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Abstract— Performance of constrained movements in multi-
ple directions of a workspace simultaneously and in presence
of uncertainty is a great challenge for robots. Achieving such
tasks by employing control policies which are fully determined
a priori and do not take into account the system uncertainty can
cause undesired stress on the robot end-effector or the environ-
ment and result in poor performance. Instead, a sophisticated
control policy is required, which can adjust to the varying
conditions of a task while taking into account the coupling of
motion dynamics between different directions of movement. To
this aim, in this paper, we propose a MIMO Extremum Seeking
Control (ESC)-Model Reference Adaptive Control (MRAC)
approach with the view of executing fine motion tasks in
presence of uncertain task dynamics. ESC enhances robustness
of the system to non-parametric uncertainties compared to
single MRAC. The proposed approach ensures state tracking as
well as optimization of a global state-dependent cost criterion
in all directions of movement. We evaluate our approach in
simulations and in a real-world robotic engraving task.

I. INTRODUCTION

Execution of constrained movements inside unknown and

deformable environments is a great challenge for robots due

to task uncertainty and the physical coupling of motion

dynamics between different directions of movement. Apart

from uncertainty, the coupling of motion dynamics has to

be taken into account for system modelling and control,

see Fig. 1. In this paper, our goal consists of developing

a task-space adaptive control approach for accurate perfor-

mance of multi-directional movements inside unknown and

deformable environments.

Performance of constrained robotic motion tasks has

been previously investigated by using learning-oriented ap-

proaches [1], [2], [3], [4]. In [1], Reinforcement learning

is employed, which, however, requires repetitive trials and

is not suitable for manipulation of deformable objects where

successful execution of a task is required within a single trial

to avoid non-desired object deformation caused by many task

repetitions. In [2], learned dynamic models are combined

with Linear Quadratic Regulator by assuming, however,

knowledge of the system dynamics. In [3], an approach for

generalizing force control policies to new motion tasks, under

different motion-dependent disturbances, is proposed. This

method, however, is solely based on demonstrations and does

not involve motion feedback.
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Fig. 1. An example of a constrained robotic motion task in deformable
environment; engraving is realized at different depths inside a plasticine
object. Different environmental disturbance {f(x1), f(x2)} is experienced
in each case due to the changing manipulating mass. Engraving in a (a) low
depth, (b) high depth.

The problem of state tracking in presence of uncertainty

is treated by traditional Adaptive control [7]. A significant

approach is Model Reference Adaptive Control (MRAC)

which expresses the ideal behavior of a system in terms of a

reference model and makes the system follow the reference

model [6]. The use of reference models dates back to the

development of aircraft control and, since then, MRAC has

been widely used in multiple applications. Recent work on

MRAC has been realized in [8], [10], [16]. In [8], a Multiple

Input Multiple Output (MIMO) MRAC approach is proposed

for output tracking using state feedback. In [10], combina-

tion of Extremum Seeking Control (ESC) with MRAC is

proposed for state tracking in SISO systems. In [16], an ESC-

MRAC approach is proposed for output tracking in nonlinear

MIMO systems by performing feedback linearization and the

initial problem is converted into output tracking for multiple

SISO systems. This method assumes that the control input

can be expressed in a specific linear parameterized form. In

addition, each SISO system optimizes a cost function which

solely depends on this system’s output. Although our work

deals with state tracking in MIMO systems, the approach

in [16] is not recommended for our scenario where we wish

that the motion states of different directions of movement

track some desired states by simultaneously optimizing a

global state-dependent cost in all the directions of movement.

This is because task dynamics in different directions are

coupled and the controller should not attempt to optimize

independently the state tracking error in each direction.

In this work, we propose an ESC-MRAC approach, similar

to [10], for state tracking in linear MIMO systems where

a global state-dependent cost criterion is optimized in each

direction of movement. The ability to express the ideal

behavior of a system in terms of a reference model, as in

MRAC, is magnificent because the reference model serves

in the design of the control law of the system [6]. In addi-

tion, MRAC regulates the transient behavior of the system
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[10]. However, MRAC lacks robustness to non-parametric

uncertainties which are mostly unavoidable in real-world

scenarios. In contrast, the combined ESC-MRAC exhibits

increased robustness to non-parametric uncertainties since

ESC does not rely on the knowledge of the structure of the

system dynamics [9], [10], [11].

