
A Distributed Strategy for Near-Optimal Network Topology Design

Dong Xue1, Azwirman Gusrialdi2 and Sandra Hirche1

Abstract— In this paper, we propose a systematic strategy
for distributedly maximizing the connectivity of a network.
A graph process is introduced to formulate the problem in
which edges are added to an existing graph in a step-wise
manner to maximize the algebraic connectivity of underlying
network topology. This problem turns into an intractable
combinatorial optimization and hence we explore a heuristic
rule to approximately solve it. In dependence upon global
network structure information, we first provide a local criterion
of near-optimization by involving the elements of the Fiedler
eigenvector of graph Laplacian. To conduct the graph process
in a distributed fashion, a decentralized estimation algorithm
is devised for locally attaining the knowledge of the Fiedler
eigenvector. The proofs of convergence and convergence rate are
provided. Synthetically, a novel heuristic strategy is proposed
to deal with the network optimization problem in a distributed
and generalized fashion. The effectiveness of proposed methods
are demonstrated via some examples.

I. INTRODUCTION

Networks with complex structure describe a broad range of

systems in society and civil engineering such as the Internet,

metabolic networks, smart power grids, supply chains, water

distribution and traffic systems, and large arrays of micro-

electro-mechanical systems (MEMS).

A fundamental challenge in the study of complex networks

is to explore topological properties of information diffusion

throughout the network. As shown in a number of works

e.g. [1]–[3], the network connectivity is a key structural

metric which shows how well a graph is connected. The al-

gebraic connectivity is one of the most prominent parameters

to evaluate the connectivity of a network in contrast to the

conventional metrics, such as vertex connectivity and edge

connectivity. Due to the closed relevance to the convergence

speed of the consensus protocol, structural robustness and

synchronization of communication networks, the optimal

topology design involving maximization of the algebraic

connectivity has received much more attention, see e.g. [4],

[5] and references therein. There are two main approaches to

optimize the algebraic connectivity. One is to tune weights

of the edges in a weighted graph, which leads to the absolute

algebraic connectivity of the graph defined by Fiedler [6], see

for instance [7], [8]. Another approach is to add or delete

edges in a network, where an optimal topological structure

problem is solved, see for instance [4], [9]. In this paper,

we focus on the latter case of designing an optimal strategy

1D. Xue and S. Hirche are with the Institute for Information-Oriented
Control, Technische Universität München, D-80290 München, Germany;
{dong.xue, hirche}@tum.de

2A. Gusrialdi is with Department of Electrical Engineering
and Computer Science, University of Central Florida, USA;
Azwirman.Gusrialdi@ucf.edu

for edge allocation to maximize the network connectivity.

In the aforementioned papers, the structure optimization

problems are typically formulated as combinatorial problems

and - applying relaxation approaches - solved by using

Semi-Definite Programming (SDP). In [3], a Mixed-Integer

Quadratic Constraint Programming (MIQCP) is introduced

to further facilitate the solution of this problem. While the

SDP methodology does provide an upper bound on the

optimal value for moderate problem size, the computational

complexity level of this approach increases rapidly as the

size of the networks gets larger (in some cases, not even

tractable). Furthermore, SDP formulation may yield solutions

that does not directly provide insight into and physical and

graphical characteristics for topology design. Alternatively,

based on matrix perturbation analysis of the graph Lapla-

cian, some greedy heuristics are proposed to approximately

solve this problem. In [4], a greedy perturbation heuristic

is analyzed to provide a local optimum in a fast iterative

manner. Analogous result applied to airport transportation

network is extended to solve the weighted graph setting

in [9]. However, this approach requires knowledge of the

entire network and is inherently centralized. Specifically,

the objective function (algebraic connectivity) and constraint

conditions (e.g. candidate edge set) of the reformulated opti-

mization are both computed based on the stricture knowledge

of entire networks.

In practice, the global network structure information may

be difficult to accumulate in a centralized fashion because

of either technological matters or privacy concerns. Indeed,

a node usually only has a limited perspective, and hence

it cannot straightforwardly acquire what the rest of the

network looks like. Thus, a distributed design scheme is

more appealing from both aspects of numerical tractability

and practical application. The distributed power iteration

is employed to achieve this goal. Several approaches are

available for estimating the eigenvectors and eigenvalues of

an underlying network topology. For instance, a decentralized

orthogonal iteration approach is proposed in [10] to estimate

some leading eigenvectors but with a restriction of central-

ized initialization. Furthermore, a distributed power iteration

approach is introduced in [2] to estimate the components

of the Fiedler eigenvector and then the Fiedler value in

a continuous-time fashion. However, the continuous time

nature of the algorithm makes its implementation in a real-

world scenario particularly challenging. In the work of [11],

the authors propose a distributed approach for the estimation

of the eigenvalues of the weight matrix and analogous work

can be found in [12], without estimating the associated

eigenvector. To the best of our knowledge, little literature

is available regarding the decentralized estimation of the

eigenvector associated with the algebraic connectivity in the

optimal topology design problem.

