression
in (20), as we elaborate.

w1, 1), vy(1,1,1), Vi1, 1, 1), ;) € A7,
and
(U"(mo, S0), ¥5') € A?
for some (mo, So) # (1, 1),

Pr =1
and
all (U" (o, ), V3' (o, So, 2), Y3) € A”
are s.t. (img, So) = (1, 1)
with at least one s.t. i, # 1
< 2n(Ro+So+T2) p—n(I (U Va; Yz)*yz(f)*é‘(f))[spt] (20)

We derive the bound (20) as follows. First, we write the
following chain of inequalities.

w1, 1), vy1A,1,1), Vi1, 1,1), Y3) € AZ,
and
(U" (mo, S0), Y5') € A¢
for some (mo, So) # (1, 1),

Pr =1
and
all (U" (1o, 30), V3! (1o, 30, 1), Y3) € A”
are s.t. (Mg, So) = (1, 1)
with at least one s.t. i, # 1
", n, vy, 1,0, v, 1, 1), ;) € A7,
and
(U" (mo, 50), ¥') € A?
<Pr for some (mo, So) # (1, 1), =1
and
0", 1), V3(1,1,0),Y}) € A?
for some # # 1
", n,vya, 1,1,
V3”(l, 1, l),Yz")EA?,
and
= 2.m U Gig, 50, ¥y € ar [T
(mo,50)#(1,1 and
£l R
’ U1, 1), VI(1, 1, h), Y1) € AP,
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< on(Ro+So+T2)
w1, 1), vy, 1,1,
V3"(1, 1,1), Y))e Az,
and
(U"(mo, S0), ¥,') € A¢,
and
U"(1,1), Vi, 1,10),Y})) € A?

x Pr =1 21)

where we have (i9,50) # 1 and #» # 1 in the event in
inequality (21).

Next, we bound the probability term in (21). In what
follows, U", V3, V2, U", V3 denote U"(1, 1), Vi(1, 1, 1),
Vi, 1,1), U"(mo,5s0), V2”(1,1,f2), respectively. Also,
purz(u"|1) denotes Pr(U" = u"|Z = 1). We sometimes drop
the subscripts of probabilities if there is no ambiguity; e.g.,
Q1) is just pysz(u|D).

In order to bound the probability term in (21), one should
treat pU,anVnYnU,an‘I(u vy, 03, vy, 4", 05]1). This would
have been a stralghtforward task if the generated codebook
was independent of indices Z. Nonetheless, it is an important
observation that this is not the case.! For example, given
U" (and under the conditioning Z = 1), Y7 may not be
independent of \72” Interestingly however, almost the same
result holds. We address this in the following. We follow the
proof idea in [17] to address this technicality.

7= 1)

p ( ", vy, vi,Yy) e A? and
p(”r: Ug’ 03’ yg’ i, 62|1)

(0", Y}) € A" and (U", VI, Y}) € A”

-2 2 2

n,n ~n.

wop vy ypeA?
( }n)E.AE @t"l} y")eA”

= 2 2 2lp@enen

Wy o5, yNeAr i n 05 X p@"|u', 02, 03, yz» 1)
@ADEAL Wit AL x ' ol ol V1, i% 1)]

=2 2

wrol o5 ypeAr i 05
203D ) eAr

> [pwh o, o y310
X pyn @")
AT pER I o, ot v2, D]

@
=2 2 2 [peenoion
@3, yz’)eA”w i oy Xpyr @")

DAL iy v At p@Iuct vl o, D]

(b)
= > > X[t
(u”l)” u”}”)e . an on. w
2273272 (”yg)EA” (u”{)\ ;")E.Ai(plilég::) o
22 X2 p‘}271|Un(l)2|un)]

< ond(€) g—n(I(U:Y2)=y"(€))9g—n(I (Va; V2[U) =y (€))

x> pn,
(u™, 05 ,05,y5)e Az

<2 n(I(UVz;Y2)—y2(€)—d(€))

vy, 05, y5|1)

IThis was pointed out to us by anonymous reviewers, to whom we
are grateful. Similar observations are made in [17] and [18] where proof
techniques were developed to handle such technicalities.
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Step (a) follows from the fact that \72” -ut, vy, v, 1Y)
forms a Markov chain. In order to prove step (b), we show that
conditioned on U", \72" is “almost” independent of V', V3', 7.
More precisely, we use similar steps as in [17, Lemma 1]
and show in Appendix A that for any jointly typical tuple
(u",v5,0%5) € A? and any € > 0, there is a large enough
n such that p(d%|u", 04, 0%, 1) < 29 p(58|u"), where J(¢)
tends to zero as € — 0.

We conclude the error probability analysis by putting
together inequalities (15), (18), (19), and (20) to obtain that
the error probability at the auxiliary decoder is bounded as in
inequality (14). So for large enough n, the auxiliary decoder
succeeds with high probability if the non-unique decoding
constraint (11) is satisfied; i.e., when the non-unique decoder
succeeds with high probability.

One can now argue that if the auxiliary decoder succeeds
with high probability for an operating point, then there also
exists a joint unique decoding scheme that succeeds with high
probability. The idea is that for all operating points (except
in a subset of the rate region of measure zero), each of the
two component (joint unique) decoders 1 and 2 have either
a high or a low probability of success. So, if the operating
point is such that the auxiliary decoder decodes correctly with
high probability, then at least one of the component decoders
should also decode correctly with high probability, giving us
the joint unique decoding scheme we were looking for. This
is summarized in Lemma 1, and the reader is referred to
Appendix B for the proof.

Lemma 1: Given any operating point (except in a subset
of the rate region of measure zero), if the auxiliary decoder
succeeds with high probability under the random coding
experiment, then there exists a joint unique decoding scheme
that also succeeds with high probability.

A similar argument goes through for receiver Y3. The
random coding argument for the joint unique decoding scheme
can now be completed as usual.

D. Discussion

Remark 4: In Sections II-B and II-C, we did not consider
cases where Rg+ So = I(U; Y») or Ro+ So = I (U; Y3) (i.e.,
a subset of measure zero). This is enough since we may get
arbitrarily close to such points.

Remark 5: In Sections II-B and II-C, we fixed the encoding
scheme to be that of [4]. The message splitting and the
structure of the codebook is therefore a priori assumed to be
that of [4], even when Ry + So < I(U; Y») and message M
is not jointly decoded at Y>. However, in such cases this
extra message structure is not required and one can consider
message Mp> as a part of message M.

III. MORE EXAMPLES

We saw that joint unique decoding was sufficient to achieve
the inner-bound of [4]. This is not coincidental and the same
phenomenon can be observed for example in the work of
Chong, Motani, Garg and El Gamal [5] where the region
obtained by non-unique decoding turned out to be equivalent
to that of Han and Kobayashi in [3]. Similarly for noisy
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network coding [6], it has been shown that the same rate
region can be obtained employing joint unique decoding
[11]-[14]. It was also observed in [7] that non-unique decoding
is not essential to achieve the capacity region of certain state-
dependent multiple access channels and joint unique decoding
suffices. Non-unique decoding schemes have appeared also in
[8]-[10]. We consider these three problems next and show that
employing joint unique decoders, one can achieve the same
proposed inner-bounds. To show such equivalence, we use the
proof technique that we developed in Section II-C.