This paper is structured as follows. First, in Section II,

we define the problem, then in Section III we present our

proposed ESC-MRAC method and, in Section IV, we evalu-

ate the performance of this method both in simulations and

experiments by comparing it with SISO ESC-MRAC [10].

II. PROBLEM FORMULATION

Our goal consists of developing a task-space adaptive

control approach for execution of constrained movements in

multi-directional workspaces. First, we derive the dynamics

of our system and then we define our problem.

A. System modelling

Let us assume an end-effector interacting with an environ-

ment in N directions of movement. End-effector motion dy-

namics can be approximated by the impedance law [12], [13]

Mdẍ+KDẋ+KPx = f − fe (1)

where x ∈ R
N is end-effector position, f ∈ R

N ex-

erted end-effector force, fe ∈ R
N the end-effector force

which compensates for the environmental disturbance and

Md ∈ R
N×N , KD ∈ R

N×N and KP ∈ R
N×N are end-

effector’s inertia, damping and stiffness respectively. At this

point, we have to analytically express fe to infer the end-

effector motion dynamics. Realistic contact is a complex

phenomenon and its real modelling is a challenging problem.

Instead, the contact force can be expressed by a simple but

substantial model as fe = Kex+Deẋ where Ke ∈ R
N×N

and De ∈ R
N×N represent the environment’s stiffness and

damping respectively [14]. The linear form of fe preserves

the linearity of the interaction law which, in turn, renders

system’s control design an easier task to achieve, compared

to nonlinear systems. We assume isotropic environmental

stiffness and damping Ke = keIN and De = deIN where

IN is an identity matrix of size N .

First, we analyze the end-effector motion dynamics in a

single direction of movement, and then, we generalize to the

N -directional workspace. Based on the previous analysis, (1)

in the j-th direction can be written as

ẍj+kDjj
ẋj +kPjj

xj+C(xl, ẋl)+(kexj +deẋj) = fj (2)

where xj represents end-effector position in the j-th direction

and kDjj
, kPjj

are end-effector’s damping and stiffness

parameters respectively in the j-th direction. The C is a

linear function which represents the coupling between the

j-th and all l ∈ {1, ..., N}, l 6= j directions. If we substitute

end-effector force fj by a controllable input uj and expand

C to all other l 6= j directions, (2) becomes

ẍj+kDjj
ẋj+kPjj

xj+
∑

l

(kDjl
ẋl+kPjl

xl)+kexj+deẋj = uj,

(3)

where kDjj
, kDjl

are elements of the KD matrix and kPjj
,

kPjl
are elements of the KP matrix. By applying (3) in all

N directions and writing in state-space form, we obtain the

following MIMO system

ẋt = Axt +Bu, (4)

where xt = [x1 ẋ1 · · · xN ẋN ]T is the state vector,

u = [u1 · · · uN ]T the control input vector, A ∈ R
kN×kN a

matrix of unknown parameters, B ∈ R
kN×N a known matrix

and k the number of states per direction, here k = 2. More

specifically, the A and B are defined by A =
[

Aji

]

N×N

where

Ajj =

[

0 1
ajj,1 ajj,2

]

and Aji =

[

0 0
aji,1 aji,2

]

for j 6= i

where ajj,1 = −(kPjj
+ ke), ajj,2 = −(kDjj

+ de),
aji,1 = −kPji

, aji,2 = −kDji
, i, j = 1, ..., N, i 6= j and

B = diag(b1, · · · ,bN ), bi =

[

0
1

]

.

B. Problem definition

As it is analyzed in section II-A, the end-effector motion

dynamics are given by (4). We assume that a reference model

exists, which expresses the desired response of the system

to a reference signal r, and has the form

ẋ∗

t = A∗x∗

t +B∗r (5)

where x∗

t = [x∗

1 ẋ∗

1 · · · x∗

N ẋ∗

N ]T ∈ R
kN is the reference

state vector, x∗

i is the reference position, A∗ ∈ R
kN×kN and

B∗ ∈ R
kN×N are known matrices and r = [r1 · · · rN ]T .

Our goal is to design a control law u in (4) such that

the state vector xt globally and asymptotically tracks the

reference state vector x∗

t by minimizing, in each direction,

the cost

J = J1 + ...+ JN

where Ji is a function of the motion states of the i-th

direction. In this way, we aim at individual state tracking

in each direction by simultaneously taking into account the

state tracking error of all the directions of the workspace.

Given the directional physical coupling, control of motion

in one direction should not be realized independently of the

motion control in all other directions since this may violate

the physical constraints of the system.