The main contribution of this paper is to provide a dis-

tributed strategy for approximately solving the optimal topol-

ogy design. A graph process is introduced for constructively

generalizing the edge operation in topology design problem.

By developing eigenvalue sensitivity in graph process, we

reformulate the optimization problem such that involving the

components of the Fiedler eigenvector. In order to facilitate

the distributed implementation, a decentralized pattern of

power iteration algorithm is proposed, which is aimed at

locally estimating the Fiedler eigenvector for all nodes in

the network. In this distributed estimation scheme, each node

only accounts for computing one component of the Fiedler

eigenvector, which dramatically decreases communication

and computational load for nodes. By providing the proofs

of convergence and convergence rate, we achieve full dis-

tributed scheme that nodes are individually aware of explicit

estimates of the Fiedler eigenvector by only communicating

and sharing data with their neighbors in the network. Finally,

we synthesize the obtained results and propose a strategy of

edge operation to solve the optimal topology problem in a

distributed manner.

The organization of this paper is as follows: preliminary

results of graph theory and the problem formulation are

presented in Section II. The main results are proposed in

Section III including a heuristic rule of topology design,

a distributed estimation scheme of Fiedler vector, and a

synthetic strategy of optimal edges allocation. Finally, the

proposed strategies are evaluated via numerical examples

in Section IV. In Section V, conclusion of the underlying

problem is reached.

Notation: Let R be the set of real numbers; 1 (0) denotes

the column vector of all ones (zeros). diag(a, b) represents

the diagonal matrix
[
a 0
0 b

]
, where a, b ∈ R. A identity matrix

is given by I, i.e., I = diag(1, . . . , 1). For a set S, |S| is the

number of the elements in this set. For any n×n symmetric

matrix B, a partial order is operated in its spectrum, more

specifically, λ1(B) ≤ λ2(B) ≤ . . . ≤ λn(B).

II. PROBLEM FORMULATION

Let G = (V , E ,A) be a weighted undirected graph with a

set of vertices V = {1, 2, . . . , n}, a set of edges E ⊆ V × V,

and a weighted adjacency matrix A = [aij]n×n. Com-

plementally,a weight matrix A = [Aij]n×n is given such

that aij = Aij if (i, j) ∈ E and aij = 0 otherwise, where

A ≤ Aij ≤ A, Aii = 0 and Aij = Aji. This weight may be

the available bandwidth between two machines, the number

of links between two web pages, or an estimate of the

strength of a social tie between two individuals. In this

paper, aij ∼ (i, j) is used to illustrate the combination of

the edge with weight aij and the correspondingly connecting

node pair (i, j) if (i, j) ∈ E . A neighborhood set Ni ⊆ V of

vertex i is given by {j ∈ V|aij 6= 0}. |E| is the cardinality of

the edge set, i.e. the number of edges in graph G. In order to

guarantee that the problem is well-defined, the complement

of a weighted graph is introduced first. The complement of

a graph G = (V , E ,A) is denoted by Gc = (V , Ec,Ac) with

the following definition.

Definition 2.1: The complement Gc of a graph G is a

graph with the same vertex set and with the property that

two vertices are adjacent in Gc if and only if they are not

adjacent in G. The weighted adjacent matrix of Gc is given

by Ac = [ãij]n×n = A−A, i.e. ãij = Aij − aij .

The Laplacian matrix L ∈ R
n×n of G is posi-

tive semi-definite matrix L(G) = diag(A1)−A. It fol-

lows that the Laplacian matrix has a simple zero eigen-

value and all the other eigenvalues are positive values if

and only if the graph is connected, i.e., for connected

graph, 0 = λ1(L) < λ2(L) ≤ . . . ≤ λn(L)., with which the

corresponding eigenvectors ν1, ν2, . . . , νn, where ν1 = 1√
n

.

The second smallest eigenvalue λ2(L) of L is the weighted

algebraic connectivity and the corresponding normalized

right eigenvector ν2 is called the Fiedler vector. Since λ2(G)
is computed based on the weighted Laplacian matrix of G, we

equivalently use λ2(G) and λ2(L) in the following analysis.

Given the graph G0 = (V , E0,A0) of an existing weighted

network, we assume it is connected throughout the paper.

The objective of this paper is to maximize Fiedler value by

selecting a edge subset △E ⊆ Ec0 with fixed edge number l
from Ec0 . Thus, the following optimization problem is solved

in this paper:

max λ2(G(V , E0 +△E ,A0 +△A))

s.t. |△E| = l,

△E ⊆ Ec0 ,

(P1)

where △A is the weight matrix associated with △E and the

weights are derived from prespecified weighted matrix A.

For a graph G with m edges and n vertices, the Laplacian

matrix L can be factorized as L = ∇⊤∇ =
∑m

e=1 ae∇e∇⊤
e ,

where ae is the weight of edge e and ∇ = [∇1, . . . ,∇m] is

the incidence matrix whose column vector ∇e (also called

edge vector) concerning edge e (connecting vertex i and j)

is given by

∇e,v =







1 if (i, j) ∈ E and v = i,

−1 if (i, j) ∈ E and v = j,

0 otherwise,

where ∇e,v is the v-th element of ∇e and v = {1, . . . , n}.
The notations of the edge weights ae and aij are abused in

the rest of paper if their correlation is inferred by context. In

practice, this correlation is determined by the graph labeling

that is the assignment of labels to edges and vertices.

