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Abstract

It is beyond controversy that computer simulations of physical processes get more and more im-
portant in many fields of industrial applications covering a broad range from classical engineer-
ing disciplines (e.g., automotive, aerospace) to bio-medical applications. Specifically, computer
simulations can provide new insights and a better understanding of processes that one cannot
obtain from classical experiments due to technical limitations or economic aspects. There is no
doubt that the complexity of the mathematical models grows with the increasing capacity and
availability of computer resources coming along with new challenges for the numerical solution
techniques. Within contemporary numerical solution methods, internally large linear systems
have to be solved using iterative techniques which heavily rely on efficient internal precondi-
tioning methods. The principal focus of this thesis are so-called aggregation-based algebraic
multigrid preconditioners which are well-established for certain classes of linear problems due
to optimal performance and scaling properties. However, multigrid methods in general are expert
systems such that they cannot be applied for other problem classes as a black box. In order to
develop “Flexible Aggregation-based Algebraic Multigrid methods for Contact and Flow prob-
lems”, a flexible multigrid framework is required that allows for problem-specific enhancements.
Once the basic ideas of multigrid methods have systematically been introduced, all core compo-
nents of an aggregation-based algebraic multigrid method are explained as they serve as building
blocks in the flexible software framework.

Different problem classes, such as contact and flow problems, come along with very specific
demanding matrix properties in the associated linear systems. The intention of this work is to il-
lustrate ways to enable multigrid methods for new classes of problems with minimal adaptions in
the algorithms. In the context of convection-dominated flow problems, this thesis explores gen-
eral concepts for handling non-symmetric problems with aggregation-based algebraic multigrid
methods. An important contribution of this work is a novel transfer operator smoothing strat-
egy for non-symmetric problems based on advanced concepts such as a flexible pattern strategy
combined with explicit mode constraints. The algorithm is perfectly integrated in the multigrid
framework and can be used together with a Petrov—Galerkin strategy for building valid restriction
operators for non-symmetric problems.

Another class of challenging problems results from contact mechanics using mortar finite ele-
ments. Both, a condensed and a saddle point formulation are considered in detail for developing
adapted aggregation-based multigrid preconditioners. When using a condensed contact formu-
lation one can avoid the natural saddle point structure of a contact problem (with contact con-
straints) and has to solve a structurally non-symmetric problem with a non-diagonally dominant
system matrix. Whereas standard aggregation-based algebraic multigrid methods are failing, a



cheap column permutation method combined with smart strategies to improve the robustness,
such as an observer mechanism to keep track of the diagonal-dominance of the linear operators,
lead to efficient multigrid preconditioners.

The saddle point formulation for the contact problems requires a different approach. Here, the
focus of this work is on multigrid methods for saddle point problems, including a full multi-
grid approach where indefinite block smoothers perform the coupling of the primary and sec-
ondary variables of the saddle point problem on each multigrid level. Several well-known block
smoothers from the literature are discussed and explored in the context of saddle point problems
arising from contact problems. Additionally, a new contact-specific aggregation strategy for La-
grange multipliers is developed which seems more intuitive than existing alternatives. All the
proposed methods and enhancements are seamlessly embedded in the surrounding flexible alge-
braic multigrid framework. The proposed enhancements both for the condensed and the saddle
point formulation lead to robust and efficient algebraic multigrid preconditioners as is shown
with several large numerical examples.

The intention of this thesis is to demonstrate the usage of a general flexible algebraic multigrid
framework to develop problem-specific enhancements for new demanding problem classes using
concrete examples arising from problems in computational contact mechanics and computational
fluid mechanics, stating that all presented concepts and methods in this thesis are more general
and allow for further extensions to more complex multiphysics applications.
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Zusammenfassung

Es ist unbestritten, dass Computersimulationen von physikalischen Prozessen in vielen Bere-
ichen industrieller Anwendungen, begonnen bei klassischen Ingenieursdisziplinen (Automo-
bilindustrie, Luft- und Raumfahrtindustrie) bis hin zu biomedizinischen Anwendungen, an Be-
deutung gewinnen. Computersimulationen konnen insbesonders neue Einsichten und ein tieferes
Verstiandnis gewihren, die sich aus klassischen Experimenten wegen technischer Einschrinkun-
gen oder aus wirtschaftlichen Gesichtspunkten nicht gewinnen lassen. Es besteht kein Zweifel,
dass die Komplexitidt der mathematischen Modelle mit der wachsenden Verfiigbarkeit von Re-
chenkapazitit zunimmt, welche mit neuartigen Herausforderungen fiir die numerischen Losungs-
verfahren einhergeht. In zeitgeméfBen numerischen Methoden sind intern sehr grof3e lineare Gle-
ichungssysteme mittels iterativer Verfahren zu 16sen, welche stark auf effiziente, interne Vorkon-
ditionierungsverfahren angewiesen sind.

Das Hauptaugenmerk dieser Dissertation liegt auf sogenannten aggregationsbasierten alge-
braischen Mehrgitterverfahren, die aufgrund von optimalen Skalierungseigenschaften fiir bes-
timmte Klassen von linearen Problemen als Vorkonditionierer etabliert sind. Mehrgitterverfahren
im allgemeinen sind jedoch Expertensysteme, so dass sie nicht als ,,black box* auf andere Prob-
lemklassen angewandt werden konnen. Fiir die Entwicklung , Flexibler aggregationsbasierter
algebraischer Mehrgitterverfahren fiir Kontakt- und Strémungsprobleme’ bendtigt man ein flex-
ibles Framework das problemspezifische Erweiterungen erlaubt. Nachdem die grundlegenden
Ideen von Mehrgitterverfahren methodisch eingefiihrt worden sind, werden alle Grundkompo-
nenten fiir aggregationsbasierte algebraische Mehrgitterverfahren erklirt, da sie die Bausteine in
einem flexiblen Software Framework darstellen.

Unterschiedliche Problemklassen, wie Kontakt- und Stromungsprobleme, bringen besondere
und durchaus anspruchsvolle Matrixeigenschaften in den zugehorigen linearen Gleichungssys-
tem mit sich. Das Ziel dieser Arbeit ist es Wege aufzuzeigen mit minimalen Anpassungen
Mehrgitterverfahren fiir neue Problemklassen zu 6ffnen. Im Bereich konvektionsdominierter
Stromungen untersucht diese Arbeit allgemeine Konzepte fiir die Handhabung unsymmetrischer
Probleme mit aggregationsbasierten algebraischen Mehrgittermethoden. Ein wichtiger Beitrag
dieser Arbeit ist mit einer neuartigen Glattungsstrategie fiir Transferoperatoren im Falle von
unsymmetrischen Problemen gegeben, welche auf fortschrittlichen Konzepten, wie einer flex-
iblen ,,Pattern*-Strategie (fiir die Belegungsstruktur der Matrizen) kombiniert mit zusitzlichen
Nebenbedingungen (fiir Fehelermoden), basiert. Der Algorithmus ist perfekt in das Mehrgitter-
framework integriert und kann mit einer Petrov—Galerkin Methode fiir zuldssige Restriktionsop-
eratoren fiir nicht-symmetrische Probleme verwendet werden.
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Eine andere Klasse herausfordernder Probleme ergibt sich aus dem Bereich der Kontakt-
mechanik mit sogenannten Mortar-basierten Finite-Element-Methoden. Sowohl eine konden-
sierte Formulierung als auch eine Formulierung als Sattelpunktproblem werden fiir die Entwick-
lung angepasster aggregationsbasierter Mehrgittervorkoniditionierer im Detail betrachtet. Mit
der kondensierten Formulierung ldsst sich die natiirliche Sattelpunktstruktur eines Kontaktprob-
lems (mit Kontaktnebenbedingungen) vermeiden und man hat ein strukturell unsymmetrisches
Problem mit einer nicht diagonaldominanten Systemmatrix zu 16sen. Wihrend Standardver-
fahren im Bereich aggregationsbasierter Mehrgittermethoden scheitern, fiihrt eine giinstige Spal-
tenvertauschung kombiniert mit intelligenten Strategien zur Verbesserung der Robustheit, wie
einem Kontrollmechanismus zur Uberwachung der Diagonaldominanz der linearen Operatoren,
zu effizienten Mehrgittervorkonditionierern.

Fiir die Kontaktprobleme in Sattelpunktformulierung ist ein anderer Ansatz erforderlich. In
diesem Zusammenhang konzentriert sich dieser Teil der Arbeit auf Mehrgitterverfahren fiir Sat-
telpunktprobleme. Dies schliet einen Mehrgitteransatz ein, in welchem Blockverfahren zur
Glattung verwendet werden, welche die Kopplung von Primiér- und Sekundérvariablen des Sat-
telpunktproblems auf allen Gitterebenen tibernehmen. Verschiedene wohlbekannte Blockmeth-
oden zur Glittung aus der Literatur werden diskutiert und im Zusammenhang von Sattelpunkt-
problemen fiir Probleme aus der Kontaktmechanik untersucht. Zusétzlich wird eine neue kontak-
tspezifische Aggregationsstrategie fiir Lagrange Multiplikatoren entwickelt welche eingéingiger
erscheint als existierende Alternativen. Alle vorgestellten Verfahren und Erweiterungen sind
nahtlos in das umgebende Framework fiir Algebraische Mehrgitterverfahren eingebettet. Wie mit
mehreren groen numerischen Beispielen gezeigt wird, liefern die vorgeschlagenen Anpassun-
gen sowohl fiir den kondensierten Fall wie auch fiir die Sattelpunktformulierung jeweils robuste
und effiziente Algebraische Mehrgitterverfahren zur Vorkonditionierung.

Ziel dieser Arbeit ist es aufzuzeigen wie ein allgemeines und flexibles Framework fiir Al-
gebraische Mehrgitterverfahren verwendet werden kann, um problemspezifische Anpassungen
fiir neue anspruchsvolle Problemklassen zu entwickeln. Hierfiir werden konkrete numerische
Beispiele aus dem Bereich der rechnergestiitzten Kontaktmechanik und Fluidmechanik verwen-
det, wobei angemerkt werden soll, dass alle in dieser Arbeit vorgestellten Konzepte und Meth-
oden allgemein gehalten sind und so eine Erweiterung zu noch komplexeren physikalischen
Anwendungen erlauben.
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CHAPTER

Introduction

I suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail

(“Law of the hammer”, Abraham H. Maslow [128])

This quotation, known as Maslow’s “Law of the hammer”, describes the problem of the so-
called method-centered approach where the problems are adapted in such a way that existing
tools can be applied. In Maslow [128] the author explains with simple examples how the science
in general may suffer from this way of thinking.

In this thesis a problem-centered approach is pursued instead of a method-centered approach.
In fact, often there already exist efficient tools that are designed for slightly different problems
and it is the most natural thing trying to adapt them to make them work for the new classes of
problems. In other words: in a problem-centered approach one tries to adapt existing tools to
solve the given problems instead of changing or simplifying the problems to meet the prerequi-
sites of the tools (or solvers). This way the problem-centered approach may even stimulate new
innovative concepts for challenging problems.

Typical problems arising from computational fluid mechanics and computational contact me-
chanics are known to be particularly challenging for iterative (linear) solvers for different rea-
sons. With both contact and flow problems in mind, this thesis presents several ways to adapt
the so-called aggregation-based algebraic multigrid methods (AMG) as tools for the efficient
solution of the corresponding demanding linear systems.

1.1. Motivation

The principal focus of this thesis is on aggregation-based AMG preconditioners, that play an
important role for efficiently solving large linear systems. For the motivation one has to answer
two questions: why are efficient multigrid preconditioners for iterative solvers of general inter-
est? Why could this thesis be interesting if one can buy ready-to-use simulation software with
different linear solvers and multigrid preconditioners included?
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To answer the first question one should briefly look at the typical steps required to perform
numerical simulations:

Modeling phase: In the modeling phase the physical problem is described in a mathematical
language usually resulting in a set of partial differential equations (PDEs).

Discretization phase: Then, after a proper reformulation of the problem, the continuous math-
ematical model has to be discretized leading to a finite-dimensional problem that can be
solved on a computer with limited resources. In this thesis the finite element method (FEM)
is used for the spatial discretization of the continuous problem. For non-steady or transient
problems with evolving time, one needs a time integration or time discretization scheme
with discrete time steps.

Solution phase: Depending on the discrete models, one usually ends up solving a general non-
linear discrete problem in each time step. There are many different solution strategies for
certain classes of nonlinear problems known with different prerequisites and properties.
Just to mention a few: there are classical Newton methods and variants such as inexact
Newton methods, Gauss—Newton methods, and Levenberg—Marquardt methods (cf. Mar-
quardt [127], Moré [134]) which interpolate between Gauss—Newton methods and gradient
descent methods. A general overview on nonlinear solution strategies is provided, e.g., by
Fletcher [67]. In this thesis Newton-like methods, which internally rely on the solution
of large linear systems, are used for solving the nonlinear problems. The challenging part
here is to obtain a sufficiently good approximate solution within a reasonable time.

[lustrating the typical algorithmic layout of the solution phase for a non-steady problem, Fig-
ure 1.1 reveals that the preconditioning methods are the core component in the overall solution
process. Therefore, it is clear that the design of efficient iterative solution techniques for large
linear systems is of high interest. It is beyond controversy that computer simulations of physi-
cal processes get more and more important in many fields of industrial applications. Undoubt-
edly, today’s computer models grow with the increasing capacity and availability of computer
resources. Internally, large linear systems occur which can only be solved using iterative tech-
niques, such that the performance of iterative solvers heavily relies on efficient preconditioning
methods for large linear systems. Algebraic multigrid preconditioners are among the most ver-
satile and efficient state-of-the-art preconditioning methods that are currently known for gain-
ing optimal performance and scaling properties for certain problem classes (e.g. Trottenberg
et al. [186]). To answer the second question, why this thesis could be interesting if ready-to-use
solvers and preconditioners already exist, one has to understand that iterative solvers and multi-
grid methods are expert systems, which develop their full potential only if they are correctly
used. The patient reader may find a more detailed answer in the next sections where a rough
overview of state-of-the-art iterative solving and preconditioning ideas is given before the exact
research objectives for this thesis are specified.

1.2. Solution strategies for linear systems

The problems considered in this thesis can be written in their most general form as

Ax=b (1.1
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Time loop

Set of nonlinear equations
(e.g., Newton method)

Linear system
(Krylov subspace method)

Preconditioner
(e.g., Multigrid)

Figure 1.1.: Nested algorithmic layout of implicit time integration scheme.

with A € R™ " a sparse matrix and z,b € R". Keeping in mind that the linear systems in
(1.1) usually arise from linearizations of a nonlinear system within a (multiphysics) simulation
of different physical processes, it is clear that one has to deal with different classes of linear
systems that are governed by the mathematical properties of the corresponding linear operator A
(such as symmetry or the eigenvalue spectrum).

1.2.1. Direct solvers

Direct solving strategies for solving sparse linear systems have the advantage that they often can
be used as a black-box method. Internally, they are based on some kind of decomposition, which
can be, e.g., a QR-decomposition or a LU-decomposition. The interested reader is referred to
Duff et al. [56] for a general overview of the underlying techniques.

In contrast to direct solvers, iterative techniques cannot solve arbitrary linear systems of regu-
lar equations, such that — to this day — there are still applications which are dominated by direct
sparse solvers. But contemporary iterative solvers are an interesting alternative to direct solvers
for linear problems resulting from finite element formulations in computational fluid mechanics
or computational contact mechanics. Especially due to the extreme memory requirements of di-
rect sparse solvers with scaling properties often being far away from the perfect scaling O(n)
for an increasing problem size n, direct solvers are not an option for large scale linear problems
from the applications considered in this thesis. It shall be noted that direct sparse solvers are
furthermore more complex to implement in parallel than iterative techniques. So, with the recent
developments in parallelization, iterative solution techniques are much more favorable.

1.2.2. Iterative solution techniques for linear systems

This section gives a brief introduction of iterative linear solvers and the idea of so-called precon-
ditioning methods needed to solve linear systems as given in (1.1). Iterative solution techniques
try to solve a linear system approximately by iteratively improving an initial guess z° until the
solution vector x* is sufficiently close to the exact (but unknown) solution z of (1.1). In Saad
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and van der Vorst [171] an overview of contemporary iterative solution processes is given with
a short review of the history of iterative solvers and their development in the 20-th century.

In contrast to direct solvers (cf. Section 1.2.1) which can be understood as perfect black-
box methods, iterative solution methods are expert systems which require a sufficient in-depth
understanding of the underlying principles before they can be successfully applied to concrete
problems. This makes them hard to use for general industrial applications, but the correct usage
of these iterative solving strategies allows for solving large problems which are unattainable for
direct methods in a reasonably low time. In this thesis, well-established iterative linear solving
strategies are used such as Krylov-subspace methods represented by the “conjugate gradient”
(CG) method (cf. Hestenes and Stiefel [92]) for symmetric problems, or the “generalized min-
imal residual” (GMRES) method (cf. Saad and Schultz [168]) as well as the “biconjugate gra-
dient stabilized” (BiCGstab) method (cf. van der Vorst [188]) for non-symmetric problems. For
an overview on Krylov-subspace methods, the interested reader may refer to, e.g., Liesen and
Strakos [119]. In particular, the iterative Krylov subspace method used in this thesis is the pre-
conditioned GMRES method which is known to be a robust iterative method that also can solve
non-symmetric linear systems. In Appendix A the interested reader can find a brief discussion
of the underlying principles and the algorithm of the preconditioned GMRES method.

Independent of the used iterative linear solver, one can only obtain optimal performance when
combining the iterative solver with a suitable preconditioning method.

1.2.3. The Idea of preconditioning

The speed of convergence of iterative solvers mainly depends on the spectral properties of the
given linear operator A (cf. Hackbusch [86], Saad [170]). In practice, the usage of additional
preconditioning methods is recommended to improve the performance of the iterative solving
process.

The main idea of preconditioning is to construct a cheap and easy-to-invert approximation
W of A, such that all eigenvalues of the preconditioned operator AW ! are close to one. Then,
instead of the original linear system (1.1) one solves the preconditioned linear system that is
given by

AW™'Z=b with Wz =1 (1.2)

If W is a sufficient approximation of A, iterative methods should be able to solve the precon-
ditioned linear system (1.2) within a significantly smaller number of linear iterations than the
original system (1.1).

Remark 1.2.1 (Left- versus right-preconditioning). The preconditioning strategy given in (1.2) is
known as right-preconditioning in the literature, since the preconditioning matrix W is applied
from the right. As alternative one can also use left-preconditioning, i.e., W~1Ax = W1,
or combine left- and right-preconditioning to a two-sided preconditioning strategy resulting in
W TAW,'E = Wb with War = 7.

In this thesis only right-preconditioning is used. Right-preconditioning preserves the original
right-hand side vector b. Consequently, the residual norm is relative to the initial system, i.e.,
b — Aux, since the algorithm obtains the residual b — Az = b — AW 17, implicitly. This allows
the formulation of stopping criteria for the linear solver based on the original non-preconditioned
residual.
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There are quite a few different preconditioning techniques for iterative solvers which are based
on different principles. The reader is referred to Saad and van der Vorst [171] or Benzi [21] for
a general overview of the most important classes of preconditioners with plenty of comments
on history and literature for further reading. Just to give some examples: the incomplete factor-
ization methods exist in many variants and are all based on the idea to control the fill-in in a
LU-decomposition. Another class of preconditioners is given by the sparse approximate inverse
methods which try to approximate the inverse of A iteratively. Many other iterative processes,
such as relaxation-based methods, can also be used as preconditioners. Relaxation-based meth-
ods also play an important role in context of the so-called multigrid methods which certainly
represent one of the most important classes of preconditioning methods. In this thesis, the fo-
cus is on the design of special variants of multigrid preconditioners for different applications in
computational fluid mechanics and computational contact mechanics.

1.3. Basic idea of multigrid methods

Multigrid methods are comprehensively discussed in the next chapters of this thesis. In this
section only a short explanation of the fundamental idea of multigrid methods is given.

Multigrid methods are based on the idea of reconstructing the fine level solution z in (1.1)
using information from some coarse representations of the fine level problem. One makes heavily
use of the fact that well-known and cheap iterative smoothing processes are more effective in
reducing high-oscillatory error components, whereas they are not able to tackle low-frequency
errors. By using different resolutions of the fine level problem one can effectively reduce the
relative high-oscillating error components on the corresponding multigrid levels with cheap error
smoothing methods. The iterative solving process for the fine level solution x has significant
benefit from the corresponding corrections of the coarser levels. Therefore, multigrid can be
understood as applying cheap smoothing methods for reducing different error components on
different multigrid levels. This effect is known as “smoothing” effect (see Section 2.2).

Even though multigrid methods can be used as standalone solvers, here they are used as pre-
conditioners within the GMRES method (cf. Appendix A) to increase the robustness of the over-
all solution process. So, as an essential part of the iterative linear solving strategy (see Section
1.2.2), multigrid preconditioners can be considered to be a tool for efficiently solving linear
systems.

As already mentioned in Section 1.1, multigrid methods are expert systems which consist of
different components that have to properly work together. Concrete parameter choices for the
multigrid preconditioner can make the difference between optimal convergence or divergence of
the iterative solver, such that there is no “general tool” in the form of a preconditioner for all
classes of linear problems. In particular, there is no general efficient iterative solver with appro-
priate (multigrid) preconditioners that one can buy and expect to work properly for challenging
systems just by “pressing a button”. Hence, when developing “Flexible Aggregation-based Al-
gebraic Multigrid methods for Contact and Flow problems”, it is important to accept that it is
not possible to provide one multigrid method for all problem types in a black-box sense. In-
stead, one needs a flexible multigrid framework with different algorithmic building blocks that
allows to construct appropriate multigrid methods for many classes of problems (e.g., resulting
from computational fluid mechanics or computational contact mechanics). This complies with
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our general way of thinking of a problem-centered approach in the sense of adapting our tools
and methods for our problems.

1.4. Research objective

Aggregation-based AMG methods are known for their useful properties such as optimal con-
vergence for certain classes of problems or the fact that they can be applied to problems with
unstructured meshes without requiring the user to provide coarse meshes. However, aggregation-
based AMG methods (as well as multigrid methods in general) are expert systems that often have
to be adapted to work for problem classes other than they have originally been developed for.
What is missing is a flexible AMG framework which allows for quick extensions for specific
problems that can also be used by non-expert users.

1.4.1. Specification of requirements

The central requirements for a multigrid framework are

Flexibility: Flexibility is important for several reasons: First of all, one needs a flexible frame-
work that allows building multigrid hierarchies using different algorithmic building blocks
that are designed for the problem-specific needs. Especially for multiphysics simulations
with different physical and mathematical fields, it is necessary to design problem-specific
block preconditioners which may use multigrid ideas in different ways (cf. Keyes et al.
[103]). The idea is to reuse common building blocks and only replace parts of the overall
algorithm in a flexible way where it is necessary. So, modularity is required in a flexible
framework allowing to reuse and recombine different building blocks which makes it an
ideal tool for doing research on multigrid concepts.

Flexibility is not only important for the overall framework, but also plays an important role
for the different building blocks of the framework itself. In a flexible framework one needs
flexible algorithms, which allow for problem-specific adaptions, since they are essential as
building blocks in the AMG framework. In that sense, flexibility is by far more than just
a sufficient number of user parameters that allow the user to control the major algorithmic
behavior.

Flexibility is also a desired property in context of the software design. Today, the algo-
rithms have to run on a multitude of different hardware platforms and software environ-
ments. So, a flexible software design is necessary which allows the multigrid methods to
be used on high-performance clusters as well as on usual desktop workstations. Finally, a
flexible software interface has to make sure that the AMG framework can easily be used
with other software packages.

Usability: Many people are dreaming of black-box solvers and preconditioners. But as a matter
of fact, one can always find a problem where such black-box methods will fail. Since one
can hardly avoid problem-specific solver parameters at all, the challenge is to keep the
number of essential parameters small and easy to understand such that also a user with
only average knowledge about iterative linear solvers can find a proper set of parameters
to use the multigrid methods. Of course, one can try to hide some of the complexity from
the average user. However, as already mentioned in Section 1.1, one has to accept that



1.5. Outline

multigrid methods in general and aggregation-based AMG methods in particular are ex-
pert systems with a multitude of parameter choices. Therefore, robust methods which can
forgive bad parameter choices up to a certain extent are of high interest. Nevertheless, it is
important to have a sufficient understanding of the used methods, since even with robust
methods one can never fully compensate for the potential misuse of the tools caused by
ignorance of the user.

1.4.2. Proposal for a flexible aggregation-based AMG framework

This work utilizes a new flexible AMG framework, called MUELU (see Prokopenko et al. [161]),
which has been developed in context of this work in a close collaboration with the TRILINOS
project (cf. Heroux and Willenbring [89], Heroux et al. [90]) conducted by Sandia National Lab-
oratories. MUELU provides a highly flexible modern software framework addressing all require-
ments of a modern multigrid framework with respect to extensibility, usability and flexibility,
such that it is prepared for the next generation of applications. To the author’s knowledge it is
the first modular and object-oriented aggregation-based AMG code fully written in C++ which
has support for a wide variety of state-of-the-art transfer operators for both symmetric and non-
symmetric problems.

The scientific contributions of this work are:

e the development of novel smoothed aggregation transfer operators for non-symmetric
problems resulting from examples with convective character (cf. Chapter 4).

o the design of flexible AMG preconditioners for contact problems in condensed formulation
(cf. Chapter 6).

e the implementation of a robust interface aggregation routine for Lagrange multipliers aris-
ing from contact problems in saddle point formulation (cf. Chapter 7).

e successful application of the above AMG methods to large structural contact examples in
condensed and saddle point contact formulation with more than one million degrees of
freedom.

In summary, the extensions and adaptions of existing multigrid methods proposed in this thesis
represent an important step forward towards more robust large-scale simulations for problems in
computational contact mechanics and computational fluid mechanics.

All models and problems described in this work (e.g., the structural contact problems based on
mortar finite element methods as described in Chapter 5) as well as the application-specific non-
standard enhancements of the multigrid methods are implemented in the in-house finite element
software package BACI (cf. Wall and Gee [208]), developed at the Institute for Computational
Mechanics and the Mechanics & High Performance Computing Group at Technische Universitét
Miinchen. This multi-purpose parallel research code is written in C++ and builds on top of the
TRILINOS libraries. The author of this thesis is an active member of the core developer team
of the new software package MUELU (cf. Gaidamour et al. [69]) which is publicly available as
part of the TRILINOS project (cf. Heroux and Willenbring [89], Heroux et al. [90]). Thus, the
multigrid-specific methods have been implemented directly in MUELU.

1.5. Outline

The remainder of this thesis is organized as follows:
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Chapter 2 is devoted to a brief introduction to the general ideas of multigrid methods. Both
the concepts of level smoothing and coarse-level correction are reviewed. Before introducing
the multigrid algorithm some special focus is put on the prerequisites of the level smoothers
for the multigrid method. Finally, some basic results from the multigrid convergence theory are
presented. In this thesis multigrid methods are used as preconditioners within a preconditioned
GMRES method. The reader may refer to Appendix A for a description of the GMRES method.

Chapter 3 comprises all details on the setup algorithm of an aggregation-based AMG method.
The different phases of the aggregation methods are described in detail as well as the steps
to generate non-smoothed and smoothed aggregation transfer operators. A special emphasis is
placed on the algorithmic design of the different building blocks within the setup routine which
define the highly flexible multigrid framework.

Chapter 4 extends the aforementioned methods to non-symmetric problems resulting from
examples with convection. In order to apply aggregation-based AMG methods to non-symmetric
problems one has to replace the standard Galerkin approach introduced in Chapter 2 by a Petrov—
Galerkin approach that is combined with an appropriate non-symmetric transfer operator smooth-
ing strategy. A novel flexible transfer operator smoothing strategy is presented that is motivated
by ideas from ideal Schur complement based transfer operators. Appendix B is closely con-
nected to this part of the thesis, where the effect of transfer operator smoothing is studied for
simple 1D problems in order to gain a better understanding of the underlying smoothing princi-
ples. Appendix C presents some conceptual ideas of the handling of Dirichlet boundary condi-
tions within multigrid methods which often seems to be an under-estimated topic.

In Chapter 5, the relevant governing equations of nonlinear solid mechanics and contact
mechanics are outlined. In addition, the basic concepts of weak formulations, finite element dis-
cretization and nonlinear solution techniques are briefly reviewed. Mortar finite element methods
are explained in more detail, since they play the decisive role for the formulation of our contact
problems.

In Chapter 6 a new aggregation-based AMG method is developed for contact problems in the
condensed formulation. Our intention is to demonstrate how the knowledge about the methods
(tools) and the problem allows the enabling of standard aggregation-based multigrid techniques
with only minor modifications for a new class of problems (such as structural contact problems
in condensed formulation). With the proposed flexible multigrid method one can iteratively solve
large contact problems with more than one million degrees of freedoms, which is a major step
towards robust contact simulations for industrial applications.

In Chapter 7 saddle point AMG preconditioners designed for contact problems in saddle
point formulation are developed. A new interface aggregation strategy for the Lagrange mul-
tipliers, that are used to couple the structural equations and contact constraints, is introduced.
With numerical examples one can see the effect of different block smoothers that are aware of
the saddle point structure and demonstrate the robustness of the proposed method in this thesis.

In Appendix D, some comments are given on the parallelization of aggregation-based multi-
grid methods including some basic scaling studies of the proposed methods both for flow and
contact problems.

Finally, the conclusion and outlook given in Chapter 8 summarize the most important results
and accomplishments and give some comments on possible improvements.



CHAPTER

Basics of Multigrid methods

This chapter gives a very general introduction to the ideas of multigrid methods and therefore
builds the methodical fundament of the work. It is not meant to replace a good textbook on
multigrid methods, but to explain the general concepts of multigrid in an intuitive way.

First, a brief review of typical relaxation-based iterative methods is given that are often used
as smoothing methods within multigrid. Here, our special emphasis is put on the role of diag-
onal dominant input matrices for this class of smoothing methods, as diagonal dominance gets
important in Chapter 6. Then, the effect of the smoothing property is demonstrated using some
small examples that are supposed to provide some conceptual understanding of the underlying
mathematical principles.

Next, the multigrid algorithm is introduced beginning with the concept of coarse level correc-
tion and a two-level algorithm, which is then extended to a multigrid method. Here, the difference
of so-called Geometric Multigrid (GMG) methods and Algebraic Multigrid (AMG) methods is
explained. Since only algebraic multigrid methods are used in this thesis, special attention is
put on the definition of algebraically smooth errors. The underlying ideas are motivated and
illustrated by small examples.

The rest of the chapter is devoted to the basic multigrid convergence theory. Our intention is
to give a rough overview on the existing convergence theory and the most common concepts
that are used within the convergence proofs in the literature with a special focus on algebraic
multigrid methods.

In summary, background knowledge about the different components of multigrid methods is
provided, including level smoothing and coarse-level correction and their interplay. For develop-
ing application-specific advanced multigrid methods, it is essential to understand that a multigrid
method can basically be understood as a smartly ordered sequence of cheap smoothing meth-
ods. Therefore, one should carefully check whether the input matrix also fulfills the minimum
requirements for these level smoothing methods.
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2.1. Relaxation-based iterative methods

Relaxation methods belong to the most elementary class of iterative methods for linear systems,
which is well-studied in abundant publications and books (cf. Axelsson [6], Hackbusch [86],
Varga [200]). Even though they could be used to solve linear systems iteratively, they are mainly
used as preconditioner within an outer iterative solver due to their slow convergence. Relaxation-
based methods are known to be cheap and easy to implement and — what is most interesting from
the multigrid perspective — they have a so-called smoothing property (cf. Section 2.2).

2.1.1. Definition of relaxation-based methods

Since relaxation methods play an important role as smoothers within multigrid methods, it is
worth to give a brief review of relaxation-based smoothing methods.

Definition 2.1.1. Assume () € R™ " to be an invertible matrix. The prototype for common
relaxation-based methods to solve the linear system (1.1) is defined by the iteration

ti=ab — Q7N (A —b) = (I - Q'A)2" + Q7' 2.1)

starting with some initial guess z° € R".
Here, M := (I — Q7'A) is the iteration matrix of the relaxation-based method and k € Ny
denotes the iteration index.

The concrete choice of () in (2.1) defines different typical iterative methods that are found in
the literature. Common choices are

Richardson iteration: For the Richardson iteration one has to use () := 0(k)I with § € R.
One can distinguish the stationary Richardson iteration with fixed 6 and the instationary
Richardson iteration, where 6 is allowed to vary with the iteration index k. For the case
that A has only positive eigenvalues, the Richardson iteration converges, if and only if it
is0< 8 < #XA)’ where A, (A) denotes the maximum eigenvalue of A (cf. Hackbusch
[86, Theorem 4.4.2]).

Jacobi iteration: With the uniquely defined splitting

A=D—F—F, where (2.2a)
D is a diagonal matrix describing the diagonal part of A, (2.2b)
E is a strictly lower triangular matrix of A and (2.2¢)
F' is a strictly upper triangular matrix of A, (2.2d)

one obtains the Jacobi iteration by setting () := D. Often an additional damping param-
eter w > 0 is introduced, i.e., () is chosen as () := iD for the damped Jacobi iteration.
Thus, the damped Jacobi method has the form

gF =gk —wD™! (Axk — b) = (I — wD_lA)xk +wD™1h. (2.3)

Gauss—Seidel iteration: Based on the splitting in (2.2) the (forward) Gauss—Seidel iteration is
defined by () := D — E. Note that in contrary to the Jacobi (and the Richardson) itera-
tion, the Gauss—Seidel iteration depends on the ordering of the indices. The Gauss—Seidel
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method is known to converge for positive definite matrices monotonically with respect to
the energy norm (cf. Hackbusch [86, Theorem 4.4.18]). There are further variants of the
Gauss—Seidel iteration: using ) := D — F defines the backward Gauss—Seidel method.
Combining the backward and forward Gauss—Seidel method gives the symmetric Gauss—
Seidel iteration with Q := (D — E)D~'(D — F).

Successive overrelaxation methods (SOR): Introducing a relaxation factor w, the SOR method
is defined by  := w(D —w£FE)~! with the splitting as defined in (2.2). Obviously, the SOR
method coincides with the Gauss—Seidel method if w = 1 is chosen. For 0 < w < 1, the
SOR method often is referred to as underrelaxation method, whereas for w > 1 it is also
called overrelaxation method. One can show that the SOR method is convergent for sym-
metric positive definite matrices A if 0 < w < 2 holds (cf. Hackbusch [86, Theorem
4.4.21)).

For a more general overview of relaxation-based iterative methods including the exact pre-
requisites of A for convergence, the reader is referred to standard literature (e.g., Axelsson
[6], Hackbusch [86] and others). A discussion of the exact prerequisites on the choice of damping
parameters w for the different relaxation-based methods can be found in textbooks (e.g., James
[100], Varga [200]).

2.1.2. Diagonal dominance and convergence theory for relaxation-based
methods

In a linear system the matrix properties dominate the convergence of iterative solution methods.
In this section the role of the diagonal dominance of matrix A for relaxation-based methods is
discussed.

Definition 2.1.2 (Diagonal dominance). A matrix A = (aij) € R™ ™ is called irreducible
(weakly) diagonally dominant, if

|as| > Z‘aij} (2.4)
j=1
J#

for all 1 < ¢ < n, with strict inequality for at least one ¢. A n X n matrix is strictly diagonally
dominant if strict inequality holds in (2.4) for all 7.

Irreducible weak diagonal dominance of A is an important property for sufficient convergence
criteria of relaxation-based methods. Here, a completely intuitive approach is used to understand
the importance of A being diagonal dominant in context of relaxation-based smoothing methods.

Example 2.1.3 (Relaxation-based smoothers and diagonal dominance). The following minimal
example helps to understand the role of diagonal dominance for relaxation-based smoothers.
Consider the linear system that is given by

1 —¢ 1\ _ (0O ) .~ (0
(_5 1 ) (@) = (0) with the exact solution r = (0> . (2.5)

Let ¢ be a parameter with |¢| # 1. Using 2° = (1, 1)T as initial guess for the iterative process,
the k-th iterate with a Jacobi iteration (see (2.3) with w = 1) is found to be z* = (5’“, 5’“)T.

11
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For ¢ < 1 the system matrix in (2.5) is (strictly) diagonal dominant and z* converges against the
exact solution  for & — oc. However, for € > 1 the system matrix is non-diagonally dominant
and the Jacobi iteration diverges.

For problems with only slightly non-diagonally dominant rows a reasonable choice of the
damping parameter w may lead to a convergent iterative method. But, depending on the eigen-
value spectrum, one may find relaxation-based iterative methods to fail for matrices with some
non-diagonally dominant rows.

Remark 2.1.4 (Diagonal dominance for FEM matrices). Matrices arising from finite element dis-
cretizations for many applications turn out to be weakly diagonal dominant. In practice, Dirichlet
boundary conditions are incorporated in the system matrices by zeroing out the correspond-
ing lines in the matrix and putting entries of value one on the diagonal. Following Definition
2.1.2, the Dirichlet rows automatically transform a weakly diagonally dominant matrix to an
irreducible (weakly) diagonally dominant matrix.

It follows from Gershgorin’s theorem that a strictly diagonally dominant matrix A is non-
singular and therefore has a uniquely determined inverse A~!. This statement can be weakened
and proven to be true for irreducible weakly diagonally dominant matrices. For the proof the
reader is referred to Taussky [184], Varga [200] and references therein. Diagonal dominance of a
matrix turns out to be an easy-to-check criterion for convergence in context of relaxation-based
methods. For multigrid methods especially the smoothing property is primarily essential.

2.2. Smoothing effect

The idea behind multigrid methods in general is based on the observation that many cheap iter-
ative methods for solving linear systems, such as relaxation-based methods (see Section 2.1.1),
behave differently for certain (low-frequency) error modes than for high-frequency error modes.
The following example demonstrates the error smoothing effect and shows how the character of
the initial guess vector z° influences the behavior of the solution process.

Example 2.2.1 (Smoothing effect of Jacobi method). To demonstrate the smoothing effect of
relaxation-based methods a very simple linear system is used resulting from the discretization of
a 1D finite difference stencil of the Laplace equation —Awu = 0 on the domain 2 = [0, 1] with ho-
mogeneous Dirichlet boundaries. Using a finite difference discretization with n = 30 equidistant
nodes, the resulting linear system has the form Az = 0 with A := (—1,2, —1) € R™*". Here, the
(—1,2,—1) is a short notation for tridiagonal operators with entries of value 2 on the main diago-
nal and —1 on the off diagonals. Homogeneous Dirichlet boundaries have been incorporated in A
by removing the non-zeros in the first and last row and putting an entry of value one on the diag-
onal. The Z denotes the exact solution of the linear system, which is known to be z = 0. To solve
the linear system we apply some sweeps with the damped Jacobi method starting with different

initial guesses 20 = \/Lﬁ(l, 1, ,...,1)T € R"and z) = \/iﬁ(—l, L—1,...,(=1).. .)Z.T:lmn.
With the known exact solution Z = 0, it follows z* = ¢* for the approximate solution vec-
tor z*. Thus, Figure (2.1) shows the error e¥ when applying k € {1, 10, 100, 1000} sweeps with
a damped Jacobi iteration (w = 0.8) using the initial guess x° and z respectively. By compar-
ing the Figures 2.1a and 2.1b, one finds a different behavior for the constant vector z° as initial
guess compared to the highly oscillatory initial guess in 2. The high oscillatory error compo-

nents obviously are damped out efficiently after a quite small number of iterations, whereas the
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(a) Error ¢* using the constant vector z0 as ini- (b) Error €* using the highly oscillatory vector
tial guess. acg as initial guess.

Figure 2.1.: Demonstration of smoothing effect for the damped Jacobi iteration (w = 0.8) ap-
plied to a 1D diffusion equation on 2 = [0, 1]. The number of Jacobi sweeps to
approximate the exact solution x = 0 is visually compared when starting with a
constant initial guess in Figure 2.1a or with a highly oscillating initial guess in Fig-
ure 2.1b.

low-frequency error components, which are represented by the constant vector z° for the initial
guess, are slow in convergence.

This is a general observation: Relaxation-based methods tend to converge slowly for low-
frequency error components in e, whereas high-frequency components are damped very ef-
fectively. This motivates the term smoothing method for relaxation-based iterations as high-
frequency parts are damped out quickly such that only the “smooth” low-frequency errors are
remaining. More detailed studies of this effect can be found in the textbooks Hackbusch [86,
87], Trottenberg et al. [186] or Wesseling [212] based on local Fourier analysis.

Motivated by this observation, the multigrid principle now attempts to rescue relaxation-based
methods by projecting out the error components which converge slowly.

2.3. Coarse level correction — Motivation for multigrid

Relaxation methods alone suffer from slow-converging error components such that the conver-
gence speed is not satisfactory (see Example 2.2.1 from Section 2.2). To overcome this issue
one introduces coarser representations of the fine level problem and apply smoothing methods
on different levels to optimally reduce error components with a relatively high frequency. Then,
the coarse level correction is supposed to complement the smoothing process and handle the
low-frequency error modes.

13



2. Basics of Multigrid methods

2.3.1. Geometric multigrid versus algebraic multigrid

In order to find coarse representations of the fine level problem, there exist different techniques.
In general, one has to distinguish geometric and algebraic multigrid methods (cf. Haase and
Langer [84]).

When thinking in geometric terms, a classification of error components into low- and high-
frequency components is induced by the underlying mesh, i.e., a low frequency error component
on a fine mesh can be interpreted as a high-frequency error component on a coarser mesh. This
gives rise to the development of Geometric Multigrid (GMG) methods, where low-frequency
components of the error are transferred to a coarser mesh, such that they can effectively be
handled by relaxation-based smoothing methods (cf. Hackbusch [85, 87]). Geometric multigrid
methods use coarse meshes that are explicitly generated or given by the user. For each mesh
the smoothing process is to be selected, such that it can effectively reduce the corresponding
high-frequency error components relative to the current mesh. In geometric multigrid methods
low-frequency error components are smooth in a geometric sense (cf. Figure 2.1a versus Figure
2.1b).

In contrary to geometric multigrid methods, the Algebraic Multigrid (AMG) approach is not
based on meshes, but uses purely algebraically defined coarse representations of the fine level
problem, which makes them particularly interesting for problems on unstructured meshes. In-
stead of low-frequency error components relative to an underlying mesh, the term slow-converging
error components is used. A precise definition of slow-converging (or algebraically smooth) er-
ror components can be found in Section 2.5.2 in this thesis. For algebraic multigrid methods
the smoothing process is fixed on each multigrid level and suitable transfer operators have to
be constructed by exploiting the information from (algebraically) smooth slow-converging error
components. Technically one can distinguish classical (or Ruge Stiiben) AMG methods (cf. Al-
ber [5], Brandt [38], Ruge and Stiiben [167], Stiiben [181], Stiiben and Trottenberg [182], Stiiben
[183]) and (smoothed) aggregation-based AMG methods (cf. Brezina et al. [43], Gee et al.
[71], Olson and Schroder [150], Van¢k et al. [192, 199]). For the first class, one selects a set
of coarse level nodes from the set of fine level nodes using different coarse level selection strate-
gies (cf. Adams [2], Alber and Olson [4]). The fine level node information is then interpolated
using the information from the selected coarse level nodes.

In this thesis, our focus is on aggregation-based AMG methods. Instead of selecting a set of
coarse level nodes from the fine level nodes, subsets of fine level nodes are agglomerated into so-
called aggregates, which represent a “super node” on the next coarser multigrid level. Concrete
details on how to generate multigrid transfer operators following the concept of aggregation-
based AMG methods can be found in Chapter 3. In the next subsection, the general concept of
the coarse level correction is briefly introduced, which is, besides the smoothing, one of the key
ingredients of all multigrid methods.

2.3.2. Coarse level correction iteration matrix
In this section the focus is on the general abstract concept of coarse level correction, which is
shared by all kinds of multigrid methods.

Assume FPyyq @ R™+t — R™ to be a linear and injective mapping from a coarse level ¢ + 1
to a fine level ¢, which is referred to as prolongation operator. In a similar way the restriction
R is introduced as a linear and surjective mapping R,y; : R™ — R™+! which maps fine-
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2.3. Coarse level correction — Motivation for multigrid

level information to coarse-level information. One can think of the prolongation and restriction
operators as rectangular matrices Py, € R™ ™+ and R,.; € R™+*"™ of rank n,, for all
levels ¢ > 0 with ¢ = 0 denoting the finest level. A common choice for the restriction operator is
to use R = PT. Then, the coarse level matrix A, is built using the Galerkin product given by

Ag_H = Rg_HAng_H for /¢ Z 0. (26)

Remark 2.3.1 (Non-singular coarse level matrices). For a non-singular fine level matrix A, trans-
fer operators P, 1 and R, ; with full rank are needed to obtain non-singular coarse level matrices
Ay, 1 from (2.6). In particular, the prolongation operator P, ; (and the restriction operator [y, )
must not contain zero columns (and zero rows, respectively), which would result in a singular
matrix Ay, containing zero rows.

Let 7 € R™ denote the exact solution of the problem A,z = b, on level ¢ and x, be an
approximation of the level solution Z obtained from some steps using a smoothing iteration from
Section 2.1.1. Then,

€y = Ty — T (27)

represents the corresponding error on level ¢ between the exact solution and the approximation
after some smoothing iterations. Vice versa: the exact solution can be calculated from (2.7) using

= Ty — €y. (28)

Obviously, the error e, on level ¢ satisfies the equation
Ageg =Ty, (29)

where 7, := A,z, — b, denotes the residual or defect on level /.
Similar to (2.9), one can declare a coarse error e, 1 by the coarse-level equation

Appierpn = oy, (2.10)

with the coarse residual defined by r,y; := Ry 17,. Supposing the fine level error e, to be
smooth, one can express it by means of the coarse error ey with e, =~ F;1e,,1. Assuming that
the coarse level equation (2.10) can be solved exactly, it follows from (2.8), (2.9) and (2.10) that

T=xp—e~xr— Preg = @.11)
—1 -1 :
Ty — Pz+1Ag+1W+1 =Ty — Pe+1Ag+1Re+1 (Aﬂe - bz)~

Using (2.11) one can define an iterative method by z¥ — 2 *! := ®“LC (2 b)) for the coarse

level correction with
O (g, by) = wp — Peya Ay Rera Aoy — by). (2.12)
From (2.12) one finds the iteration matrix of the coarse level correction as

Me, = I — PraAL Ren Ay (2.13)
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2. Basics of Multigrid methods

Theorem 2.3.2. Assume A to be symmetric. Let Py, and Ry, be chosen according to Remark
2.3.1 to guarantee a non-singular coarse level matrix Ay 1. Then, under the assumption Ry, =
PZTJrl and the Galerkin product (2.6) the coarse level correction operator M¢ is an orthogonal
projector with respect to the energy inner product (-,-) ., with Ry (MCZ) being orthogonal to

RQ(PE-H)-

Proof. A simple calculation gives

(Prt1, M), = PLaAo(I — Prp Ay R Ay) =
PlyA — PLLAPAA ] R Ay = P A — PJLA = 0.

]

The orthogonality of the prolongation operator F,,; and the coarse level correction shows
mathematically the complementary meaning of the coarse level correction and the fine level
information, which is separated by the transfer operators.

Remark 2.3.3. In case of a non-symmetric matrix A, the error propagation operator M of
the Galerkin two-grid correction using R = PT is an oblique projection in the sense that the
spaces involved are not orthogonal with respect to any known, practical inner product (cf. Brez-
ina et al. [44]). For this reason it is recommended to use a Petrov—Galerkin coarsening for the
non-symmetric case, dropping the constraint R = PT and building the restriction operator sep-
arately (see also Section 4.2.2).

2.4. Multigrid algorithms

Putting together the complementary concepts of level smoothing (see Section 2.2) and coarse
level correction (see Section 2.3) a two-level method can be introduced and recursively extended
to multigrid methods.

2.4.1. Two-level algorithm

Let M7 and M denote the iteration matrix of a smoothing method .7, (e.g., a relaxation-
based smoother from Section 2.1.1) with 14 pre- and v, post-smoothing sweeps on the fine level.
Then, with (2.12), the two-level method is defined by ®7XM = 72 o §CLC o "1 with the
corresponding iteration matrix

Mp =M% Mc M. (2.14)

The two-level method from (2.14) can be algorithmically formulated as shown in Algorithm 1.
First, 1, pre-smoothing sweeps are applied to the solution vector z, on the fine level. Then,
the residual vector r, is calculated using the pre-smoothed solution vector and restricted to the
coarse level. Next, the coarse level correction e, is calculated using a direct solver. The fine
level solution vector z, is then updated with the prolongated coarse level correction. Finally, the
current solution vector is smoothed by applying 15 iterations with the post-smoothing method.

2.4.2. Multi-grid algorithm

The extension of the two-level method from Algorithm 1 to a multigrid method is straightfor-
ward by recursively applying the two-level method for the coarser levels. Similarly to (2.14) the
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2.4. Multigrid algorithms

Algorithm 1: Two-level multigrid algorithm

Two-level multigrid method
Procedure "M (1,,b,)

Apply vy pre-smoothing sweeps using . as smoother
for i + 1to v, do

| @y L(xe, be)
end

Calculate fine-level residual/defect
Ty < Agl‘g — bg

Restrict fine level residual 1, to coarse level
Tev1 < Repary

Solve for the coarse error correction ey, on the coarse level { + 1
-1
€py1 < Af+17“g+1

Prolongate coarse level error correction ey to fine level
ep < Pryi€ra

Correct fine level solution x, using the fine level error correction ey
Ty < Ty — €y

Apply vy post-smoothing sweeps using . as smoother
for i + 1to v, do

| 20 < S0, bp)
end

return z,

17



2. Basics of Multigrid methods

%

Figure 2.2.: Visualization of a V-cycle multigrid algorithm with 3 multigrid levels. For visual-
ization purposes coarse meshes are used to represent the coarse levels. Note that
in an algebraic multigrid context the coarse levels are built from purely algebraic
information (with no coarse meshes involved).

iteration matrix M, for the multigrid case is recursively defined by

M ](\5"5“‘) =0 (coarsest level)
M ](\f['g“_l) = Mr (two-level correction) (2.15)

MO, = M (I ~ P (I - (nggl))”)A;legAQ MY (multigrid correction)

for £ =0,...,0nax — 2 and v € {1,2}. Algorithm 2 describes algorithmically the recursively
defined multi-level method from (2.15). For /.., = 0 it corresponds to a direct solve on a single
level. With /,,,,, = 1, the method defined in (2.15) coincides with the two-level algorithm from
(2.14).

Note that in contrast to the two-level method, where just a direct solver was used for calculat-
ing the coarse level error e/, the multi-level method in Algorithm 2 allows to call the coarse
correction step more than once. If v = 1 in Algorithm 2, one obtains the so-called V-cycle as
shown in Figure 2.2 for a 3 level multigrid method. Choosing v = 2 results in the so-called
W-cycle (cf. Hackbusch [87, Section 2.5]). With v; = 0 and v, # 0 one obtains a so-called
“saw-tooth” cycle (cf. Wesseling [211]) and in the literature one can find more special multi-grid
cycles.

Remark 2.4.1 (Multigrid as preconditioner). For the examples in this thesis, the multigrid method
is used as preconditioner within a GMRES solver (cf. Section 1.2.2 and Appendix A). That is,
applying the preconditioner W to a vector v via y = W ~1v (see Remark A.2.2) corresponds to
performing some multigrid cycles applied to v. In this thesis, one V-cycle sweep is applied for
preconditioning.

2.5. Convergence theory

In the previous section the multigrid method has been defined as a recursion of cheap smooth-
ing methods and a complementary coarse level correction. Before discussing aggregation-based
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Algorithm 2: Multigrid algorithm

Multi-level multigrid method
Procedure @M (14,b,,0,0,,0)

Check ! for coarsest level

if { == /.. then
Solve for the coarse level problem
Ty < Aﬁ_lbg

return
end
Apply multigrid method recursively

else
Apply vy pre-smoothing sweeps using . as smoother
for i + 1to v, do
| xS0, be)
end

Calculate coarse level residual
Tor1 < Rey1 (Agze — by)

Initialize coarse level error ey,
€r+1 ~—0

Recursively call DM for the next coarser level
for : < 1to~ do

| eopr < PMEM (eppy, o1l 4 1)
end

Correct fine level solution
xp < xp — Pryreo

Apply vy post-smoothing sweeps using . as smoother
for i + 1to v, do

\ Ty < «%(Iz,be)
end

return
end
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AMG methods in Chapter 3 with specific details about the construction of appropriate transfer
operators, it is our intention to provide some insight into the basics of multigrid convergence
theory with a particular focus on algebraic multigrid methods.

First, the concept of algebraically smooth errors is motivated, which builds the counterpart
of geometric smoothness that geometric multigrid methods rely on. Then, the so-called smooth-
ing and approximation properties are introduced, which are widely used in context of multigrid
convergence theory. For reasons of simplicity, A is assumed to be symmetric positive definite.
The section is closed with a brief literature overview of different convergence theorems, includ-
ing comments on non-symmetric problems and specific multigrid theory for aggregation-based
multigrid methods that are in detail introduced in Chapter 3 and later on used throughout all
examples in this thesis.