III. MAIN RESULTS

To solve our problem, we develop a MIMO adaptive

control approach which combines MRAC with ESC.

For the remainder of the paper, for the sake of sim-

plicity and without loss of generality, we assume that the

end-effector interacts with the environment in two directions

of movement only, i.e. N = 2.

A. MRAC and ESC principle

Fig. 2 illustrates the ESC-MRAC principle for a SISO

system which operates in the i-th movement direction.

MRAC expresses the system’s desired response to a reference

signal ri in terms of a reference model, see Fig. 2(a).

In state tracking, the objective consists of designing the
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Fig. 2. (a) ESC-MRAC block diagram of a SISO system in the i-th
movement direction. The plant’s state vector [xi ẋi] is ensured to track
the reference state vector [x∗

i ẋ∗

i ] through appropriate design of the control
law ui. The parameter vector â = {âj} of the controller is updated based
on the minimization of the cost J through ESC. (b) ESC diagram. The ESC
loop is realized for every single parameter aj of the system.

control law ui such that the error [xi ẋi]
T − [x∗

i ẋ∗

i ]
T

converges to zero. In ESC, the parameters of the control

law are adjusted while seeking the extremum of a cost

criterion J [5], [9]. The most common technique is the

Perturbation-based ESC (PESC) because of its simple im-

plementation and fast convergence compared to other ESC

techniques. PESC is a gradient-based optimization technique

where a sinusoidal perturbation cjsin(ωjt) is used to update

the estimates âj of the control parameters aj at each iteration,

see Fig. 2(b). Analytical explanation of how ESC works can

be found in [5], [9].

B. MIMO ESC-MRAC

In this section, we develop an ESC-MRAC scheme for

state tracking in linear MIMO systems where PESC is used.

Our approach is inspired by [10].

1) Motion dynamics: We consider the two subsystems

a2ẍ1 + a1ẋ1 + a0x1 + a3x2 + a4ẋ2 = u1,

a7ẍ2 + a6ẋ2 + a5x2 + a8x1 + a9ẋ1 = u2,
(6)

where xi, ẋi, ẍi, i = 1, 2 are measurable states, xi represents

position and aj are unknown parameters. Correspondingly

to (6), the reference model has the form

a∗2ẍ
∗

1 + a∗1ẋ
∗

1 + a∗0x
∗

1 + a∗3x
∗

2 + a∗4ẋ
∗

2 = r1,

a∗7ẍ
∗

2 + a∗6ẋ
∗

2 + a∗5x
∗

2 + a∗8x
∗

1 + a∗9ẋ
∗

1 = r2.
(7)

The goal consists of designing a control law u = [u1 u2]
T

such that the error e = [e1 ė1 e2 ė2]
T converges to

zero where e1 = x1 − x∗

1 and e2 = x2 − x∗

2. We define the

control signals as

u1 = ă2z1 + ă1ẋ1 + ă0x1 + ă3x2 + ă4ẋ2,

u2 = ă7z2 + ă6ẋ2 + ă5x2 + ă8x1 + ă9ẋ1.
(8)

The parameters ăi are updated according to

ăj = âj + cjsinωjt, see Fig. 2. The parameter error is

defined as ãj = aj − âj . The signals zi are defined as

z1 = ẍ∗

1 − β0e1 − β1ė1 − β2e2 − β3ė2,

z2 = ẍ∗

2 − β4e2 − β5ė2 − β6e1 − β7ė1
(9)

where βi are known parameters.

2) Dynamics of state tracking and parameter error:

Fig. 2(b) illustrates the PESC parameter adaptation law

which is employed for the update of the ă0, ..., ă9 parameters.

The compensator Cj(s) in Fig. 2 is defined as [10]

Cj(s) = −gj

(

1 + djs

s

)

(10)

where gj, dj ∈ R are known parameters and s the complex

Laplace variable. Based on Fig. 2(b), the dynamics of the

parameter error are

˙̃aj = − ˙̂aj = gj(1 + djs) [sin(ωjt− φj)J(t)] (11)

which can be written as

˙̃aj = gj (sin(ωjt− φj) + djωjcos(ωjt− φj))J(t)+

gjdjsin(ωjt− φj)J̇(t) (12)

where j = 0, ..., 9. The cost function is defined by

J = (Q1e)
T (Q1e),

Q1 =

[

q1 q2 0 0
0 0 q3 q4

]

(13)

where q1, q2, q3, q4 are known, real-valued parameters. By

combining all ˙̃aj from (12), we can write

˙̃a = GlJ +GmJ̇ (14)

where l =
[

l0 · · · l9
]T

, m =
[

m0 · · · m9

]T
,

lj = sin(ωjt− φj) + djωjcos(ωjt− φj),

mj = dj sin(ωjt− φj),

G = diag([gj]) ∈ R
10×10 and ã = [ã0 · · · ã9]

T ∈ R
10.