As a result, we can rewrite the Problem (P1) as:

max
y

λ2(L0 +△L)

s.t. △L =

mc∑

e=1

yeãe∇e∇
⊤
e ,

1
⊤y = l

y ∈ {0, 1}mc ,

(P1′)

where mc = |Ec0 | and y = [y1, . . . , ye, . . . , ymc
]⊤ is a

Boolean vector, in which 1 means that edge e in Ec0 is in

the set of △E and 0 means that not. The Problem (P1′) is

combinatorial, and hence, can be solved exactly by brute-

force search. Furthermore, by replacing the Boolean con-

straint y ∈ {0, 1}mc by y ∈ [0, 1]mc and convex relaxation,

it can be reformulated as a semi-definite program (SDP) and

solved by employing a standard SDP solver for moderate

size of adding edges. For more details and proofs, the readers

are referred to [4], [13]. However, when the size of network

gets larger, these algorithms exhibit slow convergence and

have high computational requirements. Moreover, note that in

order to compute a solution, the optimization problem (P1′)
requires the entire network structural information, whereas in

reality it is difficult to get the global network structure. The

goal of this paper is to provide an explicit rule for adding

edges to maximize algebraic connectivity. In particular, we

aim at solving Problem (P1′) in the absence of global

network structure information.

III. MAIN RESULTS

In this section, a heuristic algorithm to approximately

solve the optimal topology design problem is proposed. In

order to execute the heuristic in a distributed fashion, a

decentralized power iteration scheme is established to locally

estimate the Fiedler vector.

A. Eigenvalue Sensitivity Analysis

Motivated by the work on eigenvalue sensitivity [14], we

investigate explicit solutions for topology design problems.

The eigenvalue sensitivity offers an insight on the effect of

the eigenvalues of a perturbed matrix, in this case, when

certain edges are added or removed from network.

For any undirected connected graph G, the following

Courant Fischer principle holds:

λ2(L) = min
1⊤z=0

z 6=0

z⊤Lz
‖z‖2

. (1)

Furthermore, by substituting vector z with the normalized

Fiedler vector ν2(L), it follows from (1) that

λ2(L) = ν⊤2 Lν2. (2)

Note that given any positively weighted undirected graph G,

λ2(G) is a nondecreasing function of each edge addition.

Let

L(y) = L0 +△L. (3)

The partial derivative of λ2 (L(y)) with respect to ye gives

the first-order approximation of the increase of λ2 (L(y)), if

the edge e is added to the graph G. According to (2) and

using the definition in (3), it follows

∂

∂ye
λ2(L(y)) = ν⊤2

∂

∂ye
L(y)ν2 = ãij(ν2,i − ν2,j)

2. (4)

This implies that adding a candidate edge ãij ∼ (i, j)
which maximizes ãij(ν2,i − ν2,j)

2 to a graph, results in the

largest displacement of λ2(L(y)), where ν2,i and ν2,j are

the i-th and j-th elements of the Fiedler vector ν2 of the

current Laplacian L(y). For simplicity of presentation in the

following analysis, we denote n(n− 1)/2 variables as

πij = ãij(ν2,i − ν2,j)
2, j 6= i. (5)

To consider the topology design problem in a generic case,

a graph process is introduced as follows:

Definition 3.1: (Graph Process): within a time inter-

val [t0, tml
], 0 ≤ l ≤ mc edges are added into an initial

graph G0. At each discrete-time instant tk (k = 1, . . . ,ml),

lk edges are picked up from the remaining candidate edges

and added into the graph G(tk−1), where ml is the amount

of rounds and
∑ml

k=1 lk = l.
Assumption 3.1: The time sequence has the property

that (tk+1 − tk) ≥ T for some known constant T > 0.

Note that the graph is time-invariant within each inter-

val (tk−1, tk), and therefore its corresponding Laplacian

matrix is piece-wise constant. In contrast to the one-by-

one edge addition in [4], the definition of graph process

allows multi-links addition in each step and encompasses

more application scenarios.

Algorithm 3.1: Consider a graph process as shown

in Definition 3.1. Within the time interval (tk−1, tk]
(k = 1, . . . ,ml), the optimization problem (P1′) can be ap-

proximated as to successively select lk edges such that the

following optimization problem is solved

argmax
(i,j),...,(h,r)

πij + · · ·+ πhr
︸ ︷︷ ︸

lk pairs

s.t. {(i, j), . . . , (h, r)} ⊆ Ec0(tk−1),

(P2)

where π2,i is given in (5) involving the weighted differ-

ence between the components of Fiedler eigenvector at

instant tk−1. The edges addition is implemented at time tk.

Algorithm 3.1 provides a heuristic of allocating edges by

evaluating the deviation of elements in the Fiedler vector.