2.5.1. Interplay of smoothing and coarse level correction

To gain a better understanding of the interplay of the smoothing and the coarse correction step
in a multigrid method and its meaning for the convergence it is worth to have a closer look to the
following convergence theorem for the V-cycle given in Ruge and Stiiben [167]:

Theorem 2.5.1. Let A be symmetric positive definite. Assume that the transfer operators P, and

Ry := PZT, 0 =1,..., . have full rank and that Ay, := Ry 1A¢Pyy 1. Furthermore, assume
that for all error vectors ey either

HMW@HA < leeli — 62 || Mc,eelly (2.16a)

or [|M%ec||s < llecli — 61 || Me, M e[, (2.16b)

or both conditions hold with some d; > 0 and 65 > 0 independently of e, and (.

i) In case (2.16a) holds, the V-cycle has a convergence factor with respect to the energy
norm ||-|| , bounded above by \/1 — 05, provided that at least v, post-smoothing steps are
performed after each coarse level correction step.

ii) In case (2.16b) holds, the V-cycle convergence factor is bounded above by \/T’ provided
that at least v, pre-smoothing steps are performed before each coarse level correction step.

iii) If both (2.16b) and (2.16a) hold the V-cycle convergence factor is bounded above by \/—V;g?,
provided that vy and vy pre- and post-smoothing sweeps are performed.

Proof. For the proof the reader is referred to Ruge and Stiiben [167, Section 4.3.1]. [

The conditions in (2.16) reflect the interplay between the smoothing and the coarse level cor-
rection. Let’s have a closer look to (2.16a) for the interpretation: error components é; in e;, which
cannot be efficiently be reduced by the coarse level operator Mc (i.e., | Mc,éell, = ||€ell )
have to be reducible by the smoothing operation with the iteration matrix M7 ”2 . Vice versa:
for error components €, in ey, which are effectively reduced by the coarse level correctlon Me
(.., [[Mc,éell 5 < [|€e]|5), the smoothing operator ., with the iteration matrix M7 is allowed
to be ineffective, since these error components are approximately in the range of the prolonga-
tion operator P. The interpretation of (2.16b) is very similar, if one considers error components
of e,' := M e, after applying vy pre-smoothing sweeps using ..
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2.5. Convergence theory

Remark 2.5.2. Similar bounds can also be found in McCormick [131, Lemma 2.3, Theorem 3.4
and Section 5] or in Mandel et al. [123]. The proofs usually have a recursive character and are
based on the so-called smoothing and approximation properties in a two-level setting. Smoothing
and approximation properties are introduced in Section 2.5.3. For a very recent overview of
theoretical bounds for the V-cycle the reader also may refer to MacLachlan and Olson [122].

2.5.2. Algebraically smooth error

As known from Section 2.2, cheap iterative methods show slow convergence for certain error
modes. Therefore, it is an important prerequisite for overcoming the slow convergence to char-
acterize and detect such slowly converging error components.

In the context of multigrid methods, an error is regarded as smooth, if it can be approximated
properly on some coarse level. However, there are some differences in the concept of smooth er-
rors when looking at geometric and algebraic multigrid methods as already mentioned in Section
2.3.1. In geometric multigrid methods the term “smooth” is used in a more “natural” geometric
sense, i.e., the smoothness of an error e, is always relative to a given grid. For algebraic multi-
grid methods without underlying coarse meshes, it is not possible to use the term “smooth” in a
classical geometric way. For the construction of algebraic multigrid methods a purely algebraic
definition of the term “smooth” is essential to be able to distinguish slowly converging (alge-
braically smooth) error components from error components, which can be reduced effectively
by the smoothing method on the current level.

Definition 2.5.3 (Smooth error). An error e, is defined to be (algebraically) smooth, if it is slowly
converging with respect to the smoother .7, which is equivalent to || M, e, = ||ec]| 5-

So, an error e, is called smooth if the smoothing process .%; cannot efficiently further reduce
the error, such that the coarse level correction has to take care of it. Therefore, one main objective
of algebraic multigrid methods is to construct prolongation operators for which smooth errors e,
are in the range Rg(P) of the prolongation operators P.

Remark 2.5.4 (Smooth error in context of relaxation-based methods). For common relaxation-
based smoothers (see Section 2.1.1) the common iteration matrix has the form My, := I —QtA.
For characterizing the smoothness of an error e, using || M 4, e/, = ||e¢]| 5, one finds the relation

g =I-Q "A)e;=¢; —Q 'Aef m e & QA =Q 'rix~0.  (2.17)

That is, for common relaxation schemes an algebraically smooth error e, is characterized by
the residual r, = Aye, being small in some norm relative to the current level ¢ compared to
the error e itself. The following example helps to gain a better understanding of algebraically
smooth errors.

Example 2.5.5 (Characterization of algebraic smoothness of errors.). To demonstrate the mean-
ing of the term algebraically smooth errors, the Example 2.2.1 presented in Section 2.2 is re-
viewed. In Figure 2.3 the residual r and the error e is plotted in some norm over the number of
Jacobi sweeps k. First, one can see again how the error reacts differently depending on the initial
solution. When using the high-oscillatory initial solution z}, as defined in Example 2.2.1, the
convergence and error reduction is quite fast compared with the slow-convergent behavior for
the low-frequency initial solution vector 2. One can also see that the residual norm is notably
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Figure 2.3.: Plot of error and residual over number of Jacobi sweeps £ for the 1D diffusion ex-
ample from Example 2.2.1 using different initial solution vectors. The error norm
and residual norm is motivated in Section 2.5.3.1. The low-frequency starting so-
lution represented by a normalized constant vector z° is compared with a highly
oscillatory initial guess x) as defined in Example 2.2.1.

below the error norm at some point, especially if the error reduction is ineffective. Thus, the
residual norm can be used as indicator for algebraic smoothness. The specific choice of the error
and residual norm is motivated and further discussed in Section 2.5.3.1.

Algebraic multigrid methods are based on the Definition 2.5.3 of algebraically smooth errors.
These include not only classical algebraic multigrid methods (e.g., Mandel et al. [123], Ruge
and Stiiben [167]), but also more recent algebraic multigrid methods based on aggregation
(e.g., Vanek et al. [192, 199]). There are more advanced methods (cf. Brezina et al. [43]), which
heavily rely on the definition of algebraically smooth errors to detect near-kernel modes of the
level matrix A, for adaptive smoothed aggregation.

In the corresponding literature one often finds different variants of smoothing and approxima-
tion properties which are essential for proving convergence.

2.5.3. Smoothing and approximation properties

The intention of this section is to give a brief overview of different formulations of so-called
smoothing and approximation properties that are in use throughout the literature on multigrid
convergence theory. The idea is to have some more practically useful criteria than (2.16) for
convergence, which reflect the complementary effect of the smoothing process and the coarse
level correction step.

2.5.3.1. Smoothing and approximation property according to Stiiben

Following Ruge and Stiiben [167, Section 4.3.2], the assumptions in (2.16) can be split into
two separate inequality assumptions for the smoothing and coarse level correction. With ay >
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0, B2 > 0, such that it is 0y = % in (2.16a), one can satisfy (2.16a) by requiring

12 2 2 2
HM&%CZHA < lleelly — a2 lleellsmp-1a (2.18a)
[ Mc,el[3 < Balleclarp-1a - (2.18b)

Similarly, the two inequality conditions

1M el < lleelh — o [ MG el (2.192)
[ Mcyeelly < B llecarp-ia (2.19b)

with a; > 0, 1 > 0and 6, = % are sufficient for (2.16b) to hold.

Smoothing property: The two conditions in (2.18a) and (2.19a) describe the so-called smooth-
ing property in context of algebraic multigrid methods (cf. Stiiben [181, A.3.2]).

Definition 2.5.6 (Smoothing property — Stiiben). A smoothing method .#; for £ > 0 sat-
isfies the smoothing property with respect to a symmetric positive definite matrix A, if

IMyeald < Nl = o leel3rposa (2.20)

holds for o > 0 independent of e,.

In the definition of the smoothing property (2.20) one has replaced || M¢,e(|| , from (2.16)
by ||| s7p-14, Which turns out to have similar characteristic properties, but does not
depend on the coarse level correction operator M¢, from (2.13). The smoothing prop-
erty (2.20) implies that the smoother .#; is efficient in reducing the error e, as long
as a ||eg|| 371, is rather large compared to ||e||5. On the other hand, ¢, is algebraically
smooth according to Definition 2.5.3, if ||eg|| y7p-14 << |l€c|| o As one can easily verify, it
is

(D~re,re), = (D' Aeq, Aer), = lledllirp-1a < lleclly = (er, Ace), = (ee70), .
(2.21)
which indicates that the error ey is algebraically smooth, if the (scaled) residuals are much
smaller than the error itself.

Note that the smoothing property holds for many typical iterative smoothing methods such
as relaxation-based methods like Jacobi, Gauss—Seidel or symmetric Gauss—Seidel meth-
ods. The corresponding proofs can be found in the literature (cf. Stiiben [181, Section
A.3.2]).

Remark 2.5.7. The choice of the ||| ,rp-1, norm for the error e, is not mandatory. In
MacLachlan and Olson [122] a generalization is discussed, which might lead to sharper
bounds using weak approximation assumptions for some specific problems.

Approximation property: The conditions (2.18b) and (2.19b) are referred to as approximation
condition or approximation property (see, e.g., Ruge and Stiiben [167, Section 4.3.2]).
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2. Basics of Multigrid methods

Definition 2.5.8 (Approximation property — Stiiben). Suppose P and R to be transfer
operators of full rank with A, = Ry, 1A,FP,,1. Then the coarse level correction satisfies
the approximation property, if

IMcgeelly < B lleelirp-ia (2.22)
holds for all 5 > 0.

The definitions of the smoothing and approximation properties in Definition 2.5.6 and 2.5.8
are widely used for algebraic multigrid methods. Even though the choice of the norms may
sometimes vary in the details, all definitions in the literature are based on the same general prin-
ciple of distinguishing algebraically smooth and algebraically non-smooth error components. In
MacLachlan and Olson [122] there is a comprehensive overview with different extensions and
generalizations of above smoothing and approximation properties giving some insight into the
predictive capabilities of theoretical bounds of algebraic multigrid methods. However, the details
are beyond the scope of this thesis.

2.5.3.2. Smoothing and approximation property according to Hackbusch

In context of geometric multigrid methods more “classical” smoothing and approximation prop-
erties are used in the literature (cf. Hackbusch [86, 87]). Following Hackbusch [86, Definition
10.6.3] one can define a slightly different smoothing property using

Definition 2.5.9 (Smoothing property — Hackbusch). An iterative method .7, for ¢ > 0 satisfies
the smoothing property, if there are functions 7(v) and 7(h) independent of ¢, such that

ALY |, < n(w)||Aell, forall0 < v < B(hy), £ >0, (2.23a)
lim n(v) =0, (2.23b)
V—0o0
lim 7(h) = co or 7(h) = co. (2.23¢)
h—0

Remark 2.5.10. If (2.23a) and (2.23b) hold with Z(h) = oo, then the iteration .%; is convergent.

In (2.23a) the matrix norm ||-||, denotes the spectral norm. The main difference of (2.23a)
compared to the smoothing property in (2.18a) or (2.19a) is that there is no separate handling of
different error components with different norms. In fact, the smoothing property (2.23a) is very
often used in context of geometric multigrid methods where one has not to distinguish between
algebraically smooth and algebraically non-smooth error components.

Relaxation-based smoothers are known to satisfy the smoothing property from Definition
2.5.9 (cf. Hackbusch [87, Section 6.3]). The smoothing property for incomplete factorization
methods is studied in Wittum [218, 219]. Non-symmetric problems are handled by perturbation
arguments (cf. Hackbusch [87]), but only give reasonable results if the non-symmetry is not
dominant. A very extensive discussion of the smoothing property with proofs for the different
classes of smoothers can also be found in Wesseling [212].

The approximation property (according to Hackbusch [86, Section 10.6.3]) is supposed to
quantify the requirement Pg+1AZ+11 Ryre = A 'ry by

[7ell
1Al

| Pt Azl Repare — Ay 're||, < Ca forall £ > 1. (2.24)
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2.5. Convergence theory

Therein C'y > 0 is a constant independent of /. The expression in (2.24) can be rewritten by
means of the spectral norm as given in the following definition:

Definition 2.5.11 (Approximation property — Hackbusch). Suppose P and R to be transfer op-
erators of full rank with A,y = Ry 1A¢P;1. Then the coarse level correction satisfies the
approximation property, if

Ca

AT = P AL Re[, < lAdll,

(2.25)

holds for all levels ¢ > 1.

One important difference of (2.25) compared to the approximation property formulated in
(2.22) is the different choice of the norm. However, it is easy to see that the approximation
properties in (2.24) and (2.22) are equivalent when using Ase; = 7.

2.5.4. Full multigrid convergence

Standard techniques of multigrid convergence theory use the smoothing and approximation prop-
erty from Section 2.5.3 to prove two-level convergence and extend it to the multilevel case (see,
e.g., Hackbusch [87, Theorem 6.1.7, Theorem 7.1.2]). However, most of the early proofs suffer
from some additional technicalities. For example, they may be valid only for the W-cycle with
a sufficiently large number of smoothing steps (cf. Hackbusch [85, Theorem 4.4]). In practice,
however, only one or just a few smoothing sweeps are used in a multigrid method.

Braess and Hackbusch [28], Braess [31], McCormick [131] and Verfiirth [204] overcome this
issue by analyzing the interplay between smoothing and coarse level correction directly, which
allows for sharp estimates. For symmetric and positive definite matrices the classical proof for
the V-cycle convergence is presented in Hackbusch [87, Theorem 7.2.2]. The connection be-
tween two-grid convergence bounds and multigrid convergence bounds is also studied in Napov
and Notay [139]. The authors in Mandel et al. [123] prove convergence for symmetric positive
definite matrices for any positive number of pre-and post-smoothing sweeps both for the V- and
W-cycle. For linear systems resulting from the discretization of an elliptic partial differential
equation, the V-cycle multigrid is known to have optimal convergence properties in the sense
that convergence is independent of the number of levels and the mesh discretization parameter
h.

Here, a V-cycle convergence theorem is given which is designed for purely algebraic multigrid
methods. It can be found similarly in Mandel et al. [123], McCormick [131], Ruge and Stiiben
[167] and in a slightly extended variant in Napov [137].

Theorem 2.5.12 (Convergence of V-cycle according to McCormick [131]). Assume A to be
symmetric positive definite. Let M jﬁff'g"‘) define the multigrid method with prolongation oper-
ators P, and restriction operators Ry = PeT with ¢ = 1,...,lnax. The coarse level matri-
ces are generated by the Galerkin product Ay, = RZTHAngH for 0 = 0,... lphax — 1. Let
Mg, = (]—Q_lAg)V with p(MyZ) < 1 define the smoothing process with a symmetric Q = Q7
and assume the number of pre- and post-smoothing sweeps to be v, = vy =: v. Then one obtains
uniform convergence for the V-cycle (v = 1), i.e.,

p(M{m) <19, (2.26)
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2. Basics of Multigrid methods

where , )
§ := min min forlla, - HM{%WHAE

£ veER™ HMCgfoié

(2.27)

Proof. For the proof refer to McCormick [131, Theorem 3.4 and Section 5] or Napov [137,
Theorem 3.1]. [

In the corresponding proof of Theorem 2.5.12 one finds ¢ defined as the minimum over all
levels of an expression involving two consecutive levels. A closer look reveals the role of the
approximation property from Section 2.5.3.1 in the definition of ¢ in (2.27). In fact, J gets max-
imal, if both HM ;?ZW”; and HMC/UKHQA,Z get small (cf. smoothing and approximation property
in Section 2.5.3.1).

In Napov [137] as well as in Napov and Notay [138] the reader can find a quite extensive
comparison of the above convergence bound and the classical V-cycle convergence bound given
in Hackbusch [87, Theorem 7.2.2]. For a very recent overview of convergence bounds the reader
also might refer to MacLachlan and Olson [122].

Remark 2.5.13 (Multigrid convergence for non-symmetric problems). Throughout the whole
Section 2.5 A has been assumed to be symmetric positive definite. However, in practice one
often has to deal with non-symmetric problems for certain applications. There is quite an abun-
dant literature on geometric multigrid methods for non-symmetric systems specifically targeting
fluid dynamics (cf. Brandt and Livne [35], Brandt and Yavneh [36, 40], Thomas et al. [185]).
The books by Trottenberg et al. [186] and Wesseling [213] as well as the article Wesseling and
Oosterlee [214] contain further references. Away from the more application-specific literature,
in Notay [148] the sharp two-grid estimates from Falgout et al. [66] for the symmetric case are
generalized for the non-symmetric case. In contrary to geometric multigrid methods, it turns
out that the theory of algebraic multigrid methods is much less developed for non-symmetric
problems, even though they are often applied to non-symmetric problems in practice. A few
notable algebraic multigrid contributions which specifically target non-symmetric systems in-
clude Bank et al. [13], Dutto et al. [S7], Gravemeier et al. [79], Lallemand et al. [114], Lonsdale
[121], Mavriplis and Venkatakfrishnan [129], Mavriplis [130] and Gee et al. [72].

Remark 2.5.14 (Multigrid convergence for aggregation-based multigrid). In this thesis, only
aggregation-based AMG methods are used, which are introduced in the next chapter. They can be
understood as algebraic multigrid methods with a special technique to build the transfer opera-
tors, which is based on so-called aggregates. These specialized techniques often make it difficult
to apply standard algebraic multigrid convergence theory, such that the theoretical concepts have
to be adapted. In Muresan and Notay [135] an algebraic analysis of aggregation-based multi-
grid methods is presented for symmetric positive definite systems using (non-smoothed) transfer
operators and some special assumptions on the aggregation. A novel aggregation strategy is de-
veloped in Napov and Notay [140] with a guaranteed convergence rate for sparse symmetric
positive definite linear systems. The analysis of aggregation-based algebraic multigrid methods
for non-symmetric convection-diffusion equations is considered in Notay [144] at least for a
simplified two-level case. The development of convergence theory for aggregation-based meth-
ods and its specializations is still a field of active research. Anyway, it shows good performance
in practice and therefore is the method of choice for our problems.
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CHAPTER

Aggregation-based AMG methods

In Chapter 2 merely the basic idea of multigrid methods has been explained without giving de-
tails on how to build the multigrid hierarchies. In the following this gap is closed by discussing
the details of the multigrid setup process for the class of aggregation-based Algebraic Multigrid
methods. Algebraic multigrid methods have the advantage that they do not rely on an underlying
hierarchy of (user-generated) meshes and therefore can easily be applied for problems on un-
structured meshes. However, for applying multigrid methods in general (and aggregation-based
AMG methods in particular), one needs a minimum of background knowledge of the underlying
principles, since multigrid methods in general cannot be expected to show satisfactory perfor-
mance when used in a black-box manner. This chapter can be understood as the basis for the
routines which are later extended and adapted for application-specific requirements.

After a brief discussion of differences between classical and aggregation-based AMG meth-
ods, a systematic introduction to the overall layout of modern aggregation-based AMG setup
routines is presented. To be prepared for the next generation of applications a flexible software
framework is absolutely necessary (see also Keyes et al. [103] and Olson et al. [151]). Thus, one
main contribution of this work is the design of our new flexible multigrid framework MUELU
which is now part of the Trilinos libraries (cf. Heroux et al. [90]). It turns out to be a well-suited
tool not only for doing research on new multigrid concepts (e.g., Chapter 4), but also for design-
ing new multigrid preconditioners to tackle today’s challenges from modern applications (such
as multiphysics problems).

In this thesis the focus is on smoothed aggregation multigrid methods. Therefore, the aggre-
gation procedure is described in detail in Section 3.3, since it has significant influence on the
convergence behavior of an aggregation-based multigrid method. Making use of the knowledge
about the aggregation one can easily develop application-specific extensions to certain problem
classes resulting from computational contact mechanics (see Chapters 6 and 7). The next topic
is the construction of appropriate transfer operators P and R. Besides technical details on the
construction of the so-called tentative transfer operators, it is shown how to extend them using
state-of-the-art smoothing strategies for the transfer operators.
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3. Aggregation-based AMG methods

(a) Typical matrix example for 2D diffusion equa-  (b) Corresponding mesh and matrix stencil.

tion using Finite Elements or Finite Differ- The nodes are represented by the diagonal
ences on a regular mesh with canonical row- or values of A in Figure 3.1a. The off-diagonal
column-wise node ordering. entries define the node-connectivity.
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Figure 3.1.: Relation between matrix A and mesh connectivity demonstrated for a typical linear
operator resulting from a 2D Finite difference example using a canonical row- or
column-wise node ordering of the mesh nodes.

3.1. Algebraic multigrid methods

3.1.1. Motivation for algebraic multigrid methods

The weak point of geometric multigrid methods is that they are based on a user-provided hier-
archy of coarse meshes (cf. Section 2.3.1). Especially if complex geometries and unstructured
meshes are involved, this turns out to be a problem, since for many engineering applications it
is very hard to generate coarse meshes for the given fine level problem. Instead of geometric
multigrid principles one can use algebraic multigrid (AMG) methods, which do not rely on a set
of (nested) user-provided meshes, but make use of the fine level operator A to coarsen the prob-
lem. In fact, the mesh connectivity can be extracted from the graph of the linear operator A by
looking at the non-zero off-diagonal entries of the matrix. For demonstration purposes, Figure
3.1 shows the relation of the fine level matrix A (or the graph GG (A) of A) and the corresponding
mesh connectivity for a 2D diffusion operator resulting form a finite difference discretization on
a structured regular mesh with canonical row- or column-wise node ordering.

Algebraic multigrid methods can interpret the information of the fine level operator A to
internally reconstruct the corresponding mesh connectivity that is used to build coarse level
problems. This also works in case of highly an-isotropic meshes, varying coefficients in the
underlying equations, and problems that are dominated by convective phenomena.

For a general introduction to algebraic multigrid methods the reader is referred to Ruge and
Stiiben [167] and Trottenberg et al. [186].
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3.1. Algebraic multigrid methods

(a) Classical coarsening in Ruge Stiiben algebraic ~ (b) Coarsening using an aggregation-based alge-

multigrid methods. The small black nodes de- braic multigrid method. The black nodes rep-
note nodes on the fine level. The large gray resent fine level nodes. The gray color defines
nodes declare nodes which have been selected the aggregates. Each aggregate corresponds to
by the coarsening routine for the coarse level. one coarse level “node” on the coarse level.
® + ® ¢ ® RV AP S
o (@ o (@® o oo —9o o SN
(@ o (@ o (0 e -o -0 & o
o @® o (@® e {c > o o o
Pre e AP
Figure 3.2.: Conceptual difference of classical Ruge Stiiben type algebraic multigrid methods

and aggregation-based algebraic multigrid methods shown for a typical linear oper-
ator resulting from a 2D finite difference example using a canonical row- or column-
wise node ordering of the mesh nodes.

3.1.2. Classification of algebraic multigrid methods

One has to distinguish standard AMG methods that are also known as classical Ruge—Stiiben
AMG methods (cf. Ruge and Stiiben [167]), and so-called aggregation-based AMG methods
(cf. Vanck et al. [192]).

Classical Ruge Stiiben AMG methods are based on a coarsening process which first selects
a subset of coarse level nodes from all fine level nodes. The algebraic coarsening routines are
mainly based on the properties of M-matrices to construct transfer operators P and RR. These tra-
ditional approaches are known to be effective for a wide range of problems (cf. Brandt [38], Trot-
tenberg et al. [186]). Common coarse variable selection routines are based on minimal indepen-
dent sets (cf. Cleary et al. [49], Stiiben [183]) using algebraic information from the underlying
problem only. Once a set of coarse level nodes is found, the method defines interpolation op-
erators for the transfers between the fine and coarse levels. However, considering application-
specific information in the design of interpolation operators, such as rigid body modes for elas-
ticity problems, comes with some extra complexities (cf. Baker et al. [11]).

More general approaches for selecting the set of coarse variables use the concept of compatible
relaxation (an idea first introduced by Brandt [39]) to gauge the quality of the coarse variable
set. An overview on how to generalize the AMG framework is given in Falgout and Vassilevski
[64], including general smoothing and coarsening processes and several compatible relaxation
methods. In Brannick and Zikatanov [41] the authors present an adaptive AMG setup algorithm
that uses compatible relaxation to optimize the set of coarse variables. The nonzero supports
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3. Aggregation-based AMG methods

for the coarse space basis are determined by approximation of the so-called two-level “ideal”
interpolation operator. In this thesis similar ideas are used to improve multigrid transfer operators
in a different context (see Section 4.4). The coarsening algorithm used in Brannick and Zikatanov
[41] to construct the coarse variable set is described in Brannick and Falgout [42] based on the
compatible relaxation algorithm in Livne [120].

In Figure 3.2a the general concept of classical coarsening is visualized. The small nodes in
black color denote fine level nodes, whereas the large gray nodes have been selected to be coarse
level nodes. The Figure 3.2a just shows exemplarily how the coarse variables could be chosen
from the fine level variables for obtaining a coarsening rate 2. The transfer operators are built us-
ing some interpolation techniques, such that the fine level nodes are interpolated by information
from the neighboring coarse level variables.

Remark 3.1.1 (Implementations & Software). Current implementations of Ruge Stiiben AMG
methods are available in PYAMG (cf. Bell et al. [20]) and HYPRE (cf. Falgout and Yang [65]).

In contrary to classical Ruge Stilben AMG methods, the class of aggregation-based AMG
methods (cf. Vanék et al. [192]) replaces the concept of fine and coarse level nodes by so-called
aggregates. That is, aggregation-based AMG methods just use a different technical concept to
define the coarse level problems and the transfer operators. Aggregates are defined by agglom-
erating fine level nodes using algebraic information about the node connectivity only, which
is represented by the graph of the matrix A. Transfer operators are built directly using the set
of aggregates. Near null space modes (such as rigid body modes in elasticity, cf. Section 3.4)
are automatically considered during construction of the transfer operators per design. In order
to obtain optimal convergence properties, the transfer operators can be smoothed in a separate
smoothing step (see Smoothed Aggregation methods in Section 3.5).

Figure 3.2b shows how the black fine level nodes are aggregated following the mesh connec-
tivity of the Finite Difference Laplace example visualized by the solid black lines. All aggregates
in gray shape represent one coarse level variable on the next coarser level. That is, the 5-point
aggregates shown in Figure 3.2b would lead to a coarsening rate of 5.

Remark 3.1.2 (Implementations & Software). Aggregation-based AMG methods are available
in PYAMG (cf. Bell et al. [20]) as well as the software packages ML (cf. Gee et al. [73]) and
MUELU in the Trilinos project (cf. Heroux et al. [90]). A commercial implementation of an
aggregation-based AMG method is available with AGMG (cf. Notay [147]).

3.2. General objectives and design of aggregation-based AMG

In this section the algorithmic design as well as more general objectives for an aggregation-based
AMG method are discussed. Whereas many aspects (such as aggregation algorithms, prolongator
smoothing etc.) can be found in the according literature, the interplay of the different algorith-
mic parts is not or only very briefly discussed in the papers (see, e.g., Blaheta [25]). However,
when applying or developing new multigrid techniques, it is highly important to have a suffi-
cient understanding of the underlying processes. Therefore, the design of an aggregation-based
AMG method is explained from top to bottom starting with the overall overview of the different
algorithmic ingredients before proceeding with concrete details in the next sections.
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3.2. General objectives and design of aggregation-based AMG
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Figure 3.3.: Setup phase for a Smoothed Aggregation AMG multigrid method.

3.2.1. Algorithmic design of aggregation-based AMG

An algebraic multigrid method usually consists of a setup phase, where the coarsening algo-
rithms build the coarse level problems with the corresponding transfer operators, and a solution
or iteration phase, where the usual multigrid cycles, as described in Section 2.4.2, are performed
using the multigrid hierarchy built during the setup phase.

3.2.1.1. Setup phase

Figure 3.3 is meant to guide through the setup process for multigrid transfer operators in a
smoothed aggregation multigrid method providing a global overview of the different steps. Fur-
thermore, it also serves as outline for the next sections in this chapter, which explain the different
phases during the multigrid setup. Note that the steps in Figure 3.3 are performed iteratively start-
ing with ¢ = 0 on the finest level until the maximum allowed number of multigrid levels £,,.x is
reached or the coarse level size is below a certain user-prescribed bound.

Before discussing the details in the next sections, a brief review of the overall outline of the
setup phase is given in Figure 3.3. On the fine level one needs the fine level matrix A, as input
together with an approximation of the fine level (near) null space B, € R™*"5_ which satisfies
AyBy =~ 0 at least away from the Dirichlet boundaries (cf. Section 3.4.1). Then, the transfer
operators Py, and R,y; can be built together with the coarse level near null space B, and
the coarse level operator A, ;. The graph GG (AZ) of the fine level matrix A, is used as input for
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3. Aggregation-based AMG methods

the aggregation algorithm, which provides a set of aggregates <7 (cf. Section 3.3). These can
be used to define a tentative prolongation operator 1 with non-smoothed piece-wise constant
coarse level basis functions (cf. Section 3.4.1). The tentative prolongation operator P, also
indirectly defines the coarse level near null space vectors By, (see equation (3.9) in Section
3.4.1). In order to improve the transfer operators, one can optionally apply a smoothing sweep
for the non-smoothed transfer operator basis functions in the so-called prolongation smoothing
step (cf. Section 3.5). The new prolongation operator P, is used as input for generating a
corresponding restriction operator Ry, ;. The most simple choice to define a restriction operator
1s just to use [y = PZTH. More advanced methods that are also appropriate for non-symmetric
linear systems are discussed in Section 4.2.2. Once the transfer operators Fy; and 7y, are built,
the Galerkin product (2.6) can be calculated to obtain the coarse level matrix A, . Note that the
transfer operators P, and R, on the fine level ¢ are not only needed to generate the coarse level
problem, but also to be used in the solution phase (see Section 3.2.1.2). On each multigrid level
the corresponding set of level smoothers for pre- and post-smoothing during the iteration phase
is created using A, as input.

3.2.1.2. Solution phase

In the solution phase the multigrid hierarchy built during the setup phase is just used within the
multigrid algorithm as described by Algorithm 2 in Section 2.4.2 for iteratively reducing the dif-
ferent error components on the corresponding multigrid levels. One can use the multigrid method
as solver and perform several multigrid sweeps with the V-cycle to solve the linear problem. Al-
ternatively, you can use the multigrid method as preconditioner within an outer Krylov subspace
solver such as a CG method or GMRES and perform one multigrid sweep for preconditioning. If
not otherwise stated, always 1 sweep through the V-cycle from Algorithm 2 with v = 1 is used
as preconditioner for a GMRES solver (cf. Appendix A).

3.2.2. Objectives and requirements for the prolongation operators

The selection of the prolongation operators for the multigrid method is dictated by the desire to
achieve good convergence behavior with reasonable computational complexity of the algorithms.
Here, the desired properties of our prolongation operator are specified in terms of the support
and shape of the coarse basis functions (cf. Mandel et al. [124], Vanék et al. [192, 197]).

(01) Strong couplings: The support of the coarse basis functions should follow strong couplings

in the underlying matrix graph. Two degrees of freedom 7 and j in a matrix A, = (aij) ?;‘.:1
on level £ are said to be strongly coupled if |a;;| is relatively large compared with +/|a;;a;;|.
Note that the underlying physics is reflected in the coefficients of the matrix Ay, e.g., in

the sense that neighboring nodes are strongly coupled in the direction of anisotropy.

(02) Limited overlap: It is assumed that a constant K exists, such that for any coarse basis
function its support intersects at most /K supports of other coarse basis functions. The
constant K is supposed to be small to guarantee sparsity of the resulting coarse level
matrices Ay . This is important as a prolongation smoothing method (see Section 3.5)
comes along with the costs of increasing the supports of the basis functions (cf. Gee et al.
[71], Mandel et al. [124]).
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3.3. Aggregation algorithm

A common measure for the sparsity (and the memory footprint) of a multigrid method is
given by the multigrid operator complexity (see, e.g., Gee et al. [71]).

Definition 3.2.1 (Operator complexity). The multigrid operator complexity is defined as

bmax—1 #nnz(Ay)

0C = &0 3.1

#nnz(Ay) S

and describes the ratio of non-zero entries of all multigrid level matrices A, with ¢/ =
0,...,%ne — 1 and the number of non-zeros on the finest level.

In practice, it is important to keep track of the operator complexity to make sure that the
memory consumption does not exceed hard memory limits.

(O3) Preservation of (near) null space modes: The span of the basis functions on the coarse
level should contain (near) null space modes, at least away from Dirichlet boundaries
(cf. Mandel et al. [124], Mandel [125], Vanék et al. [192, 197]). Near null space modes
correlate with (algebraically) smooth error components which are meant to be treated on
the coarser levels where relaxation-based methods can reduce the smooth error modes
more effectively (cf. Section 2.5.2).

(0O4) Minimization of energy: The basis functions on the coarse levels should have as small
energy as possible (at least in cases where a notion of energy is defined). This objective is
motivated by the observation that minimizing the energy of the basis functions contracts
the condition number of the coarse level matrices. For more details the reader may refer to
Mandel et al. [124], Olson et al. [153] and the comments in Section 3.5.2.

3.3. Aggregation algorithm

The aggregation is one of the central key components within an aggregation-based AMG method.
For our examples in this thesis a general graph-based aggregation method is used that is de-
scribed in detail in the following sections. It can be understood as an extended variant of the
basic aggregation algorithm described in Vanék et al. [197, Algorithm 2] or Vanék et al. [192].

It shall be mentioned that for special applications some basic knowledge about the underlying
discretization of the (partial) differential equations may be very helpful to define an appropriate
aggregation strategy. One can think of many options for highly problem-specific aggregation
strategies designed for different applications and problems. In the work by Olson and Schroder
[150] a conforming aggregation for high-order discontinuous finite elements with distance-based
aggregation is introduced. Furthermore, Napov and Notay [140] describe a novel aggregation
strategy with a guaranteed convergence rate for symmetric positive definite systems, and in Olson
et al. [152] the authors review different so-called strength-of-connection concepts for classical
and smoothed aggregation AMG methods.

3.3.1. Notation

Primarily interested in non-scalar problems, such as 2D or 3D elasticity, one has more than 1
degree of freedom for each node on the underlying fine-level mesh. It is assumed that all degrees
of freedom are associated with the nodes of the mesh and that the number of degrees of freedom
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3. Aggregation-based AMG methods

per node is constant. These assumptions allow a very efficient implementation, but one can state
that they could also be extended to the more general case of a variable number of degrees of
freedom per node or mixed element formulations. Neither of this is necessary for the applications
in this thesis. The aggregation algorithm is based on the node graph of the matrix representing
the mesh on the finest level. Let m denote the number of nodes on the finest level (¢ = 0) and
ng the corresponding number of degrees of freedoms. Then, one can define a surjective mapping
between the degrees of freedom and the corresponding nodes:

Definition 3.3.1 (Mapping between degrees of freedom and corresponding nodes). With each

node and degree of freedom numbered consecutively by 1,...,mgand 1, ..., ng one can define
n:{l,...,n} — {1,...,my} as the mapping of the degrees of freedom to the associated node
id’s.

Here, the graph of the matrix A, is denoted as G (Ag) = (gij) ,» Where the entries g;; are given
by
1 it dkleql,....,ngy:0a 0 withn(k) =4 and n(l) = j,
(gij)gz{ Le ok (®) b= (3.2)
0 otherwise,

with ¢, j = 1,...,my. For any node i € {1,...,m,} the neighborhood of nodes Nby is defined
as the set

Nby(i) = {5 € {L....,me} : (gi5), = 1} (3.3)

Remark 3.3.2 (Node). The term node is geometrically clearly defined in context of a mesh on
the finest level. However, there is no mesh or geometry associated with the coarse levels in the
AMG setting. In this thesis, the term node is used to describe a strictly algebraic entity consisting
of a list of degrees of freedom which allows us to use the term node also for coarser levels. Each
aggregate which agglomerates some nodes on the fine level ¢ defines one node on the coarse
level ¢ + 1, and each degree of freedom associated with that coarse level node is a coefficient of
a particular basis function in the coarse-level basis expansion defined by the transfer operators
(cf. Section 2.3.2).

3.3.2. Matrix filtering

Especially for problems with some inherent anisotropy one often uses the graph of a filtered fine
level operator Al instead of applying the aggregation algorithm to the graph of the full matrix
Ay (cf. Gee etal. [71], Vangk et al. [192]). The filtered fine level operator A} = (af}) is given by

f Qi 1f‘a”’ Zefori#j d f o f 34
(%- )Z o otherwise 0 (%’)g —r ‘21(6% B aij) ob

i
for some € > 0. Dropping small entries highlights the strong couplings within the matrix, which
is important in order to meet the objective (O1) for the prolongation operator (cf. Section 3.2.2).
The special treatment of the diagonal entries in (3.4) makes sure that the sum of entries in a
row of the filtered matrix Al is zero whenever the sum of the entries in a row of A, is zero.

When applying a common dropping strategy, the resulting graph of the filtered matrix Al can be
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3.3. Aggregation algorithm

expressed by G (A}) := G"(A,) = (gf}), with

q 1 if 3k, 1e{l,...,ne} : law| > e withn(k) = i and n(l) = j
(955), = . (3.5)
0 otherwise
with 7,7 = 1,...,my and a properly chosen dropping parameter ¢ > 0. The aggregation algo-

rithm then can directly operate on the filtered graph G" (A).

In the following, the superscript for the filtered graph is dropped. Consequently, the filtered
and the non-filtered graph is denoted by G(Ag). If not stated otherwise, it is € = 0, i.e., the
non-filtered graph is used.

Remark 3.3.3 (Dirichlet boundary conditions). Since condensing out Dirichlet boundary condi-
tions from the linear systems would be too expensive, one often keeps them in the linear system.
Of course, the matrix rows describing the Dirichlet boundary conditions affect the aggregation
process. Most often, these Dirichlet conditions are not a major issue for the multigrid method,
especially if multigrid is used as preconditioner within an iterative solver. However, in some
special cases Dirichlet information is not correctly processed, when using a multigrid algorithm.
Then it is necessary to put some more attention in the handling of boundary conditions. In Ap-
pendix C the reader finds a detailed discussion on the topic of Dirichlet boundary conditions in
the context of AMG methods.

3.3.3. Aggregation algorithm

The aggregation algorithm is used to build a set of node aggregates {dg(i) }mgff forming a dis-

i=

joint covering of the index set of all nodes on the current level /, such that

mggg

U &% ={1,....m}, (3.6)
=1

where m, denotes the number of nodes and m_,, stands for the number of aggregates on level /.
Note that the number of aggregates m.,, on level ¢ naturally defines the number of nodes m,

on the next coarser level, i.e., my, 1 = card({m(i)}:g“> = My, (cf. Remark 3.3.2).

Algorithm 3 gives the outline of the aggregation process used in this thesis, which is based on
the aggregation algorithm described in Vanék et al. [197, Algorithm 2].

The user can specify the minimum and maximum size of the aggregates by the user parameters
Miin and M, respectively. The parameter 1,0 18 meant for advanced users and basically
denotes how many neighbor nodes at maximum are allowed to be already aggregated in different
neighboring aggregates. Its effect will be discussed in detail in Section 3.3.4. In the following,
algorithmic details are given which are very helpful to understand the behavior of the aggregation
routines. In Remark 3.3.7 one can find some further general comments on proper choices for the
user parameters which may be helpful to find a working and efficient set of parameters for the
multigrid aggregation routines.

As one can see from Algorithm 3, first the set of all non-aggregated nodes R is initialized.
The empty sets C and .o7; are declared which are needed for storing the aggregated node ids and
the aggregates built during the aggregation process. The aggregation itself is performed in three
consecutive phases which are explained in more detail in the following.
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3. Aggregation-based AMG methods

Algorithm 3: Aggregation algorithm.

Procedure Aggregate (Mmin, Mmax Mmaxnghs G(Ag) )

Initialization

Ry + {1, cee mg} // Set of remaining non-aggregated nodes
Co<0 // Set of aggregated nodes

oty ) // Set of aggregates

Phase I: Tentative aggregation

(JZ{K, Cg, Rg) < PhaselI (,,Q{g, Co, Ry, G(Aﬁ): M min, Mmax mmaxngh)

Phase I1: Enlarging the tentative aggregates
(M, Cg, Rg) < PhaselII (,Qfg, Cg, Rg, G(Ag), mmaX)

Phase I11: Aggregation of left-over nodes
(,Cy,Ry) + PhaseIlI (#, Cy Ry G(A))

Return aggregates
return <7,

3.3.4. Phase I: Tentative aggregation

In the first aggregation phase one tries to select disjoint strongly coupled neighborhoods to build
a set of tentative aggregates as an initial tentative covering of all fine level nodes m,. Algorithm 4
basically loops through all non-aggregated nodes from R, and tries to build new aggregates. The
ordering of the non-aggregated nodes defines the ordering of how the Phase I aggregates are
built, i.e., it considerably affects the size, the shape and placement of the Phase I aggregates.
One can either use a random ordering, the natural ordering (defined by the node ordering of the
underlying mesh) or a graph ordering which is following the node connectivity in the graph.

Besides the ordering of the non-aggregated nodes, the user has some more control over the
Phase I aggregation process through the user parameters. Algorithm 4 is a slightly extended
version of the first step in Vanek’s aggregation algorithm (cf. Van€k et al. [197, Algorithm 2]),
where only aggregates are accepted which contain at least m,,;, nodes. This way one can declare
a lower bound for the coarsening rate of the multigrid algorithm. The upper limit m,,,, of the
aggregate size gives the user more control of the coarsening rate and helps to create aggregates of
similar size throughout the whole domain. With 12,40 the user can choose an upper bound for
the number of neighbor nodes which are allowed to be already aggregated in a different existing
aggregate. This parameter is meant for advanced users only and provides some control over the
density of the tentative aggregates. The recommended choice 7 mynen = 0, for example, guar-
antees all tentative aggregates from Phase I to have a minimum graph distance of 2. Choosing
Mmaxngh > 0 may lead to tentative aggregates which are more closely together. However, this is a
simplified and rough explanation of the effect of this parameter. In practice, the connections and
the ordering of the nodes in the graph GG (Ag) dominate the placement and shape of the tentative
aggregation phase.

Example 3.3.4. Let’s have a look at a simplified example to get a better understanding of the
Phase I aggregation process from Algorithm 4. A regular 8 x 8 mesh is considered with strong
connections only in horizontal and vertical, but not in diagonal directions (e.g., resulting from
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3.3. Aggregation algorithm

Algorithm 4: Aggregation algorithm: Phase |

Procedure PhaselI (%), C;, Ry, G(Ag), Mimins Mmaxs Mmaxngh)

Create local copy of remaining nodes in R
Set Rg < Rg

Number of aggregates built in Phase |
k+0

Check all remaining nodes whether they can be aggregated
while R, # () do

Select a new id from the non-aggregated remaining nodes
(Use natural node ordering, graph based ordering or random ordering).
Selectnode ¢ € R

Define empty set of node id’s for a new tentative aggregate
,ﬂ;tem) i @

Loop over all neighboring nodes j of the selected node 1

for j € Nby(i) do

If node j is not aggregated and size of tentative aggregate is not too big...
if (j & Co) & (#™ < Myay) then

...add node j to tentative aggregate

JZ%(tent) V. szg(tent) U {]}

end

end

Check if more than m,;, nodes are contained in tentative aggregate
i (#:7™ > myiy) & (#(Co 1 ND(0)) < Mgogn ) then
Accept tentative aggregate

k<« k+1

%(k) « %tent)

Update node sets

Cg < Cg U Jng(tem)

RZ — 1:{Z \ %tent)

else

Discard tentative aggregate. Remove node i from local list of remaining nodes

f{ﬂ—ﬁg\{z’}

end
end

Update list of remaining nodes that are not in an aggregate yet
Rg <— R@ \ Cg

Return aggregates and node sets of aggregated and non-aggregated node id’s
return <7, C;, R,
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3. Aggregation-based AMG methods

Aggregation parameters

Mmin = 5 Mmin = b}

mmax = 7 mmax = 7

M maxngh = 1

Aggregation phases

Phase I+11 Phase 1

Phase [+11+I11

Figure 3.4.: Effect of aggregation algorithm parameters. The tentative aggregates chosen in
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Phase I (cf. Algorithm 4) are colored in dark gray, the extended aggregates from
Phase II (cf. Algorithm 5) are colored in intermediate gray color and the aggregates
in light gray have been added by Phase III (cf. Algorithm 6). The non-aggregated
nodes in R from Algorithm 4 are ordered randomly.



3.3. Aggregation algorithm

a 2D finite difference discretization). This assumption is just meant to demonstrate the effect of
different aggregation parameters.

In the first row of Figure 3.4 the effect of different aggregation parameters is shown for the
Phase I aggregation process. The parameter m,;, is chosen as m.,;, = 5 which is the maximal
reasonable value, since each node has (at maximum) 4 possible neighbor nodes as shown by
the dotted lines. Choosing m,,;, > 5 would make the aggregation Phase I algorithm to finish
without generating tentative aggregates. The parameter m,,,, allows to control the maximum
size of the aggregates. In the tentative aggregation phase it is usually less important and only
affects the Phase I aggregation if the number of actual neighbor nodes exceeds the user-given
limit in m,,,. In contrary to m,;,, the m ., parameter is a sharp bound, i.e., even in the later
aggregation phases the aggregation algorithm will never hurt the maximum allowed size of ag-
gregates. Figure 3.4 also demonstrates the effect of 7,40, limiting the number of nodes in the
direct neighborhood that are aggregated in different aggregates. However, due to the somewhat
limited mesh connectivity, a higher value for this parameter does not automatically result in
more tentative aggregates. In fact, the actual placement is highly dependent on the ordering of
the remaining non-aggregated nodes R, in Algorithm 4 and the connectivity of the graph.

3.3.5. Phase II: Enlarging the tentative aggregates

The Phase II of the aggregation process tries to add the left-over nodes from Phase I to existing
neighboring aggregates. In Algorithm 5, all aggregates in the neighborhood for each left-over
node ¢ are determined. For each neighboring aggregate, one counts the internal nodes which
have a strong connection to the left-over node :. Then the aggregate with the highest count
is selected, which does not exceed the maximum allowed size of m,,, nodes for an aggregate
after the left-over node 7 has been added. It is important to understand that the Phase II algorithm
can only add left-over nodes with a maximum graph distance of 1 to existing aggregates. That
is, there might be some left-overs after Phase II which have a graph distance > 1 to the next
aggregate. This usually happens close to the boundaries where no Phase I aggregates have been
placed (cf. second row in Figure 3.4 for the Example 3.3.4). However, this is not a real problem,
as with each node the aggregate is growing and allows for more neighbor nodes to be added.
Therefore, similar to Phase I, the ordering of the remaining nodes R, has significant influence
on which nodes are chosen to be added to aggregates. The only limiting factor is the parameter
Myax fOor the maximum size of the aggregate. Needless to say that the Phase II algorithm can be
skipped if M i = Mpax-

Remark 3.3.5 (Alternative selection criteria). The maximum link criterion as described by Al-
gorithm 5 is only one possible method to decide which aggregate the left-over node ¢ should
be added to. Another reasonable criterion would be to choose the neighboring aggregate which
has minimum size. This leads to more balanced aggregate sizes. A similar effect could also be
achieved by a reasonable choice of the minimum and maximum size parameters for the aggre-
gates.

3.3.6. Phase III: Aggregation of left-over nodes

The primary goal of the aggregation is to make sure that all m, fine level nodes are aggregated
after Phase III. Therefore, a new aggregate is built for each remaining left-over node ¢ which
could not be aggregated during Phase I or Phase II (cf. Figure 3.4 for the Example 3.3.4). All
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3. Aggregation-based AMG methods

Algorithm S: Aggregation algorithm: Phase II.

Proced

Cre
Set

ure PhaseII (<, Cp Re G(A¢), Minay)
ate local copy of remaining nodes in R
R, + Ry

Check all remaining nodes whether they can be aggregated
while R, # () do

Select a new id from the non-aggregated remaining nodes
Select node © € R

Create empty list of aggregate id’s which are in the neighborhood of node 1
M(ngh) «— 0

Loop over all neighboring nodes j of node 1
for j € Nby(i) do

Collect aggregate id’s of neighboring nodes j around node 1
for k € &7, do

if j € «7,%) then
‘ %(ngh) « %(ngh) U {k‘}
end
end
end

Check whether node i can be added to a neighboring aggregate
while 7" £ () do
Find the aggregate id with most connections to node 1
Emax < arg max(# (szfg(k) N szg("gh))>
ke
if #.07,m) < then
Add node i to aggregate ki .x
%(k‘max) Y. %(kmax) U {Z}
sze(ngh) — 0

Update node sets

Ry < Re\ {i}

Ry R, \ {i}

Co+— CoU {Z}

else

Try another aggregate
%(ngh) « th(Z(ngh) \ { kmax}
Ry < R\ {d}

end
end
end

Return aggregates and node sets of aggregated and non-aggregated node id’s
return .<7;, C,, R,
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3.3. Aggregation algorithm

its non-aggregated neighbor nodes are added to the new aggregate ignoring the user parameters
M min and mmaxngh'

Algorithm 6: Aggregation algorithm: Phase III
Procedure PhaseIII (<, Cy Ry G(Ay))

Number of aggregates

k < #()

Check all remaining nodes whether they can be aggregated
for: € R, do

Create a new aggregate for the left over node 1
E+—Fk+1
A {i}
Loop over all nodes j in the neighborhood of the selected node i
for j € Nby(i) do

If node 7 is not aggregated, add it to the new aggregate

if j ¢ C, then

AR AT

end

end

Update node sets
R@ <— R@ \ %(k)
Cy + CoU ™

end

Return aggregates and node sets of aggregated and non-aggregated node id’s
return <7, C;, R,

Remark 3.3.6 (Motivation). When using a multigrid method as standalone solver, it is important
that all nodes are aggregated. In the worst case, non-aggregated left-over nodes would not be
considered in the multigrid solution process at all. This may lead to severe convergence prob-
lems. In case of the multigrid method being used as a preconditioner within an outer Krylov
subspace solver, non-aggregated left-over nodes are not a major problem since they still would
be handled by the Krylov solver.

Note that in contrary to usual inner nodes it makes sense for (homogeneous) Dirichlet nodes
to be dropped in the aggregation. For more details the reader may refer to Remark 3.3.3 and
Appendix C.

3.3.7. Coarse level aggregates

In Figure 3.4 the effect of different parameters on the aggregation of the fine level nodes is stud-
ied for the artificial Example 3.3.4. The black nodes on the 8 x 8 mesh are aggregated into the
gray aggregates. Each of these gray aggregates on level 0 represents one node on level 1. Fig-
ure 3.5 shows exemplarily how the corresponding coarse level aggregates on level 1 may look
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Aggregation parameters
Mmin = 5 Mmin = 5 Mmin = 5
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Figure 3.5.: Coarse level aggregates.

like when applying Algorithm 3 to the fine level aggregates on level 0. Note that the maximum
number of neighboring nodes (or aggregates) might change as one can see from Figure 3.5. In
this example, the maximum number of neighboring nodes on the finest level 0 is fixed to be 4 by
assumption. On level 1 however, one finds up to 8 neighboring nodes, since the connections be-
tween nodes are not restricted to horizontal and vertical directions any more. With the increasing
number of connections the influence of the parameter m,,,, is also changing: whereas it had no
meaning for the Phase I algorithm on level 0, it actively restricts the size of aggregates on level 1
in the tentative aggregation Phase I algorithm.

Example 3.3.4 has been chosen with the purpose of demonstrating some extreme behavior
of the aggregation algorithm to give the reader a better understanding of the meaning of the
aggregation parameters. It shall be mentioned that for real world problems, one usually finds a
more reasonable connectivity structure in A,, where different reasonable parameter choices have
less drastic effects.

Remark 3.3.7 (Reasonable parameter choices). Even though the aggregation process is mainly
dominated by the underlying mesh connectivity and the ordering of the non-aggregated nodes
R/, the user is still responsible for reasonably choosing the user parameters. It is certainly worth
to put together some general thoughts about the proper choice of the user parameters for the
aggregation routines as described in the previous sections.

Minimum size of aggregates: A proper choice of m,;, depends on the number of neighboring
nodes of each node of the corresponding mesh or level. It definitely should be smaller
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3.4. Tentative prolongation operators

than the average number of connections for the inner nodes away from the boundaries.
Otherwise one can skip the Phase I phase completely and save computational costs. A
reasonable choice of m,,;, allows to guarantee a minimum coarsening rate. In case of a
regular 2D mesh on the finest level, one has to choose a value smaller than 9; in case of a
regular 3D mesh, m ,;, should be smaller than 27. A good choice would be, e.g., 6 (in 2D)
or 18 (in 3D), respectively.

Maximum size of aggregates: The m,,., > m,,;, parameter allows to define an upper bound
for the coarsening process. This helps to make the coarsening rate uniform over all multi-
grid levels. Sometimes this is important, especially on coarser levels where the number of
off-diagonal entries in the level matrices is increasing. Of course, the user should choose
Mupax > Mmin With m 5, sufficiently small to give the Phase I algorithm enough freedom
to choose appropriate tentative aggregates. Typical choices for regular fine level meshes
are 27 (for 3D) and 9 (for 2D).

Maximum number of aggregated neighbors: For graphs arising from finite element meshes
the choice M pyamen = 0 gives reasonable results, since it guarantees a minimal graph
distance of 2 for two distinct tentative aggregates throughout the whole domain. Left-over
nodes between two tentative aggregates are aggregated latest in Phase III.

Example 3.3.8 (3D aggregation). Figure 3.6 shows a typical example for aggregates on an un-
structured tetrahedral mesh. The aggregation parameters have been chosen exemplarily to pro-
duce rather small aggregates of a size between 12 and 20 nodes. The corresponding coarsening
rate is between 19 and 20 and therefore limited by m,,,,. The parameter Mmyamgn = 16 is rather
big and causes the Phase II algorithm to fail in extending existing aggregates. One can also see
how the number of nonzero entries per row in the level matrix A, is increasing with ¢, which
gives a rough idea how the number of node connections is changing on the coarser levels. Note
that the number of non-zeros per row is also influenced by other factors such as the concrete
choice of the transfer operators (see Sections 3.4.1 and 3.5).