A. Two-Receiver Compound Channel With State
Noncausally Available at the Encoder

An inner-bound to the common message capacity region
of a 2-receiver compound channel with discrete memoryless
state noncausally available at the encoder is derived in [8].
The inner-bound is established using superposition coding,
Marton’s coding, and non-unique decoding schemes. More
precisely, the achievable scheme is as follows:

1) Codebook Generation: Fix pwyy(w, u,v) and f(w, u,
v, s). For each message m, generate randomly and indepen-
dently 2770 sequences W”(m,ly) according to [T pw(w)).
For each (m, lp), generate randomly and conditionally inde-
pendently (i) 2""' sequences U"(m,lp,l;) according to
I1; puyw (uilw;) and (i) 2"T2 sequences V" (m, Iy, I») accord-
ing to [[; pviw (vilw).

2) Encoding: Given message m and state s”, the encoder
finds lp such that (W"(m,ly),s") € AZ. If there is more
than one such index, one is chosen uniformly at random.2
If there is no such index, a random index is chosen among
{1,...,2"0} Next, the encoder finds /; and /> such that
(W"(m, ly), s", U"(m,lo,11), V"' (m, Iy, l2)) € AZ. If there is
more than one such index pair, one pair is chosen uniformly
at random. If there is none, a random index pair (I1,[2)
is chosen among {1...,2"T1} x {1,...,2""2}. The encoder
transmits x”, x; = f(w;, u;, v;, s;), where w" = W"(m,ly),
u" = U"(m,lp, 1), and " = V™' (m, Iy, ).

3) Decoding: Receiver Y; declares message M to be
the unique index m for which (W"(m, ly), U" (m, ly, 1), Y{")
is jointly typical for some Iy € {I,...,2"70} and I; €
{1,...,2"T1}, Receiver Y, follows a similar scheme.

In this problem, we show that employing joint unique
decoders lets us achieve the same inner-bound of Theorem 1
of [8]. We outline the proof which is built on the proof
technique of Subsection II-C. Define the auxiliary decoder
(at receiver Y1) to have access to two component (joint unique)
decoders: one jointly uniquely decoding indices my, lp, and
one jointly uniquely decoding indices my, lp, /1. The auxiliary
decoder declares an error if either (a) both component decoders
declare an error or (b) neither of them declare an error but they
do not agree on their decoded mg and /o indices.

We now analyze the error probability. Assume, without
any loss of generality, that the originally sent indices were
(m,lo,11,1) = (1,1, 1,1). We denote this event by Z = 1.
Proceeding as in Section II-C, the error probability of the

2We allow a small modification to [8] in randomly choosing the index [
whenever there is not a unique choice.
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auxiliary decoder is bounded by the following probability
term.

Pr(error|Z = 1)
w1, 1,8",U"1,1,1),
Vi1, 1,1), Y] € AL,
and
(W" (i, lp), Y1) € A"

se+br for some (111, lp) # (1, 1), =1
and
(W (i, bo), U™ (i, Do, 1), YT') € A?
for some (71, lo, [1) # (1,1, 1)
(22)

The probability term on the right hand side of inequality (22)
is very similar to what we obtained in inequality (17) and
is analyzed in the same manner (with the subtle difference
that W"(m,lp) is indexed not only by the message but
also by the state, which asks for a more careful treatment).
See Appendix C. We follow similar steps to conclude that
the auxiliary decoder performs reliably under the non-unique
decoding constraints of [8]. So, there exists a joint unique
decoding scheme that performs reliably under those decoding
constraints. More explicitly, the proposed joint unique decod-
ing scheme would be joint unique decoding of m and Iy,
if Ro + Tp < I(W;Yy); and joint unique decoding of m,
lo and [, otherwise.

B. Three-User Deterministic Interference Channel

In [9], an inner-bound to the capacity region of a class
of deterministic interference channels with three user pairs
is derived. The key idea is to simultaneously decode the
combined interference signal and the intended message at each
receiver and this is done by a non-unique decoding scheme.
We focus on [9, Th. 1] and to have the paper self contained
we briefly mention the encoding and decoding scheme. The
deterministic interference channels that are considered here
are described by the following deterministic relations between
the inputs and the outputs3: Yv = fx(Xkk, Sx) where S; =
h1(X21, X31), S2 = h2(X12, X32), an S3 = h3(X23, X13) and
X = gie(Xp) for every 1,k € {1,2,3}. It is assumed that
functions h; and f; are one-to-one mappings when either of
their arguments is fixed.

Codebook Generation: Fix the probability mass function
(pmf) p(q) p(x11q) p(x21q) p(x3|q). Sequence Q" is generated
according to []; po(gi). For each k = 1,2,3, sequences
Xp(my), myg € {1,...,2"%)} are generated randomly and
conditionally independently according to []; px, o (x.ilgi)-

Encoding: To send message my, transmitter k transmits
X5 (my).

Decoding: Upon receiving Y{', decoder 1 declares that
m is sent if it is the unique message such that

(Q", X? (my), S{l (my, m3), Xgl (my), Xgll (m3), Yln) € .AZ

for some my € [1 : 2] and m3 € [l 1R
Decoders 2 and 3 work similarly.

3 All results easily generalize to interference channels with noisy observa-
tions (e.g., [9, Th. 4]).
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Here, we use the proof technique of Section II-C to prove
that a code design that employs joint unique decoders achieves
the same inner-bound.

Define the auxiliary decoder (at receiver Yj) to have
access to four component (joint unique) decoders: one jointly
uniquely decoding X"(m1), one jointly uniquely decoding
X! (m1) and X75,(m>), one jointly uniquely decoding X/ (m1)
and X7%,(m3) and finally one jointly uniquely decoding all
sequences X" (m1), X5, (m2), X5,(m3), and S} (m2, m3). The
auxiliary decoder declares an error if either (a) all component
decoders declare error, or (b) not all of the decoders that
decode without declaring an error agree on the decoded
index mg (i.e., among those component decoders that do not
declare an error, there is not a common agreement on the
decoded index my).

We now analyze the error probability of the auxil-
iary decoder. We assume without any loss of generality
that (my,m>,m3) = (1,1,1) was sent. Proceeding as in
Section II-C, the error probability of the auxiliary decoder
is bounded by inequality (23) as follows.

Pr(error)
(Q", X{(m1), Y{') € A7
for some m| # 1, and
(Q", X7 (m1), X5,(m2), Y') € A¢
for some (m,my) # (1,1), and
<e+Pr| (0", X](m1), X5,0m3), Y") € A7 |Z=1
for some (ry,m3) % (1,1), and
(", X7 (), 7 G, ),
Xgl (m2)9 Xgll(m3)9 Yln) € A?
for some (711, o, m3) # (1,1, 1)
(Q", X (m1), Y]') € A¢
for some m # 1, and
(Q", X' (m1), X5,(m2), Y1') € A¢
for some (ri11,my) # (1, 1), and
<e+Pr| (Q", X](iy), X5,(13), Y) € A | T =1
for some (my,m3) # (1,1), and
(Q", X (i), S} (z, m3),
X5, (ia), X5, (3), Y') € Al
for some (717, m3), m; # 1
(Q", X (my1), Y1) € A7
for some m # 1, and
(Q", X (m1), X5,(m2), Y1') € A¢
for some (m,my) # (1,1), and
+Pr | (Q", X[ (1), X5,(m3), Y) € A |ZT=1
for some (my1,m3) % (1,1), and
(Q”,X?(@l),sf(@z,m3),
X5, (p) X5, (m3), Y) € A?
for some (17, m3) # (1,1), m; =1
(23)

As before, the first probability term of inequality (23)
is upper-bounded by the probability of an indirect decoder
making an error; i.e., by the expression below.