By combining (6) with (8)-(9), we infer the tracking error

dynamics

ë1+β0e1+β1ė1+β2e2+β3ė2 =
1

a2
((p2−ã2)z1+(p0−ã0)x1

+ (p1 − ã1)ẋ1 + (p3 − ã3)x2 + (p4 − ã4)ẋ2), (15)

ë2+β4e2+β5ė2+β6e1+β7ė1 =
1

a7
((p7−ã7)z2+(p5−ã5)x2

+ (p6 − ã6)ẋ2 + (p8 − ã8)x1 + (p9 − ã9)ẋ1), (16)

where pi = cisinωit. The ei, ėi, ëi represent the position, ve-

locity and acceleration error respectively. By combining (15)-

(16), we write the total tracking error dynamics as

ė = Ee+BeP
∗v (17)
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where v =
[

x1 ẋ1 z1 x2 ẋ2 z2
]T

, P ∗ = P − Ã,

E =









0 1 0 0
−β0 −β1 −β2 −β3

0 0 0 1
−β6 −β7 −β4 −β5









, Be =









0 0
1
a2

0

0 0
0 1

a7









,

Ã =

[

ã0 ã1 ã2 ã3 ã4 0
ã8 ã9 0 ã5 ã6 ã7

]

,

P =

[

p0 p1 p2 p3 p4 0
p8 p9 0 p5 p6 p7

]
. (18)

Theorem 1. Consider the system (6) whose control law is

given by (8)-(9), parameter error dynamics are governed

by (14), the cost function J is given by (13) and the

compensator C(s) by (10). Then, there exist parameters

di, gi, ωi, βi, φi and ci such that the error e globally

and asymptotically converges to zero, where ωi ≥ 1, ωi ∈ N.

Proof. We define the augmented state vector y = [e ã]T

where

ẏ = f(t,y) =

[

Ee+BeP
∗v

GlJ +GmJ̇

]

. (19)

To deal with non-autonomous system (19), we follow the

approach of averaging [15]. Averaging applies on systems

of the form ẏ = ǫf(t,y) and, to make (19) in this form,

we perform scaling by setting t = ǫτ where ǫ is a small

positive parameter. We denote the average by AV G(·) or, for

reasons of convenience, for single-term arguments by (·)av =
AV G(·). Based on this, we have

dy

dτ
= ǫf(τ,y), (20)

dy

dτ
= ǫfav(y). (21)

According to the averaging theorem, given specific con-

ditions, the solution of (20) can be approximated by the

solution of its average system (21), that is, there exist ǫ∗ > 0
such that for all 0 < ǫ < ǫ∗, it is

y(τ, ǫ) − yav(ǫτ) = O(ǫ) for all t ∈ [0,∞) (22)

where y and yav are solutions of (20) and (21) respectively.

Here, we do not analyze the conditions of the averaging

theorem due to space limitations. The average tracking error

dynamics can be written as

ėav = Eeav −BeÃavvav (23)

given that P , Ã, v are uncorrelated and Pav = [0] ∈ R
2×6.

The average parameter error dynamics can be written as

˙̃aav = 2 AV G(GmeTQBeP )vav (24)

where Q = QT
1 Q1, given that lav = mav = 0 ∈ R

10. Let

us consider the Lyapunov candidate function

V = eTavP1eav + ãTavP2ãav

where P1 ∈ R
4×4 and P2 ∈ R

10×10 are symmetric positive

definite matrices. By computing the derivative of V and

substituting dynamics (23) into V̇ , we have

V̇ = eTav(−L)eav − 2vT
avÃ

T
avB

T
e P1eav + 2ãTavP2

˙̃aav (25)

where −L = ETP1+P1E and L is a positive definite matrix.