The criterion in Problem (P2) requires to compute the Fiedler

eigenvector in each round based on the global structure of

the network, specifically, the Laplacian matrix. However, it

is difficult to extend the results in the distributed control

systems. In most cases, nodes only can communicate and

share local information with their connected neighbors in

the network. Based on the above consideration, we propose

a distributed strategy to locally estimate the Fiedler vector

and consequently achieve the self-organized topology design

for each subsystem.

B. Distributed Estimation of Fiedler Eigenvector

In this subsection, we propose a distributed algorithm for

estimating the right eigenvector (Fiedler eigenvector) of the

Laplacian.

Before proceeding, a distributed algorithm for the com-

putation of the powers of a matrix is revisited. As it is

well known from [15], power iteration (sometimes called

Von Mises iteration) is an effective and widely applied

approach in calculating the dominant (in terms of magnitude)

eigenvalue of any matrix. Power iteration first estimates the

eigenvector associated with the dominant eigenvalue, then the

corresponding eigenvalue can be calculated as a result. For

instance, suppose λn(C) and κn are the dominant eigenvalue

(with strictly greater magnitude than other eigenvalues) and

its associated eigenvector of matrix C. It follows that κn can

be estimated by power iteration at the (s+ 1)th step

κ̂n(s+ 1) =
Cκ̂n(s)

‖Cκ̂n(s)‖
, s = 0, 1, . . . (6)

where κ̂n(s) is estimate of νn at the s-th iteration, and κ̂n(0)
is the initial vector with the property κ̂n(0)

⊤κn 6= 0,

namely, κ̂n has a nonzero component in the direction of

the dominant eigenvalue. If λn and κn are known, one can

estimate λn−1(C) by running the power iteration on the

deflated matrix Cn−1 = C − λn(C)κnκ
⊤
n .

Remark 3.1: Note that by deflation (or sometimes affine

transformation [11]), the estimation of any eigenvalue λi(C)
can be accomplished provided that eigenvalues from λn(C)
to λi+1(C) and the corresponding left and right eigenvectors

are known explicitly. In other words, estimation of left

(right) eigenvector(s) is always completed before estimating

corresponding eigenvalue.

Obviously, traditional power iteration (6) is a recursive

procedure with a strict requirement on initial conditions,

and normalization is inevitable at each step in order to

guarantee the estimate converges to a finite vector. What

prevents its distributed implementation is the normalization

and therefore a distributed power iteration scheme associated

with a consensus observer is introduced in this paper. The

estimator is essentially a distributed and discrete power

iteration scheme, which enables each node to compute a

component of the estimate of the Fiedler eigenvector, while

the observer is designed to propagate current estimates

over the entire network. Since the consensus algorithm is

a naturally distributed operation, which only needs local

communication, the proposed scheme is fully distributed

in the sense that each node only uses the previous values

of its one-hop neighbors and itself to update the estimate

variable. As a result, each agent has the estimate of the

eigenvector associated with the second smallest eigenvalue

of the Laplacian matrix.

To use the power iteration for estimating the Fiedler vector,

we first introduce the Perron matrix C = [cij]n×n [1]

C = I − βL, (7)

where 0 < β < 1
dmax

with dmax := maxi lii.

The eigenvalues of matrix C and the eigenvalues of the

Laplican matrix L are related as λi(C) = 1−βλn+1−i(L). It

follows that matrices C and L also share the same eigenspace

which is spanned by the eigenvectors {ν2, . . . , νn} of L.

Note that by the introduction of Perron matrix, the eigen-

values of Laplacian matrix are conversely reordered in the

matrix C. In other words, the useful first and second smallest

eigenvalues of Laplacian matrix L, as well as their associ-

ated eigenvectors, become the first and second maximum

eigenvalues in the matrix C, on which the power iteration

TABLE I: Eigenstructures of matrices

L C C1

i λi νi λi νi λi νi

1 0 1√
n

1− βλL
n νn 0 1√

n

2 λL
2

ν2 1− βλL
n−1

νn−1 1− βλL
n νn

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

n λL
n

νL
n

1
1√
n

1− βλL
2

ν2

∗ λL

i represents λi(L) for simplicity of exposition.

algorithm of matrix can be used. According to Perron-

Frobenius theorem, the following convergent property holds

for matrix C

lim
s→∞

(C)s = ν1ν
⊤
1 =

1

n
11

⊤. (8)

Since the goal is to estimate the eigenvector associated to

the second maximum eigenvalue of C, the Perron matrix is

deflated as follows:

C1 = C − λn(C)ν1ν
⊤
1 , (9)

where the eigenvalue λn−2(C) involved with algebraic con-

nectivity becomes the leading eigenvalue in matrix C1.

Lemma 3.1: The spectrum relationship between the de-

flated Perron matrix C1 and the Laplacian L is

λ1(C1) = λ1(L), λi(C1) = 1− βλn+2−i(L) = λi−1(C),

where i ∈ {2, . . . , n}. In addition, 1√
n

is the eigenvector

associated to the eigenvalue λ1(C1).
Proof: The proof can be obtained by straightforwardly

implementing spectrum analysis on these two matrices. For

the sake of completeness, the eigenstructures of matrices L,

C and its deflated matrix C1 are shown in Table I.