(Q" X' (my), S} (m2, m3),
Pr Xgl(rflz), Xgll(rfl3), Yln) e A\T=1
for some (17, m3) and m; # 1

(24)
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In [9], constraints on rates have been derived under which
this error probability approaches 0 as n grows large and an
achievable rate region has been characterized. We refer to these
constraints as the non-unique decoding constraints of [9]. One
can show that under these decoding constraints, the second
probability term can also be made arbitrarily small by choosing
a sufficiently large n (Appendix D). It then becomes clear
that the auxiliary decoder succeeds with high probability if
the non-unique decoding constraints of [9] are satisfied. So,
analogous to Section II-C, we conclude that there exists a joint
unique decoding scheme that achieves the same inner-bound of
[9, Th. 1].

C. Three-Receiver Broadcast Channel With Common and
Confidential Messages

In [10] a general 3-receiver broadcast channel with one
common and one confidential message set is studied. Inner-
bounds and outer-bounds are derived for the capacity regions
under two setups of this problem: when the confidential
message is intended for one of the receivers and when the
confidential message is intended for two of the receivers.
We only address the first setup here, and in particular
[10, Th. 2]. The other inner-bounds can be similarly dealt
with. In Theorem 2, the authors establish an inner-bound to the
secrecy capacity region using the ideas of superposition cod-
ing, Wyner wiretap channel coding, and non-unique decoding.
We briefly explain the achievable scheme.

Codebook Construction: Fix pyvyv,v,x (U, vg, 01, 02, X).
Choose R, > 0 such that Ry — R, + R, > I(Vy; Z|U) +
d(€). Randomly and independently generate 2"R0 sequences
u"(mo), each according to []; Py(u;). For each my, ran-
domly and conditionally independently generate sequences
vg (mo, my, my), (my, m,) € [1:2"R1+R)] each according to
[1; Pvoiv woilu)- For each (mq, m1, m;): (i) generate sequences
of (mo, my,my, t1), 11 € {1,. ..,2"}, each according to
T1; PviIvoiilvon» and partition the set {1, ...,2"T1} into 27K
equal size bins B(mg,mi,m,,l1), (ii) generate sequences
vy (mo, mimy, 1), tn € {1,...,2"2}, each according to the
product distribution []; pv,jv, (v2ilve;) and partition the set
{1,...,2"72} into 2"R2 equal size bins B(mg,mi,m,, ).
For each product bin B(/1) x B(l;), find a jointly typical
sequence pair (vf (mo, m1, m,, t1(l)), v} (mo, m1, m,, t2(I2)),
and associate it to the product bin. If there is more than
one pair, one of the jointly typical pairs is picked uniformly
at random. If there is no such pair, one pair is picked
uniformly at random from the set of all possible pairs.
Finally, for all (mq,m, m,) and all their associated sequence
pairs (Di’(m(), mi, my, (l])), 1)5Z (m(), mi, my, tz(lz)) a code-
word X" (mg, my, my, t1(l1), t2(l2)) is generated according to
[1; Pxivovivs (xilvoi, 17, 02:)-

Encoding: To send the message pair (mg,my), the
encoder chooses a random index m, € {I,...,2"%"}
and thus the sequence pair (u"(mo), vy (mo, my, my)).
It then chooses a product bin index (Lj,L») at ran-
dom and selects the corresponding jointly typical pair
(v} (mo, m1, my, t1(L1)), 05 (mo, m1, m,, t2(L2)) in it. Finally
the corresponding codeword X" (mg, m1, m,, t{(L1), t2(L2)) is
sent.
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Decoding: Both legitimate receivers Y1 and Y, decode
their messages of interest, My and M;p, by non-unique
decoding schemes. More precisely, receiver Y; looks
for the unique triple (mg,mi,m,) such that the tuple
(U"(mo), Vy (mo.my,m;), V' (mo, my, m,, t1), Y{') is jointly
typical for some #; € [1 : 27711, Receiver Y, follows a similar
scheme. Receiver Z decodes m directly by finding the jointly
typical pair (U"(mo), Z").

We use the proof technique of Subsection II-C to show that
a code design that employs joint unique decoders achieves
the same inner-bound. To do so, we first present an auxil-
iary decoder which succeeds with high probability under the
decoding constraints of [10], and then conclude that there
exists a joint unique decoding scheme that succeeds with high
probability.

Define the auxiliary decoder (at receiver Y;) to have
access to two component (joint unique) decoders, one
jointly uniquely decoding indices mg, m1, m, and the other
jointly uniquely decoding indices mg, m1, m,, t;. The auxil-
iary decoder declares an error if either (a) both component
decoders declare errors, or (b) if both of them decode and
their declared (mg, m, m,) indices do not match. In all other
cases it declares the index triple (mg,m, m,) according to
the output of the component decoder which did not declare
an error. Proceeding as in Section II-C, the error probability
of the auxiliary decoder can be bounded by (25) as follows.
As before, we assume without any loss of generality that the
all-1-indices are chosen at the encoding stage, and we denote
this event by Z = 1.

Pr(error | Z =1)
(U"), vi(1,1,1), v, 1,1,1),
Vi1, 1,1,1), Y1) e A
and
(U"(my), Vy (mo, my, my), Y{') € A7
for some (mq, my,m,)#(1,1,1)
and
(U" (o), Vi (o, i1, i)
Vln(r;lo,r;ll,r;lr,fl),Y{l)EAZ
\for some (g, i1, iy, f1) #(1, 1,1, 1)
(U"), vi(,1,1),v'd,1,1,1),
Vi1, 1,1,1), Y]) e A
and
(U™ (myo), Vy (mo, my,my), Y{') € A7
for some (mq, my,m,)#(1,1,1)
and
(U" (o). Vg Gho. 1y i)
Vln(r;lo,r;ll,r;lr,fl),Y{l)EAg
for some (iig, iy, m,) £ (1,1, 1), £
(U™, vy, 1,1, V1,1, 1, 1),
Vi, 1,1,1), Y{Z)EAZ
and
(U"(mo), Vi (mo, my, m,), Y{') € A?
for some (mq, my,m,)#(1,1,1)
and
(U" Go), V3 (g iy, sy
Vln(rﬁ(),rﬁl,rﬁr,fl), YI")EAZ
for (g, my, m)=>1,1,1), f; #1

<e+Pr

<e+Pr =1

+ Pr
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(Z) € + 21 (Ro+Ri+Ti+R-—1(U Vo, Vi: Y1) +71(€))
+2”(R1+T1+Rr*I(V0V1:Y1\U)Jr}’{(f))
+ 2n(R0+R1+T1+R,—I(U Vo, V1;Y1)+y2(€)+d(€))

+ n(R1+T1+R =1 (Vo Vis Y1|1U)+75(€)+(€)) (25)
Here, y1(€), y{(€), y2(€), y5(€), d(€) all go to zero as € — 0.
To prove the inequality in step (a), we bound each probability
term separately.

The first probability term above is upper-bounded

by the probability of a non-unique decoder making
an error (ie., 2MRoFRIATIHR—IUVOVEYD+01(6)
2n(RIATIHR =1V V1 |U)+7{(€))  This non-unique decoder is
analyzed in [10] and shown to be reliable under the following
two constraints to which we refer as the non-unique decoding

constraints of [10].