It is V̇ ≤ 0 if

vT
avÃ

T
avB

T
e P1eav = ãTavP2

˙̃aav. (26)

By substituting dynamics (24) into condition (26), the con-

dition can be equivalently written as

ÃT
avB

T
e P1eav = 2(AV G(mge

TQ∗))TP2ãav (27)

where mg = [gimi] ∈ R
10 and Q∗ = QBeP . We

denote by 1n and 0n the row vectors of all ones and

all zeros respectively, with dimension 1 × n. We express

Ãav = Asdiag(ãav)Bs and ãav = diag(ãav)(110)
T where

As =

[

15 05

05 15

]

, Bs =

































1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0

































.

Based on these expressions and after a series of algebraic

calculations, (27) becomes

w2A
T
s B

T
e P1 = 2w1(AV G(fQ∗))T (28)

where w1 = 16, w2 ∈ R
1×10 is a known constant vector

which can be defined by the user and f = w2P2mg . Given

condition (28), V̇ becomes

V̇ = eTav(−L)eav ≤ 0, (29)

and, thus, eav , ãav and, in turn, vav are bounded. There-

fore, V̈ = −eTav(E
TL+ LE)eav + eTav(L

T + L)BeÃavvav

is also bounded. Based on Barbalat’s lemma, we have

limt→∞ V̇ = 0, and from (29), limt→∞ eav = 0. Given

that ãav is bounded and, that from (25) for eav → ∞ the

V → ∞, the eav globally and asymptotically converges to

zero [15]. The condition ωi ≥ 1, ωi ∈ N comes from the

satisfaction of the conditions of the averaging theorem.

3) Setting the parameters: (i) Set βi such that E is

Hurwitz, (ii) compute P1 from ETP1 + P1E = −L, here

we set L = diag([1 1 1 1]), (iii) set qi as desired, (iv) tune

gi, ci, φi and parameters of P2 such that they satisfy

condition (28). The ci should be relatively large such that

they cause noticeable perturbations to the system. Large gi
can increase the rate of change of the parameters while

large values of P2 parameters may decrease the parameter

adaptation rate [10].

IV. EVALUATION

The proposed MIMO ESC-MRAC is evaluated in simu-

lation and compared with SISO ESC-MRAC [10] in a real-

world robotic engraving experiment.

A. Simulation

Here, we evaluate the performance of the currently pro-

posed MIMO ESC-MRAC approach in simulation. Let us
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assume a robot end-effector which moves in 2 directions,

which we call normal and parallel. The system dynamics

are given by (4) where xt = [x1 ẋ1 x2 ẋ2]
T and

A =









0 1 0 0
−3.6 −2 −1.2 −1.4
0 0 0 1

−2.25 −1.25 −3.75 −2.5









, B =









0 0
1 0
0 0
0 1









.

The reference model is given by (5) where

A∗ =









0 1 0 0
−15 −11.25 −1.2 −1.6
0 0 0 1
−2 −3 −2 −3









, B∗ = B,

x∗

t = [x∗

1 ẋ∗

1 x∗

2 ẋ∗

2]
T , r = [r1 r2]

T and r1 and r2 are ref-

erence signals of the normal and parallel direction. The A∗

is set such that x∗

1 and x∗

2 track r1 and r2 respectively. The

reference signals are acquired through demonstration of an

engraving task on the plasticine material of Fig. 4.

The goal consists of making xt track x∗

t . Fig. 3 shows

tracking of reference position x∗

1, x∗

2 and velocity ẋ∗

1, ẋ∗

2

states by the system’s position x1, x2 and velocity ẋ1, ẋ2

states respectively as well as the corresponding tracking

error in both directions, by using MIMO ESC-MRAC. We

observe that, although the position tracking error is rela-

tively high during the first few seconds of the task and

approaches the value of 1mm, this error converges rather

fast to zero afterwards. The same occurs with the velocity

tracking error which initially approaches the 2mm/s and

converges fast to zero after 1 second. For the simulation, we

set ω0 = 100, ω1 = 8, ω2 = ω7 = 14, ω3 = 110, ω4 = 85,

ω5 = 15, ω6 = 8, ω8 = 60, ω9 = 50 and c0 = 0.3, c1 =
c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 = 0.2.

B. Experimental evaluation

We evaluate proposed MIMO ESC-MRAC in a real-world

robotic engraving task by using a 2-DoF linear-actuated

haptic device (ThrustTube), see Fig. 4. A force/torque sensor

measures the end-effector force and device’s encoders mea-

sure end-effector position and velocity. The end-effector can

move in two directions, one normal and one parallel to the

object’s initially planar surface. A sculpting tool is firmly

attached on the end-effector for engraving and the system

end-effector - tool behaves as a rigid body.