Now, we need to solve a decentralized estimation problem

of the eigenvector associated with the dominant eigenvalue

of deflated Perron matrix C1, i.e. λn(C1). To achieve it,

let a vector variable ν̂
(i)
2 (t) =

[

ν̂
(i)
2,1(t), . . . , ν̂

(i)
2,n(t)

]⊤
be the

estimate of eigenvector ν2 at vertex i. In addition, we provide

an auxiliary variable ω2(t) = [ω2,1(t), . . . , ω2,n(t)]
⊤ ∈ R

n

which is the explicit estimated vector in the power iteration.

The initialization ω2(0) is given by selecting a random vector

with nonzero component in the direction of the dominant

eigenvalue of C1 and it can be decomposed along the

eigenspace

ω2(0) = c1ν1 + · · ·+ cnνn, c1, . . . , cn ∈ R, c2 6= 0. (10)

Thus, each vertex i ∈ V maintains the estimation ν̂
(i)
2 (t)

together with ω2,i(t).
Algorithm 3.2: (Distributed Power Iteration) Consider

the power iteration (6) with the deflated Perron matrix C1 and

the estimate vector ω2(t) initialized by (10). The dominant

eigenvector of C1 can be iteratively estimated in a distributed

fashion

ω2,i(s+ 1) =

∑n

j=1 cij(tk)ω2,j(s)− 1
⊤φi(s)

n‖φi(s)‖
(11)

and ω2,i(s) ∈ R is executed as follows

ω2,i(s) = ω2,i(sTe), s = 0, 1, . . . ,Ms

where cij are (i, j)-entries of Perron matrix C, Te and Ms

are respectively the iterative interval and iterative step of

estimator (11), and φi ∈ R
n is the state of the observer

executed at node i, depending on the following update rule

φi(q + 1) =
n∑

j=1

cijφj(q), φi(q) = φi(sTe + qTo),

φi(0) = ω2,i(s)δi, q = 0, 1, . . . ,Mq,

(12)

where To is the sample interval of observer (12) with To ≪
Te, Mq = ⌊Te/To⌋ and δi is i-th column vector of I.

Proposition 3.1: Consider a connected graph

G(tk) within time interval t ∈ [tk, tk+1). Given the

appropriate setting of parameters parameters Te, To, Mq

and Ms = ⌊(tk+1 − tk − ToMq)/Te⌋, all the

estimates ν̂
(i)
2 ∈ R

n asymptotically converge to the

Fiedler vector ν2(tk) by executing Algorithm 3.2 at each

node i ∈ V .

Proof: Let φ(q) = [φ⊤
1 (q), . . . , φ

⊤
n (q)]

⊤, then the

observer scheme given in (12) can be written by the stack

vector form as follows

φ(q + 1) = (C(tk)⊗ I)φ(q).

Taking (8) into consideration, it holds that

lim
q→∞

φ(q) = lim
q→∞

(Cq(tk)⊗ I)φ(0) =

(
1

n
11

⊤ ⊗ I

)

φ(0).

According to the initial condition for φi(0) = ω2,i(s)δi, we

can obtain

lim
q→∞

φi(q) =
1

n

∑

i

φi(0) =
1

n
ω2(s),

which implies that ω2(s) = nφi(s).
As a result, the closed form of estimator (11) can be given

by

ω2(s+ 1) =
1

‖ω2(s)‖

(
C(tk)− ν1ν

⊤
1

)

︸ ︷︷ ︸

=C1

ω2(s)

=
Cs

1ω2(0)

‖Cs−1
1 ω2(0)‖

, (13)

where ω2(0) is the initial condition defined in (10). The

deflated Perron matrix C1 can be decomposed as

C1 =












1
⊤

√
n

...

ν⊤2






⊤





−1

︸ ︷︷ ︸

:=V






0
. . .

λn(C1)






︸ ︷︷ ︸

:=J






1
⊤

√
n

...

ν⊤2






︸ ︷︷ ︸

(V −1)⊤

,

where V is invertible matrix and J is the Jordan normal form

of C1 as Regarding the fact that Cs
1 = V JsV −1, it yields

ω2(s+ 1) =
(V JsV −1)(c1√

n
1+ c2ν2 + · · ·+ cnνn)

‖(V Js−1V −1)(c1√
n
1+ c2ν2 + · · ·+ cnνn)‖

.

Due to λn(C1) > 0 is the dominant eigenvalue of C1, we

have

lim
s→∞

Js

λs
n(C1)

=








0
0

. . .

1







,

which yields

lim
s→∞

ω2(s+ 1) =
c2λ

s
n(C1)ν2

‖c2λ
s−1
n (C1)ν2‖

= sgn(c2)λn(C1)
ν2
‖ν2‖

. (14)

As a sequel, (14) leads to

lim
s→∞

‖ω2(s)‖ = λn(C1),

and then substituting it to (14), we have

lim
s→∞

ω2(s)

‖ω2(s)‖
= sgn(c2)

ν2
‖ν2‖

. (15)

The convergence is geometric with ratio
λn−1(C1)
λn(C1)

.