Ro+ R+ T+ R < I(UVVy; Y1) — y1(€)
Ri+Ti+ R, < I(VoVy; Y11U) — y{(€)

(26)
27)

The second term is upper-bounded by further splitting the
event and following steps similar to that of Subsection II-C.

(U, vy (1, 1,1, Vi1, 1,1, 1),
Vi1, 1,1,1), Y]) e A2,

and
(U™ o), V§ Gio, it ity ), Y] € AL
Pr for some (mq, my,m,)#(1,1,1) =1
and

(Un(l’;’lo), V(;l(’/ho’rhlarﬁr)’
Vln(r;lo,r;ll,r;lr,fl),yln)EAZ
for some (iig, iy, my)=(1,1,1), f1 #1
(U™, V{1, 1,1, Vi1, 1, 1, 1),
V31,1, 1,1), Y]) e AL,
and
(U"(mo), Vg (mo, mi, my), Y1') € A
for some (mq, my,m,)#(,1,1), mog#1
and
(Un(’/ho)b V(;l(’/ho”/hl,rhr)a
Vln(rf’lo,rf’ll,rf’lr,fl),Y{’)eAZ
for some (ing, fiy, ) =(1,1,1), 1 #1
(U"), v§(,1,1), v, 1,1, 1),
V1,1, 1,1), Y]) e AL,
and
(U™ (mo), V' (mo, my, my), Y{') € A¢
for some (mq, my,m,)#(,1,1), mo=1|Z=1
and
(U™ o). Vg Gig. s, i)
Vln(r;lo,r;ll,r;lr,fl),yln)EAg
for some (7o, iy, my)=(1,1,1), f1 #1

=1

+ Pr

(28)
< 2n(R0+R1 +T1+R-—I(UVoV1;Y1)+y2(€)+d(€))

+2n(R1+T1+Rr71(V0V1:Y1|U)+)’z/(€)+5(€)) (29)

In the last step, the first probability term is bounded by
2"(R0+Rl +T1+R,—1(UVy V1 y1)+72(€)+5(€)) based on the derivation

in Section II-C, and the second probability term is bounded
by 27!(R1+T1+Rr71(V0V1;Y1|U)+}/2/(E)+§(E)) for similar reasons
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(in the conditional form), the details of which are presented
in Appendix E.

It becomes clear from (25), that the auxiliary decoder also
succeeds with high probability under the non-unique decoding
constraints of [10]. Similar to Subsection II-C, one can con-
clude that if for an operating point the non-unique decoder
succeeds with high probability, then there also exists a joint
unique decoding scheme that succeeds with high probability.

One can also use the auxiliary decoder to (explicitly)
devise the joint unique decoding scheme. Analogous to
Subsection II-C, the decoding scheme could be joint unique
decoding of mg, m1, m, in the regime where it succeeds (with
high probability) and joint unique decoding of mg, m1, m,, t;
otherwise. To express the two regimes, we analyze the error
probability of the component (joint unique) decoder that
decodes mq, m; and m,.

< e+ 2"(R0+R1JrRr*[(UVo:Yl)Jra(e))
4o (Ri+R—1 (Vo1 |U)+0 (€))

Pr(error)

where o (¢) — 0 if ¢ — 0. Therefore, joint unique decoding of
mg, m1 and m, succeeds with high probability if the following
two inequalities hold in addition to the indirect decoding
constraints of [10].

Ro+Ri+ R, < I(UVy; Y1)
Ry + R, < I[(Vo; Y1|U)

(30)
€19

If either of the above inequalities does not hold, then joint
unique decoding of mg, m, m, fails with high probability
(see Appendix F). Nonetheless, while the non-unique decoding
constraint of [10] is satisfied, since the auxiliary decoder
succeeds with high probability, we conclude that joint unique
decoding of mg, m1, m,, t; succeeds with high probability.
So the following joint unique decoding scheme achieves the
inner-bound of [10]: If inequalities (30) and (31) hold, jointly
uniquely decode indices mq, mi, and m,, and otherwise,
jointly uniquely decode all four indices mq, m1, m;, ti.

IV. CONCLUSION

We examined the non-unique decoding strategy of [4]
where messages of interest are decoded jointly with other
messages even when the decoder is unable to disambiguate
uniquely some of the messages which are not of interest to
it. We showed that in all known cases where it has been
employed, non-unique decoding can be replaced by the classic
joint unique decoding strategy without any penalty from a
rate region viewpoint. We believe that this technique may
be applicable more generally to show the equivalence of
rate regions achievable using random coding employing non-
unique decoders and joint unique decoders.

APPENDIX A
FOR ANY 6 > 0 AND JOINTLY TYPICAL TRIPLES
(u", 0%, 0%) Pogom sz,véll(ﬁgm", vy, 05,1) <
2"‘;p‘;2,1w” (95|u™) FOR n LARGE ENOUGH

We proceed along the lines of [17, Lemma 1].
Recall the codebook structure, where (i) Vj'(mo, so, )
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and  V3'(mo,s0,73) are superposed on  U"(myo, so),
(i) Vj'(mo,s0,12) and V3(mo, so,t3) are distributed into
bins B, (my, so, s2) and B3(mg, so, s3) and (iii) that a jointly
typical pair (V' (mo, so, 22), V3'(m, s0, t3)) is chosen randomly
in each product bin. In the error analysis of Section II-C, we
assumed all sent indices to be 1, and we considered the event
of decoding a wrong index 7, (and thus an incorrect sequence
V]! (mo, so, 1)). We denote Un(L, 1, V(1,1 1), V(L LD,
Vi(1,1,5) by u", vy, Vi, v, respectively. If VJ'(1,1,1)
and V,'(1, 1, 12) belong to two different bins By (1, 1, s2) and
Bi(1,1,5s), s2 # s5, then it is easy to see that the relation
p‘;zn‘Uan,,V;I(ﬁﬁu", vy,05,1) = Pogyn (05 |u™) holds. Here
we only need to consider the case where f» is such that
VJ(1,1,1) and V;'(1,1,7) belong to the same bin, ie.,
Ba(1,1,1). We assume without any loss of generality that
fr = 2.

Define the random ensemble C' € (' as the overall
collection of all sequences (V;'(1,1,#;)) and (V3'(1,1,13)),
where 15 € {3,...,2"12=%2)} and 13 € {2,...,2"T3=53)},
For a given ¢/, define Ni(v5,05,¢’) to be the number of
jointly typical pairs (vg(l, 1,n),05(1,1, t3)) for all t; # 2, t3.
Similarly, given ¢’ and v} (1, 1, 2), let N> (05 (1, 1, 2), v, ¢') be
the number of jointly typical pairs (1)5Z (1,1,2),05(1, 1, t3)) for
all #3.

We now write

Popunypvpz 021U, 03,03, 1)

. Anpononon
= pvzn‘U”VznV;IlzI@ (03]u", 03,03, 1, 1)

_ R An 0 N R
- z pV{’C/\U”VZ”Vsz,Ig (025‘: |I/t ,02,035 1, 1)
ceC’

= Z[P“"u”, 05,05, 1, gy @5, 08, 03, )
ceC’

p(Itzzl» II3:1|un» Ug» Z)g, lsg’ C/)
p(Itzzlﬂ If3:1 |un5 Ug» vgl > c/)

= P{/;Un(132|un)2|:p(c/|u", l)g, l)gl, 1, 1)

c'eC’

p(z-l‘zzl’ If3=1 Iun, Dg’ Dga 639 C/)
p(IIz:1> II3:1 |un» 03, Ugl; C/)
(32)

To continue bounding (32), we consider two cases.