3.4. Tentative prolongation operators

The aggregates from Section 3.3 are used to generate tentative prolongation operators ]3g+1 €
R™ex™+1 for ¢ = 0,..., nax — 1 which define the transfer of coarse level information from
level £ + 1 to the fine level £. These two-level prolongation operators can be used to define the
composite tentative prolongator P} : R™ — R™ by

Pl=P---P, forl{>0and P} =1Iforl=0, (3.7)

which represents the transfer of a coarse vector from level ¢ to the finest level 0 (cf. Vanék et al.
[198]).

3.4.1. Prerequisites for tentative prolongation operators

For the construction of ]3“1, one needs the set of aggregates {ﬂ%g(i) }1;:; ¢ of level ¢ together with
the corresponding near null space vectors B, € R™*"5 which satisfy A,;B, ~ 0 at least away
from the Dirichlet boundaries.
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Figure 3.6.: Example for aggregation of an unstructured tetrahedral mesh. The aggregation
parameters have exemplarily been chosen to be my;, = 12, mu.x = 20 and
Mmaxngh = 16 with a natural ordering of the nodes defined by the meshing algorithm
on the finest level. m, denotes the number of nodes and n, the number of degrees of
freedom on level ¢. m, is the number of aggregates built on ¢. The aggregation has
been performed in parallel using 32 processors on the finest level.

Remark 3.4.1 (Near null space vectors). Following the considerations in Vanék et al. [192], B,
is typically chosen to be a generator of near null space modes for the matrix Ay on the finest
level. In the context of finite elements this means the kernel of the matrix A, obtained from the
finite element model without essential boundary conditions (such as Dirichlet boundaries). Near
null space modes, determined by the element definition and the geometry, are often well-known
and can easily be calculated. In the scalar case using Lagrange elements, the near null space
modes are given by non-trivial constant vectors. For non-scalar systems the same may apply
component-wise, e.g., for Navier—Stokes problems one can choose component-wise constant
vectors as good approximation of the zero energy modes. For linear elasticity the near null space
modes are given by the rigid body modes and therefore the number of near null space vectors
might differ from the number of degrees of freedom per node. For example, for 3D elasticity
one has 3 degrees of freedom for the displacement variables in each direction but 6 rigid body
modes (3 for the translation in each spatial direction and 3 rotatory modes) as zero energy modes
defining the near null space vectors of the operator Ay. The near null space vectors for the coarse
level matrices Ay, ¢ > 0 can be generated from the near null space By during the setup of the
tentative transfer operators as described in the following. Therefore, it is sufficient to provide
only the near null space modes for the finest level.
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3.4. Tentative prolongation operators

The near null space vectors are used to extend the node-based information from the aggregates
to define transfer operators declared for the corresponding degrees of freedom. Therefore, the
meaning of the near null space vectors B, for the multigrid method is twofold:

(N1) Coarse level modes: First and most important for the multigrid principle: the set of near
null space vectors selects the slowly converging modes which are supposed to be trans-
ferred to the next coarser level where they are tackled by the level smoother more ef-
ficiently. Usually, the near null space contains the constant vectors which represent the
error modes that have to be eliminated by a direct solver (on the coarsest level). To obtain
optimal results, one has to wisely choose a minimal set of linear independent near null
space vectors that covers all important error modes. On the other hand one should avoid
to choose too many near null space vectors as the number of near null space vectors ng
implicitly defines the number of degrees of freedom per node on the coarse level. A too
high number of near null space vectors leads to a higher number of degrees of freedom
per node on the coarser levels and may drastically increase the operator complexity (see
Definition 3.2.1).

(N2) Transfer operator pattern: From the technical point of view, the set of near null space vec-
tors also defines the local aggregate-wise nonzero pattern of the tentative transfer operator
(see Section 3.4.2). Often, the set of near null space vectors is provided by the outer appli-
cation, e.g., as the set of rigid body modes for structural problems, which again is based
on some intrinsic assumptions regarding the ordering of degrees of freedom. Whereas in
practice the multigrid will work even if one only has disturbed near null space vectors
in (N1), it is highly essential that the sparsity pattern of the level matrices Ay fits to the
near null space vectors provided by the application. If the local aggregate-wise near null
space vectors contain (nearly) linearly dependent vectors, the coarse level problem A,
resulting from the Galerkin product (2.6) might tend to be nearly singular, even if the fine
level operator A, is non-singular (cf. Remark 6.2.3). This can be avoided by an appropri-
ately chosen pattern (see Section 4.4).

The next section gives some details on the construction of the tentative prolongation operator
which may also provide some insight in the meaning of prerequisite (N2).

3.4.2. Construction principle

In order to enforce objective (0O3) from Section 3.2.2 one has to make sure that
Rg(Bo) C Rg(P}) foralld =1,... (3.8)

holds for the composite prolongation operator ]341 from (3.7). The idea is to preserve necessary
properties of the fine level matrix on the coarser levels such as the slowly converging (alge-
braically) smooth error modes, which are represented by the near null space modes. The objec-
tive as formulated in (3.8) is met by the recursive definition of the coarse level null space vectors
using the expression R

P B = By (3.9)

for{ =0,..., lpax — 1.
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3. Aggregation-based AMG methods

The equation (3.9) is ideal to simultaneously create the tentative prolongation operator ﬁf+1
and the set of n coarse near null space vectors B, € R™*"5 during the multigrid setup phase.

Algorithm 7: Construction algorithm for generating P.
Procedure P, | ( {,!Z{g }m‘”f By)

Extract local null space blocks from corresponding aggregates
Partition B, into blocks B") € R">"5 i =1,... m,

Perform local QR-decomposition
Decompose B = Q' R\ with Q" € R">"# an orthogonal matrix and
R\’ € R=*"5 an upper triangular matrix

Define global tentative prolongation operator

Build tentative transfer operator ﬁgﬂ = diag(Qél), U Qémw))
le) (2)
2
ﬁ£+1 = Qz € Rrexnes
Qémdl)

Build global coarse null space
Set coarse level null space vector

¢
B = ) € Rrerxne

As one can see from Algorithm 7, a local QR-decomposition of the building blocks B,Si) €
R™>*"8 4 = 1,...,m, of the fine level null space B, is used to locally satisfy (3.9). Here, n;

denotes the number of degrees of freedom of aggregate A= {M(i)}zgf‘f. For each build-

ing block Béi) one extracts the rows corresponding to the non-trivial support of the local basis
functions of aggregate <. That is, the property (3.9) is enforced aggregate by aggregate when
applying the QR-decomposition as visualized in Figure 3.7. This means that the columns of the
tentative prolongator P, are formed by orthonormalized restrictions of the columns of 5B, onto
the aggregate 7,9 For each aggregate, this construction gives rise to np degrees of freedom
on the coarse level, represented by the corresponding np columns in the prolongation operator
Pg+1. .

Note that the local pattern of the building blocks B(Z € R™>"5 implicitly defines the sparsity
pattern of the tentative prolongator Pg+1 (see (N2) in Section 3.4.1). Due to the block diagonal
structure of Pg+1 the coarse level basis functions in the columns of Pz+1 by construction do
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Figure 3.7.: Schematic view of local QR-decomposition to generate tentative prolongation op-
erator P, 1 and coarse null space vectors By, from the fine level null space vec-
tors By.

not overlap and therefore satisfy the objective (0O2) from Section 3.2.2. Furthermore, due to the
orthonormality of the Q,(f) blocks in the local QR-decomposition it follows that (}A’})Tﬁ} =
for every ¢ which is necessary to bound the convergence rate of the multigrid method (cf. Van¢k
et al. [198]). The construction principle of the coarse level null space B, in (3.9) describes the
recursive formulation of the null space preservation property (03), since for A, B, = 0 it holds

Api1Brss = ReiAcPiiy Boyy = Rpsi AyBy ~ 0, (3.10)

i.e., By represents the near null space for the coarse level operator Ay ;.

Remark 3.4.2 (Prerequisites for QR decomposition). Be aware that the local QR-decomposition
is only defined for n, > np. However, this condition is not met, e.g., for elasticity problems
in 3D where one may have n; = 3 on the finest level / = 0 but np = 6. This happens if you have
too small aggregates with only one node (single node aggregate). So, for elasticity problems
single node aggregates need special treatment (see Remark 6.3.2 for some more details).

3.5. Prolongation smoothing methods

The idea of smoothed aggregation AMG methods is to apply a simple smoothing procedure to
improve the convergence properties of the multigrid method by reducing the energy of the coarse
level basis functions. It has been introduced in Vanék [193, 194] for symmetric positive definite
problems and then further developed in Vanék et al. [192, 197]. Even though the non-smoothed
tentative prolongation operators recently have found some more attention (see Emans [61], Kim
et al. [106], Napov and Notay [139]), smoothing the coarse level basis functions in the transfer
operators often leads to a notable improvement of the multigrid convergence.
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(a) Basis functions of non-smoothed transfer operator P
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Figure 3.8.: Shape and support of transfer operator basis functions for 1D example.

3.5.1. Classical smoothed aggregation methods

To reduce the energy of the coarse level basis functions (see objective (04) in Section 3.2.2), one
sweep with a Jacobi iteration is applied to the basis functions of the non-smoothed tentative pro-
longation operator P, such that one obtains the smoothed aggregation prolongation operator
given by R R

Py = M;Pry = (I — WDflAe)PeH (3.11)

with M ; denoting the iteration matrix of the Jacobi iteration (see Section 2.1.1) and w > 0 a
damping factor.

Example 3.5.1 (Shape and support of smoothed coarse level basis functions). To study the ef-
fect of transfer operator smoothing a simple tridiagonal matrix is used with the matrix stencil
Ay = (—1,2,—1) resulting from a 1D discretization of a purely diffusive problem. For the
aggregates ideal 3 node aggregates are built. In Figure 3.8 the shape and the support of the non-
smoothed prolongation basis functions is given and compared against the shape and the support
of prolongation basis functions after applying one smoothing sweep using (3.11). For the damp-
ing parameter w = % one obtains piece-wise linear hat functions for that idealized example. The
smoothing step not only affects the shape of the basis functions but also widens the support of
the basis functions in all directions of (strong) connections of the matrix A (see, e.g., Gee et al.
[71]), such that the support of neighboring smoothed basis functions is overlapping. A more
detailed study on the effect of transfer operator smoothing (including non-symmetric problems)
can be found in Appendix B.

The overlapping basis functions lead to more non-zero entries in the resulting coarse level
matrices and therefore may significantly increase the memory consumption and the operator
complexity as introduced in Definition 3.2.1. When applying a dropping strategy to highlight the
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strong connections in Ay, it might also be advantageous to use the resulting filtered matrix Af
in (3.11) instead of A, to gain some control over the operator complexity especially in case
of highly anisotropic problems. This way, one can avoid a higher operator complexity caused
by transfer operator smoothing for comparably weak and unimportant connections. For further
discussion on special strategies of smoothed aggregation multigrid methods for anisotropic prob-
lems the reader is referred to Gee et al. [71].

Remark 3.5.2 (Smoothed aggregation for symmetric positive definite problems). In fact, for
symmetric positive definite problems one uses the following slightly modified variant

Py = (I - C“’%D*AZ) P (3.12)

with an approximation 2> p(D‘lAg) instead of (3.11). Our implementation applies a small
number of iterations with the Power method which is — at least in the symmetric case — appro-
priate to calculate an approximation for A with reasonable computational effort (cf. Golub and
van der Vorst [77]). In Vanék et al. [199] one can find the proof that for symmetric positive
definite problems with a coarsening rate of 3 in all spatial directions the choice wgy, = ‘51 in
(3.12) is optimal in the sense of minimizing the spectral radius of the coarse level matrices. For
the Example 3.5.1, where one has a symmetric tridiagonal matrix modeling a 1D problem with
perfect 3 node aggregates, (3.12) with wgy,,, = ‘51 recovers the smoothed basis functions from
Figure 3.8, since the eigenvalue approximation gives p(Dile) S 2.

The current development of smoothed aggregation algebraic methods goes into different di-
rections: In Brezina et al. [43, 44] the authors describe an adaptive method for finding near null
space vectors for the underlying problem utilizing the concept of algebraic smoothness. Very
recent work has been done in context of aggressive coarsening for smoothed aggregation AMG
methods and massive smoothing of the transfer operators (cf. Vanék [195], Vanék and Brez-
ina [196]). Instead of relaxation-based smoothing methods for the transfer operators as used in
the classical smoothed aggregation approach and extensions (Sala and Tuminaro [173], Wiesner
et al. [217]) one uses a transformed Chebyshev polynomial in A to improve convergence for
rapid coarsening which cannot be compensated by a higher number of level smoothing sweeps
(cf. Vanék [195]). Another extension of the smoothed aggregation method is given with the en-
ergy minimization approaches that are described in more detail in the next section.

3.5.2. Energy minimization approaches

In between there are different more elaborate transfer operator strategies based on the con-
cept of energy minimization of the transfer operator basis functions (cf. (O4) in Section 3.2.2).
Among others, the interested reader might find a good starting point in Brandt [39], Brannick
and Zikatanov [41], Kolev and Vassilevski [107], Mandel et al. [124], Vassilevski [203] and Wan
et al. [209] to dive into the topic of energy minimization transfer operators.

An interesting energy minimization approach is presented in the work by Sala and Tuminaro
[173]. Therein, the authors introduce a flexible energy minimization strategy based on a set of
local damping parameters associated with the coarse level basis functions instead of a single
global damping parameter w as used for the classical smoothed aggregation. That is, (3.11) is
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replaced by the smoothing process

Prpy i= MyPriy = Pryy — D' AP €, (3.13)
where Q) = d1ag( ) "1 ¢ R is a diagonal matrix with the diagonal elements defined
by

(PE(—Ji-)U D_lAfP(J)1>ATA
w; = oy et (3.14)
HD 1A4P£il ATA,

The 135(_{)1 denotes the j-th column or basis function of the tentative transfer operator ]34+1. The
expression (3.14) can be found as the minimum of

Te+1

2
Igi_n 1APesa |7 = Z H}Ji_n H (I —w;D~ IAZ)PEH
J j:1 J

) (3.15)
ATA,

The choice of the minimization problem (3.15) is motivated by considerations based on ideal
transfer operators given in Brannick and Zikatanov [41], Sala and Tuminaro [173] and Trot-
tenberg et al. [186, Section A.2.3]. The Frobenius norm is adopted primarily for convenience
as it leads to easily computable quantities. The diagonal matrix ) with varying coefficients in
(3.13) breaks the null space preservation property (02). To overcome this issue the diagonal
matrix € is shifted twice: one can easily find a n, x n, diagonal matrix Q using the relationship

QPgH = Pg+1Q Then one can choose the local damping factors w; = max{() ml;lo wj} and
J az]

define the according n, x n, diagonal matrix Q with the row-based local damping factors ;. The
corresponding transfer operator smoothing process

Py i= MyPryy = Py — DT'QA Py, (3.16)

satisfies the null space preservation property by definition.

An alternative energy minimization approach for building coarse basis functions is presented
in Mandel et al. [124]. Instead of only one Jacobi sweep a fast projected gradient descent al-
gorithm is used for the solution of a constraint minimization problem which preserves the near
null space modes with additional constraints on the supports of the prolongator basis functions.
Wan et al. [209] give an alternative formulation of the constrained minimization problem using
a saddle point system, where the conjugate gradient (CG) method is applied to solve the Schur
complement system resulting from the saddle point problem. A general interpolation strategy
using energy minimization for AMG methods is proposed in Olson et al. [153]. Again, each col-
umn of the prolongation operator P is minimized in an energy-based norm while enforcing the
preservation of given near-null space modes on a prescribed fixed sparsity pattern to keep the op-
erator complexity low. More elaborate solution strategies such as CG-based and GMRES-based
methods are used for the minimization problem. The next chapter proposes a flexible smoothed
aggregation transfer operator strategy for non-symmetric problems arising from linear systems
with convective character. It is based on similar concepts of enforcing near-null space modes and
sparsity patterns as the methods in Olson et al. [153].
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CHAPTER

A flexible smoothed aggregation approach
for convection-dominated problems

This chapter contains more advanced topics regarding multigrid transfer operators for non-
symmetric linear systems arising from convection-dominated problems, which still can be con-
sidered as challenging for multigrid methods. For example, non-symmetric linear systems typ-
ically arise from problems with some convective character, such as flow problems modeled by
the (incompressible) Navier—Stokes equations.

To extend state-of-the-art smoothing techniques for the transfer operator basis functions to the
non-symmetric case, one basically needs two main ingredients: First of all, the standard Galerkin
approach has to be replaced by a Petrov—Galerkin approach which allows for a different smooth-
ing of the restriction operator basis functions. Additionally, the Petrov—Galerkin approach has
to be combined with an appropriate smoothing method for the non-symmetric transfer opera-
tors. It is important that the non-symmetry of the linear operator A, is taken into account when
smoothing the transfer operator basis functions. Both the Petrov—Galerkin approach and the non-
symmetric transfer operator smoothing process are necessary for building robust and efficient
prolongation and restriction operators for the non-symmetric case.

In this chapter, a novel smoothed aggregation method is developed for non-symmetric prob-
lems. To the author’s knowledge this is the first attempt to combine mode preservation and spar-
sity pattern constraints which have been introduced for symmetric problems in context of energy
minimization methods (e.g., Mandel et al. [124], Olson et al. [153]) with a Petrov—Galerkin ap-
proach for non-symmetric problems (e.g., Sala and Tuminaro [173]), to obtain optimized smooth
transfer operators for non-symmetric systems. Specifically, a contribution of this work is that
these level transfers can be viewed as projections of idealized operators into a space which re-
stricts sparsity patterns while guaranteeing that the action of the resulting coarse discretization
applied to certain modes accurately reflects the action of the Schur complement. The proposed
procedure is simpler to implement, computationally less expensive than the one proposed in Ol-
son et al. [153], and in our opinion the present Galerkin framework is clearer and more relevant
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for understanding non-symmetric systems. Additionally, it is shown how the generation of spar-
sity patterns for grid transfers can be integrated with an algorithm for generating grid transfer
coefficients. This way, it allows for a maximum of flexibility regarding application-specific en-
hancements. Finally, it should be noted that our grid transfer algorithm is quite similar to the
steepest descent approach in Mandel et al. [124] for symmetric systems. However, steepest de-
scent for “energy minimization” no longer makes sense in the non-symmetric case and so the
interpretation pursued here is that of a Richardson iteration.

In the beginning a short overview of existing multigrid transfer operator strategies for the
non-symmetric case is given and compared with our new approach. Then, the Petrov—Galerkin
approach for non-symmetric systems (cf. Section 4.2) and our novel transfer operator smoothing
strategy are introduced which incorporates mode preservation techniques and sparsity pattern
constraints (cf. Section 4.4) motivated by ideas of the ideal transfer operators (cf. Section 4.3).
Section 4.5 gives numerical justification for the new level transfers using convection-diffusion
and flow problems.

4.1. Multigrid for non-symmetric problems

In the symmetric case, the AMG theory is often based on bounding an energy norm of grid trans-
fer basis functions which follows naturally when one has a symmetric positive definite (SPD)
operator to define an energy norm. While there exist a multitude of AMG algorithms, variants of
classical algebraic multigrid (cf. Brandt et al. [37], Ruge and Stiiben [166]) and the smoothed ag-
gregation multigrid method (cf. Vanék et al. [192]), are the most heavily used. Even though such
AMG schemes have been applied to non-symmetric systems, they are much less developed for
this case than for SPD matrices. A few notable algebraic multigrid contributions which specifi-
cally target non-symmetric systems include Dutto et al. [57], Gravemeier et al. [79], Lallemand
et al. [114], Lonsdale [121], Mavriplis and Venkatakfrishnan [129], Mavriplis [130] and Bank
et al. [13]. The majority of these follow agglomeration or non-smoothed aggregation ideas where
the emphasis is on producing a coarse discretization matrix that maintains desirable properties
of the fine level discretization operator (e.g., conservation or stability properties) as opposed to
attempting to find optimal grid transfers with some approximation property in mind.

Some papers that look more closely at approximation properties include Brezina et al. [44],
Giddings and Fish [74], Guillard and Vané€k [81], Mense and Nabben [132], Notay [148], Olson
et al. [153], Sala and Tuminaro [173] and Wagner [207]. In Brezina et al. [44], an approximation
property is presented for non-Hermitian systems which guarantees two-level mesh independent
convergence, though level transfers are based on a relatively expensive process. A Fourier anal-
ysis of smoothing for a two-level multigrid method that is applied to a one-dimensional non-
symmetric advection-diffusion problem can be found in Giddings and Fish [74]. Guillard and
Vanék [81] gives a theoretical analysis corresponding to a smoothed aggregation-based multi-
grid algorithm for non-symmetric systems. In Mense and Nabben [132], a convergence analysis
is performed that is suitable for non-symmetric systems corresponding to multilevel methods
based on an approximate factorization. An algebraic analysis is also presented in Notay [148]
for non-smoothed aggregation. In Sala and Tuminaro [173] a generalization of the smoothed
aggregation idea for non-symmetric systems is proposed while in Olson et al. [153] an iterative
framework is given for improving an initial prolongator or restrictor based on energy minimiza-
tion ideas where energy is defined using the matrix A7 A with A as the discretization matrix.
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In Wagner [207], criteria are formulated for accurately approximating smooth error using a
Euclidean norm.

Based on a Petrov—Galerkin approach (see Section 4.2), our novel smoothed aggregation ap-
proach for non-symmetric problems builds on the connections between multigrid and approx-
imate factorization techniques for 2 x 2 block systems. These approaches have a long history
going back to the 1980’s and are based on the idea of eliminating the (1, 1) block to produce a
reduced or Schur complement system. This Schur complement can be viewed as a coarse dis-
cretization matrix within a two-level multigrid method where idealized Schur complement grid
transfers are effectively defined by the algebraic elimination process. A true multigrid process
is obtained by approximating these idealized transfers and by recursively applying the tech-
nique to the coarse discretization matrix. Theoretically, the key idea is to show that the pre-
conditioning matrix is spectrally equivalent to the linear system that one wishes to solve. A full
description of approximate block factorization preconditioners along with a comprehensive anal-
ysis can be found in Vassilevski [201], which builds on two primary articles (cf. Axelsson and
Vassilevski [7, 8]). In Axelsson and Vassilevski [8], an algebraic multilevel iteration or AMLI
iteration (cf. Kraus and Margenov [108]) is proposed where the inverse of the Schur comple-
ments are approximated by matrix polynomials based on the coarse discretization matrix. A key
feature of AMLI methods is that it is possible to show that the preconditioning technique is op-
timal without making regularity assumptions. The theoretical analysis is further extended and
unified in Notay [142] and some analogies between multigrid and AMLI are also made. There
has been much recent theoretical and practical interest in AMLI extensions especially in the
context of aggregation-based methods which includes approaches relevant for non-symmetric
systems (cf. Notay [144]). A different perspective is now given which uniquely combines ideas
associated with approximative Schur complements (or idealized grid transfer operators), energy
minimization, and non-symmetric systems. Before discussing the transfer operator smoothing
some details are given on the Petrov—Galerkin framework for building restriction operators.

4.2. Restriction operator strategies

The Petrov—Galerkin approach explained in this section is the first key ingredient in a multigrid
method for non-symmetric problems. Note that the Petrov—Galerkin method has only an effect
in combination with an appropriate smoothing strategy for the transfer operator basis functions
(see also Section 4.4).

4.2.1. Restriction operators for symmetric problems

Before focusing on non-symmetric problems, the standard Galerkin approach is briefly reviewed
which is widely used for symmetric problems. In the standard Galerkin approach the restriction
operator is just built from the transpose of the prolongation operator P, i.e., R = PT. As a
consequence, for symmetric A, = A/ the coarse level remains symmetric as one can see from

T
A£+1 = PeT+1A£P€+1 = <P£T+1AKTPE+1) = ALI'

Using smoothed transfer operators, as introduced in Section 3.5.1, the smoothed restrictor has
the form

~ T ~
Ry i= Ply = (I =wD7'A) Pet) = Rea (T = wAT DY), 4.1)
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where R := PT denotes the non-smoothed tentative restriction operator. For symmetric prob-
lems with A = AT, the transposed of the (smoothed) prolongation operator is a good choice for
the restriction with comparably low numerical costs, since the smoothing or energy minimization
is performed only once for the prolongation operator. With an efficient implementation one can
even avoid explicitly building the transpose of P and resemble the effect of the restriction opera-
tor implicitly within the Galerkin product (2.6). This is also true for the prolongation smoothing
strategies based on more elaborate energy minimization principles from Section 3.5.2.

4.2.2. Petrov—Galerkin approach for non-symmetric problems

A simple but valid choice for transfer operators in the non-symmetric case are the non-smoothed
tentative prolongation and restriction operators P and R = PT, since assuming a symmetric
graph of A, the corresponding non-smoothed basis functions are independent of the symmetry of
the fine level operator A,. But the tentative transfer operators cannot guarantee optimal multigrid
convergence, leading to higher iteration numbers compared to smoothed transfer operators.
There are different ideas to improve the transfer operators in the non-symmetric case, such
as applying smoothing to the symmetric part of the operator only (cf. Dendy [51]). In Vanék
et al. [198] a Petrov—Galerkin approach for calculating the coarse level problem with R # PT is
recommended, since Galerkin coarsening with R = PT does not guarantee convergence rather
stability for non-symmetric problems (cf. Brezina et al. [44]). In case of smoothed aggregation
prolongation operators, R
Ropy = Ropi (I —wA D7) (4.2)

is used as smoothing strategy for the restrictor. That is, in contrast to (4.1), one uses A, instead
of A].In (4.2), R = PT guarantees the prolongation and restriction operator to be compatible in
the sense that they definitely share the minimum support of the non-smoothed transfer operator
basis functions, since both are based on the same aggregates. The expression in (4.2) can be
understood as smoothing the restriction basis functions with the heuristic goal of reducing their
energy in an AgAlT—norm instead of an A}Ag norm (cf. Section 3.5.2). The damping parameter w
in (4.2) is usually chosen to be the same as for the prolongator in (4.1). Note that for the non-
symmetric case one cannot use the formulation as described in Remark 3.5.2 which uses a cheap
iterative Power algorithm for approximating the maximum eigenvalue of D~'A, that may fail for
non-symmetric matrices A,. Instead, the user is supposed to provide the damping parameter w.

Remark 4.2.1 (Comparison of standard Galerkin and Petrov—Galerkin). Obviously, (4.2) coin-
cides with (4.1) for A, = AZ and therefore it is a consistent extension of the standard Galerkin
process to the non-symmetric case. Therefore, the Petrov—Galerkin method can always be used
for symmetric problems, too. Appendix B demonstrates the effect of the Petrov—Galerkin ap-
proach in comparison with the standard Galerkin method for smoothed transfer operators in a
simplified two-level method applied to a 1D example.

The principle of the Petrov—Galerkin approach can be generalized and used in combination
with any other prolongation smoothing (or energy minimization) method. As an example, the
work by Sala and Tuminaro [173] introduces the Petrov—Galerkin approach together with local
damping factors for prolongation smoothing as described in (3.16). Having local damping factors
for each prolongation or restriction basis function is very helpful in the non-symmetric case to
overcome the issue of properly choosing appropriate damping factors w which could be based
more on the diffusive or the convective part of the non-symmetric operator A.
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Note that even if it is technically possible to combine the Petrov—Galerkin method with
any other prolongation smoothing method, this does not automatically mean that the resulting
method is stable for non-symmetric problems. It is important that the transfer operator smooth-
ing strategy also considers the non-symmetry of A, correctly. In the following a generalized
non-symmetric smoothed aggregation approach for non-symmetric problems is proposed based
on the Petrov—Galerkin principle.

4.3. Ideal transfer operators

It is assumed that a suitable procedure has been applied to coarsen the fine level matrix graph
which effectively partitions the original degrees of freedom into two sets corresponding to a sub-
set of fine-level variables which are transferred to the next coarser level as coarse-level variables
(c-points), and the remaining “fine-level only” variables ( f-points). So, the c-points are strictly
defined as a subset of the original fine-level degrees of freedom. This induces a block partitioning

of the system (1.1) given by
Ay Ag T\ be
<Acf Acc) (330 N bc ) (43)

To simplify the presentation the subscripts denoting the level ¢ are skipped.

Remark 4.3.1 (f/c splitting.). One finds such a f/c splitting also in a different context for defin-
ing, e.g., special f/c level smoothers (cf. Baker et al. [12]). In this section it is used for motivating
the concept of ideal transfer operators (cf. Wiesner et al. [217]).

Assuming A to be invertible, A has the corresponding LDU decomposition

Aff AfC o I 0 Aff 0 I A&lAfC (4 4)
Ag A)  \AgA;' T 0 S/)\o0 I ’ '

where S = A — AcfAf_flAfC is referred to as the Schur complement.

The above decomposition reveals an ideal two-level additive multigrid scheme where additive
indicates that fine level relaxation and coarse level correction can occur in parallel (as opposed
to the sequential two-level algorithm in Section 2.4.1). In particular, define

E— 71 ~
Ropt — <_ACfAf_f1 I), Popt — ( Af} Afc) and ] _ (é) . (45)

One can easily verify that S = R°P'A PP,

1 N —1
I 0 IT I AZ'Ag R
( Aghst [> - (Ropt> and (0 ff[ f) = (I P). (4.6)

Application of the inverses of the three operators in (4.4) is equivalent to restriction at the c-
points (left expression in (4.6)) followed by solution of two systems: Ag which can be inter-
preted as relaxation and R°P'A P°P', which is the coarse correction. Finally, the coarse correction
is interpolated and added to the relaxation solution (rightmost expression in (4.6)). As this pro-
cedure is exact, it converges in one iteration. In general, inverting Ay is not practical. However,
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this inverse can be approximated with a few relaxation sweeps on Ag as Ag is typically well-
conditioned when the c-points are properly chosen.

Remark 4.3.2 (Conditioning of Ag). Classical coarsening schemes with standard strength-of-
connection measures give well-conditioned Ag when applied to weakly diagonally dominant
matrices. Recent approaches such as compatible relaxation aim to produce well-conditioned Ay
in more general settings (cf. Brannick and Falgout [42]).

Remark 4.3.3 (Root-node smoothed aggregation). Root-node smoothed aggregation refers to
viewing each standard aggregate produced by the aggregation algorithm (cf. Section 3.3) as
being centered around a root node. A natural choice for the root node associated with a new
aggregate is the non-aggregated node with id ¢ in the outer loop of Algorithm 4.

The ideal two-level method given by P°P* and R°" from (4.5) is our starting point for non-
symmetric multigrid transfers. However, these transfers are computationally expensive to com-
pute, expensive to apply, and give rise to dense coarse level discretization matrices. Therefore,
it is necessary to instead compute an approximation which is now considered in the following
Lemma and subsequent Theorem.

Lemma 4.3.4. Assume A to be a non-symmetric square matrix with a f/c splitting as given in
(4.3). Define

R=(R; I)and P= (J;f> : (4.7)
Then, the following matrix transformation holds
Acf Acc B _Rf I ch AZ-H 0 I .
with Apsy = RAP, Er. = (Ag A ) P and Ey = R (ﬁff).
cf
Proof. Verified by algebraic substitution of Ay, 1, Ff., and E into (4.8). ]

Theorem 4.3.5 (cf. Wiesner et al. [217]). Assume a f/c splitting such that Ag is invertible and
P; and Ry in (4.7) defined such that A,1 is also invertible. Let M define a two-level additive
multigrid preconditioner obtained by ignoring Ey. and E in (4.8) given by

(T O\ [Ax 0\ (I -PR
e (!

Then,
i) o(rA) = (13U {14 Vo, 05 € o (A Bl Br) } (4.10)
and

i) o(M'A) = {1} U{1+\/1—0j,0; € (A ,9)}. (4.11)
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o(K) is the set of eigenvalues of matrix K and o; denotes a single eigenvalue in this set.
Proof. Using (4.8) and (4.9) one finds

(1 0\[0 E.\ (I -PB
e (19 (25 (5. wr

With the definition (4.12) it is

M™'A = M7 (M +6A) =T+ M~'5A

(T SR (A 0N (0 B\ (T -F
B I 0 A ) \Es O I

B I =P\ 0 Ay'Ep) (I —PB
=1+ (O I ) (Ag__&lch 0 o 1 ) (4.13)
One can then investigate the eigenvalues of
I Af'Eg
_ , 4.14
(Aﬂllch I ( )

which is obtained from (4.13) by a similarity transformation. It is well known that matrices of

the form
0 Y
(o) a1

have eigenvalues given by {O} U {:l:\/O-_j ,o; € o(X Y)} Note that this relationship holds even
when o (XY") includes negative or complex eigenvalues. The number of zero eigenvalues is the
difference between the column and row dimensions of X when X has more columns than rows
and when X has full row rank and Y has full column rank. By shifting (4.14), one obtains a
system of the form given by (4.15) and 7) follows in a straight-forward fashion.

To finish the proof, the definitions of Ei. and E; are used to recognize that

ECnglEfC - R A - (8 g) P
=Ap1 =S
Combining this with (4.10) completes the proof of 7). O

When Ry = PfT, the transformation associated with (4.8) has been studied in a number of
works and is often referred to as a hierarchical basis transformation (cf. Axelsson [6, Chapter 9]
as well as Vassilevski [201, Section 3.4] along with associated references). This transformation
has been used to obtain condition number bounds for A/~ A, which have a similar spirit to (4.11).
As noted above, the most relevant previous results in our context typically assume that Ry = P
and in addition require A to be symmetric positive definite, neither of which is required for the
Theorem 4.3.5.

The simple eigenvalue expression given in (4.11) reveals that the two-level additive multi-
grid iteration is entirely governed by how well the coarse discretization approximates the Schur
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complement. Specifically, the eigenvalues of A[JrllS must be near one. If, for example, the eigen-
values of A;;S lie within a circle of radius r centered at 1 + 0i (independent of the mesh
resolution), then all the eigenvalues of the preconditioned operator, M —1A, also lie within a
circle of radius /7 centered at 1 + 0i (independent of the mesh resolution). This means that
Ay;1 must approximate the behavior associated with both small and large eigenvalues of S. As
illustrated in Section 4.4.2, it is the small eigenvalue behavior of S which is hardest to capture
in Ag+1.

Before concluding this section, it is worth noting that the eigenvalues of the two-level iteration
operator depend entirely on coarse level quantities, Ay, ; and .S. This greatly simplifies the appli-
cation of Fourier analysis. In the classical Fourier-based smoothing analysis, an ideal behavior
for the coarse level correction (that it annihilates all low frequency errors) is assumed, such that
the approximate behavior of a two-level iteration is governed by the smoother’s action on high
frequency modes. By contrast, (4.9) assumes an ideal smoother. Fourier analysis for model prob-
lems can be applied to A[jIS and the Fourier transform yields a diagonal matrix. As AejrllS is
a coarse level matrix, this analysis focuses on low frequency behavior of the coarse approxima-
tion. The simplicity of this analysis will be used later to demonstrate limitations of truncated
Schur complements as well as indicate how these limitations can be remedied by forcing Ay,
to accurately reproduce S’s behavior for eigenvectors associated with small eigenvalues.

4.4. A new smoothed aggregation approach

The Petrov—Galerkin approach from Section 4.2.2 alone does not guarantee a good method for
non-symmetric problems. For example, a steepest descent method for improving the transfer
operator basis functions (as proposed in Mandel et al. [124]) would lead to the same shape of
transfer operator basis functions both for the prolongator and the restrictor due to a symmetric
iterative minimization process. That is, the Petrov—Galerkin approach would have no effect on
the transfer operator basis functions at all.

Motivated by the theoretical considerations in Section 4.3, our novel smoothed aggregation
approach is now introduced which utilizes more than one Richardson-like iteration for an ef-
fective smoothing of the prolongation operator basis functions and therefore considers the non-
symmetry of A, in the smoothing process. The new transfer operator smoothing method serves as
the second key ingredient for flexible state-of-the-art transfer operators for non-symmtric prob-
lems on top of the Petrov—Galerkin framework from Section 4.2.2. Thus, the resulting transfers
are designed for non-symmetric linear systems arising from convection-dominated flow prob-
lems.

Following the steps in Wiesner et al. [217], both the prolongation smoothing and restriction
smoothing are explicitly discussed in the following. Similar to the classical smoothed aggrega-
tion method one uses a global damping strategy, but considers additional constraints such as a
pattern constraint for the sparsity pattern of the transfer operators (cf. objective (02) in Section
3.2.2) or the null space preservation constraint, to satisfy the objective (O3) from Section 3.2.2.
The pattern constraint for the transfer operator sparsity pattern overcomes the issue of too dense
matrix patterns leading to more expensive operator complexities. A user-prescribed sparsity pat-
tern for the transfer operators allows for application-specific variants of transfer operators and
makes it easy to avoid problems with (nearly) linear dependent transfer operator basis functions
resulting from an energy minimization procedure.
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In fact, the Galerkin framework presented here is a generalization of the smoothed aggregation
approach which is ideal for non-symmetric systems allowing for application-specific sparsity
patterns and providing more flexibility through additional mode constraints.

Remark 4.4.1 (Symmetric problems). Since symmetric problems can be understood as a special
case of non-symmetric problems, the presented transfer operator smoothing strategy naturally
works for symmetric problems as well.

4.4.1. Galerkin projections and grid transfers

Consider the construction of the fine-level part F; of the prolongation operator and the fine-level
part Ry of the restriction operator from (4.7), (4.8) as well as (4.9) from Section 4.3 via the
solution of

Affpf = _Afc and RfAff = _Acf. (416)

Remark 4.4.2. Note that the rightmost expression is best thought of in terms of AL R] = —AL.

Clearly, this recovers P°"* and R°" from (4.5). However, for single-field problems the individ-
ual operators Ag, Ag. and A are often not available from an application and so it is more natural
to consider the entire system matrix. First define the spaces

Po = {P = (?) . P, € RW"C} and Ry := {R =(Rs I):R,€ R”cmf}, (4.17)

where n; and n. denote the number of rows in Ay and A, respectively. Then, consider the
solution of

AP =0 with PP, and RA =0 with R € R, instead of (4.16). (4.18)

Without the constraints imposed by P, and R, the trivial transfers P = 0 and R = 0 would be
the unique solutions to the systems in (4.18) if A is non-singular. As these trivial transfers do not
reside in Py and Ry, it is not possible to satisfy (4.18). Instead, (4.18) must be weakened, such
that it needs only be satisfied in a subspace. To do this, a Galerkin projection can be formulated
with the help of the homogeneous spaces

D= {P: (ﬁs) :Ps € Rannc} and R = {R: (Rs O) ;RS € RTLCXTL[}. (419)

Projection of (4.18) now yields
AP 1P with PPy and RA L R with R € Ry, (4.20)

where the notation X L ) indicates that for any matrix Y € ) one has YTX = 0. In this case,
the | conditions simply state that A P (and RA) must only be zero at rows (columns) associated
with f-points. In other words, AgFPr + Ay, = 0 and RiA¢ + A = 0 which corresponds to (4.16),
1.e., the optimal Schur complement based grid transfers.
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While obtaining Schur complement based transfers via a Galerkin projection may seem con-
voluted, it does provide an interesting mechanism for formulating other grid transfers. In partic-
ular, one can devise Z; and WV, which are subspaces of P, and R respectively (along with their
corresponding homogeneous counter-parts) and instead consider

AP 1 Z with P€ Z, and RA LW with R e W,, (4.21)
or equivalently
AP 1 Z with P— P9 € 2 and RA LW with R— R® e W, (4.22)

where PO ¢ Z, and R € W, are initial guesses and P — P(® and R — R represent
corrections.

As shown in the following, computationally attractive grid transfers can be obtained with a
proper choice of Z, and W,. The key is to restrict spaces in a way that reduces the computational
costs of constructing and applying grid transfers without causing a significant degradation in
associated convergence rates.

4.4.2. Constraining the solution space

Two types of constraints are now introduced. The first reduces the cost of computing, storing, and
applying grid transfers by limiting the allowed sparsity patterns, essentially truncating a Schur
complement computation. The second ensures that certain desirable properties are maintained
by the resulting coarse level discretization matrix A, ;. Basically, these constraints are supposed
to ensure the objectives (02) and (O3) from Section 3.2.2 in the design of multigrid transfer
operators.

(C1) Sparsity pattern limit: Assume for now that Nf(p) € R™*" and Nf(r) € R™*™ are given
binary matrices in

N (N;(p)) e Rt and NO = (NP T) € RMm, (4.23)
Then, define
Z = {P eP:NP=0 = p;= o}, (4.24)
wi={ReR Ny =0 = R;=0}, (4.25)
2= {PePy: NP =0 = P;=0}, (4.26)
and
W = {R €Ro:ND =0 = Ry = o}. 4.27)

60



4.4. A new smoothed aggregation approach
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Figure 4.1.: Eigenvalues of AZJ:IS for (4.28) with v = 0.8 shown in frequency space for trun-
cated Schur complement based transfers with (C1) only.

Briefly, patterns will be chosen to capture large entries in the optimal grid transfers without
causing too many non-zeros in the coarse level matrix A, in order to consider objective
(02) from Section 3.2.2.

A small example can demonstrate the effect of constrained transfer operator patterns to the
multigrid method.

Example 4.4.3 (Eigenvalue spectrum of Agle in frequency space). From (4.11), it is known
that the resulting grid transfers should give rise to coarse discretizations, where the eigenvalues
of A1 somehow approximate those of S. Unfortunately, this is often not the case when (4.24)-
(4.27) are used. To illustrate this, consider the following partial differential operator

Ugg + Uyy + YUy (4.28)

defined on a unit square with v > 0 and periodic boundary conditions. For the discretization
a standard 5 point central difference stencil is used on a 3N x 3N mesh. Let the c-points be
chosen such that they define a regular NV x N mesh with two f-points between each adjacent c-
point in each coordinate direction. Let us further choose the sparsity pattern for the prolongator
and restrictor such that each basis function (e.g, column for P and row for R) has 25 non-zeros
values corresponding to a 5 x5 region with a c-point at the center. Finally, define the grid transfers
as the solution of (4.22) where (4.24)-(4.27) define the associated subspaces. Due to the periodic
nature of the problem, S and the resulting A,,; have a block circulant structure corresponding
to a constant coefficient PDE stencil. This means that the operator A;ﬁlS 1s diagonalized by the
Fourier transform. Define

2mijik /N p2mijzka /N

B

e

ij -

where
ky=0,...N, ke=0,....N, 71=0,...N, jo=0,...,N,
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k=hkN+k+1, j=75pN+5n+1,

and f3; is chosen such that ||V j||s = 1. Here, W_; describes the j-th column of W. Then,
WTA L SW = A with A a diagonal matrix of the eigenvalues of A, !, S.

While this example is admittedly quite specialized, it allows us to graphically examine the
frequency dependent aspects of different grid transfer choices. In particular, Figure 4.1 gives a
surface plot of the eigenvalues in frequency space. The middle of the domain corresponds to
high frequencies while the corners correspond to low frequency. Corner points are omitted due
to the singularity of A, ;. The middle of the sides correspond to high frequency in one direction
and low frequency in the other.

What the plot in Figure 4.1 reveals is typical for truncated Schur complements. While the high
frequency approximation to the Schur complement is adequate, the eigenvalues of the precondi-
tioned linear operator approach zero for low frequencies (as one approaches the corners). This
implies that the low frequency behavior of A, is not adequate. To prevent this, one must further
restrict the Galerkin spaces. In our example, the corners of Figure 4.1 correspond to the constant
mode and so it is clear that modes close to the constant in frequency space are problematic. With
the knowledge from Section 2.5.2, it is clear that one has to preserve the algebraically smooth
low frequency error which typically corresponds to the (near) null space modes of our problems
(including the constants). Therefore, one has to further restrict the Galerkin spaces, such that ap-
plication of A,,; and S to a constant vector correspond exactly. The plotted function would be
modified to enforce a value of one in the corners as opposed to approaching zero. Thus, the effect
of the truncated Schur complement alone as shown in Figure 4.1 is sub-optimal from the multi-

grid perspective, which motivates the mode preservation or null space preservation constraint
(cf. (03) from Section 3.2.2).

(C2) Mode preservation: Suppose np; right vectors (i.e., Béfr)l € R™+1x"B1) and np, left vec-

tors (i.e., Béi)l € R™B2x"e+1) are given for which one wants Ay, ’s action to accurately
approximate the Schur complement. That is,

ApBY, ~ SBY®), and B{")| Ay, ~ B, S. (4.29)

In case of equality in (4.29), it follows that Bﬁl and Bé +)1 are left and right eigenvectors
of S Ae_+11 and Ae_+115 respectively with corresponding eigenvalues of one. Thus, the multi-
grid preconditioner is ideal for preserving these modes. To enforce (4.29), one instead
considers

PBY, = P"BY,  and B{) R=B) R (4.30)

Pre-multiplication by RA on the left expression and post-multiplication by AP on the
right expression yield

RAPBY®, = RAP®BY,  and B{),RAP = B{), R"AP. (4.31)

This is equivalent to (4.29) with equality as A, ; = RAP, S = R®AP,and S = RAP°™.
These Schur complement relations follow from the fact that AP°P* (or R°"'A) is zero at
f-point rows (or columns) and so this matrix triple product is independent of F; (or Ry,
respectively).
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There are two problems with (4.30) from a practical perspective. The first is that null

space vectors Be , and Be , are required on the coarse mesh. The second is that the action
of P°" and R°" on the coarse null space must be approximated. It is assumed that the given
fine level vectors are near null space vectors, such that

AB® ~ (0 and BWA ~0. (4.32)

A definition of the near null space is given in Mandel et al. [124] and corresponds to
the discrete representation of the zero energy modes of the principal part of the differ-
ential operator without any boundary conditions applied (cf. Section 3.4.1). In practice,
matrices B®) and B®™ are supplied by a user, such that their columns should span the
left and right near null space. In fact, equality in (4.32) ensures that B®) = POPtBéi)l
and B®) = B D R with coarse vectors defined by injection. This follows from the fact

that APOP‘B(p1 and Bz HROP‘A are zero at the f-points. Thus, the final form of the con-
straints defining the mode preservation are

PBgr)l B®  and Béi)l_]{ — B0, (4.33)

Before continuing, it should be noted that the given vectors are not exactly null space
vectors (especially near boundaries). This means that there is no equality in (4.32) and so
(4.29) is only approximated. This is discussed further in Section 4.5.

Combining constraints associated with sparsity patterns and constraints to enforce near null
space preservation gives rise to the final form of the Galerkin spaces

Z::{PEP:N()—O:>PU—O PBgfl—o} (4.34)

W= {RGR NY =0 = R;=0, BnglR:o}, (4.35)

Zy = {Pe% NP =0 = P; =0, PBY, = B® >}, (4.36)
and

Wo 1= {Re Ro:NY =0 = R;=0, Bl)R= B<r>}, (4.37)

which require the spar51ty patterns at f-points, N ) and Nf , to be supplied along with the near
null space vectors, B® and B("). Assuming that there is a feasible solution (i.e., the spaces are
not empty), grid transfers are guaranteed to exactly preserve the supplied modes and conform to
the specified sparsity patterns. Figure 4.2 is the updated version of Figure 4.1, which includes the
revised form of Z, Z,, YV, and W, where B™ and B®) correspond to the constant vector. It is
clear that the mode preservation constraint gives rise to an A, 1, whose eigenvalues approximate
those of S' as illustrated in Figure 4.2, which is bounded above and bounded below (far from
Zero).
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Figure 4.2.: Eigenvalues of A;ﬁlS for (4.28) with v = 0.8 shown in frequency space for re-
stricted Schur complement based transfers ((C1) and (C2)).

4.4.3. Solution of the Galerkin system

Now, the solution of the Galerkin system given by (4.22) is considered. Since the ideas also apply
for restriction in an obvious way, it is sufficient to describe only the prolongator (cf. Remark
4.4.2).

4.4.3.1. Notation

To do this, a notational change corresponding to a matrix-vector view as opposed to a matrix-
matrix style is made. This notational change is only motivated by ease of notation and does
not reflect the algorithmic implementation. In particular, an inverted hat accent is introduced to
denote the conversion of a matrix to a vector, referred to as matrix squeezing. Specifically,

Py
P=|:1, (4.38)
P,
where P describes the j-th column of P. If () = AP, it follows
A
Q= (10A)P, where I® A := . (4.39)

A

This notation allows the squeezed version of Z to be conceptually represented by a matrix, 7,
whose columns correspond to an orthonormal set of &£ spanning vectors. In particular,

SPE€Z = JuecRF: 6P = Zu. (4.40)
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If the matrix Z is available, it is possible to re-write
AP 1 Z with P—- PO ¢ Z (4.41)
as a linear system involving the unknown vector u given by
ZT(1® A)(Zu + PV) =0, (4.42)
which can be re-arranged to
ZT1®A) Zu=—~Z"(12 A)PY. (4.43)

Once u is known the final prolongator then is P = Zu+ PO, Assuming that Z is non-empty
and that A is non-singular, (4.43) has a unique solution and so P is unique. This unique solution
is independent of the specific choice of PO, which follows from the fact that the difference
between two initial guesses P© _ P’ has the form Zv. Thus, the corresponding prolongators
obtained via the Galerkin projection satisfy

P—P =Zu—u)+ 2v. (4.44)

However, non-singularity of Z7 (I ® A)Z as well as (4.43) imply that u — v’ = —wv and so
P—P=o.

4.4.3.2. A projected Richardson-like iteration
A Richardson-style iteration can be applied to (4.43) of the form

ul) = ul D WD (2T (1o DAY PO — 2T (1e DAY Zul ) (4.45)

with damping parameters w® and u(®) = 0. The D! is the inverse of the diagonal of A and is
used as a simple preconditioner within the Richardson iteration. Multiplying the above equation
by Z and adding P(* yields

P = (I — Wtz (1w D*lA))ﬂS*U, (4.46)

where P¢~1 = Zy(=D 4 PO, Finally, applying recursion gives

PO =T[(1-w 227 (1 D71A) ) PO (4.47)
k=1

Formula (4.47) shows how P(®) is obtained after s Richardson steps applied to the initial prolon-
gation operator P(¥). Furthermore, (4.47) reveals that it is not necessary to explicitly form Z as
long as one can apply the operator ZZ" in a matrix-free way.

Before focusing on computational costs in more detail it is worth mentioning that only a rather
small number of Richardson improvement iterations are used for practical computations. With
the exception of a large aggregation experiment (cf. Section 4.5.2), no more than 3 Richardson
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iterations for smoothing the grid transfers turn out to be sufficient for most examples. It should
also be kept in mind that the Richardson cost is only associated with AMG setup. Thus, it may not
be necessary to always repeat this setup when addressing a sequence of related linear systems.
In particular, it may be suitable to reuse grid transfers from a previous linear solve within the
AMG hierarchy for the next linear system.

4.4.3.3. Practicalities

Now, more practical aspects associated with computing (4.47) shall be discussed. This includes
the application of I® D~'A to a prolongator, the determination of damping parameters w®), the
construction of P() as well as the application of ZZT to a prolongator. Recalling (4.39), it is
clear that the first kernel applied to a prolongator P is the same as computing D~'A P and then
applying a matrix squeeze to the result. Thus, this is completely equivalent to a matrix-matrix
multiply and so is easily provided. The second aspect is discussed further in Section 4.5. At
this point, it shall be mentioned that different choices for w(®) correspond to different iterative
methods. In some cases, they are defined by a user-provided constant (e.g., damped Jacobi). In
other cases they may use spectral radius estimates of D~'A (e.g., polynomial approximation
methods) and in still other cases they may involve inner-products of squeezed matrices (e.g.,
Krylov methods) which is similar to Frobenius norm calculations. The third requirement is an
initial feasible point. It is similar to a tentative prolongator in smoothed aggregation (cf. Vanck
et al. [192, 199]), and so, often those techniques can be applied (cf. Section 3.4). In smoothed
aggregation, the basic idea is to form the non-zeros within each column of P¥) by injecting each
near null space vector to each aggregate. Each aggregate corresponds to a local neighborhood
around a c-point such that all f-points are assigned to one and only one aggregate. This procedure
is computationally inexpensive and provides good initial guesses, though there are some issues
in our context. This includes the fact that the number of near null space vectors must be equal
to the number of degrees of freedom per node and that normalization must be applied to obtain
the identity operator in (4.7). Both is no problem for typical applications with non-symmetric
problems (e.g., convection-diffusion or Navier-Stokes examples). The fourth requirement is the
main challenge and it boils down to a procedure for computing ZZ "V given a matrix V. As 7 is
made up of orthonormal columns, it follows that ZZ 7 is a projection (i.e., ZZ" = (ZZ")? and
Z7ZV = (ZZT)T). Furthermore, it can be decomposed into the sparsity pattern limit and mode
preservation. Therefore, it is rewritten as

7277V = ,11,V. (4.48)

I1y, the sparsity pattern projection (C1), is equivalent to removing any non-zeros in V' which
lie outside of the user allowed sparsity pattern N ®). II; represents the mode preservation con-
straint (C2). Before outlining the most general case, a common spvecial situation is described,
when the near null space is only a single constant vector. Then, 11,V is equivalent to forcing all
row sums in V' to be zero via a projection (i.e., each entry in the i-th row is adjusted by subtract-
ing the average of the non-zeros in V"’s ¢-th row). This can be easily generalized for PDE systems
with k degrees of freedom per node and when the near null space is defined by £ constant vectors
(one associated with each degree of freedom). One essentially applies the same algorithm to the
k sub-rows associated with each degree of freedom.
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In the more general case, it holds

PBY, =B® = (BP)TPT = (B®)T, (4.49)
where the squeezed version is o
CG=F (4.50)

with C = I ® (Béﬁ)l)T, G = PT,and F = (B®)T.If a dense sparsity pattern is permitted for
- 1\ »
P, I1, P could be implemented via the projection (I el (CC’T) C) G. As CCT is block

diagonal, this is equivalent to
T -1 T
PL= Pl B[(B) B (BD)PL @51)

where P, is the i-th row of P. This enforces mode preservation for a dense sparsity pattern as it
updates all non-zeros within each row. It can, however, be easily modified to be appropriate for

sparse prolongators. To do this, first construct H; by taking a subset of rows from Béﬁ)l, where

the subset row indices are given by the nonzero columns in Ni(*p). Then, replace (4.51) with

P} =P} — HjH H] 'H P}

%)

(4.52)

where E-* refers to the sub-vector of permitted non-zeros in the i-th row of P. While (4.52)
might appear costly, it requires only inner products between sparse prolongator rows and null
space vectors as well as inverting linear systems which are ng X ng where n g is the number of
null space vectors. There are a few technical issues in the general case which must be addressed
with respect to invertability of H, H; and exactly satisfying (4.50). They are just mentioned
here as they are discussed in detail in Olson et al. [153]. In particular, each prolongator row has
np constraints. If these constraints are linearly dependent, then a pseudo-inverse must be used.
Further, if the row rank associated with these constraints is s, then there must be s non-zeros in
the associated prolongator row. Otherwise constraints are only satisfied in a least-squares sense.