Moreover, note that the consensus-based observer (12) is

established to broadcast the last step local estimate ω2,i to

the overall network. Whenever the network is connected at

each interval, each node gets explicit knowledge of last entire

estimate ω2. Based on the above consideration, the observer

algorithm can be used to collect the entire estimates and

update the ν̂
(i)
2 at each node. An extra iterative time MqTo

is required to execute the observer in (12) after finishing

the estimation. Then, the estimate ν̂
(i)
2 maintained at node i

becomes

ν̂
(i)
2 (η) =

φi (η)
∥
∥
∥φi

(

η
)∥
∥
∥

, (16)

where η(tk) = tk +MsTe +MqTo. In other words, all esti-

mates ν̂
(i)
2 (i ∈ V) converge to the true Fiedler eigenvector.

The scheme proposed in Proposition 3.1 consists of two

components: estimator (11) and observer (12). Both com-

ponents are executed using the same information topology

while evolving at a different pace. Note that, the convergence

of the observer needs to achieve within a time period

of Ts such that estimate values ω2,i can be broadcasted

accurately to all the systems, provided that the graph is

connected. In fact, the auxiliary observer (12) is established

to propagate the local estimates over the entire network and

is not necessary to reflect any practical reality.

Remark 3.2: Note that the total amount of nodes n is

involved in the estimator (11). In case this number is not

available to nodes, a labeling technique as shown in [12] can

be employed. In particular, this labeling method takes place

in a fully distributed manner, and hence it is consistent with

our framework.

C. Distributed Algorithm for Edge Addition

In order to complete the local addition of edges by individ-

ual nodes, we slightly modify the decentralized estimation

in Proposition 3.1 to facilitate the graph process. Before

proceeding further, the following assumption is made in this

paper.

Assumption 3.2: Each node i knows the i-th row of the

weighted matrix A and the connected neighbors in Ni(t).
Additionally, the nodes have the knowledge of the total

number l of added links and the set {lk}
ml

k=1 during the graph

process.

The assumption implies that the individual system knows

the changes of the corresponding communication links con-

nected with itself while such a change is generally not known

to any other systems.

First, let µ(k) = max{n−1, lk}. We introduce a descend-

ing sequence {π̂i,p(t)}
µ
p=1 which is made up by elements

(Aij − aij)
(

ν̂
(i)
2,i − ν̂

(i)
2,j

)2

, j 6= i and j = 1, . . . , n.

and it updates when new estimate ν̂
(i)
2 (t) is available. Addi-

tionally, we denote an edge set E i(t) = {(i, j)|j /∈ Ni(t)} for

each node i and induce a partial order in this set according to

to the partial order of {π̂i,p(t)}, specifically, when lk > n−1,

{π̂i,p(t)}lkp=n = 0 and accordingly setting null in edge set.

Before entering into the details of the entire algorithm,

we present an example in Figure 1 that illustrates how to

construct this sequence and its associated edge set at nodes.

1 4

32

Fig. 1: Example

Example: For this graph, it has

A =







0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0






A =







0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0






,

and the number of added edge is lk = 2. Then, refer to node

1, for instance, we have

{π̂1,p}
2
p=1 = {1.7072

︸ ︷︷ ︸

π̂1,1

, 0.8536
︸ ︷︷ ︸

π̂1,2

}

which leads to edge set E i = {(1, 4), (1, 3)}.
In analogue with a distributed estimation of certain max-

imum value in [16], [17], nodes execute the following

algorithm to individually explore the admissible edges to be

added in the network.

Algorithm 3.3: (Optimal Edges Search)

1) Initialization: at initial step τ = 0, update {π̂i,p(tτ)}

and E i(tτ) based on the resultant estimates ν̂
(i)
2 , where

tτ = t+ τ .

2) Transmission: sends {π̂i,p(tτ)} and E i(tτ) to its neigh-

bors.

3) Update: at step τ ≥ 1, node i first looks for new

edge in received information from its neighbors which

provides a set as follows:

Φi(tτ−1) = Ψi(tτ−1)
/{

E i(tτ−1)
⋂

Ψi(tτ−1)
}

where Ψi(tτ−1) =
⋃

j∈Ni(t)
Ej(tτ−1)

for any edge in Φi(tτ−1) do

if its corresponding π̂j,p′ < ∀π̂i,p then

return

else

π̂i,µ(k) ← π̂j,p′ and update E i

end if

end for

Then,

{π̂i,p(tτ)} ← {π̂i,p(tτ−1)}, E i(tτ)← E
i(tτ−1).

Finally, permute the {π̂i,p(tτ)} and correspondingly

rearrange E i(tτ).
4) Loop: τ ← τ + 1

if τ < Mq then

return to Step 2

else

Return E i(t+Mq)
end if

5) End algorithm.

Theorem 3.1: Consider a graph process in [t0, tml
] with

l-edges addition and the nodes executing the Proposition 3.1

and Algorithm 3.3. In each time interval (tk−1, tk] (k ≥
1), nodes maximize the algebraic connectivity by adding lk
edges at discrete time tk in a distributed fashion.