1) T3 — S3 — I(Vp; V3|]U) < 0: We bound the fraction
in (32). The numerator is bounded from above by
disregarding 05.

p(z-l‘z = laz-l‘j; = 1|un’vg,vg’6gac/)
1
N1 (v}, 05, ¢) + N2 (05, 05, ¢)
1
<— .
N (v, 05, ¢)

(33)
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The denominator is bounded from below by the expres-
sion in (34).
p(z-l‘z = laz-l‘j; = llun’ 051’ Dgla c/)
> p(Z,=1, Ty=1, N2 (V}, 0¥, ¢)=0|u"
= p(N2(V3', 05, ¢') = 0u", 03, 05, )
Xp(z-l‘zzla II’§:1 |N2(‘>2n’ Dg’ c/):()a ul’l,
= p(N2(V3, 05, ¢) = Olu”, v3, 0%, )
1
X -
N1 (03,05, ¢')
> (1 _ 2n(T3*S3)2*n(I(V2:V3|U)*0(E)))
1
X -
N1 (03,05, ¢')
Comparing (33) and (34) (under the assumption that
T3 — S3— I(Va; V3|U) < O), it becomes clear that we
have p(0%|u", v, v%) < 2”ap(13§|u") for every 0 > 0
and n large enough.
2) T3—S3—1(Va; V3|U) > 0: in this case, we first re-write
expression (32) as follows.

p@w(ﬁﬁ Iu”)Z[p(c’m", vy, 05,1, 1)

ceC’

n n /
,1)2,1)3,C)

noon ./
03, 03,C)

(34)

x p(Ifzzl > If3=1 Iun, 051 > Dgla 65’9 c/)
p(z-l‘zzl’ If3=1 Iun, Dg’ Dga c/)

T,,=1, I;.=1, ¢ [u", o™, o
= plogy 3 PO Sl )
L p@o=1Ty=1lu" vg, 05)

x p(Ifzzl’ II3:l |un5 Ug’ Ugl’ lsg» C/)
p(z-l‘zzl s II’§:1 |una Dga Dgl’ c/)

. p(c'|u", vy, v5)
= p(03|u") [
2 C;l p(I[2:19 II3:1 |un9 Z)g > vgl

X p(Ifzzl’ II3:l |un5 Ug’ Ugl’ lsg» C/)}

n ~n

A p(c/luna 1)2’03’02
= p(03|u") [
2 C;l p(I[2:19I[3_1|u 9029 g)

A ’
X p(Ifzzl’ II3:l |un5 Ug’ Ugl’ Ug» C )}

p(IQ:l’If}:lIuna Dgavgaﬁg
p(z-l‘zzlaz-l‘j;:l'una Dgavg)

The following claim will be the key in bounding the
fraction in (35).

Claim 1: Let all sequences V,'(1,1,12), to # 1, and
V3'(1, 1, 13), t3 # 1, be picked randomly in the product
bin of interest. The event where the number of jointly
typical pairs in a row is much larger than the total
remaining number of jointly typical pairs in the bin
has a probability which decays to zero double expo-
nentially fast with n (under the assumption 73 — S3 >
I1(Va; V3|U)); i.e., for some constant a, f > 0,

Pr (Na(77. 02, € > 22200ON, (03 o, €U =)
< exp (o2 TS 02151 -00) 36)

= p(05|u")

(35)
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Proof: Let N3(v§, C') be the number of jointly typ-
ical pairs (V5'(1,1,3), V3'(1, 1, 13)), where 13 = 1,
27T13=53)  Obviously, Ny (v3,v5,C) > N; (03, C/)
To prove the claim, it is sufficient to show that

Pr (1\/2(\A/2",ug,c)>21+"3‘f)2"(’f2 Syl V23 VS'U»}U"—M)

< B exp(—a12"(T3 S3—1(Vy: V3|U)— 5(6)))
for some ay, f1 > 0, and that

Pr (N3 (04, ©') <27 1719001 (TS <V2;V3‘U>)’U"= u)
(_azzn(T3—Sg—I(V2; v3|U)—6(e)))

(37)

< paexp (38)

for some a7, f2 > 0. Both of the above inequalities can
be shown using standard Chernoff bounding techniques.
We defer the interested reader to Appendix G. [ ]
The numerator of (35) is bounded from above by
disregarding 05 .

Pr (Z,, = 1,7, = 1|u", vg,ﬁg,vg)
<D p ")
Z Nl( 29

1)3, c)
= E[; U" = u”:| (39)
Ni(vy, 0%, C)
Similarly for the denominator we have the lower bound

in (40).
Pr(Z;, = 1,Z;; = 1u", 05, 03)
= z I:pc/‘}zn‘Un (C/,ﬁgwn)

¢ ,0%

n n n -~n /
XP, 1, wnvpvpope (L L' 03,03, 03, ¢ )]

= Z [pcl\'}zﬂun (c/a 53'“”)

~n
¢ »0y

1
X
Ni(v3, 03, ¢) + Na (03, vg’,c/)}

z |:pC/\72”U” (C/, 53"””)

SN
¢ s0y

v

N2(1)n l)” c/)<22+2n¢)(5)N1 (1)” l)” C/)

1
X
Ni(v3, 03, ¢) + Na (03, vg’,c/)}

; 1
omi C/, 5w 27372110(6)7
2 [pCV2U( 21 N1 (5,05, ¢)

o0

N> (5” l)

v

/)<22+2)L¢)(5)N1 (U)l Dn C/)

S 1
— 273721’10(6 . C/, 5"
Z:pC/Vz”IU”( 2| )Nl (05, 0%, ¢)

[

1
!/ ~n n
— E (7 C,OL|\UW ) ———7— T
— pC/V2’1|Uﬂ( s V2 | )Nl (Ug, Ugl, C/)
¢, s0yt

N2 (85,05.¢)> 222N, (03 0]¢')
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@ _3-2ms 1
> 2707 (E)E[ K]

Un:un]

3 oms N (V2o C) >
) 3 2né(e)P 2\Vs, U3, U" =y
T 22+2n0(e) Nl (Dga Dgl, C/) u
®) 4 1
= 277901 — OF [ygeren | U =u"]. >0
(40)

In the above, (a) holds because Ni(vj,0v5,C’) > 1
(ensured by the assumption that (v5, v5) € A7). Step (b)
holds, for any constant ¢ > 0 and large enough n, by
Claim 1 as follows.
Pr(Na (V3 08, C') > 22129 Ny (0, 0, C) U =u")
< Bexp (_azn(T.%*SrI(Vz:V3|U)*5(E)))

(i) € 2= 1(T2=82+T3—-S53—1(V2; V3|U)+d(€))

1
<c
E [N1 (v, 0%, CHIU" = u"]
Uu" = u"]

1
= CE[ N GLoT,C)

In step (a) above, we have used the fact that 73 — S3 >
I (Va; V3lU)—0d(€), Tr > S», and that n is large enough.
Finally, upper bounding the numerator of (35) by (39)
and lower bounding its denominator by (40), we reach
to a factor with an exponent of order nd(¢). Inserting
this back into (35), we conclude that for every 6 > 0
and n large enough p(05|u”, v5,05) < 2"‘5p(135’|u”).