Prior to the task, the end-effector is placed such that the

tool tip just touches the object’s surface. The end-effector

is commanded to follow a reference motion in the two

directions while the tool engraves a pattern into the plasticine

material. For our task, we employ a controller which consists

of the superposition of adaptive ESC-MRAC and fixed-gain

positional control. The haptic device involves some friction

and the positional control compensates for this friction while

ESC-MRAC compensates for the system uncertainty during

the interaction of the end-effector with the environment.

Fig. 5 shows execution of a motion by applying MIMO

ESC-MRAC and SISO ESC-MRAC [10]. The parameters of

the reference models in both approaches are set such that

the reference position states track the reference signals, see
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−8
−6
−4
−2
0
2
x 10

−3

Reference Normal Position [m]

0 20 40 60 80

−10

−5

0
x 10

−3

Reference Parallel Position [m]

0 20 40 60 80
−4

−2

0

2
x 10

−3

Reference Normal Velocity [m/s]

0 20 40 60 80
−1

0

1

2
x 10

−3

Reference Parallel Velocity [m/s]

0 20 40 60 80
0

0.05

0.1

Normal Position Error [cm]

0 20 40 60 80

0

0.05

0.1

Parallel Position Error [cm]

0 20 40 60 80

−0.2

−0.1

0

Normal Velocity Error [cm/s]

Time [s]
0 20 40 60 80

−0.2

−0.1

0

Parallel Velocity Error [cm/s]

Time [s]

Fig. 3. State tracking by proposed MIMO ESC-MRAC: (top raw) reference
position, (second raw) reference velocity, (third raw) position tracking error,
(bottom raw) velocity tracking error. Markers are used to highlight the initial
error value. The position and velocity signals are expressed in m and m/s
respectively while the corresponding tracking errors are expressed in cm
and cm/s respectively. All signals are expressed with respect to time in sec.

End-effector

2-DoF
haptic device

Environment

Sculpting tool
Normal Parallel

Fig. 4. Experimental setup. The two directions of movement, normal and
parallel, are visualized by a red- and a green-color axis respectively.

Fig. 5(a),(b). The parameters of the cost functions J1 and J2
are set q1 = −1.52, q2 = 12.79, q3 = 23.44 and q4 = 7.82.

In case of SISO ESC-MRAC, the two directions of move-

ment are treated as two independent SISO systems and

systems’ parameters are tuned, according to [10], to achieve

optimal performance. In MIMO ESC-MRAC, the ci signals

are c0 = 3, c1 = c2 = c7 = 2, c3 = c8 = 30, c4 = c9 = 30,

c5 = 21, c6 = 5 and the frequencies are ω0 = 100, ω1 = 8,

ω2 = 14, ω3 = 10, ω4 = 5, ω5 = 230, ω6 = 150, ω7 = 120,

ω8 = 40, ω9 = 50.

Fig. 5(a) refers to MIMO ESC-MRAC while Fig. 5(b)

to SISO ESC-MRAC. We define the tracking error as the

difference between the reference and measured position.

Fig. 5(c) shows the tracking error in the two directions of

movement for MIMO ESC-MRAC and SISO ESC-MRAC.

The position signals are of order 10−3m in the normal

direction and 10−2m in the parallel direction while the
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tracking errors are of order 10−4m. We observe that MIMO

ESC-MRAC exhibits lower transient and steady-state error

compared to SISO ESC-MRAC. In MIMO ESC-MRAC, a

rather low steady-state error almost equal to 10−4m exists,

which may be due to non-modelled inherent end-effector

dynamics. This error could be potentially eliminated by

combining with some integral control.

V. CONCLUSION

In this work, we present a MIMO ESC-MRAC approach

for realization of multi-directional constrained robotic mo-

tion tasks in presence of uncertainty. The proposed method

achieves state tracking as well as optimization of a global

state-dependent cost criterion in all directions of movement

simultaneously.
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Fig. 5. Motion tracking by (a) proposed MIMO ESC-MRAC:
(dash-dot black line) reference signal, (dashed blue line) reference
position, (solid red line) measured position, (b) SISO ESC-MRAC:
(dash-dot black line) reference signal, (dashed blue line) reference po-
sition, (solid green line) measured position. (c) Error between the ref-
erence and measured position of: (solid red line) MIMO ESC-MRAC,
(dashed green line) SISO ESC-MRAC.
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