Proof: In fact, the obtained set {π̂i,p(tk)} derived from

Algorithm 3.3 can be used as the local estimates of πij for

node i. Selecting the first lk elements from E i(tk) associated

with this local estimate set and using Algorithm 3.1, all nodes

has access to the optimal combination of candidate edges and

locally implement the edge addition.

Moreover, in order ensure that the proposed distributed

framework of edges addition is effectively implemented, we

need to discuss the compatibility of the time scales among

graph process, estimator (11) and self-diagnosis scheme of

potentially adding edges in Algorithm 3.3. Evidently, the

implementation of edge addition is made after achieving the

output of Algorithm 3.3 that turns to call for an available

estimate of the Fiedler vector from Algorithm 3.2. In other

words, estimation iteration has already converged before

implementing edge-addition. As a result, the schedule of the

components involved in the distributed edge-addition should

be appropriately arranged such that

MsTe + 2Tmix(t) < T, ∀t ∈ [t0, tml
], (17)

where Tmix(t) is the mixing time of a random work on a

network. Regarding the fact that both observing scheme (12)

and Algorithm 3.3 are derived from distributed consensus

1

2

3

4

5

6

7
8

9

10

initial edges at t0

added edges at t1

added edges at t2

added edges at t3

added edges at t5

added edges at t6

added edges at t7

added edges at t4
added edges at t8

Fig. 2: The resulting weighted graph with 10 nodes under a

graph process

algorithms which has the close relationship with Markov

chains. As a consequence, the running times for both com-

ponents are closely related to the mixing time Tmix = MqTo

of the random walk on the corresponding network graph.

Remark 3.3: If the lower bound constraint in Assump-

tion 3.1 does not hold most of the time, any online estima-

tion schemes are available to work. However, the proposed

distributed strategy of adding edges depend on the deviation

between elements of eigenvector estimates and by specifying

an error band, this scheme can effectively perform based on

the output of the estimators at the settling time.

IV. NUMERICAL EXAMPLES

In this section, some simulation examples are presented

to show the performance of the algorithms. An initial

graph G0(V , E0,A0) with n = 10 nodes and |E0| = 11
edges is randomly generated such that forming a connected

topology, as shown as solid lines in Fig. 2. The weights

of edges are randomly prespecified as Aij ∈ [1, 10]. Once

G0 and weighted matrix A are fixed, the set of numbers

of added edges {lk} is the input of the algorithm which

is set as{3, 4, 3, 2, 1, 2, 1, 4} in this case. The decentralized

estimation is randomly initiated and the resulting graph

process is shown in Fig. 2. In Fig. 3, the corresponding

eigenvector estimation processes are illustrated for each

edge-adding round. The nodes achieve the same estimated

the components of Fiedler eigenvector in a short time as

shown in Fig. 4.

The topology design problem (P1) can be exactly solved

by exhaustive search which leads to a global optimum. In the

context of the graph process, we introduce a pseudo exhaus-

tive search which computes λ2 for
(

mc−
∑k−1

j=1
lk

lk

)

Laplacian

matrices based the previous resulting graph G(tk−1). Fig. 5

shows the result from Theorem 3.1 offer better algebraic

connectivity than pseudo exhaustive search does, and it is

very close to the actual optimal values from exhaustive

search.

0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

E
ig

en
ve

ct
or

 E
st

im
at

io
n

(a) l1 = 3

0.2 0.25 0.3 0.35 0.4 0.45
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

E
ig

en
ve

ct
or

 E
st

im
at

io
n

(b) l2 = 4

0.45 0.5 0.55 0.6 0.65 0.7 0.75
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

E
ig

en
ve

ct
or

 E
st

im
at

io
n

(c) l3 = 3

0.75 0.8 0.85 0.9 0.95 1 1.05
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

E
ig

en
ve

ct
or

 E
st

im
at

io
n

(d) l4 = 2

1.05 1.1 1.2 1.3 1.4 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

E
ig

en
ve

ct
or

 E
st

im
at

io
n

(e) l5 = 1

1.5 1.55 1.6 1.65
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

E
ig

en
ve

ct
or

 E
st

im
at

io
n

(f) l6 = 2

1.65 1.7 1.75 1.8 1.85 1.9
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

E
ig

en
ve

ct
or

 E
st

im
at

io
n

(g) l7 = 1

2 2.2 2.4 2.6 2.8 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

E
ig

en
ve

ct
or

 E
st

im
at

io
n

(h) l8 = 4

Fig. 3: Fiedler eigenvector estimation for the graph process

in Fig. 2

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
un

ni
ng

 T
im

es
 fo

r
E

st
im

at
or

s
(s

ec
)

Graph Process

0.185 0.204
0.293 0.254

0.433

0.135

0.243

1.189

Fig. 4: Running time of distributed estimators for the graph

process in Fig. 2

0 5 10 15 20
0

5

10

15

20

25

30

35

Number of Adding Edges

A
lg

eb
ra

ic
 C

on
ne

ct
iv

ity

Distributed method
Pseudo exhaustive search
Exhaustive search
Simultaneously adding edges