APPENDIX B
PROOF TO LEMMA 1

We start by proving the following claim.

Claim 2: Component decoder 1 succeeds with high proba-
bility (averaged over codebooks) if Ry + So < I(U; Y3), and
fails with high probability, if Ry + So > 1(U; Y3).

Proof of Claim 2: Component decoder 1 makes an error in
decoding only if one of the following events occur:

(i) (U"(1,1),Y3) is not jointly typical. The probability of

this event can be made arbitrarily small by choosing a
large enough n.
(ii) There exists a pair of indices (1719, So) # (1, 1) such that
(U" (o, 50), Y5') is jointly typical.
To analyze the error probability, we assume without any loss
of generality that the originally sent indices are myp = 1 and
so = 1. The error probability is thus upper-bounded by

Pr(error at component decoder 1)

(U™ (o, S0), ¥3') € A¢
€+Pr ( for some (719, So) # (1, 1)
€+ 2n(R0+So—I(U;Y2)+6(6)),

IA

moy=1,s0 = l)

IA

where d(¢) — 0 if € — 0. This proves that for large enough n,
the error probability of component decoder 1 could be made
arbitrary small if Ry + So < I(U; Y2).

On the other hand, decoder 1 makes an error if there exists
an index pair (r19,S0) # (1, 1) such that (U" (s, So), ¥5')
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is jointly typical. The probability of error at decoder 1 is,
therefore, lower-bounded by

oo (U Gho,50), ¥3) € AT
for some (719, So) # (1, 1)
and we want to show that it is arbitrarily close to 1 if Rg +
So > I(U; Y2). We instead look at the complementary event,

{(U" (mo, 50), Y5) ¢ A7 for all (im0, So) # (1, 1)}, and show
that its probability can be made arbitrarily small.

Pr ( (U™ (o, S0), Y3) ¢ A2

mo =1,s0 = 1), 41

for all (mog, So) £ (1, 1)

m0=1,30=1)

= > | Pr(¥y = ylmo=1,50=1)

n

Y2
R R Yn: n
pr ((U" (R0 50).38) ¢ AL | 232
for all (79, 50) # (1, 1) s00—1 ’

<€+ z

yyeA?

Pr(Y) = y5|lmo=1,s0=1)

A s Y3=yy
(U" g, S0), ¥5) & At | 2 9%

XPU\ for all (i, 30) % (1, 1) TO_I’
0:

=e+ z Pr(Y) = y§lmo=1,50=1)

yy €A
Yy = y;)
<[] Pr{@"Gho, 50), yp) ¢ Al mo=1,
so=1

(1110,50) #(1,1)

[Pr(Yz" = Wimo=1,s0=1)

§€+Z

vy AL
n(Ry+Sp) _
X (l —(1-— 6)2*"(’(U;Y2)+2€))(2 o 1):|

<e+ (1 — (1= 6)2*”(’(U§Y2)+2e)>(2”(RO+SO)_1).

In the limit of n — oo, we have
lim (1 — (1 — 2 W) +20)
n—0o0

= lim exp {— (2"(R0+SO>(1 — ey <U2Y2>+26>)},

n—oo

) (2n(R0+So)_ 1)

which (for any 0 < € < 1) goes to 0 as n grows large, if
Ro + So > I(U; Y2) + 2e. | |

From Claim 2, it becomes clear that for each operating
point, averaged over codebooks, component decoder 1 either
succeeds with high probability if Ry + So < I(U; Y2) or
fails with high probability if Rop + So > I(U; Y2). In the
former case, we let the joint unique decoding scheme be that
of decoder 1, and in the latter, we let the joint unique decoding
scheme be that of decoder 2. We prove in the following that
this joint unique decoding scheme is reliable (averaged over
the codebooks) since the auxiliary decoder is reliable.
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Consider an operating point for which decoder 1 fails with
high probability. In such cases, we assumed the decoding
scheme to be joint unique decoding of messages My, Mo,
and My,. For this operating point, the probability of error of
our joint unique decoder is

Pr(error at component decoder 2)

error at component decoder 2
< Pr
and component decoder 1 succeeds

+Pr error at component decoder 2
and component decoder 1 fails

_
INE

s+ pr ( €Tor at component decoder 2
and component decoder 1 fails

IA

0 + Pr (error at the auxiliary decoder) .

In the above chain of inequalities, (a) follows from the
assumption on the operating point. Also, 6 and € can both
be taken arbitrarily close to O for large enough n. It is
now easy to see that given an operating point for which
component decoder 1 fails, component decoder 2 succeeds
with high probability if the auxiliary decoder succeeds with
high probability.

APPENDIX C

THE ERROR PROBABILITY ANALYSIS
OF (22) (SECTION III-A)
We proceed as in Section II-C. We start by splitting the
error event into two events:
w1, 1),8",U"1,1,1),
Vi, 1,1), Yy € Az,
and
(W"(m,lo), Y") € A?
Pr for some (7, [0)1 * (1,61), =1
and
(W" (i, lo), U (1, Do, 11), Y1) € A7
for some (71, lo, [1) # (1,1, 1)
w1, 1,8, U0"1,1,1),
Vi1, 1,1), Y1) e A7,
and
(W" (i, lp), Y]') € A"
for some (n~1,l~0) # (1, 1),
and
(W™ (i, bo), U™ (i, Do, 1), Y] € AT
for some (i1, lp) # (1, 1) and [,
w1, 1,8, 0"1,1,1),
Vi, 1,1), Y1) e Az,
and
(W" (i, lp), Y1) € A"
for some (19, lp) # (1, 1),
and
(W"(1,1), U(1, 1,11), Y € A?
for some 1/, #1

The first term in (42) is bounded by
Pr( (W(m, lo), U" (m, lo, 1), Y]') € A?

<e+Pr

+Pr (42)

for some (11, 1p)# (1, 1) and [ “43)
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If W"(n,lp) was independent of Y[ (for (i, lo) # (1, 1)),
this would have been the non-unique decoding error prob-
ability. However, the conditioning on Z = 1 makes this
not exactly true. Nonetheless, this probability term is still
“almost” the non-unique decoding error probability. We make
this statement more precise. Let W”, U", V" W", and
U" denote respectively W"(1, 1), U"(1,1,1), V"(1,1,1),
W"(m, lo), and U"(m, lo, [1). The above probability term is
upper-bounded by
2

(@, y)e Al

R+To+T - ~
2”( +To+T1) le"Wnl_]ﬂ‘I(yll/l, wn, Mn|1),

and the inner pmf may be written as follows.
py{l V_V”(__/” ‘I(y{l, u-)n s I/_tn |1)

= pyizOT IO Py @137 D) pgnpgmyng @”, yi, 1)

(@) _ ny -

< pwn(@")(1 + c(€)) pyriz O] ) pumw (@ |0")
In the above inequality, (a) follows by pV_V”\Yl”I(u_)"| i, =<
(14 c(e)) pwn (™) (see [17, Lemma 1]), and c(¢) — 0 as n
grows large. Standard typicality arguments then bound this

term (for every € > 0 and for some large enough n) by (1 +
6(6))2n(R+T0+T1)2 n(I(WU;Y)— y1(e))

To analyze te second probability term, let W" and U™
denote W" (i1, lp) and U"(1, 1,11) respectively. The second
term of (42) is bounded from above by

on(R+To+Tr)
2. Z p(w s u't o'y, & "),

X z
"
( n ”)EA”(w”u”y”)EA”

(whs"uo"yl)e Al
and we treat the inner pmf in a similar way as in Section II-C.
,a"|1)

n yl s 1)

pW"S”U"V”Y{WI/”OHI(wn’ § 0" 91
= pw",s", u",o", y{’|1)p(w [w™, s"
xp@"o", w", s", u", 0", yi, 1)
It is now easy to see that (e.g., see [17])
5D = p@@" ", 5", 1)
=< (L4 c(€) pyyu (@").