Algorithm 8 summarizes the final algorithm. While matrix squeezing is retained for notational
purposes, it is not actually needed within a code as 11, and 1I; can be implemented to act directly
on the unsqueezed matrix.

Before concluding, a discussion about expense is appropriate. Clearly, multigrid iteration costs
(e.g., V-cycle times) should be comparable to other AMG approaches employing similar sparsity
patterns. Thus, only setup costs need to be evaluated. In particular, if s = 1 in (4.47), w©® =
m, and the Z7Z step is omitted, then the Galerkin procedure is identical to smoothed
aggregation (see Section 3.5.1). The Z T Z step is typically quite inexpensive (especially for PDE
systems where the near null space corresponds to a representation of a set of constant functions
with one for each physical variable) and so it is clear that the Galerkin projection construction is
comparable to that of smoothed aggregation when s = 1. As one might expect (by comparison
with smoothed aggregation), very few Richardson iterations are typically required. This is due
to the local nature of the truncated Schur complement (or sparsity pattern constraint) and the fact
that mode preservation further restricts the search space. Thus, the Galerkin framework provides
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generality over smoothed aggregation. This generality can be used to improve robustness and
address application-specific enhancements.

Algorithm 8: Projected preconditioned Richardson iteration.
Procedure PRichardson (PO, Ne(p), Béi)l, B®) A, s)

Build constraint matrix (operating only on allowed non-zeros)
Compute C' < C' (N(p), B(p))

Factor CCT
Calculate IT; < II; (C,CCT)

Perform s smoothing sweeps on P©)

fork=1...sdo
Determine damping factor w®)

Compute w*) + w(A, PH®)

Determine smoothing part without constraints
T, < D tAP+1

Remove entries outside of N, E(p
T2 < HOT1

)

Incorporate near null space preservation constraint
T3 < H1T2

Perform prolongator smoothing
Pk pt=1) _ )Ty

end
return P

4.4.4. Schur complement based sparsity pattern strategy

One interesting aspect of the Galerkin grid transfer algorithm is that it can be employed with
any sort of sparsity pattern. This makes our approach highly flexible in contrast to most AMG
methods, where the sparsity pattern of the grid transfer is closely tied to the specific algorithm
for generating grid transfer basis functions. This means that one is free to choose from a vari-
ety of possible sparsity pattern methods what makes the resulting transfers highly flexible for
adaptions to problem-specific requirements. These can be developed independently of the grid
transfer construction phase and they can directly target the grid transfer pattern as opposed to
most traditional approaches, where sparsity patterns are indirectly determined by strong and
weak connection decisions in the matrix A. In fact, the sparsity pattern allows for maximum
control of the transfer operator basis functions on the level of degrees of freedom. The ability to
define explicitly the sparsity pattern of the transfer operators is a property of the transfer operator
strategy which finds more and more attention (cf. Falgout and Schroder [63], Schroder [174]).
Since the Galerkin projection method introduced in Section 4.4.1 approximates a limited
Schur complement, a related approach is highlighted to obtain sparsity patterns. Our purpose
here is not necessarily to champion a new sparsity pattern algorithm, but to instead demonstrate
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the flexibility of the Galerkin Schur complement approach. The main idea is to first generate
a crude prolongator P ysing Galerkin projection but with very few restrictions on spaces.
Large entries in the crude approximation can then be used to determine a sparsity pattern.

Specifically, P is computed by applying the Algorithm 8 but taking Z, W, Z,, and W),
to be P, R, Py, and R from (4.17) and (4.19). That is, sparsity pattern and mode preservation
constraints are ignored. As discussed earlier, this would reproduce the ideal Schur complement
transfers if the Richardson iteration is run to convergence. For P°"%_ however, only a few sweeps
are used. This limits cost and total memory consumption as the sparsity pattern of P4 resem-
bles |A|*| P(9)| when s Richardson sweeps are performed.

The sparsity pattern is then generated via

(NP = F(PEe q, 5), (4.53)
where F is a filter which could correspond to a threshold strategy, e.g.,

F(Pij) {1 if |Py| > e

0 else.
Unfortunately, the threshold parameter € is problem dependent and a priori not known. A flexible
strategy is used for our tests, where non-zeros in P are sorted based on absolute values. The
sparsity pattern coincides with the un,¢¢ largest entries, where ;. > 0 is a user-defined factor, ¢
is the multigrid level index, n, is the number of prolongator rows, and d € {2, 3} is the problem
dimension.

The idea is to allow the level index to affect the filter while not fixing the number of non-zeros
per row. A more restrictive filter may significantly reduce the operator complexity (see Definition
3.2.1). A weaker filter on coarse levels, however, can improve convergence without too much
cost. In general the operator complexity for SchurComp transfer operators (see Table 4.1 and
Section 4.4) with above pattern method (¢ > 1) is higher than for Emin transfer operators. The
user, however, can control the resulting AMG operator complexity for SchurComp by a suitable
choice of the parameter 1 and can often significantly improve the AMG’s convergence rate with
only a slightly higher operator complexity (see Section 4.5).

Obviously, there are many other possible sparsity patterns choices. For example, experiments
have been made with variants which just use ; non-zeros per row in the prolongation oper-
ator without any dependency of the multigrid level ¢. A relatively straight-forward algorithm
is chosen for simplicity as our intention is to highlight the flexibility associated with Galerkin
projection prolongators as opposed to strongly advocating a specific sparsity pattern choice.

4.5. Numerical examples

Numerical results are reported to compare the Galerkin Schur complement algorithm from Sec-
tion 4.4.3 with existing transfer operator strategies, the most simple being plain aggregation
(PA-AMG), which uses aggregate-wise constant prolongation and restriction operator basis func-
tions. Smoothed aggregation (SA-AMG) is more sophisticated as the basis functions of the PA-
AMG prolongation operator are modified using a smoothing sweep. SA-AMG generally has bet-
ter convergence properties for symmetric positive definite problems (cf. Vanék et al. [192, 199]),
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PA-AMG Plain aggregation (aggregate-wise constant basis functions)

Emin Transfer operators smoothing for non-symmetric problems as
introduced in Sala and Tuminaro [173]

SchurComp(s, ) Galerkin Schur complement transfers with s transfer operator
smoothing iterations in (4.47) and p as a sparsity pattern
threshold (see Section 4.4.3)

Table 4.1.: Overview of multigrid transfer operator strategies.

but it is not designed for non-symmetric problems as restriction is just defined as R = PT. The
“Emin” transfer operators from Sala and Tuminaro [173] combine the Petrov—Galerkin approach
from Section 4.2.2 with local transfer operators smoothing as illustrated in Section 3.5.2 and turn
out to be very effective for many non-symmetric problems. Table 4.1 gives an overview of the
transfer operator strategies that are used for the numerical experiments.

All tests use GMRES with one AMG V-cycle as a preconditioner. For all tested transfer oper-
ator strategies the same aggregation algorithm generates f/c splittings, where ¢ points are aggre-
gated root nodes. Within the Galerkin Schur complement (SchurComp) schemes the Richardson
method uses a line search strategy to determine the w*~1) parameters from (4.47). For each
multigrid level, w*~1 solves the quadratic minimization problem

I®A)(I-w* VL (I D'A))PH- y (4.54)
(1o &) (1 =DMy (1o D7ta) ) P

2

min
w(kfl)

which is connected to GMRES as it minimizes a residual associated with (4.43).

Similar to Emin, restriction is separately computed using the same algorithms and the tentative
prolongator is always used as an initial guess for the Galerkin Schur complement.

4.5.1. Double-glazing example

In Elman et al. [58] the double glazing problem is introduced as a model for the temperature dis-
tribution in a two-dimensional cavity with one external “hot” wall. A scalar convection-diffusion
equation is considered as given by

—kAu(x) + a(x) - Vu(x) = b(x) x € (), (4.55)
u(x) = g(x)  x € o, (4.56)
Ju

where u(x) is the solution. The diffusion coefficient is x > 0 and the convective velocity is
a(x) € R? where d denotes the dimension of the problem (i.e., d € {2,3}). The functions
f, g, and h define forcing functions and boundary conditions and 7 denotes an outward-pointing
normal vector on I'.

For the double glazing problem the wind a(z,y) = (2y(1 — 2?), —2z(1 — y?)) determines a

recirculating flow with streamlines {w = (z,y) ‘ (1—2H)(1 —9y?) = const}. The domain is
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K= g K = T K = i
transfer operators 64 x 64 128 x 128 | 64 x 64 128 x 128 | 64 x 64 128 x 128
PA-AMG 34 (1.12) 47 (1.12) | 54 (1.12) 67 (1.12) | 91 (1.12) 117 (1.12)
Emin 20 (1.13) 18 (1.13) | 38 (1.13) 33 (1.13) | 71 (1.13) 68 (1.13)
SchurComp (1, 1.0) | 25 (1.12) 41 (1.12) | 38 (1.13) 60 (1.13) | 72 (1.14) 98 (1.14)
SchurComp (2, 2.0) | 13 (1.19) 22 (1.17) | 24 (1.21) 33 (1.17) | 58 (1.22) 48 (1.19)
SchurComp (3,3.0) | 11 (1.26) 16 (1.23) | 18 (1.30) 20 (1.24) | 37 (1.30) 17 (1.26)
SchurComp (4, 3.0) | 12 (1.26) 15(1.23) | 16 (1.30) 20(1.24) | 36 (1.30) 16 (1.26)

Table 4.2.:

Double-glazing example — Number of GMRES iterations (and operator complexity)
for different dual-biased meshes and varying viscosity «. 1 damped Gauss-Seidel
sweep (w = 0.8) is used for pre- and post-smoothing and a direct solver on coarsest

mesh .

= L =L Py

transfer operators 64 x 64 128 x 128 | 64 x 64 128 x 128 | 64 x 64 128 x 128
PA-AMG 18(1.12) 26 (1.12) | 27 (1.12)  35(1.12) | 43 (1.12) 57 (1.12)
Emin 13(1.13) 11 (1.13) | 22 (1.13) 21 (1.13) | 36 (1.13) 40 (1.13)
SchurComp (1, 1.0) | 14 (1.12) 22 (1.12) | 21 (1.13) 31 (1.13) | 45(1.14) 52 (1.14)
SchurComp (2,2.0) | 10 (1.19) 14 (1.17) | 15(1.21) 22 (1.17) | 32(1.22) 41 (1.19)
SchurComp (3,3.0) | 8(1.26) 10(1.23) | 12(1.30) 13(1.24) | 28 (1.30) 18 (1.26)
SchurComp (4, 3.0) | 8(1.26) 10(1.23) | 11 (1.30) 13(1.24) | 22(1.30) 16 (1.26)

Table 4.3.:

Table 4.4.:

Double-glazing example — Number of GMRES iterations (and operator complexity)
for different dual-biased meshes and varying viscosity «. 3 damped Gauss-Seidel
sweeps (w = 0.8) are used for pre- and post-smoothing and a direct solver on coarsest

mesh .

32 x32 64x64 128 x 128 256 x 256
PA-AMG 30(1.12) 43 (1.12) 57(1.12) 67 (1.13)
Emin 26 (1.13) 36(1.13) 40(1.13) 45(1.13)
SchurComp (1, 1.0) | 25 (1.14) 45(1.14) 52 (1.14) 67 (1.15)
SchurComp (2,2.0) | 23 (1.22) 32(1.22) 41(1.19) 62 (1.20)
SchurComp (3, 3.0) | 24 (1.30) 28 (1.30) 18 (1.26) 32 (1.26)
SchurComp (4, 3.0) | 23 (1.30) 22(1.30) 16(1.26) 24 (1.26)

Double-glazing example — Number of GMRES iterations (and operator complexity)
for different dual-biased meshes. An AMG preconditioner
with 3 damped Gauss-Seidel sweeps (w = 0.8) and a direct solver on the coarsest
mesh is used within GMRES.

_1

with viscosity kK = 55
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4. A flexible smoothed aggregation approach for convection-dominated problems

the open set Q = (-1, 1)2. The source term b is zero, k € { 75 Te55+ 5205 J » and
lfory =1
g(x,y) =< 0fory = —1 (4.58)
Oforx =+landy # 1,

describes the Dirichlet boundaries. These boundary conditions give rise to discontinuities at the
hot wall corners. Bi-linear finite elements are utilized with SUPG stabilization.

If someone is interested in resolving the behavior at boundaries or corners without a too fine
overall mesh, a regular quadrilateral mesh may not be optimal. For this reason a dual-biased
mesh (bias factor 1.05) is used resulting in a subsequently refined mesh at the boundaries to
properly resolve the solution at the boundaries and corners. The coarsest level matrix is fixed to
be < 100 degrees of freedom which leads to 3 or 4 multigrid levels (depending on the mesh and
the chosen transfer operator strategy). A damped symmetric Gauss—Seidel (w = 0.8) method
is used as level smoother on the fine and intermediate levels and a direct solver is applied on
the coarsest level. The fine level null space is approximated by a constant vector. For the results
in Tables 4.2, 4.3 and 4.4, the user-given parameter ;. defines the average number of non-zeros
per row in the prolongator P and is constant over all multigrid levels. Convergence is declared
when a relative residual reduction of 10~ occurs. Comparing Tables 4.2, 4.3 and 4.4 one can
see that the number of GMRES iterations is decreasing with better level smoothing, but the
overall behavior of the different transfer operator strategies is not affected by the level smoother.
Depending on the aggregate size a rather small number of transfer operator smoothing sweeps is
sufficient for a significant reduction of GMRES iterations with only a moderate increase of the
operator complexity. For example, SchurComp(4, 3.0) has an AMG operator complexity which
is about twelve percent higher than that of Emin on a 256 x 256 mesh (see Table 4.4). Thus,
one would expect SchurComp’s cost per iteration to be about twelve percent higher than that of
Emin. However, SchurComp requires about half as many iterations as Emin and so this higher
cost per iteration would be easily offset.

Overall, the SchurComp(1, 1.0) method (with only one Richardson iteration and on average
one nonzero per row) is generally inferior to Emin. This is partially due to the sparsity pattern
of the prolongator which resembles that of PA-AMG. The strength of the SchurComp approach
is that it can be used with different sparsity patterns and prolongator improvement iterations.
The SchurComp method can be adjusted with only a very minor increase in AMG operator
complexity such that it converges noticeably faster than Emin.

4.5.2. Aggressive coarsening

This example aims to study the effect of prolongator improvement (i.e., Richardson) iterations
when using aggressive coarsening. A 2D convection diffusion problem is used, where a(z,y) is

defined as
10 if |y| < 0.1,
a(z,y) = il (4.59)
0 else,
for (z,y) € Q = [—1,1]* with homogeneous Dirichlet boundaries. With x = 1.0 one obtains

a moderately non-symmetric linear system. In Figure 4.3 the solution using stabilized bi-linear
finite elements is shown over a quadrilateral 72 x 72 mesh. In order to resolve the behavior within
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4.5. Numerical examples

Figure 4.3.: Aggressive coarsening example — Solution of convection diffusion problem on 72 x
72 quadrilateral mesh with stabilized bi-linear finite elements.

the convective sub-domain the mesh is refined in y-direction for —0.1 < y < 0.1. Figure 4.4a
visualizes the prolongator basis functions both for Emin and for SchurComp with 8 prolongator
Richardson iterations, when aggregates of size 12 x 12 are constructed. Figure 4.4b plots a cut
through a prolongator basis function generated by Emin and SchurComp along the x-axis for
fixed y = 0.05 (convective region) and y = 0.4 (diffusive region). The figures illustrate the
symmetric and smooth shape of the SchurComp basis functions for the purely diffusive region.
They also show an asymmetric SchurComp basis function for the convective region which is
slightly shifted in the direction of convection. This shifting of the basis functions in the convec-
tive direction is similar to that found within basis functions for some black-box matrix-dependent
schemes, such as the ones given by Zeeuw [233]. It has been found that these convection-shifted
basis functions tend to produce stable coarse grid discretization matrices in the context of black-
box multigrid methods. One can find this as well in the context of the SchurComp method,
where coarse grid stability was not an issue for the numerical experiments (see also Appendix
B). Emin uses only one prolongator smoothing sweep (as the method is only defined for one
prolongator smoothing sweep). Especially for big aggregates, the prolongator basis functions
for Emin are very similar to the basis functions of the non-smoothed prolongation operator. In
contrary to Emin, the SchurComp method allows for more smoothing iterations of the prolonga-
tor basis functions.

For the numerical test example bilinear finite elements with SUPG stabilization are used on a
648 x 648 mesh which corresponds to the mesh from Figure 4.3 being refined by a factor 9 in each
coordinate direction. In Table 4.5 the number of GMRES iterations and the operator complexities
for different transfer operator strategies and aggregation routines are given. GMRES is supposed
to be converged, when the relative residual is reduced by a factor of 107!, The effect of regular
ideal aggregates (aggregate size: 3 x 3), irregular aggregates using random root nodes and graph
aggregation as well as regular aggregates of size 6 x 6 is compared. For the 3 x 3 and the irregular
aggregates the multigrid setup routine builds 5 multigrid levels, whereas for the 6 x 6 aggregates
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4. A flexible smoothed aggregation approach for convection-dominated problems

(a) Shape of Emin and SchurComp (8 (b) Cut through Emin and SchurComp (8
Richardson iterations) prolongator basis Richardson iterations) prolongator basis
functions. function at y = 0.05 (moderate convec-

tive) and y = 0.4 (diffusive only).
1072
8
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Figure 4.4.: Aggressive coarsening example — Moderate non-symmetric convection-diffusion
problem with aggressive coarsening. Comparison of prolongator basis functions
generated by Emin and SchurComp (aggregate size: 12 x 12 nodes).
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648 x 648 mesh

aggregate size 3 %3 irregular 6 <6
transfer operator GMRES operator GMRES operator GMRES operator

iterations ~ complexity | iterations  complexity | iterations  complexity
PA-AMG 124 1.12530 194  1.06876 165 1.02857
Emin 34 1.12766 56 1.11653 73 1.02861
SchurComp (2, 2.0) 41  1.14536 42 1.08926 60  1.02996
SchurComp (3, 2.0) 41  1.14828 41  1.08991 56 1.03004
SchurComp (3, 3.0) 28 1.17900 28  1.13054 48 1.03330
SchurComp (4, 3.0) 28  1.18033 26 1.13118 45 1.03341
SchurComp (4, 4.0) 22 1.23926 27 1.17314 43 1.06598
SchurComp (5, 4.0) 22 1.24056 27 1.17377 40 1.06603
SchurComp (5, 5.0) 22 1.34273 27 1.21202 39  1.06718
SchurComp (6, 4.0) 22 1.34467 26 1.17404 38  1.06612
SchurComp (6, 5.0) 23 1.41455 27  1.21361 37 1.06733

Table 4.5.: Aggressive coarsening example — Comparison of GMRES iterations and operator
complexity for regular ideal aggregates (aggregate size: 3 X 3 and 6 x 6) and irregular
aggregates (using random root nodes and graph aggregation) on a 648 x 648 mesh.

we obtain 4 multigrid levels. As pre- and post-smoother 1 Gauss-Seidel sweep (w = 0.8) is
applied on the finest and intermediate multigrid levels. A direct solver is used on the coarsest
level. The user-given parameter p for the pattern strategy within the SchurComp method defines
the average number of non-zeros per row in the prolongator P and is constant over all multigrid
levels.

A closer look at the results of Table 4.5 shows the difference between SchurComp and Emin.
Especially for big aggregates (e.g. 6 x 6) SchurComp benefits from a higher number of prolon-
gator improvement iterations to resemble the smooth solution of the problem. The prolongator
sparsity pattern strategy gives the user full control over the operator complexity which is in gen-
eral very low when using aggressive coarsening. With the irregular aggregates and randomly
picked root nodes one can mimic the effect of less good aggregates as they often arise in parallel
multigrid. When comparing the numbers of the ideal perfect 3 x 3 aggregates with the results for
the irregular aggregates, the SchurComp methods are somewhat insensitive to the use of poor/ir-
regular aggregates. Once again, this is due to the flexibility of SchurComp with respect to the
number of Richardson iterations and the sparsity pattern which can be augmented to compensate
for less than ideal aggregates. For small aggregates the choice of an appropriate pattern is in fact
more important than a high number of prolongator improvement iterations.

Overall, SchurComp can converge in less than half as many iterations as that required for
Emin in the case of irregular aggregates and 6 x 6 aggregates, but requires slightly higher com-
plexities (generally under ten percent) which translates into a slightly higher cost per iteration.
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2a

(a) Geometry details.

mesh b  #DOFs description

coarse 15 5932 coarse mesh for tests with Reynolds numbers < 1500

fine 15 90922 fine mesh for tests with Reynolds numbers < 1500

30 45202 medium mesh with elongated geometry for tests with Reynolds number > 1500

a
1

medium 1 15 23062 medium mesh for tests with Reynolds numbers < 1500
1
1

(b) Mesh details and geometry parameters.

Figure 4.5.: Backward facing step example — Geometry and mesh details.

Figure 4.6.: Backward facing step example — Velocity streamlines for Reynolds number
Re=1600.

4.5.3. Backward facing step

A linear problem is considered arising from discretization of the incompressible Navier-Stokes
equations on a backward facing step domain. The details on modeling and discretization of flow
problems is far beyond the scope of this thesis, but the interested reader may refer to the textbook
by Donea and Huerta [52]. Figure 4.5 gives details about the geometry and mesh details used
for our example whereas Figure 4.6 shows a velocity solution corresponding to Re = 1600
employing a equilateral discretization with stabilized finite elements.

Without giving further details the resulting linear equations have the block form

(g %T> <;) - <£> (4.60)

where F, DT and D are the discrete momentum, gradient and divergence entities, respectively.
The u denotes the nodal vector containing the discrete velocity components in z- and y-direction.
The p represents the associated pressure values in each node.

Note that our primary interest is the behavior of the smoothed transfer operators for typical
linear systems arising in flow problems. Let u’ denote the nodal solution vector for the velocity
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Reynolds number 800 1250 1600

mesh coarse  medium fine coarse  medium fine | medium?2
PA-AMG 10(1.11) 14(1.12) 22(1.12) | 10(1.11) 13 (1.12) 20(1.12) | 13 (1.12)
Emin 7(1.14) 6{.14) 9@1.13)| 7(1.14) 6(.149) -(1.13)| 6(1.14)

SchurComp (1,2.0) | 8 (1.13) 8(1.15) 12(1.15) | 7(1.14) 8(1.15) 11(1.15)| 8(1.15)
SchurComp (2,2.0) | 8(1.13) 8 (1.15) 11(1.15)| 7(1.14) 8(1.15) 10(1.15) | 7(1.15)
SchurComp (3,2.0) | 8(1.13) 8 (1.15) 11(1.15)| 7(1.14) 8(1.15) 10(1.15) | 7(1.15)

Table 4.6.: Backward-facing step example: number of outer GMRES iterations (and operator
complexity) for different Reynolds numbers and meshes. 1 sweep with damped
Gauss-Seidel (w = 1.0) as pre- and post-smoother and a direct solver on the coarsest
level. ‘-~ denotes no convergence within 50 iterations.

degrees of freedom in the last Newton iteration before convergence. This way, one can avoid
additional difficulties associated with the incompressibility constraint by considering only the
solution of F(u"")ul® = f for the last nonlinear Newton iteration i before convergence of
the nonlinear iteration.

A multigrid preconditioner is used where the coarsest level size is set to < 50 degrees of
freedom. Convergence for GMRES is declared when the relative residual is reduced by 107%. On
the finest and all intermediate multigrid levels, 1 sweep with damped Gauss-Seidel is employed
for both pre-relaxation and post-relaxation. A direct solver is used for the coarsest level. For this
PDE system the near null space corresponds to two constant vectors (one associated with each
velocity degree-of-freedom). The pattern strategy from section 4.4.4 is used in conjunction with
the SchurComp algorithm for generating grid transfers. Since it is a 2-dimensional example with
two null space vectors the user-specified parameter . for the transfer operator pattern is chosen to
be two. That is, the average number of nonzeros per row in the prolongator P is two on the finest
level and increasing on the intermediate and coarsest level depending on the multigrid level.
This leads to slightly increased operator complexities for the SchurComp variants compared
with Emin, as the average number of nonzeros per row in a Emin prolongator is between one
and two over all multigrid levels.

Table 4.6 lists the GMRES iterations associated with the linear system for different Reynolds
numbers. This example mimics an ideal situation for multigrid methods. With an appropriate
level smoothing the numbers turn out to be independent of the Reynolds number and the under-
lying mesh. Using a rather low number of Richardson iterations for prolongator improvement
together with a reasonable choice for the prolongator pattern one finds SchurComp to perform in
a similar fashion to Emin in a realistic multigrid setting on an equilateral regular mesh. In partic-
ular, the operator complexities and total iterations required for convergence are nearly identical
for the two methods.

4.6. Conclusion

In this chapter a new framework has been presented for generating transfer operators which are
appropriate for non-symmetric problems arising from problems with convective character pro-
viding flexibility for further application-specific developments. It has been demonstrated that the
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Reynolds number 800 1250 1600

mesh coarse  medium fine coarse  medium fine | medium?2
PA-AMG 9(1.11) 12(1.12) 18(1.12) | 8 (1.11) 11 (1.12) 17 (1.12) | 11 (1.12)
Emin 8(1.149) 7@1.14) 8(.13) | 7(1.14) 7114 -(1.13)| 7(1.14)

SchurComp (1,2.0) | 7 (1.13) 8 (1.15) 10(1.15) | 7(1.149) 7(1.15) 9(1.15)| 7(1.15)
SchurComp (2,2.0) | 7(1.13)  7(1.15) 9 (1.15) | 6(1.14) 7(1.15) 9 (1.15) | 7(1.15)
SchurComp (3,2.0) | 7(1.13)  7(1.15) 9 (1.15) | 6(1.14) 7(1.15) 9 (1.15) | 7(1.15)

Table 4.7.: Backward-facing step example: number of outer GMRES iterations (and operator
complexity) for different Reynolds numbers and meshes. 1 sweep with damped
Gauss-Seidel (w = 1.4) as pre- and post-smoother and a direct solver on the coarsest
level. ‘-~ denotes no convergence within 50 iterations.

proposed SchurComp transfer operators are competitive with state-of-the-art transfer strategies
and show satisfactory performance in many situations. More examples can be found in Section
D.4.2. The Galerkin perspective in Section 4.4 points toward an attractive software framework
for continued development of robust and flexible AMG solvers.

However, the multigrid transfer operators are only one part within the whole multigrid algo-
rithm. An advanced flexible transfer operator strategy alone does not make a flexible multigrid
algorithm which allows to be adapted for application-specific needs. In fact, the term “flexibil-
ity” has an even more general meaning: Flexibility means that one can adapt each part of the
multigrid method as “tool” to the given specific problem to obtain an optimal preconditioner.
This is only possible if one has an in-depth understanding of both the multigrid algorithms and
the problem. The details on the internal aggregation-based multigrid algorithms have already
been discussed in Chapter 3 and 4. In the next chapters it is exemplarily shown how to develop
efficient multigrid preconditioners for problems arising from computational contact mechanics
making use of the flexibility of the AMG framework. In Chapter 5, a basic introduction to com-
putational contact mechanics is given providing the basic background knowledge for deriving
efficient multigrid preconditioners.
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CHAPTER

Finite deformation contact mechanics

This chapter is supposed to give a brief introduction to the formulation of finite deformation con-
tact problems. In the following chapters of this thesis specialized AMG strategies are developed
for certain classes of demanding linear systems as they arise from contact problems in differ-
ent formulations. Here, the necessary background knowledge about the underlying numerical
models is provided.

Contact mechanics plays an important role in many industrial applications. Starting with first
contributions to the numerical treatment of contact problems in the 1970s and 1980s (e.g.,
Francavilla and Zienkiewicz [68]), the so-called node-to-segment (NTS) approach is widely
used to deal with finite deformation contact (cf. Hesch and Betsch [91], Laursen and Simo
[117], Laursen [118], Simo and Hughes [176], Wriggers et al. [229]). While NTS methods are
still very popular in engineering practice, in the meantime mortar-based contact formulations
(which can be understood as successor of the segment-to-segment approach (STS), cf. Simo
et al. [177], Zavarise and Wriggers [232]) find more and more attention as versatile modern
methods for computational contact mechanics (cf. Popp [156]).

Our formulation of finite deformation contact problems is based on mortar finite element
methods, which originally have been developed for domain decomposition (cf. Bernardi et al.
[24], Belgacem and Maday [17], Belgacem [18], Krause and Wohlmuth [109]). But in the mean-
time mortar finite element methods have also found much attention in the context of contact
and mesh tying problems (e.g., Belgacem et al. [19]). There are many contact specific topics
that are far beyond the scope of this thesis and not discussed here. For example, only Lagrange
multipliers are used to enforce the contact constraints. For a general overview and discussion
of alternatives one might refer, e.g., to Alart and Curnier [3]. Other popular approaches, such
as penalty methods, are not considered. Many more advanced and contact specific topics are
covered in the textbooks by Laursen [116] and Wriggers [228].

The following sections describe all steps from Section 1.1 for contact problems, including the
modeling phase, the discretization phase and finally the solution phase. Section 5.1 introduces
the problem setup with the basic notation. Sections 5.2 and 5.3 complete the modeling stage
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Figure 5.1.: Problem configuration and basic notation.

by introducing the equations of nonlinear elastodynamics and extending the formulation to our
prototype of a contact problem with two deformable solid bodies. In Section 5.4 the problem is
discretized using the (mortar) finite element method. Therein, the focus is mainly on the different
options for the choice of discrete Lagrange multipliers responsible for the coupling between the
structural equations and the contact constraints. Finally, Section 5.5 gives a basic overview of the
solution phase (cf. Figure 1.1). The concept of a semi-smooth Newton method used for solving
the set of nonlinear equations resulting from the contact problem is discussed before closing the
chapter with the final set of linearized equations, which are supposed to be solved iteratively
using methods developed in the next chapters.
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5.1. Problem setup

Without loss of generality, it is sufficient to discuss a contact problem with only two deformable
bodies to derive all mathematical basics concerning contact kinematics and contact constraints.
An extension to a multibody contact problem is straightforward. As a special case it also covers
contact problems of Signorini type, i.e., the contact between a deformable body and a rigid
obstacle.

Consider two bounded solid bodies, which are represented by Q(()Nl), QgNZ) C R? and QEM),
Q§N2) C R? with d € {2,3} in the reference configuration and the current configuration as
given in Figure 5.1. The domains are defined by 2y = QE)M) U Qg\&) and ), = QgM) U QENQ),
respectively.

Each point XV ¢ Q(()Ni), i € {1,2}, in the reference configuration is mapped into the
current configuration using the bijective nonlinear mapping ®; : Qy x [0,T] — €, (X ,t) —
x = ®,(X,t), which is defined by

PP (XN 1) = XA 4 N (X0 4 (5.1)

Given time ¢, the corresponding point z9 € Q™ can be expressed as x(t) = & (X,1).
In (5.1) the variable u(X , t) denotes the displacement of x for a given time ¢ relative to the
reference coordinates X in the reference configuration.

The surfaces 89(()M), i € {1,2} in the reference configuration are decomposed into three
disjoint subsets F(DM), F(NM) and FgNi), such that it is

90 = T T UTM with TYY N TQY = TG N T = TAD A8 — () (5.2)

C

where F(DM) and Fﬁm denote the Dirichlet and Neumann parts of the boundaries and FgNi) the
potential contact interface. Analogous to (5.2) the corresponding surface boundaries in the cur-
rent configuration are defined by

N N; N; D) N; N; N; ; ; N;
an )::’y|(3 )Uw,(\l )U’Y(ENZ)Wlth’y'(D )ﬂv,(\l ):7,(\, )ﬂ'yc(Nl):’yc(N’)ﬂwé )=, (5.3)

5.2. Strong formulation

In this section, the governing equations for solid mechanics are formulated and later extended
for contact mechanics to describe the behavior of the solid bodies. Since this thesis is not about
material models, the discussion of constitutive relations between kinematic quantities (strains)
and the material response (stresses) is completely skipped. The interested reader may refer to
the literature (cf. Bonet and Wood [26], Holzapfel [95]). Throughout this thesis, only homoge-
neous bodies are considered undergoing purely elastic deformations with a hyper-elastic material
behavior.

For each body the local balance of linear momentum reads

pADGND — Dy (PAD) = $) in Q¥¥ x [0, 7] (5.4)
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with the boundary conditions

a™) — gV on T¥Y) x 0,77, (5.52)
PN N N on T\ x [0, 7] (5.5b)

fori € {1,2}. Therein, P denotes the first Piola-Kirchhoff stress tensor. For a detailed definition
the reader is referred to the literature for nonlinear continuum mechanics (e.g., Bonet and Wood
[26]). Moreover, N (i) denotes the outward unit normal vector in the reference configuration

o~ ~Ni . . . .
on ™), and the &™) and t[() ) describe the prescribed displacements and surface tractions,
respectively. To resolve the time dependency in (5.4) and to close the system, initial conditions
have to be prescribed for the displacements and velocities, viz.

uM (X,0) = @™ in o, (5.6)
~(Ns . .
(X, 0) =ay ) in Q. (5.7)

After the initial boundary value problem of nonlinear solid mechanics has been introduced
with (5.4) to (5.7) one can specify the nonlinear contact conditions. From now on, FEM) is de-
clared to be the so-called master (or mortar) side of the contact interface, denoted by FEM). The

contact boundary FENQ) is referred to as the slave (or non-mortar) side of the contact interface. It

is denoted as FES). The notation for %(M), i € {1,2}, is changed to %(M> and %3), respectively.
The superscript M stands for the master body and S for the slave body. The choice of the master
and slave body is arbitrary and only important for defining potential contact surfaces between

the two solid bodies.

For the formulation of the contact conditions one uses a predefined smooth interface mapping
m : F((;S) — I‘((;M) of a contact point X W2) ¢ ng) on the slave contact interface to the master

contact interface FgM) (cf. Figure 5.1). Assuming that m is well defined, it is m; (yﬁ‘S)) C %(M)

for all t € (0,7). Here, m; : %(S) — %M) stands for the smooth interface mapping m in the

current configuration for a specific time ¢.

Using the mapping ®; from (5.1) between the reference and current configuration one can
define the normal gap at a point X &€ FES) in the reference configuration by

g (X, 1) = —n<N2><<1>§5> (X,t) - <1>§M>(m(X),t)), (5.8)
where n?) denotes the outward unit normal vector on 1\°) at & = &% (X, 1).

) (S)

With the splitting of the contact traction %) on the slave surface v¢ ' into normal and tangen-
tial components

) = pan+t, (5.9)
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the normal contact constraints are given by

g (X,t) >0  ony® x 0,77, (5.102)
Pa(X.t) <0 ona® x (0,77, (5.10b)
Pa(X.t)gn(X,t) =0  ony!¥ x[0,T]. (5.10¢)

The constraints (5.10) form a set of Karush-Kuhn-Tucker (KKT) conditions. The first KKT
condition in (5.10a) describes the geometric constraint of non-penetration. Herein, p,, denotes
the normal contact traction (pressure) in the current configuration. The second KKT condition
in (5.10b) implies that no adhesive stresses are allowed in the contact zone. Finally, the com-
plementary condition in (5.10c) makes sure that the gap is closed (i.e., g, = 0) when non-zero
contact pressure occurs in the contact case or — vice versa — that the contact pressure is forced to
be zero if the gap is open (i.e., g, > 0) in the non-contact case.

For frictionless sliding, the tangential part ¢, of the slave side contact traction in (5.9) is
supposed to vanish, i.e., £, = 0.

Remark 5.2.1 (Frictional contact). While a frictionless response (i.e., t, = 0) is a common
modeling assumption, the real contact behavior for many industrial applications is governed
by the frictional response to tangential loading. Details on frictional contact are far beyond the
scope of this thesis. Here, only Coulomb’s law is briefly mentioned, which is often used for dry
friction. One possible notation of Coulomb friction is given by

&1l = §lpal <0 on ¥ x [0,77, (5.11a)
Uy + Bt; =0 with 3> 0 on v\%) x [0, 7], (5.11b)
(Il = Slpal) 8 =0 on 1) x [0, T]. (5.11¢)

Herein, § > 0 is the friction coefficient, 3 > 0 is a scalar parameter and v, . denotes the rel-
ative tangential velocity as primary kinematic variable for frictional sliding. The first inequality
(5.11a) implies that the magnitude of the tangential stress ¢, does not exceed the threshold de-
fined by the friction coefficient § and the normal contact pressure p,. The frictional response
depends on the value of the scalar 3. For 8 = 0 it follows from (5.11b) that v,y = O, i.e.,
the relative tangential movement in the contact zone is forced to be zero (stick state). In con-
trast, S > 0 describes the slip state which allows for some relative tangential movement in the
contact zone. Equation (5.11c) can be interpreted as complementary condition for switching be-
tween the slip and stick situation. For further details on the modeling of frictional sliding, the
reader is referred to, e.g., Kikuchi and Oden [104] or Wriggers [228].

For reasons of simplicity, only the frictionless case is discussed as additional friction terms
have no significant effect on the final algebraic structure of the resulting discrete problems. This
means that they are not essential for the development of linear solution strategies, such that all
linear solution strategies should also work for the frictional case without any change.

Before proceeding with the weak variational formulation, let us collect all equations and con-

straints for the dynamical contact problem using the negative slave side contact traction ) as
Lagrange multiplier, i.e., A = —t. In the following the normal part of the contact stress is

denoted by \, := ATn and the tangential part by A, :== X — \,n.
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5. Finite deformation contact mechanics

The overall strong formulation for the dynamical contact problem reads as
PN — Diy (PUD) = FO) in QM) % [0, 77, (5.12)

with the boundary conditions

uWD) = g on T¥Y x (0,77, (5.13a)
PN N — g on T{™ x (0,77 (5.13b)
the initial conditions
u™)(X,0) = " in 5\, (5.14a)
~(V; _ _
W (X,0) = )" in Q. (5.14b)
the normal contact constraints
—ga <0 on % x (0,77, (5.15a)
A >0 on %) % [0,7], (5.15b)
Angn =0 on 7 x [0,7], (5.15¢)
and the frictionless sliding condition
t.=0 on 7% x [0, T] (5.16)

with ¢ € {1,2}. The set of equations (5.12) to (5.16) serves as starting point for the variational
formulation.

5.3. Weak formulation

The solution spaces UWN) are defined as

: : Ni)\1d g PN .
UND) {uW) e [HY(Q{]" D P = al )}, ie{1,2}, (5.17)
with the corresponding product space given as
U= [ U™ =™ xu™. (5.18)

i€{1,2}

Here, d € {2,3} denotes the dimension of the problem. Following the notation in Evans [62,
chapter 5.9.2], the solution space for the dynamic problem can be written aslf; := H? ( 0,77; Ll)
which contains all functions w € H?([0,T]) withw : [0,T] — U.

For the corresponding test or weighting space one has to use functions satisfying zero Dirich-
let boundary conditions on F(DM). Accordingly, the definition of the weighting spaces for the
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5.3. Weak formulation

displacements w reads as

YN — {U(Ni) € [Hl(QéNi))}d : ol

u

g :0}, ie{1,2}, (5.19)

with the product space V,, := VSLLN D x ng 2). Both U and V,, are equipped with the broken
2 3
Hl-norm [|vlfy o, 3= Xicqr 0y 1011} g

The Lagrange multiplier space M is defined to be the dual space of the trace space N
of VM2 restricted to 4<% in the current configuration. That is, one has N := [HY 2(fyc(s))] a

and M := [ H-1/? (fyés))} d, respectively. For more details, the interested reader may refer to the
literature, e.g., Hiieber [99, Section 2.1.2] or Popp [156, Section 4.1.2].

The Lagrange multipliers A are chosen from a convex subspace of M which is given by
M= {neM : p =0 () >0, €N}, (5.20)

where N, = {w c HY 2(7§8)) Dw > 0} describes a closed convex non-empty cone in N
The symbol (-, -)7(3) stands for the duality pairing between M and N on the contact slave

interface %(5) given by

<)\,v>7é5) = /55) Avds. (5.21)
With the definition of the forms
. (WN3) (/\/ N)
m(u,v) = Y /W) dX, (5.22)
1€{1,2}
a(u,v) =) /N PN yoWidx (5.23)
i€{1,2} Q(() )

as well as the linear form

= > /W)fN) X+ > /(N)AW 'dS (5.24)

ie{1,2} ie{1,2}
and the definition of the jump
[u(z, t)] = u®(z,t) — uM (my(z),t) for (z,t) € 7% x [0, 77, (5.25)
the variational formulation of the dynamical contact problem can be stated as:
Find (u, X) € U, x M such that forall ¢ € [0, 7]

m(“’u ’U) + a(uu ’U) + <[U] ’A>’Y§S) = f(’v)7 NS Vu, (5263)
(Gns fin = An). ) = 0, B E Vi, (5.26b)
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5. Finite deformation contact mechanics

holds in combination with the weak form of the initial conditions (5.14a) and (5.14b)
(uo,v)o = (ﬁo,v)o, (uo,v)o = (ao,v)o, vEV, (5.27)

with (-,-), the L*-scalar product on € := 0 U QM. The Vy denotes the space for the
weighting functions for the Lagrange multipliers and can be considered to be identical to M
in the standard Bubnov—Galerkin case.

Note that in contrary to (5.22), which is a bilinear form, the form a(-, -) in (5.23) is only linear
in the second argument for general nonlinear material laws. Only in case of linearized elasticity
the form af(-, -) is bilinear.

5.4. Space discretization

5.4.1. Finite element spaces for structural degrees of freedom

To derive the discrete form of the hybrid variational formulation (5.26), standard conforming

finite elements of lowest order are used. For the 2D case simplicial or quadrilateral meshes are

built and for the 3D case tetrahedral or hexahedral meshes are used. Let 7;1 QW) denote the
™40

triangulation of body Q(()M) with i € {1,2} and Ty 0, := T,
the full domain, where h describes the mesh size parameter as the maximum diameter over all
elements using h := maxrer, o, hr. The triangulation 7y o, is assumed to be shape-regular and

quasi-uniform.

o U 7T, o) the triangulation of
0] 50

Definition 5.4.1 (Shape-regular and quasi-uniform mesh). A triangulation 7}, o, is called shape-
regular, if and only if there is a constant ¢ > 0, such that for all elements T" € 7}, o, itis pr > chp
with pp denoting the diameter of a ball which is inscribed in element 7'. A triangulation is called
quasi-uniform, if and only if there exists a constant ¢ > 0, such that for all elements 7" € Ty, o, it
is hy > ch.

Let S == & (", T o)
associated with the triangulatibr(i 7;1 QW)+ Then, one can define the discrete function space

) denote the finite element space for linear finite elements

YW = {u(M) € [S{M)}d : u(N")|F(N,-,> = ﬁéM)} c UM, ie{l,2}. (5.28)
D

The product space is defined by U" := UND 5 Y N2 and therefore UM = H? ([0,7];U").
It is assumed that the Dirichlet data 'iZ((JM) is resolved by the discrete space YWah properly. The
corresponding test space is given by VI := YWV o pN2)h gy

u

YN {U(M-) e [S]T o)

b = 0}, ie{1,2).

The spaces UNI! 35 well as VSLNZ')’h can be spanned by the standard nodal basis, that is defined
by {¢per, withp = 1,...,m{andk = 1,...,d}. Therein, e), denotes the k-th unit vector
and ¢, the scalar standard nodal basis function associated with the node p. The number mg
represents the total number of the nodes in the finite element mesh 7y, o, for the displacement
degrees of freedom w. Exemplarily, Figure 5.2a shows the 1D standard basis functions ¢,,.
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5.4. Space discretization

5.4.2. Discrete Lagrange multiplier spaces

The Lagrange multiplier space inherits the (d — 1)-dimensional mesh from the d-dimensional tri-
angulation 7}, o, of {2y at the slave side of the contact interface. The discrete Lagrange multiplier
space is denoted corresponding to the Lagrange multiplier space M as defined in Section 5.3
with M™". The discrete analogue ./\/l}jr of the admissible Lagrange multiplier space M, from
(5.20) is given by

M = {p,h eM =0, (4 ) 6 >0, o € Ni}, (5.29)

with A ljr the discrete analogon to /', based on the discrete trace space N of UND restricted
. (S)

to the contact slave interface ¢’ .

Let 1), denote the p-th basis function associated with node p = 1,. .., m(}]‘ where mo)‘ stands

for the total number of nodes on the slave side of the contact interface I'*>, Then, the discrete

multiplier space M" is spanned by {t,e, withp = 1,...,mg and k = 1,...,d}. In contrast

to the basis functions for the discrete solution and test spaces U" and V", where linear finite

elements with the corresponding standard basis functions have been used, one can choose differ-

ent basis functions for the discrete Lagrange multiplier spaces M" and the corresponding test
h

spaces V.

Standard basis functions: First-order interpolation with standard basis functions for the La-
grange multipliers (i.e., ¥, = ¢,) represents the most commonly used discretization strat-
egy in context of mortar methods, with applications ranging from classical domain decom-
position for elasticity (cf. Puso [162]) to finite deformation contact (cf. Puso and Laursen
[164]). First-order standard basis functions are known to be strictly positive, which turns
out to be advantageous for the non-penetration condition in the formulation of the contact
constraint by a positive gap function.

Dual basis functions: Motivated by the observation that the Lagrange multipliers represent
tractions on the contact slave interface, Wohlmuth [225] proposes the use of so-called
dual basis functions which are based on a so-called bi-orthogonality relation

/F§S> OphgdS = 0,y /ng) ¢pdS, (5.30)
where 9,,, denotes the Kronecker symbol, which is defined by
1 ifi=k
=4 LT (5.31)
0 ifi#k.

The dual (or bi-orthogonal) basis functions have the same support as the corresponding
standard basis functions, i.e., supp(¢,) = supp(¢,). The bi-orthogonality condition in
(5.30) as a construction principle for the dual Lagrange multiplier shape functions local-
izes the interface coupling conditions (cf. Wohlmuth [225]) and allows for an efficient
condensation of the Lagrange multipliers from the global system of equations. The result-
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5. Finite deformation contact mechanics

ing linear systems are smaller in size and have no saddle point structure, which might be
advantageous for the design of iterative solvers and preconditioners.

Figure 5.2 shows the standard and the dual basis functions for the case d = 2 in com-
parison. Obviously, the dual basis functions are not continuous and cannot be interpreted
as a trace of conforming finite elements. However, the dual approach has the advantage
that it heavily facilitates the treatment of typical mortar coupling conditions at the contact
interface while preserving the mathematical optimality of the method (cf. Popp [156], Se-
shaiyer and Suri [175], Wohlmuth [225]).

Whereas originally introduced for mortar finite element methods in 2D, dual shape ba-
sis functions have been extended to 3D in Wohlmuth and Krause [227]. First-order in-
terpolation using dual Lagrange multipliers is well analyzed in the general mortar set-
ting (cf. Puso [162], Wohlmuth [223]) and for the (unilateral) contact (e.g., Hiieber and
Wohlmuth [96], Popp et al. [157, 159])).

Remark 5.4.2 (Bubnov—Galerkin versus Petrov—Galerkin approach). In certain situations, the
dual mortar method may lack robustness or even consistency. As one can see from Figure 5.2b,
dual basis functions are not strictly positive, even for first-order interpolation. This may lead to
severe problems arising from a nonphysical interpolation of the so-called weighted gap values
which are the fundamental geometric measure for penetration in a mortar discretized setting.
Further details can be found in Section 5.5 or in the works by Hiieber [99] and Popp [156].

In Popp et al. [160] the authors introduce several improvements for the dual mortar approach
including a novel approach to unify the advantages of standard and dual mortar methods via a
Petrov—Galerkin type of Lagrange multiplier interpolation leading to a more robust method. In
contrary to the standard Bubnov—Galerkin approach (i.e., Vi = M}}r), a Petrov—Galerkin ap-
proach is proposed for the Lagrange multipliers A. Dual basis functions are used for the Lagrange
multiplier field A in the solution space M, which localizes the interface coupling conditions
and eventually allows for an efficient condensation of the Lagrange multiplier degrees of free-
dom from the global linear system. On the other hand, standard shape functions are used for
the test function space V' of the Lagrange multiplier field. Standard shape functions have the
advantage that they guarantee the gap function to be strictly positive, which may significantly
improve the robustness of the resulting problem formulation. Therefore, the Petrov—Galerkin
approach unifies the advantages of both the dual and the standard mortar method.

Now, the (semi-) discrete version of the hybrid variational formulation of (5.26) can be given:

Find (u", Ab) € U} x M, such that for all ¢ € [0, 7]
m(’dh,vh) + a(uh,vh) + <[’vh] ,}\h>%<5) = f(v"), vt e V!, (5.32a)
(Gns b = M) 20, 1€ Va, (5.32b)

holds with the weak initial conditions

~

(ug, v"), = (o, v"),, (ug,v"), = (wo,v"),, v" €V, (5.33)

Remark 5.4.3 (Frictional case). Considering frictional contact in detail is far beyond the scope
of this thesis as frictional effects are not essential for the methods developed in the next chapters.
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1/’})— 1 'Lpp ¢p+1
A A

2 2 .
1 e
N
0 e
p—1 p p+1
—1
(a) 1D standard basis functions. (b) 1D dual basis functions.

Figure 5.2.: Comparison of standard and dual basis functions for d = 2.

The interested reader is referred to Gitterle [75], Gitterle et al. [76], Hiieber et al. [98], Puso and
Laursen [163] and Wohlmuth [224] for more details on the mortar finite element discretization
of frictional contact, stating that this list of literature is by far not complete.

5.5. Algebraic representation

Next, the algebraic formulation is derived in a matrix-vector notation based on nodal values.
Since one is primarily interested in the algebraic structure of the resulting linear systems, it is
sufficient to consider the frictionless quasi-static case. This way, additional algorithmic complex-
ities arising from the time integration are circumvented, while preserving the algebraic structure
of the final problems, which is what is essential for developing adapted multigrid methods. So,
instead of (5.32), the following problem is considered:

Find (uh, )\h) e U x Mﬁ such that

a(u",v") + <[vh} ,)\h>%(3) = f(v"), R Vil (5.34a)
(gns b = Ab) ) >0, p'e M, (5.34b)

with the initial conditions (5.33).
The nodes of the mesh 7y, o, are connected and form elements, which allow to formulate the

Q)
m
approximate partitioning of the domain €2 into m§§3 element subdomains by €y ~ | J,_? Qge).
For each element e, the discrete displacement solution u™(®) can be expressed element-wise as

u,(e)
LT
(X)) =Y ¢l X)u, (5.35)
p=1

(e)

where u,, denotes the discrete nodal values of the displacement and mg"* describes the number

of nodes associated with element e. The interpolation functions gb](f) denote the (element) shape
functions, that are involved in describing the element e.
The individual contributions of all elements e are sorted and assembled into a global nodal

solution vector .
u= ('u,Nl,uM,uS,uNQ) : (5.36)
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5. Finite deformation contact mechanics

Therein, the uy;,, ¢ € {1,2}, contains all degrees of freedom associated with the mesh nodes of
the corresponding solid body without the nodes at the contact interface (master or slave). The
degrees of freedom associated with the contact interface on the master and slave side are rep-
resented by w, and us, respectively. Be aware that the same notation w is used both for the
(continuous) solution variable (cf. Section 5.2 and 5.3) and its (discrete) nodal vector represen-
tation. This simplifies the notation by avoiding an additional variable. The respective meaning of
u is always obvious from the context. In the following, u always represents the global solution
vector with the nodal displacements.

In a similar way one can describe the discrete Lagrange multipliers

my
AN =), (5.37)
p=1

where m{ denotes the number of (slave) nodes carrying additional Lagrange multiplier degrees
of freedom and A, describes the corresponding discrete nodal Lagrange multipliers. Again, all
contributions A, can be assembled into a global nodal solution vector A for the Lagrange multi-
pliers. The meaning of A\ again depends on the context, i.e., whether it describes the (continuous)
Lagrange multipliers (cf. Section 5.2 and 5.3) or the global vector of nodal Lagrange multiplier
degrees of freedom (Section 5.5 as well as Chapter 6 and Chapter 7).