Fig. 5: A comparison of the decentralized methods with other

optimal solutions

In addition, the observation in Fig. 5 is consistent with

the common intuition that when using greedy perturbation

in Algorithm 3.1, the strategy of adding edges one-by-

one outperforms than adding them in one time. Indeed,

edge-wise strategy of implementing graph process results in

the least perturbation and track the evolution of algebraic

connectivity in the most accurate way. In order to further

affirm this conclusion, an additional example is provide and

the consequent results are shown in Fig. 6. Referred to

the analysis of matrix perturbation in Algorithm 3.1, we

consider five different strategies of adding 20 edges in a 0−1
unweighed graph. From Fig. 6, the strategy of adding edge

one-by-one and simultaneously adding total edges provides

the upper and lower bounds for distributed edge addition,

respectively. In other words, adding less number of edges

for per-step provides better performance but requires more

steps.

0 5 10 15 20
0

1

2

3

4

5

6

7

Number of Adding Edges

A
lg

eb
ra

ic
 C

on
ne

ct
iv

ity

1−edge & 20−rounds
2−edges & 10−rounds
5−edges & 4−rounds
10−edges & 2−rounds
20−edges & 1 round

Fig. 6: Algebraic connectivity of adding 20 edges under

different edge-addition strategies

V. CONCLUSIONS

This paper proposes a distributed strategy for solving the

optimal topology design problem in networks. By introduc-

ing a graph process, we algebraically generalize the edge

operation for optimal topology design. Based on eigenvalue

sensitivity analysis, a heuristic rule of edge allocation is

presented to approximately solve the original combinatorial

optimization, which provides a simple search algorithm

involving the deviation of the elements in Fiedler vector. The

decentralized estimation scheme based on power iteration

is established to locally estimate the desired eigenvector.

As a result, a distributed strategy is synthesized to realize

local self-awareness of edge addition for all individuals in

networks.

REFERENCES

[1] R. Olfati-Saber and R. Murray, “Consensus and cooperation in net-
worked multi-agent systems,” Proceedings of the IEEE, vol. 95(1), pp.
215–233, 2007.

[2] P. Yang, R. Freeman, G. Gordon, K. Lynch, S. Srinivasa, and R. Suk-
thankar, “Decentralized estimation and control of graph connectivity
for mobile sensor networks,” Automatica, vol. 46(2), pp. 390–396,
2010.

[3] R. Dai and M. Mesbahi, “Optimal topology design for dynamic
networks.” 50th IEEE Conference on Decision and Control and
European Control Conference, 2011, pp. 1280–1285.

[4] A. Ghosh and S. Boyd, “Growing well-connected graphs.” 45th IEEE
Conference on Decision and Control, 2006, pp. 6605–6611.

[5] M. Rafiee, “Optimal network topology design in multi-agent systems
for efficient average consensus.” 49th IEEE Conference on Decision
and Control, 2010, pp. 3877–3883.

[6] M. Fiedler, “Some minimax problems for graphs,” Discrete Mathe-

matics, vol. 121, pp. 65–74, 1993.
[7] Y. Wan, S. Roy, X. Wang, A. Saberi, T. Yang, M. Xue, and B. Malek,

“On the structure of graph edge designs that optimize the algebraic
connectivity.” 47th IEEE Conference on Decision and Control, 2008,
pp. 805–810.

[8] A. Priolo, A. Gasparri, E. Montijano, and C. Sagues, “A decentralized
algorithm for balancing a strongly connected weighted digraph.”
American Control Conference, 2013, pp. 6547–6552.

[9] P. Wei and D. Sun, “Weighted algebraic connectivity: an application
to airport transportation network.” 18th IFAC World Congress, 2011,
pp. 13 846–13 869.

[10] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” Journal of Computer and System Sciences, vol. 74(1), pp.
70–83, 2008.

[11] C. Li and Z. Qu, “Distributed estimation of algebraic connectivity of
directed networks,” Systems and Control Letters, vol. 62, pp. 517–524,
2013.

[12] R. Aragues, G. Shi, D. Dimarogonas, C. Sagues, and K. Johansson,
“Distributed algebraic connectivity estimation for adaptive event-
triggered consensus.” American Control Conference, 2012, pp. 32–37.

[13] D. Xue, A. Gusrialdi, and S. Hirche, “Robust distributed control design
for interconnected systems under topology uncertainty.” American
Control Conference, 2013, pp. 6556–6561.

[14] A. Gusrialdi, “Performance-oriented communication topology design
for distributed control of interconnected systems,” Mathematics of

Control, Signals, and Systems, special issue on Control, Communi-

cation, and Complexity, vol. 25(4), pp. 559–585, 2013.
[15] D. Bertseksas and J. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods. Prentice-Hall, 1989.
[16] A. Tahbaz-Salehi and A. Jadbabaie, “A one-parameter family of

distributed consensus algorithms with boundary: From shortest paths
to mean hitting times.” 45th IEEE Conference on Decision and
Control, 2006, pp. 4664–4669.

[17] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52(6), pp.
2508–2530, 2006.