Similarly, it turns out that (see Appendix A and follow a
similar line of argument)

p@"|w",s", u", 0"

p@"|o", w", s", u", 0", ¥, 1) = p@"w", s", u", 0", 1)

S 2110(6) p[]”|Wn (ﬁl’l |wn)
Therefore, the second term of (42) is bounded by
2n(R+To+T1)p—n(I(WU;Y)—y2(€)—d(€))

One sees that the non-unique decoding constraints are
sufficient to drive both terms of (42) to zero, as n goes large.

APPENDIX D

THE SECOND PROBABILITY TERM OF INEQUALITY (23)
CAN BE MADE ARBITRARILY SMALL BY CHOOSING
SUFFICIENTLY LARGE n UNDER THE NON-UNIQUE
DECODING CONSTRAINTS IN [9]

To upper-bound the second probability term of inequal-
ity (23), we use union bound and inclusion of events to obtain
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the expression in (44). We then show that each probability term
of inequality (44) can be made arbitrarily small by choosing

a sufficiently large n, if the non-unique decoding constraints
of [9] hold.

(Q", X (m1), Y1) € A¢
for some m1 # 1, and
(Q", X1(m), X5,(m2), Y{') € A7
for some (1, my) # (1, 1), and
(Qn9 X’il(ml)9 Xg] (m3)9 erl) € A?
for some (my,m3) # (1,1), and
(0", X' (my), Sy (2, m3),
X3, (m2), X5, (m3), Y{') € A¢
for some (712, m3)# (1, 1), my=1

(Q", X (my), Y1) € A¢
for some m # 1, and
(Qn9 X’il(ml)9 Xgl(m:;)» erl) € A?
for some (m,m3) # (1,1), and
(0", X' (my), ST (m2, m3),
Xgl (’/hz)a Xgll (”;\13)9 Y]n) EAZ
for some my#1, ma=1, m;=1

(0" X7 (my), Y1) € A¢
for some m # 1, and
(Q", X7 (m1), X3,(m2), Y1') € A¢
for some (my,my) # (1, 1), and
(Q", X7 (), S{ (2, m3),
X5, (m2), X5,(m3), Y|') € A7
for some my=1, m3#1, m;=1

(0", X1 (my), Y1) € A¢
for some m # 1, and
(Q", X1 (my), St (1o, m3),
X5, (ma), X5,(m3), Y|') € A¢
for some my#1, m3#1, my=1

Pr

<Pr 7T=1

+ Pr

+Pr =1 49

The first probability term of (44) (and similary the second
term) is analyzed below.

(Q", X1 (m1), Y1) € A¢
for some m1 # 1, and
(0", X1 (my), X5, (m3), Y{') € A¢
for some (m1, m3) # (1,1), and
(Q", X' (1), S (2, m3),
X5, (m2), X5,(m3), Y1) € A
for some my#1, mz=1, m;=1

(Q", X1 (m1), X5,(m3), Y1) € A
for some m %1, m3 =1, and
(Q", X' (1), ST (irg, m3),

X5, (m2), X5,(m3), Y') € A7
for some my#1, mz=1, m;=1

(Q", X (1), X3,(m3), YT') € A¢
for some m %1, m3 # 1, and
(Q", X' (my), St (1p, 113),
for some my#1, ma=1, m;=1

Pr T=1 (45)

7=1| @6

+Pr =1 47

2607
(0", X (my), Y e A7
for some m # 1, and
(Q", X' (m1), X5,(m3), Y') € A¢
+Pr| forsome m;=1, mz#1, and |[Z=1 (48)

(Q", X' (my), St (1p, m3),
X5, (m2), X5,(m3), Y1) € A7
for some my#1, m3=1, m;=1

< pnRipnmin{Ry, H(X211 @)}y —nl (X1 X21; Y110 X31)+2n6(€) (49)
4 pnRipnmin{R3, H(X31]Q)}yn min{Ry, H(X211Q)}

w2~ (X1X21X31:Y1|1Q)+2nd(€) (50)

+ gnRinmin{Rs, H(X311Q)}yn min{Ry, H(X2110), H (S11X31 Q)}

w2~ (X1 X21X31:Y11Q)+2nd(€) (51)

where J(€) vanishes to zero as € — 0. The first inequal-
ity above is obtained by considering the different cases
of (my,m3), and using inclusion of events. In the second
inequality, the probability terms in (46), (47), and (48) are
bounded by (49), (50), and (51), respectively. Essentially, the
derivation follows from an analysis similar to that of (20) in
Section II-C, together with the bounding techniques of [9]
(where the key is in that depending on the input pmfs and the
message rates, the number of possible combined interference
sequences can be equal to the number of interfering message
pairs, the number of typical combined interference sequences,
or some combination of the two— see [9, Lemmas 2 and 3]).
Here, we briefly outline how (46) is bounded by (49), and we
leave the derivation of the other two terms to the interested
reader.
We start with the following bound.

(Q", X7 (), X5,(m3), Y{') € A7
for some m| # 1, m3 =1, and
(Q", X1 (), S (2, m3),

X5, (m2), X5,(m3), Y1') € A
for some my#1, my=1, m;=1

(Q", X", X%, Y eA, and
< 2"Ripe[(Qn, X7, X3, (), X3, Y1) e A2 | T=1) (52)

for some 71y # 1

Pr =1

Using the bounding technique of [9], the above probability
term can be upper bounded in two different manners. By
counting the number of different messages i,, we find

(Q", X, X2, Y e A, and
(Qn9X}iZ5X£ll(';12), Xgll, Y{Z)EAZ I: 1
for some my # 1
(Q", X7, X5, Y[ e AL, and I:l)
(53)

Pr

< "R py (
(0", X1, X5, X4, Y] e Al
< 9nRay—nl (X1 X21;Y11QX31)+2n6(€)

Furthermore, by counting the number of typical sequences
X%,, we find

(Q", X!, X2, Y e AL, and
(Qn,X?,Xgl(’ﬁZ), Xgll, Y{Z)EAZ I: 1
for some iy # 1

Pr



2608

= 2

(q".x5)eA;

p(q”» -xgll)

q", X”,xglA, Yln)EA? 0" =q"
(qn,Xn,Xgl(le Xl’l:xn,
WY e A | 72,7
for some my # 1
< nH(X211Q) 9 —nl (X1 X21;Y11Q X31)+2nd(€)

x Pr

(54)

Putting together (52), (53), and (54) results in the bound (49).
Finally, the third probability term of (44) is bounded as
follows.
(0", X' (m1), Y]") € A”
for some m| #, and
Pr ©@", X7 (y), S} (2, m3),
for some my#1, m3#1, my=1
(Q", X{(my),Y") € A?
<pr for some m| # 1, and
- (Q", X' (my1), S} (m2, m3), Y[') € A7
for some my £ 1, m3 # 1, m; =1

7=1 (55)

=1

(56)
< pnRipnmin{Ry+R3, Ry+H(X311Q), H(X21|Q)+R3, H(S11Q)}

%2~ (X181Y110)+6(€) (57)

where d(¢) — 0 when € — 0.
APPENDIX E
THE SECOND PROBABILITY TERM IN (28) Is
BOUNDED BY 2MRi+T1+R-—1(VoVi:Y1|1U)+72(€)+3(€))

We now show that for any ¢ > 0, the second prob-
ability term in (28) is bounded (for a large enough n)
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by 2t (Ri+Ti+R =1 (VoVi:Y11U)+72()+9(€)) L et us denote U” (1),
Vi, 1,1, Vi, my,m,), and V{(1,1,1,4) by U", V{,
\761, and \71” respectively. Proceeding as in Section II-C,
we bound (28) in (60)—(66) at the bottom of this page.
Note that inequality (65) follows for the same reasons as in
Appendix IV.