The final spatially discretized formulation of the quasi-static frictionless problem (5.34) using
the nodal vector representation emerges as

fint(“/) + fco<u7 A) = fextu (538)
~(@un); 0, (M), 20, (Gan), (M), =0, j=1,....mg, (5.39)
(X)), =0, j=1....m} (5.40)

and is explained briefly in the following:

In analogy to the variational formulation (5.34a), the system (5.38) contains the global vector
of nonlinear internal forces f;,; and the global vector of external forces f.,,. The discrete vector
of contact forces f., is defined by f.,(u, A) := C(u)" X acting on slave and master sides of the
contact interface and depends non-linearly on the current deformation u. Therein, the discrete
mortar contact operator has the form

0
—MT
Clu) := DT |- (5.41)
0
Following the node ordering in (5.36), the zero blocks in (5.41) refer to lines associated with
the inner nodes in the set AV;, i € {1,2}, away from the contact interface. The mortar cou-

pling blocks M and D result from the discrete coupling conditions corresponding to the contact
interface at the mortar (master) and non-mortar (slave) side.
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5.5. Algebraic representation

The discretized version of the weak formulation in (5.34b) is equivalent to the set of point-wise
normal contact constraints given by (5.39). Therein, the discrete weighted gap function ('jn h)

at the slave node j is defined by (gn h)j f O] Y;jgnnds for g, being a discrete version of
the gap function g, introduced in (5.8). A close look reveals that (5.39) basically represents a
discrete version of the KKT conditions in (5.15a) to (5.15¢) for normal contact with an additional
weighting based on the Lagrange multiplier shape functions ;.

A more detailed derivation of the discrete version of the contact constraints and the frictional
terms is beyond the scope of the thesis. The reader may refer to Popp et al. [158] or Hiieber [99]
if a more mathematical notation is preferred. Details especially on the formulation of the friction
terms can also be found in Gitterle et al. [76], Hiieber et al. [98] and Gitterle [75].

For the following sections it is primarily important to understand that one has a discrete system
of nonlinear equations with additional contact constraints which has to be solved numerically.
Considering only the quasi-static case has the advantage that one does not have to deal with time
integration. A full derivation of the algebraic formulation of contact problems including time
integration and frictional terms is given, e.g., in Popp [156].

5.5.1. Semi-smooth Newton method

Here, the focus is on the nonlinear solution strategy for problem (5.38) with the constraints (5.39)
and (5.40). The challenge is to incorporate the inequality constraints for the normal contact con-
straints (5.39) in the formulation of the nonlinear problem. A primal-dual active set strategy
(or equivalently a semi-smooth Newton method, see Hintermiiller et al. [93]) is used to resolve
the contact non-linearity resulting from the inequality constraints as briefly outlined in Algo-
rithm 9. Here, the intention is to give only a brief introduction to semi-smooth Newton methods.
The basic idea of the primal-dual active set strategy is to rearrange the KKT conditions for the
contact constraints, such that a Newton—Raphson like algorithm can be applied not only for the
geometrical and material non-linearities, but also for the non-linearity resulting from the contact
constraints. Let S denote the set of slave contact nodes. To reformulate the contact constraints
(5.39) one has to introduce a semi-smooth nonlinear complementary (NCP) function C';, which
transforms the normal contact inequality constraints from (5.39) into an equality constraint equa-
tion, viz.

Cs(w,A) i= (M), = max (0, (\), = &0 (Gun) ) =0, e >0 (5.42)

for each slave node j € S. One can easily verify that the equality constraint C; = 0 is equivalent
to the complete set of KKT conditions in (5.39) for arbitrary positive values of the complemen-
tarity parameter c,. Here, the details are skipped and the reader is referred to Wohlmuth [224]
and Popp [156] for a more elaborate discussion on the design of semi-smooth complementary
functions.

Internally, one has to manage two disjoint subsets .4 and Z of the slave nodes S with AUZ = S
and ANZ = (). Here, A contains all active nodes which are currently in contact, and Z describes
the set of nodes which are currently not in contact. For numerically solving the constrained
nonlinear problem (5.38) to (5.40) the nonlinear residual r(w, X) := fip(w) + foo(u, X) — ey is
defined, such that a Newton scheme can be applied to solve the nonlinear problem r(u, A) = 0
subject to the constraints (5.39) and (5.40). In each iteration ¢ of the resulting Newton loop, the
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linearized constrained system

(KT(ui) + Keo(2d, )J))Aui“ + C(u)ATF = —p(ul, X1), (5.43a)
0(Gun).|" i |

( au,h)j A = —((Gup);) Vje A (5.43b)

(A)™ =0, (5.43¢)
a(Tf) ' i1 i £\% i+1 . i

G| Au (A) + (m5) (A)" =0 vieS,  (543d)
a(rn | . L |

gi) Au () + () ()T =0 VjiedS (5.43¢)

is solved. Note that for presentation purposes, a semi-incremental formulation is chosen with dis-
placement increments Au‘"! and the Lagrange multipliers A**! as solution variables in (5.43).
The tangential stiffness matrix Kt and the linearized contact forces are defined by

i

o) | and Kt A7) o 2CWA)

ou

(5.44)

with C(u) from (5.41). Equation (5.43b) describes the linearized normal contact constraint for
the active nodes and (5.43c) defines the results for the Lagrange multipliers corresponding to
inactive nodes. The constraints in (5.43d) and (5.43e) result from the consistent linearization of
the frictionless tangential contact constraint (5.40). The two vectors Tf and 7']77 are defined as the
tangent vectors building an orthonormal basis with the current node normal vector m; at each

slave point j € S. Therefore, itis n; - 7% = 0 and 7/ = n; x 7.

The complementarity function (5.42) is also used to define the updated set of active and inac-
tive nodes using

T ={jeS : (A)) = nl(Gan)y) <0} and
A={ieS (W) = enl(Gun)s) > 0}

in each nonlinear iteration 7 of the semi-smooth Newton method.

(5.45)

Finally, it is checked whether the set of active nodes has converged and whether the current
solution variables satisfy the convergence criteria || Z (u'™', A™1)|| < & in some norm. Usually,
the convergence criteria in % are a combination of different norms of scaled partial residual
vectors of the different physical and mathematical fields. An appropriate choice for % is highly
problem-specific.

As already mentioned before, many details of the semi-smooth Newton method are far beyond
the scope of this thesis. A mathematical description of the semi-smooth Newton method can be
found, e.g., in Christensen and Pang [48], Qi and Sun [165] or Christensen [47]. For the concept
of primal-dual active set strategies in the framework of abstract variational inequalities one may
refer to Hintermiiller et al. [93] and Hintermiiller et al. [94]. In context of contact problems
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Algorithm 9: Semi-smooth Newton algorithm

Initialize nonlinear solver

10

Initialize A° and Z°, such that A UZ? =S and A°NZ° =0
Initialize solution vector: (u?, A°)

Nonlinear Newton loop

for i < 0to i — 1 do
Calculate Newton update
Find the primal-dual pair (Au""!, A™"!) by solving

subject to the linearized constraints

0@Gon).|" o
ou L Autt = —((gn,h)j)
(Aj)i+1 _ 0
8(7—‘{) Z i ) 7 7
| ) 4 () () =0
0 ! Z ; % 7
) A (0) + (7)) =0

Update solution vector
Update u' ™! < u’ + Auit!

Update inactive and active sets
Set A*! and T to

AiJrl -

Check for convergence

if AT = A" and | Z(u!, X7)|| < ¢ then
| return solution vector (u’™, A*)

end

end

(KT(ui) + Koo, )J))Aui“ +C(u )N = —r(u, \)

Vi e A
Vi e T,

Vje S,

Vi e S

= {j €S (M) = ca((@uw)) < o},
{j €S ()™ —ea(@un))" > O}.
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the primal-dual active set strategy is used and described in Stadler [180], Kunisch and Stadler
[111] as well as Hiieber et al. [98] with the references therein. Whereas the work of Hiieber
and Wohlmuth [96] is, e.g., restricted to small deformation mortar contact problems, the work in
Popp et al. [158, 159] presents a consistent extension to finite deformation mortar contact.

5.5.2. Algebraic notation of the linear system

For developing efficient iterative solution strategies based on multigrid methods, one is primarily
interested in the structure of the linear systems in (5.43). A (two-solid body) contact problem can
be written in matrix vector notation as

K N1ANL K NM 0 0 0 } 0 0 A’u,/\/ I'}\Lfl
Kavvi Kuvm Kuz Kaa 0 i —M7  —M} A U/\; iy
0 Kiu Kz Kza Kowg 0 Dz Diy Ay ry
0 Kav Kuz Kaa  Kan, ! DLI DLA o I'}ft
| Auy | = A (5.46)
o 0  Kwz Knoa Kwono 1 0 - O || Aw I |
0 00 0 0 [T 0 [t 0
0 Nr¢ Nz Ny 0 ' 0 0 )\I g,
0 0 Fr  Fy4 0 1 0 Ty A 0

For ease of notation, the indices for the current Newton iteration 7 are dropped in (5.46). Ob-
viously, the 2 x 2 block matrix in (5.46) describes a linear system with a generalized saddle
point structure. The upper left block contains the entries of the tangential stiffness matrix and
linearized contact forces from (5.43a). Even though formulated for two solid bodies, the gen-
eralization for n solid bodies is straightforward and only a matter of notation. The upper right
block represents the coupling block C(u) from (5.41). The sixth row in (5.46) is equivalent to
the constraint (5.43c). Note that in our notation the matrix has 8 block rows but only 7 block
columns as the contact constraints for the active nodes have been split into the normal part for
the contact constraint (5.43b) and the tangential part for the consistent linearizations of the fric-
tionless contact condition in (5.43d) and (5.43e). The discrete vector g , contains all weighted
gap values associated with the active nodes at the contact interface.

Be aware that the linear system is non-symmetric due to the use of vector-valued Lagrange
multipliers. It is worth to mention that a scalar Lagrange multiplier would be sufficient for con-
straint enforcement in the frictionless case, which also would lead to a symmetric system. How-
ever, a more general formulation is preferred which can be extended by frictional constraints
resulting in non-symmetric problems anyway.

BrunfBen et al. [45] describe several general algorithmic solution concepts for structural con-
tact problems (without friction) including an Inexact Newton strategy, where already Ruge—
Stilben AMG methods are used. That is, a linear system close to (5.46) is solved iteratively us-
ing a preconditioned GMRES solver (cf. Appendix A) within the semi-smooth Newton method
(cf. Algorithm 9). Instead of classical AMG methods, smoothed aggregation AMG precondi-
tioners as introduced in Chapter 3 are explored for using with contact problems in this thesis.
Hence, equation (5.46) serves as a starting point for the next chapters to develop efficient pre-
conditioning techniques based on smoothed aggregation AMG methods.
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CHAPTER

Algebraic multigrid for contact problems
in condensed formulation

The saddle point structure of the linear systems in (5.46) poses a challenge for iterative solvers
and preconditioners such that standard iterative preconditioning methods cannot be used. By us-
ing so-called dual basis functions (see Section 5.4.2) one can condense out the Lagrange multipli-
ers and avoid the saddle point structure resulting in a condensed linear systems which should be
appropriate for standard iterative solvers. However, severe convergence problems are observed
when applying such iterative solvers, which make large scale contact simulations unfeasible, as
direct parallel linear solvers are not a reasonable alternative any more (cf. Popp [156]).

With the background knowledge of the underlying problem from Section 5 and the in-depth
understanding of the multigrid algorithms one can identify the problems for the iterative solvers
induced by the contact formulation. The central contribution of this chapter is to show how it
is possible to obtain robust multigrid methods with only minimal changes to the standard algo-
rithms as presented in the Chapters 3 and 4 to enable aggregation-based AMG preconditioners
for condensed contact problems. Again one has maximal benefit from the flexible design of the
proposed multigrid framework (cf. Section 3.2.1) which can easily be adapted to the application-
specific needs. A cheap column permutation strategy helps to improve the matrix properties to
make them work with iterative multigrid methods. Moreover, a general observer mechanism
keeps track of potentially problematic matrix entries which allows the algorithms to react accord-
ingly. This leads to a substantial improvement of the robustness of the iterative linear solution
methods which can be considered a major step forward towards industrial applications. Even
though originally motivated by problems arising from contact mechanics in condensed formula-
tion, all strategies in this chapter are more general and work for all kind of linear systems.

To the best of the author’s knowledge this work is the first which successfully applies smoothed
aggregation AMG preconditioners to problems arising from contact mechanics in a condensed
formulation. This is demonstrated for large scale examples with more than one million degrees
of freedom.
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6.1. Structural contact problems in condensed formulation

6.1.1. Condensation

Dual basis functions as described in Section 5.4.2 can be exploited to simplify the linear system
(5.46) from Section 5.5.2. Due to the bi-orthogonality condition (5.30) of the dual basis func-
tions, the mortar matrices D 47 as well as Dz 4 in (5.46) vanish and the mortar matrices D 44 as
well as D77 reduce to diagonal matrices.

Consequently, the saddle point system from Section 5.5.2 has the form

Kvive Kyt 0 0 0 ! 0 0 Aw riv,
Kvnvi Ko Kuz Kva 00 =M =M A uNl riy
0 Ko Kz Kza Koy, 1D 0 AuM ry
0 Kam Kazr Kaa Kany | 0 Dy A || 4 6.1)
00 Kur Kna Kue i 0 0 ff 0 |
0 0 0 0 o 110 R 0
0 Nro Nz Ny 0 ! 0 0 AZ g,
0 0 Fz  Fyu 0 1 0 T4 A 0

with the diagonal matrix blocks D 44 and Dzz. The diagonal form of the mortar block D gives
rise to the condensation of the Lagrange multipliers A from (6.1) allowing to avoid the saddle
point structure. First, the sixth row and column in the system matrix (6.1) is removed making use
of the fact that Az = 0. This way, one gets rid of the Lagrange multipliers Az associated with
the inactive nodes. Secondly, one can condense the Lagrange multipliers A 4 associated with the
active nodes using

Ay = D;&‘(—I‘Z — KamAupy — KuzAuz — KgaAuy — KAN2AU’N2) (6.2)

from the fourth row in (6.1). Introducing P 4 := D;&M A, the condensed system has the form

Ky, Ka,m 0 0 0
Kvnvi Kum +PIKav Kuz +PLKaz  Kua + PLKaa PLK AN,
0 Kzm Kzz Kza Kzns _
0 N v Ny N, 0 Au = -t
0 —TuDKuu Fr—TuDiKur Fa—TuDiKua —TaDZKan,
0 0 KNQZ KNQA KNQNQ
(6.3)
with
AUN r}\LflT
ANTRY M Lu At A
Au = | Auz and r= gI (6.4)
A’U,A 'A_ u
Auy, _TADAZI'A
r}\‘/2

the solution increment and right-hand side vector. There are no Lagrange multipliers in the so-
lution vector left, but the system still contains the normal contact constraints in the fourth row
without any difference compared to (6.1). The same is true for the right-hand side vector r in
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(6.4), which also contains the discrete gap information in the fourth row corresponding to the
normal contact constraints. Therefore, one should pay attention when defining reasonable stop-
ping criteria for the nonlinear solver or change to a fully incremental formulation (also for the
contact constraints). As one can see from the second and fifth row in (6.3), the information from
the active nodes at the slave side is projected onto the master nodes and incorporated in the
friction constraints using the mortar blocks. From the AMG perspective, the linear operator in
(6.3) is very challenging. The fine level matrix is structurally non-symmetric containing mixed
equations with a differing mathematical and physical origin (structural equations and contact
constraints). Therefore, the standard aggregation routine from Section 3.3 can neither separate
the two solid bodies that are involved in the example, nor distinguish effectively the different
meaning of equations. The level smoothers may work fine for degrees of freedoms associated
with the inner nodes, but the degrees of freedom representing the contact interface may turn out
to be problematic. Nevertheless, by avoiding the saddle point structure, dual Lagrange multipli-
ers give rise to more efficient iterative solvers and sparse local stiffness matrices. Furthermore,
dual Lagrange multipliers are known to provide the same accuracy as standard Lagrange multi-
pliers (cf. Wohlmuth [226]). Before beginning with an in-depth analysis of the linear operator in
(6.3), a short review is given on other existing multigrid approaches for mortar methods.

6.1.2. Multigrid methods for mortar finite elements

In between one can find some publications (e.g., Hiieber et al. [97, 98]), which apply mortar finite
element methods with dual basis functions to contact problems. Some of them even mention the
usage of multigrid methods as solution strategies but without giving concrete details.

In Krause and Wohlmuth [110] as well as Wohlmuth and Krause [227] the authors introduce
a multigrid method based on the unconstrained product space for mortar finite element dis-
cretizations making use of dual basis functions for the Lagrange multipliers. Since our contact
formulation is based on mortar finite element techniques, it may be worth to study this method to
develop an aggregation-based AMG method for the condensed contact formulation as introduced
in Section 6.1.1.

In the following the method proposed in Wohlmuth and Krause [227] is transformed to our
notation. It is based on the unconstrained solution space U, where the mortar constraints are
satisfied using an internal projection. Algebraically, the authors suggest the usage of a modified
restriction operator

Rt i= (1= (C(w),,,WIL ) Rena (6.5)
with the coupling matrix blocks from (5.41) and the new operator
W, = (00D 0). (6.6)
mod ;

Using (5.41), a simple calculation shows that Zj'] is given by

1

I —MTD™! =

Ry = 0 Rps1. (6.7)

/+1
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6. Algebraic multigrid for contact problems in condensed formulation

Note that MTD~! in (6.7) corresponds to the transpose of the mortar projection operator P in-
troduced in context of (6.3). If WZTW = 0, i.e., the fine level residuum r, vanishes after 14, > 1
smoothing steps for the non-mortar slave degrees of freedom, it immediately follows from (6.7)
that

W/, Ryry = Wy, 701 = 0. (6.8)

As a consequence, 1,1 also vanishes for the non-mortar slave degrees of freedom. In order to
satisfy
W, 7, =0 (6.9)

exactly on the fine level /, a special class of level smoothers is necessary. One can easily modify
existing smoothers by adding one post-processing step that fixes the smoothed solution vector to
comply with (6.9).

From (6.7) it is clear that the modified restriction operator (6.5) ignores the slave side degrees
of freedom in the sense that they are added to the master degrees of freedom using the mortar
projection operator P. Hence, they do not take part in the multigrid coarsening process itself. This
works as special level smoothers are used to adapt the solution increment vectors accordingly.
In fact, with the modified restriction operators based on the mortar projection operator P and
the special level smoothers there are quite a lot of intrinsic adaptions in the multigrid method
necessary where the multigrid method is very closely tied to the mortar application. Note that the
naive usage of the modified restriction operator would also lead to singular coarse level matrices
(when a Galerkin type coarsening is used) and therefore makes further reformulations of the
problem necessary.

The method is admittedly designed and proven to work for mortar finite element problems
producing nice results (cf. Krause and Wohlmuth [110], Wohlmuth [223], Wohlmuth and Krause
[227]). However, structural contact problems bring some more complexities (such as frictional
terms and effects from the (nonlinear) contact search). Nevertheless, the method can serve as
inspiration for adapted multigrid methods for structural contact problems in a condensed formu-
lation.

6.1.3. Concept and outline

In this chapter a new aggregation-based AMG method is developed for structural contact prob-
lems in condensed formulation as given in (6.3). The basic concept is to keep necessary special
adaptions to standard multigrid algorithms as minimal as possible. That is, the contact multigrid
algorithms should not rely on special modifications of the transfer operators as the approach
presented in Wohlmuth and Krause [227].

In Section 6.2 the effect of standard plain aggregation AMG methods is studied when applied
to condensed contact problems as given in (6.3). Then, one uses the findings from Section 6.2
to develop the multigrid methods presented in the Sections 6.3 and 6.4. Our first approach with
the Hybrid PA-AMG method in Section 6.3 transfers the possibly problematic slave nodes one-
to-one to the coarsest level. This way, the direct solver on the coarsest level can take care of the
problematic part of the linear system. In some sense, this idea is similar to the multigrid method
for mortar finite elements from Wohlmuth and Krause [227] as reviewed in Section 6.1.2, since
the nodes at the slave contact interface are not involved in the multigrid coarsening. While they
are completely ignored and projected onto the master side in the method from Wohlmuth and
Krause [227], they are all kept without coarsening in the approach of this thesis. Hence, there is

98



6.2. Naive approach

no need for a modified restriction operator and special level smoother classes in our approach.
One just has to adapt the input matrices to generate single node aggregates for the slave nodes
making sure that the solution increment is not disturbed in the level smoothers. This is a trivial
adaption of the input for the aggregation method without touching the standard algorithms.

With the Contact PA-AMG method in Section 6.4, a full multigrid method is established
for structural contact problems, which also incorporates the slave degrees of freedom in the
coarsening process, whenever possible. One applies a special column permutation strategy to
algebraically fix the linear systems arising from structural contact problems to work with the
standard level smoothers. Again, one can follow the philosophy of keeping the changes of the
multigrid method minimal. Note that the underlying physics of the problem is not changed but
the multigrid algorithms are just supplied with appropriate information.

6.2. Naive approach

As a starting point, first the aggregation-based AMG method as introduced in Section 3 is naively
applied to a simple two solid bodies test example in a condensed formulation resulting in lin-
ear systems of the form (6.3). This allows us to study the problems, which make the standard
aggregation-based AMG methods fail.

6.2.1. Two solid bodies example

A simple 3D contact example is used as shown in Figure 6.1. Looking exemplarily at the case
a, = a, = 0, one has two solid bodies with the same material parameters using a NeoHookean
material (pg = 0.1%, E =10 GPa, v = 0.3). The initial gap between the two solid bodies is 0.02
units. The upper solid body (size: 0.8 x 0.8 x 0.5 units) is moving down with constant velocity
along the normal to the contact interface towards the lower fixed solid body (size: 1.0 x 1.0 x 1.0
units). If not stated otherwise, a 10 x 10x 10 mesh is used for the discretization of each solid body.
The simulation needs 50 time steps with a time step size of 0.01s on 4 processors. After 6 time
steps (t = 0.06s) both bodies come into contact and are deformed. In this example frictionless
contact is assumed. The idea is to reduce contact-specific effects (contact search for active set of
nodes) to a minimum, such that one can focus on the linear solvers. That is, the contact zone is
not changing once the two solid bodies are in contact.

Of course, one expects the behavior of the linear solver to be independent of the exact geo-
metric configuration. In particular, the number of linear iterations should be independent of the
rotation angles o, and o, since the underlying physics is not changing. For reasons of symmetry
it is sufficient to vary a,, and «, within 0 < o, a; < 7.

6.2.2. Results for naive multigrid approach

The linear problem (6.3) has no saddle point structure any more due to the condensation of
the Lagrange multipliers. Therefore, it is possible to apply some standard iterative methods to
solve the linear system including aggregation-based AMG methods as described in Chapter 3.
In particular, the choice of non-smoothed transfer operators (cf. Section 3.4) should result in a
robust method that can deal with the topologically non-symmetric problem in (6.3).

In each time step, the nonlinear solver (see Section 5.5.1) is supposed to be converged if

[r%]], < 107® A ||Aul], < 107® (6.10)
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Material: NeoHooke
po = 0.1%
E =10 GPa
v=20.3

Timestep size: 0.01s

Time steps: 50

Mesh: 10 x 10 x 10

Figure 6.1.: Two solid bodies example — Geometric configuration and model parameters for two
solid bodies example.

holds for the (nonlinear) residual r* and the displacement increment Aw. The linear solver
tolerance for the relative (linear) residual is set to

k

S| < 1078, (6.11)

e

where r* denotes the (linear) residual in the iteration step k = 0, . . ., kyax of the linear GMRES
solver.

Remark 6.2.1 (Stopping criteria). The combination of nonlinear and linear stopping criteria and
solver tolerances in (6.10) and (6.11) are only exemplarily chosen and by no means meant to be
optimal. The primary focus of this thesis is the behavior of the linear iterative solver. Therefore,
a fixed tolerance is used for the linear system, which in practice may be too strong.

Table 6.1 gives the average number of linear GMRES iterations per nonlinear iteration over
all 50 time steps for different rotation angles o, and .. The number in brackets shows the
maximum number of linear iterations needed in some time step during the simulation. The “—”
means that the 50 time steps could not be finished successfully. Depending on the rotation angles
o, and o, the simulation either fails to converge in some time step or even diverges immediately
after first contact in the first linear system, when using a standard 3 level aggregation-based
AMG preconditioner with non-smoothed transfer operators, 3 sweeps of damped symmetric
Gauss—Seidel (0.7) as level smoothers and a direct solver on the coarsest level.

6.2.2.1. Non-diagonally dominant fine level matrix

A closer look at the specific problems reveals that, depending on the rotation angles «,, and o,
the system matrix (6.3) becomes non-diagonally dominant. This is particularly the case if the
normal-tangential coordinate system, that is used at the contact slave interface for the contact
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Qy
0 éw %lw gw %71'
0 _ _ _ _ _
- - - - -
< i - 57.1 (70) - - -
dr | 25.8(32) - - - -
5T 23.9(28) - - - -

Table 6.1.: Two solid bodies example — Average (maximum) number of linear GMRES iterations
per nonlinear iteration (over all time steps) for different rotation angles o, and o,. A
standard AMG (3 levels, 3 SGS (0.7) on all intermediate levels, direct solver on the
coarsest level, minimum aggregate size: 9) is used as preconditioner.

(@) ay =0and a; = 0 (b)ay =0and o, = Im (©)ay=0and o, = 7
- 0.000 1000 0.000 - ~ 1.000 -1.000 0.000 - ~ 1000 0.000 0.000 -
1000 0424 -0.266 - 0404 1000 -0264 - 0424 1.000 -0.266 -

-+ -0.266 -0.424 1.000 -- ~ 0.112  -0.488 1.000 -- -~ 0424 -0.266 1.000 --

Figure 6.2.: Two solid bodies example — 3 x 3 diagonal block from matrix A associated with
slave node at contact interface resulting from two solid bodies example with a very
coarse discretization (2 x 2 x 2 nodes per block) for given o, and «. The matrix
entries are equilibrated using the inverse of the maximum entry in each matrix row.

constraints, does not align with the cartesian coordinate system, that is used for the modeling of
the structural equations. With the knowledge that the contact constraints are described in local
coordinates based on the normal and tangential vectors at the contact interface, one finds that
for a, = a, = 0 the normal vector at the contact interface is orthogonal to the cartesian x-axis
(cf. Figure 6.1). Consequently, one obtains non-diagonally dominant rows for the corresponding
nodes at the contact interface where the diagonal entries tend to zero. For the case a, = 0 and
o, = %71', the normal-tangential coordinate system at the contact interface is aligned with the
cartesian coordinate system. The resulting linear systems are diagonal dominant, such that the
level smoother is effective (cf. Table 6.1). This can also be verified by the following simple
example:

Example 6.2.2 (Diagonal dominance of rows corresponding to slave contact nodes). The two
solid bodies example from Section 6.2.1 is used with a very coarse discretization of 2 x 2 x 2
nodes for each block. Then, the system matrix A in the first linear system in time step 6 after
first contact occurs. One of the corner nodes at the contact interface is picked out for comparing
the 3 x 3 block diagonal associated with that node in the system matrix A.
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6. Algebraic multigrid for contact problems in condensed formulation

For this example, a node-wise ordering of the contact constraint equations is used with the
normal contact constraint equation in the first row followed by two equations for the tangential
constraints for each node at the contact interface. Figure 6.2 shows the 3 x 3 block diagonal
of A associated with the chosen corner node for different combinations of «,, and «,. The matrix
entries have been equilibrated using the inverse of the maximum entry in each matrix row, such
that the matrix is known to be diagonal dominant if the diagonal entries have all the absolute
value of 1.0. As one can see from Figure 6.2a, the matrix rows associated with the slave nodes
have a zero entry on the diagonal in the case o, = a, = 0. This example demonstrates that the
matrix is not diagonal dominant if the normal vector at the contact interface is orthogonal to the
cartesian z-axis. With the geometric configuration from Figure 6.1 it is obvious that for a, = 0
the normal vector at the contact interface is aligned with the cartesian y-axis. The consequence
is that for such nodes the first row representing the contact normal constraint is related with the
second column associated with the cartesian y-axis. Since the cartesian y-axis and the contact
normal vector are perfectly aligned in case o, = 0, one obtains a zero entry on the diagonal in
the first row. With an increasing angle «, also the diagonal dominance of the 3 x 3 diagonal
block is increasing, such that for a, = %71’ one obtains a weakly diagonally dominant matrix
block (see Figure 6.2b). For o, = 0 and o, = %71' the contact normal vector and the x-axis are
aligned resulting in the diagonal dominant matrix given in Figure 6.2c.

So, one can see that the local ordering of the equations per node may cause extreme problems
for the iterative smoothers within a multigrid method.

Remark 6.2.3 (Near null space). Beside the problems for the level smoother caused by the non-
diagonally dominant matrix rows, there might also be a problem with the near null space vectors
and the resulting pattern for the tentative transfer operators. For structural contact problems the
rigid body modes provided by the finite element application are used as near null space vectors,
which consist of the translatory modes and the rotatory modes in a fixed ordering based on the
cartesian coordinates. If, e.g., the contact normal vector is orthogonal to the cartesian z-axis
(e.g., for a, = 0 in Example 6.2.2), the nonzero pattern for the tentative prolongation operator
is valid for a standard ordering in cartesian coordinates, but does not fit to the sparsity pattern
of A with zeros on the diagonal. This hurts prerequisite (N2) in Section 3.4.1. In the worst case
one obtains a singular coarse level matrix. For mortar contact formulations only linear momen-
tum conservation is guaranteed (cf. Popp [156, Section 4.2.6]), which means that the constant
translatory rigid body modes are a good approximation for the null space. However, angular
momentum conservation is often not fulfilled exactly (at least without extra costs), such that the
rotatory rigid body modes only provide a very rough approximation of the near null space. Nev-
ertheless, in practice, one still can use the provided rigid body modes as approximation for the
near null space as long as (N2) is not hurt.

6.2.2.2. Interface aggregates

With the system matrix given in (6.3) as input for the aggregation algorithm (see Section 3.3), the
resulting aggregates may cross the contact interface. The aggregation algorithm cannot distin-
guish between the contact constraints and the structural equations which have a different charac-
ter. Even though this is algebraically tolerable, it means from the physical point of view that the
two solid bodies are melt together in the coarse representation (see also Figure 6.3a). From the
mathematical point of view, both the information from the structural equations and the contact
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constraints are contained in the same aggregate. Consequently, on the coarse levels there is no
clear distinction between structural equations and coarse contact constraints possible.

Therefore, aggregates that cross the contact interface may have some negative effect on the
convergence not only when trying to reuse the full preconditioner (or only parts) for later calls
to the linear solver. Mixing up contact constraints and structural equations in the same aggregate
may degrade the overall behavior of the multigrid method, since the prolongation may not be
able to recover the displacement variables appropriately by using mixed information from the
coarse grid correction.

6.2.3. Multigrid approaches for non-diagonally dominant problems

Of course, one could apply node-based level smoothers, such as block Gauss—Seidel or block Ja-
cobi methods, to overcome the issue of possibly non-diagonally dominant matrices. In contrary
to DOF-based (or point-based) relaxation methods as introduced in Section 2.1.1, the block vari-
ants internally solve the local 3 x 3 (or 6 x 6) systems for each node using a direct solver,
which again would internally use some pivoting strategy to improve the diagonal dominance
and overcome issues with zeros on the diagonal. With the methods from Section 6.3 and 6.4,
a completely different approach is followed: the input matrices are carefully adapted without
changing the underlying problem to make it work for multigrid methods. So, instead of devel-
oping highly specialized multigrid strategies, no (or only minimal) adaptions are necessary in
an existing multigrid code. With the Hybrid PA-AMG approach from Section 6.3 the coarsen-
ing at the contact interface is skipped and therefore the problems from the contact formulation
during the multigrid setup phase are bypassed. In the Contact PA-AMG method from Section
6.4 one tries to improve the fine level input matrix Ay by applying some permutation strategy
together with some other enhancements to increase the overall robustness. The idea is somewhat
similar to pivoting strategies known from direct solvers. But the global permutation strategy has
the significant advantage that the permutation has to be done only once in the beginning for all
possibly problematic matrix entries. Then, one can use the improved fine level matrix as input
for standard multigrid methods even with DOF-based level smoothers. Once the input matrix is
diagonally dominant, one can also apply standard transfer operator smoothing strategies without
contact specific changes.

6.3. Hybrid direct-iterative AMG

As one can learn from the results in Section 6.2.2, the problematic rows in the system matrix
(6.3) are associated with the nodes at the contact interface. In particular, the fourth and fifth
block row in (6.3) and (6.4) turn out to be problematic with possibly non-diagonally dominant
rows describing the contact (and frictional) constraints.

6.3.1. The Hybrid PA-AMG approach

In the Hybrid PA-AMG approach one tries to circumvent the problem of non-diagonally domi-
nant rows which make standard relaxation-based level smoothers fail. It is based on the following
two key concepts:

(H1) Single node aggregates: First, one puts all the slave nodes into single node aggregates to
have a one-to-one representation of the slave contact degrees of freedom on all multigrid
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levels. Then, the direct coarse grid solver can take care of the problematic slave contact de-
grees of freedom. Figure 6.3b shows the aggregates used for the Hybrid PA-AMG method
in comparison to standard aggregation without special handling of the contact slave nodes
in Figure 6.3a for the two solid bodies example from Section 6.2.1. One can clearly see the
layer of single node aggregates which separates the two solid bodies at the slave contact
interface. Note that the aggregation parameters in Figure 6.3 have been adapted to produce
similar coarsening rates for both cases. For producing single node aggregates only the in-
put matrix for the aggregation routines is modified, such that no changes are necessary in
the aggregation procedures.

(H2) Level smoother input: In addition to (H1), the level smoothers must not disturb the fine
level solution at the contact interface. In the Hybrid PA-AMG approach, one forces the
level smoothers on the finest and intermediate levels to keep the entries in the solution
vector corresponding to the slave node degrees of freedom to be fixed. This way one pre-
vents the level smoothers from inciting error modes caused by the non-diagonally domi-
nant rows. Technically, some artificial Dirichlet-like conditions are temporarily put on the
slave contact interface rows of the input matrices for the level smoothers. So, no changes
are necessary in the level smoother algorithms except a slight temporary modification of
the input.

With (H1) and (H2) the contact constraints are transferred one-to-one to the coarsest level, where
they are solved exactly by the direct coarse grid solver without disturbing the solution increment
vector on the fine level for the slave contact degrees of freedom

Remark 6.3.1 (User provided information). The Hybrid PA-AMG algorithm needs the outer
nonlinear semi-smooth Newton method to provide the information on the slave contact interface.
As a consequence the Hybrid PA-AMG method is not a black-box method in the classical sense,
since additional information has to be provided from outside.

Remark 6.3.2 (Implementation details). With the contact slave degrees of freedom provided by
the outer semi-smooth Newton method, the extension of the aggregation method for single node
aggregates is straightforward. The tricky part however comes with the local QR-decomposition
for building the non-smoothed transfer operators P, since the QR-decomposition is not defined
for problems with the number of degrees of freedom per node to be smaller than the number of
null space vectors. In case of 3D elasticity one has 3 displacement degrees of freedom per node
versus 6 near null space vectors described by the rigid body modes (cf. Remark 3.4.2). For single
node aggregates it is necessary to transfer the corresponding fine level near null space informa-
tion 1-to-1 to the coarse level appropriately. One can either bypass the local QR-decomposition
or add support for a variable number of degrees of freedom per node. In our implementation the
first option is used. Nevertheless, the necessary changes in the algorithms are minor compared to
introducing special modified restriction operators and may help to increase the overall robustness
of the multigrid algorithms.

6.3.2. Numerical results for test example

The Hybrid PA-AMG approach is tested using the same settings as in Section 6.2.2 with the
same geometric setup and the solver tolerances as given in (6.10) and (6.11). Table 6.2 shows
that the average number (maximum number) of linear iterations is constant for a wide range of

104



6.3. Hybrid direct-iterative AMG

(a) Standard aggregation with aggregates cross- (b) Segregated aggregation with one point ag-
ing the contact interface gregates at the contact interface

Figure 6.3.: Two solid bodies example — Comparison of standard aggregates and segregated ag-
gregates of the Hybrid PA-AMG method in the reference coordinate system. In both
cases the aggregation parameters have been chosen to produce a similar number of
aggregates for a comparable coarsening rate.

Qry
0 %7‘(’ %17'(' gw %7‘(’
0] 32.1(234) 31.7(206) 46.7(206) 31.6(203) 32.0(229)
%W 29.1 (32) 29.1 (32) 29.1 (32) 29.1 (32) 32.0 (229)
< %ﬂT 29.1 (32) 29.1 (32) 29.1 (32) 29.1 (32) 32.0 (229)
%W 29.1 (32) 29.1 (32) 29.1 (32) 29.0 (32) 32.0 (229)
%W 29.1 (32) 29.1 (32) 29.1 (32) 29.1 (32) 36.1 (—)

Table 6.2.: Two solid bodies example — Average (maximum) number of linear GMRES iterations
per nonlinear iteration (over all time steps) for different rotation angles «, and ..
Hybrid PA-AMG (3 levels, 3 SGS (0.7) on all intermediate levels, direct solver on
the coarsest level, minimum aggregate size: 9) is used as preconditioner.
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rotation angles o, and . Only for o, = 17 or e, = 0 the average number of iterations is
disturbed by a significantly higher maximum number of iterations. A closer look at these prob-
lematic configurations reveals that only the first linear system within the nonlinear solver after
first contact turns out to be hard to solve leading to the high iteration numbers in Table 6.2. This
problem is related to temporary negative effects for the matrix conditioning resulting from the
tangential coordinate vectors at the contact interface in relation to the global cartesian coordinate
system, leading to nearly singular systems. However, it is known from our experiments that —
once the contact is established — all other linear systems show exactly the same convergence be-
havior as for all other choices of o, and a,. One can overcome these type of issues by strategies
introduced in Section 6.4.

Compared with the naive approach from Section 6.2, the Hybrid PA-AMG approach is a
robust method that can deal with linear systems arising from the condensed contact formulation.
Nevertheless, from the multigrid point of view the Hybrid PA-AMG method is not satisfactory,
since the coarsening rate is suffering from the single node aggregates at the contact interface.
For real world problems one will see a notable drop in the convergence rate, especially if the
contact interface becomes dominant compared to the inner structural domain (see Section 6.5).
In fact, the Hybrid PA-AMG method does not comply with the multigrid concept, since it is not
using multigrid principles at the contact interface at all. This motivates the next section where a
full multigrid method for structural contact problems is introduced.

6.4. Full AMG for structural contact problems

Whereas the Hybrid PA-AMG method treats all possibly problematic nodes in a very conserva-
tive way, one now tries to relax that behavior and use algebraic considerations to design a full
multigrid method which also considers the nodes at the contact interface during the coarsening
process.

6.4.1. Permutation strategy

For the experiments with the condensed contact formulations, one finds the system matrix A
to be possibly non-diagonally dominant for the rows associated with the slave contact degrees
of freedom. If the contact normal is orthogonal to the cartesian x-axis, one even can have ze-
ros on the diagonal of A (see Example 6.2.2), which is disastrous for smoothing methods like
Jacobi both for the level smoothing (cf. Section 2.1) and the optional transfer operator smooth-
ing (cf. Section 3.5). It is a well known fact that relaxation-based methods (such as Jacobi or
Gauss—Seidel) rely on the inverse of the diagonal of the system matrix A and therefore fail, if
there are close-to-zero entries on the diagonal. Vice versa, it is evident that increasing the di-
agonal dominance of A is beneficial for convergence of relaxation-based methods. Therefore,
row and column permutation operators ¥, and ¥, are introduced which are supposed to improve
the diagonal dominance of the permuted linear system AY := W, AW¥,.. From the solution 2"
of the permuted linear system AYzY = Wb one can easily retain the solution of the original
non-permuted linear system by z = ¥ 2.

Remark 6.4.1 (Motivation). Note that the motivation behind the permutation is purely algebraic
to improve the matrix properties for iterative solvers. By intention, the permutation operators are
chosen to be ¥, # W, such that A and AY are not unitarily equivalent. The idea is to improve
the eigenvalue spectrum of the permuted operator A¥ compared to the original operator A.
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Be aware that there are no assumptions made on the prerequisites of A. Therefore, one has
no guarantee to find permutation operators W,. and W, which improve the matrix properties with
regard to the diagonal dominance of A.

6.4.1.1. Diagonal dominance in a multigrid context

As already stated in Chapter 2, a multigrid method can be understood as applying a sequence
of cheap iterative smoothing methods on different levels, making use of the fact that high-
oscillatory error components are damped out quickly on finer levels. Thus, it is clear that a multi-
grid method can only work, if the input matrix fulfills the minimum requirements for the level
smoothers to damp out the error components effectively. For the common choice of relaxation-
based smoothers this includes the diagonal dominance of the level matrix. To improve the diago-
nal dominance of the level matrices Ay, it is worth to briefly discuss different ways to incorporate
the permutation strategy in the multigrid context.

First of all, one could think about combining the permutation operators with the transfer op-
erators to improve the diagonal dominance of the coarse level matrices, i.e.,

A, = R{"AyP}", (6.12)

where R;I’T = RV, and pr ¢ := W_.P; describe the permuted transfer operators. However,
replacing the standard Galerkin product (2.6) with the non-permuted transfer operators P; and
R, by the expression in (6.12) would not fix the convergence problem, since the level smoothers
on the finest level ¢ = 0 would still fail, when using the non-permuted non-diagonally dominant
matrix A, as input. Instead of some special handling for the level smoothers on the finest level,
it makes more sense to use the permuted matrix Ay := ¥, AW, as input for the whole multigrid
method both for the level smoothers on the finest level and the transfer operators. Then, one can
also use the standard Galerkin product with the permuted level matrix, i.e.,

Ay = Ry (U, AgV.) P = RiAy Py (6.13)

Note that 6.12 and (6.13) are equivalent.

Once the diagonal dominance of the input matrix has been restored by the permutation strat-
egy, it is preserved on the coarser levels as long as reasonably smoothed transfer operators are
used. Therefore, it is sufficient to fix the diagonal dominance of the input matrix A, on the finest
level only. The reader is referred to Section 3.5 for more details on the principle of prolongation
smoothing and to Appendix B for a small study on the influence of transfer operator smoothing
to the diagonal dominance of the coarse level matrices.

6.4.1.2. Constrained permutation strategy

For reasons of algorithmic efficiency it is important to keep the computational costs for finding
the permutation operators W, and W, low. Our permutation strategy is based on the following
constraints:

(P1) Column permutations only: First of all, one chooses ¥, = I, i.e., one performs column
permutations only. This way, one can half the computational costs per definition.

Remark 6.4.2 (Row permutations versus column permutations). Due to technical reasons
in context of parallelization it is advantageous to perform column permutations only. Forc-
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ing the row permutation to be the identity operator inherently avoids communication of
row information over processors, which would be necessary when permuting rows be-
longing to different processors. Column permutations do not affect the inter-processor
communication pattern of the distributed level matrices A,.

(P2) Slave degrees of freedom only: It would be against intuition if additional knowledge about
the problem and the linear system would not be helpful to increase efficiency and per-
formance of the solution strategy. Assuming that the rows and columns associated with
the slave degrees of freedom at the contact interface are known, one can further reduce
the computational complexity: Instead of defining a global column permutation mapping
v {1,...,n0} — {1,...,no}, one restricts the set of candidates for column permutations
to the slave degrees of freedom Dg only. That is, one uses

1p3 : DS — Dg,i — ’Lpg(’o (6.14)

Note that this simplification is optional, but can drastically reduce the computational costs
depending on the number of slave degrees of freedom. One could even further reduce the
number of candidates for column permutations by using the degrees of freedom corre-
sponding to the active slave nodes D 4 instead of Dg.

(P3) Node-internal column permutations only: To improve the diagonal dominance of A, it
is sufficient to allow only permutations of columns belonging to the same mesh node.
This way, one can prevent an artificial mix-up of node information through global column
permutations, but keep the underlying physical meaning of the degrees of freedom in each
node. Another side-effect of this constraint is that the aggregation algorithm is not affected
by such column permutations at all, since the node connectivity is not changed (cf. Section
3.3).

Considering above constraints the optimal column permutation strategy maximizes the diag-
onal dominance of the permuted matrix Aj. For a mathematical description of the permutation
operator V. the following optimization problem is introduced:

Definition 6.4.3 (Mathematical description of constrained permutation). Let Ds describe the ng
degrees of freedom associated with the mgs nodes S at the slave side of the contact interface.
Furthermore, the mapping n|p, from Definition 3.3.1 restricted to the set of slave degrees of
freedom Dg, defines the mapping

nlps : Ds = S (6.15)

between the slave degrees of freedom and the corresponding slave nodes S. Then, the bijective
permutation mapping ¢s : Ds — Ds, i — 1s(i) is mathematically defined by the solution of
the constrained optimization problem

max 1T A0l
i€Ds (6.16)

subject to  n|p, (i) — nlps(¢s(i)) =0 Vi€ Ds.
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In (6.16) the A, ; denotes the entry of the matrix A in the ¢-th row and j-th column. The column
permutation operator follows directly from the permutation mapping ¥’s using

1 ifi=jandi ¢ Dg,
U.=(V¥,), =41 ifj=1s(i)andi € D, (6.17)
0 otherwise,

forallz,7 =1,...,ng.

The maximum product transversal [ [;p ‘A@',w(i)’ in (6.16) is a common way to measure the
diagonal dominance of a matrix (cf. Duff and Koster [55], Olschowka and Neumaier [149]).

6.4.1.3. Computational complexity and further improvements

In general, it can be a quite complex task to find the optimal permutation maximizing a diagonal
dominance criterion such as the maximum product transversal (cf. Duff and Koster [54, 55]).
In our case, thanks to the constraint (P3), the global optimum of the constrained optimization
problem in (6.16) is easily found by solving a small optimization problem for each slave node.
This way, one obtains the solution of the global constrained optimization problem as a combina-
tion of small optimization problems for each node. For a 2D problem one can either switch the
two columns corresponding to the node or skip the column permutation for the node. In a 3D
setting there are only six possible column permutations per node for the 3 corresponding matrix
columns. Thus, the computational costs for finding the best permutation scale linearly with the
number mgs of slave contact nodes S. Usually, it holds ms < mg, where mq denotes all nodes
on the finest level, and therefore the computational costs can be considered to be reasonably
small.

Remark 6.4.4 (Equilibration). Equilibration strategies are often used to improve the condition
number of the matrices for better convergence of the iterative solution methods (see, e.g., Bauer
[16], Sluis [179] and references therein). One can easily combine the column permutation with
a simple row scaling strategy to further improve the condition number of the permuted matrix
with nearly no additional extra costs, just by appropriately scaling the entries of V.. Of course,
it is possible to use a more sophisticated equilibration strategy instead of a simple row scaling.
An overview of different equilibration methods can be found, e.g., in Bradley [27].

6.4.1.4. Effect of permutation

To see the effect of the constrained column permutation strategy as described in Section 6.4.1.2,
one can take a look at the two solid bodies test example from Section 6.2.1 again using a 10 x
10 x 10 mesh for each of the two solid blocks. Thus, the contact interface at the slave side has
also 10 x 10 nodes with altogether 300 degrees of freedom.

Figure 6.4 plots the maximum number of close-to-zero diagonal entries with absolute values
smaller than 107° in the non-permuted equilibrated fine level matrix, which are known to be
problematic for relaxation-based methods applied either for level smoothing or transfer operator
smoothing. Comparing the data from Figure 6.4 with Figure 6.1, one finds that the column
permutation can be skipped, if the angle between the contact normal and the cartesian x-axis
is rather small. If the contact normal vector is orthogonal to the cartesian z-axis, one obtains
100 close-to-zero diagonal entries in time step 6 after first contact occurs. These entries belong
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Figure 6.4.: Two solid bodies example — Maximum number of diagonal entries of the non-
permuted system matrix with absolute values smaller than 10~° per time step.

to the 100 degrees of freedom at the contact slave interface describing the scalar normal contact
constraints. This corresponds to the effect observed in Example 6.2.2. Figure 6.4 also reveals,
how the number of close-to-zero entries on the diagonal is reduced with evolving time. This may
be the consequence of the deformation of the two solids at the contact interface resulting in an
increased collinearity of the x-axis and the contact interface normal vector. Applying the column
permutation enables the usage of iterative solvers for these linear systems by fixing problematic
non-diagonally dominant matrix rows.

Table 6.3 gives the maximum number of columns permuted by the permutation strategy en-
coded in different colors in combination with the average number of non-diagonally dominant
rows of the resulting permuted system matrix over the 50 time steps. Note that one can have 0, 2
or 3 permuted columns for each node. In our permutation algorithm the column permutation is
performed if the permuted system has a better or equal maximum product transversal as defined
in (6.16) than the non-permuted system. Obviously, one obtains diagonal dominant matrices,
when the angle between the contact normal vector and the cartesian z-axis is smaller than 40.0
degrees. One can also see, how the maximum number of column permutations is increasing for
greater angles o, and o,. The medium gray areas belong to the 200 permuted columns for the
scalar normal contact constraints at the 100 slave nodes. The dark gray color stands for 300
permuted columns, that is, all columns corresponding to the slave interface degrees of freedom
are permuted node-wise. The tick labels in the colorbar of Table 6.3 show the most frequent
maximum numbers of permuted columns.

Once the columns are permuted, the resulting fine level matrix may still have some non-
diagonally dominant entries. The permutation strategy is not perfect to fix the problem of locally
rotated coordinate systems in all cases. This can be seen in particular for the combinations of
o, and o, with a significant change of the number of permuted columns by the permutation
strategy (denoted by the colors in Table 6.3). The number of possibly problematic rows and
columns of the permuted linear systems is notably smaller than the expected maximum number
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ay in [°]

00 10.0 200 225 300 40.0 450 500 60.0 675 70.0 80.0 90.0

662 96.6
675 | 142 134 114 115 139 213
70.0 | 140 140 11.5 108 14.1 1938
80.0 | 140 140 139 129 167 182
90.0 | 15.1 14.0 140 142 177 178

Maximum number of column permutations

0 20 60 160 200 300

Table 6.3.: Two solid bodies example — Numbers: Average number of non-diagonally dominant
rows of system matrix (after performing permutations) for different rotation angles
a, and o;. Colors: Number of permuted columns to increase diagonal dominance of
permuted matrix.

of 300 possibly non-diagonally dominant rows that would have been chosen by the Hybrid PA-
AMG method in Section 6.3.1 for special handling with single node aggregates.

Remark 6.4.5 (Near null space and column permutation). Assuming that the column permutation
is able to remove zeros from the diagonal of the fine level operator A, it fixes the problem of
invalid sparsity patterns as described in Remark 6.2.3. However, the rigid body modes (especially
the rotatory modes) still cannot be considered to be optimal in the sense of (N1) from Section
3.4.1. But our numerical examples in Section 6.5 show that the rigid body modes provide a
sufficiently good approximation of the near null space modes, since the null space property is
only locally disturbed at the contact interface (similar to Dirichlet boundaries).

6.4.2. Observer principle for aggregation strategy and level smoothers

With the column permutation one has a general way to improve and fix the matrix properties
for the multigrid method. However, as one can already see from Table 6.3, the pure column
permutation has also its limitations. Since the diagonal dominance of the matrix is of great
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importance for the multigrid preconditioner, an observer mechanism is introduced which keeps
track of the local diagonal dominance of the rows of A. To keep the iterative methods working,
the following techniques are used to handle the remaining possibly problematic non-diagonally
dominant rows of A after the column permutation.

(S1) Single node aggregates: This is closely related to the Hybrid PA-AMG method described
in Section 6.3.1. However, instead of putting all slave nodes S into single node aggregates,
the information provided by the observer is used to only introduce single node aggregates
for the nodes which are non-diagonally dominant after applying the column permutation.

In comparison, the number of single node aggregates is significantly smaller than for the
Hybrid PA-AMG method.

(S2) Avoid diverging error modes in level smoothers: The entries in the solution vector asso-
ciated with non-diagonally dominant rows in the permuted matrix Ay are preserved by
introducing artificial Dirichlet-like conditions. This is important in combination with (S1)
to prevent the level smoothers from inciting oscillatory error modes in the solution vector
on the finest level.

(S3) Avoid prolongation smoothing at contact interface: To improve the convergence speed,
one can apply transfer operator smoothing strategies as described in Section 3.5. However,
since such transfer operator smoothing methods are based on Jacobi or Richardson-like
methods which heavily rely on the diagonal dominance of the matrix, the transfer operator
smoothing is skipped for the coarse basis functions at the contact interface. The matrix
entries corresponding to the slave contact interface (see fourth row in matrix (6.3)) cannot
be guaranteed to be appropriate for smoothing the transfer operator basis functions. Thus,
the optimal performance of smoothed transfer operators away from the contact interface
is combined with the robustness of non-smoothed transfer operators close to the slave
contact interface. One could use the tangential stiffness matrix for a valid smoothing of
the transfer operator basis functions. However, this information is usually not available for
the solver and it would be too costly to keep the data (see also Section 6.4.3).

Remark 6.4.6 (Comparison of the Contact PA-AMG method with Hybrid PA-AMG method).
The techniques (S1) together with (S2) correspond to (H1) and (H2) introduced in Section 6.3.1
for the Hybrid PA-AMG method. The main difference is that the Contact PA-AMG method uses
the observer mechanism and restricts the effect of (S1) and (S2) only to the nodes which are
detected to be problematic for the level smoothers and therefore must be treated carefully. The
observer mechanism makes the Contact PA-AMG method more like a black-box strategy, since it
automatically detects possibly problematic properties of the linear system for the inner iterative
procedures. Information about the contact interface from outside is helpful but not essential.

6.4.3. Segregated aggregates

In the system matrix (6.3), the two solid bodies are algebraically melt together, such that the
aggregation strategy from Section 3.3 may build aggregates that cross the contact interface (see
Figure 6.3a). Note that the equations in (6.3) describe both the momentum equations and the
contact constraints. While such crossing aggregates might be valid from the algebraical point of
view, it is clear that the aggregation strategy does not take the physical meaning of the different
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equations into account. In order to represent the underlying physics, a clean distinction of the
two solid bodies on all multigrid levels may be helpful for the overall solution process.

To avoid crossing aggregates, all coupling entries in A between the slave and master degrees
of freedom are temporarily ignored in the input matrix for the aggregation strategy (cf. Section
3.3). That is, instead of (6.3) one uses

Ky, K, m 0 0 0
K, KMM—FPLKAM 0 0 0
0 0 Kzz Kza Kzns
0 0 Nz N4 0
0 0 FI_TAD;&(KAI F 4 —TAD;&‘KAA _T.AD_,_4}4KAN2
0 0 Knsz Knsa Knons

(6.18)
as input for the aggregation algorithm (cf. Algorithm 3 in Section 3.3). Note that only the input
for the aggregation is adapted. The level smoothers still use the original level matrices with only
minor modifications resulting from the observer principle (see (S2) in Section 6.4.2).

Remark 6.4.7. In fact, for segregating the aggregates one should use the graph GG (KT(ul)) from
(5.44) without the linearized contact forces in K., (u’, X) instead of the graph of (6.18). How-
ever, the pure tangential stiffness matrix K (u') often is not available for the solver. Furthermore,
it would probably be too expensive to keep the tangential stiffness matrix extra in memory for
the aggregation.

Example 6.4.8 (Segregated aggregates). Figure 6.5b shows the effect of using (6.18) as input
for the aggregation strategy in contrast to the aggregation using the original full matrix (6.3). As
expected, the aggregates cannot cross the contact interface. Note that in Figure 6.5b the aggrega-
tion parameters have been chosen to produce one big aggregate for the upper solid body on the
slave side. Please also take notice of the four corner nodes at the slave contact interface, which
obviously are not added to the big aggregate. The observer algorithm found the corner nodes to
be problematic containing non-diagonally dominant rows. Therefore, they are aggregated into
single-node aggregates, which are not visualized in Figure 6.5b (cf. Section 6.4.2).

When using smoothed transfer operators (cf. Section 3.5), segregating the aggregates is not
sufficient to guarantee the coarse basis functions not to cross the contact interface. One also has
to adapt the transfer operator smoothing process accordingly.

Remark 6.4.9 (Transfer operator smoothing). The modified matrix from (6.18) must also be used
for prolongation smoothing to avoid artificial overlap of the transfer operator basis functions at
the contact interface due to the transfer operator smoothing (cf. Gee et al. [71]). Note that for
(S3) one should consider further modifications of (6.18) at the slave contact interface. Following
(3.11), the smoothed prolongator is built by

Priy = Proy — wD ' AcPry. (6.19)
For skipping the transfer operator smoothing at the slave contact interface, (6.19) is modified

using R R
Py = Py —wD'ATP, (6.20)
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(a) Standard aggregation with crossing ag- (b) Segregated aggregation with single-node ag-
gregates melting together the solid gregates only for problematic nodes at the
bodies on the coarse level. slave contact interface

Figure 6.5.: Two solid bodies example — Comparison of standard aggregates and segregated ag-
gregates of the Contact PA-AMG method in the reference coordinate system.

where D! is the inverse of the diagonal of the original (optionally permuted) matrix A, which
is used as input for the multigrid method. One has to make sure that the input matrix A, is
diagonally dominant in order to guarantee D" to be valid. The AT is defined as

Ky, K, m 00 0
Ko, KMM"’PLKAM 00 0
mod . 0 0 00 0
APt = 0 0 00 0 (6.21)
0 0 00 0
0 0 0 0 Kwn,

It is highly important to understand that the modified level matrices (6.18) and (6.21) are used
only for aggregation and transfer operator smoothing. The original (permuted) level matrix A is
still needed for building the level smoothers, such that one obtains a valid multigrid precondi-
tioner for the original system. Also note that it would be too costly to build the modified matrices
(6.18) and (6.21) explicitly and hold them in memory. Instead, one can easily incorporate the
corresponding effects into the algorithms.

Remark 6.4.10 (Transfer operator sparsity pattern). Instead of adapting the input for the aggre-
gation and prolongation smoothing using (6.18) and (6.21) one would obtain the same effect by
prescribing an adapted sparsity pattern for the transfer operators (cf. Section 4.4.4). However,
only very advanced transfer operator strategies allow for prescribing a transfer operator pattern
(e.g., Schur complement based transfer operators as described in Section 4.4 or the methods
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(a) Initial configuration ¢ = 0.0s. (b) First contact t = 0.06s. (c) Deformed state at t = 0.4s.

Figure 6.6.: Two solid bodies example (o, = «a, = 0) — Initial geometric configuration and
characteristic deformation stages for first contact and after 40 time steps.

from Olson et al. [153]). For the applications in this chapter, it is easier to adapt the input rather
than describe the sparsity patterns for the transfers.

6.5. Numerical examples
6.5.1. Two solid bodies example

With the two solid blocks example one can study the influence of the geometric configuration
(with the relative alignment of the cartesian and the contact interface coordinate systems) to the
behavior of the iterative linear solver. The geometric configuration is described in Section 6.2.1.
A 10 x 10 x 10 discretization is used for each solid body, such that the resulting linear system
has 6000 degrees of freedom. The rotation angles «, and ., are varied in the range of 0 and 7.
Each simulation runs 50 time steps with a time step size of 0.01s. Here, the condensed contact
formulation based on dual shape functions is applied. The simulations are performed using 4
processors but no timings are given, as they cannot be reasonable for such small examples.

The nonlinear iteration stops if ||r¥||, < 107% and ||Awul|, < 107® holds. The r* denotes the
(nonlinear) residual after ¢ Newton iterations and Awu denotes the displacement increment. The
GMRES method is chosen as the linear solver with a 3 level Contact PA-AMG preconditioner (3
SGS (0.7) for the fine and intermediate level smoother and a direct solver on the coarsest level).
For the linear solver the relative (linear) residual serves as stopping criterion which is given by

<1078, (6.22)

€

k
24

0
r;

where r¥ denotes the (linear) residual in the iteration step k = 0, ..., kpa Within Newton step
¢. Primarily interested in the behavior of the linear solver, very strong solver tolerances are
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Qy
0 %7? %‘7? %7? %7?
0] 21.2(23) 21.2(23) 21.2(23) 21.7 (23) 21.7 (23)
| 20.5 (24) 20.9 (23) 21.0 (23) 21.2(22) 21.3 (24)
s 1T | 21.2(23) 21.6 (24) 21.5 (24) 22.2(25) 23.9 (28)
%W 18.6 (20) 19.4 (21) 25.8 (29) 35.5 (44) 23.9 (26)
7| 18.6(19) 18.6 (21) 27.2 (33) 21.3 (24) 23.1 (25)

Table 6.4.: Two solid bodies example — Average (maximum) number of linear GMRES iterations
per nonlinear iteration (over all time steps) for different rotation angles a,, and c..
Contact PA-AMG with 3 levels (3 SGS (0.7) on all intermediate levels, direct solver
on the coarsest level, minimum aggregate size: 9) is used as preconditioner.

chosen to ensure that the results are comparable for the different multigrid methods introduced
in Sections 6.2 and 6.3.

Table 6.4 gives the average number of GMRES iterations per nonlinear iteration over all 50
time steps. The number in brackets denotes the maximum number of linear iterations that oc-
curred in the nonlinear solver during the simulation. Thanks to the column permutation (see Sec-
tion 6.4.1) and the additional strategies to increase the robustness, such as the observer principle
(see Section 6.4.2) and the segregated aggregates (see Section 6.4.3), the simulation succeeds for
all rotation angles «, and a,. The number of linear iterations for the Contact PA-AMG method
is also lower than for the Hybrid PA-AMG approach (cf. Table 6.2), but shows some higher vari-
ance. Nevertheless, compared to the results from Table 6.1, this is an enormous improvement
with regard to the robustness of the multigrid method.

The next examples are supposed to demonstrate the robustness for some more realistic contact
examples, where the contact interface is changing during the simulation. A comparison of the
performance and computational costs of the Hybrid PA-AMG and Contact PA-AMG method for
more realistic examples is also of interest.

6.5.2. 3D ironing example

With the 3D ironing example the behavior of the previously discussed multigrid methods from
Sections 6.3 and 6.4 is further studied for structural contact problems in the condensed formu-
lation. In this example, finite deformation contact of a half-spherical elastic die (Radius: 1 unit,
Neo-Hookean model, £} = 6896, v; = 0.32, p; = 1) intruding into an elastic block (dimen-
sions: 8 X 2 x 3 units, Neo-Hookean model, Fs = 689.6, 5 = 0.32 and p, = 1) is analyzed (see
Figure 6.7). First, the die is pressed into the block by prescribing a vertical displacement of 0.9
units in (negative) z-direction within 0.1s of simulation time (corresponding to 160 time steps
with time step size 6.25 - 107%s). Then, it slides along the block in x-direction for further 240
time steps until a prescribed horizontal displacement of 1 unit is reached, just to demonstrate the
robustness of the linear solver during the sliding phase. In this example, no friction is considered.
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PA-AMG Hybrid PA-AMG (SGS) Contact PA-AMG (SGS)
Transfer operator PA-AMG PA-AMG PA-AMG
Column permutation | — no yes
Segregated aggregates | — yes yes
Contact interface not used 1-to-1 (all levels) aggregated
Level smoother 3SGS (0.7) 3SGS 0.7 3 SGS (0.7)
Coarse solver direct (KLU) direct (KLU) direct (KLU)

Table 6.5.: 3D ironing example — Preconditioner variants and parameters.
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(a) Side view (b) Front view

Figure 6.7.: 3D ironing example — Problem setup.

Figure 6.8 shows some deformation states during the simulation and visualizes the mesh. For
discretization, 468352 4-node tetrahedral elements are used yielding linear interpolation on the
contact surfaces. The corresponding mesh has 84488 nodes, i.e., 253464 degrees of freedom.

In each time step, the Newton iteration is converged, if for the nonlinear residual vector r}* and
the displacement increment Aw holds ||r¥|, < 107% and ||Au||, < 107°. For the linear solver
the relative (linear) residual is checked for convergence using the criterion

<1076, (6.23)

K
i

0
||,

Again, ¥ denotes the (linear) residual in the iteration step k = 0, ..., knax oOf the linear solver
within a fixed Newton step 7. The linear system is formulated using the condensed contact for-
mulation with the Petrov—Galerkin approach for the basis functions (cf. Section 5.4.2).

Table 6.5 describes the different multigrid variants that are used as preconditioners within an
outer GMRES solver. The naive multigrid approach with a standard aggregation-based AMG
from Chapter 3 is compared with the special Hybrid PA-AMG method (see Section 6.3) and the
more advanced Contact PA-AMG method from Section 6.4. The maximum number of multigrid
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Figure 6.8.: 3D ironing example — Deformation at different times ¢

Method

Setup costs

Solver time Overall solver time

PA-AMG (SGS)
Hybrid PA-AMG (SGS)
Contact PA-AMG (SGS)

3242
3581

10354
2576

13596
6157

Table 6.6.: 3D ironing example — Solver timings in [s].

levels is 5 and the maximum size of the problem on the coarsest level is set to 15000 degrees of
freedom. Within the multigrid algorithm, an automatic rebalancing of the coarse level problem
is used which reduces the number of processors involved in the coarse level in such a way that
no processor can have less than 3000 degrees of freedom. The simulation runs on 32 processors
on the finest level, distributed over 2 nodes with 2 Xeon (E5-2670, 2.6 GHz) Octocore CPUs

each.

Figure 6.9a shows the accumulated number of linear iterations over the 400 time steps. That
is, the number of linear iterations of all Newton steps within one time step are summed up. The
red curve denotes the number of active nodes in each time step, after the active set has con-
verged. One can easily see, how the number of active nodes is increasing over the first 160 time
steps, when the die is intruding the block, whereas it remains rather constant during the sliding
phase. As expected, the naive non-smoothed aggregation-based AMG method fails and the cor-
responding simulation stops after about 50 time steps, when the contact gets more dominant. The
special contact multigrid methods Hybrid PA-AMG and Contact PA-AMG both are able to run
the simulation for the full simulation time with 400 time steps. The Contact PA-AMG method
clearly outplays the Hybrid PA-AMG approach in both terms of linear iterations and the solver
time (see also Figure 6.9b). One can also find a clear correlation of the number of active nodes
and the number of linear iterations (and the corresponding solver times). From Figure 6.9b one
can learn that the big jumps in the number of linear iterations and the timings are related to a

change in the number of Newton sweeps (cf. the red curve in Figure 6.9b).
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Figure 6.9.: 3D ironing example — Results for different AMG preconditioner variants.
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Transfer operators

Plain aggregation Smoothed aggregation
" PA-AMG (1 SGS 0.7) SA-AMG (1 SGS 0.7)
g SGS | Transfer operators: PA-AMG Transfer operators: SA-AMG (0.4)
é Level smoother: 1 SGS (0.7) Level smoother: 1 SGS (0.7)
Tg PA-AMG (1 ILU(0) SA-AMG (1 ILU(0))
S| ILU | Transfer operators: PA-AMG Transfer operators: SA-AMG (0.4)

Level smoother: 1 ILU(0) Level smoother: 1 ILU(0)

Table 6.7.: Two tori impact example — Different AMG variants.

In Table 6.6 the solver timings are given for the different methods in comparison. The setup
costs of the Hybrid PA-AMG and Contact PA-AMG methods are in the same range. The main
difference is the number of linear iterations and the corresponding solver time. One can state that
especially the Setup costs for the multigrid hierarchy are not optimal in sense of performance
due to missing code optimizations.

6.5.3. Two tori impact example

Now, the different variants of the Contact PA-AMG method are applied to larger problems.
Inspired by some similar analysis in Yang and Laursen [230] the problem setup of the two tori
impact example with geometry and load conditions from Popp [156] is used. The initial setup
of the two tori impact example is shown in Figure 6.10a. There are two thin-walled tori with a
Neo-Hookean material model (£ = 2250, v = 0.3, pg = 0.1) with a major and minor radius
of 76 and 24 units and a wall thickness of 4.5 units. The right torus in Figure 6.10 lies in the
xy-plane and is accelerated by a body force towards the left torus, which is rotated around the
y-axis by 45 degrees. The simulation runs 200 time steps with a time step size of 0.05s using
a generalized-a time integration scheme. Different characteristic stages of deformation for the
two tori example are shown in Figure 6.10. In each time step, the nonlinear problem is solved
using a semi-smooth Newton method. The convergence check for the Newton method is chosen
to be "
r;

E

0

<107% A JJAull, <1077, (6.24)

e

where r}* denotes the (nonlinear) residual after 7 nonlinear iterations. The Aw stands for the
displacement increment.

The finite element mesh consists of 284672 first-order hexahedral elements with 350208
nodes. The corresponding fine level problem has 1050624 degrees of freedom. For solving the
linear systems within the nonlinear Newton iteration a preconditioned GMRES method is ap-
plied. To check linear convergence the linear residual is tested for

<1078, (6.25)

_t
I‘ie
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(a)t=0.0s (b)t=2.5s

(c)t=5.0s d)t="7.5s

Figure 6.10.: Two tori impact example — Characteristic stages of deformation.

Here, the r¥ denotes the linear residual in the k-th linear iteration in Newton step i. The linear sys-
tem is formulated using the condensed contact formulation with the Petrov—Galerkin approach
for the basis functions (cf. Section 5.4.2). With the knowledge from the previous numerical ex-
periments, only different variants of the Contact PA-AMG multigrid preconditioner from Section
6.4 are compared. In our notation, PA-AMG and SA-AMG just denotes the corresponding trans-
fer operator strategies within the Contact PA-AMG method. Different level smoothers and the
effect of smooth transfer operators are subject of a more detailed study. In particular, ILU level
smoothers, which are more expensive in the setup, are studied in comparison with symmetric
Gauss—Seidel level smoothers with nearly no setup costs. Furthermore, the potential of reducing
the linear iterations and the solver timings by using smoothed transfer operators is of high in-
terest. Therefore, a (classical) smoothed aggregation transfer operator (cf. Section 3.5.1 and Re-
mark 6.4.9) is compared against non-smoothed transfer operators (cf. Section 3.4.1). Note that it
is very hard to find a proper transfer operator smoothing parameter, since the linear systems aris-
ing from structural contact problems in a condensed formulation are structurally non-symmetric
(cf. Section 6.1.1). Therefore, a smoothed aggregation transfer operator is used with some care-
ful damping parameter together with the Petrov—Galerkin approach for the restriction operator
(cf. Section 4.2.2) to reflect the non-symmetry of the underlying operator in the setup phase of
the multigrid method. Table 6.7 gives an overview of the variants of the tested preconditioning
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6. Algebraic multigrid for contact problems in condensed formulation

methods. The remaining multigrid parameters are fixed for all variants. The maximum coarse
level size is chosen to be 5000 degrees of freedom. With the minimum size for an aggregate to
be 18 nodes this corresponds to a 3 level multigrid method. The coarse solver is chosen to be a
direct solver (KLU from the Amesos package in Trilinos, cf. Sala et al. [172]). The simulations
are performed in parallel on 64 cores (spread over 8 computational nodes connected by an In-
finiband network using 1 Intel Xeon (E5-2670, 2.6 GHz) Octocore CPU and up to 32 GB RAM
on each node).

Figure 6.11a shows the accumulated number of linear GMRES iterations for all nonlinear
Newton sweeps in each timestep. The red line in Figure 6.11a denotes the number of contact
nodes in the corresponding time step, which have been found to be active by the active set
strategy. Obviously, the number of linear iterations follows the number of active nodes in con-
tact. Compared to the variants with non-smoothed transfer operators (PA-AMG), the usage of
smoothed aggregation transfer operators (SA-AMG) with some appropriate smoothing parame-
ters leads to a notable reduction of linear iterations. Assuming that the solution phase dominates
the timings over the setup phase, a smaller number of linear iterations is highly desirable, since
the timings for the solution phase are usually correlated with the number of linear iterations.

In Figure 6.11b the timings of the solution phase of all linear systems within one time step are
summed up and plotted over the time steps. As expected, there is a clear correlation between the
number of iterations and the timings. The red solid line in Figure 6.11b describes the number of
nonlinear sweeps per time step for the PA-AMG (1 SGS 0.7) variant. It can be assumed to be
representative for all other variants, too.

Figure 6.12 sums up the solver timings from Figure 6.11b over all time steps for the different
methods and visualizes the time savings against the reference variant PA-AMG (1 SGS 0.7). For
this example the SA-AMG (1 SGS 0.7) performs best for the full simulation and outplays the
variants based on the ILU smoother. Interestingly, the performance of the SA-AMG (1 ILU(0) )
variant drops for a high number of contact nodes (in time steps 120-140). Comparing the timings
of the best method (SA-AMG (1 SGS 0.7)) and the reference method (PA-AMG (1 SGS 0.7))
one finds a time saving of approximately 80 minutes for the 200 time steps in the simulation.

However, to gain a full picture of the solver performance one should not neglect the setup
costs, since in practice the only interesting number is the wall clock time both for setup and
iteration. Table 6.8 lists the setup costs and the overall timings (setup and solution phase) for the
different preconditioning variants. One can state that there is plenty space for code optimizations,
especially for the setup costs. This means that the absolute timings are probably too high, but
still can be used for direct comparisons. Nevertheless, these numbers reveal that — depending on
the chosen level smoothers — the setup costs may play a significant role in the overall timings.
Obviously, the setup for the ILU smoother nearly doubles the setup costs and therefore, the ILU
variants are far away from being interesting for this example.

In this example the focus is on the behavior of the linear solver. Therefore, in (6.25) a fixed
and quite strong tolerance is chosen for the linear solver. Beside of technical improvements in
the implementation, there are many more ways to significantly reduce the computational costs
related to the linear solver. First, one should try to reuse the multigrid preconditioner for more
than one Newton sweep (within a time step) to save some setup costs. However, one has to be
aware that this is only possible, if the active set has not changed between two Newton steps.
Otherwise the methods described in Section 6.4.2 will not work properly. Additionally, in com-
bination with the semi-smooth Newton method one could develop strategies to reasonably adapt
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(a) Accumulated number of linear GMRES iterations for all nonlinear iterations per timestep.
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Figure 6.11.: Two tori impact example — Results for different AMG preconditioner variants.
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Figure 6.12.: Two tori impact example — Improvement of solver timings against reference
method PA-AMG (1 SGS 0.7).

Method Setup costs  Solver time Overall solver time
PA-AMG (1 SGS 0.7) 9210 10809 20019
SA-AMG (1 SGS 0.7) 10260 6208 16468
PA-AMG (1 ILU(0)) 19750 6943 26693
SA-AMG (1 ILU(0)) 21820 7548 29368

Table 6.8.: Two tori impact example — Exemplary solver timings in [s] of the different precondi-
tioning variants from Table 6.7 for the full simulation (200 time steps).

the linear solver tolerance depending on the iterative solution of the outer nonlinear solver. This
way, one can further reduce the number of linear iterations and the corresponding solver time.

6.5.4. Sliding example

This example demonstrates the effect of further common strategies to reduce the computational
time for the linear solver. Inspired by an example from Hiieber [99], a frictionless sliding exam-
ple is considered as introduced in Popp et al. [157]. Figure 6.13 describes the exact geometric
configuration and shows the fine level mesh. The example consists of two half-cylindrical bod-
ies. For both solids a Neo-Hookean material model is used with £ = 120, v = 0.3, py = 0.3
for the upper body and £ = 60, v = 0.25, py = 0.5 for the lower body.

The following Dirichlet conditions apply: The lower right surface (A) is completely fixed by
homogeneous Dirichlet boundary conditions. The upper right surface (B) is fixed in the z- and
y-directions. For the z-coordinate the movement by —0. 1% 1s prescribed with 7" = 0.1s denoting
the overall simulation time. The lower left surface (C) is fixed in the yz-plane. Finally, the upper
left surface (D) is fixed in the y-direction with a prescribed displacement —0.12% in z-direction.
Both surfaces (C) and (D) can move freely in z-direction. The prescribed displacements are ap-
plied in 160 time steps of size 6.25 - 10~*s. A discretization with 254016 8-node hexahedral
elements is used, which corresponds to 275462 nodes and 826386 degrees of freedom. The con-
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Multigrid settings Level smoothers
No. multigrid levels: 4 ¢=0: 1SGS 0.7)
Max. coarse level size: 5000 ¢=1: 3SGS (0.7)
Transfer operators: PA-AMG | ¢/ =2: 5SGS (0.7)
Minimum aggregate size: 12 ¢ =3: Directsolver

Table 6.9.: Sliding example — Multigrid parameters for the Contact PA-AMG method.

Timestep 15 Timestep 80 Timestep 160

#act #nodes ratio | #act #nodes ratio | #act #nodes ratio
43 275462  0.02% | 354 275462  0.13% | 985 275462  0.36%
43 16432  0.26% | 354 16295 2.17% | 985 16064  6.13%
43 1144 3.76% | 354 1406 25.18% | 985 1913 51.49%
43 283 15.19% | 354 575 61.57% | 985 1200 82.08%

W o = O

Table 6.10.: Sliding example — Exemplary multigrid hierarchies for different time steps. The
‘#nodes’ column denotes the number of fine level nodes (or aggregates) for the
different multigrid levels £. ‘#act’ is the number of (active) nodes, which is detected
to be problematic and transferred to the coarsest level. ‘ratio’ denotes the fraction
‘#act’ over ‘#nodes’.

tact problem is formulated in condensed notation based on the Petrov—Galerkin approach. The
simulation runs on 6 Intel Xeon (E5-2670, 2.6 GHz) Octocore CPUs with altogether 48 cores on
the finest level.

Solution strategy & Stopping criteria

In each time step a nonlinear problem is solved using a semi-smooth Newton method (cf. Section
5.5). The convergence check in the Newton method is given by

)], <1078 A ||Aull, < 1078, (6.26)

where r}* denotes the (nonlinear) residual after ¢ nonlinear iterations. The Aw stands for the
displacement increment.

Again, one applies a preconditioned GMRES method for solving the linear systems within the
nonlinear Newton iteration. As preconditioner, a Contact PA-AMG method with the parameters
given in Table 6.9 is used. Note that the number of level smoother sweeps is increasing on the
coarser levels. With the minimum size of 12 nodes for the aggregates one obtains an average
coarsening rate larger than 12. Table 6.10 gives exemplary sizes for the multigrid hierarchies
in different time steps. Obviously, the coarse level problems are quite small and applying more
smoothing sweeps is very cheap on the coarser levels. The finer levels in the multigrid method
may have some additional benefit from it.
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6.5. Numerical examples

Method # Setup calls Setup time Solver time Overall time
PA-AMG (fixed tol., no reuse) 879 6712 18760 25472
PA-AMG (fixed tol., reuse) 520 4404 17290 21694
PA-AMG (adapted tol., no reuse) 891 6889 14940 21829
PA-AMG (adapted tol., reuse) 520 4444 14700 19144

Table 6.11.: Sliding example — Exemplary number of setup calls and timings in [s| for the differ-
ent preconditioning variants over all 160 time steps.

To improve the overall performance, our special focus is put on the comparison of different
stopping criteria for the linear solver based on the relative residual.

Fixed relative tolerance: The convergence check is based on a fixed tolerance ¢¢ for the linear
relative residual as given by

<1070 =: ¢ (6.27)

_t

0
r;

e

Again, the r¥ denotes the linear residual after applying k iterations with the iterative linear
solver in Newton step 7. This is a very simple convergence check which has already been
used in the previous examples, but completely ignores the progress of the outer Newton-
like iteration. As a consequence one spends too much time in reducing the linear relative
residual without having significant benefit from it in the nonlinear iteration.

Adapted relative tolerance: As an alternative one can use the following very simple strategy to
adapt the linear tolerance ¢, for the linear solver. Instead of (6.27) one checks

rk
r—g < €ay (6.28)
where ¢, is defined by
10°¢ ifi =0,
= 00001257 ifi>0 A g, < AT (6:29)

with r}* denoting the nonlinear residual in Newton step 7. The idea is that the linear toler-
ance &, 1s loosened, once the current nonlinear residual r}* is small in some norm to save
some linear iterations. The relative tolerance ¢, is updated to be at least 3 orders of magni-
tude lower than the current nonlinear residual. Note that this is not a true adaptivity in the
field of inexact Newton methods, but just a simple heuristic rule to adapt the linear solver
tolerances to save some computational time.

Multigrid hierarchy reuse strategy

To further reduce the computational costs, one can try to reuse the multigrid preconditioners as
far as possible. That is, one builds the multigrid hierarchy only if the active set of contact nodes
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has changed compared to the previous solver call. This is necessary to update the set of possibly
problematic nodes at the contact interface, which need some special treatment in the Contact PA-
AMG method. Once the active set is converged, the existing multigrid preconditioner is reused
for the remaining linear systems in the current time step.

Results

Table 6.11 gives exemplary timings measured for the different preconditioning strategies using
the previously described convergence criteria and reusing techniques. As one can clearly see,
reusing the existing preconditioners can significantly reduce the number of multigrid setup calls
and the corresponding setup costs. Adapting the tolerance for the linear solver depending on the
nonlinear residual has some notable effect on the solution time, but may lead to a slightly higher
number of necessary setup calls. With both reusing the multigrid hierarchy and wisely adapting
the solver tolerances, one can save approximately 20% of the overall solver time in this example.

In Figure 6.14 the number of accumulated linear iterations and the solver timings is plotted
over the time steps. Again one finds the number of linear iterations roughly following the number
of active nodes at the contact interface, at least for the first 80 time steps before the number of
linear iterations remains rather constant in this example.

With Figure 6.14a it becomes clear that reusing the preconditioner has no negative effect on
the number of linear iterations, but allows to save a significant amount of time for the setup
(cf. Table 6.11). Figure 6.14b shows the solver timings and the number of nonlinear sweeps per
time step together with the number of multigrid setup calls. If the multigrid hierarchy is not
reused, the number of setup calls for the multigrid preconditioner coincides with the number of
nonlinear sweeps. Otherwise, the number of multigrid setup calls corresponds to the number of
changes in the active set of contact nodes in the semi-smooth Newton method. In Figure 6.14a
one finds significant local fluctuations in the number of linear iterations which seem to be related
with the number of changes in the active set when comparing with the results from Figure 6.14b.

Figure 6.15 visualizes the aggregates on level ¢ = 2 for different time steps with a close-up
view of the corresponding contact zone. Each aggregate has a different color which represents
the aggregate id. The small colored balls denote nodes on level ¢ = 2 which are either part of
the aggregate of the same color or represent single node aggregates in the contact zone. These
correspond to the nodes which have been found to carry problematic information for the multi-
grid level smoothers and therefore are transferred to the coarsest level. It is quite obvious how
the number of single node aggregates increases with the number of the active nodes at the con-
tact interface. The single node aggregates away from the contact interface are resulting from the
uncoupled aggregation algorithm in Section 3.3, when there are not enough nodes left on the
current processor to build further aggregates.
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Figure 6.14.: Sliding example — Results for different linear stopping criteria and reuse strategies.
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(a) Time step 15 (first contact)

(b) Time step 80

Figure 6.15.: Sliding example — Aggregates on multigrid level ¢/ = 2 representing the nodes
on the coarsest level ¢ = 3 for different time steps with a close-up view of the
single node aggregates at the (active) contact interface for handling the possibly
problematic matrix information for the level smoothers.
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7

CHAPTER

Algebraic multigrid for contact problems
in saddle point formulation

In this chapter, a full multigrid strategy is developed for structural contact problems in saddle
point formulation. The idea is to deal with the original linear systems with saddle point structure
as introduced in Section 5.5.2. This way, the computational time that is needed for condens-
ing and transforming the linear systems to make them work with the multigrid methods from
Chapter 6, can already be used for the solving process instead.

The idea of extending multigrid methods to saddle point systems is not new and can be found,
e.g., in the context of Stokes and Oseen equations in literature (cf. Braess and Sarazin [29], Janka
[101]). The main contribution of this work is the development of an interface aggregation strat-
egy for generating Lagrange multiplier aggregates that are required for contact problems. The
proposed method is simpler to implement, computationally less expensive than the ideas from
Adams [1], and — in the author’s opinion — the presented approach is more intuitive for coupling
structural equations with contact constraints at a contact interface. Our interface aggregation
strategy perfectly fits into our multigrid framework and can easily be combined with segregated
transfer operators which allow to preserve the saddle point structure on the coarse levels. Ad-
ditionally, different standard block smoothers for indefinite systems are introduced with some
discussion on their properties for usage with contact problems.

In the numerical examples, the behavior of different multigrid block smoothers from literature
is studied for contact problems in saddle point formulation. The results are compared with alter-
native SIMPLE based block preconditioners. Finally, the saddle point multigrid preconditioners
are shown to solve large structural contact problems with more than one million degrees of free-
dom. The resulting multigrid preconditioners turn out to be very robust and often perform better
than alternative block preconditioners.
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7. Algebraic multigrid for contact problems in saddle point formulation

7.1. Structural contact problems in saddle point formulation

7.1.1. Algebraic contact problem in saddle point formulation

The intention of this section is to develop a robust AMG methods for linear systems based on the
saddle point formulation of structural contact problems. The idea is to define multigrid methods
that make use of the saddle point block structure

Kvivi, Ky 0 0 0 10 0 A .
Kvvi Kvm Kuz Kya 00 1 =M7 —Mj AuNl iy
0 Ko Koz Kza Koy, 1 DI Diy MM re
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0 0 0 0 0 1 0 ok r)
0 Ny Nz Ny 0 ! 0 0 A )\I "
0 0 Fr Fa 0 | 0 Ty 4 el

as it has already been introduced in (5.46) in Chapter 5.5.2. Note that in contrast to (5.46) now
a fully incremental formulation is used both for the displacement variables and the Lagrange
multipliers. For reasons of simplicity we make use of the same notation as in Sections 5.5.2 and
6.1. Equation (7.1) perfectly fits into the definition of a generalized saddle point problem with

the typical block structure
K )\ [Au r¥
(e %)= @2

7.1.2. Solution strategies for saddle point problems

Since saddle point systems often arise in the modeling of mathematical and physical processes
(i.e., incompressible Navier—Stokes equations, constrained optimization problems), there is a
great interest in efficient solution methods for such systems with quite an abundant amount of
literature on the theory of saddle point problems. The interested reader might refer to [23] as a
starting point to dive into the theory of saddle point problems with an elaborate classification
and a general overview of solving strategies for saddle point problems.

Linear systems with saddle point structure make special preconditioning and solving strate-
gies necessary, which are aware of the special block structure of the underlying system matrix.
Therefore, from the engineering point of view, saddle point problems often are considered to be
complicated to solve. Aside from such “purely technical issues”, the saddle point formulation
has the advantage that there is a clear distinction of the primary (i.e., displacement) variables
and the (mathematical) Lagrange multipliers, such that the underlying physics is reflected in the
block structure of the resulting system matrix (7.1). In general, an exact knowledge about the
nature of the underlying equations is very important for the design of efficient solving strategies.
Even if systems share the same type of block structure in their algebraic representation (such as
the saddle point structure), the optimal choice of solving strategies still depends on the equations
with the corresponding mathematical properties of the resulting linear systems. These are gov-
erned by the modeling and the discretization techniques. In context of saddle point problems the
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so-called inf—sup condition or LBB condition, named after Ladyzhenskaya, BabuSka and Brezzi
(e.g., Babuska [10], Ladyzhenskaya and Silverman [113]), plays an important role for the stabil-
ity and convergence of the method. For a nice introduction to the role of the inf—sup condition in
finite element methods the reader is referred to Bathe [15].

Many preconditioning methods that originally have been introduced for some concrete appli-
cation (e.g., for the Stokes problem), belong to more general classes of block preconditioners. For
arough overview, one can mathematically distinguish (indefinite) block diagonal preconditioners
(cf. Benzi and Simoncini [22], Benzi et al. [23], de Sturler and Liesen [50], Mandel [126]), block
triangular preconditioners (cf. Axelsson and Neytcheva [9], Simoncini [178]), the class of (inex-
act) Uzawa preconditioners (cf. Bramble et al. [34], Elman and Golub [60], Zulehner [235]) and
block approximate factorization preconditioners (cf. Elman et al. [59], Patankar and Spalding
[154], Vuik et al. [205]). Some papers discuss specific design decisions for block precondition-
ers, e.g., “constraint preconditioning” in Keller et al. [102]. Others address the eigenvalue spec-
trum of the preconditioned matrices in general (cf. Murphy et al. [136], Notay [145], Zulehner
[235]). It shall be mentioned that there exist other methods which in contrast to above block
smoothers are based on some more local (cell-based or patch-based) information, such as Vanka-
type smoothers (cf. Vanka [191], Wobker and Turek [220]). Of course, this list is far from being
complete.

In this section, the focus is on multigrid methods for saddle point problems. Multigrid hier-
archies may suffer from stability issues. Thus, the stability of the discretization scheme plays
an important role for building coarse representations of the fine level problem in context of
multigrid methods. In the work by Wabro [206] a coupled AMG method is developed and ana-
lyzed for a stabilized mixed finite element discretization of the Oseen equations, which utilizes
special techniques to preserve stability on the coarser levels by scaling the standard Galerkin
product (2.6). However, at least for the Stokes problem, extensive numerical studies in Janka
[101] reveal that uniform inf—sup stability of coarse level operators is not necessary for obtain-
ing a successful preconditioner. It is a common observation that the pure Galerkin product (2.6)
generates efficient multigrid preconditioners (see, e.g., statements in Stiiben [181]). Note that
the aggregation-based transfer operators as introduced in Section 3.4 are inherently scaled by
the aggregate size in the local QR-decomposition to compensate the coarsening effect on the
numerical values within the transfer operators.

In the following, our special emphasis is placed on saddle point problems arising from struc-
tural contact problems. The theory for multigrid methods designed for this particular class of
saddle point problems and the resulting linear systems has evolved starting from special multi-
grid methods for mortar finite element methods (e.g., Braess et al. [30], Gopalakrishnan and
Pasciak [78]) to mortar finite element methods in saddle point formulation (e.g., Braess and
Dahmen [32], Braess et al. [33]). Recent works on specific multigrid methods for structural con-
tact problems in saddle point formulation are based on the ideas from the mortar finite element
method and introduce a very flexible multigrid framework that can be applied to a wide variety
of different mortar situations including structural contact problems (e.g., Wieners and Wohlmuth
[215, 216]). Based on the saddle point formulation in Belgacem [18] for the mortar finite ele-
ment method, the work by Wohlmuth [222] describes a multigrid method for the corresponding
saddle point problems using (continuous) standard basis functions for the Lagrange multiplier
space. This method is extended for dual basis functions for the non-nested Lagrange multiplier
spaces in Wieners and Wohlmuth [215]. That is, the multigrid theory for mortar and contact
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problems covers standard Lagrange multiplier spaces as well as non-continuous dual Lagrange
multiplier spaces (cf. Section 5.4.2). The mathematical proofs are originally designed for com-
mon mortar finite element problems. Nevertheless, the general ideas should also work for our
class of problems arising from contact mechanics. Before introducing the design of full multigrid
methods for linear systems as given in (7.1) a brief discussion ot the mathematical background
is given in the following section.

7.1.3. Mathematical fundament and multigrid convergence theory

This section is meant to provide an overview of the mathematical basics of multigrid methods
designed for mortar problems in saddle point formulation. Since the resulting linear systems are
indefinite, it is clear that standard multigrid methods cannot be applied. Here, the approach pre-
sented in Wieners and Wohlmuth [215] is reviewed, as it describes the mathematical fundament
for the methods that we want to use in the next sections.

Similarly to (5.34), a quasi-static mortar problem is considered, which is given in its discrete
version by: Find (uh, )\h) € U" x M", such that

h h h yh) _ h h h
a(uh,'vh) + b(v" AY) = f(vM), e V,fl, (7.3)
b(u s b ) = 0, ue M
Without giving details, AM" denotes the discrete Lagrange multiplier space. Following the con-
ventions of the saddle point literature one defines b(v, M) = <[’U] , u>7(s> using (5.21).

Remark 7.1.1. The system (7.3) describes a classical symmetric saddle point system resulting
from a mortar problem. The main difference to the contact problem (5.34) is the type of con-
straints. In (7.3) one has an equality constraint, whereas for contact problems there is some
additional complexity resulting from the inequality constraint in (5.34b).

In Wieners and Wohlmuth [215, Lemma 3.3] the authors prove the inf—sup condition

b(v", ")

0<C< inf sup ————F—
CH PRI (B,

pheEMP heoyh

with a constant C' > 0 independent of h. Therein, ||-||,, denotes the canonical norm for the
Lagrange multiplier space defined by

Il = sup bok) e
vev vl

Similar inf—sup conditions for slightly different norms can also be found in Wohlmuth [221] and
Braess et al. [33]. The inf—sup stability is essential for the saddle point theory to prove stability
of the discretization method (cf. Metsch [133]). In contrast to earlier works (e.g., Braess and
Dahmen [32], Braess et al. [33], Wieners and Wohlmuth [216], Wohlmuth [222]) the proof does
not require the Lagrange multiplier spaces to be nested (i.e., M ¢ M™"). That is, the proof
is also valid for dual Lagrange multiplier spaces as introduced, e.g., in Kim et al. [105] and
Wohlmuth [223, 225] which have locally supported basis functions and, in general, are non-
nested.
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7.1. Structural contact problems in saddle point formulation

For the convergence theory of multigrid methods the mesh-dependent norm

2 2 ‘ 2
(v, )1l = Ivllon +b* lullor, (7.4)
is introduced in Wieners and Wohlmuth [215, Corollary 3.8] to prove the dual estimate

|(u = AM = X[, < Cn?|fll,, C >0, (7.5)

assuming that (u?", A?") € U x M™ is the solution of a coarse representation of the contact
problem. Then, the multigrid analysis is performed for the W-cycle setting using standard argu-
ments from Hackbusch [86, 87] based on a smoothing and approximation property (cf. Section
2.5.3.2):

Approximation property: Let K, with

_( K C
K, = ( & Y )g (7.6)

denote the full symmetric saddle point matrix corresponding to (7.3) on multigrid level ¢
with P and R being appropriate multigrid transfer operators between the multigrid levels ¢
and ¢ + 1. Then, the result (7.5) can be used to prove the approximation property

K" — PK L R|| < Ch} (7.7)

with a constant C' < oo independent of the multigrid level /. For the proof see Wieners
and Wohlmuth [215, Lemma 4.3].

Smoothing property: In a saddle point multigrid method the level smoothers are responsible to
consider the equality constraints in (7.3) in the solution process. The characteristic idea is
to satisfy the equality constraints in each smoothing step of the multigrid level smoother. In
Bank et al. [14] the authors introduce a broad class of saddle point preconditioners based
on a block approximate factorization for block matrices as in (7.6), which rely on the solu-
tion of a modified Schur complement equation. The Braess—Sarazin smoother (cf. Braess
and Sarazin [29]) can easily be identified as a special case in this class of Schur comple-
ment based saddle point smoothers. Furthermore, SIMPLE type smoothers and variants
(cf. Elman et al. [59], Patankar and Spalding [154], Patankar [155]) are based on the same
ideas of a block factorization and a modified Schur complement equation. The solution
of the Schur complement system is often considered to be too expensive. However, in
Zulehner [234] it is shown that the smoothing property is preserved even if the Schur
complement block S is replaced by some approximation S, i.e., an approximate inexact
solution of the modified Schur complement equation is sufficient.

Let Rg be defined as the approximate block system (7.6), where the block K is replaced
by some positive definite approximation K that is easy to invert. The K is also used to
build a good approximation of the Schur complement operator Spi=Z+CK K=1CT within
reasonable computational time. In practice, one can apply some iterative method for ap-
proximately solving the modified Schur complement system (e.g., some CG iterations
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with a Gauss—Seidel preconditioner as described in Wieners and Wohlmuth [215]). Then,
Zulehner [234] proves that the smoothing property

|k (1=K, K0’ (7.8)

< n(v) HRZ - K,

e

holds with () — 0 for v — oo assuming that 0 < K, < Rg and0 < S <9< (14 ﬁ)g
for § < % It shall be mentioned that there is a new analysis of block preconditioners
for saddle point problems in Notay [145] based on eigenvalue estimates. Among others,
it also includes the class of block approximate factorization preconditioners like Braess—
Sarazin and provides some insight into the effect of different block preconditioners with
internal approximations (of, e.g., the Schur complement S) to the eigenvalue spectrum of

the preconditioned matrix.

Following the standard multigrid approach in Hackbusch [87], one obtains level independent
convergence rates with the approximation property (7.7) and the smoothing property (7.8) at
least for the two-level method, provided that the number of level smoothing sweeps is sufficiently
large.

Independent from the theoretical proofs, the numerical results in the literature based on above
mathematical fundament (cf. Wieners and Wohlmuth [215]) are quite promising both for stan-
dard as well as dual Lagrange multiplier spaces. It is a common experience that multigrid meth-
ods show good convergence behavior in practice even for problem classes where no full math-
ematical proof exists, yet (cf. Braess et al. [33], Wieners and Wohlmuth [215]). Therefore, it is
interesting to study these methods also in an algebraic multigrid setting for the more compli-
cated structural contact problems, even though the approximation and smoothing properties are
formulated and proven for the classical multigrid convergence theory based on Hackbusch [87].

7.2. Full AMG design for coupled problems
7.2.1. Truly monolithic AMG for coupled problems

Solving a monolithic coupled block system as given in (7.1) requires a coupling algorithm for
the different physical and mathematical fields which can deal with the saddle point structure. In
general there are the following two different ways of how to use multigrid ideas together with
widely-used Schur complement based methods for solving saddle point problems:

Nested multigrid approach: Well-known Schur complement based block preconditioners such
as the SIMPLE method (cf. Patankar and Spalding [154]) and variants can be combined
with multigrid methods in a straightforward manner as shown in Figure 7.1a, where multi-
grid methods serve as local single field smoother. The contact constraints can only be
considered in the outer (SIMPLE) iteration. For the examples in this thesis, (cheap) vari-
ants of the SIMPLE algorithm as later described in Section 7.2.4.4 are used with some
approximations that are introduced in Section 7.2.5.1. The general approach is already
known in the literature and, e.g., described by Griebel et al. [80] and Stiiben [181] for the
Navier—Stokes equations.

Full multigrid approach: As an alternative to the nested approach, a truly monolithic algebraic
multigrid method for saddle point problems is developed in this thesis, specifically for
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. Primary field (displacements ) - > Level transfer (displacements u)
O Secondary field (Lagrange multipliers \) ---» Level transfer (Lagrange multipliers \)
—>» Coupling iteration between primary and secondary field (w and )
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(a) Nested Multigrid approach (b) Full Multigrid approach

Figure 7.1.: Algorithmic layout of a 3 level multigrid method for coupled problems (cf. Gee et al.
[72], Kiittler [112]).

problems arising from structural contact problems. The basic idea of the full multigrid
approach is to keep the saddle point structure on the coarser levels and apply (indefinite)
2 x 2 block level smoothers, which can deal with the saddle point structure. As shown
in Figure 7.1b, this approach basically switches the role of the multigrid cycle and the
coupling iteration between the different fields using saddle point smoothers. This has the
advantage that the contact constraints are considered on all multigrid levels. To keep the
saddle point block structure with a clean distinction of the different underlying physical
and mathematical fields on all multigrid levels, one needs special (segregated) transfer
operators. In the next sections, all the necessary details for these transfer operators are
discussed, including the aggregation strategy for the Lagrange multipliers and the level
block smoothers that are used for the resulting saddle point problems on the different
multigrid levels.

Remark 7.2.1 (Comparison to other methods). Similar techniques to the full multigrid approach
are already known from the literature. They have been successfully applied to the Stokes equa-
tions (e.g., Braess and Sarazin [29], Janka [101]), the Oseen equations (e.g., Wabro [206]) and
Navier—Stokes equations (e.g., Webster [210]). In contrary to these contributions, in our case one
has to deal with an interface coupled problem, where some specialized techniques are required to
define a proper coarsening process for the Lagrange multipliers. The full multigrid approach has
also been applied to Fluid-Structure-Interaction (FSI) problems in Gee et al. [72]. Therein the au-
thors propose the same algorithmic principle, but use a block Gauss—Seidel method as multigrid
smoother to couple the different physical fields of the FSI problem. A similar approach based on
classical AMG methods is also given in Yang and Zulehner [231] and Langer and Yang [115]. A
FSI problem is a typical example for an interface coupled problem. However, it allows to coarsen
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7. Algebraic multigrid for contact problems in saddle point formulation

the different physical fields independently from each other, which is not possible for structural
contact problems with contact constraint equations. For contact problems the full multigrid ap-
proach is already pursued in Adams [1] in a slightly different variant as introduced later in this
work.

7.2.2. Segregated transfer operators

To keep the characteristic saddle point block structure (7.2) on all multigrid levels, the common
approach is to use segregated transfer operators

P* 0 R* 0
Py = ( A)\) and Ry = ( A)\) ) (7.9)
0 P o+l 0 R 041

as, e.g., introduced in Braess and Sarazin [29] or Adams [1]. The segregated block transfer
operators (7.9) are put together from the transfer operator blocks for the different fields. Here,
P* and R* describe the transfer operator blocks corresponding to the stiffness matrix block K
in (7.2). The transfer operators P» and R* define the level transfer for the Lagrange multipliers.

Remark 7.2.2 (Number of multigrid levels). In the most general case, one could have a different
number of multigrid levels for each physical or mathematical field. This is very likely to hap-
pen for interface-coupled problems (such as FSI problems) where the size of the domains of the
different physical fields might vary significantly. To handle this, the most convenient way is to
fill the “missing” transfer operator blocks with identity blocks for building the multigrid hierar-
chy. This way, the physical and mathematical fields with the smaller number of multigrid levels
stop coarsening but are still involved in the coupling on the coarsest level (cf. Gee et al. [72]).
However, in our case, one has no different (independent) fields, such that the structural equations
and the corresponding Lagrange multipliers can be linked together on all multigrid levels by just
using a smart aggregation technique (see Section 7.2.3 below).

The block diagonal structure in (7.9) guarantees that the primary displacement variables and
the secondary Lagrange multipliers are not “mixed up” on the coarser levels. Using the standard
Galerkin approach the coarse level system is given by

(R“ 9) (K q) <P“ 9) _(R"KP” Ruqﬁ*> 710
o ), \CG -z) o P)  ~ Ror —Rzpr )

1.e., the coarse level matrix (7.10) still has the same block structure with a clear distinction of
momentum and constraint equations as for the fine level problem.

Whereas for many coupled problems (e.g., Fluid-Structure-Interaction problems, Thermo-
Structure-Interaction problems) it is straightforward to generate P> and R*, in case of structural
contact problems this is a non-trivial task, as one cannot use the Z block to generate valid ag-
gregation information for the Lagrange multipliers due to an insufficient pattern of the Z block.
Consequently, one needs a special routine for finding aggregates for the Lagrange multipliers A
to be able to build the (non-smoothed) transfer operators P> and R*. For an interface coupled
problem it seems natural to apply an interface aggregation method as introduced in Section 7.2.3
for coarsening the Lagrange multipliers.
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Remark 7.2.3 (Near null space vectors). With the knowledge from Section 3.4.1, a set of near
null space vectors is necessary to generate the non-smoothed transfer operators P* and P*. The
P* is built directly from the symmetric block K in (7.2) representing the structural equations
only. Therefore, the full rigid body modes with translatory and rotatory part are used as near null
space vectors. However, for the Lagrange multiplier blocks P> one only uses component-wise
constants as near null space vectors (for linear momentum conservation, cf. Popp [156, Section
4.2.6]). Be aware that this way one has 6 degrees of freedom per node on the coarse level for
describing the displacement variables but only 3 degrees of freedom per node for the Lagrange
multipliers in a 3D example. This also helps to keep the operator complexity small, since the
saddle point approach in general suffers from a higher memory consumption due to keeping the
Lagrange multipliers as extra variables. Of course, one can extend the set of near null space
vectors if better near null space information is available.

Remark 1.2.4 (Transfer operator smoothing). As one might have already noticed, non-smoothed
transfer operators P> and R* are used in (7.9). The reason is that in contrary to P* and RY,
where all available smoothing techniques for the transfer operators can be applied, there is no
appropriate diagonal-dominant block Z for smoothing the transfer operator basis functions. Of
course, one could generate a valid matrix for smoothing by hand (e.g., some kind of distance
Laplacian), but this effort is suspected to only pay off if this information is also used somewhere
else (see also the discussion in Section 7.2.3).

In the following, the focus is on the interface aggregation strategy that is used to link the num-
ber of multigrid levels for the Lagrange multipliers automatically with the number of multigrid
levels for the displacement degrees of freedom.

7.2.3. Aggregation strategy for Lagrange multipliers

Most of the literature available on multigrid for contact problems is primarily on geometric
multigrid methods with abundant work on saddle point smoothers (cf. Wieners and Wohlmuth
[216], Wohlmuth [222], Zulehner [234]). In this thesis, the usage of a smoothed aggregation
AMG method is proposed for the saddle point problems arising from structural contact prob-
lems. In contrast to geometric multigrid methods, there is not so much literature on aggregation-
based AMG methods for contact problems in saddle point formulation. The only publication, the
author is aware of covering all aspects of smoothed aggregation methods for structural contact
problems in saddle point formulation, is Adams [1], which also discusses a special aggrega-
tion strategy for the Lagrange multipliers. To find aggregates <7 for the Lagrange multipliers,
Adams [1] proposes to apply the standard aggregation algorithm (see Section 3.3) to the graph
of a suitable matrix representing the Lagrange multipliers. A natural but inefficient choice for
such a graph could be G (CQCD. However, according to Adams [1], this choice turns out to be
not suitable for contact constraints because C,C] tends to be diagonal for aligned grids, which
leads to slow coarsening. In Adams [1], the choice G (CQP“(P“)TCI) is found to be promising,
where P* denotes the prolongation operator associated with the displacement variables built
from the aggregates for the K block in (7.6). Note that P*(P*)T can be understood as the sym-
metric matrix representing the extended connectivity defined by the coarse level basis functions.
Therefore, the graph G (CQP“(P“)TClT) can be interpreted as the graph of a reasonable approx-
imation of the Schur complement S = Z + C,K~!C/. Even though this approach is shown to
work for some examples in Adams [1], it has several drawbacks. First, the graph used for the
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Figure 7.2.: Aggregation for contact example in saddle point formulation

aggregation of the Lagrange multipliers A has to be built explicitly to serve as input for the stan-
dard aggregation algorithm. Secondly, one has to run the aggregation algorithm from Section 3.3
sequentially both for the displacement degrees of freedom and for the Lagrange multipliers. For
the second run of the aggregation method one might have to use a different set of aggregation
parameters to obtain optimal results, which further increases the complexity for the user. Even
though indirectly based on the aggregation information from the displacement aggregates .7,"
through P*, the resulting aggregates .o7,> for the Lagrange multipliers are built independently
from the displacement aggregates <7,".

In this thesis, a different approach to build aggregates .7, for the Lagrange multipliers is pro-
posed which does not suffer from above drawbacks. For finding appropriate Lagrange multiplier
aggregates .27, no separate graph is built for the use in the aggregation strategy as proposed
in Adams [1]. Instead, the interface information is algebraically reconstructed from the con-
tact slave interface and interface aggregates .7 are built for the Lagrange multipliers using
the aggregation information for the displacement degrees of freedom directly. This way, one
can cheaply build interface aggregates for the Lagrange multipliers, which are by construction
consistent with the corresponding displacement aggregates (see Figure 7.2).