APPENDIX F
THE PROBABILITY THAT THE JOINT UNIQUE DECODER
OF mg, m1 AND m, IN SUBSECTION III-C FAILS
We analyze the probability that a joint unique decoder fails
to uniquely decode indices mg, m1, m, and show that it fails
with high probability if either (30) or (31) is violated. Note
my), Y € A}

that
n
pe (Y (110), Vi ('no,mu -1
for some (g, mp, m,) # (l 1,1)
(Un(m())a V() (m()’ mi, mr)a Yl ) € AZ
for some (g, my, m,) = (1,1, 1), my =1

> Pr

‘IZI ,
(8)

and
((U"(rho), Vi Gho, i, i), YT € AL 1)
for some (mg, m1,m,) # (1,1,1) o
\ ((U”(ﬁio), Vg Gg, iy, i), Y1) € AL ’I_ 1)
for some (mg, my,m;) # (1,1,1), mg # 1|7~ " )°
(59

It is now not hard to see that the probability term on the
right hand side of inequality (58) is arbitrarily close to 1 if
Ri 4+ R > I(Vy; Y1|U) and the probability term on the right
hand side of inequality (59) is arbitrarily close to 1 if R; +
R, > I(UVy; 1).

"), Vg (1, 1, 1), v, 1,1, D, Vi(1, 1, 1, 1), ¥}') € A¢ and
(Un(mo), V(;Z(’;l05 ';ll’ mr); Y{Z)EA?

Pr for some (mq, my,m,)#(1,1,1), mp=1 and I=1 (60)
(U™ (o), Vg' Oio, vy, i), Vit (o, iy, iy, 11), YY) € A¢
for some (g, my,m,)=(1,1,1), 1 #1
o), vy (1,1, 1), vir(1, 1,1, 1), v (1, 1,1, 1), ¥{') € A? and
< 2(Ri+RA+T) pp U (), Vg (1, iy, ), Y]') € AZ and =1 (61)
o), vy (1, 1, 1), Vi'(1, 1, 1, 1), Y') € A¢
=< 2n(R1+Rr+T1) Z Z Z Pyn VEVEVEY] \761 ‘7{1‘1(“”’ 089 D?DS, Y1 s 589 13? 1) (62)
(u™,og 0,05, y7)€ AL 56" oy
(u",g,y7)e AL (u" 05,07, y])€A?
n(R1+R-+T}) p"vg,07,05, ¥ 1D p(Oglu”,og,0T 05,7, 1)
<2"" : Z z z Oxgla(ﬁ%’\ul oG, 01)2 ylovoll)2 : (63)
(u™ g ,0] 05, y])e Al g:
"4,y AL (u",0f 13’11 y’l’)eA
= 2Rtk AT %" > > p@” vg, o, 0%, YD p@glu") p @ |, v, v}, 03, 1) (64)
(u"0f,07 08,y e Al o4 13’11
"3,y e AL (u"0f,0],y])e AL
< or(RitRAT) % > D 27O p(", og, of, 03, Y1) p(@ ™) p(0 1", v) (65)

~n AN

(u,og,07 05, y]) e Az b oy

(u",g,y1)eAL (u" 05,07, y)) AL

< P (R1+R4T1) 9 —n(I (Vo Vi; Y |U)—p2(€)—d(€))

(66)
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APPENDIX G
CHERNOFF BOUNDS AND INEQUALITIES (37) AND (38)

Let N = 2MB=5%)  pp = 201252 To simplify
notation, we define X;; to be a binary random vari-
able which takes value O when (V}'(1,1,7), V5'(1, 1, j)) €
A?. For example, X;; = 1 by the assumption that
(0%, 0%) € Al. Also, Nz(\A/Z”,vg,vg’,C’ = Zg_l X2, and
N3(D§’,C/) ZI —1 X3,1;. Furthermore, we define pin =
Pr((03, V3'(1,1 ,2)) € .A”|V2(l 1,2) = 05, U" = u").
For e€-typical sequences 05 (where € < €), we have

2 IVEVAIVIR@) < po "< 2 nU (VYA =00), We let

pr = 27U (V2 V3lU)+0(e) and pu = 271U V2V3lU)=0(€) T
prove Claim 1, we show that

Pr (N2 (V3 08, 0%, C') > 2Np, |U" =u") < 1 exp (—a1 Npy)
(67)

for some ay, 1 > 0, and

Pr (N3 (0}, C') < $Np|U" = u™) < prexp (—aaNpy)

(68)

for some ay, 2 > 0.
We start with (67).

Pr (NQ(VZ’Z, 05,05, C") > 2Npy,
N
> Xau > 2Npy

=1

N
<Pr(> X5, >2Np, — 1

13=2
= un}

eIZNpu —t ’

ElE I:etzgﬁ X213 f;zn’ U" = un:|

U}’Z — u}’l)

U" =u"

Un:un

N
E 6t213=2 X2,l3 Un

IA

t>0

U" = u":|
e!2Npu—t

\72",U” :u”] :u”]
e!2Npu—t
[T (e 0 i) 0" =]
e!2Npu—t

N
< (1 + pu(e’ — 1))
e!2Npy—t

[T

Set t = % Then

Pr (Nz(\72”, 05, 05,C") > 2Npy,

Ul’l — ul’l)

(14 putet — )"

67%+Npu

L1+ pute? — 1)
—e2 _—
ePu

L
< e%epru(Z*ez)

_ 1 I
< Bie @iNPL for g =2 — e2,

p1 =e2.
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Similarly, to show (68) we proceed as follows.

U" = u”)

1
Pr (N3(l)gl,c/) < ENpl

al 1
ZX3Z"§<§NPI Un:Mn
I';—
1 n n
<P ZX3I3<2Np, U" =u

E |:e f213—2 X3,13 U" = un:|
—t3 NP/

]E|:E|:e'2f3 =2 X313

A

, >0

Vi, 1,3), U”—u:|

un :u"i|

- e—f%Npl

IE[H [ —Xan| v, 1,3),U”=u”] U"=u"]
eft%Np/

E[ (1—1%man(1—e )’Un:lﬂ]

- e*szP/
(1—p1—e )"

o e—f%Npl

Set t = 1. Then

1
Pr (N3(v§, C) < ENpl

(1—pm1—eU)N
e3P

e PG HN

Un — ul’l)

IA

—as N,
ﬁze a2 Pl’

IA

1
for ap = 3 —e_l, pr=1.
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