Remark 7.2.5 (Segregated aggregates). With the knowledge of the master and slave degrees of
freedom, the matrix entries between master and slave degrees of freedom in (7.2) are dropped
“on the fly” when building the displacement aggregates o). This way one can guarantee the
displacement aggregates 7" not to cross the contact interface. Basically, this corresponds to
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using the modified matrix block

Kviv, Ky 0 0 0

Kvn, K 0 0 0
0 0 Kzz  Kza  Kzn, (7.11)
0 0 Kaz Kaa Kang
0 0 Kwz Kva Kwvas

as input for the standard aggregation routine. Instead of the graph of (7.11) one could directly
use the graph G (Kr(u')) from (5.44) without the linearized contact forces in Ke,(u’, X’) to
obtain the same effect of segregating the aggregates. However, it is often too expensive to hold
the tangential stiffness matrix extra in memory only for the aggregation.

The exact aggregation procedure is described in Algorithm 10. Assuming that the standard
aggregates .«7," for the displacement degrees of freedom are available, one loops over the nodes
at the slave contact interface and builds new aggregates .27, by collecting the corresponding La-
grange multiplier degrees of freedom. Beside the displacement aggregates .o, one only needs
the mortar matrix D as input for Algorithm 10 to algebraically reconstruct the contact interface.
The new aggregates <7, for the Lagrange multipliers are just the natural extension of the dis-
placement aggregates .o7," at the interface. This way, one can keep the ratio of coarse level nodes
at the slave contact interface and the coarse Lagrange multipliers constant, which also balances
the ratio of contact constraints and inner structural displacement degrees of freedoms over all
multigrid levels.

7.2.4. Block smoothers for saddle point problems

Classical relaxation-based methods as described in Section 2.1 can be extended to block matri-
ces. However, in case of saddle point problems, special smoothing strategies are necessary to
handle the saddle point block structure of the (indefinite) block matrix.

Typical saddle point smoothers are based on the same formulation as given in Definition 2.1.1,

that is
Aur+? Au* o [ K C [Au*
{AXCH} = {mk} O] T le —z) [ank] ) (7.12)
where () describes the 2 x 2 block preconditioning matrix approximating the 2 x 2 block operator

in (7.2). In the following a few of the classical block smoothers from the literature (e.g., Notay
[145]) are introduced, stating that this list is by far not complete.

7.2.4.1. Indefinite block diagonal preconditioner
The block diagonal preconditioner for indefinite linear 2 x 2 block systems is based on the

preconditioning matrix
IK 0
Q= 0 13 (7.13)

in (7.12). The o > 0 denotes a relaxation or damping parameter and S is supposed to be an
approximation of the Schur complement S := Z + C,K~1C]. Usually, one replaces the block
K in the Schur complement operator S by a cheap and easy-to-invert approximation K. The
coupling between the displacement degrees of freedom and the Lagrange multipliers in the off-

141



7. Algebraic multigrid for contact problems in saddle point formulation

Algorithm 10: Aggregation algorithm for Lagrange multipliers.

Procedure LagMultAggregation (&",D)

Initialize empty set and counter for aggregates <7,
> — 0,1+ 0

Initialize empty mapping of displacement aggregates to Lagrange multiplier
aggregates

dk) <0 Vk=1,...,mgyu

Loop over slave DOFs (rows of D)

for i € Ds do

Find displacement node n* id corresponding to displacement DOF 1
n* < n(i)

Find aggregate index k that contains displacement node n*

Find k with 7% € <,* where n* € «7,®

Loop over all Lagrange multipliers j

for j € Dy do

Check whether Lagrange multiplier j is coupled with row 1
if Di,j 7é 0 then

Find pseudo node n> for Lagrange multiplier j

n* < n(j)

Check whether to build a new Lagrange multiplier aggregate
if d(k) = (0 then

Increment internal aggregation counter

[+—1+1

Build a new aggregate and add Lagrange multiplier node n’
AV {n*}

Associate displacement aggregate k with Lagrange multiplier
aggregate |

d(k) < {1}

Add new aggregate to set of Lagrange multiplier aggregates <7,

%A (—JZ{KAUQ{[(Z)
else

Extend aggregate 0 < d(k) < [ with pseudo node
40D 80 )

end
end
end

end

Return aggregates for Lagrange multipliers
return <7,
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diagonal blocks is completely dropped in the block preconditioning matrix () from (7.13). Even
though cheap, the error matrix of the (indefinite) block diagonal smoother, shows the limitations
of the method for coupled problems.

Remark 7.2.6 (Error matrix). The error matrix for the indefinite block diagonal preconditioner

can be calculated as
(1 — é)K CI
EIBD =A— Q = ( C2 _7 + ég) . (714)

Obviously, the contact constraints are not considered in the level smoothing process, which re-
sults in higher iteration numbers in the linear solver.

Algorithm 11 gives an algorithmic description of the iterative block smoothing process (7.12)
with ) defined by (7.13). Internally, one needs the inverse of the block K and the approximate
Schur complement operator S to solve for the displacement increments and the Lagrange multi-
plier increments. For an efficient implementation, one does not solve for the local block systems
exactly. Instead, one applies a small number of smoothing sweeps with symmetric Gauss—Seidel
or an ILU method (see also Section 7.2.5.1) to keep the computational costs low.

For some theoretical background about the mathematical properties of indefinite block di-
agonal preconditioners the reader is referred to, e.g., de Sturler and Liesen [50] or Benzi and
Simoncini [22].

Algorithm 11: Indefinite block diagonal smoother.

Procedure IndefBlockDiagonal (@, kmax)

Apply kpax smoothing sweeps with the indefinite block diagonal algorithm
for k < 0to k. — 1 do

Determine prediction increments Su**! by solving approximately

Koubt! =rf — KAu? — CTAN

Solve approximately for the Lagrange multiplier increment NEFL

—S oA = ph — G AU + ZANF

Update step: update solution variables
AuFt!  AuF + o Jubt!

AN ANF + o AFHL
end

Return smooth solution vector
return (Awufmox, AxFmax)

7.2.4.2. Uzawa smoother

The (inexact) Uzawa smoothers can be understood as improvement of the indefinite block diag-
onal preconditioners from Section 7.2.4.1 by using

1 /K 0
Q.—5<C2 _g) (7.15)
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instead of (7.13). Again, > 0 is a damping parameter and S describes a cheap approximation
of the Schur complement S. The better () approximates the block operator from (7.2), the lower
the number of linear iterations will be when using the block smoother within a multigrid precon-
ditioner. Therefore, adding the off-diagonal block C, to the block diagonal matrix () in (7.13)
may significantly reduce the number of linear iterations.

The Uzawa algorithm basically needs one more matrix-vector product by C, compared to the
(indefinite) block diagonal preconditioner. These additional costs are negligible compared to the
other operations such as finding (cheap) inverses of the diagonal blocks K and S. With adding
the off-diagonal coupling block, the smoother performs a one-way coupling in the sense that
the Lagrange multiplier increments now depend on the current increment of the displacement
degrees of freedom. This can significantly increase the quality of the block smoother. In each
smoothing iteration one calculates a prediction for the displacement increments du**!, which are
taken into account when solving for the corresponding Lagrange multiplier increments dA*+1.

Algorithm 12: Uzawa smoother.

Procedure Uzawa (¢, kyax)

Apply knax smoothing sweeps with the Uzawa algorithm
for k < 0to k. — 1 do

Prediction step: determine prediction increments du*+!

K oubtl = vk — KAub — CTANF
Correction step: Solve approximately for § plan
—S oA = rh — CAUF + ZANF — C, Sult!

Update step: update solution variables
AuFtt — Auf + o durtt
AXNFFL o AXF 4 o GARHE

by solving approximately

end

Return smooth solution vector
return (AuFmec AXFmax)

Remark 7.2.77 (Error matrix). The error matrix for the Uzawa smoother is given by

_ (=K
EUZ._A—Q_<(1_$)C2 7115)- (7.16)

Witha = 1and S = Z+C, RflCI it is easy to verify that the error matrix of the Uzawa smoother

reduces to N
0 C
Euz = ~1 . 7.17
vz (o czK—1c1T> (.17
Similar to the indefinite block smoother, it is not possible to replicate the contact constraints with
the Uzawa block smoother, such that the second block row in the error matrix vanishes.
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For a theoretical review of Uzawa like smoothers the reader is referred to Bramble et al. [34],
Elman and Golub [60] or Zulehner [235]. In the following, two variants of block approximate
smoothers are introduced which resemble the original block operator (7.2).

7.2.4.3. Braess—Sarazin smoother

Originally introduced for the Stokes problem by Braess and Sarazin [29], the Braess—Sarazin
smoother belongs to the class of block approximate smoothers and is based on the approximation

(oK CT\ _ (K T
Q= <c2 —1z>”<c2 _lz) (7.18)

of the block preconditioning matrix ) in (7.12). Here, the parameter o > 0 denotes a scaling pa-
rameter and K describes an easy-to-invert approximation of K. In practice, one uses the diagonal
of K as a cheap variant for the approximation K, i.e., K = diag(K).

Remark 7.2.8 (Error matrix). The error matrix for the Braess—Sarazin smoother is calculated by

(7.19)

EBszzA—Q=<K_O‘R o)'

0 0

The error matrix in (7.19) reveals that the second block row in the blocked operator (7.2) is
correctly retained in (7.18). This makes the Braess—Sarazin smoother a reasonable choice for
constrained problems such as structural contact problems. By splitting (7.18) into

aK T\ [aK 0 I éR”ClT
(cg —z)_<c2 —z—§c2k—1q> (o I ’ (7.20)

the Braess—Sarazin algorithm can be defined on base of a prediction-correction scheme.

Algorithm 13: Braess—Sarazin smoother.

Procedure BraessSarazin (o, kmax)

Apply ky.x smoothing sweeps with Braess—Sarazin algorithm
for k + 0to k.x — 1 do

Prediction step: determine prediction Aubts by calculating
Aubtz = Aub + 1K1 (rh — KAuk — CTANF)
Correction step: Solve approximately for SARF2

—(Z 4+ LCKICT) 0AFF2 =k + ZANF — CoAubts
Update solution variables

AN o ANF - oA

Aurtl — Aufts — LK-1CT sAk+2

end

Return smooth solution vector
return (Aubme AXkmax)
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First, one solves for a prediction of the displacement variables Au**2 and a tentative incre-
g 1 1 R
ment for the Lagrange multipliers SA**2 := AX*"2 — AN using

aK 0 Aubts — AuF] [ek] (K CT [Aut (7.21)
Co —Z—1GKCT) [AN+2 —AXNF] — [r5]  \C —Z) |[AN]” '
Then, the corrected solution (Auk“, A)\k“) is determined from

1-1cT k+1 _ k k+1 k
(I ~K C1) [Au Au} _ [Au 2 Au] (7.22)

0 I AXFHL  ANF ANF+T — ANF

As one can easily see from the Braess—Sarazin algorithm given in Algorithm 13, the predic-
tion step can be understood as one hard-coded sweep with a (damped) Jacobi iteration. In other
words, the quality of the prediction for the displacement degrees of freedom is rather poor. Note
that the scaling parameter o has a slightly different meaning than for other block smoothing
methods. In the Braess—Sarazin method, it is used to weight the different summands in the ap-
proximate Schur complement Z + ~C,K~'C{ relatively to each other.

7.2.4.4. SIMPLE variants

Originally introduced by Patankar and Spalding [154] the SIMPLE method is based on the ap-
proximate block factorization

_ (K 0N\ /1 KT\ _ (K KK-1CT KT
Q= (c2 _s> (0 17 )_<c2 (1—§)C2K—1CI—§Z ~le, _z) 0

for (7.12). In (7.23) the S denotes an approximation of the Schur complement S := Z+C, K‘lCI
with a cheap and easy-to-invert approximation K of the block K. Equation (7.12) with ) from
(7.23) can be reformulated as

K0\ (I KT [Aurt —Aub] _ [rh] (K T [Ad” (724)
G, =S/ \0 é[ AXNFFL —ANF] T r’j\ C Z ANF| '
which leads to a two step predictor-corrector scheme, i.e., solve first
K0\ [Aurts —Auf]  [rh] (K T [Auf (7.25)
Co —S) |ANFz — AXNF| |1 Co Z ) |ANF -

for an intermediate solution of the displacement variable AubT2 with a subsequent adaption of
. g 1 . .
the Lagrange multipliers AX**2 and then obtain the final solution by

<I RlCI) {Au’“r1 — Auk} _ [Au’”% — Auk]

0 LI J]ANTI— AN ANEFE _ ANE (7.26)

The full SIMPLE method is given in Algorithm 14.
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Algorithm 14: SIMPLE smoother.
Procedure SIMPLE (¢, kpax)

Apply kyax smoothing sweeps with SIMPLE algorithm
for k < 0to k. — 1 do

Prediction step: determine prediction Aukts by solving approximately
KAuMtz =k — CTANF

Correction step: Solve approximately for SAR+2

—S GAFta = rk £ ZANF — CoAuFt:

Update step: update solution variables
1

ANFL  AXF 4 o 5)\f+5

AuFt  Aubts — oK-ICT oAkT2

end

Return smooth solution vector
return (Agfmes, A Nmax)

Remark 7.2.9 (Error matrix). The error for one sweep with the SIMPLE method is calculated by

0 C]—KK'(T
E =A-Q = Lo Lo, 7.27
SIMPLE Q (0 7 GRICT éS (7.277)
As one can see from (7.27), SIMPLE does not affect the terms that operate on the primary
displacement variables, but it perturbs the Lagrange multipliers. With S = aZ + aC,K~1C]

properly scaled, the error matrix reduces to

0 CT—KK'CT
EstvpLe = ! L. (7.28)

0 0
That is, an appropriate approximation of the Schur complement S allows to exactly satisfy the
contact constraints within one smoothing sweep.

The concrete choice for the approximation K of the block K and the approximation S for the
Schur complement operator gives rise to different variants of the SIMPLE method. Here, only
variants are mentioned that are use later for the numerical examples.

SIMPLE: The classical SIMPLE method (cf. Patankar and Spalding [154], Patankar [155])
uses K = diag(K) as easy-to-invert approximation K of K, together with S = Z +

Cy (diag(K)) - C]. The damping parameter « is chosen from the interval (0, 1] and damps
the update for the Lagrange multipliers (cf. Elman et al. [59]).

SIMPLEC: Variants of the SIMPLE method like SIMPLEC as introduced by Van Doormaal
and Raithby [190] can be understood as an enhancement of the classical SIMPLE method.
The general idea is to provide better approximations for the inverse of the block K. Instead
of just using the diagonal of K for calculating the approximate inverse of K, the diagonal
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7. Algebraic multigrid for contact problems in saddle point formulation

matrix containing the row sums of ‘K‘ = (]aij )i j=1...ny is used. That is, K is defined as
~ 'K
K — diag(z |aij|>, P=1,... n (7.29)
j=1

The default choice for S is consequently S =aZ+aC, R”CI with K as defined in (7.29).
So, the method is very similar to the classical SIMPLE method (cf. Elman et al. [59]).

7.2.5. Comparison of saddle point smoothing methods

7.2.5.1. Cheap variants of block smoothers

Based on the block splitting from (7.2) all block smoothing methods from Section 7.2.4 inter-
nally have to build the inverses of the matrix blocks on the diagonal. To keep the computational
costs low, one does not solve for the block inverses exactly, but only apply a fixed number of
smoothing sweeps with a relaxation-based method. The numerical examples in Section 7.3 show
that such an approximation leads to efficient block smoothing methods. As a naming convention,
the prefix “Cheap” is added to the name of the block smoothing method to indicate the usage of
a cheap approximation for finding the inverse of the diagonal blocks. A more theoretical discus-
sion on the mathematical consequences of approximations for the Schur complement S can be
found in Zulehner [234].

7.2.5.2. Block smoothers for structural contact problems

In structural contact simulations the interesting but challenging part is the coupling of the dif-
ferent solid blocks at the contact interface. Mathematically, the contact problem is governed by
the contact constraint equations. Since the coupling of the structural blocks takes place in the
level smoother only, constraint smoothers (cf. Keller et al. [102]) are preferred, which put some
special focus on the consideration of the constraint equations. In our case, the preferred choice
are the block approximate smoothers such as the Braess—Sarazin and SIMPLE-based methods
in Section 7.2.4, as they represent the contact constraints exactly.

In the Braess—Sarazin method, the approximation K = diag(K) is hard-coded with some scal-
ing parameter « > 0 and consistently used within the approximate Schur complement operator,
which is defined by S = Z + ng K=1C/. The scaling parameter o weights the different sum-

mands in the Schur complement operator S, whereas in the SIMPLE algorithm the o can be
understood as a pure damping parameter.

In contrary to the Braess—Sarazin method, the SIMPLE based methods keep the full K block
whenever possible in the block factorization and use K only where its inverse is required. Con-
sequently, in our “cheap” variants of the SIMPLE method, more elaborate smoothing strategies
can be used for the K block instead of a hard-coded Jacobi sweep. Therefore, one can think of the
SIMPLE methods to allow for a more balanced quality of approximations for the displacement
degrees of freedom and Lagrange multipliers for the contact constraints.

When using exact arithmetic, comparing the error matrices of the Braess—Sarazin smoother
and the SIMPLE smoother shows that the Braess—Sarazin smoother preserves the contact con-
straints per default due to the fixed definition of the Schur complement operator. A similar be-
havior for the SIMPLE smoother can only be found when using a properly scaled approximation
of the Schur complement (see (7.28) in Remark 7.2.9).
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7.3. Numerical examples
7.3.1. Two solid bodies example

To study the effect of the different saddle point smoothers from Section 7.2.4 the geometric
configuration from the two solid bodies example in Section 6.2.1 is used. The discretization is
based on a 10 x 10 x 10 mesh for each solid block with altogether 6000 displacement degrees of
freedom and 300 Lagrange multipliers modeling the contact coupling constraints for the 10 x 10
slave nodes at the contact interface. The simulation runs 40 time steps with a time step size of
0.01s. The nonlinear iteration inside each time step stops if either ||Au|, < 10~® holds for the
Newton increment of the displacement degrees of freedom, or alternatively, if the conditions

e, < 1070 A |||, < 107* (7.30)

hold for the nonlinear residuals r¥ and r in (7.1) after applying i Newton iterations. Within
each Newton iteration the saddle point system (7.1) is solved iteratively using a preconditioned
GMRES method with a 3 level AMG preconditioner as described in Section 7.2. Even though
the problem size is rather small, 4 processors are used for all simulations to demonstrate that the
algorithms also work in parallel. The iterative process for the linear system is considered to be
converged, if it is .

‘ =<0 (731)

r

e

. r*| . . . . o
for the full residual vector r* = L_ )\} in the linear iteration step k. Here, the subscript ¢ for the

nonlinear Newton iteration is dropped.

Remark 7.3.1 (Stopping criteria). In this thesis the focus is on the behavior of the linear solver.
Therefore a fixed stopping criterion is chosen in (7.31). This allows the comparison of different
preconditioning techniques including their effect on the linear solution strategy. For real world
problems, and especially for coupled multiphysics problems, the task of choosing appropriate
stopping criteria for both the nonlinear and linear solver turns out to be quite challenging. Usu-
ally, one would choose a combination of different (length-scaled) norms for the partial vectors.
In order to reduce the solver time in the inner linear solver, it is recommended to adapt the linear
(relative) solver tolerance according to the residual norms of the outer nonlinear solver.

First, the effect of different saddle point smoothers on the number of linear iterations is ex-
plored. The results in Table 7.1 give the average number of linear iterations per time step for
different combinations of the rotation angles o, and «. The numbers in brackets denote the
maximum number of linear iterations needed for solving one linear system during the full sim-
ulation. This way, one has a rough estimate of the variation of the number of linear iterations
within the simulation. Table 7.1a shows the results for the indefinite block diagonal method as
a multigrid level smoother (cf. Section 7.2.4.1). With a CheapUzawa block smoother, the num-
ber of iterations can be notably reduced compared to the indefinite block diagonal smoother
as one can see from Table 7.1b. Furthermore, for the CheapUzawa smoother, the number of
iterations does not show a dependence on the rotation angles o, and «,. Comparing the num-
bers from Table 7.1b with the results for the CheapBraessSarazin smoother in Table 7.1c, the
CheapBraessSarazin smoother heavily suffers from the worse approximation of the displace-
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7. Algebraic multigrid for contact problems in saddle point formulation

ment degrees of freedom using one internal hard-coded Jacobi sweep (cf. Section 7.2.4.3). The
resulting iteration numbers show an obvious dependency of the rotation angles. With a Cheap-
SIMPLEC block smoother the number of iterations is lower than for the CheapUzawa smoother
and independent from ¢, and o, when compared with the CheapBraessSarazin smoother (see
Table 7.1d). So, the linear solver has some benefit from the two-way coupling of displacements
and Lagrange multipliers within the AMG preconditioner. Compared to the Uzawa smoother, the
additional computational costs are very low with only one additional matrix-vector product by
K~1C] per iteration. Therefore, CheapSIMPLEC is the preferred level smoother for our further
experiments with some cheap approximations for the internal single fields using some sweeps
with a (symmetric) Gauss—Seidel method or ILU.

Table 7.2 indicates how the number of CheapSIMPLEC coupling iterations and the quality
of the single field smoothing methods within the CheapSIMPLEC smoother affect the number
of linear iterations. Aside from the concrete parameter choices for the level smoother one can
even further reduce the number of linear iterations with a reasonable transfer operator smoothing
strategy (cf. Section 3.5) for the displacement block.

Remark 7.3.2 (Solver timings). By intention there are no solver timings given as the example is
too small to perform reasonable measurements especially when using 4 processors for altogether
only 6300 degrees of freedom.

The intention of this example is to compare typical saddle point smoothers within a full AMG
preconditioner. One can observe the expected behavior that increasing the number of smoothing
sweeps reduces the number of linear GMRES iterations. However, in practice, the variant with
a smaller number of GMRES iterations may not always be the fastest method. This example
shows that the proper choice of block level smoothing is essential for the overall performance of
a saddle point multigrid method. The particular choice of the block smoothing method gives the
user full control over the quality of the coupling with field-specific parameters and allows for
fine-grained adaptions and problem-specific optimizations.

Remark 7.3.3 (Weak scaling). In this example a very simplified contact configuration has been
chosen, where the active set of nodes in contact is not changing after first contact occurs. The
intention was to study the effect of level smoothers to the results of the linear solver. From
the mathematical point of view a weak scaling study would be interesting where the ratio of
number of unknowns per processor is kept constant with an increasing problem size. However, it
is hard to set up a reasonable example which allows drawing conclusions from, since the ratio of
contact nodes and inner nodes is decreasing with uniform mesh refinement. With non-uniform
mesh refinement one could keep the ratio of contact nodes and inner nodes constant, but would
produce anisotropic meshes with all its consequences.

Anyway, with the experience from this example one can choose efficient level smoothers
which provide results independent from the exact geometric configuration. In the next examples
one can put some attention on effects for the linear solver caused by changes in the active set of
contact nodes for larger problems.

7.3.2. 1000 rings example

The following example is meant to demonstrate the long term behavior of the linear solvers
for a contact problem with multiple bodies. The considered setup consists of 1000 rings (Neo-
Hookean material with £ = 210, v = 0.3 and py = 7.83 - 107°). The rings initially are arranged
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in a rectangle as shown in Figure 7.3a. A gravitational force is inducing an acceleration in neg-
ative y-direction towards a rigid wall. The simulation runs for 4000 time steps with a time step
size of At = 0.0005s. Figure 7.3 shows snapshots for different time steps. The discrete sys-
tem has 110000 nodes for the rings, which correspond to 220000 degrees of freedom for the
displacements.

In each time step, the nonlinear system is handled by a semi-smooth Newton method. As
convergence criteria one chooses

|Aul|, <1078 A (|yr;‘||e <1078 A ), < 10—6). (7.32)

Here, r* and r* denotes the (nonlinear) residual for the displacement and Lagrange multiplier
variables after ¢« Newton iterations. Similarly, Au denotes the solution increment for the dis-
placement variables in the :-th Newton iteration.

The saddle point formulation is used for modeling the contact constraints. Therefore the effec-
tive size of the linear system is changing with the number of active nodes. Since the underlying
contact configurations are changing drastically, it turns out to be a good example for testing the
robustness of the preconditioners. A GMRES solver is applied for the linear systems with dif-
ferent variants of AMG preconditioners. The relative tolerance of convergence for the GMRES
solver is set to

‘ 5[ <107 (7.33)

e

k
)

. r* . . . . . . o
with r¥ = [r )\] the full residual vector in the linear iteration step k. Again, the subscript ¢ for

the nonlinear Newton step is dropped.

The example is used to compare the results for the nested and the full multigrid approach for
saddle point problems as introduced in Section 7.2.1. Table 7.3 gives an overview of the chosen
preconditioner parameters for the level smoothers. For each class of multigrid preconditioners,
only the variants are presented which give the best timings for our example and are able to
accomplish the 4000 time steps of the full simulation.

The multigrid parameters are chosen to be the same for all preconditioner variants: the mini-
mum size of the aggregates is set to 6 nodes for the 2D problem and the maximum coarse level
size 1s set to 1000 degrees of freedom, which corresponds to a 3 level multigrid method. For
the nested AMG approach with the SIMPLE based methods only an exact solve of the Schur
complement equation using KLU leads to a robust method for the full 4000 time steps. For the
full multigrid approach, 1 sweep with CheapSIMPLEC is used as level smoother, which inter-
nally applies 3 sweeps with symmetric Gauss—Seidel on the finest and inter-medium level and an
ILU(0) on the coarsest level. The cheaper coarse level solver (ILU(0)) turns out to be sufficient
with the full multigrid approach. So, compared to the nested approach, one can put more effort
in a good prediction of the displacement variables on all multigrid levels.

For the full AMG variants different transfer operator strategies are compared, namely the
non-smoothed (PA-AMG) transfer operators and the energy minimization approach with local
damping parameters for transfer operator smoothing from Section 3.5.2, denoted by Emin. Lo-
cal damping parameters allow for self-adapting optimal transfer operator smoothing which is
probably more appropriate than one global damping parameter for such an example with drastic
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Preconditioner type

Full multigrid based methods Nested multigrid based methods

CheapSIMPLE (PA-AMG)
Block prec.: 1 CheapSIMPLEC

Block prec. damping: 0.8
— Pred. smoother: AMG
— Transfer op.: PA-AMG
— Level sm.: 1 SGS (0.8)
— Corr. smoother: KLU

PA-AMG (CheapSIMPLE)
Transfer operators: PA-AMG

Level smoother: 1 CheapSIMPLEC
Level damping: 0.8

— Pred. smoother: 3 SGS (0.8)

— Corr. smoother: ILU (0)

CheapSIMPLE (SA-AMG)

Emin (CheapSIMPLE) i Block prec.: 1 CheapSIMPLEC
Transfer operators:  Emin .
Block prec. damping: 0.8
Level smoother: 1 CheapSIMPLEC
) — Pred. smoother: AMG
Level damping: 0.8

— Transfer op..  SA-AMG (0.8)
— Level sm.: 1 SGS (0.8)
— Corr. smoother: KLU

— Pred. smoother: 3 SGS (0.8)
— Corr. smoother: ILU (0)

Table 7.3.: 1000 collapsing rings example — Different AMG variants.

changes in the contact interface. All the simulations have been run on 16 cores (spread over 2
Intel Xeon E5-2670 Octocore CPUs).

Figure 7.5a shows the accumulated number of linear iterations in each time step. One can see
that the number of linear iterations is significantly lower for the full AMG variants than with
the CheapSIMPLE based methods. This can be explained by the better approximation of the
displacement degrees of freedom using 3 instead of 1 damped Gauss—Seidel sweeps. Looking at
Figure 7.5a one finds the linear iterations for the CheapSIMPLE (PA-AMG) method to correlate
well with the number of active nodes over the time steps, whereas the curves for the full saddle
point AMG variants follow the long term behavior of the curve for the active nodes only. This
might be a consequence of the fact that for the SIMPLE based method the contact constraints
are only fulfilled on the finest level, whereas the full saddle point AMG methods try to satisfy
the contact constraints on all multigrid levels by using SIMPLE based level smoothers. The
number of nonlinear sweeps per time step is rather constant with 4 to 6 nonlinear iterations
throughout the whole simulation. The accumulated timings for the solver time in Figure 7.5b are
all relatively close. The data seems to be somewhat noisy due to the very high number of time
steps. Furthermore, one should be aware of the fact that the linear system is rather small, such
that the time measurements are not very accurate. Note that one has 4 to 6 nonlinear sweeps
per time step, that is, one is solving 4 to 6 linear systems in approximately 3 seconds. So, the
variability of the time measurements is quite large compared to the absolute solver timings,
which are in the range of 0.5s per linear system. Anyway, one can clearly distinguish the timings
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(a)t =0.0s

(b)t =0.5s

(d)t=1.5s

(e)t =2.0s

Figure 7.3.: 1000 collapsing rings example — Characteristic stages at different times. 55
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Figure 7.4.: 1000 collapsing rings example — Close-up view of initial stage.

for the CheapSIMPLE based variants in the light gray color and the AMG based variants denoted
by the black color.

To get a better picture of the behavior in the solver timings, the accumulated savings in solver
time are plotted over the full simulation in Figure 7.6. The PA-AMG (CheapSIMPLE) method
serves as reference. One can see that the SIMPLE based methods need approximately 15 minutes
more to solve all linear systems. Using smoothed transfer operators can save approximately 25
minutes of computational time compared to our reference method. However, all these different
savings seem rather small compared to the overall solver time of approximately 6 hours.

Note that the solver time only includes the iteration phase of the GMRES method, but does
not contain the setup phase of the preconditioner. The more interesting overall timings (setup
phase and solving phase of the linear GMRES solver) can be found in Table 7.4. Please note
that especially the timings for the setup phase are preliminary in the sense that the software has
not been optimized for performance. The absolute timings can be considered to be somewhat
smaller with optimized code variants. Nevertheless, the numbers confirm the findings from the
Figures 7.6 and 7.5b, respectively. All methods are quite close with a slight advantage of the full
AMG based methods.

Method Setup costs  Solver time Overall solver time
PA-AMG (CheapSIMPLE) 11870 10013 21883
Emin (CheapSIMPLE) 12820 8679 21499
CheapSIMPLE (PA-AMG) 11730 11103 22833
CheapSIMPLE (SA-AMG) 12300 10763 23063

Table 7.4.: 1000 collapsing rings example — Exemplary timings in [s] of the different precondi-
tioning variants from Table 7.3 for the full simulation (4000 time steps).

Remark 7.3.4 (Further improvements). Similar to the strategies explained in Section 6.5.4 one
can further reduce the timings. In particular, for reducing the setup costs one should reuse the
full P* and R" blocks in (7.9), since they basically represent transfer operator blocks for pure
structural problems. Then, one only has to rebuild the aggregates for the Lagrange multipliers to
reflect changes in the contact set. Moreover, P> and R* could be reused as long as the contact set
1s not changing. For reducing the solver timings, one can think about adaptive stopping criteria.
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Figure 7.5.: 1000 collapsing rings example — Results for different AMG preconditioner variants.

157



7. Algebraic multigrid for contact problems in saddle point formulation

1,500 T T T T T T T

1,000

500

—500

—0— PA-AMG (CheapSIMPLE) — Reference
—1,000 || T2 e e avi
—O— CheapSIMPLE (SA-AMG)
J— 1 7500 | | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Timesteps

Time savings in solver time [s]

Figure 7.6.: 1000 collapsing rings example — Improvement of solver timings against reference
method PA-AMG (CheapSIMPLE).

However, in the context of multiphysics problems, the adaptive design of stopping criteria is
more complicated than for the single field case, as discussed above.

The idea of the next example is to compare the SIMPLE based and the full AMG based
methods for significantly larger problems to get a better insight into the different behavior of
preconditioner classes.

7.3.3. Two tori impact example

For studying the different AMG strategies on a larger example, the two tori impact example is

reused with the exactly same problem configuration as in Section 6.5.3. The only difference is

that now the original saddle point problems are solved instead of the condensed systems.
Consequently, the nonlinear stopping criteria are adapted to

u
7

|Au|, <1077 A (‘ 11:—“ S N 1o4>. (7.34)

e

Again, r* and 1) denotes the (nonlinear) residual for the displacement variables and Lagrange
multipliers in the i-th Newton iteration. The quantity Aw describes the solution increment for
the displacement variables only.

Remark 7.3.5 (Nonlinear convergence tolerances in comparison). In Section 6.5.3 the stopping
criteria for the nonlinear solver have been chosen as

u
ri

<1076, (7.35)

e

|Aul|, <1077 A

Ty

which are based on similar ideas than the convergence criteria in (7.34). For the saddle point
formulation a stronger tolerance is chosen for demonstration purposes. A relative residual is
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used of the displacement degrees of freedom combined with an absolute convergence criterion
for the contact constraints. The stopping criterion for the solution increment Aw is identical.
Of course, for the saddle point problem, one could add further additional convergence criteria
(e.g., for the Lagrange multiplier increment AX), but in our example this is not necessary. Here,
one should point out that the nonlinear stopping criteria may have a different meaning depending
on the (condensed versus saddle point) contact formulation. For example, for the choice of the
solver tolerances one has to consider that there is usually no way to distinguish the structural
equations and the contact constraints in the residual vector r}* when using the condensed contact
formulation with a standard implementation of a Newton algorithm.

For solving the linear Newton systems a preconditioned GMRES solver is applied. Primarily
interested in the behavior of the linear solvers, one chooses a fixed tolerance for the linear solver,
to be able to compare the different preconditioning variants without seeing effects of adaptive
stopping criteria. The iterative process for the linear system is supposed to be converged if

k

r0

<1078 (7.36)

e

u
holds for the full residual vector r* = i » | in the linear iteration step k. The subscript ¢ for the

Newton iterations is dropped in the notation. This choice is identical to (6.25) from Section 6.5.3
for the same problem in condensed formulation. This allows for a (careful) comparison of the
GMRES iterations in the condensed versus the saddle point case.

Table 7.5 gives an overview of the different tested preconditioner variants. It includes variants
with the full multigrid approach, the nested multigrid approach and a SIMPLE based variant
without multigrid at all. For the full AMG variants the transfer operators for the displacement
blocks are varied. Particularly, non-smoothed transfer operators (PA-AMG) are compared with
smoothed aggregation transfer operators (SA-AMG). In contrast to the previous example (see
Section 7.3.2) where the transfer operators have been smoothed using Emin (cf. Section 3.5.2),
for this example a standard SA-AMG approach seems to be sufficient, since the contact interface
is not changing drastically. Local damping factors for transfer operator smoothing as used in
Emin would come with additional computational costs without a significant effect on the linear
iterations.

Figure 7.7a shows the accumulated number of iterations for solving all linear systems in one
time step. Obviously, the SIMPLE based methods need more linear iterations than the AMG
based methods. In this example there is nearly no difference between the non-smoothed trans-
fer operator variant PA-AMG (CheapSIMPLE) and the smoothed transfer operator variant SA-
AMG (CheapSIMPLE). Furthermore, there is no clear and obvious correlation between the num-
ber of linear iterations and the number of active nodes. Only for the SIMPLE based methods one
can see a significant drop in the linear iterations for the last time steps in the simulation, which
may correspond to the small number of nodes in contact.

When looking at the corresponding solver timings over the time steps in Figure 7.7b, one
finds the CheapSIMPLE (SA-AMG) method to be very close to the AMG based methods PA-
AMG (CheapSIMPLE) and SA-AMG (CheapSIMPLE). For the AMG based methods one sweep
with a CheapSIMPLEC method is applied on each level, which internally uses 1 sweep with a
symmetric Gauss—Seidel iteration for the primary variable and 1 ILU sweep for the constraint
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Preconditioner type

Full multigrid based methods SIMPLE based methods
PA-AMG (CheapSIMPLE) CheapSIMPLE (SGS)
Transfer operators: PA-AMG Transfer operators: —
Level smoother: 1 CheapSIMPLEC Block prec.: 2 CheapSIMPLEC
Level damping: 0.8 Block prec. damping: 0.8
— Pred. smoother: 1 SGS (0.8) — Pred. smoother: 3 SGS (0.8)
— Corr. smoother: ILU (0) — Corr. smoother: ILU (0)

CheapSIMPLE (SA-AMG)
Block prec.: 2 CheapSIMPLEC

Block prec. damping: 0.8
— Pred. smoother: AMG
— Transfer op.:.  SA-AMG (0.4)
— Level sm.: 2 SGS (0.8)
— Corr. smoother: ILU (0)

SA-AMG (CheapSIMPLE)
Transfer operators: SA-AMG (0.4)

Level smoother: 1 CheapSIMPLEC
Level damping: 0.8

— Pred. smoother: 1 SGS (0.8)

— Corr. smoother: ILU (0)

Table 7.5.: Two tori impact example — Different AMG variants.

equation. That is, quite a lot of time is invested in the coupling on all levels with the compa-
rably expensive ILU method. In contrary to the AMG based method, the CheapSIMPLE (SA-
AMG) method uses 2 sweeps with a CheapSIMPLE preconditioner for the coupling (on the
finest level only). Internally, a 3 level AMG multigrid is used with 2 symmetric Gauss—Seidel
sweeps for the level smoother and an ILU sweep for the constraint correction equation. These
parameters have been found to result in a reasonably low number of linear iterations. For this
example the experiment shows that the CheapSIMPLE (SA-AMG) method needs twice as many
iterations as the SA-AMG (CheapSIMPLE) method, but the costs per iteration are only half of
the costs of the SA-AMG (CheapSIMPLE). Nevertheless, the AMG based methods seem to have
a small advantage, when the number of nodes in contact increases.

In Figure 7.7b one can also see an increase in the computational times of up to 50% over time
despite the relatively constant number of linear iterations (cf. Figure 7.7a). Since all precondi-
tioning variants show a similar behavior independent of the underlying methods, this is very
likely to be an effect resulting from additional communication with the proceeding simulation
time. Figure 7.8 shows the solver timings summed up over the full number of 200 time steps.
Again, the PA-AMG (CheapSIMPLE) method serves as reference and is used to compare the
other methods against it. First, the CheapSIMPLE (SGS) variant cannot compete with the other
methods. All the AMG based methods and the SIMPLE method with an internal AMG method
are rather close. Over the full simulation time, the difference of these methods is not more than
4 minutes in the solver time. Nevertheless, one finds the AMG based variants to perform better
for the time steps with more nodes in contact.
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Figure 7.7.: Two tori impact example — Results for different saddle point preconditioner variants.
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Figure 7.8.: Two tori impact example — Improvement of solver timings against reference method
PA-AMG (CheapSIMPLE).

Last but not least, the overall timings for the linear solver in Table 7.6 are discussed. Except
the CheapSIMPLE (SGS) variant, which is far away from the others, there is no clear winner.
The setup costs are quite close, since for all methods the same transfer operators have to be built
with only a small difference for smoothed versus non-smoothed transfer operators. Further code
optimizations may allow to significantly reduce the setup costs. To reduce the solver timings,
one can think about further strategies as already mentioned in Remark 7.3.4.

Method Setup costs  Solver time Overall solver time
PA-AMG (CheapSIMPLE) 11630 4658 16288
SA-AMG (CheapSIMPLE) 12250 4564 16814
CheapSIMPLE (SA-AMG) 12130 4731 16861
CheapSIMPLE (SGS) 10270 9320 19590

Table 7.6.: Two tori impact example — Exemplary timings in [s] of the different preconditioning
variants from Table 7.5 for the full simulation over 200 time steps.

Remark 7.3.6 (Comparison of condensed and saddle point formulation). In general one should
be very careful with a direct comparison of the different solver strategies for the condensed
formulation (cf. Chapter 6) and the saddle point formulation (cf. Chapter 7). But here, one can
risk a short side glance to the timings from Table 6.8 in Section 6.5.3 as one solves the same
example with (nearly) the same solver tolerances for the linear solvers, knowing that this is not
sufficient for a full comparison as all timings are also influenced by other efffects (e.g., from the
nonlinear solver, etc.). It is interesting to see, that in both cases the best variants are rather close.
The saddle point AMG methods are a little bit more expensive in the setup costs, but give better
results in the iteration phase.
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CHAPTER

Summary and outlook

In summary, this thesis provides a piece of application-oriented fundamental research on novel
multigrid concepts for problems typically arising in computational fluid mechanics and compu-
tational contact mechanics. In particular, a flexible AMG framework has been proposed which
allows the design of problem-specific multigrid methods. To demonstrate both the use and the
usage of the flexible multigrid framework, problem-specific enhancements for algebraic multi-
grid methods have been developed using concrete examples of challenging problem formulations
of contact and flow problems.

After a brief review of the basic multigrid concepts in Chapter 2, the basic building blocks
for an aggregation-based AMG algorithm are discussed in Chapter 3. Beside the methods and
algorithms, the focus of this part of the thesis is on the framework for the setup of the multigrid
hierarchies. In Chapter 4, a new contemporary transfer operator strategy serves as an example
for a flexible algorithm which allows for problem-specific adaptions. Specifically, it is suitable
for non-symmetric problems as they typically arise from problems with convection. The new
scientific contribution concerning convection-dominated problems is the development of a novel
transfer operator smoothing method which is based on advanced concepts such as a sparsity
pattern strategy combined with mode preservation constraints and — in contrast to others — im-
plies the non-symmetry of the linear operator in the smoothing process. It perfectly fits into the
framework introduced in Chapter 3 and can be used with a Petrov—Galerkin approach building
appropriately smoothed restriction operators for non-symmetric problems. In Appendix B the
effect of non-symmetric transfer operator smoothing methods is exemplarily studied for a 1D
convection-diffusion problem. The Petrov—Galerkin approach in combination with an appropri-
ate transfer operator smoothing strategy, which considers the non-symmetry, has a significant
effect on the character of the coarse level problems and may notably improve the convergence
properties of the multigrid method in case of non-symmetric matrices resulting from convection-
dominated problems.

Besides convection-dominated flow problems, contact mechanics using mortar finite elements
is also a source for linear systems that are particularly challenging for iterative solvers and multi-
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grid preconditioners due to the differing character of the structural equations and contact con-
straints. Both a condensed formulation and a saddle point formulation of the contact problem are
considered with the corresponding differing matrix properties when developing adapted multi-
grid strategies within the proposed framework. First, in Chapter 6, the flexibility of the proposed
AMG framework has been demonstrated by enabling multigrid preconditioners for problems
arising from structural contact problems in condensed formulation. With the condensation of the
Lagrange multipliers, one can avoid the saddle point structure of the linear systems. However,
this comes along with other difficulties. Depending on the exact geometric configuration, the
resulting linear systems are structurally non-symmetric and non-diagonally dominant due to the
different coordinate systems used in the problem formulation. As it has been discussed in Chap-
ter 6, only minor modifications of the aggregation-based AMG algorithms within the multigrid
framework are necessary to solve large contact problems in condensed formulation with iterative
methods using multigrid preconditioners. In particular, the usage of a cheap and efficient column
permutation strategy has been proposed to overcome issues for the level smoothers caused by
non-diagonally dominant problem matrices. Besides the permutation strategy, additional tech-
niques have been introduced to improve the robustness. An observer mechanism keeps track of
possibly problematic matrix properties allowing the algorithms to react on. The resulting meth-
ods have been found to be robust when applied to large numerical examples. In particular, the
convergence behavior of the iterative solvers is independent from the exact geometric configura-
tion when the proposed modifications are used within the AMG preconditioner. However, even
though robust, one can observe a clear dependency of the linear iterations of the iterative solver
from the number of active nodes that are currently in contact.

When solving the same structural contact problem using a different formulation, one obtains
linear systems with different mathematical properties. In Chapter 7, saddle point AMG precon-
ditioners have been introduced for the structural contact problems in the original saddle point
formulation. Specifically, our contribution is a new interface aggregation method for Lagrange
multipliers which perfectly fits into our flexible AMG framework. This interface aggregation
strategy can be considered to be more natural, easier to implement and is shown to be cheaper
than alternative methods proposed in the literature. This way, it is also shown that the presented
framework can easily be extended to more general multigrid methods for block systems resulting
from multiphysics problems. Even though the saddle point formulation is often considered to be
hard to solve due to its characteristic block structure which requires special iterative methods
for saddle point problems, it has the advantage that the meaning of the different primary and
secondary variables in the block system is preserved over all multigrid levels. In this context, the
correct choice of the block level smoothing method is essential for the overall performance of the
saddle point multigrid method, since the block level smoother is the only place where the cou-
pling between primary and secondary variables is performed. Numerical studies illustrate that
the resulting saddle point AMG preconditioners are robust in the sense that all linear problems
could be solved iteratively. However, depending on the choice of the level block smoother one
finds the number of linear iterations to depend on the exact geometric configuration. From the
results of the numerical experiments one finds cheap variants of saddle point smoothers based on
Schur complement ideas to be a good choice as level smoothers, since they consistently consider
the constraints within the iterative solving process. With SIMPLE based level smoothers the
number of iterations of the linear solver shows a behavior independent of the geometric config-
uration and — in contrast to the condensed formulation — one cannot observe a clear dependency
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of the number of linear iterations from the number of active nodes in contact. With the saddle
point formulation the user has the full control over the preconditioning quality by choosing ap-
propriate level smoothers, but — on the other side — also has to deal with a large number of user
parameters which may have some negative effect on the usability.

Flexibility also plays an important role in the context of the algorithmic design of AMG meth-
ods to meet today’s requirements of state-of-the-art high-performance clusters. So, for the design
of the software framework some special focus is put on addressing all requirements of a modern
framework. Based on the TRILINOS libraries (cf. Heroux and Willenbring [89], Heroux et al.
[90]) our AMG framework seems well prepared for the future to meet the challenges of new
hardware platforms and software environments with a special focus on parallelization.

Altogether, different aspects of flexibility in an AMG framework have been highlighted with
concrete examples arising both from computational contact mechanics and computational fluid
mechanics dealing with different types of linear problems. The proposed methods in this thesis
are a major step forward towards solving large problems that have hardly been accessible for
iterative solvers until now.

Although substantial progress towards efficient iterative solvers and AMG preconditioners for
specific problems such as contact problems in different formulations has been made, there is
still room for improvements with regard to several aspects, which were only marginally covered
or not addressed at all. In the following an outlook is given on selected promising research
directions for the future.

First of all, one can think about many multigrid-specific enhancements. For example, a new
aggregation concept can be considered which is based on a more hierarchical aggregation algo-
rithm as, e.g., the aggregation routine described in Napov and Notay [140] leading to more ag-
gressive coarsening. In context of aggressive coarsening the relation of transfer operator smooth-
ing and level smoothing is an important research topic. It is intuitively clear that transfer operator
smoothing in some sense incorporates the effect of level smoothers into the transfer operator ba-
sis functions. So, especially for large aggregates resulting from an aggressive coarsening an ap-
propriate transfer operator smoothing may complement the level smoother (cf. Figure 4.4). Nev-
ertheless, there are many open questions about reasonable transfer operator smoothing methods
and the appropriate choice of complementary smoothers. In the context of non-symmetric prob-
lems the right choice of transfer operator smoothing strategies with the associated user-chosen
parameters is still interesting for research (see also Appendix B).

Another interesting topic could be the development of application-specific sparsity patterns
for transfer operators (see Section 4.4.4) in combination with the role of the near null space or
mode preservation constraints. The right choice of near null space vectors is still an important
problem and subject to further research. It is important to preserve a minimal set of all necessary
low-frequency error modes on all multigrid levels which is particularly demanding for problems
with some kind of discontinuities.

Of course, one can extend the framework in a straightforward way for other new applica-
tions, such as Thermo-Structure-Interaction (TSI) problems or Fluid-Structure-Contact-Inter-
action (FSCI) problems. Here, the goal should be to write general extensions independent of
concrete applications, if possible. One should keep in mind, that the multigrid preconditioners
serve as tool within an iterative solution process. So, a flexible multigrid framework is required
for being able to quickly adapt and put together the corresponding block preconditioners.
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Therefore, besides the purely multigrid-specific improvements there are more general research
topics for the future. In this thesis the focus is on the design of multigrid preconditioners which
are part of an iterative linear solver which again is part of an iterative nonlinear solution method.
To improve the overall solution time one has to think of the solution process including nonlinear
solver, linear solver and preconditioner as a whole. Here, the interplay of linear solver and non-
linear solver including sufficiently loose stopping criteria is essential. Whereas the extension of
the multigrid preconditioners for general multiphysics problems is straightforward, the design of
appropriate stopping criteria both for the linear and the nonlinear solver is highly challenging.
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APPENDIX

The preconditioned GMRES solver

The Generalized Minimal Residual (GMRES) method, originally introduced by Saad and Schultz
[168], belongs to the class of Krylov subspace methods and is capable of solving non-symmetric
problems. Details about current research on iterative solvers are far beyond the scope of this
thesis. This appendix is not meant as replacement for a textbook on iterative solvers. The in-
tention of this appendix is to briefly discuss the idea of the preconditioned GMRES method
and give some literature for further reading. In between, the GMRES method is fairly popular
for solving non-symmetric problems with quite a few ready-to-use implementations available.
Even though aware of the extensions to the GMRES algorithm such as flexible GMRES (cf. Saad
[169]) or GMRESR (cf. Van der Vorst and Vuik [189]) or alternative methods such as BiCGstab
(cf. van der Vorst [188]), a classical (restarted) preconditioned GMRES method is used for all
the numerical examples in this thesis. In this appendix, a rough outline of the GMRES algorithm
is given following the explanations from Saad [170] which additionally considers many more
aspects related to iterative methods and the GMRES algorithm in great detail.

A.1. The GMRES solver as Krylov subspace method
For introducing the GMRES method one first has to define the Krylov subspace .

Definition A.1.1 (Krylov subspace). A Krylov subspace of dimension £ is defined as a subspace
of the form
Kr(A,v) = span{v, Av, A%, ... ,Ak_lv} (A.1)

for a regular matrix A € R™*™ and a vector v € R".
With Definition A.1.1 one can briefly describe the idea of the GMRES method as follows:
Given an initial solution vector 2 and the right-hand side vector b in (1.1), the GMRES method

iteratively builds solutions z* by minimizing the residual norm ||b — Az*|| over all vectors in
the subspace 2% + K1, (A, 7°) where r = b — Az° denotes the initial residual vector. To find the
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approximate solution z* from the affine subspace 2° + KCj,(A, %), the condition
b— Az® L AKCL(A,7°) (A2)

is imposed. Assume {vl, e ,vk} to be a set of orthonormal basis vectors spanning the Krylov
subspace Ky, = span{v, Avy,..., A" v, } and let V}, denote the matrix with column vectors
v1, ..., v Then, any vector z in the affine subspace z° + KCi(A,r%) can be written as © =
1%+ V,y with y a vector of size k. To minimize the residual norm over all vectors in °+/C; (A, 7°)
one first needs the definition

J(y) = b — Az, = ||b — A(a" + Viy) ||, - (A.3)
Then, one can rewrite the residual as
b—Ax:b—A(x0+ka)
= TO — Aka
(A4)

= Buy — Vi1 Hry
= Vi1 (Ber — Hyy),

where '’ = Bv;, Hj, an | (upper) Hessenberg matrix and e the first vector in the standard basis.
A detailed definition of H can be found in Algorithm 15. Since the column vectors of V},; are
orthonormal by definition, it follows

J(y) = ||b— A"+ Viy) ||, = ||Ber — Huy|, - (A.5)

Minimizing (A.3) is equivalent to minimizing the rightmost expression in (A.5) such that the
approximate x* is given by 2* = 2% + Vi, with y), = argmin, || Se; — Hyy|| .

A.2. The preconditioned GMRES method

In this thesis, a GMRES method is used with right-preconditioning as an outer linear solver. The
idea of preconditioning is briefly described in Section 1.2.3. Algorithm 15 gives a basic sketch
of the GMRES algorithm with right-preconditioning. It is based on an Arnoldi procedure which
generates an orthonormal set of basis vectors of the corresponding Krylov subspace Kj (A, r°).
Note that the new variable 7 never needs to be invoked explicitly. Once the initial residual r¥ =
b— Az’ = b — AW~12° is computed, all subsequent Krylov subspace vectors can be obtained
without any reference to the new variable x. With right-preconditioning, the Arnoldi process
builds and orthogonal basis of the right-preconditioned Krylov subspace, which is spanned by

the vector set {ro, AW—1r0 (AW‘l)k_lro}.

The GMRES method as given in Algorithm 15 is by no means optimal. In practice one would
replace the Modified Gram—Schmidt orthogonalization in the Arnoldi process by a more robust
Householder algorithm. Furthermore, the algorithm does not provide the approximate z* explic-
itly at each iteration step k£ which would be necessary to implement a convergence check (e.g.,
by testing the residual r* = b — Az¥). By smart internal transformations one can make use of
the structure of the Hessenberg matrix H), and introduce a convergence check at each linear
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iteration k. Details on a state-of-the-art implementation of the GMRES method can be found,
e.g., in Saad [170]. Therein further improvements (such as restarting techniques as described in
Remark A.2.1) are discussed, that are often used in practice. For the experiments in this thesis,
the GMRES implementation from the AZTECOO package (Heroux [88], Tuminaro et al. [187])
is used which is contained in the Trilinos libraries (cf. Heroux and Willenbring [89], Heroux
et al. [90]).

Algorithm 15: GMRES solver (cf. Saad [170, Algorithm 9.5])
Procedure GMRES (A, z°, b)

Calculate initial residual 1°
Y« b— AxY.

Choose normalized initial vector for K,
0
B [Ir°l.

0
r_
UlFﬁ

Build orthonormal basis of Krylov subspace KCy, using an Arnoldi procedure
for j « 1to Lk do
Wi < AW_lUj
for i < 1tojdo
h@j — (U)j,l)i)e
Wi = Wj; — hi,jvi
end
hjvg < llwsll,
Check for Arnoldi procedure to stop
if ;1 ; == 0 then break

Normalize basis vector v,

v,
Vjyp ¢ 72
i+l hjy1,;

end

Define (k + 1) x k Hessenberg matrix Hy,

Solve minimization problem
Yx < argmin,, Hﬁel — HkyHe

,j}lgigkﬂ,lgg’gk

Determine current approximate solution x*

k20 + W_Ikak

return ="

Remark A.2.1 (Restarted GMRES). The GMRES method is an iterative method which in con-
trast to other Krylov subspace methods also works for non-symmetric problems. However, the
major drawback to GMRES is that the amount of work and storage required per iteration rises
linearly with the iteration count. Since the costs of storing the Krylov subspace vectors will
rapidly become prohibitive, the usual way to overcome this limitation is by restarting the it-
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eration. There are different restarting strategies possible: the simplest strategy is to clear the
accumulated number of basis vectors after a fixed number of iterations. This corresponds to the
methods implemented in AZTECOO and used for the examples in this work. In Gamnitzer [70,
Appendix E.1] the corresponding algorithm for a right-preconditioned restarted GMRES algo-
rithm is described in great detail. Alternatively, one can think of any other strategy to manage
an appropriate limited number of basis vectors of the Krylov subspace (see, e.g., Saad [170] for
some examples). Anyway, it is difficult to choose an appropriate number of basis vectors for the
Krylov subspace to control the memory consumption without significantly disturbing the con-
vergence. Unfortunately, there are no definite rules for a proper choice of the number of basis
vectors.

Remark A.2.2 (Implementation of preconditioners). In practice, one does not explicitly build
the preconditioning matrix W or its inverse. A close look at the Algorithm 15 reveals, that it is
sufficient to implement the effect of applying the inverse of the preconditioner W to a vector.
That is, one needs a routine that calculates y from y = W ~'v for a given vector v.
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APPENDIX

1D prolongator smoothing

This section aims at throwing some light on the effect of different transfer operator smoothing
strategies in the multigrid scheme. To keep things simple, only a small non-symmetric demon-
stration problem is considered that is solved using a two-level multigrid method.

B.1. Problem definition

Throughout the whole section one considers the 1D convection-diffusion equation

——+c—=0b, 7€, (B.1)

for illustration. A finite difference discretization of (B.1) is used with central differences and
proper boundary conditions, resulting in tridiagonal, non-symmetric linear systems. The con-
vective parameter ¢ € R is assumed to be constant. Denoting the element length by h, the matrix
stencil for the convection-diffusion problem is given in a short notation for the tridiagonal oper-
ator by h% (—1— %, 2, -1+ %} which corresponds to the Toeplitz matrix

2
h? —1-2 2 -1+ ' (B.2)

By dropping the scaling with the element length / and setting ¢ := % € [0, 1], one obtains the
effective matrix stencil (—1 —¢,2, —1 + ¢).

In contrary to the convective parameter c, the parameter ¢ € [0, 1] defines the effective con-
vection. Choosing ¢ = 0 leads to the symmetric matrix stencil (—1,2, —1), which is well known

from the discretization of fully diffusive problems (of elliptic type). The choice ¢ = % would
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Coarse level matrix stencil
Method < Aji—1 ;i @ i41 >
—1—et 2+ —1+e+
SA-AMG < QN — %wQ . %w252’ 3w? — dw + we?, 2w — %Uﬂ _ %w252 >
—1—c+ 2+ —14+c+
PG-AMG < 2w — 3w? + 3w — 2we?,  3w? — 4w — 3wre? 4 dwe?, 2w — 3w? 4 2we? — 2we? >

Table B.1.: Matrix stencils for coarse level tridiagonal matrix Ay, = (a,;),,, for standard sym-
metric smoothed aggregation (SA-AMG) and Petrov—Galerkin smoothed aggrega-
tion (PG-AMG) approach. The ¢ parameter denotes the effective convection and w
the smoothing parameter for the prolongation and restriction operator.

yield pure upwinding. This corresponds to the parameter choice € = 1, which describes the limit
case of purely convective problems. Values larger than 1 for € are not of physical interest. With-
out restriction of any kind, it is sufficient to consider € > 0 only. For negative values of ¢ all
considerations can easily be adapted by using A7 instead of A,.

B.2. Simplified two-level method

For studying the effect of transfer operator smoothing strategies, it is sufficient to use a two-level
method only.

B.2.1. Tentative transfer operators

Using optimal 3-point aggregates for the tridiagonal matrix the tentative transfer operators (see
Section 3.4.1) are given by

)

= pT, (B.3)

)
|
Sl

1 and

Asa result of the local QR-decomposition (cf. Figure 3.7), the transfer operator basis functions
of P are scaled by the square root of the aggregate size, which is 3 by construction in our
example.
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B.2. Simplified two-level method

B.2.2. Smoothed aggregation transfer operators

The smoothed prolongation operator can be written as

1

(—=1+¢)
s(1+¢)
1
1-%5(1—-¢) —5(-1+4¢)

| wlg

vle |

R R 1 —4(-1—-¢) 1-¥(1+¢)
P(w,e) = P —wD'AP = — 1
) V3 1-%(1—-¢) —%(-1+4¢)
—9(Cl—g) 1-%(1+¢)
1
1-%(1—¢)
~s(C1-2)

(B.4)
In (B.4) the w € [0, 1] denotes the prolongation smoothing factor. The columns of (B.4) allow to
derive the conditions

W

0§—§(—1+e)§1— (1+¢)<1land (B.5)

0<—S(-1-g)<1-3

[\

(1-e)<1 (B.6)

[\]

for smooth prolongation operator basis functions, which can be transformed to the effective
conditions 0 < w < land 0 < ¢ < 1. Note that w = 0 in (B.4) leads to the non-smoothed
prolongation operator in (B.3).

B.2.3. Stencils of the coarse level operators

With the smoothed prolongation operator in (B.4) one can build the coarse level matrices and de-
termine the corresponding matrix stencils. For restriction one can either use symmetric smoothed
aggregation transfer operators with R = P(w, e)? (cf. Section 4.2.1) or alternatively the Petrov—
Galerkin smoothed aggregation approach for non-symmetric problems (see Section 4.2.2), where
the transposed of A, is used for smoothing the restriction operator separately. In both cases the
resulting coarse level operator A, = R(w,c)A,P(w,¢) is a tridiagonal matrix. The corre-
sponding coarse level matrix stencils are listed in Table B.1. Figure B.1 shows the shape of the
transfer operator basis functions both for the symmetric smoothed aggregation approach (SA-
AMG from Section 3.5.1 with symmetric restriction from Section 4.2.1) and the Petrov—Galerkin
smoothed aggregation approach (PG-AMG with non-symmetric restriction from Section 4.2.2)
with varying transfer operator smoothing parameters w and convection parameters . For the
symmetric approach the restriction operator is just the transposed of P. Thus, the smoothed trans-
fer operator basis functions for prolongation and restriction are identical. For the non-symmetric
Petrov—Galerkin approach the transposed fine level matrix A, is used to generate the smoothed
restriction operator basis functions. Therefore, the resulting basis functions for prolongator and
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Symmetric smoothed aggregation Non-symmetric smoothed aggregation
transfer operators transfer operators
1 : :
@A [ w=00 ——w=066 Cw=00  ——w=066
——w =10.2 —— w=1.0
N
? 0.5 : - 8
W
0 L | | | L | | |
Prolongator Restrictor Prolongator Restrictor
1 : :
© [—w=00 ——w=066 D [-w=00  ——w=066
—o—w =0.2 —— w=1.0 —o—w = 0.2 —— w=1.0
--- Emin
UD‘ o
C”> 0.5 :
W
0 L | | | | i
Prolongator Restrictor Prolongator Restrictor
1 : :
E® [--w=00 ——w=066 ® [-w=00 ——w=066
—o—w = 0.2 —— w=1.0 —o—w = 0.2 —— w=1.0
Q
ﬁ 0.5 8
W
0 L | | | | |
Prolongator Restrictor Prolongator Restrictor

Figure B.1.: Transfer operator basis functions. The left column shows the symmetric smoothed
aggregation transfer operator basis functions for different w (see Figure B.2a). The
right column shows the corresponding non-symmetric smoothed aggregation trans-
fer operator basis functions (see Figure B.2b). The block rows allow a comparison
of the transfer operator basis functions for an increasing convection parameter €.
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B.2. Simplified two-level method

restrictor are not identical, as one can see from the given basis functions in the right column of
Figure B.1.

Table B.1 shows the effect of the smoothed transfer operators on the coarse level matrix
Ay, 1. The transfer operator smoothing method adds some symmetric values to the coarse matrix
stencils. There are no additional non-symmetric additions to the matrix stencil. The symmetric
smoothed aggregation method (SA-AMG) and the Petrov—Galerkin approach for non-symmetric
problems (PG-AMG) exclusively differ in the mixed terms.

Remark B.2.1 (“Emin” method). The entry “Emin” in the right column represents the results
for the transfer operator strategy introduced in Sala and Tuminaro [173], which is based on the
Petrov—Galerkin approach for the restriction operators together with the local transfer opera-
tor smoothing strategy as briefly discussed in Section 3.5.2. However, in the case of Toeplitz
matrices, it reduces to a special strategy of defining a global prolongation damping factor.

B.2.4. Diagonal dominance of the coarse level operators

From the matrix stencils in Table B.1, an expression for w(e) can be derived for which the
coarse level matrix A, ; remains diagonal dominant. The stencil for the interesting limit case is
(—2,2,0). For the coarse level matrix generated by the SA-AMG approach this is equivalent to

3 1 2+ v/ —2+ 6 — 262 4 2¢3
—1l+e+2w-— §w2 — §w252 20 & w(e) = v §+€€2 e : (B.7)
A close analysis of the expression in (B.7) reveals that it has only a real solution for
1 1 1 8
ez g+ 5(1 +3V/57)% — —————— ~ 0.36. (B.8)

3(1 + 3v/57)

From (B.8) one finds that for ¢ 5 0.36 there is no 0 < w < 1 which produces non-diagonally
dominant coarse matrix stencils in A, . Figure B.2a shows all valid transfer operator smoothing
parameters w(e) leading to diagonally dominant coarse level matrices.

For the PG-AMG approach one obtains the limit stencil (—2,2,0), if

242 £ V42 +2e -2

3 3
4ot 2w— W oW 2wt =0 & w(e) :
3e+1)

2 2

(B.9)

which exhibits real solutions for ¢ > 0.5. Figure B.2b shows the corresponding transfer operator
smoothing parameters w(e) which lead to diagonally dominant coarse level matrices Ay, ;.

Note that the transition from the white to the gray area gives the transfer operator damping pa-
rameters w(e) which generate a coarse level operator with the limit stencil (—2, 2, 0) describing
a purely convective problem.

For non-symmetric tridiagonal Toeplitz matrices A, = (a;;), as defined by the fine level
matrix stencil (—1 —e,2, —1 + ¢) as well as the coarse level stencils in Table B.1, it is very
convenient to use the ratio of the off-diagonal and diagonal matrix entries to define a functional
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mapping s with

A +1 (wa 8)

52 0,1 = [0,05), s(w,e) = |\ ==

(B.10)

A ratio of 0.5 corresponds to the symmetric stencil (—1,2, —1) fore = 0 and w = 0. In a similar
way, the choice s = 0 defines the stencil (—2,2,0). Note that the value of the mapping s char-
acterizes the degree of non-symmetry of the matrix. One can interpret the coarse matrix stencils
from Table B.1 as disturbed matrix stencils (—1 — €., 2, —1 + .) with a disturbed effective con-
vection parameter €., which is different to €. Consequently, the “disturbed” effective convection
parameter ¢, corresponds to a disturbed convective parameter ¢, which is not identical to the
value of ¢ in (B.1).

Figure B.3 illustrates how the different transfer operator smoothing strategies affect the ratio
of the off-diagonal and diagonal entries of the coarse level matrix Ay, ; depending on w and
. Depending on the damping parameter w, the transfer operator damping strategy significantly
increases or decreases the non-symmetry of the coarse level operator A,,; compared to the fine
level operator A,. The coarse level problem can therefore be interpreted as a discrete version of
the coarse convection-diffusion equation with a convection parameter that is different to the con-
vection parameter of the fine level problem. Looking at the Figure B.3 reveals that the convective
part is less dominant on the coarse level, i.e., the level matrix A, of the coarse problem is more
symmetric, when an appropriate damping parameter w is used. Note that for non-smoothed trans-
fer operators with w = 0 the ratio of the off-diagonal and diagonal entries is preserved over all
multigrid levels.

Of course, all these considerations are only valid for our chosen simplified example. But
this example may provide some in-depth insight into the conceptual effect of transfer operator
smoothing.

B.2.5. Optimal choice of transfer operator smoothing parameter

The next relevant question is which damping factor w should be chosen for a given convection
parameter <. In the context of multigrid methods the coarse level matrix is used for some pre-
and post-smoothing sweeps. A typical choice for multigrid level smoothers are relaxation-based
methods, such as Jacobi iterations or Gauss—Seidel iterations (cf. Section 2.1). Therefore, an
optimal choice of w would try to generate optimal matrices for such level smoothing methods.

For reasons of simplicity the analysis is restricted to an undamped Jacobi iteration as level
smoother. Since the coarse level matrices Ay, with the matrix stencils from Table B.1 produce
tridiagonal Toeplitz matrices, one can analytically determine the eigenvalue spectrum of the
Jacobi iteration matrix M := I — D71A,, (see, e.g., Noschese et al. [141]).

Figure B.4 shows the maximum absolute eigenvalue of the Jacobi iteration matrix for given w
and ¢ for the coarse level operator Ay, .

Given a convection parameter &, the choice w(e) is optimal for the Jacobi iteration, if the
maximum absolute eigenvalue of the Jacobi iteration matrix M/ gets minimal. For the test ex-
ample using the SA-AMG method the optimal choice would be w,,; = H% for € small enough
to generate diagonally dominant matrices. Using the PG-AMG approach the optimal choice is
Wopt = % for ¢ < 0.5 independent of . The optimal choice for w is also shown in the Figures
B.2 by the solid lines.
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(a) Symmetric smoothed aggregation transfer (b) Non-symmetric smoothed aggregation
operators transfer operators

Figure B.2.: The gray area comprises all transfer operator smoothing parameters w (¢) which
lead to non-diagonally dominant coarse level matrices Ay, ;. The solid line de-
scribes the optimal w (¢) which minimize the maximum absolute eigenvalue of the
undamped Jacobi iteration matrix M := I — D~ 1A, of the coarse level matrix (see
Section B.2.5 and Figure B.4). The dashed line indicates the w (¢) chosen by the lo-
cal transfer operator smoothing strategy from Section 3.5.2 with a Petrov—Galerkin
approach for restriction. The different marks represent the w(e) variants shown in
the Figure B.1 as well as Figures B.5 and B.6.
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Figure B.3.: The colors illustrate the ratio of the coarse level matrix entries |a; ;11| /]a;;| as a
function of € and w. The ratio is in [0, 0.5], where 0.5 represents the symmetric
coarse level matrix stencil (—1,2, —1) and 0 the matrix stencil (—2,2, 0). The ver-
tical contour plot lines denote the ratio of the fine level matrix entries |a; ;11| / |a; |-

In Figure B.2b one can also find the prolongation damping parameters w generated by the
Emin method, that is introduced by Sala and Tuminaro [173] and often performs very well
for practical non-symmetric examples using the Petrov—Galerkin approach together with local
damping parameters (cf. Section 3.5.2).

B.2.6. Demonstration of a two-level multigrid method

To study the effect of the transfer operator smoothing strategies in a simplified multigrid context
the 1D convection-diffusion problem in (B.1) is used on the domain 2 = [0, 1| with homoge-
neous Dirichlet boundary conditions. The discretization of the domain is based on a mesh with
30 fine level nodes (mesh size h = 2—19). Furthermore, the convection parameter c in (B.1) is cho-
sen such that the resulting linear operator A, has the effective matrix stencil (—1 — ¢,2, —1 + ¢)
away from the boundary nodes. By building optimal aggregates with three nodes per aggregate
for the tridiagonal fine level matrix A, one obtains a two-level multigrid method with a tridi-
agonal 10 x 10 coarse level matrix Ay, ;. No pre- and post-smoothing is applied on the finest
level. Figure B.5 shows the prolongated coarse level solution, if a direct solver is used on the
coarse level. In the plots, one can easily find the 10 steps produced by the aggregates which
are smoothed with an increasing transfer operator smoothing parameter w. Comparing the sym-
metric smoothed aggregation approach with the Petrov—Galerkin approach for non-symmetric
problems the results turn out to be very similar. Even if the convection gets more dominant for
bigger ¢, the Petrov—Galerkin approach seems to be only slightly better for this very simple
example.
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Figure B.4.: The colors indicate the maximum absolute eigenvalue of an undamped Jacobi iter-
ation matrix M := I — D' A, as a function of ¢ and w.

Things are different, if one solves the coarse level problem inexactly using 10 undamped
Jacobi sweeps, as one can see in Figure B.6. For small convection parameters (¢ = 0.2) both the
symmetric as well as the non-symmetric smoothed aggregation method produce similar results
for all tested transfer operator smoothing parameters w. If the convection gets more dominant,
the Petrov—Galerkin approach for non-symmetric systems performs much better compared to the
symmetric case. Especially for the “optimal” smoothing parameter w = 0.66, the exact solution
is well recovered by the prolongation of the inexact coarse level solution. In this simple case
this even works for ¢ > 0.5, where the symmetric smoothed aggregation approach develops
significant oscillations.

This example shows that the Petrov—Galerkin approach not only gives better results for non-
symmetric problems, but is also more robust over a wider range of parameter values. The coarse
level problems generated by the classical symmetric smoothed aggregation method applied to
non-symmetric problems may severely disturb the multigrid solution process, if a wrong damp-
ing parameter w is chosen. Even though one cannot generalize the findings for this example to
more general problems, it might help to understand how the transfer operator smoothing method
affects the coarse level operators in a multigrid setting. This may also help to choose appropri-
ate damping parameters especially for highly convective problems. Non-smoothed aggregation
(i.e., using non-smoothed transfer operators) turns out to be a safe fallback strategy, which has
the interesting property of a constant ratio of the off-diagonal and diagonal entries in the matrix
stencil that preserves the underlying physics (convection).
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Symmetric smoothed aggregation Non-symmetric smoothed aggregation
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Figure B.5.: The plots visualize the prolongated coarse level solution of the linear system from
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Section B.2.6, when using a two-level solver. No pre- or postsmoothing is applied on
the finest level and the coarse level problem is solved exactly. The left column shows
the effect of symmetric smoothed aggregation transfer operators with different w
(see Figure B.2a). The right column shows the results for the corresponding non-
symmetric smoothed aggregation transfer operators (see Figure B.2b). The block
rows allow a comparison of the transfer operator basis functions for an increasing
convection parameter €.
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Symmetric smoothed aggregation Non-symmetric smoothed aggregation
transfer operators transfer operators

e=20.5

e=0.8

Figure B.6.: The plots visualize the prolongated coarse level solution of the linear system from
Section B.2.6, when using a two-level solver. No pre- or postsmoothing is applied on
the finest level. The coarse level problem is solved inexactly with 10 undamped Ja-
cobi sweeps. The left column shows the effect for symmetric smoothed aggregation
transfer operators with different w (see Figure B.2a). The right column shows the
results for the corresponding non-symmetric smoothed aggregation transfer opera-
tors (see Figure B.2b). The block rows allow a comparison of the transfer operator
basis functions for an increasing convection parameter ¢.
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APPENDIX

AMG & Dirichlet boundary conditions

To our knowledge there is no publication dealing with the peculiar details of Dirichlet boundary
conditions (DBC) in context of iterative solvers and multigrid methods. Admittedly this is a
topic, which is somewhat application-specific and may also often be considered to be “trivial”.
However, in our opinion, there are some details that are more tricky that one might think in the
first moment and therefore it is worth to be discussed in the following sections.

C.1. Algebraic representation of Dirichlet boundaries

There are different ways to consider Dirichlet boundary conditions in a linear system Az = b. Of
course, one can condense out Dirichlet boundary information from the linear system changing
the size of the linear system. However, in practice, the condensation of the Dirichlet informa-
tion is not very attractive, since changing the size of the linear system would be too expensive
especially in a parallel implementation. In many standard software packages the Dirichlet infor-
mation is not condensed out, but contained in the system matrices as zero rows with only one
nonzero entry on the diagonal.

As a consequence, the Dirichlet information is contained in the linear system and affects the
graph of the linear operator A. For general non-scalar problems one can distinguish different
types of Dirichlet boundary conditions.

Definition C.1.1 (Partial Dirichlet node). Assume that the linear operator A in (1.1) is defined
by the entries ay; where k, 1 € {1,...,n,}. Thenode i € {1, - ,mg} is a partial Dirichlet node,
if there is at least one k € {1,...,n,} withn(k) =i and

1 ifk=1
— C.1
h { 0 otherwise €D

forl =1,...,ny. The right-hand side vector b contains the Dirichlet values in the corresponding
TOWS.
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C. AMG & Dirichlet boundary conditions

In a similar way one can define a full Dirichlet node, which can be understood as a special
case of partial Dirichlet nodes.

Definition C.1.2 (Full Dirichlet node). The node 7 € {1, - ,mg} is a full Dirichlet node if and
only if for all k € {1,...,n,} with n(k) = i the expression (C.1) holds forall | = 1,.. ., n,.

Note that for scalar problems with only one degree of freedom per node all Dirichlet boundary
nodes are per definition full Dirichlet nodes. With the knowledge of the aggregation algorithms
from Section 3.3 it is clear that such a representation of Dirichlet information also affects the
aggregates within an aggregation-based multigrid method.

C.2. Dirichlet boundary conditions and relaxation-based
methods

For simplicity here only the Jacobi method as introduced in Section 2.1.1 is exemplarily dis-
cussed, which is given by

"= 2F —wD N (A2* —b) = (I —wD 'A)a* + wD b (C.2)

for the linear system Az = b from (1.1). Let the subscript (-)p denote the row indices with
Dirichlet boundary conditions. One has to distinguish homogeneous and non-homogeneous Dirich-
let boundary conditions.

Non-homogeneous DBC: For the more general case of non-homogeneous Dirichlet boundary

conditions one finds: If w = 1.0, the Dirichlet rows of the iteration matrix M := (I —
wD~A) are empty and it is zE™ = bp for all k. However, if k& # 1.0, this is not longer

true. For appropriately chosen damping parameters w only xf — bp holds for k& — oo.

So, for non-homogeneous Dirichlet boundary conditions one needs w = 1.0 to satisfy
the Dirichlet boundary conditions exactly. Then, independent of the initial guess =2 for
the Dirichlet values, the Dirichlet information is correct after 1 sweep with a non-damped
Jacobi iteration.

Homogeneous DBC: For the special case of homogeneous Dirichlet boundary conditions (that
is bp = 0) one obtains some non-zero entries on the diagonal of Mp := (I — walA) b
only. As long as 2% = 0, i.e., the correct Dirichlet information is stored in the solution
vector, the relaxation-based method does not disturb the correct Dirichlet values in the
solution vector independent of w.

Similar considerations can be made for other relaxation-based methods, which are quite often
used as fine level smoothers for multigrid methods.

C.3. Dirichlet boundary conditions and Krylov subspace

methods

Krylov subspace methods such as the CG method or the GMRES method that are often used
as iterative solvers for linear systems, are known to fulfill Dirichlet conditions exactly, if the
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initial solution vector 2 is already initialized with the exact Dirichlet values in the corresponding
rows. Otherwise, Dirichlet conditions are only fulfilled up to the user-prescribed solver tolerance.
Therefore, preconditioning methods within a Krylov subspace solver are not supposed to disturb
correct Dirichlet information in the initial solution vector.

In practice, one does not solve the original linear system Ax = b as defined in (1.1), but uses
an incremental formulation. With the definition 7* = Az* — b one can rewrite (1.1) as

AAZM = A (2 — k) 2 b — Agh = b, (C.3)

k+1 k+1 k

Thus, one solves for the solution increment Az =z — z".

Remark C.3.1 (Incremental formulation and Dirichlet boundary conditions). Let the superscript
()p denote the indices with Dirichlet boundary conditions. Assuming that the initial guess x°
for the solution vector contains the correct Dirichlet information, it follows g = 0. If the initial
guess in the Krylov iteration is chosen to be Ax? = 0, itis Az = 0, such that the correct Dirich-
let information is not disturbed. The incremental formulations has the advantage that one has to
deal only with homogeneous Dirichlet boundaries with all its consequences for preconditioners
and smoothers (see, e.g., Section C.2).

C.4. Dirichlet boundary conditions and multigrid methods

In practice, when a multigrid method is used as preconditioner within an outer Krylov iterative
solver together with an incremental formulation of the linear system, Dirichlet boundaries are
usually not an issue. The outer linear solver will always satisty (full and partial) Dirichlet bound-
ary conditions at least up to the user-chosen solver tolerance, even if there is no special detection
and handling of Dirichlet boundary nodes. Most often, it is fine to aggregate partial Dirichlet
nodes together with usual inner nodes and the level smoother correctly handles all Dirichlet
boundary information.

However, in rare situations with unusual solver settings and a weak solver tolerance, one might
find the Dirichlet information to be not fulfilled exactly, which may be unacceptable or at least
puzzling for the user. Especially when using a multigrid method as standalone solver or for spe-
cial configurations of boundary conditions (e.g., 3D problems modeling pseudo 2D examples)
or application examples (modeling of boundary layers in turbulent flows with low solver toler-
ance), it is important to put some more attention in the handling of boundary conditions. In the
following different strategies for a proper handling of Dirichlet information is briefly discussed
in context of multigrid methods.

C.4.1. Handling of full Dirichlet nodes

Full Dirichlet nodes can be understood as special case of partial Dirichlet nodes. In contrary
to partial Dirichlet nodes, full Dirichlet nodes are detected by the aggregation algorithms from
Section 3.3 as isolated nodes. Basically, one has two options to handle full Dirichlet nodes within
a multigrid method. One can either drop them completely in the multigrid setup or keep them as
single node aggregates transferring the Dirichlet information to the coarse levels. More advanced
hybrid strategies are discussed in context of partial Dirichlet boundary conditions in the next
sections.
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Assuming that the solution vector x, contains the exact Dirichlet values in the corresponding
rows after v, pre-smoothing sweeps with the pre-smoother . (see, e.g., Algorithm 1), the best is
to drop the Dirichlet nodes from the aggregation process. Then, the corresponding prolongation
operator just contains zero rows in the rows associated with the Dirichlet boundary nodes, such
that the the coarse grid correction has absolutely no influence to the corresponding entries in
the solution vector z,. In Algorithm 1, the corresponding rows in e, are zero, such that the
Dirichlet rows in x; are not disturbed. Now, it is up to the post-smoother to preserve the Dirichlet
information correctly (see Section C.2).

Under certain circumstances, the pre-smoother might not be able to satisfy Dirichlet boundary
conditions exactly (cf. Section C.2). Then, it could make sense in some cases not to drop the
Dirichlet nodes from aggregation, but to consider the Dirichlet information in the coarse grid
correction. To preserve the Dirichlet information on all multigrid levels one can use special
single node aggregates. This way, the Dirichlet information can be transferred to the coarsest
level and solved exactly using a direct solver. The disadvantage is that the coarsening rate may
suffer from the additional small aggregates for the Dirichlet nodes.

C.4.2. Handling of partial Dirichlet nodes

It is more complicated for partial Dirichlet nodes, since it is not possible to detect them using
the graph of the matrix A,. As long as the partial Dirichlet nodes are handled by the usual
aggregation algorithms as described in Section 3.3, the (partial) Dirichlet information is lost
on the coarser levels. The effect can be illustrated using the following minimal example for a
two-level method (cf. Algorithm 1):

Example C.4.1. Let’s have a look at the linear system

1 010 0 0 0
—1 2 -1 0 1 ~_ |5

R i el KA E1 where 7 = i (C.4)
0 01-1 2 3 ;

is the exact solution. As indicated by the dashed lines in (C.4), 2 degrees of freedom per node
are assumed, such that the first row represents a (partial) Dirichlet boundary condition. The
initial guess for the solution vector is set to ° = 0, which contains the correct solution for the
(homogeneous) Dirichlet row. For simplicity one neglects pre-smoothing on the finest level and
uses the non-smoothed transfer operators from Section 3.4, that are given by

1
P .= —

and R = P". C5
7 (C.5)

O = O =
—_— O = O

With the zero initial guess and without pre-smoothing, the right-hand side vector on the coarse

level is calculated as r; = Rr = -

7 Lﬂ . The coarse level system PTAPe; = r; then is given
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1 3 2 = L 2 with the exact solution e; = v/2 % (C.6)
o\-3 4 )T A4 R '

Thus, the prolongated coarse level correction ej before post-smoothing can be calculated as

€y = P€1 = (C7)

O wloo Lo wloo

Note that the first entry in e from (C.7) would disturb the Dirichlet information in the updated
solution vector x(. Obviously, the (partial) Dirichlet information is lost on the coarse level. In a
multigrid method, again the post-smoother would be responsible to correct the wrong Dirichlet
data (cf. Section C.2). Note that in this case a damped relaxation method would fail in correcting
the Dirichlet data.

One should not drop (partial) Dirichlet nodes from aggregation, especially if there is no outer
Krylov solver, which can still find a solution for the variables that are ignored by the multigrid
preconditioner. To develop special strategies for handling (partial) Dirichlet information, the
(partial) Dirichlet nodes have to be detected first. For extracting the Dirichlet node information
one cannot use the (amalgamated) graph that is used for the aggregation, but has to use the full
matrix A before amalgamation and mark the corresponding nodes to contain partial Dirichlet
information. Then, one can think of different strategies:

C.4.2.1. Build single node aggregates for Dirichlet nodes

The first idea is to mark partial Dirichlet nodes and build single-node aggregates that are trans-
ferred one-to-one to the coarsest level. This way, the Dirichlet information is considered on all
multigrid levels. However, the method has the significant disadvantage that the coarse level size
is increased by the number of Dirichlet nodes, which deteriorates the coarsening rate. Therefore,
this approach is not so interesting from the practical point of view. Furthermore, one has to keep
in mind that single node aggregates need some special handling for problems with the number
of near null space vectors larger than the number of degrees of freedom per node (cf. Remark
6.3.2 in Section 6.3.1).

C.4.2.2. Build aggregates from Dirichlet nodes

Instead of building single node aggregates, one can aggregate Dirichlet nodes of “same type”
with the same right-hand side value into special aggregates. Two (partial) Dirichlet nodes are
called to be of the “same type”, if they have Dirichlet boundary conditions for the same degrees
of freedom (e.g., for the displacements in x-direction only). This is a good option for the incre-
mental formulation with homogeneous Dirichlet boundaries only, since the number of Dirichlet
aggregates is naturally limited to 2 in 2D and 6 in 3D (representing all possible combinations of
Dirichlet and non-Dirichlet rows in a partial Dirichlet node, excluding full Dirichlet nodes).
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Example C.4.2. Let’s assume that one has again 2 degrees of freedom per node and the linear
system is given by

1 010 010 0 0
1 271 310 0 1
0 011 070 0 0
0 -1i0 2 1-1 0 |72 9
0 010 —-1}2 -1 2
0 010 0 1-1 2 2]

As one can see from (C.8), rows 1 and 2 as well as rows 3 and 4 represent two partial Dirichlet
nodes of same type, where the first degree of freedom per node (rows 1 and 3) are fixed with a
(homogeneous) Dirichlet condition, whereas the second degree of freedom (rows 2 and 4) are
free. Now these two partial Dirichlet nodes can be put together into one aggregate using the
non-smoothed transfer operators from Section 3.4 given by

s 010
0 00
p=| v %100 war=p". (C.9)
0 500
00 (10
0 0.0 1

as

1 0 1 0 0 0

1 3 '=—LX 90 3

,,,,,,,,, V2 _ T N V5
-+ e1 = ) (C.10)

0 —%1 2 -1 2

0o 0 1 -1 1 2

The homogeneous Dirichlet boundary is preserved in the coarse level system (C.10) and con-
sequently also in the prolongated coarse level correction ¢y = Pe; and the fine level solution
before post-smoothing, as one can easily verify. Standard smoothing methods should be able to
preserve the Dirichlet values in the solution vector.

C.4.2.3. Remove Dirichlet rows from prolongator

At least for homogeneous (partial) Dirichlet boundary nodes, one can also adapt the prolongation
operator to fulfill the partial Dirichlet boundaries exactly, instead of building extra aggregates for
(partial) Dirichlet nodes. The partial Dirichlet nodes are put into standard aggregates (together
wit non-Dirichlet nodes), while the corresponding rows in the prolongator are zeroed out.
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Example C.4.3. Revisiting the linear system (C.8) from Example C.4.2 using the transfer oper-
ators

and R = PT, (C.11)

Sl
w

o= O O OO
_ O = O = O

the coarse level problem is given by

1 — 1
(4 9l

Independent of the coarse grid correction e, the design of the prolongation operator automati-
cally makes sure that the Dirichlet rows in the prolongated coarse grid correction ey remain zero
and therefore cannot disturb the fine level solution vector.

Using a transfer operator smoothing strategy, which allows to describe a pattern for the trans-
fer operators (such as the methods described in Section 4.4), makes it easy to implement this
Dirichlet boundary node strategy.

Remark C.4.4 (Robustness). If the aggregation strategy builds a purely Dirichlet node aggregate
adapting the resulting prolongation operator, one obtains zero coarse level basis functions, which
cause the coarse level problem A,,; to be singular. Therefore, it is highly important for the
robustness of the multigrid method that each aggregate contains at lest one non-Dirichlet node
to avoid singular coarse level matrices. However, one can state that for typical realistic examples
this is not a common problem.
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APPENDIX

Comments on parallelization of SA-AMG

In Chapters 6 and 7 it has been demonstrated how to enable aggregation-based AMG methods
as preconditioners for large contact mechanics problems making use of the flexibility of the
proposed multigrid framework. The methods therein have been proven to be robust and efficient
for several large problems that could not be solved up to now with iterative methods.

However, it is one thing to enable the usage of aggregation-based multigrid preconditioners
for problems resulting from certain applications such as computational contact mechanics. It is
quite another thing to apply aggregation-based multigrid preconditioners to really large and chal-
lenging problems resulting from industrial applications. Especially with an increasing problem
size the scalability of the algorithms in a parallel environment gets more and more important.
There is no doubt that the problems will grow in size in the future. Therefore, one should not
completely ignore the scalability properties of the used methods.

However, in engineering one usually has very concrete problems with a rather fixed problem
size to solve. So, engineers are more interested in fast solution algorithms rather than (slow, but
perfectly) scalable methods. In Douglas et al. [53, Remark 3.28] the authors find clear words:

“Actually, only wall-clock time counts on a parallel code. If you do not want the
solution now, why bother with the nuisance of parallel programming?”

In other words: a good parallelization is worthless for a numerically inefficient algorithm.
Therefore, the primary focus of this work is to find numerically efficient algorithms that work
for concrete large problems that could not be solved before. Nevertheless, this chapter introduces
some basic terms in context of parallelization and closes this work with some small scalability
studies.

D.1. Theoretical considerations and definitions

Before discussing the parallelization capabilities of aggregation-based multigrid methods, first
some basic notions and definitions are introduced.
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In general, the term Scalability describes the property of a program to adapt automatically to
a given number of processors p and therefore is highly important in context of parallel comput-
ing. Furthermore, Granularity is a measure for the size of program sections which are executed
without communication with other processes. One can distinguish fine grain and coarse grain
algorithms. Here, a fine grain algorithm has lots of synchronization points where communication
is necessary whereas coarse grain algorithms consist of fewer and larger components that work
most of the time independently without inter-processor communication. The finer the granular-
ity, the greater the potential for parallelism and hence speed-up, but the greater the overheads
of synchronization and communication. If no (or nearly no) communication at all is needed, the
problem is often called perfectly parallel or embarrassingly parallel.

The effect of an increasing number of processors to the algorithm can be measured using the
Speedup S.

Definition D.1.1 (Speedup). The speedup S is a measure of the performance gain of a parallel
code running on p processors compared to the sequential version with only one processor when
keeping the problem size constant. Quantitatively, the speedup of p processors is given by

(1)

T(p)

Remark D.1.2 (Scaled speedup and weak scaling). Whereas the speedup as given in Definition
D.1.1 describes the strong scaling of an algorithm with an increasing number of processors p for a
problem of constant size, there is also a scaled speedup which measures the parallel performance
gain when increasing the global problem size with the number of processors used (weak scaling).

Definition D.1.3 (Amdahl’s law). Let p denote the number of processors (threads of execution)
and let f € [0, 1] describe the fraction of the algorithm that is strictly serial. Then, the time 7'(p)
an algorithm takes to finish when being executed on p threads of execution is given by

1
T(p) =TO)(f+ (1= ). (D.1)

Thus, the theoretical speedup .S by running the algorithm on p threads of execution can be cal-
culated with

S(p) = (D.2)

Amdahl’s law describes a theoretical upper bound for the maximum possible speedup without
considering overhead through increasing communication with an increasing number of proces-
sors p. It is based on the fraction f of the algorithm which is strictly serial. Often it is helpful to
have a small example to illustrate the meaning of Definition D.1.3.

Example D.1.4 (Amdahl’s law). Let the serial fraction f of an algorithm be f = 0.1, i.e.,
10% of the algorithm are strictly serial and 90% can be (perfectly) parallelized. Assuming 16
processors, the theoretical upper bound of the speedup is calculated with 6.4. Note that the
maximum possible (theoretical) speedup with an infinite number of processors is only 10.
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Obviously it is important to keep the strictly serial fraction of an algorithm small in order
to obtain a good (theoretical) speedup. Another important point is to keep the overhead for the
communication low.

D.2. Parallel multigrid

Some general comments on the parallelization of algebraic multigrid preconditioners can be
found, e.g., in Haase et al. [83]. In this section, the different ingredients of an aggregation-based
AMG algorithm are briefly analyzed with regard to parallelization.

Aggregation algorithm: Using the so-called uncoupled aggregation routine has the advantage
that there are no communication costs at all. Each processor only aggregates local node
information. Aggregates are not allowed to cross processor boundaries. Note that the un-
coupled aggregation algorithm may not produce nice aggregates if there are not enough
non-aggregated nodes left on the coarser levels. Thus, it makes sense to combine the un-
coupled aggregation algorithm with a re-partitioning strategy that uses a smaller number
of processors on the coarser levels.

Remark D.2.1 (Coupled aggregation). As an alternative one could also use a coupled ag-
gregation algorithm which per definition allows aggregates to cross processor boundaries.
However, the implementation is very complicated and the performance might not be sat-
isfactory due to the higher communication costs (especially if the transfer operator basis
functions are later smoothed by a smoothed aggregation method).

Tentative transfer operators: When using uncoupled aggregates it is possible to build the tenta-
tive prolongation operators without any inter-process communication.

Transfer operator smoothing: For the transfer operator smoothing some communication is nec-
essary when calculating A, Py, 1, e.g., in (3.11). Further communication may be necessary
for example to determine damping parameters w based on some eigenvalue estimations
(cf. Remark 3.5.2) or for more advanced calculations (such as local damping factors as in
(3.14)). Usually, transfer operator smoothing pays off the additional communication costs
resulting in a significantly reduced number of linear iterations.

Galerkin product: The Galerkin product (2.6) with its sparse triple matrix product is definitely
one of the most expensive parts in a multigrid method, since it comes along with some
communication even if the transfer operators can be considered to be very sparse. Since
one cannot avoid the sparse matrix-matrix product it is highly important to have an effi-
cient parallel matrix-matrix multiplication routine. Parallel matrix algorithms and parallel
matrix-matrix multiplication algorithms in particular are still an active field of research
(cf. Buluc and Gilbert [46], Gustavson [82]).

Level smoother: Typical level smoothers such as Gauss—Seidel methods are inherently sequen-
tial. Therefore, relaxation-based smoothers are usually combined with outer Schwarz meth-
ods. The performance of the resulting smoothers is sufficient for our purposes. An overview
on other ultra-parallel multigrid smoothers can be found in Baker et al. [12].
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Coarse level solver: Often, a direct solver is used on the coarsest level which can handle the
low-energy error modes that are not tackled by the iterative level smoothers. A direct
solver is a strictly serial algorithm. Performing the LU-decomposition during the setup
and the back- and forward substitution during the iteration phase may — depending on the
problem size on the coarsest level — dominate the overall timings in a multigrid method.
Multigrid cycles other than the V-cycle may suffer from a rather high number of coarse
level solves. For example, the work by Notay and Napov [146] discusses the issues of the
K-cycle (cf. Notay [143]) for the parallel performance due to the high number of coarse
level solves. Similar problems may occur for a W-cycle. Only with the V-cycle the number
of coarse level solves scales linearly with the number of (multigrid) iterations.

D.3. Rebalancing and coarse grid correction

Load balancing is extremely important especially for coarse grained algorithms such as the ag-
gregation and tentative prolongation methods to avoid processors waiting for other processors
with a too high load. Especially for higher coarsening rates it makes sense to reduce the number
of involved processors on the coarser levels. When using the uncoupled aggregation routine this
might even be necessary to obtain reasonable aggregates on the coarse levels. Furthermore it
allows to reduce the communication costs, if less processors are involved. Since many “parallel”
implementations of direct coarse solvers run a sequential algorithm on a single processor only
and communicate the data back and forth from and to the other processors, it makes sense to use
only one processor on the coarsest level any way (see Example 3.6).

In order to reduce the communication overhead one can also use completely different ideas,
such as additive AMG schemes as presented in, e.g., in Vassilevski and Yang [202]. However, in
this thesis these kinds of methods are not further pursued.

D.4. Scaling studies
D.4.1. Two solid bodies example

In contrary to the examples in Section 6.5.1, now a discretization with 60 x 60 x 60 nodes per
solid body is used which corresponds to 432000 nodes and 1296000 degrees of freedom. For the
scaling experiments the rotation angles are fixed to oy, = v, = 0.

D.4.1.1. Strong scaling study

First of all, a small strong scaling study using the two solid bodies example in condensed for-
mulation is performed. In each Newton iteration, the resulting linear system is solved using
GMRES with a 3 level Contact PA-AMG preconditioner. Again, the nonlinear iteration stops if
lr*|l, < 107% and ||Aul||, < 107® holds. On each level ¢, 3 sweeps with a damped symmet-
ric Gauss—Seidel method (damping parameter: 0.7) are applied. The coarse solver is chosen to
be KLU. The coarsening stops if the coarse level matrix has less than 8000 rows. For a rapid
coarsening the minimum size for an aggregate is set to 18 nodes.

For the strong scaling experiment the problem size is fixed but the number of processors
is increased starting from 32 to 128. Table D.1 gives the corresponding numbers and timings
exemplarily for time step 25. Obviously, the number of aggregates is influenced by the number
of processors due to the uncoupled aggregation strategy. It is hard to predict how the number
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Distribution | Aggregates Setup Solver phase (fixed tol) | Solver phase (adapt. tol)
#PROCS ¢{=1 (=2|Time EFF | #It. Time EFF | #It. Time EFF
128 8 x 16 | 4544 908 4.8 0.58 | 483 23.6 0.85 | 409 18.5 0.99
64 4x16 | 5000 950 7.2 0.77 495 40.7 0.97 | 428 374 0.99
64 8x8 | 5000 950 79 0.70 | 495 41.6 0.96 | 428 35.1 1.05
32 2x16 | 2860 806 10.5 1.05 | 519  79.9 1.00 | 439 75.3 0.98
32 8 x4 | 2860 806 11.1 1.00 | 5819 79.2 1.00 | 439 73.8 1.00

Table D.1.: Two solid bodies example — Strong scaling results for time step 25. The ‘Setup’
timings denote the wall-clock time in [s] for generating one multigrid hierarchy in
time step 25. The ‘Solver phase’ contains the summed up number of iterations and
timings in [s] for all linear systems within time step 25. When a fixed solver tolerance
is used, this corresponds to 6 linear systems per time step, for the adaptive solver

tolerance one needs 7 linear systems per time step. The efficiency ‘EFF’ is calculated
by EFF .= Tk

5T(p) *

of aggregates really corresponds to the number of processors. But in general one can state that
it is important that there are enough nodes on each processor to find appropriate aggregates,
1.e., one should not use too many processors to allow for a reasonable number of aggregates on
each processor. Since the active set is not changing over time, the multigrid hierarchy is only
built once in the beginning of every time step and reused for all linear solves within the Newton
1teration.

The results for a fixed stopping criterion for the linear solver are compared with an adaptive
stopping criterion as already introduced in Section 6.5.4, viz.

rk 108 ifi =0,
) < Eq = 10—5 10—° (D.3)
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where r? denotes the linear residual after ¥ GMRES iterations in Newton step i and r* denotes
the nonlinear residual after 7 Newton iterations.

Note that the number of iterations in Table D.1 denotes the accumulated number of linear
iterations for the full time step 25. In case of the fixed tolerance this includes the linear iterations
from 6 Newton steps and for the adaptive solver tolerance it includes 7 Newton steps. Even
though the number of Newton steps is slightly increasing when using an adaptive weakened
linear solver tolerance, one can save a significant number of iterations (and computational time).
Note that the given timings also represent the accumulated solving time (iteration phase) for all
linear systems in the time step 25.

When using a fixed tolerance, one is loosing efficiency due to the increasing communication.
It is interesting to see that an adaptive solver tolerance compensates the higher communication
costs with decreasing iteration timings in this example.

Remark D.4.1 (Weak scaling study). A reasonable weak scaling study is hard to perform as the
ratio of the challenging slave contact nodes and the inner nodes is decreasing with increasing
problem size.
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#Aggregates | SIMPLEC Uzawa
disp/Lagr It. Time It. Time
11429/297 | 129.3 24.6 | 128.6 24.5
7241/44 | 102.2  36.1 | 233.5  49.2
2033/14 | 74.8 16.3 | 222.5 49.3
66/13 | 69.5 16.8 | 217.6 50.1

U W NS

Table D.2.: Two solid bodies example — Dependency of linear solver from number of multigrid
levels. ‘#Aggregates’ denotes the number of coarse level aggregates using ¢ multigrid
levels both for the displacement degrees of freedom and Lagrange multipliers. ‘It’
gives the number of average linear iterations for all linear systems in time step 25
and ‘Time’ is the corresponding average time in [s].

D.4.1.2. Influence of multigrid levels

Next, the influence of an increasing number of multigrid levels is studied. The two solid bodies
contact example is now formulated as saddle point problem. The problem size on the finest level
is fixed to be 1296000 degrees of freedom for the displacement variables and 10800 Lagrange
multipliers corresponding to 3600 nodes at the contact interface. For the linear solver a fixed

;1| < 107%. The number of multigrid levels is prescribed
between 2 and 5. For coarsening non-smoothed transfer operators are used with the methods
as described in Chapter 7. As level smoothers the CheapSIMPLEC and CheapUzawa methods
are compared. On each multigrid level 3 CheapSIMPLEC(0.6) or 3 CheapUzawa(0.6) iterations
are applied which internally use 2 sweeps with symmetric Gauss—Seidel (0.6) and 1 sweep with
symmetric Gauss—Seidel (0.4) for approximately inverting the displacement or Schur comple-
ment block in the SIMPLE iteration. Table D.2 shows the number of coarse level aggregates both
for the displacement variables and Lagrange multipliers. Obviously, the number of iterations is
decreasing with the increasing number of multigrid levels when a CheapSIMPLEC smoother
is applied. The CheapSIMPLEC smoother turns out to provide the better approximation and
clearly outperforms the weaker CheapUzawa smoother both in iterations and timings. As one
can see from Table D.2 one should choose the number of multigrid levels not too small such that
the level smoothers can work effectively. With only two multigrid levels, the level smoother has
nearly no effect.

T
0

convergence criterion is used with

D.4.2. Channel flow

Here, a strong scaling study for a steady-state simple channel flow example is performed. A
finite element discretization is used with stabilized linear finite elements for the incompressible
Navier—Stokes equations on a 128 x 128 x 128 discretization with altogether 8388608 degrees
of freedom. The channel is 6 units in length and 2 units in width and height. A quadratic inflow
profile is prescribed, i.e., (1 — 3?)(1 — 2?) and homogeneous Dirichlet boundaries on the side
walls. The dynamic viscosity is set to 0.01 and the density is chosen to be 1. To reduce the norm
of the absolute nonlinear residual (with both velocity and pressure degrees of freedom) by 8
orders of magnitude, one needs 4 Newton iterations. Within each Newton step a GMRES solver
is used together with a 3 level AMG preconditioner. In each Newton step © the GMRES method
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#PROCS #DOFs pp | #Lin. It. Time | Speedup EFF

6 (6x1) 1398101 106.3  993.3 1.00 1.00
12 (6 x 2) 699051 99.8 445.5 223 1.11
24 (6 x4) 349525 103.5 249.0 3.99 1.00
48 (6 x ) 174763 105.3  192.9 2.15 0.64
96 (6 x 16) 87381 110.5 105.8 9.39 0.59

Table D.3.: Channel flow example — Strong scaling results for steady-state channel flow. The
‘PROCS’ denotes the number of processors. ‘DOFS pp’ gives an approximate num-
ber of degrees of freedom per processor. ‘Lin. It denotes the average number of
linear iterations needed to solve on linear system with GMRES. ‘Time’ gives the
corresponding iteration time in [s].

k
i

0
r;

r

e < 1078 holds where r* denotes the linear residual after &

e

is supposed to be converged if
GMRES iterations.

D.4.2.1. Strong scaling study

For our strong scaling study the number of processors is increased from 6 to 96 (see Table D.3).
For level smoothing 2 sweeps with a CheapSIMPLE (0.6) are applied on all multigrid levels (in-
cluding the coarsest level). For the prediction smoother 3 sweeps with symmetric Gauss—Seidel
(0.8) have been chosen together with 1 sweep with a symmetric Gauss—Seidel (0.7) smoother
for the Schur complement solver. The size of the aggregates is postulated to be within 27 and 32
nodes per aggregate. The aggregates for the velocity degrees of freedom are reused for the pres-
sure degrees of freedom. To avoid further communication costs non-smoothed transfer operators
are used.

In Table D.3 one can see that the average number of linear iterations is rather constant and only
slightly increasing with the number of processors. One also finds the average number of degrees
of freedom per processor to decrease, which may lead to worse aggregates on the coarser levels
and therefore explain the number of linear iterations to increase. Note that always a fixed number
of 6 computational nodes is used and only the number of processors per node is increased starting
from 1 to 16. Each node has two Intel Xeon E5-2670 Octocore CPUs which share 32 Gb memory.
In the timings, there is a notable drop in performance between 24 and 48 processors. This has
probably technical reasons when switching from using half of a CPU to a full CPU per node.

D.4.2.2. Influence of multigrid levels

Next, the effect of an increasing number of multigrid levels to the performance of the linear
solver is studied. The number of multigrid levels is prescribed between 2 and 5 (as long as the
coarsest problem does not get too small). For the experiments in Table D.4 the level smoother is
chosen as 1 sweep with CheapSIMPLE (0.4) either on all multigrid levels or with a direct solver
on the coarsest level. Internally, for the prediction smoother in the CheapSIMPLE level smoother
3 sweeps with symmetric Gauss—Seidel (0.6) are used with 1 sweep with a symmetric Gauss—
Seidel (0.6) smoother for the Schur complement solver. The size of the aggregates is prescribed
to be in the range of 27 and 32 nodes. Then, the effect of different transfer operator strategies
is compared. ‘PA-AMG’ serves as reference with non-smoothed transfer operators (cf. Section
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D. Comments on parallelization of SA-AMG

Coarse solver
Ch.SIMPLE Direct
¢ | Coarse size OC It. Time It. Time
o2 280552 1.02 | 934 614.1| - —
5 3 8084 1.02 | 339 2265|176 119.4
414 1340 1.02 | 211 143.1 | 175 1185
o | |5 444 1.02 | 188 129.3 | 175 121.3
Sl [2 280552 1.05 | 338 2279 | - -
S| E|3 7060 1.05 | 172 119.8 | 104  75.3
=1Ey 460 1.05| 115 821|121 85.3
5| 2 280552 1.05 | 511 3449 | - -
513 7056 1.05 | 126  88.0 | 95 70.2
|y 260 1.05| 90 64.8| 92  65.2

Table D.4.: Channel flow example — Dependency of linear solver from number of multigrid lev-
els and transfer operators. ‘PA-AMG’ denotes non-smoothed tentative transfer oper-
ators (cf. Section 3.4). ‘Emin’ represents the transfer operators smoothing strategy
with local damping factors (cf. Section 3.5.2) combined with the Petrov—Galerkin
approach from Section 4.2.2. ‘Schur’ denotes SchurComp(1, 2.0) from Chapter 4.
‘Coarse size’ is the number of degrees of freedom on the coarsest level using ¢ multi-
grid levels. ‘OC’ denotes the operator complexity. ‘It” gives the number of linear
iterations for the first linear system and ‘Time’ is the corresponding time in [s].

3.4). ‘Emin’ denotes the smoothed transfers with local damping factors (cf. Section 3.5.2) to-
gether with the Petrov—Galerkin approach from Section 4.2.2. ‘Schur’ denotes the SchurComp
approach from Chapter 4 with only one smoothing sweep. All simulations run on 64 processors
spread over 4 nodes with 2 Intel Xeon E5-2670 Octocore CPUs each.

For using a direct solver on the coarsest level one needs at least 3 multigrid levels for that
example in order to have a reasonably small coarse level problem. As expected, when using
CheapSIMPLE as coarse solver one has benefit from a larger number of multigrid levels which
corresponds to more calls to the smoothing methods (on different levels). When using a direct
solver on the coarsest level, the number of multigrid levels is not so important. Depending on the
chosen transfer operator strategy (and the resulting coarsening) the number of linear iterations is
nearly independent from the number of multigrid levels ¢. The example also demonstrates that
the usage of more advanced smoothed transfer operators can drastically reduce the number of
linear iterations and the corresponding solver timings. The different behavior of the aggregation
routine depending on the transfer operator smoothing strategy is also notable. The SchurComp
methods leads to a significantly better coarsening on the coarser levels in this example.
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